/[svn]/libgig/trunk/src/Serialization.h
ViewVC logotype

Diff of /libgig/trunk/src/Serialization.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 3156 by schoenebeck, Mon May 8 17:18:07 2017 UTC revision 3392 by schoenebeck, Sun Dec 3 17:49:22 2017 UTC
# Line 35  Line 35 
35  #include <vector>  #include <vector>
36  #include <map>  #include <map>
37  #include <time.h>  #include <time.h>
38    #include <stdarg.h>
39    
40    #ifndef __has_extension
41    # define __has_extension(x) 0
42    #endif
43    
44    #ifndef HAS_BUILTIN_TYPE_TRAITS
45    # if __cplusplus >= 201103L
46    #  define HAS_BUILTIN_TYPE_TRAITS 1
47    # elif ( __has_extension(is_class) && __has_extension(is_enum) )
48    #  define HAS_BUILTIN_TYPE_TRAITS 1
49    # elif ( __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 3 ) )
50    #  define HAS_BUILTIN_TYPE_TRAITS 1
51    # elif _MSC_VER >= 1400 /* MS Visual C++ 8.0 (Visual Studio 2005) */
52    #  define HAS_BUILTIN_TYPE_TRAITS 1
53    # elif __INTEL_COMPILER >= 1100
54    #  define HAS_BUILTIN_TYPE_TRAITS 1
55    # else
56    #  define HAS_BUILTIN_TYPE_TRAITS 0
57    # endif
58    #endif
59    
60    #if !HAS_BUILTIN_TYPE_TRAITS
61    # include <tr1/type_traits>
62    # define LIBGIG_IS_CLASS(type) std::tr1::__is_union_or_class<type>::value //NOTE: without compiler support we cannot distinguish union from class
63    #else
64    # define LIBGIG_IS_CLASS(type) __is_class(type)
65    #endif
66    
67  /** @brief Serialization / deserialization framework.  /** @brief Serialization / deserialization framework.
68   *   *
# Line 91  namespace Serialization { Line 119  namespace Serialization {
119    
120      typedef std::string String;      typedef std::string String;
121    
122        /** @brief Raw data stream of serialized C++ objects.
123         *
124         * This data type is used for the data stream as a result of serializing
125         * your C++ objects with Archive::serialize(), and for native raw data
126         * representation of individual serialized C/C++ objects, members and variables.
127         *
128         * @see Archive::rawData(), Object::rawData()
129         */
130      typedef std::vector<uint8_t> RawData;      typedef std::vector<uint8_t> RawData;
131    
132        /** @brief Abstract identifier for serialized C++ objects.
133         *
134         * This data type is used for identifying serialized C++ objects and members
135         * of your C++ objects. It is important to know that such an ID might not
136         * necessarily be unique. For example the ID of one C++ object might often
137         * be identical to the ID of the first member of that particular C++ object.
138         * That's why there is additionally the concept of an UID in this framework.
139         *
140         * @see UID
141         */
142      typedef void* ID;      typedef void* ID;
143    
144        /** @brief Version number data type.
145         *
146         * This data type is used for maintaining version number information of
147         * your C++ class implementations.
148         *
149         * @see Archive::setVersion() and Archive::setMinVersion()
150         */
151      typedef uint32_t Version;      typedef uint32_t Version;
152    
153      enum operation_t {      /** @brief To which time zone a certain timing information relates to.
154          OPERATION_NONE,       *
155          OPERATION_SERIALIZE,       * The constants in this enum type are used to define to which precise time
156          OPERATION_DESERIALIZE       * zone a time stamp relates to.
157      };       */
   
158      enum time_base_t {      enum time_base_t {
159          LOCAL_TIME,          LOCAL_TIME, ///< The time stamp relates to the machine's local time zone. Request a time stamp in local time if you want to present that time stamp to the end user.
160          UTC_TIME          UTC_TIME ///< The time stamp relates to "Greenwhich Mean Time" zone, also known as "Coordinated Universal Time". Request time stamp with UTC if you want to compare that time stamp with other time stamps.
161      };      };
162    
163        /** @brief Check whether data is a C/C++ @c enum type.
164         *
165         * Returns true if the supplied C++ variable or object is of a C/C++ @c enum
166         * type.
167         *
168         * @param data - the variable or object whose data type shall be checked
169         */
170      template<typename T>      template<typename T>
171      bool IsEnum(const T& data) {      bool IsEnum(const T& data) {
172            #if !HAS_BUILTIN_TYPE_TRAITS
173            return std::tr1::is_enum<T>::value;
174            #else
175          return __is_enum(T);          return __is_enum(T);
176            #endif
177      }      }
178    
179        /** @brief Check whether data is a C++ @c union type.
180         *
181         * Returns true if the supplied C++ variable or object is of a C/C++ @c union
182         * type. Note that the result of this function is only reliable if the C++
183         * compiler you are using has support for built-in type traits. If your C++
184         * compiler does not have built-in type traits support, then this function
185         * will simply return @c false on all your calls.
