/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1179 - (hide annotations) (download)
Sat May 12 11:25:04 2007 UTC (12 years, 6 months ago) by persson
File size: 146157 byte(s)
* fixed write support for big-endian systems

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 schoenebeck 2 // *************** Sample ***************
282     // *
283    
284 schoenebeck 384 unsigned int Sample::Instances = 0;
285     buffer_t Sample::InternalDecompressionBuffer;
286 schoenebeck 2
287 schoenebeck 809 /** @brief Constructor.
288     *
289     * Load an existing sample or create a new one. A 'wave' list chunk must
290     * be given to this constructor. In case the given 'wave' list chunk
291     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
292     * format and sample data will be loaded from there, otherwise default
293     * values will be used and those chunks will be created when
294     * File::Save() will be called later on.
295     *
296     * @param pFile - pointer to gig::File where this sample is
297     * located (or will be located)
298     * @param waveList - pointer to 'wave' list chunk which is (or
299     * will be) associated with this sample
300     * @param WavePoolOffset - offset of this sample data from wave pool
301     * ('wvpl') list chunk
302     * @param fileNo - number of an extension file where this sample
303     * is located, 0 otherwise
304     */
305 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
306 persson 918 pInfo->UseFixedLengthStrings = true;
307 schoenebeck 2 Instances++;
308 persson 666 FileNo = fileNo;
309 schoenebeck 2
310 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
311     if (pCk3gix) {
312 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
313 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
314 schoenebeck 809 } else { // '3gix' chunk missing
315 schoenebeck 930 // by default assigned to that mandatory "Default Group"
316     pGroup = pFile->GetGroup(0);
317 schoenebeck 809 }
318 schoenebeck 2
319 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
320     if (pCkSmpl) {
321     Manufacturer = pCkSmpl->ReadInt32();
322     Product = pCkSmpl->ReadInt32();
323     SamplePeriod = pCkSmpl->ReadInt32();
324     MIDIUnityNote = pCkSmpl->ReadInt32();
325     FineTune = pCkSmpl->ReadInt32();
326     pCkSmpl->Read(&SMPTEFormat, 1, 4);
327     SMPTEOffset = pCkSmpl->ReadInt32();
328     Loops = pCkSmpl->ReadInt32();
329     pCkSmpl->ReadInt32(); // manufByt
330     LoopID = pCkSmpl->ReadInt32();
331     pCkSmpl->Read(&LoopType, 1, 4);
332     LoopStart = pCkSmpl->ReadInt32();
333     LoopEnd = pCkSmpl->ReadInt32();
334     LoopFraction = pCkSmpl->ReadInt32();
335     LoopPlayCount = pCkSmpl->ReadInt32();
336     } else { // 'smpl' chunk missing
337     // use default values
338     Manufacturer = 0;
339     Product = 0;
340 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
341 schoenebeck 809 MIDIUnityNote = 64;
342     FineTune = 0;
343     SMPTEOffset = 0;
344     Loops = 0;
345     LoopID = 0;
346     LoopStart = 0;
347     LoopEnd = 0;
348     LoopFraction = 0;
349     LoopPlayCount = 0;
350     }
351 schoenebeck 2
352     FrameTable = NULL;
353     SamplePos = 0;
354     RAMCache.Size = 0;
355     RAMCache.pStart = NULL;
356     RAMCache.NullExtensionSize = 0;
357    
358 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
359    
360 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
361     Compressed = ewav;
362     Dithered = false;
363     TruncatedBits = 0;
364 schoenebeck 2 if (Compressed) {
365 persson 437 uint32_t version = ewav->ReadInt32();
366     if (version == 3 && BitDepth == 24) {
367     Dithered = ewav->ReadInt32();
368     ewav->SetPos(Channels == 2 ? 84 : 64);
369     TruncatedBits = ewav->ReadInt32();
370     }
371 schoenebeck 2 ScanCompressedSample();
372     }
373 schoenebeck 317
374     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
375 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
376     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
377     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
378 schoenebeck 317 }
379 persson 437 FrameOffset = 0; // just for streaming compressed samples
380 schoenebeck 21
381 persson 864 LoopSize = LoopEnd - LoopStart + 1;
382 schoenebeck 2 }
383    
384 schoenebeck 809 /**
385     * Apply sample and its settings to the respective RIFF chunks. You have
386     * to call File::Save() to make changes persistent.
