/[svn]/libgig/trunk/src/Serialization.h
ViewVC logotype

Annotation of /libgig/trunk/src/Serialization.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3392 - (hide annotations) (download) (as text)
Sun Dec 3 17:49:22 2017 UTC (6 years, 4 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 52105 byte(s)
* src/Serialization.cpp, src/Serialization.h:
  Hide pure internal declarations from header file to avoid numerous
  compiler warnings when building and linking against the public API.
* Bumped version (4.1.0.svn1).

1 schoenebeck 3138 /***************************************************************************
2     * *
3     * Copyright (C) 2017 Christian Schoenebeck *
4     * <cuse@users.sourceforge.net> *
5     * *
6     * This library is part of libgig. *
7     * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef LIBGIG_SERIALIZATION_H
25     #define LIBGIG_SERIALIZATION_H
26    
27     #ifdef HAVE_CONFIG_H
28     # include <config.h>
29     #endif
30    
31     #include <stdint.h>
32     #include <stdio.h>
33     #include <typeinfo>
34     #include <string>
35     #include <vector>
36     #include <map>
37 schoenebeck 3156 #include <time.h>
38 schoenebeck 3198 #include <stdarg.h>
39 schoenebeck 3178
40     #ifndef __has_extension
41     # define __has_extension(x) 0
42     #endif
43    
44     #ifndef HAS_BUILTIN_TYPE_TRAITS
45     # if __cplusplus >= 201103L
46     # define HAS_BUILTIN_TYPE_TRAITS 1
47     # elif ( __has_extension(is_class) && __has_extension(is_enum) )
48     # define HAS_BUILTIN_TYPE_TRAITS 1
49     # elif ( __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 3 ) )
50     # define HAS_BUILTIN_TYPE_TRAITS 1
51     # elif _MSC_VER >= 1400 /* MS Visual C++ 8.0 (Visual Studio 2005) */
52     # define HAS_BUILTIN_TYPE_TRAITS 1
53     # elif __INTEL_COMPILER >= 1100
54     # define HAS_BUILTIN_TYPE_TRAITS 1
55     # else
56     # define HAS_BUILTIN_TYPE_TRAITS 0
57     # endif
58     #endif
59    
60     #if !HAS_BUILTIN_TYPE_TRAITS
61 schoenebeck 3163 # include <tr1/type_traits>
62 schoenebeck 3167 # define LIBGIG_IS_CLASS(type) std::tr1::__is_union_or_class<type>::value //NOTE: without compiler support we cannot distinguish union from class
63     #else
64     # define LIBGIG_IS_CLASS(type) __is_class(type)
65 schoenebeck 3163 #endif
66 schoenebeck 3138
67     /** @brief Serialization / deserialization framework.
68     *
69     * See class Archive as starting point for how to implement serialization and
70     * deserialization with your application.
71     *
72     * The classes in this namespace allow to serialize and deserialize native
73     * C++ objects in a portable, easy and flexible way. Serialization is a
74     * technique that allows to transform the current state and data of native
75     * (in this case C++) objects into a data stream (including all other objects
76     * the "serialized" objects relate to); the data stream may then be sent over
77     * "wire" (for example via network connection to another computer, which might
78     * also have a different OS, CPU architecture, native memory word size and
79     * endian type); and finally the data stream would be "deserialized" on that
80     * receiver side, that is transformed again to modify all objects and data
81     * structures on receiver side to resemble the objects' state and data as it
82     * was originally on sender side.
83     *
84     * In contrast to many other already existing serialization frameworks, this
85     * implementation has a strong focus on robustness regarding long-term changes
86     * to the serialized C++ classes of the serialized objects. So even if sender
87     * and receiver are using different versions of their serialized/deserialized
88     * C++ classes, structures and data types (thus having different data structure
89     * layout to a certain extent), this framework aims trying to automatically
90     * adapt its serialization and deserialization process in that case so that
91     * the deserialized objects on receiver side would still reflect the overall
92     * expected states and overall data as intended by the sender. For being able to
93     * do so, this framework stores all kind of additional information about each
94     * serialized object and each data structure member (for example name of each
95     * data structure member, but also the offset of each member within its
96     * containing data structure, precise data types, and more).
97     *
98     * Like most other serialization frameworks, this frameworks does not require a
99     * tree-structured layout of the serialized data structures. So it automatically
100     * handles also cyclic dependencies between serialized data structures
101     * correctly, without i.e. causing endless recursion or redundancy.
102     *
103     * Additionally this framework also allows partial deserialization. Which means
104     * the receiver side may for example decide that it wants to restrict
105     * deserialization so that it would only modify certain objects or certain
106     * members by the deserialization process, leaving all other ones untouched.
107     * So this partial deserialization technique for example allows to implement
108     * flexible preset features for applications in a powerful and easy way.
109     */
110     namespace Serialization {
111    
112 schoenebeck 3146 // just symbol prototyping
113     class DataType;
114     class Object;
115     class Member;
116 schoenebeck 3138 class Archive;
117 schoenebeck 3146 class ObjectPool;
118 schoenebeck 3138 class Exception;
119    
120     typedef std::string String;
121    
122 schoenebeck 3183 /** @brief Raw data stream of serialized C++ objects.
123     *
124     * This data type is used for the data stream as a result of serializing
125     * your C++ objects with Archive::serialize(), and for native raw data
126     * representation of individual serialized C/C++ objects, members and variables.
127     *
128     * @see Archive::rawData(), Object::rawData()
129     */
130 schoenebeck 3138 typedef std::vector<uint8_t> RawData;
131    
132 schoenebeck 3183 /** @brief Abstract identifier for serialized C++ objects.
133     *
134     * This data type is used for identifying serialized C++ objects and members
135     * of your C++ objects. It is important to know that such an ID might not
136     * necessarily be unique. For example the ID of one C++ object might often
137     * be identical to the ID of the first member of that particular C++ object.
138     * That's why there is additionally the concept of an UID in this framework.
139     *
140     * @see UID
141     */
142 schoenebeck 3138 typedef void* ID;
143    
144 schoenebeck 3183 /** @brief Version number data type.
145     *
146     * This data type is used for maintaining version number information of
147     * your C++ class implementations.