186         *
187         * @param data - the variable or object whose data type shall be checked
188         */
189      template<typename T>      template<typename T>
190      bool IsUnion(const T& data) {      bool IsUnion(const T& data) {
191            #if !HAS_BUILTIN_TYPE_TRAITS
192            return false; // without compiler support we cannot distinguish union from class
193            #else
194          return __is_union(T);          return __is_union(T);
195            #endif
196      }      }
197    
198        /** @brief Check whether data is a C/C++ @c struct or C++ @c class type.
199         *
200         * Returns true if the supplied C++ variable or object is of C/C++ @c struct
201         * or C++ @c class type. Note that if you are using a C++ compiler which
202         * does have built-in type traits support, then this function will also
203         * return @c true on C/C++ @c union types.
204         *
205         * @param data - the variable or object whose data type shall be checked
206         */
207      template<typename T>      template<typename T>
208      bool IsClass(const T& data) {      bool IsClass(const T& data) {
209            #if !HAS_BUILTIN_TYPE_TRAITS
210            return std::tr1::__is_union_or_class<T>::value; // without compiler support we cannot distinguish union from class
211            #else
212          return __is_class(T);          return __is_class(T);
213            #endif
214      }      }
215    
216      /*template<typename T>      /*template<typename T>
# Line 133  namespace Serialization { Line 223  namespace Serialization {
223          return __is_pod(T);          return __is_pod(T);
224      }*/      }*/
225    
226      /** @brief Unique identifier for one specific C++ object, member or fundamental variable.      /** @brief Unique identifier referring to one specific native C++ object, member, fundamental variable, or any other native C++ data.
227         *
228         * Reflects a unique identifier for one specific serialized C++ data, i.e.
229         * C++ class instance, C/C++ struct instance, member, primitive pointer,
230         * fundamental variables, or any other native C/C++ data originally being
231         * serialized.
232       *       *
233       * Reflects a unique identifier for one specific serialized C++ class       * A unique identifier is composed of an id (an identifier which is not
234       * instance, struct instance, member, primitive pointer, or fundamental       * necessarily unique) and a size. Since the underlying ID is derived from
235       * variables.       * the original C++ object's memory location, such an ID is not sufficient
236         * to distinguish a particular C++ object from the first member of that C++
237         * object, since both typically share the same memory address. So
238         * additionally the memory size of the respective object or member is
239         * bundled with UID objects to make them unique and distinguishable.
240       */       */
241      class UID {      class UID {
242      public:      public:
243          ID id;          ID id; ///< Abstract non-unique ID of the object or member in question.
244          size_t size;          size_t size; ///< Memory size of the object or member in question.
245    
246          bool isValid() const;          bool isValid() const;
247          operator bool() const { return isValid(); }          operator bool() const { return isValid(); } ///< Same as calling isValid().
248          //bool operator()() const { return isValid(); }          //bool operator()() const { return isValid(); }
249          bool operator==(const UID& other) const { return id == other.id && size == other.size; }          bool operator==(const UID& other) const { return id == other.id && size == other.size; }
250          bool operator!=(const UID& other) const { return id != other.id || size != other.size; }          bool operator!=(const UID& other) const { return id != other.id || size != other.size; }
251          bool operator<(const UID& other) const { return id < other.id || (id == other.id && size < other.size); }          bool operator<(const UID& other) const { return id < other.id || (id == other.id && size < other.size); }
252          bool operator>(const UID& other) const { return id > other.id || (id == other.id && size > other.size); }          bool operator>(const UID& other) const { return id > other.id || (id == other.id && size > other.size); }
253    
254            /** @brief Create an unique indentifier for a native C++ object/member/variable.
255             *
256             * Creates and returns an unique identifier for the passed native C++
257             * object, object member or variable. For the same C++ object/member/variable
258             * this function will always return the same UID. For all other ones,
259             * this function is guaranteed to return a different UID.
260             */
261          template<typename T>          template<typename T>
262          static UID from(const T& obj) {          static UID from(const T& obj) {
263              return Resolver<T>::resolve(obj);              return Resolver<T>::resolve(obj);
# Line 162  namespace Serialization { Line 268  namespace Serialization {
268          template<typename T>          template<typename T>
269          struct Resolver {          struct Resolver {
270              static UID resolve(const T& obj) {              static UID resolve(const T& obj) {
271                  return (UID) { (ID) &obj, sizeof(obj) };                  const UID uid = { (ID) &obj, sizeof(obj) };
272                    return uid;
273              }              }
274          };          };
275    
# Line 170  namespace Serialization { Line 277  namespace Serialization {
277          template<typename T>          template<typename T>
278          struct Resolver<T*> {          struct Resolver<T*> {
279              static UID resolve(const T* const & obj) {              static UID resolve(const T* const & obj) {
280                  return (UID) { (ID) obj, sizeof(*obj) };                  const UID uid = { (ID) obj, sizeof(*obj) };
281                    return uid;
282              }              }
283          };          };
284      };      };
285    
286      /**      /**
287       * Reflects an invalid UID and behaves similar to NULL as invalid value for       * Reflects an invalid UID and behaves similar to NULL as invalid value for
288       * pointer types.       * pointer types. All UID objects are first initialized with this value,
289         * and it essentially an all zero object.
