/[svn]/libgig/trunk/src/Serialization.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/Serialization.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3392 - (hide annotations) (download)
Sun Dec 3 17:49:22 2017 UTC (6 years, 4 months ago) by schoenebeck
File size: 91759 byte(s)
* src/Serialization.cpp, src/Serialization.h:
  Hide pure internal declarations from header file to avoid numerous
  compiler warnings when building and linking against the public API.
* Bumped version (4.1.0.svn1).

1 schoenebeck 3138 /***************************************************************************
2     * *
3     * Copyright (C) 2017 Christian Schoenebeck *
4     * <cuse@users.sourceforge.net> *
5     * *
6     * This library is part of libgig. *
7     * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24 schoenebeck 3392 // enable implementation specific declarations in Serialization.h required to
25     // build this C++ unit, which should be ignored in the public API though
26     #define LIBGIG_SERIALIZATION_INTERNAL 1
27    
28 schoenebeck 3138 #include "Serialization.h"
29    
30     #include <iostream>
31     #include <assert.h>
32     #include <string.h> // for memcpy()
33 schoenebeck 3139 #include <stdlib.h> // for atof()
34 schoenebeck 3173 #include <cxxabi.h>
35 schoenebeck 3138
36     #include "helper.h"
37    
38 schoenebeck 3156 #define LIBGIG_EPOCH_TIME ((time_t)0)
39    
40 schoenebeck 3138 namespace Serialization {
41    
42     // *************** DataType ***************
43     // *
44    
45     static UID _createNullUID() {
46 schoenebeck 3168 const UID uid = { NULL, 0 };
47     return uid;
48 schoenebeck 3138 }
49    
50     const UID NO_UID = _createNullUID();
51    
52 schoenebeck 3183 /** @brief Check whether this is a valid unique identifier.
53     *
54     * Returns @c false if this UID can be considered an invalid unique
55     * identifier. This is for example the case if this UID object was not
56     * explicitly set to some certain meaningful unique identifier value, or if
57     * this UID object was intentionally assigned the constant @c NO_UID value.
58     * Both represent essentially an UID object which is all zero.
59     *
60     * Note that this class also implements the @c bool operator, both return
61     * the same boolean result.
62     */
63 schoenebeck 3138 bool UID::isValid() const {
64     return id != NULL && id != (void*)-1 && size;
65     }
66    
67     // *************** DataType ***************
68     // *
69    
70 schoenebeck 3183 /** @brief Default constructor.
71     *
72     * Initializes a DataType object as being an "invalid" DataType object.
73     * Thus calling isValid(), after creating a DataType object with this
74     * constructor, would return @c false.
75     *
76     * To create a valid and meaningful DataType object instead, call the static
77     * function DataType::dataTypeOf() instead.
78     */
79 schoenebeck 3138 DataType::DataType() {
80     m_size = 0;
81     m_isPointer = false;
82     }
83    
84     DataType::DataType(bool isPointer, int size, String baseType, String customType) {
85     m_size = size;
86     m_isPointer = isPointer;
87     m_baseTypeName = baseType;
88     m_customTypeName = customType;
89     }
90    
91 schoenebeck 3183 /** @brief Check if this is a valid DataType object.
92     *
93     * Returns @c true if this DataType object is reflecting a valid data type.
94     * The default constructor creates DataType objects initialized to be
95     * "invalid" DataType objects by default. That way one can detect whether
96     * a DataType object was ever assigned to something meaningful.
97     *
98     * Note that this class also implements the @c bool operator, both return
99     * the same boolean result.
100     */
101 schoenebeck 3138 bool DataType::isValid() const {
102     return m_size;
103     }
104    
105 schoenebeck 3183 /** @brief Whether this is reflecting a C/C++ pointer type.
106     *
107     * Returns @true if the respective native C/C++ object, member or variable
108     * (this DataType instance is reflecting) is a C/C++ pointer type.
109     */
110 schoenebeck 3138 bool DataType::isPointer() const {
111     return m_isPointer;
112     }
113    
114 schoenebeck 3183 /** @brief Whether this is reflecting a C/C++ @c struct or @c class type.
115     *
116     * Returns @c true if the respective native C/C++ object, member or variable
117     * (this DataType instance is reflecting) is a C/C++ @c struct or @c class
118     * type.
119     *
120     * Note that in the following example:
121     * @code
122     * struct Foo {
123     * int a;
124     * bool b;
125     * };
126     * Foo foo;
127     * Foo* pFoo;
128     * @endcode
129     * the DataType objects of both @c foo, as well as of the C/C++ pointer
130     * @c pFoo would both return @c true for isClass() here!
131     *
132     * @see isPointer()
133     */
134 schoenebeck 3138 bool DataType::isClass() const {
135     return m_baseTypeName == "class";
136     }
137    
138 schoenebeck 3183 /** @brief Whether this is reflecting a fundamental C/C++ data type.
139     *
140     * Returns @c true if the respective native C/C++ object, member or variable
141     * (this DataType instance is reflecting) is a primitive, fundamental C/C++
142     * data type. Those are fundamental data types which are already predefined
143     * by the C/C++ language, for example: @c char, @c int, @c float, @c double,
144     * @c bool, but also @b any pointer types like @c int*, @c double**, but
145     * including pointers to user defined types like:
146     * @code
147     * struct Foo {
148     * int a;
149     * bool b;
150     * };
151     * Foo* pFoo;
152     * @endcode
153     * So the DataType object of @c pFoo in the latter example would also return
154     * @c true for isPrimitive() here!
155     *
156     * @see isPointer()
157     */
158 schoenebeck 3138 bool DataType::isPrimitive() const {
159     return !isClass();
160     }
161    
162 schoenebeck 3183 /** @brief Whether this is an integer C/C++ data type.
163     *
164     * Returns @c true if the respective native C/C++ object, member or variable
165     * (this DataType instance is reflecting) is a (fundamental, primitive)
166     * integer data type. So these are all @c int and @c unsigned @c int types
167     * of any size. It does not include floating point ("real") types though.
168     *
169     * You may use isSigned() to further check whether this data type allows
170     * negative numbers.
171     *
172     * Note that this method also returns @c true on integer pointer types!
173     *
174     * @see isPointer()
175     */
176 schoenebeck 3138 bool DataType::isInteger() const {
177     return m_baseTypeName.substr(0, 3) == "int" ||
178     m_baseTypeName.substr(0, 4) == "uint";
179     }
180    
181 schoenebeck 3183 /** @brief Whether this is a floating point based C/C++ data type.
182     *
183     * Returns @c true if the respective native C/C++ object, member or variable
184     * (this DataType instance is reflecting) is a (fundamental, primitive)
185     * floating point based data type. So these are currently the C/C++ @c float
186     * and @c double types. It does not include integer types though.
187     *
188     * Note that this method also returns @c true on @c float pointer and
189     * @c double pointer types!
190     *
191     * @see isPointer()
192     */
193 schoenebeck 3138 bool DataType::isReal() const {
194     return m_baseTypeName.substr(0, 4) == "real";
195     }
196    
197 schoenebeck 3183 /** @brief Whether this is a boolean C/C++ data type.
198     *
199     * Returns @c true if the respective native C/C++ object, member or variable
200     * (this DataType instance is reflecting) is a (fundamental, primitive)
201     * boolean data type. So this is the case for the C++ @c bool data type.
202     * It does not include integer or floating point types though.
203     *
204     * Note that this method also returns @c true on @c bool pointer types!
205     *
206     * @see isPointer()
207     */
208 schoenebeck 3138 bool DataType::isBool() const {
209     return m_baseTypeName == "bool";
210     }
211    
212 schoenebeck 3183 /** @brief Whether this is a C/C++ @c enum data type.
213     *
214     * Returns @c true if the respective native C/C++ object, member or variable
215     * (this DataType instance is reflecting) is a user defined enumeration
216     * data type. So this is the case for all C/C++ @c enum data types.
217     * It does not include integer (or even floating point) types though.
218     *
219     * Note that this method also returns @c true on @c enum pointer types!
220     *
221     * @see isPointer()
222     */
223 schoenebeck 3138 bool DataType::isEnum() const {
224     return m_baseTypeName == "enum";
225     }
226    
227 schoenebeck 3183 /** @brief Whether this is a signed integer C/C++ data type.
228     *
229     * Returns @c true if the respective native C/C++ object, member or variable
230     * (this DataType instance is reflecting) is a (fundamental, primitive)
231     * signed integer data type. This is the case for are all @c unsigned
232     * @c int C/C++ types of any size. For all floating point ("real") based
233     * types this method returns @c false though!
234     *
235     * Note that this method also returns @c true on signed integer pointer
236     * types!
237     *
238     * @see isInteger();
239     */
240 schoenebeck 3138 bool DataType::isSigned() const {
241     return m_baseTypeName.substr(0, 3) == "int" ||
242     isReal();
243     }
244    
245 schoenebeck 3183 /** @brief Comparison for equalness.
246     *
247     * Returns @c true if the two DataType objects being compared can be
248     * considered to be "equal" C/C++ data types. They are considered to be
249     * equal if their underlying C/C++ data types are exactly identical. For
250     * example comparing @c int and @c unsigned int data types are considere to
251     * be @b not equal, since they are differently signed. Furthermore @c short
252     * @c int and @c long @c int would also not be considered to be equal, since
253     * they do have a different memory size. Additionally pointer type
254     * characteristic is compared as well. So a @c double type and @c double*
255     * type are also considered to be not equal data types and hence this method
256     * would return @c false.
257 schoenebeck 3333 *
258     * As an exception here, classes and structs with the same class/struct name
259     * but different sizes are also considered to be "equal". This relaxed
260     * requirement is necessary to retain backward compatiblity to older
261     * versions of the same native C++ classes/structs.
262 schoenebeck 3183 */
263 schoenebeck 3138 bool DataType::operator==(const DataType& other) const {
264     return m_baseTypeName == other.m_baseTypeName &&
265     m_customTypeName == other.m_customTypeName &&
266 schoenebeck 3333 (m_size == other.m_size || (isClass() && other.isClass())) &&
267 schoenebeck 3138 m_isPointer == other.m_isPointer;
268     }
269    
270 schoenebeck 3183 /** @brief Comparison for inequalness.
271     *
272     * Returns the inverse result of what DataType::operator==() would return.
273     * So refer to the latter for more details.
274     */
275 schoenebeck 3138 bool DataType::operator!=(const DataType& other) const {
276     return !operator==(other);
277     }
278    
279 schoenebeck 3183 /** @brief Smaller than comparison.
280     *
281     * Returns @c true if this DataType object can be consider to be "smaller"
282     * than the @a other DataType object being compared with. This operator
283     * is actually quite arbitrarily implemented and may change at any time,
284     * and thus result for the same data types may change in future at any time.
285     *
286     * This operator is basically implemented for allowing this DataType class
287     * to be used with various standard template library (STL) classes, which
288     * require sorting operators to be implemented.
289     */
290 schoenebeck 3138 bool DataType::operator<(const DataType& other) const {
291     return m_baseTypeName < other.m_baseTypeName ||
292     (m_baseTypeName == other.m_baseTypeName &&
293     m_customTypeName < other.m_customTypeName ||
294     (m_customTypeName == other.m_customTypeName &&
295     m_size < other.m_size ||
296     (m_size == other.m_size &&
297     m_isPointer < other.m_isPointer)));
298     }
299    
300 schoenebeck 3183 /** @brief Greater than comparison.