148     *
149     * @see Archive::setVersion() and Archive::setMinVersion()
150     */
151 schoenebeck 3138 typedef uint32_t Version;
152    
153 schoenebeck 3183 /** @brief To which time zone a certain timing information relates to.
154     *
155     * The constants in this enum type are used to define to which precise time
156     * zone a time stamp relates to.
157     */
158 schoenebeck 3156 enum time_base_t {
159 schoenebeck 3183 LOCAL_TIME, ///< The time stamp relates to the machine's local time zone. Request a time stamp in local time if you want to present that time stamp to the end user.
160     UTC_TIME ///< The time stamp relates to "Greenwhich Mean Time" zone, also known as "Coordinated Universal Time". Request time stamp with UTC if you want to compare that time stamp with other time stamps.
161 schoenebeck 3156 };
162    
163 schoenebeck 3183 /** @brief Check whether data is a C/C++ @c enum type.
164     *
165     * Returns true if the supplied C++ variable or object is of a C/C++ @c enum
166     * type.
167     *
168     * @param data - the variable or object whose data type shall be checked
169     */
170 schoenebeck 3138 template<typename T>
171     bool IsEnum(const T& data) {
172 schoenebeck 3178 #if !HAS_BUILTIN_TYPE_TRAITS
173 schoenebeck 3165 return std::tr1::is_enum<T>::value;
174 schoenebeck 3164 #else
175 schoenebeck 3138 return __is_enum(T);
176 schoenebeck 3164 #endif
177 schoenebeck 3138 }
178    
179 schoenebeck 3183 /** @brief Check whether data is a C++ @c union type.
180     *
181     * Returns true if the supplied C++ variable or object is of a C/C++ @c union
182     * type. Note that the result of this function is only reliable if the C++
183     * compiler you are using has support for built-in type traits. If your C++
184     * compiler does not have built-in type traits support, then this function
185     * will simply return @c false on all your calls.
186     *
187     * @param data - the variable or object whose data type shall be checked
188     */
189 schoenebeck 3138 template<typename T>
190     bool IsUnion(const T& data) {
191 schoenebeck 3178 #if !HAS_BUILTIN_TYPE_TRAITS
192 schoenebeck 3166 return false; // without compiler support we cannot distinguish union from class
193 schoenebeck 3164 #else
194 schoenebeck 3138 return __is_union(T);
195 schoenebeck 3164 #endif
196 schoenebeck 3138 }
197    
198 schoenebeck 3183 /** @brief Check whether data is a C/C++ @c struct or C++ @c class type.
199     *
200     * Returns true if the supplied C++ variable or object is of C/C++ @c struct
201     * or C++ @c class type. Note that if you are using a C++ compiler which
202     * does have built-in type traits support, then this function will also
203     * return @c true on C/C++ @c union types.
204     *
205     * @param data - the variable or object whose data type shall be checked
206     */
207 schoenebeck 3138 template<typename T>
208     bool IsClass(const T& data) {
209 schoenebeck 3178 #if !HAS_BUILTIN_TYPE_TRAITS
210 schoenebeck 3166 return std::tr1::__is_union_or_class<T>::value; // without compiler support we cannot distinguish union from class
211 schoenebeck 3164 #else
212 schoenebeck 3138 return __is_class(T);
213 schoenebeck 3164 #endif
214 schoenebeck 3138 }
215    
216     /*template<typename T>
217     bool IsTrivial(T data) {
218     return __is_trivial(T);
219     }*/
220    
221     /*template<typename T>
222     bool IsPOD(T data) {
223     return __is_pod(T);
224     }*/
225    
226 schoenebeck 3185 /** @brief Unique identifier referring to one specific native C++ object, member, fundamental variable, or any other native C++ data.
227 schoenebeck 3138 *
228 schoenebeck 3185 * Reflects a unique identifier for one specific serialized C++ data, i.e.
229     * C++ class instance, C/C++ struct instance, member, primitive pointer,
230     * fundamental variables, or any other native C/C++ data originally being
231     * serialized.
232 schoenebeck 3183 *
233     * A unique identifier is composed of an id (an identifier which is not
234     * necessarily unique) and a size. Since the underlying ID is derived from
235     * the original C++ object's memory location, such an ID is not sufficient
236     * to distinguish a particular C++ object from the first member of that C++
237     * object, since both typically share the same memory address. So
238     * additionally the memory size of the respective object or member is
239     * bundled with UID objects to make them unique and distinguishable.
240 schoenebeck 3138 */
241     class UID {
242     public:
243 schoenebeck 3183 ID id; ///< Abstract non-unique ID of the object or member in question.
244     size_t size; ///< Memory size of the object or member in question.
245 schoenebeck 3138
246     bool isValid() const;
247 schoenebeck 3183 operator bool() const { return isValid(); } ///< Same as calling isValid().
248 schoenebeck 3138 //bool operator()() const { return isValid(); }
249     bool operator==(const UID& other) const { return id == other.id && size == other.size; }
250     bool operator!=(const UID& other) const { return id != other.id || size != other.size; }
251     bool operator<(const UID& other) const { return id < other.id || (id == other.id && size < other.size); }
252     bool operator>(const UID& other) const { return id > other.id || (id == other.id && size > other.size); }
253    
254 schoenebeck 3183 /** @brief Create an unique indentifier for a native C++ object/member/variable.
255     *
256     * Creates and returns an unique identifier for the passed native C++
257     * object, object member or variable. For the same C++ object/member/variable
258     * this function will always return the same UID. For all other ones,
259     * this function is guaranteed to return a different UID.
260     */
261 schoenebeck 3138 template<typename T>
262     static UID from(const T& obj) {
263     return Resolver<T>::resolve(obj);
264     }
265    
266     protected:
267     // UID resolver for non-pointer types
268     template<typename T>
269     struct Resolver {
270     static UID resolve(const T& obj) {
271 schoenebeck 3168 const UID uid = { (ID) &obj, sizeof(obj) };
272     return uid;
273 schoenebeck 3138 }
274     };
275    
276     // UID resolver for pointer types (of 1st degree)
277     template<typename T>
278     struct Resolver<T*> {
279     static UID resolve(const T* const & obj) {
280 schoenebeck 3168 const UID uid = { (ID) obj, sizeof(*obj) };
281     return uid;
282 schoenebeck 3138 }
283     };
284     };
285    
286     /**
287     * Reflects an invalid UID and behaves similar to NULL as invalid value for
288 schoenebeck 3183 * pointer types. All UID objects are first initialized with this value,
289     * and it essentially an all zero object.