387     *
388     * Usually there is absolutely no need to call this method explicitly.
389     * It will be called automatically when File::Save() was called.
390     *
391 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
392 schoenebeck 809 * was provided yet
393     * @throws gig::Exception if there is any invalid sample setting
394     */
395     void Sample::UpdateChunks() {
396     // first update base class's chunks
397     DLS::Sample::UpdateChunks();
398    
399     // make sure 'smpl' chunk exists
400     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
401     if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
402     // update 'smpl' chunk
403     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
404 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
405 persson 1179 store32(&pData[0], Manufacturer);
406     store32(&pData[4], Product);
407     store32(&pData[8], SamplePeriod);
408     store32(&pData[12], MIDIUnityNote);
409     store32(&pData[16], FineTune);
410     store32(&pData[20], SMPTEFormat);
411     store32(&pData[24], SMPTEOffset);
412     store32(&pData[28], Loops);
413 schoenebeck 809
414     // we skip 'manufByt' for now (4 bytes)
415    
416 persson 1179 store32(&pData[36], LoopID);
417     store32(&pData[40], LoopType);
418     store32(&pData[44], LoopStart);
419     store32(&pData[48], LoopEnd);
420     store32(&pData[52], LoopFraction);
421     store32(&pData[56], LoopPlayCount);
422 schoenebeck 809
423     // make sure '3gix' chunk exists
424     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
425     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
426 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
427 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
428 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
429     if (pFile->pGroups) {
430     std::list<Group*>::iterator iter = pFile->pGroups->begin();
431     std::list<Group*>::iterator end = pFile->pGroups->end();
432 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
433 schoenebeck 929 if (*iter == pGroup) {
434     iSampleGroup = i;
435     break; // found
436     }
437     }
438     }
439 schoenebeck 809 // update '3gix' chunk
440     pData = (uint8_t*) pCk3gix->LoadChunkData();
441 persson 1179 store16(&pData[0], iSampleGroup);
442 schoenebeck 809 }
443    
444 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
445     void Sample::ScanCompressedSample() {
446     //TODO: we have to add some more scans here (e.g. determine compression rate)
447     this->SamplesTotal = 0;
448     std::list<unsigned long> frameOffsets;
449    
450 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
451 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
452 persson 365
453 schoenebeck 2 // Scanning
454     pCkData->SetPos(0);
455 persson 365 if (Channels == 2) { // Stereo
456     for (int i = 0 ; ; i++) {
457     // for 24 bit samples every 8:th frame offset is
458     // stored, to save some memory
459     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
460    
461     const int mode_l = pCkData->ReadUint8();
462     const int mode_r = pCkData->ReadUint8();
463     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
464     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
465    
466     if (pCkData->RemainingBytes() <= frameSize) {
467     SamplesInLastFrame =
468     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
469     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
470     SamplesTotal += SamplesInLastFrame;
471 schoenebeck 2 break;
472 persson 365 }
473     SamplesTotal += SamplesPerFrame;
474     pCkData->SetPos(frameSize, RIFF::stream_curpos);
475     }
476     }
477     else { // Mono
478     for (int i = 0 ; ; i++) {
479     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
480    
481     const int mode = pCkData->ReadUint8();
482     if (mode > 5) throw gig::Exception("Unknown compression mode");
483     const unsigned long frameSize = bytesPerFrame[mode];
484    
485     if (pCkData->RemainingBytes() <= frameSize) {
486     SamplesInLastFrame =
487     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
488     SamplesTotal += SamplesInLastFrame;
489 schoenebeck 2 break;
490 persson 365 }
491     SamplesTotal += SamplesPerFrame;
492     pCkData->SetPos(frameSize, RIFF::stream_curpos);
493 schoenebeck 2 }
494     }
495     pCkData->SetPos(0);
496    
497     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
498     if (FrameTable) delete[] FrameTable;
499     FrameTable = new unsigned long[frameOffsets.size()];
500     std::list<unsigned long>::iterator end = frameOffsets.end();
501     std::list<unsigned long>::iterator iter = frameOffsets.begin();
502     for (int i = 0; iter != end; i++, iter++) {
503     FrameTable[i] = *iter;
504     }
505     }
506    
507     /**
508     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
509     * ReleaseSampleData() to free the memory if you don't need the cached
510     * sample data anymore.
