/[svn]/gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp
ViewVC logotype

Contents of /gigedit/trunk/src/gigedit/CombineInstrumentsDialog.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3780 - (show annotations) (download)
Fri May 29 21:40:51 2020 UTC (2 months, 1 week ago) by schoenebeck
File size: 55164 byte(s)
Combine Tool: Added debug messages while determining dimension ranges.

1 /*
2 Copyright (c) 2014-2020 Christian Schoenebeck
3
4 This file is part of "gigedit" and released under the terms of the
5 GNU General Public License version 2.
6 */
7
8 #include "global.h"
9 #include "CombineInstrumentsDialog.h"
10
11 // enable this for debug messages being printed while combining the instruments
12 #define DEBUG_COMBINE_INSTRUMENTS 0
13
14 #include "compat.h"
15
16 #include <set>
17 #include <iostream>
18 #include <assert.h>
19 #include <stdarg.h>
20 #include <string.h>
21
22 #include <glibmm/ustring.h>
23 #if HAS_GTKMM_STOCK
24 # include <gtkmm/stock.h>
25 #endif
26 #include <gtkmm/messagedialog.h>
27 #include <gtkmm/label.h>
28 #include <gtk/gtkwidget.h> // for gtk_widget_modify_*()
29
30 Glib::ustring dimTypeAsString(gig::dimension_t d);
31
32 typedef std::vector< std::pair<gig::Instrument*, gig::Region*> > OrderedRegionGroup;
33 typedef std::map<gig::Instrument*, gig::Region*> RegionGroup;
34 typedef std::map<DLS::range_t,RegionGroup> RegionGroups;
35
36 typedef std::vector<DLS::range_t> DimensionZones;
37 typedef std::map<gig::dimension_t,DimensionZones> Dimensions;
38
39 typedef std::map<gig::dimension_t, int> DimensionRegionUpperLimits;
40
41 typedef std::set<Glib::ustring> Warnings;
42
43 ///////////////////////////////////////////////////////////////////////////
44 // private static data
45
46 static Warnings g_warnings;
47
48 ///////////////////////////////////////////////////////////////////////////
49 // private functions
50
51 #if DEBUG_COMBINE_INSTRUMENTS
52 static void printRanges(const RegionGroups& regions) {
53 std::cout << "{ ";
54 for (RegionGroups::const_iterator it = regions.begin(); it != regions.end(); ++it) {
55 if (it != regions.begin()) std::cout << ", ";
56 std::cout << (int)it->first.low << ".." << (int)it->first.high;
57 }
58 std::cout << " }" << std::flush;
59 }
60 #endif
61
62 /**
63 * Store a warning message that shall be stored and displayed to the user as a
64 * list of warnings after the overall operation has finished. Duplicate warning
65 * messages are automatically eliminated.
66 */
67 inline void addWarning(const char* fmt, ...) {
68 va_list arg;
69 va_start(arg, fmt);
70 const int SZ = 255 + strlen(fmt);
71 char* buf = new char[SZ];
72 vsnprintf(buf, SZ, fmt, arg);
73 Glib::ustring s = buf;
74 delete [] buf;
75 va_end(arg);
76 std::cerr << _("WARNING:") << " " << s << std::endl << std::flush;
77 g_warnings.insert(s);
78 }
79
80 /**
81 * If the two ranges overlap, then this function returns the smallest point
82 * within that overlapping zone. If the two ranges do not overlap, then this
83 * function will return -1 instead.
84 */
85 inline int smallestOverlapPoint(const DLS::range_t& r1, const DLS::range_t& r2) {
86 if (r1.overlaps(r2.low)) return r2.low;
87 if (r2.overlaps(r1.low)) return r1.low;
88 return -1;
89 }
90
91 /**
92 * Get the most smallest region point (not necessarily its region start point)
93 * of all regions of the given instruments, start searching at keyboard
94 * position @a iStart.
95 *
96 * @returns very first region point >= iStart, or -1 if no region could be
97 * found with a range member point >= iStart
98 */
99 static int findLowestRegionPoint(std::vector<gig::Instrument*>& instruments, int iStart) {
100 DLS::range_t searchRange = { uint16_t(iStart), 127 };
101 int result = -1;
102 for (uint i = 0; i < instruments.size(); ++i) {
103 gig::Instrument* instr = instruments[i];
104 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
105 if (rgn->KeyRange.overlaps(searchRange)) {
106 int lowest = smallestOverlapPoint(rgn->KeyRange, searchRange);
107 if (result == -1 || lowest < result) result = lowest;
108 }
109 }
110 }
111 return result;
112 }
113
114 /**
115 * Get the most smallest region end of all regions of the given instruments,
116 * start searching at keyboard position @a iStart.
117 *
118 * @returns very first region end >= iStart, or -1 if no region could be found
119 * with a range end >= iStart
120 */
121 static int findFirstRegionEnd(std::vector<gig::Instrument*>& instruments, int iStart) {
122 DLS::range_t searchRange = { uint16_t(iStart), 127 };
123 int result = -1;
124 for (uint i = 0; i < instruments.size(); ++i) {
125 gig::Instrument* instr = instruments[i];
126 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
127 if (rgn->KeyRange.overlaps(searchRange)) {
128 if (result == -1 || rgn->KeyRange.high < result)
129 result = rgn->KeyRange.high;
130 }
131 }
132 }
133 return result;
134 }
135
136 /**
137 * Returns a list of all regions of the given @a instrument where the respective
138 * region's key range overlaps the given @a range.
139 */
140 static std::vector<gig::Region*> getAllRegionsWhichOverlapRange(gig::Instrument* instrument, DLS::range_t range) {
141 //std::cout << "All regions which overlap { " << (int)range.low << ".." << (int)range.high << " } : " << std::flush;
142 std::vector<gig::Region*> v;
143 for (gig::Region* rgn = instrument->GetFirstRegion(); rgn; rgn = instrument->GetNextRegion()) {
144 if (rgn->KeyRange.overlaps(range)) {
145 v.push_back(rgn);
146 //std::cout << (int)rgn->KeyRange.low << ".." << (int)rgn->KeyRange.high << ", " << std::flush;
147 }
148 }
149 //std::cout << " END." << std::endl;
150 return v;
151 }
152
153 /**
154 * Returns all regions of the given @a instruments where the respective region's
155 * key range overlaps the given @a range. The regions returned are ordered (in a
156 * map) by their instrument pointer.
157 */
158 static RegionGroup getAllRegionsWhichOverlapRange(std::vector<gig::Instrument*>& instruments, DLS::range_t range) {
159 RegionGroup group;
160 for (uint i = 0; i < instruments.size(); ++i) {
161 gig::Instrument* instr = instruments[i];
162 std::vector<gig::Region*> v = getAllRegionsWhichOverlapRange(instr, range);
163 if (v.empty()) continue;
164 if (v.size() > 1) {
165 addWarning("More than one region found!");
166 }
167 group[instr] = v[0];
168 }
169 return group;
170 }
171
172 /** @brief Identify required regions.
173 *
174 * Takes a list of @a instruments as argument (which are planned to be combined
175 * as separate dimension zones of a certain dimension into one single new
176 * instrument) and fulfills the following tasks:
177 *
178 * - 1. Identification of total amount of regions required to create a new
179 * instrument to become a combined version of the given instruments.
180 * - 2. Precise key range of each of those identified required regions to be
181 * created in that new instrument.