290 schoenebeck 3138 */
291     extern const UID NO_UID;
292    
293 schoenebeck 3183 /** @brief Chain of UIDs.
294     *
295     * This data type is used for native C++ pointers. The first member of the
296     * UID chain is the unique identifier of the C++ pointer itself, then the
297     * following UIDs are the respective objects or variables the pointer is
298     * pointing to. The size (the amount of elements) of the UIDChain depends
299     * solely on the degree of the pointer type. For example the following C/C++
300     * pointer:
301     * @code
302     * int* pNumber;
303     * @endcode
304     * is an integer pointer of first degree. Such a pointer would have a
305     * UIDChain with 2 members: the first element would be the UID of the
306     * pointer itself, the second element of the chain would be the integer data
307     * that pointer is pointing to. In the following example:
308     * @code
309     * bool*** pppSomeFlag;
310     * @endcode
311     * That boolean pointer would be of third degree, and thus its UIDChain
312     * would have a size of 4 (elements).
313     *
314     * Accordingly a non pointer type like:
315     * @code
316     * float f;
317     * @endcode
318     * would yield in a UIDChain of size 1.
319     *
320     * Since however this serialization framework currently only supports
321     * pointers of first degree yet, all UIDChains are currently either of
322     * size 1 or 2, which might change in future though.
323     */
324 schoenebeck 3138 typedef std::vector<UID> UIDChain;
325    
326 schoenebeck 3392 #if LIBGIG_SERIALIZATION_INTERNAL
327 schoenebeck 3146 // prototyping of private internal friend functions
328 schoenebeck 3150 static String _encodePrimitiveValue(const Object& obj);
329 schoenebeck 3146 static DataType _popDataTypeBlob(const char*& p, const char* end);
330     static Member _popMemberBlob(const char*& p, const char* end);
331     static Object _popObjectBlob(const char*& p, const char* end);
332     static void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
333 schoenebeck 3150 static String _primitiveObjectValueToString(const Object& obj);
334 schoenebeck 3169 // |
335     template<typename T>
336     static T _primitiveObjectValueToNumber(const Object& obj);
337 schoenebeck 3392 #endif // LIBGIG_SERIALIZATION_INTERNAL
338 schoenebeck 3146
339 schoenebeck 3138 /** @brief Abstract reflection of a native C++ data type.
340     *
341 schoenebeck 3183 * Provides detailed information about a serialized C++ data type, whether
342     * it is a fundamental C/C++ data type (like @c int, @c float, @c char,
343     * etc.) or custom defined data types like a C++ @c class, C/C++ @c struct,
344     * @c enum, as well as other features of the respective data type like its
345     * native memory size and more.
346     *
347     * All informations provided by this class are retrieved from the
348     * respective individual C++ objects, their members and other data when
349     * they are serialized, and all those information are stored with the
350     * serialized archive and its resulting data stream. Due to the availability
351     * of these extensive data type information within serialized archives, this
352     * framework is capable to use them in order to adapt its deserialization
353     * process upon subsequent changes to your individual C++ classes.
354 schoenebeck 3138 */
355     class DataType {
356     public:
357     DataType();
358 schoenebeck 3183 size_t size() const { return m_size; } ///< Returns native memory size of the respective C++ object or variable.
359 schoenebeck 3138 bool isValid() const;
360     bool isPointer() const;
361     bool isClass() const;
362     bool isPrimitive() const;
363     bool isInteger() const;
364     bool isReal() const;
365     bool isBool() const;
366     bool isEnum() const;
367     bool isSigned() const;
368 schoenebeck 3183 operator bool() const { return isValid(); } ///< Same as calling isValid().
369 schoenebeck 3138 //bool operator()() const { return isValid(); }
370     bool operator==(const DataType& other) const;
371     bool operator!=(const DataType& other) const;
372     bool operator<(const DataType& other) const;
373     bool operator>(const DataType& other) const;
374     String asLongDescr() const;
375 schoenebeck 3183 String baseTypeName() const;
376 schoenebeck 3173 String customTypeName(bool demangle = false) const;
377 schoenebeck 3138
378 schoenebeck 3183 /** @brief Construct a DataType object for the given native C++ data.
379     *
380     * Use this function to create corresponding DataType objects for
381     * native C/C++ objects, members and variables.
382     *
383     * @param data - native C/C++ object/member/variable a DataType object
384     * shall be created for
385     * @returns corresponding DataType object for the supplied native C/C++
386     * object/member/variable
387     */
388 schoenebeck 3138 template<typename T>
389     static DataType dataTypeOf(const T& data) {
390     return Resolver<T>::resolve(data);
391     }
392    
393     protected:
394     DataType(bool isPointer, int size, String baseType, String customType = "");
395    
396     template<typename T, bool T_isPointer>
397     struct ResolverBase {
398     static DataType resolve(const T& data) {
399     const std::type_info& type = typeid(data);
400     const int sz = sizeof(data);
401    
402     // for primitive types we are using our own type names instead of
403     // using std:::type_info::name(), because the precise output of the
404     // latter may vary between compilers
405     if (type == typeid(int8_t)) return DataType(T_isPointer, sz, "int8");
406     if (type == typeid(uint8_t)) return DataType(T_isPointer, sz, "uint8");
407     if (type == typeid(int16_t)) return DataType(T_isPointer, sz, "int16");
408     if (type == typeid(uint16_t)) return DataType(T_isPointer, sz, "uint16");
409     if (type == typeid(int32_t)) return DataType(T_isPointer, sz, "int32");
410     if (type == typeid(uint32_t)) return DataType(T_isPointer, sz, "uint32");
411     if (type == typeid(int64_t)) return DataType(T_isPointer, sz, "int64");
412     if (type == typeid(uint64_t)) return DataType(T_isPointer, sz, "uint64");
413     if (type == typeid(bool)) return DataType(T_isPointer, sz, "bool");
414     if (type == typeid(float)) return DataType(T_isPointer, sz, "real32");
415     if (type == typeid(double)) return DataType(T_isPointer, sz, "real64");
416    
417     if (IsEnum(data)) return DataType(T_isPointer, sz, "enum", rawCppTypeNameOf(data));
418     if (IsUnion(data)) return DataType(T_isPointer, sz, "union", rawCppTypeNameOf(data));
419     if (IsClass(data)) return DataType(T_isPointer, sz, "class", rawCppTypeNameOf(data));
420    
421     return DataType();
422     }
423     };
424    
425     // DataType resolver for non-pointer types
426     template<typename T>
427     struct Resolver : ResolverBase<T,false> {
428     static DataType resolve(const T& data) {
429     return ResolverBase<T,false>::resolve(data);
430     }
431     };
432    
433     // DataType resolver for pointer types (of 1st degree)
434     template<typename T>
435     struct Resolver<T*> : ResolverBase<T,true> {
436     static DataType resolve(const T*& data) {
437     return ResolverBase<T,true>::resolve(*data);
438     }
439     };
440    
441     template<typename T>
442     static String rawCppTypeNameOf(const T& data) {
443     #if defined _MSC_VER // Microsoft compiler ...