290       */       */
291      extern const UID NO_UID;      extern const UID NO_UID;
292    
293        /** @brief Chain of UIDs.
294         *
295         * This data type is used for native C++ pointers. The first member of the
296         * UID chain is the unique identifier of the C++ pointer itself, then the
297         * following UIDs are the respective objects or variables the pointer is
298         * pointing to. The size (the amount of elements) of the UIDChain depends
299         * solely on the degree of the pointer type. For example the following C/C++
300         * pointer:
301         * @code
302         * int* pNumber;
303         * @endcode
304         * is an integer pointer of first degree. Such a pointer would have a
305         * UIDChain with 2 members: the first element would be the UID of the
306         * pointer itself, the second element of the chain would be the integer data
307         * that pointer is pointing to. In the following example:
308         * @code
309         * bool*** pppSomeFlag;
310         * @endcode
311         * That boolean pointer would be of third degree, and thus its UIDChain
312         * would have a size of 4 (elements).
313         *
314         * Accordingly a non pointer type like:
315         * @code
316         * float f;
317         * @endcode
318         * would yield in a UIDChain of size 1.
319         *
320         * Since however this serialization framework currently only supports
321         * pointers of first degree yet, all UIDChains are currently either of
322         * size 1 or 2, which might change in future though.
323         */
324      typedef std::vector<UID> UIDChain;      typedef std::vector<UID> UIDChain;
325    
326    #if LIBGIG_SERIALIZATION_INTERNAL
327      // prototyping of private internal friend functions      // prototyping of private internal friend functions
328      static String _encodePrimitiveValue(const Object& obj);      static String _encodePrimitiveValue(const Object& obj);
329      static DataType _popDataTypeBlob(const char*& p, const char* end);      static DataType _popDataTypeBlob(const char*& p, const char* end);
# Line 190  namespace Serialization { Line 331  namespace Serialization {
331      static Object _popObjectBlob(const char*& p, const char* end);      static Object _popObjectBlob(const char*& p, const char* end);
332      static void _popPrimitiveValue(const char*& p, const char* end, Object& obj);      static void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
333      static String _primitiveObjectValueToString(const Object& obj);      static String _primitiveObjectValueToString(const Object& obj);
334        //  |
335        template<typename T>
336        static T _primitiveObjectValueToNumber(const Object& obj);
337    #endif // LIBGIG_SERIALIZATION_INTERNAL
338    
339      /** @brief Abstract reflection of a native C++ data type.      /** @brief Abstract reflection of a native C++ data type.
340       *       *
341       * Provides detailed information about a C++ data type, whether it is a       * Provides detailed information about a serialized C++ data type, whether
342       * fundamental C/C++ data type (like int, float, char, etc.) or custom       * it is a fundamental C/C++ data type (like @c int, @c float, @c char,
343       * defined data type like a C++ class, struct, enum, as well as other       * etc.) or custom defined data types like a C++ @c class, C/C++ @c struct,
344       * features of the data type like its native memory size and more.       * @c enum, as well as other features of the respective data type like its
345         * native memory size and more.
346         *
347         * All informations provided by this class are retrieved from the
348         * respective individual C++ objects, their members and other data when
349         * they are serialized, and all those information are stored with the
350         * serialized archive and its resulting data stream. Due to the availability
351         * of these extensive data type information within serialized archives, this
352         * framework is capable to use them in order to adapt its deserialization
353         * process upon subsequent changes to your individual C++ classes.
354       */       */
355      class DataType {      class DataType {
356      public:      public:
357          DataType();          DataType();
358          size_t size() const { return m_size; }          size_t size() const { return m_size; } ///< Returns native memory size of the respective C++ object or variable.
359          bool isValid() const;          bool isValid() const;
360          bool isPointer() const;          bool isPointer() const;
361          bool isClass() const;          bool isClass() const;
# Line 211  namespace Serialization { Line 365  namespace Serialization {
365          bool isBool() const;          bool isBool() const;
366          bool isEnum() const;          bool isEnum() const;
367          bool isSigned() const;          bool isSigned() const;
368          operator bool() const { return isValid(); }          operator bool() const { return isValid(); } ///< Same as calling isValid().
369          //bool operator()() const { return isValid(); }          //bool operator()() const { return isValid(); }
370          bool operator==(const DataType& other) const;          bool operator==(const DataType& other) const;
371          bool operator!=(const DataType& other) const;          bool operator!=(const DataType& other) const;
372          bool operator<(const DataType& other) const;          bool operator<(const DataType& other) const;
373          bool operator>(const DataType& other) const;          bool operator>(const DataType& other) const;
374          String asLongDescr() const;          String asLongDescr() const;
375          String baseTypeName() const { return m_baseTypeName; }          String baseTypeName() const;
376          String customTypeName() const { return m_customTypeName; }          String customTypeName(bool demangle = false) const;
377    
378            /** @brief Construct a DataType object for the given native C++ data.