511     *
512     * @returns buffer_t structure with start address and size of the buffer
513     * in bytes
514     * @see ReleaseSampleData(), Read(), SetPos()
515     */
516     buffer_t Sample::LoadSampleData() {
517     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
518     }
519    
520     /**
521     * Reads (uncompresses if needed) and caches the first \a SampleCount
522     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
523     * memory space if you don't need the cached samples anymore. There is no
524     * guarantee that exactly \a SampleCount samples will be cached; this is
525     * not an error. The size will be eventually truncated e.g. to the
526     * beginning of a frame of a compressed sample. This is done for
527     * efficiency reasons while streaming the wave by your sampler engine
528     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
529     * that will be returned to determine the actual cached samples, but note
530     * that the size is given in bytes! You get the number of actually cached
531     * samples by dividing it by the frame size of the sample:
532 schoenebeck 384 * @code
533 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
534     * long cachedsamples = buf.Size / pSample->FrameSize;
535 schoenebeck 384 * @endcode
536 schoenebeck 2 *
537     * @param SampleCount - number of sample points to load into RAM
538     * @returns buffer_t structure with start address and size of
539     * the cached sample data in bytes
540     * @see ReleaseSampleData(), Read(), SetPos()
541     */
542     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
543     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
544     }
545    
546     /**
547     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
548     * ReleaseSampleData() to free the memory if you don't need the cached
549     * sample data anymore.
550     * The method will add \a NullSamplesCount silence samples past the
551     * official buffer end (this won't affect the 'Size' member of the
552     * buffer_t structure, that means 'Size' always reflects the size of the
553     * actual sample data, the buffer might be bigger though). Silence
554     * samples past the official buffer are needed for differential
555     * algorithms that always have to take subsequent samples into account
556     * (resampling/interpolation would be an important example) and avoids
557     * memory access faults in such cases.
558     *
559     * @param NullSamplesCount - number of silence samples the buffer should
560     * be extended past it's data end
561     * @returns buffer_t structure with start address and
562     * size of the buffer in bytes
563     * @see ReleaseSampleData(), Read(), SetPos()
564     */
565     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
566     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
567     }
568    
569     /**
570     * Reads (uncompresses if needed) and caches the first \a SampleCount
571     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
572     * memory space if you don't need the cached samples anymore. There is no
573     * guarantee that exactly \a SampleCount samples will be cached; this is
574     * not an error. The size will be eventually truncated e.g. to the
575     * beginning of a frame of a compressed sample. This is done for
576     * efficiency reasons while streaming the wave by your sampler engine
577     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
578     * that will be returned to determine the actual cached samples, but note
579     * that the size is given in bytes! You get the number of actually cached
580     * samples by dividing it by the frame size of the sample:
581 schoenebeck 384 * @code
582 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
583     * long cachedsamples = buf.Size / pSample->FrameSize;
584 schoenebeck 384 * @endcode
585 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
586     * official buffer end (this won't affect the 'Size' member of the
587     * buffer_t structure, that means 'Size' always reflects the size of the
588     * actual sample data, the buffer might be bigger though). Silence
589     * samples past the official buffer are needed for differential
590     * algorithms that always have to take subsequent samples into account
591     * (resampling/interpolation would be an important example) and avoids
592     * memory access faults in such cases.
593     *
594     * @param SampleCount - number of sample points to load into RAM
595     * @param NullSamplesCount - number of silence samples the buffer should
596     * be extended past it's data end
597     * @returns buffer_t structure with start address and
598     * size of the cached sample data in bytes
599     * @see ReleaseSampleData(), Read(), SetPos()
600     */
601     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
602     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
603     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
604     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
605     RAMCache.pStart = new int8_t[allocationsize];
606     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
607     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
608     // fill the remaining buffer space with silence samples
609     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
610     return GetCache();
611     }
612    
613     /**
614     * Returns current cached sample points. A buffer_t structure will be
615     * returned which contains address pointer to the begin of the cache and
616     * the size of the cached sample data in bytes. Use
617     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
618     * RAM.