444     # warning type_info::raw_name() demangling has not been tested yet with Microsoft compiler! Feedback appreciated!
445     String name = typeid(data).raw_name(); //NOTE: I haven't checked yet what MSC actually outputs here exactly
446     #else // i.e. especially GCC and clang ...
447     String name = typeid(data).name();
448     #endif
449     //while (!name.empty() && name[0] >= 0 && name[0] <= 9)
450     // name = name.substr(1);
451     return name;
452     }
453    
454     private:
455     String m_baseTypeName;
456     String m_customTypeName;
457     int m_size;
458     bool m_isPointer;
459    
460 schoenebeck 3392 #if LIBGIG_SERIALIZATION_INTERNAL
461 schoenebeck 3138 friend DataType _popDataTypeBlob(const char*& p, const char* end);
462 schoenebeck 3392 #endif
463 schoenebeck 3150 friend class Archive;
464 schoenebeck 3138 };
465    
466     /** @brief Abstract reflection of a native C++ class/struct's member variable.
467     *
468     * Provides detailed information about a specific C++ member variable of
469     * serialized C++ object, like its C++ data type, offset of this member
470     * within its containing data structure/class, its C++ member variable name
471     * and more.
472 schoenebeck 3183 *
473     * Consider you defined the following user defined C/C++ @c struct type in
474     * your application:
475     * @code
476     * struct Foo {
477     * int a;
478     * bool b;
479     * double someValue;
480     * };
481     * @endcode
482     * Then @c a, @c b and @c someValue are "members" of @c struct @c Foo for
483     * instance. So that @c struct would have 3 members in the latter example.
484     *
485     * @see Object::members()
486 schoenebeck 3138 */
487     class Member {
488     public:
489     Member();
490 schoenebeck 3183 UID uid() const;
491     String name() const;
492     size_t offset() const;
493     const DataType& type() const;
494 schoenebeck 3138 bool isValid() const;
495 schoenebeck 3183 operator bool() const { return isValid(); } ///< Same as calling isValid().
496 schoenebeck 3138 //bool operator()() const { return isValid(); }
497     bool operator==(const Member& other) const;
498     bool operator!=(const Member& other) const;
499     bool operator<(const Member& other) const;
500     bool operator>(const Member& other) const;
501    
502     protected:
503     Member(String name, UID uid, size_t offset, DataType type);
504     friend class Archive;
505    
506     private:
507     UID m_uid;
508     size_t m_offset;
509     String m_name;
510     DataType m_type;
511    
512 schoenebeck 3392 #if LIBGIG_SERIALIZATION_INTERNAL
513 schoenebeck 3138 friend Member _popMemberBlob(const char*& p, const char* end);
514 schoenebeck 3392 #endif
515 schoenebeck 3138 };
516    
517 schoenebeck 3185 /** @brief Abstract reflection of some native serialized C/C++ data.
518 schoenebeck 3138 *
519 schoenebeck 3185 * When your native C++ objects are serialized, all native data is
520     * translated and reflected by such an Object reflection. So each instance
521     * of your serialized native C++ class objects become available as an
522     * Object, but also each member variable of your C++ objects is translated
523     * into an Object, and any other native C/C++ data. So essentially every
524     * native data is turned into its own Object and accessible by this API.
525 schoenebeck 3183 *
526 schoenebeck 3185 * For each one of those Object reflections, this class provides detailed
527     * information about their native origin. For example if an Object
528     * represents a native C++ class instante, then it provides access to its
529     * C++ class/struct name, to its C++ member variables, its native memory
530     * size and much more.
531     *
532 schoenebeck 3183 * Even though this framework allows you to adjust abstract Object instances
533     * to a certain extent, most of the methods of this Object class are
534     * read-only though and the actual modifyable methods are made available
535     * not as part of this Object class, but as part of the Archive class
536 schoenebeck 3185 * instead. This design decision was made for performance and safety
537     * reasons.
538 schoenebeck 3183 *
539     * @see Archive::setIntValue() as an example for modifying Object instances.
540 schoenebeck 3138 */
541     class Object {
542     public:
543     Object();
544     Object(UIDChain uidChain, DataType type);
545    
546 schoenebeck 3183 UID uid(int index = 0) const;
547     const UIDChain& uidChain() const;
548     const DataType& type() const;
549     const RawData& rawData() const;
550     Version version() const;
551     Version minVersion() const;
552 schoenebeck 3138 bool isVersionCompatibleTo(const Object& other) const;
553 schoenebeck 3183 std::vector<Member>& members();
554     const std::vector<Member>& members() const;
555 schoenebeck 3138 Member memberNamed(String name) const;
556 schoenebeck 3153 Member memberByUID(const UID& uid) const;
557 schoenebeck 3138 std::vector<Member> membersOfType(const DataType& type) const;
558     int sequenceIndexOf(const Member& member) const;
559     bool isValid() const;
560 schoenebeck 3183 operator bool() const { return isValid(); } ///< Same as calling isValid().