301     *
302     * Returns @c true if this DataType object can be consider to be "greater"
303     * than the @a other DataType object being compared with. This operator
304     * is actually quite arbitrarily implemented and may change at any time,
305     * and thus result for the same data types may change in future at any time.
306     *
307     * This operator is basically implemented for allowing this DataType class
308     * to be used with various standard template library (STL) classes, which
309     * require sorting operators to be implemented.
310     */
311 schoenebeck 3138 bool DataType::operator>(const DataType& other) const {
312     return !(operator==(other) || operator<(other));
313     }
314    
315 schoenebeck 3183 /** @brief Human readable long description for this data type.
316     *
317     * Returns a human readable long description for this data type, designed
318     * for the purpose for being displayed to the user. Note that the
319     * implementation for this method and thus the precise textual strings
320     * returned by this method, may change at any time. So you should not rely
321     * on precise strings for certain data types, and you should not use the
322     * return values of this method for comparing data types with each other.
323     *
324     * This class implements various comparison operators, so you should use
325     * them for comparing DataTypes objects instead.
326     *
327     * @see baseTypeName(), customTypeName()
328     */
329 schoenebeck 3138 String DataType::asLongDescr() const {
330     String s = m_baseTypeName;
331     if (!m_customTypeName.empty())
332 schoenebeck 3173 s += " " + customTypeName(true);
333 schoenebeck 3138 if (isPointer())
334     s += " pointer";
335     return s;
336     }
337    
338 schoenebeck 3183 /** @brief The base type name of this data type.
339     *
340     * Returns a textual short string identifying the basic type of name of this
341     * data type. For example for a 32 bit signed integer data type this method
342     * would return @c "int32". For all user defined C/C++ @c enum types this
343     * method would return "enum". For all user defined C/C++ @c struct @b and
344     * @c class types this method would return "class" for both. Note that the
345     * precise user defined type name (of i.e. @c enum, @c struct and @c class
346     * types) is not included in the string returned by this method, use
347     * customTypeName() to retrieve that information instead.
348     *
349     * The precise textual strings returned by this method are guaranteed to
350     * retain equal with future versions of this framework. So you can rely on
351     * them for using the return values of this method for comparison tasks in
352     * your application. Note however that this class also implements various
353     * comparison operators.
354     *
355     * Further it is important to know that this method returns the same string
356     * for pointers and non-pointers of the same underlying data type. So in the
357     * following example:
358     * @code
359     * #include <stdint.h>
360     * uint64_t i;
361     * uint64_t* pi;
362     * @endcode
363     * this method would return for both @c i and @c pi the string @c "uint64" !
364     *
365     * @see isPointer(), customTypeName()
366     */
367     String DataType::baseTypeName() const {
368     return m_baseTypeName;
369     }
370    
371     /** @brief The user defined C/C++ data type name of this data type.
372     *
373     * Call this method on user defined C/C++ data types like @c enum, @c struct
374     * and @c class types to retrieve the user defined type name portion of
375     * those data types. Note that this method is only intended for such user
376     * defined data types. For all fundamental, primitive data types (like i.e.
377     * @c int) this method returns an empty string instead.
378     *
379     * This method takes an optional boolean argument @b demangle, which allows
380     * you define whether you are interested in the raw C++ type name or rather
381     * the demangled custom type name. By default this method returns the raw
382     * C++ type name. The raw C++ type name is the one that is actually used
383     * in the compiled binaries and should be preferred for comparions tasks.
384     * The demangled C++ type name is a human readable representation of the
385     * type name instead, which you may use for displaying the user defined type
386     * name portion to the user, however you should not use the demangled
387     * representation for comparison tasks.
388     *
389     * Note that in the following example:
390     * @code
391     * struct Foo {
392     * int a;
393     * bool b;
394     * };
395     * Foo foo;
396     * Foo* pFoo;
397     * @endcode
398     * this method would return the same string for both @c foo and @c pFoo !
399     * In the latter example @c customTypeName(true) would return for both
400     * @c foo and @c pFoo the string @c "Foo" as return value of this method.
401     *
402     * @see isPointer(), baseTypeName()
403     */
404 schoenebeck 3173 String DataType::customTypeName(bool demangle) const {
405     if (!demangle) return m_customTypeName;
406     int status;
407     const char* result =
408     abi::__cxa_demangle(m_customTypeName.c_str(), 0, 0, &status);
409     return (status == 0) ? result : m_customTypeName;
410     }
411    
412 schoenebeck 3138 // *************** Member ***************
413     // *
414    
415 schoenebeck 3183 /** @brief Default constructor.
416     *
417     * Initializes a Member object as being an "invalid" Member object.
418     * Thus calling isValid(), after creating a Member object with this
419     * constructor, would return @c false.
420     *
421     * You are currently not supposed to create (meaningful) Member objects on
422     * your own. This framework automatically create such Member objects for
423     * you instead.
424     *
425     * @see Object::members()
426     */
427 schoenebeck 3138 Member::Member() {
428     m_uid = NO_UID;
429     m_offset = 0;
430     }
431    
432     Member::Member(String name, UID uid, size_t offset, DataType type) {
433     m_name = name;
434     m_uid = uid;
435     m_offset = offset;
436     m_type = type;
437     }
438    
439 schoenebeck 3183 /** @brief Unique identifier of this member instance.
440     *
441     * Returns the unique identifier of the original C/C++ member instance of
442     * your C++ class. It is important to know that this unique identifier is
443 schoenebeck 3185 * not meant to be unique for Member instances themselves, but it is rather
444     * meant to be unique for the original native C/C++ data these Member
445     * instances are representing. So that means no matter how many individual
446     * Member objects are created, as long as they are representing the same
447     * original native member variable of the same original native
448 schoenebeck 3183 * instance of your C++ class, then all those separately created Member
449     * objects return the same unique identifier here.
450     *
451     * @see UID for more details
452     */
453     UID Member::uid() const {
454     return m_uid;
455     }
456    
457     /** @brief Name of the member.
458     *
459     * Returns the name of the native C/C++ member variable as originally typed
460     * in its C++ source code. So in the following example:
461     * @code
462     * struct Foo {
463     * int a;
464     * bool b;
465     * double someValue;
466     * };
467     * @endcode
468     * this method would usually return @c "a" for the first member of object
469     * instances of your native C/C++ @c struct @c Foo, and this method would
470     * usually return @c "someValue" for its third member.
471     *
472     * Note that when you implement the @c serialize() method of your own C/C++
473     * clases or strucs, you are able to override defining the precise name of
474     * your members. In that case this method would of course return the member
475     * names as explicitly forced by you instead.
476     */
477     String Member::name() const {
478     return m_name;
479     }
480    
481     /** @brief Offset of member in its containing parent data structure.
482     *
483     * Returns the offset of this member (in bytes) within its containing parent
484     * user defined data structure or class. So in the following example:
485     * @code
486     * #include <stdint.h>
487     * struct Foo __attribute__ ((__packed__)) {
488     * int32_t a;
489     * bool b;
490     * double c;
491     * };
492     * @endcode
493     * this method would typically return @c 0 for member @c a, @c 4 for member
494     * @c b and @c 5 for member @c c. As you have noted in the latter example,
495     * the structure @c Foo was declared to have "packed" data members. That
496     * means the compiler is instructed to add no memory spaces between the
497     * individual members. Because by default the compiler might add memory
498     * spaces between individual members to align them on certain memory address
499     * boundaries for increasing runtime performance while accessing the
500     * members. So if you declared the previous example without the "packed"
501     * attribute like:
502     * @code
503     * #include <stdint.h>
504     * struct Foo {
505     * int32_t a;
506     * bool b;
507     * double c;
508     * };
509     * @endcode
510     * then this method would usually return a different offset for members
511     * @c b and @c c instead. For most 64 bit architectures this example would
512     * now still return @c 0 for member @c a, but @c 8 for member @c b and @c 16
513     * for member @c c.
514     */
515     size_t Member::offset() const {
516     return m_offset;
517     }
518    
519     /** @brief C/C++ Data type of this member.
520     *
521     * Returns the precise data type of the original native C/C++ member.
522     */
523     const DataType& Member::type() const {
524     return m_type;
525     }
526    
527     /** @brief Check if this is a valid Member object.
528     *
529     * Returns @c true if this Member object is reflecting a "valid" member
530     * object. The default constructor creates Member objects initialized to be
531     * "invalid" Member objects by default. That way one can detect whether
532     * a Member object was ever assigned to something meaningful.
533     *
534     * Note that this class also implements the @c bool operator, both return
535     * the same boolean result value.
536     */
537 schoenebeck 3138 bool Member::isValid() const {
538     return m_uid && !m_name.empty() && m_type;
539     }
540    
541 schoenebeck 3183 /** @brief Comparison for equalness.
542     *
543     * Returns @c true if the two Member objects being compared can be
544     * considered to be "equal" C/C++ members. They are considered to be
545     * equal if their data type, member name, their offset within their parent
546     * containing C/C++ data structure, as well as their original native C/C++
547     * instance were exactly identical.
548     */
549 schoenebeck 3138 bool Member::operator==(const Member& other) const {
550     return m_uid == other.m_uid &&
551     m_offset == other.m_offset &&
552     m_name == other.m_name &&
553     m_type == other.m_type;
554     }
555    
556 schoenebeck 3183 /** @brief Comparison for inequalness.
557     *
558     * Returns the inverse result of what Member::operator==() would return.
559     * So refer to the latter for more details.
560     */
561 schoenebeck 3138 bool Member::operator!=(const Member& other) const {
562     return !operator==(other);
563     }
564    
565 schoenebeck 3183 /** @brief Smaller than comparison.
566     *
567     * Returns @c true if this Member object can be consider to be "smaller"
568     * than the @a other Member object being compared with. This operator
569     * is actually quite arbitrarily implemented and may change at any time,
570     * and thus result for the same member representations may change in
571     * future at any time.
572     *
573     * This operator is basically implemented for allowing this DataType class
574     * to be used with various standard template library (STL) classes, which
575     * require sorting operators to be implemented.
576     */
577 schoenebeck 3138 bool Member::operator<(const Member& other) const {
578     return m_uid < other.m_uid ||
579     (m_uid == other.m_uid &&
580     m_offset < other.m_offset ||
581     (m_offset == other.m_offset &&
582     m_name < other.m_name ||
583     (m_name == other.m_name &&
584     m_type < other.m_type)));
585     }
586    
587 schoenebeck 3183 /** @brief Greater than comparison.
588     *
589     * Returns @c true if this Member object can be consider to be "greater"
590     * than the @a other Member object being compared with. This operator
591     * is actually quite arbitrarily implemented and may change at any time,
592     * and thus result for the same member representations may change in
593     * future at any time.
594     *
595     * This operator is basically implemented for allowing this DataType class
596     * to be used with various standard template library (STL) classes, which
597     * require sorting operators to be implemented.
598     */
599 schoenebeck 3138 bool Member::operator>(const Member& other) const {
600     return !(operator==(other) || operator<(other));
601     }
602    
603     // *************** Object ***************
604     // *
605    
606 schoenebeck 3183 /** @brief Default constructor (for an "invalid" Object).
607     *
608     * Initializes an Object instance as being an "invalid" Object.
609     * Thus calling isValid(), after creating an Object instance with this
610     * constructor, would return @c false.
611     *
612     * Usually you are not supposed to create (meaningful) Object instances on
613     * your own. They are typically constructed by the Archive class for you.
