/[svn]/libgig/trunk/src/Serialization.h
ViewVC logotype

Contents of /libgig/trunk/src/Serialization.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3167 - (show annotations) (download) (as text)
Tue May 9 16:32:07 2017 UTC (6 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 29173 byte(s)
* More old compiler backward compatibility fixes.

1 /***************************************************************************
2 * *
3 * Copyright (C) 2017 Christian Schoenebeck *
4 * <cuse@users.sourceforge.net> *
5 * *
6 * This library is part of libgig. *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef LIBGIG_SERIALIZATION_H
25 #define LIBGIG_SERIALIZATION_H
26
27 #ifdef HAVE_CONFIG_H
28 # include <config.h>
29 #endif
30
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <typeinfo>
34 #include <string>
35 #include <vector>
36 #include <map>
37 #include <time.h>
38 #if __cplusplus < 201103L
39 # include <tr1/type_traits>
40 # define LIBGIG_IS_CLASS(type) std::tr1::__is_union_or_class<type>::value //NOTE: without compiler support we cannot distinguish union from class
41 #else
42 # define LIBGIG_IS_CLASS(type) __is_class(type)
43 #endif
44
45 /** @brief Serialization / deserialization framework.
46 *
47 * See class Archive as starting point for how to implement serialization and
48 * deserialization with your application.
49 *
50 * The classes in this namespace allow to serialize and deserialize native
51 * C++ objects in a portable, easy and flexible way. Serialization is a
52 * technique that allows to transform the current state and data of native
53 * (in this case C++) objects into a data stream (including all other objects
54 * the "serialized" objects relate to); the data stream may then be sent over
55 * "wire" (for example via network connection to another computer, which might
56 * also have a different OS, CPU architecture, native memory word size and
57 * endian type); and finally the data stream would be "deserialized" on that
58 * receiver side, that is transformed again to modify all objects and data
59 * structures on receiver side to resemble the objects' state and data as it
60 * was originally on sender side.
61 *
62 * In contrast to many other already existing serialization frameworks, this
63 * implementation has a strong focus on robustness regarding long-term changes
64 * to the serialized C++ classes of the serialized objects. So even if sender
65 * and receiver are using different versions of their serialized/deserialized
66 * C++ classes, structures and data types (thus having different data structure
67 * layout to a certain extent), this framework aims trying to automatically
68 * adapt its serialization and deserialization process in that case so that
69 * the deserialized objects on receiver side would still reflect the overall
70 * expected states and overall data as intended by the sender. For being able to
71 * do so, this framework stores all kind of additional information about each
72 * serialized object and each data structure member (for example name of each
73 * data structure member, but also the offset of each member within its
74 * containing data structure, precise data types, and more).
75 *
76 * Like most other serialization frameworks, this frameworks does not require a
77 * tree-structured layout of the serialized data structures. So it automatically
78 * handles also cyclic dependencies between serialized data structures
79 * correctly, without i.e. causing endless recursion or redundancy.
80 *
81 * Additionally this framework also allows partial deserialization. Which means
82 * the receiver side may for example decide that it wants to restrict
83 * deserialization so that it would only modify certain objects or certain
84 * members by the deserialization process, leaving all other ones untouched.
85 * So this partial deserialization technique for example allows to implement
86 * flexible preset features for applications in a powerful and easy way.
87 */
88 namespace Serialization {
89
90 // just symbol prototyping
91 class DataType;
92 class Object;
93 class Member;
94 class Archive;
95 class ObjectPool;
96 class Exception;
97
98 typedef std::string String;
99
100 typedef std::vector<uint8_t> RawData;
101
102 typedef void* ID;
103
104 typedef uint32_t Version;
105
106 enum operation_t {
107 OPERATION_NONE,
108 OPERATION_SERIALIZE,
109 OPERATION_DESERIALIZE
110 };
111
112 enum time_base_t {
113 LOCAL_TIME,
114 UTC_TIME
115 };
116
117 template<typename T>
118 bool IsEnum(const T& data) {
119 #if __cplusplus < 201103L
120 return std::tr1::is_enum<T>::value;
121 #else
122 return __is_enum(T);
123 #endif
124 }
125
126 template<typename T>
127 bool IsUnion(const T& data) {
128 #if __cplusplus < 201103L
129 return false; // without compiler support we cannot distinguish union from class
130 #else
131 return __is_union(T);
132 #endif
133 }
134
135 template<typename T>
136 bool IsClass(const T& data) {
137 #if __cplusplus < 201103L
138 return std::tr1::__is_union_or_class<T>::value; // without compiler support we cannot distinguish union from class
139 #else
140 return __is_class(T);
141 #endif
142 }
143
144 /*template<typename T>
145 bool IsTrivial(T data) {
146 return __is_trivial(T);
147 }*/
148
149 /*template<typename T>
150 bool IsPOD(T data) {
151 return __is_pod(T);
152 }*/
153
154 /** @brief Unique identifier for one specific C++ object, member or fundamental variable.