561 schoenebeck 3138 //bool operator()() const { return isValid(); }
562     bool operator==(const Object& other) const;
563     bool operator!=(const Object& other) const;
564     bool operator<(const Object& other) const;
565     bool operator>(const Object& other) const;
566    
567 schoenebeck 3153 protected:
568     void remove(const Member& member);
569 schoenebeck 3182 void setVersion(Version v);
570     void setMinVersion(Version v);
571 schoenebeck 3153
572 schoenebeck 3138 private:
573     DataType m_type;
574     UIDChain m_uid;
575     Version m_version;
576     Version m_minVersion;
577     RawData m_data;
578     std::vector<Member> m_members;
579    
580 schoenebeck 3392 #if LIBGIG_SERIALIZATION_INTERNAL
581 schoenebeck 3150 friend String _encodePrimitiveValue(const Object& obj);
582 schoenebeck 3138 friend Object _popObjectBlob(const char*& p, const char* end);
583     friend void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
584 schoenebeck 3150 friend String _primitiveObjectValueToString(const Object& obj);
585 schoenebeck 3392 // |
586 schoenebeck 3169 template<typename T>
587     friend T _primitiveObjectValueToNumber(const Object& obj);
588 schoenebeck 3392 #endif // LIBGIG_SERIALIZATION_INTERNAL
589 schoenebeck 3169
590 schoenebeck 3150 friend class Archive;
591 schoenebeck 3138 };
592    
593     /** @brief Destination container for serialization, and source container for deserialization.
594     *
595     * This is the main class for implementing serialization and deserialization
596     * with your C++ application. This framework does not require a a tree
597     * structured layout of your C++ objects being serialized/deserialized, it
598     * uses a concept of a "root" object though. So to start serialization
599     * construct an empty Archive object and then instruct it to serialize your
600     * C++ objects by pointing it to your "root" object:
601     * @code
602     * Archive a;
603     * a.serialize(&myRootObject);
604 schoenebeck 3142 * @endcode
605 schoenebeck 3138 * Or if you prefer the look of operator based code:
606     * @code
607     * Archive a;
608     * a << myRootObject;
609 schoenebeck 3142 * @endcode
610 schoenebeck 3138 * The Archive object will then serialize all members of the passed C++
611     * object, and will recursively serialize all other C++ objects which it
612     * contains or points to. So the root object is the starting point for the
613     * overall serialization. After the serialize() method returned, you can
614     * then access the serialized data stream by calling rawData() and send that
615     * data stream over "wire", or store it on disk or whatever you may intend
616     * to do with it.
617     *
618     * Then on receiver side likewise, you create a new Archive object, pass the
619     * received data stream i.e. via constructor to the Archive object and call
620     * deserialize() by pointing it to the root object on receiver side:
621     * @code
622     * Archive a(rawDataStream);
623     * a.deserialize(&myRootObject);
624 schoenebeck 3142 * @endcode
625 schoenebeck 3138 * Or with operator instead:
626     * @code
627     * Archive a(rawDataStream);
628     * a >> myRootObject;
629 schoenebeck 3142 * @endcode
630 schoenebeck 3138 * Now this framework automatically handles serialization and
631     * deserialization of fundamental data types automatically for you (like
632     * i.e. char, int, long int, float, double, etc.). However for your own
633     * custom C++ classes and structs you must implement one method which
634     * defines which members of your class should actually be serialized and
635     * deserialized. That method to be added must have the following signature:
636     * @code
637     * void serialize(Serialization::Archive* archive);
638     * @endcode
639     * So let's say you have the following simple data structures:
640     * @code
641     * struct Foo {
642     * int a;
643     * bool b;
644     * double c;
645     * };
646     *
647     * struct Bar {
648     * char one;
649     * float two;
650     * Foo foo1;
651     * Foo* pFoo2;
652     * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
653     * };
654     * @endcode
655     * So in order to be able to serialize and deserialize objects of those two
656     * structures you would first add the mentioned method to each struct
657     * definition (i.e. in your header file):
658     * @code
659     * struct Foo {
660     * int a;
661     * bool b;
662     * double c;
663     *
664     * void serialize(Serialization::Archive* archive);
665     * };
666     *
667     * struct Bar {
668     * char one;
669     * float two;
670     * Foo foo1;
671     * Foo* pFoo2;
672     * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
673     *
674     * void serialize(Serialization::Archive* archive);
675     * };
676     * @endcode
677     * And then you would implement those two new methods like this (i.e. in
678     * your .cpp file):
679     * @code
680     * #define SRLZ(member) \
681     * archive->serializeMember(*this, member, #member);
682     *
683     * void Foo::serialize(Serialization::Archive* archive) {
684     * SRLZ(a);
685     * SRLZ(b);
686     * SRLZ(c);
687     * }
688     *
689     * void Bar::serialize(Serialization::Archive* archive) {
690     * SRLZ(one);
691     * SRLZ(two);
692     * SRLZ(foo1);
693     * SRLZ(pFoo2);
694     * // leaving out pFoo3DontTouchMe here
695     * }
696     * @endcode
697     * Now when you serialize such a Bar object, this framework will also
698     * automatically serialize the respective Foo object(s) accordingly, also
699     * for the pFoo2 pointer for instance (as long as it is not a NULL pointer
700     * that is).
701     *
702     * Note that there is only one method that you need to implement. So the
703     * respective serialize() method implementation of your classes/structs are
704     * both called for serialization, as well as for deserialization!
705 schoenebeck 3182 *
706     * In case you need to enforce backward incompatiblity for one of your C++
707     * classes, you can do so by setting a version and minimum version for your
708     * class (see @c setVersion() and @c setMinVersion() for details).
709 schoenebeck 3138 */
710     class Archive {
711     public:
712     Archive();
713     Archive(const RawData& data);
714     Archive(const uint8_t* data, size_t size);
715     virtual ~Archive();
716    
717 schoenebeck 3183 /** @brief Initiate serialization.
718     *
719     * Initiates serialization of all native C++ objects, which means
720     * capturing and storing the current data of all your C++ objects as
721     * content of this Archive.
722     *
723     * This framework has a concept of a "root" object which you must pass
724     * to this method. The root object is the starting point for
725     * serialization of your C++ objects. The framework will then
726     * recursively serialize all members of that C++ object an continue to
727     * serialize all other C++ objects that it might contain or point to.
728     *
729     * After this method returned, you might traverse all serialized objects
730     * by walking them starting from the rootObject(). You might then modify
731     * that abstract reflection of your C++ objects and finally you might
732     * call rawData() to get an encoded raw data stream which you might use
733     * for sending it "over wire" to somewhere where it is going to be
734     * deserialized later on.
735     *
736     * Note that whenever you call this method, the previous content of this
737     * Archive will first be cleared.