614     *
615     * @see Archive::rootObject(), Archive::objectByUID()
616     */
617 schoenebeck 3138 Object::Object() {
618     m_version = 0;
619     m_minVersion = 0;
620     }
621    
622 schoenebeck 3183 /** @brief Constructor for a "meaningful" Object.
623     *
624     * Initializes a "meaningful" Object instance as being. Thus calling
625     * isValid(), after creating an Object instance with this constructor,
626     * should return @c true, provided that the arguments passed to this
627     * constructor construe a valid object representation.
628     *
629     * Usually you are not supposed to create (meaningful) Object instances on
630     * your own. They are typically constructed by the Archive class for you.
631     *
632     * @see Archive::rootObject(), Archive::objectByUID()
633     *
634     * @param uidChain - unique identifier chain of the object to be constructed
635     * @param type - C/C++ data type of the actual native object this abstract
636     * Object instance should reflect after calling this
637     * constructor
638     */
639 schoenebeck 3138 Object::Object(UIDChain uidChain, DataType type) {
640     m_type = type;
641     m_uid = uidChain;
642     m_version = 0;
643     m_minVersion = 0;
644 schoenebeck 3150 //m_data.resize(type.size());
645 schoenebeck 3138 }
646    
647 schoenebeck 3183 /** @brief Check if this is a valid Object instance.
648     *
649     * Returns @c true if this Object instance is reflecting a "valid" Object.
650     * The default constructor creates Object instances initialized to be
651     * "invalid" Objects by default. That way one can detect whether an Object
652     * instance was ever assigned to something meaningful.
653     *
654     * Note that this class also implements the @c bool operator, both return
655     * the same boolean result value.
656     */
657 schoenebeck 3138 bool Object::isValid() const {
658     return m_type && !m_uid.empty();
659     }
660    
661 schoenebeck 3183 /** @brief Unique identifier of this Object.
662     *
663     * Returns the unique identifier for the original native C/C++ data this
664     * abstract Object instance is reflecting. If this Object is representing
665     * a C/C++ pointer (of first degree) then @c uid() (or @c uid(0) ) returns
666     * the unique identifier of the pointer itself, whereas @c uid(1) returns
667     * the unique identifier of the original C/C++ data that pointer was
668     * actually pointing to.
669     *
670     * @see UIDChain for more details about this overall topic.
671     */
672     UID Object::uid(int index) const {
673     return (index < m_uid.size()) ? m_uid[index] : NO_UID;
674     }
675    
676     /** @brief Unique identifier chain of this Object.
677     *
678     * Returns the entire unique identifier chain of this Object.
679     *
680     * @see uid() and UIDChain for more details about this overall topic.
681     */
682     const UIDChain& Object::uidChain() const {
683     return m_uid;
684     }
685    
686     /** @brief C/C++ data type this Object is reflecting.
687     *
688     * Returns the precise original C/C++ data type of the original native
689     * C/C++ object or data this Object instance is reflecting.
690     */
691     const DataType& Object::type() const {
692     return m_type;
693     }
694    
695     /** @brief Raw data of the original native C/C++ data.
696     *
697     * Returns the raw data value of the original C/C++ data this Object is
698     * reflecting. So the precise raw data value, layout and size is dependent
699     * to the precise C/C++ data type of the original native C/C++ data. However
700     * potentially required endian correction is already automatically applied
701     * for you. That means you can safely, directly C-cast the raw data returned
702     * by this method to the respective native C/C++ data type in order to
703     * access and use the value for some purpose, at least if the respective
704     * data is of any fundamental, primitive C/C++ data type, or also to a
705     * certain extent if the type is user defined @c enum type.
706     *
707     * However directly C-casting this raw data for user defined @c struct or
708     * @c class types is not possible. For those user defined data structures
709     * this method always returns empty raw data instead.
710     *
711     * Note however that there are more convenient methods in the Archive class
712     * to get the right value for the individual data types instead.
713     *
714     * @see Archive::valueAsInt(), Archive::valueAsReal(), Archive::valueAsBool(),
715     * Archive::valueAsString()
716     */
717     const RawData& Object::rawData() const {
718     return m_data;
719     }
720    
721     /** @brief Version of original user defined C/C++ @c struct or @c class.
722     *
723     * In case this Object is reflecting a native C/C++ @c struct or @c class
724     * type, then this method returns the version of that native C/C++ @c struct
725     * or @c class layout or implementation. For primitive, fundamental C/C++
726     * data types the return value of this method has no meaning.
727     *
728     * @see Archive::setVersion() for more details about this overall topic.
729     */
730     Version Object::version() const {
731     return m_version;
732     }
733    
734     /** @brief Minimum version of original user defined C/C++ @c struct or @c class.
735     *
736     * In case this Object is reflecting a native C/C++ @c struct or @c class
737     * type, then this method returns the "minimum" version of that native C/C++
738     * @c struct or @c class layout or implementation which it may be compatible
739     * with. For primitive, fundamental C/C++ data types the return value of
740     * this method has no meaning.
741     *
742     * @see Archive::setVersion() and Archive::setMinVersion() for more details
743     * about this overall topic.
744     */
745     Version Object::minVersion() const {
746     return m_minVersion;
747     }
748    
749     /** @brief All members of the original native C/C++ @c struct or @c class instance.
750     *
751     * In case this Object is reflecting a native C/C++ @c struct or @c class
752     * type, then this method returns all member variables of that original
753     * native C/C++ @c struct or @c class instance. For primitive, fundamental
754     * C/C++ data types this method returns an empty vector instead.
755     *
756     * Example:
757     * @code
758     * struct Foo {
759     * int a;
760     * bool b;
761     * double someValue;
762     * };
763     * @endcode
764     * Considering above's C++ code, a serialized Object representation of such
765     * a native @c Foo class would have 3 members @c a, @c b and @c someValue.
766     *
767     * Note that the respective serialize() method implementation of that
768     * fictional C++ @c struct @c Foo actually defines which members are going
769     * to be serialized and deserialized for instances of class @c Foo. So in
770     * practice the members returned by method members() here might return a
771     * different set of members as actually defined in the original C/C++ struct
772     * header declaration.
773     *
774     * The precise sequence of the members returned by this method here depends
775     * on the actual serialize() implementation of the user defined C/C++
776     * @c struct or @c class.
777     *
778     * @see Object::sequenceIndexOf() for more details about the precise order
779     * of members returned by this method in the same way.
780     */
781     std::vector<Member>& Object::members() {
782     return m_members;
783     }
784    
785     /** @brief All members of the original native C/C++ @c struct or @c class instance (read only).
786     *
787     * Returns the same result as overridden members() method above, it just
788     * returns a read-only result instead. See above's method description for
789     * details for the return value of this method instead.
790     */
791     const std::vector<Member>& Object::members() const {
792     return m_members;
793     }
794    
795     /** @brief Comparison for equalness.
796     *
797     * Returns @c true if the two Object instances being compared can be
798     * considered to be "equal" native C/C++ object instances. They are
799     * considered to be equal if they are representing the same original
800     * C/C++ data instance, which is essentially the case if the original
801     * reflecting native C/C++ data are sharing the same memory address and
802     * memory size (thus the exact same memory space) and originally had the
803     * exact same native C/C++ types.
804     */
805 schoenebeck 3138 bool Object::operator==(const Object& other) const {
806     // ignoring all other member variables here
807     // (since UID stands for "unique" ;-) )
808     return m_uid == other.m_uid &&
809     m_type == other.m_type;
810     }
811    
812 schoenebeck 3183 /** @brief Comparison for inequalness.
813     *
814     * Returns the inverse result of what Object::operator==() would return.
815     * So refer to the latter for more details.
816     */
817 schoenebeck 3138 bool Object::operator!=(const Object& other) const {
818     return !operator==(other);
819     }
820    
821 schoenebeck 3183 /** @brief Smaller than comparison.
822     *
823     * Returns @c true if this Object instance can be consider to be "smaller"
824     * than the @a other Object instance being compared with. This operator
825     * is actually quite arbitrarily implemented and may change at any time,
826     * and thus result for the same Object representations may change in future
827     * at any time.
828     *
829     * This operator is basically implemented for allowing this DataType class
830     * to be used with various standard template library (STL) classes, which
831     * require sorting operators to be implemented.
832     */
833 schoenebeck 3138 bool Object::operator<(const Object& other) const {
834     // ignoring all other member variables here
835     // (since UID stands for "unique" ;-) )
836     return m_uid < other.m_uid ||
837     (m_uid == other.m_uid &&
838     m_type < other.m_type);
839     }
840    
841 schoenebeck 3183 /** @brief Greater than comparison.
842     *
843     * Returns @c true if this Object instance can be consider to be "greater"
844     * than the @a other Object instance being compared with. This operator
845     * is actually quite arbitrarily implemented and may change at any time,
846     * and thus result for the same Object representations may change in future
847     * at any time.
848     *
849     * This operator is basically implemented for allowing this DataType class
850     * to be used with various standard template library (STL) classes, which
851     * require sorting operators to be implemented.
852     */
853 schoenebeck 3138 bool Object::operator>(const Object& other) const {
854     return !(operator==(other) || operator<(other));
855     }
856    
857 schoenebeck 3183 /** @brief Check version compatibility between Object instances.
858     *
859     * Use this method to check whether the two original C/C++ instances those
860     * two Objects are reflecting, were using a C/C++ data type which are version
861     * compatible with each other. By default all C/C++ Objects are considered
862     * to be version compatible. They might only be version incompatible if you
863     * enforced a certain backward compatibility constraint with your
864     * serialize() method implementation of your custom C/C++ @c struct or
865     * @c class types.
866     *
867     * You must only call this method on two Object instances which are
868     * representing the same data type, for example if both Objects reflect
869     * instances of the same user defined C++ class. Calling this method on
870     * completely different data types does not cause an error or exception, but
871     * its result would simply be useless for any purpose.
872     *
873     * @see Archive::setVersion() for more details about this overall topic.
874     */
875 schoenebeck 3138 bool Object::isVersionCompatibleTo(const Object& other) const {
876     if (this->version() == other.version())
877     return true;
878     if (this->version() > other.version())
879     return this->minVersion() <= other.version();
880     else
881     return other.minVersion() <= this->version();
882     }
883    
884 schoenebeck 3182 void Object::setVersion(Version v) {
885     m_version = v;
886     }
887    
888     void Object::setMinVersion(Version v) {
889     m_minVersion = v;
890     }
891    
892 schoenebeck 3183 /** @brief Get the member of this Object with given name.
893     *
894     * In case this Object is reflecting a native C/C++ @c struct or @c class
895     * type, then this method returns the abstract reflection of the requested
896     * member variable of the original native C/C++ @c struct or @c class
897     * instance. For primitive, fundamental C/C++ data types this method always
898     * returns an "invalid" Member instance instead.
899     *
900     * Example:
901     * @code
902     * struct Foo {
903     * int a;
904     * bool b;
905     * double someValue;
906     * };
907     * @endcode
908     * Consider that you serialized the native C/C++ @c struct as shown in this
909     * example, and assuming that you implemented the respective serialize()
910     * method of this C++ @c struct to serialize all its members, then you might
911     * call memberNamed("someValue") to get the details of the third member in
912     * this example for instance. In case the passed @a name is an unknown
913     * member name, then this method will return an "invalid" Member object
914     * instead.