155 *
156 * Reflects a unique identifier for one specific serialized C++ class
157 * instance, struct instance, member, primitive pointer, or fundamental
158 * variables.
159 */
160 class UID {
161 public:
162 ID id;
163 size_t size;
164
165 bool isValid() const;
166 operator bool() const { return isValid(); }
167 //bool operator()() const { return isValid(); }
168 bool operator==(const UID& other) const { return id == other.id && size == other.size; }
169 bool operator!=(const UID& other) const { return id != other.id || size != other.size; }
170 bool operator<(const UID& other) const { return id < other.id || (id == other.id && size < other.size); }
171 bool operator>(const UID& other) const { return id > other.id || (id == other.id && size > other.size); }
172
173 template<typename T>
174 static UID from(const T& obj) {
175 return Resolver<T>::resolve(obj);
176 }
177
178 protected:
179 // UID resolver for non-pointer types
180 template<typename T>
181 struct Resolver {
182 static UID resolve(const T& obj) {
183 return UID { (ID) &obj, sizeof(obj) };
184 }
185 };
186
187 // UID resolver for pointer types (of 1st degree)
188 template<typename T>
189 struct Resolver<T*> {
190 static UID resolve(const T* const & obj) {
191 return UID { (ID) obj, sizeof(*obj) };
192 }
193 };
194 };
195
196 /**
197 * Reflects an invalid UID and behaves similar to NULL as invalid value for
198 * pointer types.
199 */
200 extern const UID NO_UID;
201
202 typedef std::vector<UID> UIDChain;
203
204 // prototyping of private internal friend functions
205 static String _encodePrimitiveValue(const Object& obj);
206 static DataType _popDataTypeBlob(const char*& p, const char* end);
207 static Member _popMemberBlob(const char*& p, const char* end);
208 static Object _popObjectBlob(const char*& p, const char* end);
209 static void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
210 static String _primitiveObjectValueToString(const Object& obj);
211
212 /** @brief Abstract reflection of a native C++ data type.
213 *
214 * Provides detailed information about a C++ data type, whether it is a
215 * fundamental C/C++ data type (like int, float, char, etc.) or custom
216 * defined data type like a C++ class, struct, enum, as well as other
217 * features of the data type like its native memory size and more.
218 */
219 class DataType {
220 public:
221 DataType();
222 size_t size() const { return m_size; }
223 bool isValid() const;
224 bool isPointer() const;
225 bool isClass() const;
226 bool isPrimitive() const;
227 bool isInteger() const;
228 bool isReal() const;
229 bool isBool() const;
230 bool isEnum() const;
231 bool isSigned() const;
232 operator bool() const { return isValid(); }
233 //bool operator()() const { return isValid(); }
234 bool operator==(const DataType& other) const;
235 bool operator!=(const DataType& other) const;
236 bool operator<(const DataType& other) const;
237 bool operator>(const DataType& other) const;
238 String asLongDescr() const;
239 String baseTypeName() const { return m_baseTypeName; }
240 String customTypeName() const { return m_customTypeName; }
241
242 template<typename T>
243 static DataType dataTypeOf(const T& data) {
244 return Resolver<T>::resolve(data);
245 }
246
247 protected:
248 DataType(bool isPointer, int size, String baseType, String customType = "");
249
250 template<typename T, bool T_isPointer>
251 struct ResolverBase {
252 static DataType resolve(const T& data) {
253 const std::type_info& type = typeid(data);
254 const int sz = sizeof(data);
255
256 // for primitive types we are using our own type names instead of
257 // using std:::type_info::name(), because the precise output of the
258 // latter may vary between compilers
259 if (type == typeid(int8_t)) return DataType(T_isPointer, sz, "int8");