619     *
620     * @returns buffer_t structure with current cached sample points
621     * @see LoadSampleData();
622     */
623     buffer_t Sample::GetCache() {
624     // return a copy of the buffer_t structure
625     buffer_t result;
626     result.Size = this->RAMCache.Size;
627     result.pStart = this->RAMCache.pStart;
628     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
629     return result;
630     }
631    
632     /**
633     * Frees the cached sample from RAM if loaded with
634     * <i>LoadSampleData()</i> previously.
635     *
636     * @see LoadSampleData();
637     */
638     void Sample::ReleaseSampleData() {
639     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
640     RAMCache.pStart = NULL;
641     RAMCache.Size = 0;
642     }
643    
644 schoenebeck 809 /** @brief Resize sample.
645     *
646     * Resizes the sample's wave form data, that is the actual size of
647     * sample wave data possible to be written for this sample. This call
648     * will return immediately and just schedule the resize operation. You
649     * should call File::Save() to actually perform the resize operation(s)
650     * "physically" to the file. As this can take a while on large files, it
651     * is recommended to call Resize() first on all samples which have to be
652     * resized and finally to call File::Save() to perform all those resize
653     * operations in one rush.
654     *
655     * The actual size (in bytes) is dependant to the current FrameSize
656     * value. You may want to set FrameSize before calling Resize().
657     *
658     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
659     * enlarged samples before calling File::Save() as this might exceed the
660     * current sample's boundary!
661     *
662 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
663     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
664 schoenebeck 809 * other formats will fail!
665     *
666     * @param iNewSize - new sample wave data size in sample points (must be
667     * greater than zero)
668 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
669 schoenebeck 809 * or if \a iNewSize is less than 1
670     * @throws gig::Exception if existing sample is compressed
671     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
672     * DLS::Sample::FormatTag, File::Save()
673     */
674     void Sample::Resize(int iNewSize) {
675     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
676     DLS::Sample::Resize(iNewSize);
677     }
678    
679 schoenebeck 2 /**
680     * Sets the position within the sample (in sample points, not in
681     * bytes). Use this method and <i>Read()</i> if you don't want to load
682     * the sample into RAM, thus for disk streaming.
683     *
684     * Although the original Gigasampler engine doesn't allow positioning
685     * within compressed samples, I decided to implement it. Even though
686     * the Gigasampler format doesn't allow to define loops for compressed
687     * samples at the moment, positioning within compressed samples might be
688     * interesting for some sampler engines though. The only drawback about
689     * my decision is that it takes longer to load compressed gig Files on
690     * startup, because it's neccessary to scan the samples for some
691     * mandatory informations. But I think as it doesn't affect the runtime
692     * efficiency, nobody will have a problem with that.
693     *
694     * @param SampleCount number of sample points to jump
695     * @param Whence optional: to which relation \a SampleCount refers
696     * to, if omited <i>RIFF::stream_start</i> is assumed
697     * @returns the new sample position
698     * @see Read()
699     */
700     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
701     if (Compressed) {
702     switch (Whence) {
703     case RIFF::stream_curpos:
704     this->SamplePos += SampleCount;
705     break;
706     case RIFF::stream_end:
707     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
708     break;
709     case RIFF::stream_backward:
710     this->SamplePos -= SampleCount;
711     break;
712     case RIFF::stream_start: default:
713     this->SamplePos = SampleCount;
714     break;
715     }
716     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
717    
718     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
719     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
720     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
721     return this->SamplePos;
722     }
723     else { // not compressed
724     unsigned long orderedBytes = SampleCount * this->FrameSize;
725     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
726     return (result == orderedBytes) ? SampleCount
727     : result / this->FrameSize;
728     }
729     }
730    
731     /**
732     * Returns the current position in the sample (in sample points).
733     */
734     unsigned long Sample::GetPos() {
735     if (Compressed) return SamplePos;
736     else return pCkData->GetPos() / FrameSize;
737     }
738    
739     /**
740 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
741     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
742     * the position within the sample respectively, this method honors the
743     * looping informations of the sample (if any). The sample wave stream
744     * will be decompressed on the fly if using a compressed sample. Use this
745     * method if you don't want to load the sample into RAM, thus for disk
746     * streaming. All this methods needs to know to proceed with streaming
747     * for the next time you call this method is stored in \a pPlaybackState.
748     * You have to allocate and initialize the playback_state_t structure by
749     * yourself before you use it to stream a sample:
750 schoenebeck 384 * @code
751     * gig::playback_state_t playbackstate;
752     * playbackstate.position = 0;
753     * playbackstate.reverse = false;
754     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
755     * @endcode
756 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
757     * defined or if the current read position is located within a loop area.