915     *
916     * @param name - original name of the sought serialized member variable of
917     * this Object reflection
918     * @returns abstract reflection of the sought member variable
919     * @see Member::isValid(), Object::members()
920     */
921 schoenebeck 3138 Member Object::memberNamed(String name) const {
922     for (int i = 0; i < m_members.size(); ++i)
923     if (m_members[i].name() == name)
924     return m_members[i];
925     return Member();
926     }
927    
928 schoenebeck 3183 /** @brief Get the member of this Object with given unique identifier.
929     *
930     * This method behaves similar like method memberNamed() described above,
931     * but instead of searching for a member variable by name, it searches for
932     * a member with an abstract unique identifier instead. For primitive,
933     * fundamental C/C++ data types, for invalid or unknown unique identifiers,
934     * and for members which are actually not member instances of the original
935     * C/C++ @c struct or @c class instance this Object is reflecting, this
936     * method returns an "invalid" Member instance instead.
937     *
938     * @param uid - unique identifier of the member variable being sought
939     * @returns abstract reflection of the sought member variable
940     * @see Member::isValid(), Object::members(), Object::memberNamed()
941     */
942 schoenebeck 3153 Member Object::memberByUID(const UID& uid) const {
943     if (!uid) return Member();
944     for (int i = 0; i < m_members.size(); ++i)
945     if (m_members[i].uid() == uid)
946     return m_members[i];
947     return Member();
948     }
949    
950 schoenebeck 3138 void Object::remove(const Member& member) {
951     for (int i = 0; i < m_members.size(); ++i) {
952     if (m_members[i] == member) {
953     m_members.erase(m_members.begin() + i);
954     return;
955     }
956     }
957     }
958    
959 schoenebeck 3183 /** @brief Get all members of this Object with given data type.
960     *
961     * In case this Object is reflecting a native C/C++ @c struct or @c class
962     * type, then this method returns all member variables of that original
963     * native C/C++ @c struct or @c class instance which are matching the given
964     * requested data @a type. If this Object is reflecting a primitive,
965     * fundamental data type, or if there are no members of this Object with the
966     * requested precise C/C++ data type, then this method returns an empty
967     * vector instead.
968     *
969     * @param type - the precise C/C++ data type of the sought member variables
970     * of this Object
971     * @returns vector with abstract reflections of the sought member variables
972     * @see Object::members(), Object::memberNamed()
973     */
974 schoenebeck 3138 std::vector<Member> Object::membersOfType(const DataType& type) const {
975     std::vector<Member> v;
976     for (int i = 0; i < m_members.size(); ++i) {
977     const Member& member = m_members[i];
978     if (member.type() == type)
979     v.push_back(member);
980     }
981     return v;
982     }
983    
984 schoenebeck 3183 /** @brief Serialization/deserialization sequence number of the requested member.
985     *
986     * Returns the precise serialization/deserialization sequence number of the
987     * requested @a member variable.
988     *
989     * Example:
990     * @code
991     * struct Foo {
992     * int a;
993     * bool b;
994     * double c;
995     *
996     * void serialize(Serialization::Archive* archive);
997     * };
998     * @endcode
999     * Assuming the declaration of the user defined native C/C++ @c struct
1000     * @c Foo above, and assuming the following implementation of serialize():
1001     * @code
1002     * #define SRLZ(member) \
1003     * archive->serializeMember(*this, member, #member);
1004     *
1005     * void Foo::serialize(Serialization::Archive* archive) {
1006     * SRLZ(c);
1007     * SRLZ(a);
1008     * SRLZ(b);
1009     * }
1010     * @endcode
1011     * then @c sequenceIndexOf(obj.memberNamed("a")) returns 1,
1012     * @c sequenceIndexOf(obj.memberNamed("b")) returns 2, and
1013     * @c sequenceIndexOf(obj.memberNamed("c")) returns 0.
1014     */
1015 schoenebeck 3138 int Object::sequenceIndexOf(const Member& member) const {
1016     for (int i = 0; i < m_members.size(); ++i)
1017     if (m_members[i] == member)
1018     return i;
1019     return -1;
1020     }
1021    
1022     // *************** Archive ***************
1023     // *
1024    
1025 schoenebeck 3183 /** @brief Create an "empty" archive.
1026     *
1027     * This default constructor creates an "empty" archive which you then
1028     * subsequently for example might fill with serialized data like:
1029     * @code
1030     * Archive a;
1031     * a.serialize(&myRootObject);
1032     * @endcode
1033     * Or:
1034     * @code
1035     * Archive a;
1036     * a << myRootObject;
1037     * @endcode
1038     * Or you might also subsequently assign an already existing non-empty
1039     * to this empty archive, which effectively clones the other
1040     * archive (deep copy) or call decode() later on to assign a previously
1041     * serialized raw data stream.
1042     */
1043 schoenebeck 3138 Archive::Archive() {
1044     m_operation = OPERATION_NONE;
1045     m_root = NO_UID;
1046 schoenebeck 3150 m_isModified = false;
1047 schoenebeck 3156 m_timeCreated = m_timeModified = LIBGIG_EPOCH_TIME;
1048 schoenebeck 3138 }
1049    
1050 schoenebeck 3183 /** @brief Create and fill the archive with the given serialized raw data.
1051     *
1052     * This constructor decodes the given raw @a data and constructs a
1053     * (non-empty) Archive object according to that given serialized data
1054     * stream.
1055     *
1056     * After this constructor returned, you may then traverse the individual
1057     * objects by starting with accessing the rootObject() for example. Finally
1058     * you might call deserialize() to restore your native C++ objects with the
1059     * content of this archive.
1060     *
1061     * @param data - the previously serialized raw data stream to be decoded
1062     * @throws Exception if the provided raw @a data uses an invalid, unknown,
1063     * incompatible or corrupt data stream or format.
1064     */
1065 schoenebeck 3138 Archive::Archive(const RawData& data) {
1066     m_operation = OPERATION_NONE;
1067     m_root = NO_UID;
1068 schoenebeck 3150 m_isModified = false;
1069 schoenebeck 3156 m_timeCreated = m_timeModified = LIBGIG_EPOCH_TIME;
1070 schoenebeck 3138 decode(m_rawData);
1071     }
1072    
1073 schoenebeck 3183 /** @brief Create and fill the archive with the given serialized raw C-buffer data.
1074     *
1075     * This constructor essentially works like the constructor above, but just
1076     * uses another data type for the serialized raw data stream being passed to
1077     * this class.
1078     *
1079     * This constructor decodes the given raw @a data and constructs a
1080     * (non-empty) Archive object according to that given serialized data
1081     * stream.
1082     *
1083     * After this constructor returned, you may then traverse the individual
1084     * objects by starting with accessing the rootObject() for example. Finally
1085     * you might call deserialize() to restore your native C++ objects with the
1086     * content of this archive.
1087     *
1088     * @param data - the previously serialized raw data stream to be decoded
1089     * @param size - size of @a data in bytes
1090     * @throws Exception if the provided raw @a data uses an invalid, unknown,
1091     * incompatible or corrupt data stream or format.
1092     */
1093 schoenebeck 3138 Archive::Archive(const uint8_t* data, size_t size) {
1094     m_operation = OPERATION_NONE;
1095     m_root = NO_UID;
1096 schoenebeck 3150 m_isModified = false;
1097 schoenebeck 3156 m_timeCreated = m_timeModified = LIBGIG_EPOCH_TIME;
1098 schoenebeck 3138 decode(data, size);
1099     }
1100    
1101     Archive::~Archive() {
1102     }
1103    
1104 schoenebeck 3183 /** @brief Root C++ object of this archive.
1105     *
1106     * In case this is a non-empty Archive, then this method returns the so
1107     * called "root" C++ object. If this is an empty archive, then this method
1108     * returns an "invalid" Object instance instead.
1109     *
1110     * @see Archive::serialize() for more details about the "root" object concept.
1111     * @see Object for more details about the overall object reflection concept.
1112     * @returns reflection of the original native C++ root object
1113     */
1114 schoenebeck 3138 Object& Archive::rootObject() {
1115     return m_allObjects[m_root];
1116     }
1117    
1118     static String _encodeBlob(String data) {
1119     return ToString(data.length()) + ":" + data;
1120     }
1121    
1122     static String _encode(const UID& uid) {
1123     String s;
1124     s += _encodeBlob(ToString(size_t(uid.id)));
1125     s += _encodeBlob(ToString(size_t(uid.size)));
1126     return _encodeBlob(s);
1127     }
1128    
1129 schoenebeck 3156 static String _encode(const time_t& time) {
1130     return _encodeBlob(ToString(time));
1131     }
1132    
1133 schoenebeck 3138 static String _encode(const DataType& type) {
1134     String s;
1135     s += _encodeBlob(type.baseTypeName());
1136     s += _encodeBlob(type.customTypeName());
1137     s += _encodeBlob(ToString(type.size()));
1138     s += _encodeBlob(ToString(type.isPointer()));
1139     return _encodeBlob(s);
1140     }
1141    
1142     static String _encode(const UIDChain& chain) {
1143     String s;
1144     for (int i = 0; i < chain.size(); ++i)
1145     s += _encode(chain[i]);
1146     return _encodeBlob(s);
1147     }
1148    
1149     static String _encode(const Member& member) {
1150     String s;
1151     s += _encode(member.uid());
1152     s += _encodeBlob(ToString(member.offset()));
1153     s += _encodeBlob(member.name());
1154     s += _encode(member.type());
1155     return _encodeBlob(s);
1156     }
1157    
1158     static String _encode(const std::vector<Member>& members) {
1159     String s;
1160     for (int i = 0; i < members.size(); ++i)
1161     s += _encode(members[i]);
1162     return _encodeBlob(s);
1163     }
1164    
1165 schoenebeck 3150 static String _primitiveObjectValueToString(const Object& obj) {
1166 schoenebeck 3138 String s;
1167     const DataType& type = obj.type();
1168     const ID& id = obj.uid().id;
1169 schoenebeck 3150 void* ptr = obj.m_data.empty() ? (void*)id : (void*)&obj.m_data[0];
1170     if (!obj.m_data.empty())
1171     assert(type.size() == obj.m_data.size());
1172 schoenebeck 3138 if (type.isPrimitive() && !type.isPointer()) {
1173     if (type.isInteger() || type.isEnum()) {
1174     if (type.isSigned()) {
1175     if (type.size() == 1)
1176 schoenebeck 3150 s = ToString((int16_t)*(int8_t*)ptr); // int16_t: prevent ToString() to render an ASCII character
1177 schoenebeck 3138 else if (type.size() == 2)
1178 schoenebeck 3150 s = ToString(*(int16_t*)ptr);
1179 schoenebeck 3138 else if (type.size() == 4)
1180 schoenebeck 3150 s = ToString(*(int32_t*)ptr);
1181 schoenebeck 3138 else if (type.size() == 8)
1182 schoenebeck 3150 s = ToString(*(int64_t*)ptr);
1183 schoenebeck 3138 else
1184     assert(false /* unknown signed int type size */);
1185     } else {