182 * - 3. Grouping the original source regions of the given original instruments
183 * to the respective target key range (new region) of the instrument to be
184 * created.
185 *
186 * @param instruments - list of instruments that are planned to be combined
187 * @returns structured result of the tasks described above
188 */
189 static RegionGroups groupByRegionIntersections(std::vector<gig::Instrument*>& instruments) {
190 RegionGroups groups;
191
192 // find all region intersections of all instruments
193 std::vector<DLS::range_t> intersections;
194 for (int iStart = 0; iStart <= 127; ) {
195 iStart = findLowestRegionPoint(instruments, iStart);
196 if (iStart < 0) break;
197 const int iEnd = findFirstRegionEnd(instruments, iStart);
198 DLS::range_t range = { uint16_t(iStart), uint16_t(iEnd) };
199 intersections.push_back(range);
200 iStart = iEnd + 1;
201 }
202
203 // now sort all regions to those found intersections
204 for (uint i = 0; i < intersections.size(); ++i) {
205 const DLS::range_t& range = intersections[i];
206 RegionGroup group = getAllRegionsWhichOverlapRange(instruments, range);
207 if (!group.empty())
208 groups[range] = group;
209 else
210 addWarning("Empty region group!");
211 }
212
213 return groups;
214 }
215
216 /** @brief Identify required dimensions.
217 *
218 * Takes a planned new region (@a regionGroup) as argument and identifies which
219 * precise dimensions would have to be created for that new region, along with
220 * the amount of dimension zones and their precise individual zone sizes.
221 *
222 * @param regionGroup - planned new region for a new instrument
223 * @returns set of dimensions that shall be created for the given planned region
224 */
225 static Dimensions getDimensionsForRegionGroup(RegionGroup& regionGroup) {
226 std::map<gig::dimension_t, std::set<int> > dimUpperLimits;
227
228 #if DEBUG_COMBINE_INSTRUMENTS
229 printf("dimUpperLimits = {\n");
230 #endif
231 // collect all dimension region zones' upper limits
232 for (RegionGroup::iterator it = regionGroup.begin();
233 it != regionGroup.end(); ++it)
234 {
235 gig::Region* rgn = it->second;
236 int previousBits = 0;
237 for (uint d = 0; d < rgn->Dimensions; ++d) {
238 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
239 #if DEBUG_COMBINE_INSTRUMENTS
240 printf("\t[rgn=%p,dim=%#x] = {", rgn, def.dimension);
241 #endif
242 for (uint z = 0; z < def.zones; ++z) {
243 int dr = z << previousBits;
244 gig::DimensionRegion* dimRgn = rgn->pDimensionRegions[dr];
245 // Store the individual dimension zone sizes (or actually their
246 // upper limits here) for each dimension.
247 // HACK: Note that the velocity dimension is specially handled
248 // here. Instead of taking over custom velocity split sizes
249 // here, only a bogus number (zone index number) is stored for
250 // each velocity zone, that way only the maxiumum amount of
251 // velocity splits of all regions is stored here, and when their
252 // individual DimensionRegions are finally copied (later), the
253 // individual velocity split size are copied by that.
254 const int upperLimit =
255 (def.dimension == gig::dimension_velocity) ?
256 z : (def.split_type == gig::split_type_bit) ?
257 ((z+1) * 128/def.zones - 1) : dimRgn->DimensionUpperLimits[dr];
258 #if DEBUG_COMBINE_INSTRUMENTS
259 printf(" %d,", upperLimit);
260 #endif
261 dimUpperLimits[def.dimension].insert(upperLimit);
262 }
263 previousBits += def.bits;
264 #if DEBUG_COMBINE_INSTRUMENTS
265 printf(" }\n");
266 #endif
267 }
268 }
269 #if DEBUG_COMBINE_INSTRUMENTS
270 printf("}\n");
271 #endif
272
273 // convert upper limit set to range vector
274 Dimensions dims;
275 #if DEBUG_COMBINE_INSTRUMENTS
276 printf("dims = {\n");
277 #endif
278 for (std::map<gig::dimension_t, std::set<int> >::const_iterator it = dimUpperLimits.begin();
279 it != dimUpperLimits.end(); ++it)
280 {
281 gig::dimension_t type = it->first;
282 #if DEBUG_COMBINE_INSTRUMENTS
283 printf("\t[dim=%#x] = {", type);
284 #endif
285 int iLow = 0;
286 for (std::set<int>::const_iterator itNums = it->second.begin();
287 itNums != it->second.end(); ++itNums)
288 {
289 const int iUpperLimit = *itNums;
290 DLS::range_t range = { uint16_t(iLow), uint16_t(iUpperLimit) };
291 dims[type].push_back(range);
292 #if DEBUG_COMBINE_INSTRUMENTS
293 printf(" %d..%d,", iLow, iUpperLimit);
294 #endif
295 iLow = iUpperLimit + 1;
296 }
297 #if DEBUG_COMBINE_INSTRUMENTS
298 printf(" }\n");
299 #endif
300 }
301 #if DEBUG_COMBINE_INSTRUMENTS
302 printf("}\n");
303 #endif
304
305 return dims;
306 }
307
308 static void fillDimValues(uint* values/*[8]*/, DimensionCase dimCase, gig::Region* rgn, bool bShouldHaveAllDimensionsPassed) {
309 #if DEBUG_COMBINE_INSTRUMENTS
310 printf("dimvalues = { ");
311 fflush(stdout);
312 #endif
313 for (DimensionCase::iterator it = dimCase.begin(); it != dimCase.end(); ++it) {
314 gig::dimension_t type = it->first;
315 int iDimIndex = getDimensionIndex(type, rgn);
316 if (bShouldHaveAllDimensionsPassed) assert(iDimIndex >= 0);
317 else if (iDimIndex < 0) continue;
318 values[iDimIndex] = it->second;
319 #if DEBUG_COMBINE_INSTRUMENTS
320 printf("%x=%d, ", type, it->second);
321 #endif
322 }
323 #if DEBUG_COMBINE_INSTRUMENTS
324 printf("}\n");
325 #endif
326 }
327
328 static DimensionRegionUpperLimits getDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn) {
329 DimensionRegionUpperLimits limits;
330 gig::Region* rgn = dimRgn->GetParent();
331 for (uint d = 0; d < rgn->Dimensions; ++d) {
332 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[d];
333 limits[def.dimension] = dimRgn->DimensionUpperLimits[d];
334 }
335 return limits;
336 }
337
338 static void restoreDimensionRegionUpperLimits(gig::DimensionRegion* dimRgn, const DimensionRegionUpperLimits& limits) {
339 gig::Region* rgn = dimRgn->GetParent();
340 for (DimensionRegionUpperLimits::const_iterator it = limits.begin();
341 it != limits.end(); ++it)
342 {
343 int index = getDimensionIndex(it->first, rgn);
344 assert(index >= 0);
345 dimRgn->DimensionUpperLimits[index] = it->second;
346 }
347 }
348
349 inline int dimensionRegionIndex(gig::DimensionRegion* dimRgn) {
350 gig::Region* rgn = dimRgn->GetParent();
351 int sz = sizeof(rgn->pDimensionRegions) / sizeof(gig::DimensionRegion*);
352 for (int i = 0; i < sz; ++i)
353 if (rgn->pDimensionRegions[i] == dimRgn)
354 return i;
355 return -1;
356 }
357
358 /** @brief Get exact zone ranges of given dimension.