260 if (type == typeid(uint8_t)) return DataType(T_isPointer, sz, "uint8");
261 if (type == typeid(int16_t)) return DataType(T_isPointer, sz, "int16");
262 if (type == typeid(uint16_t)) return DataType(T_isPointer, sz, "uint16");
263 if (type == typeid(int32_t)) return DataType(T_isPointer, sz, "int32");
264 if (type == typeid(uint32_t)) return DataType(T_isPointer, sz, "uint32");
265 if (type == typeid(int64_t)) return DataType(T_isPointer, sz, "int64");
266 if (type == typeid(uint64_t)) return DataType(T_isPointer, sz, "uint64");
267 if (type == typeid(bool)) return DataType(T_isPointer, sz, "bool");
268 if (type == typeid(float)) return DataType(T_isPointer, sz, "real32");
269 if (type == typeid(double)) return DataType(T_isPointer, sz, "real64");
270
271 if (IsEnum(data)) return DataType(T_isPointer, sz, "enum", rawCppTypeNameOf(data));
272 if (IsUnion(data)) return DataType(T_isPointer, sz, "union", rawCppTypeNameOf(data));
273 if (IsClass(data)) return DataType(T_isPointer, sz, "class", rawCppTypeNameOf(data));
274
275 return DataType();
276 }
277 };
278
279 // DataType resolver for non-pointer types
280 template<typename T>
281 struct Resolver : ResolverBase<T,false> {
282 static DataType resolve(const T& data) {
283 return ResolverBase<T,false>::resolve(data);
284 }
285 };
286
287 // DataType resolver for pointer types (of 1st degree)
288 template<typename T>
289 struct Resolver<T*> : ResolverBase<T,true> {
290 static DataType resolve(const T*& data) {
291 return ResolverBase<T,true>::resolve(*data);
292 }
293 };
294
295 template<typename T>
296 static String rawCppTypeNameOf(const T& data) {
297 #if defined _MSC_VER // Microsoft compiler ...
298 # warning type_info::raw_name() demangling has not been tested yet with Microsoft compiler! Feedback appreciated!
299 String name = typeid(data).raw_name(); //NOTE: I haven't checked yet what MSC actually outputs here exactly
300 #else // i.e. especially GCC and clang ...
301 String name = typeid(data).name();
302 #endif
303 //while (!name.empty() && name[0] >= 0 && name[0] <= 9)
304 // name = name.substr(1);
305 return name;
306 }
307
308 private:
309 String m_baseTypeName;
310 String m_customTypeName;
311 int m_size;
312 bool m_isPointer;
313
314 friend DataType _popDataTypeBlob(const char*& p, const char* end);
315 friend class Archive;
316 };
317
318 /** @brief Abstract reflection of a native C++ class/struct's member variable.
319 *
320 * Provides detailed information about a specific C++ member variable of
321 * serialized C++ object, like its C++ data type, offset of this member
322 * within its containing data structure/class, its C++ member variable name
323 * and more.
324 */
325 class Member {
326 public:
327 Member();
328 UID uid() const { return m_uid; }
329 String name() const { return m_name; }
330 size_t offset() const { return m_offset; }
331 const DataType& type() const { return m_type; }
332 bool isValid() const;
333 operator bool() const { return isValid(); }
334 //bool operator()() const { return isValid(); }
335 bool operator==(const Member& other) const;
336 bool operator!=(const Member& other) const;
337 bool operator<(const Member& other) const;
338 bool operator>(const Member& other) const;
339
340 protected:
341 Member(String name, UID uid, size_t offset, DataType type);
342 friend class Archive;
343
344 private:
345 UID m_uid;
346 size_t m_offset;
347 String m_name;
348 DataType m_type;
349
350 friend Member _popMemberBlob(const char*& p, const char* end);
351 };
352
353 /** @brief Abstract reflection of a native C++ class/struct instance.
354 *
355 * Provides detailed information about a specific serialized C++ object,
356 * like its C++ member variables, its C++ class/struct name, its native
357 * memory size and more.