738     *
739     * @param obj - native C++ root object where serialization shall start
740     * @see Archive::operator<<()
741     */
742 schoenebeck 3138 template<typename T>
743     void serialize(const T* obj) {
744     m_operation = OPERATION_SERIALIZE;
745     m_allObjects.clear();
746     m_rawData.clear();
747     m_root = UID::from(obj);
748     const_cast<T*>(obj)->serialize(this);
749     encode();
750     m_operation = OPERATION_NONE;
751     }
752    
753 schoenebeck 3183 /** @brief Initiate deserialization.
754     *
755     * Initiates deserialization of all native C++ objects, which means all
756     * your C++ objects will be restored with the values contained in this
757     * Archive. So that also means calling deserialize() only makes sense if
758     * this a non-empty Archive, which i.e. is the case if you either called
759     * serialize() with this Archive object before or if you passed a
760     * previously serialized raw data stream to the constructor of this
761     * Archive object.
762     *
763     * This framework has a concept of a "root" object which you must pass
764     * to this method. The root object is the starting point for
765     * deserialization of your C++ objects. The framework will then
766     * recursively deserialize all members of that C++ object an continue to
767     * deserialize all other C++ objects that it might contain or point to,
768     * according to the values stored in this Archive.
769     *
770     * @param obj - native C++ root object where deserialization shall start
771     * @see Archive::operator>>()
772     *
773     * @throws Exception if the data stored in this Archive cannot be
774     * restored to the C++ objects passed to this method, i.e.
775     * because of version or type incompatibilities.
776     */
777 schoenebeck 3138 template<typename T>
778     void deserialize(T* obj) {
779     Archive a;
780     m_operation = OPERATION_DESERIALIZE;
781     obj->serialize(&a);
782     a.m_root = UID::from(obj);
783     Syncer s(a, *this);
784     m_operation = OPERATION_NONE;
785     }
786    
787 schoenebeck 3183 /** @brief Initiate serialization of your C++ objects.
788     *
789     * Same as calling @c serialize(), this is just meant if you prefer
790     * to use operator based code instead, which you might find to be more
791     * intuitive.
792     *
793     * Example:
794     * @code
795     * Archive a;
796     * a << myRootObject;
797     * @endcode
798     *
799     * @see Archive::serialize() for more details.
800     */
801 schoenebeck 3138 template<typename T>
802     void operator<<(const T& obj) {
803     serialize(&obj);
804     }
805    
806 schoenebeck 3183 /** @brief Initiate deserialization of your C++ objects.
807     *
808     * Same as calling @c deserialize(), this is just meant if you prefer
809     * to use operator based code instead, which you might find to be more
810     * intuitive.
811     *
812     * Example:
813     * @code
814     * Archive a(rawDataStream);
815     * a >> myRootObject;
816     * @endcode
817     *
818     * @throws Exception if the data stored in this Archive cannot be
819     * restored to the C++ objects passed to this method, i.e.
820     * because of version or type incompatibilities.
821     *
822     * @see Archive::deserialize() for more details.
823     */
824 schoenebeck 3138 template<typename T>
825     void operator>>(T& obj) {
826     deserialize(&obj);
827     }
828    
829 schoenebeck 3150 const RawData& rawData();
830 schoenebeck 3138 virtual String rawDataFormat() const;
831    
832 schoenebeck 3183 /** @brief Serialize a native C/C++ member variable.
833     *
834     * This method is usually called by the serialize() method
835     * implementation of your C/C++ structs and classes, for each of the
836     * member variables that shall be serialized and deserialized
837     * automatically with this framework. It is recommend that you are not
838     * using this method name directly, but rather define a short hand C
839     * macro in your .cpp file like:
840     * @code
841     * #define SRLZ(member) \
842     * archive->serializeMember(*this, member, #member);
843     *
844     * void Foo::serialize(Serialization::Archive* archive) {
845     * SRLZ(a);
846     * SRLZ(b);
847     * SRLZ(c);
848     * }
849     * @endcode
850     * As you can see, using such a macro makes your code more readable and
851     * less error prone.
852     *
853     * It is completely up to you to decide which ones of your member
854     * variables shall automatically be serialized and deserialized with
855     * this framework. Only those member variables which are registered by
856     * calling this method will be serialized and deserialized. It does not
857     * really matter in which order you register your individiual member
858     * variables by calling this method, but the sequence is actually stored
859     * as meta information with the resulting archive and the resulting raw
860     * data stream. That meta information might then be used by this
861     * framework to automatically correct and adapt deserializing that
862     * archive later on for a future (or older) and potentially heavily
863     * modified version of your software. So it is recommended, even though
864     * also not required, that you may retain the sequence of your
865     * serializeMember() calls for your individual C++ classes' members over
866     * all your software versions, to retain backward compatibility of older
867     * archives as much as possible.
868     *
869     * @param nativeObject - native C++ object to be registered for
870     * serialization / deserialization
871     * @param nativeMember - native C++ member variable of @a nativeObject
872     * to be registered for serialization /
873     * deserialization
874     * @param memberName - name of @a nativeMember to be stored with this
875     * archive
876     */
877 schoenebeck 3138 template<typename T_classType, typename T_memberType>
878     void serializeMember(const T_classType& nativeObject, const T_memberType& nativeMember, const char* memberName) {
879     const size_t offset =
880 schoenebeck 3182 ((const uint8_t*)(const void*)&nativeMember) -
881     ((const uint8_t*)(const void*)&nativeObject);
882 schoenebeck 3138 const UIDChain uids = UIDChainResolver<T_memberType>(nativeMember);
883     const DataType type = DataType::dataTypeOf(nativeMember);
884     const Member member(memberName, uids[0], offset, type);
885     const UID parentUID = UID::from(nativeObject);
886     Object& parent = m_allObjects[parentUID];
887     if (!parent) {
888     const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
889     const DataType type = DataType::dataTypeOf(nativeObject);
890     parent = Object(uids, type);
891     }
892     parent.members().push_back(member);
893     const Object obj(uids, type);
894     const bool bExistsAlready = m_allObjects.count(uids[0]);
895     const bool isValidObject = obj;
896     const bool bExistingObjectIsInvalid = !m_allObjects[uids[0]];
897     if (!bExistsAlready || (bExistingObjectIsInvalid && isValidObject)) {
898     m_allObjects[uids[0]] = obj;
899     // recurse serialization for all members of this member
900     // (only for struct/class types, noop for primitive types)
901     SerializationRecursion<T_memberType>::serializeObject(this, nativeMember);
902     }
903     }
904    
905 schoenebeck 3183 /** @brief Set current version number for your C++ class.