359 *
360 * This function is useful for the velocity type dimension. In contrast to other
361 * dimension types, this dimension can have different zone ranges (that is
362 * different individual start and end points of its dimension zones) depending
363 * on which zones of other dimensions (on that gig::Region) are currently
364 * selected.
365 *
366 * @param type - dimension where the zone ranges should be retrieved for
367 * (usually the velocity dimension in this context)
368 * @param dimRgn - reflects the exact cases (zone selections) of all other
369 * dimensions than the given one in question
370 * @returns individual ranges for each zone of the questioned dimension type,
371 * it returns an empty result on errors instead
372 */
373 static DimensionZones preciseDimensionZonesFor(gig::dimension_t type, gig::DimensionRegion* dimRgn) {
374 DimensionZones zones;
375 gig::Region* rgn = dimRgn->GetParent();
376 int iDimension = getDimensionIndex(type, rgn);
377 if (iDimension < 0) return zones;
378 const gig::dimension_def_t& def = rgn->pDimensionDefinitions[iDimension];
379 int iDimRgn = dimensionRegionIndex(dimRgn);
380 int iBaseBits = baseBits(type, rgn);
381 assert(iBaseBits >= 0);
382 int mask = ~(((1 << def.bits) - 1) << iBaseBits);
383
384 #if DEBUG_COMBINE_INSTRUMENTS
385 printf("velo zones { ");
386 fflush(stdout);
387 #endif
388 int iLow = 0;
389 for (int z = 0; z < def.zones; ++z) {
390 gig::DimensionRegion* dimRgn2 =
391 rgn->pDimensionRegions[ (iDimRgn & mask) | ( z << iBaseBits) ];
392 int iHigh = dimRgn2->DimensionUpperLimits[iDimension];
393 DLS::range_t range = { uint16_t(iLow), uint16_t(iHigh) };
394 #if DEBUG_COMBINE_INSTRUMENTS
395 printf("%d..%d, ", iLow, iHigh);
396 fflush(stdout);
397 #endif
398 zones.push_back(range);
399 iLow = iHigh + 1;
400 }
401 #if DEBUG_COMBINE_INSTRUMENTS
402 printf("}\n");
403 #endif
404 return zones;
405 }
406
407 struct CopyAssignSchedEntry {
408 gig::DimensionRegion* src;
409 gig::DimensionRegion* dst;
410 int velocityZone;
411 int totalSrcVelocityZones;
412 };
413 typedef std::vector<CopyAssignSchedEntry> CopyAssignSchedule;
414
415 /** @brief Schedule copying DimensionRegions from source Region to target Region.
416 *
417 * Schedules copying the entire articulation informations (including sample
418 * reference) from all individual DimensionRegions of source Region @a inRgn to
419 * target Region @a outRgn. It is expected that the required dimensions (thus
420 * the required dimension regions) were already created before calling this
421 * function.
422 *
423 * To be precise, it does the task above only for the dimension zones defined by
424 * the three arguments @a mainDim, @a iSrcMainBit, @a iDstMainBit, which reflect
425 * a selection which dimension zones shall be copied. All other dimension zones
426 * will not be scheduled to be copied by a single call of this function. So this
427 * function needs to be called several time in case all dimension regions shall
428 * be copied of the entire region (@a inRgn, @a outRgn).
429 *
430 * @param outRgn - where the dimension regions shall be copied to
431 * @param inRgn - all dimension regions that shall be copied from
432 * @param dims - precise dimension definitions of target region
433 * @param mainDim - this dimension type, in combination with @a iSrcMainBit and
434 * @a iDstMainBit defines a selection which dimension region
435 * zones shall be copied by this call of this function
436 * @param iDstMainBit - destination bit of @a mainDim
437 * @param iSrcMainBit - source bit of @a mainDim
438 * @param schedule - list of all DimensionRegion copy operations which is filled
439 * during the nested loops / recursions of this function call
440 * @param dimCase - just for internal purpose (function recursion), don't pass
441 * anything here, this function will call itself recursively
442 * will fill this container with concrete dimension values for
443 * selecting the precise dimension regions during its task
444 */
445 static void scheduleCopyDimensionRegions(gig::Region* outRgn, gig::Region* inRgn,
446 Dimensions dims, gig::dimension_t mainDim,
447 int iDstMainBit, int iSrcMainBit,
448 CopyAssignSchedule* schedule,
449 DimensionCase dimCase = DimensionCase())
450 {
451 if (dims.empty()) { // reached deepest level of function recursion ...
452 CopyAssignSchedEntry e;
453
454 // resolve the respective source & destination DimensionRegion ...
455 uint srcDimValues[8] = {};
456 uint dstDimValues[8] = {};
457 DimensionCase srcDimCase = dimCase;
458 DimensionCase dstDimCase = dimCase;
459 srcDimCase[mainDim] = iSrcMainBit;
460 dstDimCase[mainDim] = iDstMainBit;
461
462 #if DEBUG_COMBINE_INSTRUMENTS
463 printf("-------------------------------\n");
464 printf("iDstMainBit=%d iSrcMainBit=%d\n", iDstMainBit, iSrcMainBit);
465 #endif
466
467 // first select source & target dimension region with an arbitrary
468 // velocity split zone, to get access to the precise individual velocity
469 // split zone sizes (if there is actually a velocity dimension at all,
470 // otherwise we already select the desired source & target dimension
471 // region here)
472 #if DEBUG_COMBINE_INSTRUMENTS
473 printf("src "); fflush(stdout);
474 #endif
475 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
476 #if DEBUG_COMBINE_INSTRUMENTS
477 printf("dst "); fflush(stdout);
478 #endif
479 fillDimValues(dstDimValues, dstDimCase, outRgn, false);
480 gig::DimensionRegion* srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
481 gig::DimensionRegion* dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
482 #if DEBUG_COMBINE_INSTRUMENTS
483 printf("iDstMainBit=%d iSrcMainBit=%d\n", iDstMainBit, iSrcMainBit);
484 printf("srcDimRgn=%lx dstDimRgn=%lx\n", (uint64_t)srcDimRgn, (uint64_t)dstDimRgn);
485 printf("srcSample='%s' dstSample='%s'\n",
486 (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str()),
487 (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str())
488 );
489 #endif
490
491 assert(srcDimRgn->GetParent() == inRgn);
492 assert(dstDimRgn->GetParent() == outRgn);
493
494 // now that we have access to the precise velocity split zone upper
495 // limits, we can select the actual source & destination dimension
496 // regions we need to copy (assuming that source or target region has
497 // a velocity dimension)
498 if (outRgn->GetDimensionDefinition(gig::dimension_velocity)) {
499 // re-select target dimension region (with correct velocity zone)
500 DimensionZones dstZones = preciseDimensionZonesFor(gig::dimension_velocity, dstDimRgn);
501 assert(dstZones.size() > 1);
502 const int iDstZoneIndex =
503 (mainDim == gig::dimension_velocity)