1186     if (type.size() == 1)
1187 schoenebeck 3150 s = ToString((uint16_t)*(uint8_t*)ptr); // uint16_t: prevent ToString() to render an ASCII character
1188 schoenebeck 3138 else if (type.size() == 2)
1189 schoenebeck 3150 s = ToString(*(uint16_t*)ptr);
1190 schoenebeck 3138 else if (type.size() == 4)
1191 schoenebeck 3150 s = ToString(*(uint32_t*)ptr);
1192 schoenebeck 3138 else if (type.size() == 8)
1193 schoenebeck 3150 s = ToString(*(uint64_t*)ptr);
1194 schoenebeck 3138 else
1195     assert(false /* unknown unsigned int type size */);
1196     }
1197     } else if (type.isReal()) {
1198     if (type.size() == sizeof(float))
1199 schoenebeck 3150 s = ToString(*(float*)ptr);
1200 schoenebeck 3138 else if (type.size() == sizeof(double))
1201 schoenebeck 3150 s = ToString(*(double*)ptr);
1202 schoenebeck 3138 else
1203     assert(false /* unknown floating point type */);
1204     } else if (type.isBool()) {
1205 schoenebeck 3150 s = ToString(*(bool*)ptr);
1206 schoenebeck 3138 } else {
1207     assert(false /* unknown primitive type */);
1208     }
1209    
1210     }
1211 schoenebeck 3150 return s;
1212 schoenebeck 3138 }
1213    
1214 schoenebeck 3169 template<typename T>
1215     static T _primitiveObjectValueToNumber(const Object& obj) {
1216     T value = 0;
1217     const DataType& type = obj.type();
1218     const ID& id = obj.uid().id;
1219     void* ptr = obj.m_data.empty() ? (void*)id : (void*)&obj.m_data[0];
1220     if (!obj.m_data.empty())
1221     assert(type.size() == obj.m_data.size());
1222     if (type.isPrimitive() && !type.isPointer()) {
1223     if (type.isInteger() || type.isEnum()) {
1224     if (type.isSigned()) {
1225     if (type.size() == 1)
1226     value = (T)*(int8_t*)ptr;
1227     else if (type.size() == 2)
1228     value = (T)*(int16_t*)ptr;
1229     else if (type.size() == 4)
1230     value = (T)*(int32_t*)ptr;
1231     else if (type.size() == 8)
1232     value = (T)*(int64_t*)ptr;
1233     else
1234     assert(false /* unknown signed int type size */);
1235     } else {
1236     if (type.size() == 1)
1237     value = (T)*(uint8_t*)ptr;
1238     else if (type.size() == 2)
1239     value = (T)*(uint16_t*)ptr;
1240     else if (type.size() == 4)
1241     value = (T)*(uint32_t*)ptr;
1242     else if (type.size() == 8)
1243     value = (T)*(uint64_t*)ptr;
1244     else
1245     assert(false /* unknown unsigned int type size */);
1246     }
1247     } else if (type.isReal()) {
1248     if (type.size() == sizeof(float))
1249     value = (T)*(float*)ptr;
1250     else if (type.size() == sizeof(double))
1251     value = (T)*(double*)ptr;
1252     else
1253     assert(false /* unknown floating point type */);
1254     } else if (type.isBool()) {
1255     value = (T)*(bool*)ptr;
1256     } else {
1257     assert(false /* unknown primitive type */);
1258     }
1259     }
1260     return value;
1261     }
1262    
1263 schoenebeck 3150 static String _encodePrimitiveValue(const Object& obj) {
1264     return _encodeBlob( _primitiveObjectValueToString(obj) );
1265     }
1266    
1267 schoenebeck 3138 static String _encode(const Object& obj) {
1268     String s;
1269     s += _encode(obj.type());
1270     s += _encodeBlob(ToString(obj.version()));
1271     s += _encodeBlob(ToString(obj.minVersion()));
1272     s += _encode(obj.uidChain());
1273     s += _encode(obj.members());
1274     s += _encodePrimitiveValue(obj);
1275     return _encodeBlob(s);
1276     }
1277    
1278     String _encode(const Archive::ObjectPool& objects) {
1279     String s;
1280     for (Archive::ObjectPool::const_iterator itObject = objects.begin();
1281     itObject != objects.end(); ++itObject)
1282     {
1283     const Object& obj = itObject->second;
1284     s += _encode(obj);
1285     }
1286     return _encodeBlob(s);
1287     }
1288    
1289     #define MAGIC_START "Srx1v"
1290     #define ENCODING_FORMAT_MINOR_VERSION 0
1291    
1292     String Archive::_encodeRootBlob() {
1293     String s;
1294     s += _encodeBlob(ToString(ENCODING_FORMAT_MINOR_VERSION));
1295     s += _encode(m_root);
1296     s += _encode(m_allObjects);
1297 schoenebeck 3156 s += _encodeBlob(m_name);
1298     s += _encodeBlob(m_comment);
1299     s += _encode(m_timeCreated);
1300     s += _encode(m_timeModified);
1301 schoenebeck 3138 return _encodeBlob(s);
1302     }
1303    
1304     void Archive::encode() {
1305     m_rawData.clear();
1306     String s = MAGIC_START;
1307 schoenebeck 3159 m_timeModified = time(NULL);
1308     if (m_timeCreated == LIBGIG_EPOCH_TIME)
1309     m_timeCreated = m_timeModified;
1310 schoenebeck 3138 s += _encodeRootBlob();
1311     m_rawData.resize(s.length() + 1);
1312     memcpy(&m_rawData[0], &s[0], s.length() + 1);
1313 schoenebeck 3150 m_isModified = false;
1314 schoenebeck 3138 }
1315    
1316     struct _Blob {
1317     const char* p;
1318     const char* end;
1319     };
1320    
1321     static _Blob _decodeBlob(const char* p, const char* end, bool bThrow = true) {
1322 schoenebeck 3168 if (!bThrow && p >= end) {
1323     const _Blob blob = { p, end };
1324     return blob;
1325     }
1326 schoenebeck 3138 size_t sz = 0;
1327     for (; true; ++p) {
1328     if (p >= end)
1329     throw Exception("Decode Error: Missing blob");
1330     const char& c = *p;
1331     if (c == ':') break;
1332     if (c < '0' || c > '9')
1333     throw Exception("Decode Error: Missing blob size");
1334     sz *= 10;
1335     sz += size_t(c - '0');
1336     }
1337     ++p;
1338     if (p + sz > end)
1339     throw Exception("Decode Error: Premature end of blob");
1340 schoenebeck 3168 const _Blob blob = { p, p + sz };
1341     return blob;
1342 schoenebeck 3138 }
1343    
1344     template<typename T_int>
1345     static T_int _popIntBlob(const char*& p, const char* end) {
1346     _Blob blob = _decodeBlob(p, end);
1347     p = blob.p;
1348     end = blob.end;
1349    
1350     T_int sign = 1;
1351     T_int i = 0;
1352     if (p >= end)
1353     throw Exception("Decode Error: premature end of int blob");
1354     if (*p == '-') {
1355     sign = -1;
1356     ++p;
1357     }
1358     for (; p < end; ++p) {
1359     const char& c = *p;
1360     if (c < '0' || c > '9')
1361     throw Exception("Decode Error: Invalid int blob format");
1362     i *= 10;
1363     i += size_t(c - '0');
1364     }
1365     return i * sign;
1366     }
1367    
1368     template<typename T_int>
1369     static void _popIntBlob(const char*& p, const char* end, RawData& rawData) {
1370     const T_int i = _popIntBlob<T_int>(p, end);
1371     *(T_int*)&rawData[0] = i;
1372     }
1373    
1374     template<typename T_real>
1375     static T_real _popRealBlob(const char*& p, const char* end) {
1376     _Blob blob = _decodeBlob(p, end);
1377     p = blob.p;
1378     end = blob.end;
1379    
1380     if (p >= end || (end - p) < 1)
1381     throw Exception("Decode Error: premature end of real blob");
1382    
1383     String s(p, size_t(end - p));
1384    
1385     T_real r;
1386 schoenebeck 3139 if (sizeof(T_real) <= sizeof(double))
1387 schoenebeck 3138 r = atof(s.c_str());
1388     else
1389     assert(false /* unknown real type */);
1390    
1391     p += s.length();
1392    
1393     return r;
1394     }
1395    
1396     template<typename T_real>
1397     static void _popRealBlob(const char*& p, const char* end, RawData& rawData) {
1398     const T_real r = _popRealBlob<T_real>(p, end);
1399     *(T_real*)&rawData[0] = r;
1400     }
1401    
1402     static String _popStringBlob(const char*& p, const char* end) {
1403     _Blob blob = _decodeBlob(p, end);
1404     p = blob.p;
1405     end = blob.end;
1406     if (end - p < 0)
1407     throw Exception("Decode Error: missing String blob");
1408     String s;
1409     const size_t sz = end - p;
1410     s.resize(sz);
1411     memcpy(&s[0], p, sz);
1412     p += sz;
1413     return s;
1414     }
1415    
1416 schoenebeck 3156 static time_t _popTimeBlob(const char*& p, const char* end) {
1417     const uint64_t i = _popIntBlob<uint64_t>(p, end);
1418     return (time_t) i;
1419     }
1420    
1421 schoenebeck 3392 static DataType _popDataTypeBlob(const char*& p, const char* end) {
1422 schoenebeck 3138 _Blob blob = _decodeBlob(p, end);
1423     p = blob.p;
1424     end = blob.end;
1425    
1426     DataType type;
1427     type.m_baseTypeName = _popStringBlob(p, end);
1428     type.m_customTypeName = _popStringBlob(p, end);
1429     type.m_size = _popIntBlob<int>(p, end);
1430     type.m_isPointer = _popIntBlob<bool>(p, end);
1431     return type;
1432     }
1433    
1434     static UID _popUIDBlob(const char*& p, const char* end) {
1435     _Blob blob = _decodeBlob(p, end);
1436     p = blob.p;
1437     end = blob.end;
1438    
1439     if (p >= end)
1440     throw Exception("Decode Error: premature end of UID blob");
1441    
1442     const ID id = (ID) _popIntBlob<size_t>(p, end);
1443     const size_t size = _popIntBlob<size_t>(p, end);
1444    
1445 schoenebeck 3168 const UID uid = { id, size };
1446     return uid;
1447 schoenebeck 3138 }
1448    
1449     static UIDChain _popUIDChainBlob(const char*& p, const char* end) {
1450     _Blob blob = _decodeBlob(p, end);
1451     p = blob.p;
1452     end = blob.end;
1453    
1454     UIDChain chain;
1455     while (p < end) {
1456     const UID uid = _popUIDBlob(p, end);
1457     chain.push_back(uid);
1458     }
1459     assert(!chain.empty());
1460     return chain;
1461     }
1462    
1463 schoenebeck 3146 static Member _popMemberBlob(const char*& p, const char* end) {
1464 schoenebeck 3138 _Blob blob = _decodeBlob(p, end, false);
1465     p = blob.p;
1466     end = blob.end;
1467    
1468     Member m;
1469     if (p >= end) return m;
1470    
1471     m.m_uid = _popUIDBlob(p, end);
1472     m.m_offset = _popIntBlob<size_t>(p, end);
1473     m.m_name = _popStringBlob(p, end);
1474     m.m_type = _popDataTypeBlob(p, end);
1475     assert(m.type());
1476     assert(!m.name().empty());
1477 schoenebeck 3146 assert(m.uid().isValid());
1478 schoenebeck 3138 return m;
1479     }
1480    
1481     static std::vector<Member> _popMembersBlob(const char*& p, const char* end) {
1482     _Blob blob = _decodeBlob(p, end, false);
1483     p = blob.p;
1484     end = blob.end;
1485    
1486     std::vector<Member> members;
1487     while (p < end) {
1488     const Member member = _popMemberBlob(p, end);
1489     if (member)
1490     members.push_back(member);
1491     else
1492     break;
1493     }
1494     return members;
1495     }
1496    
1497 schoenebeck 3146 static void _popPrimitiveValue(const char*& p, const char* end, Object& obj) {
1498 schoenebeck 3138 const DataType& type = obj.type();
1499     if (type.isPrimitive() && !type.isPointer()) {
1500     obj.m_data.resize(type.size());
1501     if (type.isInteger() || type.isEnum()) {
1502     if (type.isSigned()) {
1503     if (type.size() == 1)
1504     _popIntBlob<int8_t>(p, end, obj.m_data);
1505     else if (type.size() == 2)
1506     _popIntBlob<int16_t>(p, end, obj.m_data);
1507     else if (type.size() == 4)
1508     _popIntBlob<int32_t>(p, end, obj.m_data);
1509     else if (type.size() == 8)
1510     _popIntBlob<int64_t>(p, end, obj.m_data);
1511     else
1512     assert(false /* unknown signed int type size */);
1513     } else {
1514     if (type.size() == 1)
1515     _popIntBlob<uint8_t>(p, end, obj.m_data);
1516     else if (type.size() == 2)