358 */
359 class Object {
360 public:
361 Object();
362 Object(UIDChain uidChain, DataType type);
363
364 UID uid(int index = 0) const {
365 return (index < m_uid.size()) ? m_uid[index] : NO_UID;
366 }
367
368 const UIDChain& uidChain() const { return m_uid; }
369 const DataType& type() const { return m_type; }
370 const RawData& rawData() const { return m_data; }
371
372 Version version() const { return m_version; }
373
374 void setVersion(Version v) {
375 m_version = v;
376 }
377
378 Version minVersion() const { return m_minVersion; }
379
380 void setMinVersion(Version v) {
381 m_minVersion = v;
382 }
383
384 bool isVersionCompatibleTo(const Object& other) const;
385
386 std::vector<Member>& members() { return m_members; }
387 const std::vector<Member>& members() const { return m_members; }
388 Member memberNamed(String name) const;
389 Member memberByUID(const UID& uid) const;
390 std::vector<Member> membersOfType(const DataType& type) const;
391 int sequenceIndexOf(const Member& member) const;
392 bool isValid() const;
393 operator bool() const { return isValid(); }
394 //bool operator()() const { return isValid(); }
395 bool operator==(const Object& other) const;
396 bool operator!=(const Object& other) const;
397 bool operator<(const Object& other) const;
398 bool operator>(const Object& other) const;
399
400 protected:
401 void remove(const Member& member);
402
403 private:
404 DataType m_type;
405 UIDChain m_uid;
406 Version m_version;
407 Version m_minVersion;
408 RawData m_data;
409 std::vector<Member> m_members;
410
411 friend String _encodePrimitiveValue(const Object& obj);
412 friend Object _popObjectBlob(const char*& p, const char* end);
413 friend void _popPrimitiveValue(const char*& p, const char* end, Object& obj);
414 friend String _primitiveObjectValueToString(const Object& obj);
415 friend class Archive;
416 };
417
418 /** @brief Destination container for serialization, and source container for deserialization.
419 *
420 * This is the main class for implementing serialization and deserialization
421 * with your C++ application. This framework does not require a a tree
422 * structured layout of your C++ objects being serialized/deserialized, it
423 * uses a concept of a "root" object though. So to start serialization
424 * construct an empty Archive object and then instruct it to serialize your
425 * C++ objects by pointing it to your "root" object:
426 * @code
427 * Archive a;
428 * a.serialize(&myRootObject);
429 * @endcode
430 * Or if you prefer the look of operator based code:
431 * @code
432 * Archive a;
433 * a << myRootObject;
434 * @endcode
435 * The Archive object will then serialize all members of the passed C++
436 * object, and will recursively serialize all other C++ objects which it
437 * contains or points to. So the root object is the starting point for the
438 * overall serialization. After the serialize() method returned, you can
439 * then access the serialized data stream by calling rawData() and send that
440 * data stream over "wire", or store it on disk or whatever you may intend
441 * to do with it.
442 *
443 * Then on receiver side likewise, you create a new Archive object, pass the
444 * received data stream i.e. via constructor to the Archive object and call
445 * deserialize() by pointing it to the root object on receiver side:
446 * @code
447 * Archive a(rawDataStream);
448 * a.deserialize(&myRootObject);
449 * @endcode
450 * Or with operator instead:
451 * @code
452 * Archive a(rawDataStream);
453 * a >> myRootObject;
454 * @endcode
455 * Now this framework automatically handles serialization and
456 * deserialization of fundamental data types automatically for you (like
457 * i.e. char, int, long int, float, double, etc.). However for your own
458 * custom C++ classes and structs you must implement one method which
459 * defines which members of your class should actually be serialized and
460 * deserialized. That method to be added must have the following signature:
461 * @code
462 * void serialize(Serialization::Archive* archive);
463 * @endcode
464 * So let's say you have the following simple data structures:
465 * @code
466 * struct Foo {
467 * int a;
468 * bool b;
469 * double c;
470 * };
471 *
472 * struct Bar {
473 * char one;
474 * float two;
475 * Foo foo1;
476 * Foo* pFoo2;
477 * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
478 * };
479 * @endcode
480 * So in order to be able to serialize and deserialize objects of those two
481 * structures you would first add the mentioned method to each struct
482 * definition (i.e. in your header file):
483 * @code
484 * struct Foo {
485 * int a;
486 * bool b;
487 * double c;
488 *
489 * void serialize(Serialization::Archive* archive);
490 * };
491 *
492 * struct Bar {
493 * char one;
494 * float two;
495 * Foo foo1;
496 * Foo* pFoo2;
497 * Foo* pFoo3DontTouchMe; // shall not be serialized/deserialized
498 *
499 * void serialize(Serialization::Archive* archive);
500 * };
501 * @endcode
502 * And then you would implement those two new methods like this (i.e. in
503 * your .cpp file):
504 * @code
505 * #define SRLZ(member) \
506 * archive->serializeMember(*this, member, #member);
507 *
508 * void Foo::serialize(Serialization::Archive* archive) {
509 * SRLZ(a);
510 * SRLZ(b);
511 * SRLZ(c);
512 * }
513 *
514 * void Bar::serialize(Serialization::Archive* archive) {
515 * SRLZ(one);
516 * SRLZ(two);
517 * SRLZ(foo1);
518 * SRLZ(pFoo2);
519 * // leaving out pFoo3DontTouchMe here
520 * }
521 * @endcode
522 * Now when you serialize such a Bar object, this framework will also
523 * automatically serialize the respective Foo object(s) accordingly, also
524 * for the pFoo2 pointer for instance (as long as it is not a NULL pointer
525 * that is).