379             *
380             * Use this function to create corresponding DataType objects for
381             * native C/C++ objects, members and variables.
382             *
383             * @param data - native C/C++ object/member/variable a DataType object
384             *               shall be created for
385             * @returns corresponding DataType object for the supplied native C/C++
386             *          object/member/variable
387             */
388          template<typename T>          template<typename T>
389          static DataType dataTypeOf(const T& data) {          static DataType dataTypeOf(const T& data) {
390              return Resolver<T>::resolve(data);              return Resolver<T>::resolve(data);
# Line 293  namespace Serialization { Line 457  namespace Serialization {
457          int m_size;          int m_size;
458          bool m_isPointer;          bool m_isPointer;
459    
460    #if LIBGIG_SERIALIZATION_INTERNAL
461          friend DataType _popDataTypeBlob(const char*& p, const char* end);          friend DataType _popDataTypeBlob(const char*& p, const char* end);
462    #endif
463          friend class Archive;          friend class Archive;
464      };      };
465    
# Line 303  namespace Serialization { Line 469  namespace Serialization {
469       * serialized C++ object, like its C++ data type, offset of this member       * serialized C++ object, like its C++ data type, offset of this member
470       * within its containing data structure/class, its C++ member variable name       * within its containing data structure/class, its C++ member variable name
471       * and more.       * and more.
472         *
473         * Consider you defined the following user defined C/C++ @c struct type in
474         * your application:
475         * @code
476         * struct Foo {
477         *     int  a;
478         *     bool b;
479         *     double someValue;
480         * };
481         * @endcode
482         * Then @c a, @c b and @c someValue are "members" of @c struct @c Foo for
483         * instance. So that @c struct would have 3 members in the latter example.
484         *
485         * @see Object::members()
486       */       */
487      class Member {      class Member {
488      public:      public:
489          Member();          Member();
490          UID uid() const { return m_uid; }          UID uid() const;
491          String name() const { return m_name; }          String name() const;
492          size_t offset() const { return m_offset; }          size_t offset() const;
493          const DataType& type() const { return m_type; }          const DataType& type() const;
494          bool isValid() const;          bool isValid() const;
495          operator bool() const { return isValid(); }          operator bool() const { return isValid(); } ///< Same as calling isValid().
496          //bool operator()() const { return isValid(); }          //bool operator()() const { return isValid(); }
497          bool operator==(const Member& other) const;          bool operator==(const Member& other) const;
498          bool operator!=(const Member& other) const;          bool operator!=(const Member& other) const;
# Line 329  namespace Serialization { Line 509  namespace Serialization {
509          String m_name;          String m_name;
510          DataType m_type;          DataType m_type;
511    
512    #if LIBGIG_SERIALIZATION_INTERNAL
513          friend Member _popMemberBlob(const char*& p, const char* end);          friend Member _popMemberBlob(const char*& p, const char* end);
514    #endif
515      };      };
516    
517      /** @brief Abstract reflection of a native C++ class/struct instance.      /** @brief Abstract reflection of some native serialized C/C++ data.
518         *
519         * When your native C++ objects are serialized, all native data is
520         * translated and reflected by such an Object reflection. So each instance
521         * of your serialized native C++ class objects become available as an
522         * Object, but also each member variable of your C++ objects is translated
523         * into an Object, and any other native C/C++ data. So essentially every
524         * native data is turned into its own Object and accessible by this API.
525         *
526         * For each one of those Object reflections, this class provides detailed
527         * information about their native origin. For example if an Object
528         * represents a native C++ class instante, then it provides access to its
529         * C++ class/struct name, to its C++ member variables, its native memory
530         * size and much more.
531         *
532         * Even though this framework allows you to adjust abstract Object instances
533         * to a certain extent, most of the methods of this Object class are
534         * read-only though and the actual modifyable methods are made available
535         * not as part of this Object class, but as part of the Archive class
536         * instead. This design decision was made for performance and safety
537         * reasons.
538       *       *
539       * Provides detailed information about a specific serialized C++ object,       * @see Archive::setIntValue() as an example for modifying Object instances.
      * like its C++ member variables, its C++ class/struct name, its native  
      * memory size and more.  