758     * The method already handles such cases by itself.
759     *
760 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
761     * have to use an external decompression buffer for <b>EACH</b>
762     * streaming thread to avoid race conditions and crashes!
763     *
764 schoenebeck 24 * @param pBuffer destination buffer
765     * @param SampleCount number of sample points to read
766     * @param pPlaybackState will be used to store and reload the playback
767     * state for the next ReadAndLoop() call
768 persson 864 * @param pDimRgn dimension region with looping information
769 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
770 schoenebeck 24 * @returns number of successfully read sample points
771 schoenebeck 384 * @see CreateDecompressionBuffer()
772 schoenebeck 24 */
773 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
774     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
775 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
776     uint8_t* pDst = (uint8_t*) pBuffer;
777    
778     SetPos(pPlaybackState->position); // recover position from the last time
779    
780 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
781 schoenebeck 24
782 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
783     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
784 schoenebeck 24
785 persson 864 if (GetPos() <= loopEnd) {
786     switch (loop.LoopType) {
787 schoenebeck 24
788 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
789     do {
790     // if not endless loop check if max. number of loop cycles have been passed
791     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
792 schoenebeck 24
793 persson 864 if (!pPlaybackState->reverse) { // forward playback
794     do {
795     samplestoloopend = loopEnd - GetPos();
796     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
797     samplestoread -= readsamples;
798     totalreadsamples += readsamples;
799     if (readsamples == samplestoloopend) {
800     pPlaybackState->reverse = true;
801     break;
802     }
803     } while (samplestoread && readsamples);
804     }
805     else { // backward playback
806 schoenebeck 24
807 persson 864 // as we can only read forward from disk, we have to
808     // determine the end position within the loop first,
809     // read forward from that 'end' and finally after
810     // reading, swap all sample frames so it reflects
811     // backward playback
812 schoenebeck 24
813 persson 864 unsigned long swapareastart = totalreadsamples;
814     unsigned long loopoffset = GetPos() - loop.LoopStart;
815     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
816     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
817 schoenebeck 24
818 persson 864 SetPos(reverseplaybackend);
819 schoenebeck 24
820 persson 864 // read samples for backward playback
821     do {
822     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
823     samplestoreadinloop -= readsamples;
824     samplestoread -= readsamples;
825     totalreadsamples += readsamples;
826     } while (samplestoreadinloop && readsamples);
827 schoenebeck 24
828 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
829    
830     if (reverseplaybackend == loop.LoopStart) {
831     pPlaybackState->loop_cycles_left--;
832     pPlaybackState->reverse = false;
833     }
834    
835     // reverse the sample frames for backward playback
836     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
837 schoenebeck 24 }
838 persson 864 } while (samplestoread && readsamples);
839     break;
840     }
841 schoenebeck 24
842 persson 864 case loop_type_backward: { // TODO: not tested yet!
843     // forward playback (not entered the loop yet)
844     if (!pPlaybackState->reverse) do {
845     samplestoloopend = loopEnd - GetPos();
846     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
847     samplestoread -= readsamples;
848     totalreadsamples += readsamples;
849     if (readsamples == samplestoloopend) {
850     pPlaybackState->reverse = true;
851     break;
852     }
853     } while (samplestoread && readsamples);
854 schoenebeck 24
855 persson 864 if (!samplestoread) break;
856 schoenebeck 24
857 persson 864 // as we can only read forward from disk, we have to
858     // determine the end position within the loop first,
859     // read forward from that 'end' and finally after
860     // reading, swap all sample frames so it reflects
861     // backward playback
862 schoenebeck 24
863 persson 864 unsigned long swapareastart = totalreadsamples;
864     unsigned long loopoffset = GetPos() - loop.LoopStart;
865     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
866     : samplestoread;
867     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
868 schoenebeck 24
869 persson 864 SetPos(reverseplaybackend);
870 schoenebeck 24
871 persson 864 // read samples for backward playback
872     do {
873     // if not endless loop check if max. number of loop cycles have been passed
874     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
875     samplestoloopend = loopEnd - GetPos();
876     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
877     samplestoreadinloop -= readsamples;
878     samplestoread -= readsamples;
879     totalreadsamples += readsamples;
880     if (readsamples == samplestoloopend) {
881     pPlaybackState->loop_cycles_left--;
882     SetPos(loop.LoopStart);
883     }
884     } while (samplestoreadinloop && readsamples);
885 schoenebeck 24
886 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
887 schoenebeck 24
888 persson 864 // reverse the sample frames for backward playback