504 ? iDstMainBit : dstDimCase[gig::dimension_velocity]; // (mainDim == gig::dimension_velocity) exception case probably unnecessary here
505 e.velocityZone = iDstZoneIndex;
506 #if DEBUG_COMBINE_INSTRUMENTS
507 printf("dst velocity zone: %d/%d\n", iDstZoneIndex, (int)dstZones.size());
508 #endif
509 assert(uint(iDstZoneIndex) < dstZones.size());
510 dstDimCase[gig::dimension_velocity] = dstZones[iDstZoneIndex].low; // arbitrary value between low and high
511 #if DEBUG_COMBINE_INSTRUMENTS
512 printf("dst velocity value = %d\n", dstDimCase[gig::dimension_velocity]);
513 printf("dst refilled "); fflush(stdout);
514 #endif
515 fillDimValues(dstDimValues, dstDimCase, outRgn, false);
516 dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
517 #if DEBUG_COMBINE_INSTRUMENTS
518 printf("reselected dstDimRgn=%lx\n", (uint64_t)dstDimRgn);
519 printf("dstSample='%s'%s\n",
520 (!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str()),
521 (dstDimRgn->pSample ? " <--- ERROR ERROR ERROR !!!!!!!!! " : "")
522 );
523 #endif
524
525 // re-select source dimension region with correct velocity zone
526 // (if it has a velocity dimension that is)
527 if (inRgn->GetDimensionDefinition(gig::dimension_velocity)) {
528 DimensionZones srcZones = preciseDimensionZonesFor(gig::dimension_velocity, srcDimRgn);
529 e.totalSrcVelocityZones = srcZones.size();
530 assert(srcZones.size() > 0);
531 if (srcZones.size() <= 1) {
532 addWarning("Input region has a velocity dimension with only ONE zone!");
533 }
534 int iSrcZoneIndex =
535 (mainDim == gig::dimension_velocity)
536 ? iSrcMainBit : iDstZoneIndex;
537 if (uint(iSrcZoneIndex) >= srcZones.size())
538 iSrcZoneIndex = srcZones.size() - 1;
539 srcDimCase[gig::dimension_velocity] = srcZones[iSrcZoneIndex].low; // same zone as used above for target dimension region (no matter what the precise zone ranges are)
540 #if DEBUG_COMBINE_INSTRUMENTS
541 printf("src refilled "); fflush(stdout);
542 #endif
543 fillDimValues(srcDimValues, srcDimCase, inRgn, false);
544 srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
545 #if DEBUG_COMBINE_INSTRUMENTS
546 printf("reselected srcDimRgn=%lx\n", (uint64_t)srcDimRgn);
547 printf("srcSample='%s'\n",
548 (!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str())
549 );
550 #endif
551 }
552 }
553
554 // Schedule copy operation of source -> target DimensionRegion for the
555 // time after all nested loops have been traversed. We have to postpone
556 // the actual copy operations this way, because otherwise it would
557 // overwrite informations inside the destination DimensionRegion object
558 // that we need to read in the code block above.
559 e.src = srcDimRgn;
560 e.dst = dstDimRgn;
561 schedule->push_back(e);
562
563 return; // returning from deepest level of function recursion
564 }
565
566 // Copying n dimensions requires n nested loops. That's why this function
567 // is calling itself recursively to provide the required amount of nested
568 // loops. With each call it pops from argument 'dims' and pushes to
569 // argument 'dimCase'.
570
571 Dimensions::iterator itDimension = dims.begin();
572 gig::dimension_t type = itDimension->first;
573 DimensionZones zones = itDimension->second;
574 dims.erase(itDimension);
575
576 int iZone = 0;
577 for (DimensionZones::iterator itZone = zones.begin();
578 itZone != zones.end(); ++itZone, ++iZone)
579 {
580 DLS::range_t zoneRange = *itZone;
581 gig::dimension_def_t* def = outRgn->GetDimensionDefinition(type);
582 dimCase[type] = (def->split_type == gig::split_type_bit) ? iZone : zoneRange.low;
583
584 // recurse until 'dims' is exhausted (and dimCase filled up with concrete value)
585 scheduleCopyDimensionRegions(outRgn, inRgn, dims, mainDim, iDstMainBit, iSrcMainBit, schedule, dimCase);
586 }
587 }
588
589 static OrderedRegionGroup sortRegionGroup(const RegionGroup& group, const std::vector<gig::Instrument*>& instruments) {
590 OrderedRegionGroup result;
591 for (std::vector<gig::Instrument*>::const_iterator it = instruments.begin();
592 it != instruments.end(); ++it)
593 {
594 RegionGroup::const_iterator itRgn = group.find(*it);
595 if (itRgn == group.end()) continue;
596 result.push_back(
597 std::pair<gig::Instrument*, gig::Region*>(
598 itRgn->first, itRgn->second
599 )
600 );
601 }
602 return result;
603 }
604
605 /** @brief Combine given list of instruments to one instrument.
606 *
607 * Takes a list of @a instruments as argument and combines them to one single
608 * new @a output instrument. For this task, it will create a dimension of type
609 * given by @a mainDimension in the new instrument and copies the source
610 * instruments to those dimension zones.
611 *
612 * @param instruments - (input) list of instruments that shall be combined,
613 * they will only be read, so they will be left untouched
614 * @param gig - (input/output) .gig file where the new combined instrument shall
615 * be created
616 * @param output - (output) on success this pointer will be set to the new
617 * instrument being created
618 * @param mainDimension - the dimension that shall be used to combine the
619 * instruments
620 * @throw RIFF::Exception on any kinds of errors
621 */
622 static void combineInstruments(std::vector<gig::Instrument*>& instruments, gig::File* gig, gig::Instrument*& output, gig::dimension_t mainDimension) {
623 output = NULL;
624
625 // divide the individual regions to (probably even smaller) groups of
626 // regions, coping with the fact that the source regions of the instruments
627 // might have quite different range sizes and start and end points
628 RegionGroups groups = groupByRegionIntersections(instruments);
629 #if DEBUG_COMBINE_INSTRUMENTS
630 std::cout << std::endl << "New regions: " << std::flush;
631 printRanges(groups);
632 std::cout << std::endl;
633 #endif
634
635 if (groups.empty())
636 throw gig::Exception(_("No regions found to create a new instrument with."));
637
638 // create a new output instrument
639 gig::Instrument* outInstr = gig->AddInstrument();
640 outInstr->pInfo->Name = _("NEW COMBINATION");
641
642 // Distinguishing in the following code block between 'horizontal' and
643 // 'vertical' regions. The 'horizontal' ones are meant to be the key ranges
644 // in the output instrument, while the 'vertical' regions are meant to be
645 // the set of source regions that shall be layered to that 'horizontal'
646 // region / key range. It is important to know, that the key ranges defined
647 // in the 'horizontal' and 'vertical' regions might differ.
648
649 // merge the instruments to the new output instrument
650 for (RegionGroups::iterator itGroup = groups.begin();
651 itGroup != groups.end(); ++itGroup) // iterate over 'horizontal' / target regions ...