1517     _popIntBlob<uint16_t>(p, end, obj.m_data);
1518     else if (type.size() == 4)
1519     _popIntBlob<uint32_t>(p, end, obj.m_data);
1520     else if (type.size() == 8)
1521     _popIntBlob<uint64_t>(p, end, obj.m_data);
1522     else
1523     assert(false /* unknown unsigned int type size */);
1524     }
1525     } else if (type.isReal()) {
1526     if (type.size() == sizeof(float))
1527     _popRealBlob<float>(p, end, obj.m_data);
1528     else if (type.size() == sizeof(double))
1529     _popRealBlob<double>(p, end, obj.m_data);
1530     else
1531     assert(false /* unknown floating point type */);
1532     } else if (type.isBool()) {
1533     _popIntBlob<uint8_t>(p, end, obj.m_data);
1534     } else {
1535     assert(false /* unknown primitive type */);
1536     }
1537    
1538     } else {
1539     // don't whine if the empty blob was not added on encoder side
1540     _Blob blob = _decodeBlob(p, end, false);
1541     p = blob.p;
1542     end = blob.end;
1543     }
1544     }
1545    
1546 schoenebeck 3146 static Object _popObjectBlob(const char*& p, const char* end) {
1547 schoenebeck 3138 _Blob blob = _decodeBlob(p, end, false);
1548     p = blob.p;
1549     end = blob.end;
1550    
1551     Object obj;
1552     if (p >= end) return obj;
1553    
1554     obj.m_type = _popDataTypeBlob(p, end);
1555     obj.m_version = _popIntBlob<Version>(p, end);
1556     obj.m_minVersion = _popIntBlob<Version>(p, end);
1557     obj.m_uid = _popUIDChainBlob(p, end);
1558     obj.m_members = _popMembersBlob(p, end);
1559     _popPrimitiveValue(p, end, obj);
1560     assert(obj.type());
1561     return obj;
1562     }
1563    
1564     void Archive::_popObjectsBlob(const char*& p, const char* end) {
1565     _Blob blob = _decodeBlob(p, end, false);
1566     p = blob.p;
1567     end = blob.end;
1568    
1569     if (p >= end)
1570     throw Exception("Decode Error: Premature end of objects blob");
1571    
1572     while (true) {
1573     const Object obj = _popObjectBlob(p, end);
1574     if (!obj) break;
1575     m_allObjects[obj.uid()] = obj;
1576     }
1577     }
1578    
1579     void Archive::_popRootBlob(const char*& p, const char* end) {
1580     _Blob blob = _decodeBlob(p, end, false);
1581     p = blob.p;
1582     end = blob.end;
1583    
1584     if (p >= end)
1585     throw Exception("Decode Error: Premature end of root blob");
1586    
1587     // just in case this encoding format will be extended in future
1588     // (currently not used)
1589     const int formatMinorVersion = _popIntBlob<int>(p, end);
1590    
1591     m_root = _popUIDBlob(p, end);
1592     if (!m_root)
1593     throw Exception("Decode Error: No root object");
1594    
1595     _popObjectsBlob(p, end);
1596     if (!m_allObjects[m_root])
1597     throw Exception("Decode Error: Missing declared root object");
1598 schoenebeck 3156
1599     m_name = _popStringBlob(p, end);
1600     m_comment = _popStringBlob(p, end);
1601     m_timeCreated = _popTimeBlob(p, end);
1602     m_timeModified = _popTimeBlob(p, end);
1603 schoenebeck 3138 }
1604    
1605 schoenebeck 3183 /** @brief Fill this archive with the given serialized raw data.
1606     *
1607     * Calling this method will decode the given raw @a data and constructs a
1608     * (non-empty) Archive object according to that given serialized @a data
1609     * stream.
1610     *
1611     * After this method returned, you may then traverse the individual
1612     * objects by starting with accessing the rootObject() for example. Finally
1613     * you might call deserialize() to restore your native C++ objects with the
1614     * content of this archive.
1615     *
1616     * @param data - the previously serialized raw data stream to be decoded
1617     * @throws Exception if the provided raw @a data uses an invalid, unknown,
1618     * incompatible or corrupt data stream or format.
1619     */
1620 schoenebeck 3138 void Archive::decode(const RawData& data) {
1621     m_rawData = data;
1622     m_allObjects.clear();
1623 schoenebeck 3150 m_isModified = false;
1624 schoenebeck 3156 m_timeCreated = m_timeModified = LIBGIG_EPOCH_TIME;
1625 schoenebeck 3138 const char* p = (const char*) &data[0];
1626     const char* end = p + data.size();
1627     if (memcmp(p, MAGIC_START, std::min(strlen(MAGIC_START), data.size())))
1628     throw Exception("Decode Error: Magic start missing!");
1629     p += strlen(MAGIC_START);
1630     _popRootBlob(p, end);
1631     }
1632    
1633 schoenebeck 3183 /** @brief Fill this archive with the given serialized raw C-buffer data.
1634     *
1635     * This method essentially works like the decode() method above, but just
1636     * uses another data type for the serialized raw data stream being passed to
1637     * this method.
1638     *
1639     * Calling this method will decode the given raw @a data and constructs a
1640     * (non-empty) Archive object according to that given serialized @a data
1641     * stream.
1642     *
1643     * After this method returned, you may then traverse the individual
1644     * objects by starting with accessing the rootObject() for example. Finally
1645     * you might call deserialize() to restore your native C++ objects with the
1646     * content of this archive.
1647     *
1648     * @param data - the previously serialized raw data stream to be decoded
1649     * @param size - size of @a data in bytes
1650     * @throws Exception if the provided raw @a data uses an invalid, unknown,
1651     * incompatible or corrupt data stream or format.
1652     */
1653 schoenebeck 3138 void Archive::decode(const uint8_t* data, size_t size) {
1654     RawData rawData;
1655     rawData.resize(size);
1656     memcpy(&rawData[0], data, size);
1657     decode(rawData);
1658     }
1659    
1660 schoenebeck 3183 /** @brief Raw data stream of this archive content.
1661     *
1662     * Call this method to get a raw data stream for the current content of this
1663     * archive, which you may use to i.e. store on disk or send vie network to
1664     * another machine for deserializing there. This method only returns a
1665     * meaningful content if this is a non-empty archive, that is if you either
1666     * serialized with this Archive object or decoded a raw data stream to this
1667     * Archive object before. If this is an empty archive instead, then this
1668     * method simply returns an empty raw data stream (of size 0) instead.
1669     *
1670     * Note that whenever you call this method, the "modified" state of this
1671     * archive will be reset to @c false.
1672     *
1673     * @see isModified()
1674     */
1675 schoenebeck 3150 const RawData& Archive::rawData() {
1676     if (m_isModified) encode();
1677     return m_rawData;
1678     }
1679    
1680 schoenebeck 3183 /** @brief Name of the encoding format used by this Archive class.
1681     *
1682     * This method returns the name of the encoding format used to encode
1683     * serialized raw data streams.
1684     */
1685 schoenebeck 3138 String Archive::rawDataFormat() const {
1686     return MAGIC_START;
1687     }
1688    
1689 schoenebeck 3183 /** @brief Whether this archive was modified.
1690     *
1691     * This method returns the current "modified" state of this archive. When
1692     * either decoding a previously serialized raw data stream or after
1693     * serializing native C++ objects to this archive the modified state will
1694     * initially be set to @c false. However whenever you are modifying the
1695     * abstract data model of this archive afterwards, for example by removing
1696     * objects from this archive by calling remove() or removeMember(), or by
1697     * altering object values for example by calling setIntValue(), then the
1698     * "modified" state of this archive will automatically be set to @c true.
1699     *
1700     * You can reset the "modified" state explicitly at any time, by calling
1701     * rawData().
1702     */
1703 schoenebeck 3150 bool Archive::isModified() const {
1704     return m_isModified;
1705     }
1706    
1707 schoenebeck 3183 /** @brief Clear content of this archive.
1708     *
1709     * Drops the entire content of this archive and thus resets this archive
1710     * back to become an empty archive.
1711     */
1712 schoenebeck 3138 void Archive::clear() {
1713     m_allObjects.clear();
1714     m_operation = OPERATION_NONE;
1715     m_root = NO_UID;
1716     m_rawData.clear();
1717 schoenebeck 3150 m_isModified = false;
1718 schoenebeck 3156 m_timeCreated = m_timeModified = LIBGIG_EPOCH_TIME;
1719 schoenebeck 3138 }
1720    
1721 schoenebeck 3183 /** @brief Optional name of this archive.
1722     *
1723     * Returns the optional name of this archive that you might have assigned
1724     * to this archive before by calling setName(). If you haven't assigned any
1725     * name to this archive before, then this method simply returns an empty
1726     * string instead.
1727     */
1728 schoenebeck 3156 String Archive::name() const {
1729     return m_name;
1730     }
1731    
1732 schoenebeck 3183 /** @brief Assign a name to this archive.
1733     *
1734     * You may optionally assign an arbitrary name to this archive. The name
1735     * will be stored along with the archive, that is it will encoded with the
1736     * resulting raw data stream, and accordingly it will be decoded from the
1737     * raw data stream later on.
1738     *
1739     * @param name - arbitrary new name for this archive
1740     */
1741 schoenebeck 3156 void Archive::setName(String name) {
1742     if (m_name == name) return;
1743     m_name = name;
1744     m_isModified = true;
1745     }
1746    
1747 schoenebeck 3183 /** @brief Optional comments for this archive.
1748     *
1749     * Returns the optional comments for this archive that you might have
1750     * assigned to this archive before by calling setComment(). If you haven't
1751     * assigned any comment to this archive before, then this method simply
1752     * returns an empty string instead.
1753     */
1754 schoenebeck 3156 String Archive::comment() const {
1755     return m_comment;
1756     }
1757    
1758 schoenebeck 3183 /** @brief Assign a comment to this archive.
1759     *
1760     * You may optionally assign arbitrary comments to this archive. The comment
1761     * will be stored along with the archive, that is it will encoded with the
1762     * resulting raw data stream, and accordingly it will be decoded from the
1763     * raw data stream later on.
1764     *
1765     * @param comment - arbitrary new comment for this archive
1766     */
1767 schoenebeck 3156 void Archive::setComment(String comment) {
1768     if (m_comment == comment) return;
1769     m_comment = comment;
1770     m_isModified = true;
1771     }
1772    
1773     static tm _convertTimeStamp(const time_t& time, time_base_t base) {
1774     tm* pTm;
1775     switch (base) {
1776     case LOCAL_TIME:
1777     pTm = localtime(&time);
1778     break;
1779     case UTC_TIME:
1780     pTm = gmtime(&time);
1781     break;
1782     default:
1783     throw Exception("Time stamp with unknown time base (" + ToString((int64_t)base) + ") requested");
1784     }
1785     if (!pTm)
1786     throw Exception("Failed assembling time stamp structure");
1787     return *pTm;
1788     }
1789    
1790 schoenebeck 3183 /** @brief Date and time when this archive was initially created.