889     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
890     break;
891     }
892 schoenebeck 24
893 persson 864 default: case loop_type_normal: {
894     do {
895     // if not endless loop check if max. number of loop cycles have been passed
896     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
897     samplestoloopend = loopEnd - GetPos();
898     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
899     samplestoread -= readsamples;
900     totalreadsamples += readsamples;
901     if (readsamples == samplestoloopend) {
902     pPlaybackState->loop_cycles_left--;
903     SetPos(loop.LoopStart);
904     }
905     } while (samplestoread && readsamples);
906     break;
907     }
908 schoenebeck 24 }
909     }
910     }
911    
912     // read on without looping
913     if (samplestoread) do {
914 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
915 schoenebeck 24 samplestoread -= readsamples;
916     totalreadsamples += readsamples;
917     } while (readsamples && samplestoread);
918    
919     // store current position
920     pPlaybackState->position = GetPos();
921    
922     return totalreadsamples;
923     }
924    
925     /**
926 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
927     * position into the buffer pointed by \a pBuffer and increments the
928     * position within the sample. The sample wave stream will be
929     * decompressed on the fly if using a compressed sample. Use this method
930     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
931     * thus for disk streaming.
932     *
933 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
934     * have to use an external decompression buffer for <b>EACH</b>
935     * streaming thread to avoid race conditions and crashes!
936     *
937 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
938     * (using native endianness). For 24 bit, the buffer will
939     * contain three bytes per sample, little-endian.
940     *
941 schoenebeck 2 * @param pBuffer destination buffer
942     * @param SampleCount number of sample points to read
943 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
944 schoenebeck 2 * @returns number of successfully read sample points
945 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
946 schoenebeck 2 */
947 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
948 schoenebeck 21 if (SampleCount == 0) return 0;
949 schoenebeck 317 if (!Compressed) {
950     if (BitDepth == 24) {
951 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
952 schoenebeck 317 }
953 persson 365 else { // 16 bit
954     // (pCkData->Read does endian correction)
955     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
956     : pCkData->Read(pBuffer, SampleCount, 2);
957     }
958 schoenebeck 317 }
959 persson 365 else {
960 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
961 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
962     unsigned long assumedsize = GuessSize(SampleCount),
963 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
964     remainingsamples = SampleCount,
965 persson 365 copysamples, skipsamples,
966     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
967 schoenebeck 2 this->FrameOffset = 0;
968    
969 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
970    
971     // if decompression buffer too small, then reduce amount of samples to read
972     if (pDecompressionBuffer->Size < assumedsize) {
973     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
974     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
975     remainingsamples = SampleCount;
976     assumedsize = GuessSize(SampleCount);
977 schoenebeck 2 }
978    
979 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
980 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
981 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
982 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
983    
984 persson 365 while (remainingsamples && remainingbytes) {
985     unsigned long framesamples = SamplesPerFrame;
986     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
987 schoenebeck 2
988 persson 365 int mode_l = *pSrc++, mode_r = 0;
989    
990     if (Channels == 2) {
991     mode_r = *pSrc++;
992     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
993     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
994     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
995     if (remainingbytes < framebytes) { // last frame in sample
996     framesamples = SamplesInLastFrame;
997     if (mode_l == 4 && (framesamples & 1)) {
998     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
999     }
1000     else {
1001     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1002     }
1003 schoenebeck 2 }
1004     }
1005 persson 365 else {
1006     framebytes = bytesPerFrame[mode_l] + 1;
1007     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1008     if (remainingbytes < framebytes) {
1009     framesamples = SamplesInLastFrame;
1010     }
1011     }
1012 schoenebeck 2
1013     // determine how many samples in this frame to skip and read
1014 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1015     if (currentframeoffset <= framesamples) {
1016     copysamples = framesamples - currentframeoffset;
1017     skipsamples = currentframeoffset;
1018     }
1019     else {
1020     copysamples = 0;
1021     skipsamples = framesamples;
1022     }
1023 schoenebeck 2 }
1024     else {
1025 persson 365 // This frame has enough data for pBuffer, but not
1026     // all of the frame is needed. Set file position
1027     // to start of this frame for next call to Read.