652 {
653 gig::Region* outRgn = outInstr->AddRegion();
654 outRgn->SetKeyRange(itGroup->first.low, itGroup->first.high);
655 #if DEBUG_COMBINE_INSTRUMENTS
656 printf("---> Start target region %d..%d\n", itGroup->first.low, itGroup->first.high);
657 #endif
658
659 // detect the total amount of zones required for the given main
660 // dimension to build up this combi for current key range
661 int iTotalZones = 0;
662 for (RegionGroup::iterator itRgn = itGroup->second.begin();
663 itRgn != itGroup->second.end(); ++itRgn)
664 {
665 gig::Region* inRgn = itRgn->second;
666 gig::dimension_def_t* def = inRgn->GetDimensionDefinition(mainDimension);
667 iTotalZones += (def) ? def->zones : 1;
668 }
669 #if DEBUG_COMBINE_INSTRUMENTS
670 printf("Required total zones: %d, vertical regions: %d\n", iTotalZones, itGroup->second.size());
671 #endif
672
673 // create all required dimensions for this output region
674 // (except the main dimension used for separating the individual
675 // instruments, we create that particular dimension as next step)
676 Dimensions dims = getDimensionsForRegionGroup(itGroup->second);
677 // the given main dimension which is used to combine the instruments is
678 // created separately after the next code block, and the main dimension
679 // should not be part of dims here, because it also used for iterating
680 // all dimensions zones, which would lead to this dimensions being
681 // iterated twice
682 dims.erase(mainDimension);
683 {
684 std::vector<gig::dimension_t> skipTheseDimensions; // used to prevent a misbehavior (i.e. crash) of the combine algorithm in case one of the source instruments has a dimension with only one zone, which is not standard conform
685
686 for (Dimensions::iterator itDim = dims.begin();
687 itDim != dims.end(); ++itDim)
688 {
689 gig::dimension_def_t def;
690 def.dimension = itDim->first; // dimension type
691 def.zones = itDim->second.size();
692 def.bits = zoneCountToBits(def.zones);
693 if (def.zones < 2) {
694 addWarning(
695 "Attempt to create dimension with type=0x%x with only "
696 "ONE zone (because at least one of the source "
697 "instruments seems to have such a velocity dimension "
698 "with only ONE zone, which is odd)! Skipping this "
699 "dimension for now.",
700 (int)itDim->first
701 );
702 skipTheseDimensions.push_back(itDim->first);
703 continue;
704 }
705 #if DEBUG_COMBINE_INSTRUMENTS
706 std::cout << "Adding new regular dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
707 #endif
708 outRgn->AddDimension(&def);
709 #if DEBUG_COMBINE_INSTRUMENTS
710 std::cout << "OK" << std::endl << std::flush;
711 #endif
712 }
713 // prevent the following dimensions to be processed further below
714 // (since the respective dimension was not created above)
715 for (int i = 0; i < skipTheseDimensions.size(); ++i)
716 dims.erase(skipTheseDimensions[i]);
717 }
718
719 // create the main dimension (if necessary for current key range)
720 if (iTotalZones > 1) {
721 gig::dimension_def_t def;
722 def.dimension = mainDimension; // dimension type
723 def.zones = iTotalZones;
724 def.bits = zoneCountToBits(def.zones);
725 #if DEBUG_COMBINE_INSTRUMENTS
726 std::cout << "Adding new main combi dimension type=" << std::hex << (int)def.dimension << std::dec << ", zones=" << (int)def.zones << ", bits=" << (int)def.bits << " ... " << std::flush;
727 #endif
728 outRgn->AddDimension(&def);
729 #if DEBUG_COMBINE_INSTRUMENTS
730 std::cout << "OK" << std::endl << std::flush;
731 #endif
732 } else {
733 dims.erase(mainDimension);
734 }
735
736 // for the next task we need to have the current RegionGroup to be
737 // sorted by instrument in the same sequence as the 'instruments' vector
738 // argument passed to this function (because the std::map behind the
739 // 'RegionGroup' type sorts by memory address instead, and that would
740 // sometimes lead to the source instruments' region to be sorted into
741 // the wrong target layer)
742 OrderedRegionGroup currentGroup = sortRegionGroup(itGroup->second, instruments);
743
744 // schedule copying the source dimension regions to the target dimension
745 // regions
746 CopyAssignSchedule schedule;
747 int iDstMainBit = 0;
748 for (OrderedRegionGroup::iterator itRgn = currentGroup.begin();
749 itRgn != currentGroup.end(); ++itRgn) // iterate over 'vertical' / source regions ...
750 {
751 gig::Region* inRgn = itRgn->second;
752 #if DEBUG_COMBINE_INSTRUMENTS
753 printf("[source region of '%s']\n", inRgn->GetParent()->pInfo->Name.c_str());
754 #endif
755
756 // determine how many main dimension zones this input region requires
757 gig::dimension_def_t* def = inRgn->GetDimensionDefinition(mainDimension);
758 const int inRgnMainZones = (def) ? def->zones : 1;
759
760 for (uint iSrcMainBit = 0; iSrcMainBit < inRgnMainZones; ++iSrcMainBit, ++iDstMainBit) {
761 scheduleCopyDimensionRegions(
762 outRgn, inRgn, dims, mainDimension,
763 iDstMainBit, iSrcMainBit, &schedule
764 );
765 }
766 }
767
768 // finally copy the scheduled source -> target dimension regions
769 for (uint i = 0; i < schedule.size(); ++i) {
770 CopyAssignSchedEntry& e = schedule[i];
771
772 // backup the target DimensionRegion's current dimension zones upper
773 // limits (because the target DimensionRegion's upper limits are
774 // already defined correctly since calling AddDimension(), and the
775 // CopyAssign() call next, will overwrite those upper limits
776 // unfortunately
777 DimensionRegionUpperLimits dstUpperLimits = getDimensionRegionUpperLimits(e.dst);
778 DimensionRegionUpperLimits srcUpperLimits = getDimensionRegionUpperLimits(e.src);
779
780 // now actually copy over the current DimensionRegion
781 const gig::Region* const origRgn = e.dst->GetParent(); // just for sanity check below
782 e.dst->CopyAssign(e.src);
783 assert(origRgn == e.dst->GetParent()); // if gigedit is crashing here, then you must update libgig (to at least SVN r2547, v3.3.0.svn10)
784
785 // restore all original dimension zone upper limits except of the
786 // velocity dimension, because the velocity dimension zone sizes are
787 // allowed to differ for individual DimensionRegions in gig v3
788 // format
789 //
790 // if the main dinension is the 'velocity' dimension, then skip
791 // restoring the source's original velocity zone limits, because
792 // dealing with merging that is not implemented yet
793 // TODO: merge custom velocity splits if main dimension is the velocity dimension (for now equal sized velocity zones are used if mainDim is 'velocity')
794 if (srcUpperLimits.count(gig::dimension_velocity) && mainDimension != gig::dimension_velocity) {
795 if (!dstUpperLimits.count(gig::dimension_velocity)) {
796 addWarning("Source instrument seems to have a velocity dimension whereas new target instrument doesn't!");
797 } else {
798 dstUpperLimits[gig::dimension_velocity] =
799 (e.velocityZone >= e.totalSrcVelocityZones)
800 ? 127 : srcUpperLimits[gig::dimension_velocity];
801 }
802 }
803 restoreDimensionRegionUpperLimits(e.dst, dstUpperLimits);
804 }
805 }
806
807 // success
808 output = outInstr;
809 }
810
811 ///////////////////////////////////////////////////////////////////////////
812 // class 'CombineInstrumentsDialog'
813
814 CombineInstrumentsDialog::CombineInstrumentsDialog(Gtk::Window& parent, gig::File* gig)
815 : ManagedDialog(_("Combine Instruments"), parent, true),
816 m_gig(gig), m_fileWasChanged(false), m_newCombinedInstrument(NULL),
817 #if HAS_GTKMM_STOCK
818 m_cancelButton(Gtk::Stock::CANCEL), m_OKButton(Gtk::Stock::OK),
819 #else
820 m_cancelButton(_("_Cancel"), true), m_OKButton(_("_OK"), true),