1791     *
1792     * Returns a UTC time stamp (date and time) when this archive was initially
1793     * created.
1794     */
1795 schoenebeck 3156 time_t Archive::timeStampCreated() const {
1796     return m_timeCreated;
1797     }
1798    
1799 schoenebeck 3183 /** @brief Date and time when this archive was modified for the last time.
1800     *
1801     * Returns a UTC time stamp (date and time) when this archive was modified
1802     * for the last time.
1803     */
1804 schoenebeck 3156 time_t Archive::timeStampModified() const {
1805     return m_timeModified;
1806     }
1807    
1808 schoenebeck 3183 /** @brief Date and time when this archive was initially created.
1809     *
1810     * Returns a calendar time information representing the date and time when
1811     * this archive was initially created. The optional @a base parameter may
1812     * be used to define to which time zone the returned data and time shall be
1813     * related to.
1814     *
1815     * @param base - (optional) time zone the result shall relate to, by default
1816     * UTC time (Greenwhich Mean Time) is assumed instead
1817     */
1818 schoenebeck 3156 tm Archive::dateTimeCreated(time_base_t base) const {
1819     return _convertTimeStamp(m_timeCreated, base);
1820     }
1821    
1822 schoenebeck 3183 /** @brief Date and time when this archive was modified for the last time.
1823     *
1824     * Returns a calendar time information representing the date and time when
1825     * this archive has been modified for the last time. The optional @a base
1826     * parameter may be used to define to which time zone the returned date and
1827     * time shall be related to.
1828     *
1829     * @param base - (optional) time zone the result shall relate to, by default
1830     * UTC time (Greenwhich Mean Time) is assumed instead
1831     */
1832 schoenebeck 3156 tm Archive::dateTimeModified(time_base_t base) const {
1833     return _convertTimeStamp(m_timeModified, base);
1834     }
1835    
1836 schoenebeck 3183 /** @brief Remove a member variable from the given object.
1837     *
1838     * Removes the member variable @a member from its containing object
1839     * @a parent and sets the modified state of this archive to @c true.
1840     * If the given @a parent object does not contain the given @a member then
1841     * this method does nothing.
1842     *
1843     * This method provides a means of "partial" deserialization. By removing
1844     * either objects or members from this archive before calling deserialize(),
1845     * only the remaining objects and remaining members will be restored by this
1846     * framework, all other data of your C++ classes remain untouched.
1847     *
1848     * @param parent - Object which contains @a member
1849     * @param member - member to be removed
1850     * @see isModified() for details about the modified state.
1851     * @see Object for more details about the overall object reflection concept.
1852     */
1853 schoenebeck 3153 void Archive::removeMember(Object& parent, const Member& member) {
1854     parent.remove(member);
1855     m_isModified = true;
1856     }
1857    
1858 schoenebeck 3183 /** @brief Remove an object from this archive.
1859     *
1860     * Removes the object @obj from this archive and sets the modified state of
1861     * this archive to @c true. If the passed object is either invalid, or does
1862     * not exist in this archive, then this method does nothing.
1863     *
1864     * This method provides a means of "partial" deserialization. By removing
1865     * either objects or members from this archive before calling deserialize(),
1866     * only the remaining objects and remaining members will be restored by this
1867     * framework, all other data of your C++ classes remain untouched.
1868     *
1869     * @param obj - the object to be removed from this archive
1870     * @see isModified() for details about the modified state.
1871     * @see Object for more details about the overall object reflection concept.
1872     */
1873 schoenebeck 3138 void Archive::remove(const Object& obj) {
1874 schoenebeck 3153 //FIXME: Should traverse from root object and remove all members associated with this object
1875 schoenebeck 3138 if (!obj.uid()) return;
1876     m_allObjects.erase(obj.uid());
1877 schoenebeck 3150 m_isModified = true;
1878 schoenebeck 3138 }
1879    
1880 schoenebeck 3183 /** @brief Access object by its unique identifier.
1881     *
1882     * Returns the object of this archive with the given unique identifier
1883     * @a uid. If the given @a uid is invalid, or if this archive does not
1884     * contain an object with the given unique identifier, then this method
1885     * returns an invalid object instead.
1886     *
1887     * @param uid - unique identifier of sought object
1888     * @see Object for more details about the overall object reflection concept.
1889     * @see Object::isValid() for valid/invalid objects
1890     */
1891 schoenebeck 3138 Object& Archive::objectByUID(const UID& uid) {
1892     return m_allObjects[uid];
1893     }
1894    
1895 schoenebeck 3183 /** @brief Set the current version for the given object.
1896     *
1897     * Essentially behaves like above's setVersion() method, it just uses the
1898     * abstract reflection data type instead for the respective @a object being
1899     * passed to this method. Refer to above's setVersion() documentation about
1900     * the precise behavior details of setVersion().
1901     *
1902     * @param object - object to set the current version for
1903     * @param v - new current version to set for @a object
1904     */
1905 schoenebeck 3182 void Archive::setVersion(Object& object, Version v) {
1906     if (!object) return;
1907     object.setVersion(v);
1908     m_isModified = true;
1909     }
1910    
1911 schoenebeck 3183 /** @brief Set the minimum version for the given object.
1912     *
1913     * Essentially behaves like above's setMinVersion() method, it just uses the
1914     * abstract reflection data type instead for the respective @a object being
1915     * passed to this method. Refer to above's setMinVersion() documentation
1916     * about the precise behavior details of setMinVersion().
1917     *
1918     * @param object - object to set the minimum version for
1919     * @param v - new minimum version to set for @a object
1920     */
1921 schoenebeck 3182 void Archive::setMinVersion(Object& object, Version v) {
1922     if (!object) return;
1923     object.setMinVersion(v);
1924     m_isModified = true;
1925     }
1926    
1927 schoenebeck 3183 /** @brief Set new value for given @c enum object.
1928     *
1929     * Sets the new @a value to the given @c enum @a object.
1930     *
1931     * @param object - the @c enum object to be changed
1932     * @param value - the new value to be assigned to the @a object
1933     * @throws Exception if @a object is not an @c enum type.
1934     */
1935 schoenebeck 3150 void Archive::setEnumValue(Object& object, uint64_t value) {
1936     if (!object) return;
1937     if (!object.type().isEnum())
1938     throw Exception("Not an enum data type");
1939     Object* pObject = &object;
1940     if (object.type().isPointer()) {
1941     Object& obj = objectByUID(object.uid(1));
1942     if (!obj) return;
1943     pObject = &obj;
1944     }
1945     const int nativeEnumSize = sizeof(enum operation_t);
1946     DataType& type = const_cast<DataType&>( pObject->type() );
1947     // original serializer ("sender") might have had a different word size
1948     // than this machine, adjust type object in this case
1949     if (type.size() != nativeEnumSize) {
1950     type.m_size = nativeEnumSize;
1951     }
1952     pObject->m_data.resize(type.size());
1953     void* ptr = &pObject->m_data[0];
1954     if (type.size() == 1)
1955     *(uint8_t*)ptr = (uint8_t)value;
1956     else if (type.size() == 2)
1957     *(uint16_t*)ptr = (uint16_t)value;
1958     else if (type.size() == 4)
1959     *(uint32_t*)ptr = (uint32_t)value;
1960     else if (type.size() == 8)
1961     *(uint64_t*)ptr = (uint64_t)value;
1962     else
1963     assert(false /* unknown enum type size */);
1964     m_isModified = true;
1965     }
1966    
1967 schoenebeck 3183 /** @brief Set new integer value for given integer object.
1968     *
1969     * Sets the new integer @a value to the given integer @a object. Currently
1970     * this framework handles any integer data type up to 64 bit. For larger
1971     * integer types an assertion failure will be raised.
1972     *
1973     * @param object - the integer object to be changed
1974     * @param value - the new value to be assigned to the @a object
1975     * @throws Exception if @a object is not an integer type.
1976     */
1977 schoenebeck 3150 void Archive::setIntValue(Object& object, int64_t value) {
1978     if (!object) return;
1979     if (!object.type().isInteger())
1980     throw Exception("Not an integer data type");
1981     Object* pObject = &object;
1982     if (object.type().isPointer()) {
1983     Object& obj = objectByUID(object.uid(1));
1984     if (!obj) return;
1985     pObject = &obj;
1986     }
1987     const DataType& type = pObject->type();
1988     pObject->m_data.resize(type.size());
1989     void* ptr = &pObject->m_data[0];
1990     if (type.isSigned()) {
1991     if (type.size() == 1)
1992     *(int8_t*)ptr = (int8_t)value;
1993     else if (type.size() == 2)
1994     *(int16_t*)ptr = (int16_t)value;
1995     else if (type.size() == 4)
1996     *(int32_t*)ptr = (int32_t)value;
1997     else if (type.size() == 8)
1998     *(int64_t*)ptr = (int64_t)value;
1999     else
2000     assert(false /* unknown signed int type size */);
2001     } else {
2002     if (type.size() == 1)
2003     *(uint8_t*)ptr = (uint8_t)value;
2004     else if (type.size() == 2)
2005     *(uint16_t*)ptr = (uint16_t)value;
2006     else if (type.size() == 4)
2007     *(uint32_t*)ptr = (uint32_t)value;
2008     else if (type.size() == 8)
2009     *(uint64_t*)ptr = (uint64_t)value;
2010     else
2011     assert(false /* unknown unsigned int type size */);
2012     }
2013     m_isModified = true;
2014     }
2015    
2016 schoenebeck 3183 /** @brief Set new floating point value for given floating point object.
2017     *
2018     * Sets the new floating point @a value to the given floating point
2019     * @a object. Currently this framework supports single precision @c float
2020     * and double precision @c double floating point data types. For all other
2021     * floating point types this method will raise an assertion failure.
2022     *
2023     * @param object - the floating point object to be changed
2024     * @param value - the new value to be assigned to the @a object
2025     * @throws Exception if @a object is not a floating point based type.
2026     */
2027 schoenebeck 3150 void Archive::setRealValue(Object& object, double value) {
2028     if (!object) return;
2029     if (!object.type().isReal())
2030     throw Exception("Not a real data type");
2031     Object* pObject = &object;
2032     if (object.type().isPointer()) {
2033     Object& obj = objectByUID(object.uid(1));
2034     if (!obj) return;
2035     pObject = &obj;
2036     }
2037     const DataType& type = pObject->type();
2038     pObject->m_data.resize(type.size());
2039     void* ptr = &pObject->m_data[0];
2040     if (type.size() == sizeof(float))
2041     *(float*)ptr = (float)value;
2042     else if (type.size() == sizeof(double))
2043     *(double*)ptr = (double)value;
2044     else
2045     assert(false /* unknown real type size */);
2046     m_isModified = true;
2047     }
2048    
2049 schoenebeck 3183 /** @brief Set new boolean value for given boolean object.
2050     *
2051     * Sets the new boolean @a value to the given boolean @a object.
2052     *
2053     * @param object - the boolean object to be changed
2054     * @param value - the new value to be assigned to the @a object
2055     * @throws Exception if @a object is not a boolean type.