540       */       */
541      class Object {      class Object {
542      public:      public:
543          Object();          Object();
544          Object(UIDChain uidChain, DataType type);          Object(UIDChain uidChain, DataType type);
545    
546          UID uid(int index = 0) const {          UID uid(int index = 0) const;
547              return (index < m_uid.size()) ? m_uid[index] : NO_UID;          const UIDChain& uidChain() const;
548          }          const DataType& type() const;
549            const RawData& rawData() const;
550          const UIDChain& uidChain() const { return m_uid; }          Version version() const;
551          const DataType& type() const { return m_type; }          Version minVersion() const;
         const RawData& rawData() const { return m_data; }  
   
         Version version() const { return m_version; }  
   
         void setVersion(Version v) {  
             m_version = v;  
         }  
   
         Version minVersion() const { return m_minVersion; }  
   
         void setMinVersion(Version v) {  
             m_minVersion = v;  
         }  
   
552          bool isVersionCompatibleTo(const Object& other) const;          bool isVersionCompatibleTo(const Object& other) const;
553            std::vector<Member>& members();
554          std::vector<Member>& members() { return m_members; }          const std::vector<Member>& members() const;
         const std::vector<Member>& members() const { return m_members; }  
555          Member memberNamed(String name) const;          Member memberNamed(String name) const;
556          Member memberByUID(const UID& uid) const;          Member memberByUID(const UID& uid) const;
557          std::vector<Member> membersOfType(const DataType& type) const;          std::vector<Member> membersOfType(const DataType& type) const;
558          int sequenceIndexOf(const Member& member) const;          int sequenceIndexOf(const Member& member) const;
559          bool isValid() const;          bool isValid() const;
560          operator bool() const { return isValid(); }          operator bool() const { return isValid(); } ///< Same as calling isValid().
561          //bool operator()() const { return isValid(); }          //bool operator()() const { return isValid(); }
562          bool operator==(const Object& other) const;          bool operator==(const Object& other) const;
563          bool operator!=(const Object& other) const;          bool operator!=(const Object& other) const;
# Line 381  namespace Serialization { Line 566  namespace Serialization {
566    
567      protected:      protected:
568          void remove(const Member& member);          void remove(const Member& member);
569            void setVersion(Version v);
570            void setMinVersion(Version v);
571    
572      private:      private:
573          DataType m_type;          DataType m_type;
# Line 390  namespace Serialization { Line 577  namespace Serialization {
577          RawData m_data;          RawData m_data;
578          std::vector<Member> m_members;          std::vector<Member> m_members;
579    
580    #if LIBGIG_SERIALIZATION_INTERNAL
581          friend String _encodePrimitiveValue(const Object& obj);          friend String _encodePrimitiveValue(const Object& obj);
582          friend Object _popObjectBlob(const char*& p, const char* end);          friend Object _popObjectBlob(const char*& p, const char* end);
583          friend void _popPrimitiveValue(const char*& p, const char* end, Object& obj);          friend void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
584          friend String _primitiveObjectValueToString(const Object& obj);          friend String _primitiveObjectValueToString(const Object& obj);
585            // |
586            template<typename T>
587            friend T _primitiveObjectValueToNumber(const Object& obj);
588    #endif // LIBGIG_SERIALIZATION_INTERNAL
589    
590          friend class Archive;          friend class Archive;
591      };      };
592    
# Line 509  namespace Serialization { Line 702  namespace Serialization {
702       * Note that there is only one method that you need to implement. So the       * Note that there is only one method that you need to implement. So the
703       * respective serialize() method implementation of your classes/structs are       * respective serialize() method implementation of your classes/structs are
704       * both called for serialization, as well as for deserialization!       * both called for serialization, as well as for deserialization!
705         *
706         * In case you need to enforce backward incompatiblity for one of your C++
707         * classes, you can do so by setting a version and minimum version for your
708         * class (see @c setVersion() and @c setMinVersion() for details).
709       */       */
710      class Archive {      class Archive {
711      public:      public:
# Line 517  namespace Serialization { Line 714  namespace Serialization {
714          Archive(const uint8_t* data, size_t size);          Archive(const uint8_t* data, size_t size);
715          virtual ~Archive();          virtual ~Archive();
716    
717            /** @brief Initiate serialization.
718             *
719             * Initiates serialization of all native C++ objects, which means
720             * capturing and storing the current data of all your C++ objects as
721             * content of this Archive.
722             *
723             * This framework has a concept of a "root" object which you must pass
724             * to this method. The root object is the starting point for
725             * serialization of your C++ objects. The framework will then
726             * recursively serialize all members of that C++ object an continue to
727             * serialize all other C++ objects that it might contain or point to.
728             *
729             * After this method returned, you might traverse all serialized objects
730             * by walking them starting from the rootObject(). You might then modify
731             * that abstract reflection of your C++ objects and finally you might
732             * call rawData() to get an encoded raw data stream which you might use
733             * for sending it "over wire" to somewhere where it is going to be
734             * deserialized later on.
735             *
736             * Note that whenever you call this method, the previous content of this
737             * Archive will first be cleared.