906 schoenebeck 3182 *
907 schoenebeck 3183 * By calling this method you can define a version number for your
908 schoenebeck 3182 * current C++ class (that is a version for its current data structure
909 schoenebeck 3183 * layout and method implementations) that is going to be stored along
910     * with the serialized archive. Only call this method if you really want
911     * to constrain compatibility of your C++ class.
912 schoenebeck 3182 *
913     * Along with calling @c setMinVersion() this provides a way for you
914 schoenebeck 3183 * to constrain backward compatibility regarding serialization and
915     * deserialization of your C++ class which the Archive class will obey
916     * to. If required, then typically you might do so in your
917     * @c serialize() method implementation like:
918 schoenebeck 3182 * @code
919     * #define SRLZ(member) \
920     * archive->serializeMember(*this, member, #member);
921     *
922     * void Foo::serialize(Serialization::Archive* archive) {
923     * // when serializing: the current version of this class that is
924     * // going to be stored with the serialized archive
925     * archive->setVersion(*this, 6);
926 schoenebeck 3183 * // when deserializing: the minimum version this C++ class is
927     * // compatible with
928 schoenebeck 3182 * archive->setMinVersion(*this, 3);
929     * // actual data mebers to serialize / deserialize
930     * SRLZ(a);
931     * SRLZ(b);
932     * SRLZ(c);
933     * }
934     * @endcode
935 schoenebeck 3183 * In this example above, the C++ class "Foo" would be serialized along
936     * with the version number @c 6 and minimum version @c 3 as additional
937     * meta information in the resulting archive (and its raw data stream
938     * respectively).
939 schoenebeck 3182 *
940     * When deserializing archives with the example C++ class code above,
941     * the Archive object would check whether your originally serialized
942     * C++ "Foo" object had at least version number @c 3, if not the
943     * deserialization process would automatically be stopped with a
944     * @c Serialization::Exception, claiming that the classes are version
945     * incompatible.
946     *
947 schoenebeck 3183 * But also consider the other way around: you might have serialized
948     * your latest version of your C++ class, and might deserialize that
949     * archive with an older version of your C++ class. In that case it will
950     * likewise be checked whether the version of that old C++ class is at
951     * least as high as the minimum version set with the already seralized
952     * bleeding edge C++ class.
953     *
954 schoenebeck 3182 * Since this Serialization / deserialization framework is designed to
955     * be robust on changes to your C++ classes and aims trying to
956     * deserialize all your C++ objects correctly even if your C++ classes
957     * have seen substantial software changes in the meantime; you might
958 schoenebeck 3183 * sometimes see it as necessary to constrain backward compatibility
959     * this way. Because obviously there are certain things this framework
960     * can cope with, like for example that you renamed a data member while
961     * keeping the layout consistent, or that you have added new members to
962     * your C++ class or simply changed the order of your members in your
963     * C++ class. But what this framework cannot detect is for example if
964     * you changed the semantics of the values stored with your members, or
965     * even substantially changed the algorithms in your class methods such
966     * that they would not handle the data of your C++ members in the same
967     * and correct way anymore.
968 schoenebeck 3182 *
969     * @param nativeObject - your C++ object you want to set a version for
970     * @param v - the version number to set for your C++ class (by default,
971     * that is if you do not explicitly call this method, then
972     * your C++ object will be stored with version number @c 0 ).
973     */
974     template<typename T_classType>
975     void setVersion(const T_classType& nativeObject, Version v) {
976     const UID uid = UID::from(nativeObject);
977     Object& obj = m_allObjects[uid];
978     if (!obj) {
979     const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
980     const DataType type = DataType::dataTypeOf(nativeObject);
981     obj = Object(uids, type);
982     }
983     setVersion(obj, v);
984     }
985    
986     /** @brief Set a minimum version number for your C++ class.
987     *
988     * Call this method to define a minimum version that your current C++
989     * class implementation would be compatible with when it comes to
990 schoenebeck 3183 * deserialization of an archive containing an object of your C++ class.
991     * Like the version information, the minimum version will also be stored
992     * for objects of your C++ class with the resulting archive (and its
993     * resulting raw data stream respectively).
994 schoenebeck 3182 *
995 schoenebeck 3183 * When you start to constrain version compatibility of your C++ class
996     * you usually start by using 1 as version and 1 as minimum version.
997     * So it is eligible to set the same number to both version and minimum
998     * version. However you must @b not set a minimum version higher than
999     * version. Doing so would not raise an exception, but the resulting
1000     * behavior would be undefined.
1001     *
1002     * It is not relevant whether you first set version and then minimum
1003     * version or vice versa. It is also not relevant when exactly you set
1004     * those two numbers, even though usually you would set both in your
1005     * serialize() method implementation.
1006     *
1007 schoenebeck 3182 * @see @c setVersion() for more details about this overall topic.
1008 schoenebeck 3183 *
1009     * @param nativeObject - your C++ object you want to set a version for
1010     * @param v - the minimum version you want to define for your C++ class
1011     * (by default, that is if you do not explicitly call this
1012     * method, then a minium version of @c 0 is assumed for your
1013     * C++ class instead).