821 #endif
822 m_descriptionLabel(),
823 #if USE_GTKMM_GRID
824 m_tableDimCombo(),
825 #else
826 m_tableDimCombo(2, 2),
827 #endif
828 m_comboDimType(),
829 m_labelDimType(Glib::ustring(_("Combine by Dimension:")) + " ", Gtk::ALIGN_END)
830 {
831 if (!Settings::singleton()->autoRestoreWindowDimension) {
832 set_default_size(500, 600);
833 set_position(Gtk::WIN_POS_MOUSE);
834 }
835
836 m_scrolledWindow.add(m_treeView);
837 m_scrolledWindow.set_policy(Gtk::POLICY_AUTOMATIC, Gtk::POLICY_AUTOMATIC);
838
839 #if USE_GTKMM_BOX
840 get_content_area()->pack_start(m_descriptionLabel, Gtk::PACK_SHRINK);
841 get_content_area()->pack_start(m_tableDimCombo, Gtk::PACK_SHRINK);
842 get_content_area()->pack_start(m_scrolledWindow);
843 get_content_area()->pack_start(m_labelOrder, Gtk::PACK_SHRINK);
844 get_content_area()->pack_start(m_iconView, Gtk::PACK_SHRINK);
845 get_content_area()->pack_start(m_buttonBox, Gtk::PACK_SHRINK);
846 #else
847 get_vbox()->pack_start(m_descriptionLabel, Gtk::PACK_SHRINK);
848 get_vbox()->pack_start(m_tableDimCombo, Gtk::PACK_SHRINK);
849 get_vbox()->pack_start(m_scrolledWindow);
850 get_vbox()->pack_start(m_labelOrder, Gtk::PACK_SHRINK);
851 get_vbox()->pack_start(m_iconView, Gtk::PACK_SHRINK);
852 get_vbox()->pack_start(m_buttonBox, Gtk::PACK_SHRINK);
853 #endif
854
855 #if GTKMM_MAJOR_VERSION >= 3
856 m_descriptionLabel.set_line_wrap();
857 #endif
858 m_descriptionLabel.set_text(_(
859 "Select at least two instruments below that shall be combined (as "
860 "separate dimension zones of the selected dimension type) as a new "
861 "instrument. The original instruments remain untouched.\n\n"
862 "You may use this tool for example to combine solo instruments into "
863 "a combi sound arrangement by selecting the 'layer' dimension, or you "
864 "might combine similar sounding solo sounds into separate velocity "
865 "split layers by using the 'velocity' dimension, and so on."
866 ));
867
868 // add dimension type combo box
869 {
870 int iLayerDimIndex = -1;
871 Glib::RefPtr<Gtk::ListStore> refComboModel = Gtk::ListStore::create(m_comboDimsModel);
872 for (int i = 0x01, iRow = 0; i < 0xff; i++) {
873 Glib::ustring sType =
874 dimTypeAsString(static_cast<gig::dimension_t>(i));
875 if (sType.find("Unknown") != 0) {
876 Gtk::TreeModel::Row row = *(refComboModel->append());
877 row[m_comboDimsModel.m_type_id] = i;
878 row[m_comboDimsModel.m_type_name] = sType;
879 if (i == gig::dimension_layer) iLayerDimIndex = iRow;
880 iRow++;
881 }
882 }
883 m_comboDimType.set_model(refComboModel);
884 m_comboDimType.pack_start(m_comboDimsModel.m_type_id);
885 m_comboDimType.pack_start(m_comboDimsModel.m_type_name);
886 m_tableDimCombo.attach(m_labelDimType, 0, 1, 0, 1);
887 m_tableDimCombo.attach(m_comboDimType, 1, 2, 0, 1);
888 m_comboDimType.set_active(iLayerDimIndex); // preselect "layer" dimension
889 }
890
891 m_refTreeModel = Gtk::ListStore::create(m_columns);
892 m_treeView.set_model(m_refTreeModel);
893 m_treeView.set_tooltip_text(_(
894 "Use SHIFT + left click or CTRL + left click to select the instruments "
895 "you want to combine."
896 ));
897 m_treeView.append_column(_("Nr"), m_columns.m_col_index);
898 m_treeView.append_column(_("Instrument"), m_columns.m_col_name);
899 m_treeView.set_headers_visible(true);
900 m_treeView.get_selection()->set_mode(Gtk::SELECTION_MULTIPLE);
901 m_treeView.get_selection()->signal_changed().connect(
902 sigc::mem_fun(*this, &CombineInstrumentsDialog::onSelectionChanged)
903 );
904 m_treeView.show();
905
906 for (int i = 0; true; ++i) {
907 gig::Instrument* instr = gig->GetInstrument(i);
908 if (!instr) break;
909
910 #if DEBUG_COMBINE_INSTRUMENTS
911 {
912 std::cout << "Instrument (" << i << ") '" << instr->pInfo->Name << "' Regions: " << std::flush;
913 for (gig::Region* rgn = instr->GetFirstRegion(); rgn; rgn = instr->GetNextRegion()) {
914 std::cout << rgn->KeyRange.low << ".." << rgn->KeyRange.high << ", " << std::flush;
915 }
916 std::cout << std::endl;
917 }
918 std::cout << std::endl;
919 #endif
920
921 Glib::ustring name(gig_to_utf8(instr->pInfo->Name));
922 Gtk::TreeModel::iterator iter = m_refTreeModel->append();
923 Gtk::TreeModel::Row row = *iter;
924 row[m_columns.m_col_index] = i;
925 row[m_columns.m_col_name] = name;
926 row[m_columns.m_col_instr] = instr;
927 }
928
929 m_refOrderModel = Gtk::ListStore::create(m_orderColumns);
930 m_iconView.set_model(m_refOrderModel);
931 m_iconView.set_tooltip_text(_("Use drag & drop to change the order."));
932 m_iconView.set_markup_column(1);
933 m_iconView.set_selection_mode(Gtk::SELECTION_SINGLE);
934 // force background to retain white also on selections
935 // (this also fixes a bug with GTK 2 which often causes visibility issue
936 // with the text of the selected item)
937 {
938 #if (GTKMM_MAJOR_VERSION == 2 && GTKMM_MINOR_VERSION < 90) || GTKMM_MAJOR_VERSION < 2
939 Gdk::Color white;
940 #else
941 Gdk::RGBA white;
942 #endif
943 white.set("#ffffff");
944 GtkWidget* widget = (GtkWidget*) m_iconView.gobj();
945 #if GTK_MAJOR_VERSION < 3
946 gtk_widget_modify_base(widget, GTK_STATE_SELECTED, white.gobj());
947 gtk_widget_modify_base(widget, GTK_STATE_ACTIVE, white.gobj());
948 gtk_widget_modify_bg(widget, GTK_STATE_SELECTED, white.gobj());
949 gtk_widget_modify_bg(widget, GTK_STATE_ACTIVE, white.gobj());
950 #endif
951 }
952
953 m_labelOrder.set_text(_("Order of the instruments to be combined:"));
954
955 // establish drag&drop within the instrument tree view, allowing to reorder
956 // the sequence of instruments within the gig file
957 {
958 std::vector<Gtk::TargetEntry> drag_target_instrument;
959 drag_target_instrument.push_back(Gtk::TargetEntry("gig::Instrument"));
960 m_iconView.drag_source_set(drag_target_instrument);
961 m_iconView.drag_dest_set(drag_target_instrument);
962 m_iconView.signal_drag_begin().connect(
963 sigc::mem_fun(*this, &CombineInstrumentsDialog::on_order_drag_begin)
964 );
965 m_iconView.signal_drag_data_get().connect(
966 sigc::mem_fun(*this, &CombineInstrumentsDialog::on_order_drag_data_get)
967 );
968 m_iconView.signal_drag_data_received().connect(
969 sigc::mem_fun(*this, &CombineInstrumentsDialog::on_order_drop_drag_data_received)
970 );
971 }
972
973 m_buttonBox.set_layout(Gtk::BUTTONBOX_END);
974 #if GTKMM_MAJOR_VERSION > 3 || (GTKMM_MAJOR_VERSION == 3 && GTKMM_MINOR_VERSION > 24)
975 m_buttonBox.set_margin(5);
976 #else
977 m_buttonBox.set_border_width(5);
978 #endif
979 m_buttonBox.pack_start(m_cancelButton, Gtk::PACK_SHRINK);
980 m_buttonBox.pack_start(m_OKButton, Gtk::PACK_SHRINK);
981 m_buttonBox.show();
982
983 m_cancelButton.show();
984 m_OKButton.set_sensitive(false);
985 m_OKButton.show();
986
987 m_cancelButton.signal_clicked().connect(
988 sigc::mem_fun(*this, &CombineInstrumentsDialog::hide)
989 );
990
991 m_OKButton.signal_clicked().connect(
992 sigc::mem_fun(*this, &CombineInstrumentsDialog::combineSelectedInstruments)
993 );
994
995 #if HAS_GTKMM_SHOW_ALL_CHILDREN
996 show_all_children();
997 #endif
998
999 Settings::singleton()->showTooltips.get_proxy().signal_changed().connect(
1000 sigc::mem_fun(*this, &CombineInstrumentsDialog::on_show_tooltips_changed)
1001 );
1002 on_show_tooltips_changed();
1003
1004 // show a warning to user if he uses a .gig in v2 format
1005 if (gig->pVersion->major < 3) {
1006 Glib::ustring txt = _(
1007 "You are currently using a .gig file in old v2 format. The current "
1008 "combine algorithm will most probably fail trying to combine "
1009 "instruments in this old format. So better save the file in new v3 "
1010 "format before trying to combine your instruments."