738             *
739             * @param obj - native C++ root object where serialization shall start
740             * @see Archive::operator<<()
741             */
742          template<typename T>          template<typename T>
743          void serialize(const T* obj) {          void serialize(const T* obj) {
744              m_operation = OPERATION_SERIALIZE;              m_operation = OPERATION_SERIALIZE;
# Line 528  namespace Serialization { Line 750  namespace Serialization {
750              m_operation = OPERATION_NONE;              m_operation = OPERATION_NONE;
751          }          }
752    
753            /** @brief Initiate deserialization.
754             *
755             * Initiates deserialization of all native C++ objects, which means all
756             * your C++ objects will be restored with the values contained in this
757             * Archive. So that also means calling deserialize() only makes sense if
758             * this a non-empty Archive, which i.e. is the case if you either called
759             * serialize() with this Archive object before or if you passed a
760             * previously serialized raw data stream to the constructor of this
761             * Archive object.
762             *
763             * This framework has a concept of a "root" object which you must pass
764             * to this method. The root object is the starting point for
765             * deserialization of your C++ objects. The framework will then
766             * recursively deserialize all members of that C++ object an continue to
767             * deserialize all other C++ objects that it might contain or point to,
768             * according to the values stored in this Archive.
769             *
770             * @param obj - native C++ root object where deserialization shall start
771             * @see Archive::operator>>()
772             *
773             * @throws Exception if the data stored in this Archive cannot be
774             *         restored to the C++ objects passed to this method, i.e.
775             *         because of version or type incompatibilities.
776             */
777          template<typename T>          template<typename T>
778          void deserialize(T* obj) {          void deserialize(T* obj) {
779              Archive a;              Archive a;
# Line 538  namespace Serialization { Line 784  namespace Serialization {
784              m_operation = OPERATION_NONE;              m_operation = OPERATION_NONE;
785          }          }
786    
787            /** @brief Initiate serialization of your C++ objects.
788             *
789             * Same as calling @c serialize(), this is just meant if you prefer
790             * to use operator based code instead, which you might find to be more
791             * intuitive.
792             *
793             * Example:
794             * @code
795             * Archive a;
796             * a << myRootObject;
797             * @endcode
798             *
799             * @see Archive::serialize() for more details.
800             */
801          template<typename T>          template<typename T>
802          void operator<<(const T& obj) {          void operator<<(const T& obj) {
803              serialize(&obj);              serialize(&obj);
804          }          }
805    
806            /** @brief Initiate deserialization of your C++ objects.
807             *
808             * Same as calling @c deserialize(), this is just meant if you prefer
809             * to use operator based code instead, which you might find to be more
810             * intuitive.
811             *
812             * Example:
813             * @code
814             * Archive a(rawDataStream);
815             * a >> myRootObject;
816             * @endcode
817             *
818             * @throws Exception if the data stored in this Archive cannot be
819             *         restored to the C++ objects passed to this method, i.e.
820             *         because of version or type incompatibilities.
821             *
822             * @see Archive::deserialize() for more details.
823             */
824          template<typename T>          template<typename T>
825          void operator>>(T& obj) {          void operator>>(T& obj) {
826              deserialize(&obj);              deserialize(&obj);
# Line 551  namespace Serialization { Line 829  namespace Serialization {
829          const RawData& rawData();          const RawData& rawData();
830          virtual String rawDataFormat() const;          virtual String rawDataFormat() const;
831    
832            /** @brief Serialize a native C/C++ member variable.
833             *
834             * This method is usually called by the serialize() method
835             * implementation of your C/C++ structs and classes, for each of the
836             * member variables that shall be serialized and deserialized
837             * automatically with this framework. It is recommend that you are not
838             * using this method name directly, but rather define a short hand C
839             * macro in your .cpp file like:
840             * @code
841             * #define SRLZ(member) \
842             *   archive->serializeMember(*this, member, #member);
843             *
844             * void Foo::serialize(Serialization::Archive* archive) {
845             *     SRLZ(a);
846             *     SRLZ(b);
847             *     SRLZ(c);
848             * }
849             * @endcode
850             * As you can see, using such a macro makes your code more readable and
851             * less error prone.
852             *
853             * It is completely up to you to decide which ones of your member
854             * variables shall automatically be serialized and deserialized with
855             * this framework. Only those member variables which are registered by
856             * calling this method will be serialized and deserialized. It does not
857             * really matter in which order you register your individiual member
858             * variables by calling this method, but the sequence is actually stored
859             * as meta information with the resulting archive and the resulting raw
860             * data stream. That meta information might then be used by this
861             * framework to automatically correct and adapt deserializing that
862             * archive later on for a future (or older) and potentially heavily
863             * modified version of your software. So it is recommended, even though
864             * also not required, that you may retain the sequence of your
865             * serializeMember() calls for your individual C++ classes' members over
866             * all your software versions, to retain backward compatibility of older
867             * archives as much as possible.