2056     */
2057 schoenebeck 3150 void Archive::setBoolValue(Object& object, bool value) {
2058     if (!object) return;
2059     if (!object.type().isBool())
2060     throw Exception("Not a bool data type");
2061     Object* pObject = &object;
2062     if (object.type().isPointer()) {
2063     Object& obj = objectByUID(object.uid(1));
2064     if (!obj) return;
2065     pObject = &obj;
2066     }
2067     const DataType& type = pObject->type();
2068     pObject->m_data.resize(type.size());
2069     bool* ptr = (bool*)&pObject->m_data[0];
2070     *ptr = value;
2071     m_isModified = true;
2072     }
2073    
2074 schoenebeck 3183 /** @brief Automatically cast and assign appropriate value to object.
2075     *
2076     * This method automatically converts the given @a value from textual string
2077     * representation into the appropriate data format of the requested
2078     * @a object. So this method is a convenient way to change values of objects
2079     * in this archive with your applications in automated way, i.e. for
2080     * implementing an editor where the user is able to edit values of objects
2081     * in this archive by entering the values as text with a keyboard.
2082     *
2083     * @throws Exception if the passed @a object is not a fundamental, primitive
2084     * data type or if the provided textual value cannot be converted
2085     * into an appropriate value for the requested object.
2086     */
2087 schoenebeck 3150 void Archive::setAutoValue(Object& object, String value) {
2088     if (!object) return;
2089     const DataType& type = object.type();
2090     if (type.isInteger())
2091     setIntValue(object, atoll(value.c_str()));
2092     else if (type.isReal())
2093     setRealValue(object, atof(value.c_str()));
2094 schoenebeck 3185 else if (type.isBool()) {
2095     String val = toLowerCase(value);
2096     if (val == "true" || val == "yes" || val == "1")
2097     setBoolValue(object, true);
2098     else if (val == "false" || val == "no" || val == "0")
2099     setBoolValue(object, false);
2100     else
2101     setBoolValue(object, atof(value.c_str()));
2102 schoenebeck 3186 } else if (type.isEnum())
2103 schoenebeck 3150 setEnumValue(object, atoll(value.c_str()));
2104     else
2105     throw Exception("Not a primitive data type");
2106     }
2107    
2108 schoenebeck 3183 /** @brief Get value of object as string.
2109     *
2110     * Converts the current value of the given @a object into a textual string
2111     * and returns that string.
2112     *
2113     * @param object - object whose value shall be retrieved
2114     * @throws Exception if the given object is either invalid, or if the object
2115     * is not a fundamental, primitive data type.
2116     */
2117 schoenebeck 3150 String Archive::valueAsString(const Object& object) {
2118     if (!object)
2119     throw Exception("Invalid object");
2120     if (object.type().isClass())
2121     throw Exception("Object is class type");
2122     const Object* pObject = &object;
2123     if (object.type().isPointer()) {
2124     const Object& obj = objectByUID(object.uid(1));
2125     if (!obj) return "";
2126     pObject = &obj;
2127     }
2128     return _primitiveObjectValueToString(*pObject);
2129     }
2130    
2131 schoenebeck 3183 /** @brief Get integer value of object.
2132     *
2133     * Returns the current integer value of the requested integer @a object or
2134     * @c enum object.
2135     *
2136     * @param object - object whose value shall be retrieved
2137     * @throws Exception if the given object is either invalid, or if the object
2138     * is neither an integer nor @c enum data type.
2139     */
2140 schoenebeck 3169 int64_t Archive::valueAsInt(const Object& object) {
2141     if (!object)
2142     throw Exception("Invalid object");
2143     if (!object.type().isInteger() && !object.type().isEnum())
2144     throw Exception("Object is neither an integer nor an enum");
2145     const Object* pObject = &object;
2146     if (object.type().isPointer()) {
2147     const Object& obj = objectByUID(object.uid(1));
2148     if (!obj) return 0;
2149     pObject = &obj;
2150     }
2151     return _primitiveObjectValueToNumber<int64_t>(*pObject);
2152     }
2153    
2154 schoenebeck 3183 /** @brief Get floating point value of object.
2155     *
2156     * Returns the current floating point value of the requested floating point
2157     * @a object.
2158     *
2159     * @param object - object whose value shall be retrieved
2160     * @throws Exception if the given object is either invalid, or if the object
2161     * is not a floating point based type.
2162     */
2163 schoenebeck 3169 double Archive::valueAsReal(const Object& object) {
2164     if (!object)
2165     throw Exception("Invalid object");
2166     if (!object.type().isReal())
2167     throw Exception("Object is not an real type");
2168     const Object* pObject = &object;
2169     if (object.type().isPointer()) {
2170     const Object& obj = objectByUID(object.uid(1));
2171     if (!obj) return 0;
2172     pObject = &obj;
2173     }
2174     return _primitiveObjectValueToNumber<double>(*pObject);
2175     }
2176    
2177 schoenebeck 3183 /** @brief Get boolean value of object.
2178     *
2179     * Returns the current boolean value of the requested boolean @a object.
2180     *
2181     * @param object - object whose value shall be retrieved
2182     * @throws Exception if the given object is either invalid, or if the object
2183     * is not a boolean data type.
2184     */
2185 schoenebeck 3169 bool Archive::valueAsBool(const Object& object) {
2186     if (!object)
2187     throw Exception("Invalid object");
2188     if (!object.type().isBool())
2189     throw Exception("Object is not a bool");
2190     const Object* pObject = &object;
2191     if (object.type().isPointer()) {
2192     const Object& obj = objectByUID(object.uid(1));
2193     if (!obj) return 0;
2194     pObject = &obj;
2195     }
2196     return _primitiveObjectValueToNumber<bool>(*pObject);
2197     }
2198    
2199 schoenebeck 3138 // *************** Archive::Syncer ***************
2200     // *
2201    
2202     Archive::Syncer::Syncer(Archive& dst, Archive& src)
2203     : m_dst(dst), m_src(src)
2204     {
2205     const Object srcRootObj = src.rootObject();
2206     const Object dstRootObj = dst.rootObject();
2207     if (!srcRootObj)
2208     throw Exception("No source root object!");
2209     if (!dstRootObj)
2210     throw Exception("Expected destination root object not found!");
2211     syncObject(dstRootObj, srcRootObj);
2212     }
2213    
2214     void Archive::Syncer::syncPrimitive(const Object& dstObj, const Object& srcObj) {
2215     assert(srcObj.rawData().size() == dstObj.type().size());
2216     void* pDst = (void*)dstObj.uid().id;
2217     memcpy(pDst, &srcObj.rawData()[0], dstObj.type().size());
2218     }
2219    
2220     void Archive::Syncer::syncPointer(const Object& dstObj, const Object& srcObj) {
2221     assert(dstObj.type().isPointer());
2222     assert(dstObj.type() == srcObj.type());
2223     const Object& pointedDstObject = m_dst.m_allObjects[dstObj.uid(1)];
2224     const Object& pointedSrcObject = m_src.m_allObjects[srcObj.uid(1)];
2225     syncObject(pointedDstObject, pointedSrcObject);
2226     }
2227    
2228     void Archive::Syncer::syncObject(const Object& dstObj, const Object& srcObj) {
2229     if (!dstObj || !srcObj) return; // end of recursion
2230     if (!dstObj.isVersionCompatibleTo(srcObj))
2231     throw Exception("Version incompatible (destination version " +
2232     ToString(dstObj.version()) + " [min. version " +
2233     ToString(dstObj.minVersion()) + "], source version " +
2234     ToString(srcObj.version()) + " [min. version " +
2235     ToString(srcObj.minVersion()) + "])");
2236     if (dstObj.type() != srcObj.type())
2237     throw Exception("Incompatible data structure type (destination type " +
2238     dstObj.type().asLongDescr() + " vs. source type " +
2239     srcObj.type().asLongDescr() + ")");
2240    
2241     // prevent syncing this object again, and thus also prevent endless
2242     // loop on data structures with cyclic relations
2243     m_dst.m_allObjects.erase(dstObj.uid());
2244    
2245     if (dstObj.type().isPrimitive() && !dstObj.type().isPointer()) {
2246     syncPrimitive(dstObj, srcObj);
2247     return; // end of recursion
2248     }
2249    
2250     if (dstObj.type().isPointer()) {
2251     syncPointer(dstObj, srcObj);
2252     return;
2253     }
2254    
2255     assert(dstObj.type().isClass());
2256     for (int iMember = 0; iMember < srcObj.members().size(); ++iMember) {
2257     const Member& srcMember = srcObj.members()[iMember];
2258     Member dstMember = dstMemberMatching(dstObj, srcObj, srcMember);
2259     if (!dstMember)
2260     throw Exception("Expected member missing in destination object");
2261     syncMember(dstMember, srcMember);
2262     }
2263     }
2264    
2265     Member Archive::Syncer::dstMemberMatching(const Object& dstObj, const Object& srcObj, const Member& srcMember) {
2266     Member dstMember = dstObj.memberNamed(srcMember.name());
2267     if (dstMember)
2268     return (dstMember.type() == srcMember.type()) ? dstMember : Member();
2269     std::vector<Member> members = dstObj.membersOfType(srcMember.type());
2270     if (members.size() <= 0)
2271     return Member();
2272     if (members.size() == 1)
2273     return members[0];
2274     for (int i = 0; i < members.size(); ++i)
2275     if (members[i].offset() == srcMember.offset())
2276     return members[i];
2277     const int srcSeqNr = srcObj.sequenceIndexOf(srcMember);
2278     assert(srcSeqNr >= 0); // should never happen, otherwise there is a bug
2279     for (int i = 0; i < members.size(); ++i) {
2280     const int dstSeqNr = dstObj.sequenceIndexOf(members[i]);
2281     if (dstSeqNr == srcSeqNr)
2282     return members[i];
2283     }
2284     return Member(); // give up!
2285     }
2286    
2287     void Archive::Syncer::syncMember(const Member& dstMember, const Member& srcMember) {
2288     assert(dstMember && srcMember);
2289     assert(dstMember.type() == srcMember.type());
2290     const Object dstObj = m_dst.m_allObjects[dstMember.uid()];
2291     const Object srcObj = m_src.m_allObjects[srcMember.uid()];
2292     syncObject(dstObj, srcObj);
2293     }
2294    
2295     // *************** Exception ***************
2296     // *
2297    
2298 schoenebeck 3198 Exception::Exception() {
2299     }
2300    
2301     Exception::Exception(String format, ...) {
2302     va_list arg;
2303     va_start(arg, format);
2304     Message = assemble(format, arg);
2305     va_end(arg);
2306     }
2307    
2308     Exception::Exception(String format, va_list arg) {
2309     Message = assemble(format, arg);
2310     }
2311    
2312 schoenebeck 3183 /** @brief Print exception message to stdout.
2313     *
2314     * Prints the message of this Exception to the currently defined standard
2315     * output (that is to the terminal console for example).
2316     */
2317 schoenebeck 3138 void Exception::PrintMessage() {
2318     std::cout << "Serialization::Exception: " << Message << std::endl;
2319     }
2320    
2321 schoenebeck 3198 String Exception::assemble(String format, va_list arg) {
2322     char* buf = NULL;
2323     vasprintf(&buf, format.c_str(), arg);
2324     String s = buf;
2325     free(buf);
2326     return s;
2327     }
2328    
2329 schoenebeck 3138 } // namespace Serialization

  ViewVC Help
Powered by ViewVC