1014 schoenebeck 3182 */
1015     template<typename T_classType>
1016     void setMinVersion(const T_classType& nativeObject, Version v) {
1017     const UID uid = UID::from(nativeObject);
1018     Object& obj = m_allObjects[uid];
1019     if (!obj) {
1020     const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
1021     const DataType type = DataType::dataTypeOf(nativeObject);
1022     obj = Object(uids, type);
1023     }
1024     setMinVersion(obj, v);
1025     }
1026    
1027 schoenebeck 3138 virtual void decode(const RawData& data);
1028     virtual void decode(const uint8_t* data, size_t size);
1029     void clear();
1030 schoenebeck 3150 bool isModified() const;
1031 schoenebeck 3153 void removeMember(Object& parent, const Member& member);
1032 schoenebeck 3138 void remove(const Object& obj);
1033     Object& rootObject();
1034     Object& objectByUID(const UID& uid);
1035 schoenebeck 3150 void setAutoValue(Object& object, String value);
1036     void setIntValue(Object& object, int64_t value);
1037     void setRealValue(Object& object, double value);
1038     void setBoolValue(Object& object, bool value);
1039     void setEnumValue(Object& object, uint64_t value);
1040     String valueAsString(const Object& object);
1041 schoenebeck 3169 int64_t valueAsInt(const Object& object);
1042     double valueAsReal(const Object& object);
1043     bool valueAsBool(const Object& object);
1044 schoenebeck 3182 void setVersion(Object& object, Version v);
1045     void setMinVersion(Object& object, Version v);
1046 schoenebeck 3156 String name() const;
1047     void setName(String name);
1048     String comment() const;
1049     void setComment(String comment);
1050     time_t timeStampCreated() const;
1051     time_t timeStampModified() const;
1052     tm dateTimeCreated(time_base_t base = LOCAL_TIME) const;
1053     tm dateTimeModified(time_base_t base = LOCAL_TIME) const;
1054 schoenebeck 3138
1055     protected:
1056     // UID resolver for non-pointer types
1057     template<typename T>
1058     class UIDChainResolver {
1059     public:
1060     UIDChainResolver(const T& data) {
1061     m_uid.push_back(UID::from(data));
1062     }
1063    
1064     operator UIDChain() const { return m_uid; }
1065     UIDChain operator()() const { return m_uid; }
1066     private:
1067     UIDChain m_uid;
1068     };
1069    
1070     // UID resolver for pointer types (of 1st degree)
1071     template<typename T>
1072     class UIDChainResolver<T*> {
1073     public:
1074     UIDChainResolver(const T*& data) {
1075 schoenebeck 3168 const UID uids[2] = {
1076     { &data, sizeof(data) },
1077     { data, sizeof(*data) }
1078     };
1079     m_uid.push_back(uids[0]);
1080     m_uid.push_back(uids[1]);
1081 schoenebeck 3138 }
1082    
1083     operator UIDChain() const { return m_uid; }
1084     UIDChain operator()() const { return m_uid; }
1085     private:
1086     UIDChain m_uid;
1087     };
1088    
1089     // SerializationRecursion for non-pointer class/struct types.
1090     template<typename T, bool T_isRecursive>
1091     struct SerializationRecursionImpl {
1092     static void serializeObject(Archive* archive, const T& obj) {
1093     const_cast<T&>(obj).serialize(archive);
1094     }
1095     };
1096    
1097     // SerializationRecursion for pointers (of 1st degree) to class/structs.
1098     template<typename T, bool T_isRecursive>
1099     struct SerializationRecursionImpl<T*,T_isRecursive> {
1100     static void serializeObject(Archive* archive, const T*& obj) {
1101     if (!obj) return;
1102     const_cast<T*&>(obj)->serialize(archive);
1103     }
1104     };
1105    
1106     // NOOP SerializationRecursion for primitive types.
1107     template<typename T>
1108     struct SerializationRecursionImpl<T,false> {
1109     static void serializeObject(Archive* archive, const T& obj) {}
1110     };
1111    
1112     // NOOP SerializationRecursion for pointers (of 1st degree) to primitive types.
1113     template<typename T>
1114     struct SerializationRecursionImpl<T*,false> {
1115     static void serializeObject(Archive* archive, const T*& obj) {}
1116     };
1117    
1118     // Automatically handles recursion for class/struct types, while ignoring all primitive types.
1119     template<typename T>
1120 schoenebeck 3167 struct SerializationRecursion : SerializationRecursionImpl<T, LIBGIG_IS_CLASS(T)> {
1121 schoenebeck 3138 };
1122    
1123     class ObjectPool : public std::map<UID,Object> {
1124     public:
1125     // prevent passing obvious invalid UID values from creating a new pair entry
1126     Object& operator[](const UID& k) {
1127     static Object invalid;
1128     if (!k.isValid()) {
1129     invalid = Object();
1130     return invalid;
1131     }
1132     return std::map<UID,Object>::operator[](k);
1133     }
1134     };
1135    
1136     friend String _encode(const ObjectPool& objects);
1137    
1138     private:
1139     String _encodeRootBlob();
1140     void _popRootBlob(const char*& p, const char* end);
1141     void _popObjectsBlob(const char*& p, const char* end);
1142    
1143     protected:
1144     class Syncer {
1145     public:
1146     Syncer(Archive& dst, Archive& src);
1147     protected:
1148     void syncObject(const Object& dst, const Object& src);
1149     void syncPrimitive(const Object& dst, const Object& src);
1150     void syncPointer(const Object& dst, const Object& src);
1151     void syncMember(const Member& dstMember, const Member& srcMember);
1152     static Member dstMemberMatching(const Object& dstObj, const Object& srcObj, const Member& srcMember);
1153     private:
1154     Archive& m_dst;
1155     Archive& m_src;
1156     };
1157    
1158 schoenebeck 3182 enum operation_t {
1159     OPERATION_NONE,
1160     OPERATION_SERIALIZE,
1161     OPERATION_DESERIALIZE
1162     };
1163    
1164 schoenebeck 3138 virtual void encode();
1165    
1166     ObjectPool m_allObjects;
1167     operation_t m_operation;
1168     UID m_root;
1169     RawData m_rawData;
1170 schoenebeck 3150 bool m_isModified;
1171 schoenebeck 3156 String m_name;
1172     String m_comment;
1173     time_t m_timeCreated;
1174     time_t m_timeModified;
1175 schoenebeck 3138 };
1176    
1177     /**
1178     * Will be thrown whenever an error occurs during an serialization or
1179     * deserialization process.
1180     */
1181     class Exception {
1182     public:
1183     String Message;
1184    
1185 schoenebeck 3198 Exception(String format, ...);
1186     Exception(String format, va_list arg);
1187 schoenebeck 3138 void PrintMessage();
1188     virtual ~Exception() {}
1189 schoenebeck 3198
1190     protected:
1191     Exception();
1192     static String assemble(String format, va_list arg);
1193 schoenebeck 3138 };
1194    
1195     } // namespace Serialization
1196    
1197     #endif // LIBGIG_SERIALIZATION_H

  ViewVC Help
Powered by ViewVC