868             *
869             * @param nativeObject - native C++ object to be registered for
870             *                       serialization / deserialization
871             * @param nativeMember - native C++ member variable of @a nativeObject
872             *                       to be registered for serialization /
873             *                       deserialization
874             * @param memberName - name of @a nativeMember to be stored with this
875             *                     archive
876             */
877          template<typename T_classType, typename T_memberType>          template<typename T_classType, typename T_memberType>
878          void serializeMember(const T_classType& nativeObject, const T_memberType& nativeMember, const char* memberName) {          void serializeMember(const T_classType& nativeObject, const T_memberType& nativeMember, const char* memberName) {
879              const size_t offset =              const size_t offset =
880              ((const uint8_t*)(const void*)&nativeMember) -                  ((const uint8_t*)(const void*)&nativeMember) -
881              ((const uint8_t*)(const void*)&nativeObject);                  ((const uint8_t*)(const void*)&nativeObject);
882              const UIDChain uids = UIDChainResolver<T_memberType>(nativeMember);              const UIDChain uids = UIDChainResolver<T_memberType>(nativeMember);
883              const DataType type = DataType::dataTypeOf(nativeMember);              const DataType type = DataType::dataTypeOf(nativeMember);
884              const Member member(memberName, uids[0], offset, type);              const Member member(memberName, uids[0], offset, type);
# Line 579  namespace Serialization { Line 902  namespace Serialization {
902              }              }
903          }          }
904    
905            /** @brief Set current version number for your C++ class.
906             *
907             * By calling this method you can define a version number for your
908             * current C++ class (that is a version for its current data structure
909             * layout and method implementations) that is going to be stored along
910             * with the serialized archive. Only call this method if you really want
911             * to constrain compatibility of your C++ class.
912             *
913             * Along with calling @c setMinVersion() this provides a way for you
914             * to constrain backward compatibility regarding serialization and
915             * deserialization of your C++ class which the Archive class will obey
916             * to. If required, then typically you might do so in your
917             * @c serialize() method implementation like:
918             * @code
919             * #define SRLZ(member) \
920             *   archive->serializeMember(*this, member, #member);
921             *
922             * void Foo::serialize(Serialization::Archive* archive) {
923             *     // when serializing: the current version of this class that is
924             *     // going to be stored with the serialized archive
925             *     archive->setVersion(*this, 6);
926             *     // when deserializing: the minimum version this C++ class is
927             *     // compatible with
928             *     archive->setMinVersion(*this, 3);
929             *     // actual data mebers to serialize / deserialize
930             *     SRLZ(a);
931             *     SRLZ(b);
932             *     SRLZ(c);
933             * }
934             * @endcode
935             * In this example above, the C++ class "Foo" would be serialized along
936             * with the version number @c 6 and minimum version @c 3 as additional
937             * meta information in the resulting archive (and its raw data stream
938             * respectively).
939             *
940             * When deserializing archives with the example C++ class code above,
941             * the Archive object would check whether your originally serialized
942             * C++ "Foo" object had at least version number @c 3, if not the
943             * deserialization process would automatically be stopped with a
944             * @c Serialization::Exception, claiming that the classes are version
945             * incompatible.
946             *
947             * But also consider the other way around: you might have serialized
948             * your latest version of your C++ class, and might deserialize that
949             * archive with an older version of your C++ class. In that case it will
950             * likewise be checked whether the version of that old C++ class is at
951             * least as high as the minimum version set with the already seralized
952             * bleeding edge C++ class.
953             *
954             * Since this Serialization / deserialization framework is designed to
955             * be robust on changes to your C++ classes and aims trying to
956             * deserialize all your C++ objects correctly even if your C++ classes
957             * have seen substantial software changes in the meantime; you might
958             * sometimes see it as necessary to constrain backward compatibility
959             * this way. Because obviously there are certain things this framework
960             * can cope with, like for example that you renamed a data member while
961             * keeping the layout consistent, or that you have added new members to
962             * your C++ class or simply changed the order of your members in your
963             * C++ class. But what this framework cannot detect is for example if
964             * you changed the semantics of the values stored with your members, or
965             * even substantially changed the algorithms in your class methods such
966             * that they would not handle the data of your C++ members in the same
967             * and correct way anymore.
968             *
969             * @param nativeObject - your C++ object you want to set a version for
970             * @param v - the version number to set for your C++ class (by default,
971             *            that is if you do not explicitly call this method, then
972             *            your C++ object will be stored with version number @c 0 ).
973             */
974            template<typename T_classType>
975            void setVersion(const T_classType& nativeObject, Version v) {
976                const UID uid = UID::from(nativeObject);
977                Object& obj = m_allObjects[uid];
978                if (!obj) {
979                    const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
980                    const DataType type = DataType::dataTypeOf(nativeObject);
981                    obj = Object(uids, type);
982                }
983                setVersion(obj, v);
984            }
985    
986            /** @brief Set a minimum version number for your C++ class.
987             *
988             * Call this method to define a minimum version that your current C++
989             * class implementation would be compatible with when it comes to
990             * deserialization of an archive containing an object of your C++ class.
991             * Like the version information, the minimum version will also be stored
992             * for objects of your C++ class with the resulting archive (and its
993             * resulting raw data stream respectively).