1011 );
1012 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_WARNING);
1013 msg.run();
1014 }
1015
1016 // OK button should have focus by default for quick combining with Return key
1017 m_OKButton.grab_focus();
1018 }
1019
1020 void CombineInstrumentsDialog::on_order_drag_begin(const Glib::RefPtr<Gdk::DragContext>& context)
1021 {
1022 #if DEBUG_COMBINE_INSTRUMENTS
1023 printf("Drag begin\n");
1024 #endif
1025 first_call_to_drag_data_get = true;
1026 }
1027
1028 void CombineInstrumentsDialog::on_order_drag_data_get(const Glib::RefPtr<Gdk::DragContext>& context,
1029 Gtk::SelectionData& selection_data, guint, guint)
1030 {
1031 #if DEBUG_COMBINE_INSTRUMENTS
1032 printf("Drag data get\n");
1033 #endif
1034 if (!first_call_to_drag_data_get) return;
1035 first_call_to_drag_data_get = false;
1036
1037 // get selected source instrument
1038 gig::Instrument* src = NULL;
1039 {
1040 std::vector<Gtk::TreeModel::Path> rows = m_iconView.get_selected_items();
1041 if (!rows.empty()) {
1042 Gtk::TreeModel::iterator it = m_refOrderModel->get_iter(rows[0]);
1043 if (it) {
1044 Gtk::TreeModel::Row row = *it;
1045 src = row[m_orderColumns.m_col_instr];
1046 }
1047 }
1048 }
1049 if (!src) {
1050 printf("Drag data get: !src\n");
1051 return;
1052 }
1053 #if DEBUG_COMBINE_INSTRUMENTS
1054 printf("src=%ld\n", (size_t)src);
1055 #endif
1056
1057 // pass the source gig::Instrument as pointer
1058 selection_data.set(selection_data.get_target(), 0/*unused*/, (const guchar*)&src,
1059 sizeof(src)/*length of data in bytes*/);
1060 }
1061
1062 void CombineInstrumentsDialog::on_order_drop_drag_data_received(
1063 const Glib::RefPtr<Gdk::DragContext>& context, int x, int y,
1064 const Gtk::SelectionData& selection_data, guint, guint time)
1065 {
1066 #if DEBUG_COMBINE_INSTRUMENTS
1067 printf("Drag data received\n");
1068 #endif
1069 if (!selection_data.get_data()) {
1070 printf("selection_data.get_data() == NULL\n");
1071 return;
1072 }
1073
1074 gig::Instrument* src = *((gig::Instrument**) selection_data.get_data());
1075 if (!src || selection_data.get_length() != sizeof(gig::Instrument*)) {
1076 printf("!src\n");
1077 return;
1078 }
1079 #if DEBUG_COMBINE_INSTRUMENTS
1080 printf("src=%ld\n", (size_t)src);
1081 #endif
1082
1083 gig::Instrument* dst = NULL;
1084 {
1085 Gtk::TreeModel::Path path = m_iconView.get_path_at_pos(x, y);
1086 if (!path) return;
1087
1088 Gtk::TreeModel::iterator iter = m_refOrderModel->get_iter(path);
1089 if (!iter) return;
1090 Gtk::TreeModel::Row row = *iter;
1091 dst = row[m_orderColumns.m_col_instr];
1092 }
1093 if (!dst) {
1094 printf("!dst\n");
1095 return;
1096 }
1097
1098 #if DEBUG_COMBINE_INSTRUMENTS
1099 printf("dragdrop received src='%s' dst='%s'\n", src->pInfo->Name.c_str(), dst->pInfo->Name.c_str());
1100 #endif
1101
1102 // swap the two items
1103 typedef Gtk::TreeModel::Children Children;
1104 Children children = m_refOrderModel->children();
1105 Children::iterator itSrc, itDst;
1106 int i = 0, iSrc = -1, iDst = -1;
1107 for (Children::iterator iter = children.begin();
1108 iter != children.end(); ++iter, ++i)
1109 {
1110 Gtk::TreeModel::Row row = *iter;
1111 if (row[m_orderColumns.m_col_instr] == src) {
1112 itSrc = iter;
1113 iSrc = i;
1114 } else if (row[m_orderColumns.m_col_instr] == dst) {
1115 itDst = iter;
1116 iDst = i;
1117 }
1118 }
1119 if (itSrc && itDst) {
1120 // swap elements
1121 m_refOrderModel->iter_swap(itSrc, itDst);
1122 // update markup
1123 Gtk::TreeModel::Row rowSrc = *itSrc;
1124 Gtk::TreeModel::Row rowDst = *itDst;
1125 {
1126 Glib::ustring name = rowSrc[m_orderColumns.m_col_name];
1127 Glib::ustring markup =
1128 "<span foreground='black' background='white'>" + ToString(iDst+1) + ".</span>\n<span foreground='green' background='white'>" + name + "</span>";
1129 rowSrc[m_orderColumns.m_col_markup] = markup;
1130 }
1131 {
1132 Glib::ustring name = rowDst[m_orderColumns.m_col_name];
1133 Glib::ustring markup =
1134 "<span foreground='black' background='white'>" + ToString(iSrc+1) + ".</span>\n<span foreground='green' background='white'>" + name + "</span>";
1135 rowDst[m_orderColumns.m_col_markup] = markup;
1136 }
1137 }
1138 }
1139
1140 void CombineInstrumentsDialog::setSelectedInstruments(const std::set<int>& instrumentIndeces) {
1141 typedef Gtk::TreeModel::Children Children;
1142 Children children = m_refTreeModel->children();
1143 for (Children::iterator iter = children.begin();
1144 iter != children.end(); ++iter)
1145 {
1146 Gtk::TreeModel::Row row = *iter;
1147 int index = row[m_columns.m_col_index];
1148 if (instrumentIndeces.count(index))
1149 m_treeView.get_selection()->select(iter);
1150 }
1151 // hack: OK button lost focus after doing the above, it should have focus by default for quick combining with Return key
1152 m_OKButton.grab_focus();
1153 }
1154
1155 void CombineInstrumentsDialog::combineSelectedInstruments() {
1156 std::vector<gig::Instrument*> instruments;
1157 {
1158 typedef Gtk::TreeModel::Children Children;
1159 int i = 0;
1160 Children selection = m_refOrderModel->children();
1161 for (Children::iterator it = selection.begin();
1162 it != selection.end(); ++it, ++i)
1163 {
1164 Gtk::TreeModel::Row row = *it;
1165 Glib::ustring name = row[m_orderColumns.m_col_name];
1166 gig::Instrument* instrument = row[m_orderColumns.m_col_instr];
1167 #if DEBUG_COMBINE_INSTRUMENTS
1168 printf("Selection %d. '%s' %p\n\n", (i+1), name.c_str(), instrument);
1169 #endif
1170 instruments.push_back(instrument);
1171 }
1172 }
1173
1174 g_warnings.clear();
1175
1176 try {
1177 // which main dimension was selected in the combo box?