526 *
527 * Note that there is only one method that you need to implement. So the
528 * respective serialize() method implementation of your classes/structs are
529 * both called for serialization, as well as for deserialization!
530 */
531 class Archive {
532 public:
533 Archive();
534 Archive(const RawData& data);
535 Archive(const uint8_t* data, size_t size);
536 virtual ~Archive();
537
538 template<typename T>
539 void serialize(const T* obj) {
540 m_operation = OPERATION_SERIALIZE;
541 m_allObjects.clear();
542 m_rawData.clear();
543 m_root = UID::from(obj);
544 const_cast<T*>(obj)->serialize(this);
545 encode();
546 m_operation = OPERATION_NONE;
547 }
548
549 template<typename T>
550 void deserialize(T* obj) {
551 Archive a;
552 m_operation = OPERATION_DESERIALIZE;
553 obj->serialize(&a);
554 a.m_root = UID::from(obj);
555 Syncer s(a, *this);
556 m_operation = OPERATION_NONE;
557 }
558
559 template<typename T>
560 void operator<<(const T& obj) {
561 serialize(&obj);
562 }
563
564 template<typename T>
565 void operator>>(T& obj) {
566 deserialize(&obj);
567 }
568
569 const RawData& rawData();
570 virtual String rawDataFormat() const;
571
572 template<typename T_classType, typename T_memberType>
573 void serializeMember(const T_classType& nativeObject, const T_memberType& nativeMember, const char* memberName) {
574 const size_t offset =
575 ((const uint8_t*)(const void*)&nativeMember) -
576 ((const uint8_t*)(const void*)&nativeObject);
577 const UIDChain uids = UIDChainResolver<T_memberType>(nativeMember);
578 const DataType type = DataType::dataTypeOf(nativeMember);
579 const Member member(memberName, uids[0], offset, type);
580 const UID parentUID = UID::from(nativeObject);
581 Object& parent = m_allObjects[parentUID];
582 if (!parent) {
583 const UIDChain uids = UIDChainResolver<T_classType>(nativeObject);
584 const DataType type = DataType::dataTypeOf(nativeObject);
585 parent = Object(uids, type);
586 }
587 parent.members().push_back(member);
588 const Object obj(uids, type);
589 const bool bExistsAlready = m_allObjects.count(uids[0]);
590 const bool isValidObject = obj;
591 const bool bExistingObjectIsInvalid = !m_allObjects[uids[0]];
592 if (!bExistsAlready || (bExistingObjectIsInvalid && isValidObject)) {
593 m_allObjects[uids[0]] = obj;
594 // recurse serialization for all members of this member
595 // (only for struct/class types, noop for primitive types)
596 SerializationRecursion<T_memberType>::serializeObject(this, nativeMember);
597 }
598 }
599
600 virtual void decode(const RawData& data);
601 virtual void decode(const uint8_t* data, size_t size);
602 void clear();
603 bool isModified() const;
604 void removeMember(Object& parent, const Member& member);
605 void remove(const Object& obj);
606 Object& rootObject();
607 Object& objectByUID(const UID& uid);
608 void setAutoValue(Object& object, String value);
609 void setIntValue(Object& object, int64_t value);
610 void setRealValue(Object& object, double value);
611 void setBoolValue(Object& object, bool value);
612 void setEnumValue(Object& object, uint64_t value);
613 String valueAsString(const Object& object);
614 String name() const;
615 void setName(String name);
616 String comment() const;
617 void setComment(String comment);
618 time_t timeStampCreated() const;
619 time_t timeStampModified() const;
620 tm dateTimeCreated(time_base_t base = LOCAL_TIME) const;
621 tm dateTimeModified(time_base_t base = LOCAL_TIME) const;
622
623 protected:
624 // UID resolver for non-pointer types
625 template<typename T>
626 class UIDChainResolver {
627 public:
628 UIDChainResolver(const T& data) {
629 m_uid.push_back(UID::from(data));
630 }
631
632 operator UIDChain() const { return m_uid; }
633 UIDChain operator()() const { return m_uid; }
634 private:
635 UIDChain m_uid;
636 };
637
638 // UID resolver for pointer types (of 1st degree)
639 template<typename T>
640 class UIDChainResolver<T*> {
641 public:
642 UIDChainResolver(const T*& data) {
643 m_uid.push_back(UID { &data, sizeof(data) });
644 m_uid.push_back(UID { data, sizeof(*data) });
645 }
646
647 operator UIDChain() const { return m_uid; }
648 UIDChain operator()() const { return m_uid; }
649 private:
650 UIDChain m_uid;
651 };
652
653 // SerializationRecursion for non-pointer class/struct types.