994             *
995             * When you start to constrain version compatibility of your C++ class
996             * you usually start by using 1 as version and 1 as minimum version.
997             * So it is eligible to set the same number to both version and minimum
998             * version. However you must @b not set a minimum version higher than
999             * version. Doing so would not raise an exception, but the resulting
1000             * behavior would be undefined.
1001             *
1002             * It is not relevant whether you first set version and then minimum
1003             * version or vice versa. It is also not relevant when exactly you set
1004             * those two numbers, even though usually you would set both in your
1005             * serialize() method implementation.
1006             *
1007             * @see @c setVersion() for more details about this overall topic.
1008             *
1009             * @param nativeObject - your C++ object you want to set a version for
1010             * @param v - the minimum version you want to define for your C++ class
1011             *            (by default, that is if you do not explicitly call this
1012             *            method, then a minium version of @c 0 is assumed for your
1013             *            C++ class instead).
1014             */
1015            template<typename T_classType>
1016            void setMinVersion(const T_classType& nativeObject, Version v) {
1017                const UID uid = UID::from(nativeObject);
1018                Object& obj = m_allObjects[uid];
1019                if (!obj) {
1020                    const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
1021                    const DataType type = DataType::dataTypeOf(nativeObject);
1022                    obj = Object(uids, type);
1023                }
1024                setMinVersion(obj, v);
1025            }
1026    
1027          virtual void decode(const RawData& data);          virtual void decode(const RawData& data);
1028          virtual void decode(const uint8_t* data, size_t size);          virtual void decode(const uint8_t* data, size_t size);
1029          void clear();          void clear();
# Line 593  namespace Serialization { Line 1038  namespace Serialization {
1038          void setBoolValue(Object& object, bool value);          void setBoolValue(Object& object, bool value);
1039          void setEnumValue(Object& object, uint64_t value);          void setEnumValue(Object& object, uint64_t value);
1040          String valueAsString(const Object& object);          String valueAsString(const Object& object);
1041            int64_t valueAsInt(const Object& object);
1042            double valueAsReal(const Object& object);
1043            bool valueAsBool(const Object& object);
1044            void setVersion(Object& object, Version v);
1045            void setMinVersion(Object& object, Version v);
1046          String name() const;          String name() const;
1047          void setName(String name);          void setName(String name);
1048          String comment() const;          String comment() const;
# Line 622  namespace Serialization { Line 1072  namespace Serialization {
1072          class UIDChainResolver<T*> {          class UIDChainResolver<T*> {
1073          public:          public:
1074              UIDChainResolver(const T*& data) {              UIDChainResolver(const T*& data) {
1075                  m_uid.push_back((UID) { &data, sizeof(data) });                  const UID uids[2] = {
1076                  m_uid.push_back((UID) { data, sizeof(*data) });                      { &data, sizeof(data) },
1077                        { data, sizeof(*data) }
1078                    };
1079                    m_uid.push_back(uids[0]);
1080                    m_uid.push_back(uids[1]);
1081              }              }
1082    
1083              operator UIDChain() const { return m_uid; }              operator UIDChain() const { return m_uid; }
# Line 663  namespace Serialization { Line 1117  namespace Serialization {
1117    
1118          // Automatically handles recursion for class/struct types, while ignoring all primitive types.          // Automatically handles recursion for class/struct types, while ignoring all primitive types.
1119          template<typename T>          template<typename T>
1120          struct SerializationRecursion : SerializationRecursionImpl<T, __is_class(T)> {          struct SerializationRecursion : SerializationRecursionImpl<T, LIBGIG_IS_CLASS(T)> {
1121          };          };
1122    
1123          class ObjectPool : public std::map<UID,Object> {          class ObjectPool : public std::map<UID,Object> {
# Line 701  namespace Serialization { Line 1155  namespace Serialization {
1155              Archive& m_src;              Archive& m_src;
1156          };          };
1157    
1158            enum operation_t {
1159                OPERATION_NONE,
1160                OPERATION_SERIALIZE,
1161                OPERATION_DESERIALIZE
1162            };
1163    
1164          virtual void encode();          virtual void encode();
1165    
1166          ObjectPool m_allObjects;          ObjectPool m_allObjects;
# Line 722  namespace Serialization { Line 1182  namespace Serialization {
1182          public:          public:
1183              String Message;              String Message;
1184    
1185              Exception(String Message) { Exception::Message = Message; }              Exception(String format, ...);
1186                Exception(String format, va_list arg);
1187              void PrintMessage();              void PrintMessage();
1188              virtual ~Exception() {}              virtual ~Exception() {}
1189    
1190            protected:
1191                Exception();
1192                static String assemble(String format, va_list arg);
1193      };      };
1194    
1195  } // namespace Serialization  } // namespace Serialization

Legend:
Removed from v.3156  
changed lines
  Added in v.3392

  ViewVC Help
Powered by ViewVC