1178 gig::dimension_t mainDimension;
1179 {
1180 Gtk::TreeModel::iterator iterType = m_comboDimType.get_active();
1181 if (!iterType) throw gig::Exception("No dimension selected");
1182 Gtk::TreeModel::Row rowType = *iterType;
1183 if (!rowType) throw gig::Exception("Something is wrong regarding dimension selection");
1184 int iTypeID = rowType[m_comboDimsModel.m_type_id];
1185 mainDimension = static_cast<gig::dimension_t>(iTypeID);
1186 }
1187
1188 // now start the actual combination task ...
1189 combineInstruments(instruments, m_gig, m_newCombinedInstrument, mainDimension);
1190 } catch (RIFF::Exception e) {;
1191 Gtk::MessageDialog msg(*this, e.Message, false, Gtk::MESSAGE_ERROR);
1192 msg.run();
1193 return;
1194 } catch (...) {
1195 Glib::ustring txt = _("An unknown exception occurred!");
1196 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_ERROR);
1197 msg.run();
1198 return;
1199 }
1200
1201 if (!g_warnings.empty()) {
1202 Glib::ustring txt = _(
1203 "Combined instrument was created successfully, but there were warnings:"
1204 );
1205 txt += "\n\n";
1206 for (Warnings::const_iterator itWarn = g_warnings.begin();
1207 itWarn != g_warnings.end(); ++itWarn)
1208 {
1209 txt += "-> " + *itWarn + "\n";
1210 }
1211 txt += "\n";
1212 txt += _(
1213 "You might also want to check the console for further warnings and "
1214 "error messages."
1215 );
1216 Gtk::MessageDialog msg(*this, txt, false, Gtk::MESSAGE_WARNING);
1217 msg.run();
1218 }
1219
1220 // no error occurred
1221 m_fileWasChanged = true;
1222 hide();
1223 }
1224
1225 void CombineInstrumentsDialog::onSelectionChanged() {
1226 std::vector<Gtk::TreeModel::Path> v = m_treeView.get_selection()->get_selected_rows();
1227 m_OKButton.set_sensitive(v.size() >= 2);
1228
1229 typedef Gtk::TreeModel::Children Children;
1230
1231 // update horizontal selection list (icon view) ...
1232
1233 // remove items which are not part of the new selection anymore
1234 {
1235 Children allOrdered = m_refOrderModel->children();
1236 for (Children::iterator itOrder = allOrdered.begin();
1237 itOrder != allOrdered.end(); )
1238 {
1239 Gtk::TreeModel::Row rowOrder = *itOrder;
1240 gig::Instrument* instr = rowOrder[m_orderColumns.m_col_instr];
1241 for (uint i = 0; i < v.size(); ++i) {
1242 Gtk::TreeModel::iterator itSel = m_refTreeModel->get_iter(v[i]);
1243 Gtk::TreeModel::Row rowSel = *itSel;
1244 if (rowSel[m_columns.m_col_instr] == instr)
1245 goto nextOrderedItem;
1246 }
1247 goto removeOrderedItem;
1248 nextOrderedItem:
1249 ++itOrder;
1250 continue;
1251 removeOrderedItem:
1252 // postfix increment here to avoid iterator invalidation
1253 m_refOrderModel->erase(itOrder++);
1254 }
1255 }
1256
1257 // add items newly added to the selection
1258 for (uint i = 0; i < v.size(); ++i) {
1259 Gtk::TreeModel::iterator itSel = m_refTreeModel->get_iter(v[i]);
1260 Gtk::TreeModel::Row rowSel = *itSel;
1261 gig::Instrument* instr = rowSel[m_columns.m_col_instr];
1262 Children allOrdered = m_refOrderModel->children();
1263 for (Children::iterator itOrder = allOrdered.begin();
1264 itOrder != allOrdered.end(); ++itOrder)
1265 {
1266 Gtk::TreeModel::Row rowOrder = *itOrder;
1267 if (rowOrder[m_orderColumns.m_col_instr] == instr)
1268 goto nextSelectionItem;
1269 }
1270 goto addNewSelectionItem;
1271 nextSelectionItem:
1272 continue;
1273 addNewSelectionItem:
1274 Glib::ustring name = gig_to_utf8(instr->pInfo->Name);
1275 Gtk::TreeModel::iterator iterOrder = m_refOrderModel->append();
1276 Gtk::TreeModel::Row rowOrder = *iterOrder;
1277 rowOrder[m_orderColumns.m_col_name] = name;
1278 rowOrder[m_orderColumns.m_col_instr] = instr;
1279 }
1280
1281 // update markup
1282 {
1283 int i = 0;
1284 Children allOrdered = m_refOrderModel->children();
1285 for (Children::iterator itOrder = allOrdered.begin();
1286 itOrder != allOrdered.end(); ++itOrder, ++i)
1287 {
1288 Gtk::TreeModel::Row rowOrder = *itOrder;
1289 Glib::ustring name = rowOrder[m_orderColumns.m_col_name];
1290 Glib::ustring markup =
1291 "<span foreground='black' background='white'>" + ToString(i+1) + ".</span>\n<span foreground='green' background='white'>" + name + "</span>";
1292 rowOrder[m_orderColumns.m_col_markup] = markup;
1293 }
1294 }
1295 }
1296
1297 void CombineInstrumentsDialog::on_show_tooltips_changed() {
1298 const bool b = Settings::singleton()->showTooltips;
1299
1300 m_treeView.set_has_tooltip(b);
1301 m_iconView.set_has_tooltip(b);
1302
1303 set_has_tooltip(b);
1304 }
1305
1306 bool CombineInstrumentsDialog::fileWasChanged() const {
1307 return m_fileWasChanged;
1308 }
1309
1310 gig::Instrument* CombineInstrumentsDialog::newCombinedInstrument() const {
1311 return m_newCombinedInstrument;
1312 }

  ViewVC Help
Powered by ViewVC