654 template<typename T, bool T_isRecursive>
655 struct SerializationRecursionImpl {
656 static void serializeObject(Archive* archive, const T& obj) {
657 const_cast<T&>(obj).serialize(archive);
658 }
659 };
660
661 // SerializationRecursion for pointers (of 1st degree) to class/structs.
662 template<typename T, bool T_isRecursive>
663 struct SerializationRecursionImpl<T*,T_isRecursive> {
664 static void serializeObject(Archive* archive, const T*& obj) {
665 if (!obj) return;
666 const_cast<T*&>(obj)->serialize(archive);
667 }
668 };
669
670 // NOOP SerializationRecursion for primitive types.
671 template<typename T>
672 struct SerializationRecursionImpl<T,false> {
673 static void serializeObject(Archive* archive, const T& obj) {}
674 };
675
676 // NOOP SerializationRecursion for pointers (of 1st degree) to primitive types.
677 template<typename T>
678 struct SerializationRecursionImpl<T*,false> {
679 static void serializeObject(Archive* archive, const T*& obj) {}
680 };
681
682 // Automatically handles recursion for class/struct types, while ignoring all primitive types.
683 template<typename T>
684 struct SerializationRecursion : SerializationRecursionImpl<T, LIBGIG_IS_CLASS(T)> {
685 };
686
687 class ObjectPool : public std::map<UID,Object> {
688 public:
689 // prevent passing obvious invalid UID values from creating a new pair entry
690 Object& operator[](const UID& k) {
691 static Object invalid;
692 if (!k.isValid()) {
693 invalid = Object();
694 return invalid;
695 }
696 return std::map<UID,Object>::operator[](k);
697 }
698 };
699
700 friend String _encode(const ObjectPool& objects);
701
702 private:
703 String _encodeRootBlob();
704 void _popRootBlob(const char*& p, const char* end);
705 void _popObjectsBlob(const char*& p, const char* end);
706
707 protected:
708 class Syncer {
709 public:
710 Syncer(Archive& dst, Archive& src);
711 protected:
712 void syncObject(const Object& dst, const Object& src);
713 void syncPrimitive(const Object& dst, const Object& src);
714 void syncPointer(const Object& dst, const Object& src);
715 void syncMember(const Member& dstMember, const Member& srcMember);
716 static Member dstMemberMatching(const Object& dstObj, const Object& srcObj, const Member& srcMember);
717 private:
718 Archive& m_dst;
719 Archive& m_src;
720 };
721
722 virtual void encode();
723
724 ObjectPool m_allObjects;
725 operation_t m_operation;
726 UID m_root;
727 RawData m_rawData;
728 bool m_isModified;
729 String m_name;
730 String m_comment;
731 time_t m_timeCreated;
732 time_t m_timeModified;
733 };
734
735 /**
736 * Will be thrown whenever an error occurs during an serialization or
737 * deserialization process.
738 */
739 class Exception {
740 public:
741 String Message;
742
743 Exception(String Message) { Exception::Message = Message; }
744 void PrintMessage();
745 virtual ~Exception() {}
746 };
747
748 } // namespace Serialization
749
750 #endif // LIBGIG_SERIALIZATION_H

  ViewVC Help
Powered by ViewVC