1028 schoenebeck 2 copysamples = remainingsamples;
1029 persson 365 skipsamples = currentframeoffset;
1030     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1031     this->FrameOffset = currentframeoffset + copysamples;
1032     }
1033     remainingsamples -= copysamples;
1034    
1035     if (remainingbytes > framebytes) {
1036     remainingbytes -= framebytes;
1037     if (remainingsamples == 0 &&
1038     currentframeoffset + copysamples == framesamples) {
1039     // This frame has enough data for pBuffer, and
1040     // all of the frame is needed. Set file
1041     // position to start of next frame for next
1042     // call to Read. FrameOffset is 0.
1043 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1044     }
1045     }
1046 persson 365 else remainingbytes = 0;
1047 schoenebeck 2
1048 persson 365 currentframeoffset -= skipsamples;
1049 schoenebeck 2
1050 persson 365 if (copysamples == 0) {
1051     // skip this frame
1052     pSrc += framebytes - Channels;
1053     }
1054     else {
1055     const unsigned char* const param_l = pSrc;
1056     if (BitDepth == 24) {
1057     if (mode_l != 2) pSrc += 12;
1058 schoenebeck 2
1059 persson 365 if (Channels == 2) { // Stereo
1060     const unsigned char* const param_r = pSrc;
1061     if (mode_r != 2) pSrc += 12;
1062    
1063 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1064 persson 437 skipsamples, copysamples, TruncatedBits);
1065 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1066 persson 437 skipsamples, copysamples, TruncatedBits);
1067 persson 902 pDst24 += copysamples * 6;
1068 schoenebeck 2 }
1069 persson 365 else { // Mono
1070 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1071 persson 437 skipsamples, copysamples, TruncatedBits);
1072 persson 902 pDst24 += copysamples * 3;
1073 schoenebeck 2 }
1074 persson 365 }
1075     else { // 16 bit
1076     if (mode_l) pSrc += 4;
1077 schoenebeck 2
1078 persson 365 int step;
1079     if (Channels == 2) { // Stereo
1080     const unsigned char* const param_r = pSrc;
1081     if (mode_r) pSrc += 4;
1082    
1083     step = (2 - mode_l) + (2 - mode_r);
1084 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1085     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1086 persson 365 skipsamples, copysamples);
1087     pDst += copysamples << 1;
1088 schoenebeck 2 }
1089 persson 365 else { // Mono
1090     step = 2 - mode_l;
1091 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1092 persson 365 pDst += copysamples;
1093 schoenebeck 2 }
1094 persson 365 }
1095     pSrc += nextFrameOffset;
1096     }
1097 schoenebeck 2
1098 persson 365 // reload from disk to local buffer if needed
1099     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1100     assumedsize = GuessSize(remainingsamples);
1101     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1102     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1103 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1104     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1105 schoenebeck 2 }
1106 persson 365 } // while
1107    
1108 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1109 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1110 schoenebeck 2 return (SampleCount - remainingsamples);
1111     }
1112     }
1113    
1114 schoenebeck 809 /** @brief Write sample wave data.
1115     *
1116     * Writes \a SampleCount number of sample points from the buffer pointed
1117     * by \a pBuffer and increments the position within the sample. Use this
1118     * method to directly write the sample data to disk, i.e. if you don't
1119     * want or cannot load the whole sample data into RAM.
1120     *
1121     * You have to Resize() the sample to the desired size and call
1122     * File::Save() <b>before</b> using Write().
1123     *
1124     * Note: there is currently no support for writing compressed samples.
1125     *
1126     * @param pBuffer - source buffer
1127     * @param SampleCount - number of sample points to write
1128     * @throws DLS::Exception if current sample size is too small
1129     * @throws gig::Exception if sample is compressed
1130     * @see DLS::LoadSampleData()
1131     */
1132     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1133     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1134     return DLS::Sample::Write(pBuffer, SampleCount);
1135     }
1136    
1137 schoenebeck 384 /**
1138     * Allocates a decompression buffer for streaming (compressed) samples
1139     * with Sample::Read(). If you are using more than one streaming thread
1140     * in your application you <b>HAVE</b> to create a decompression buffer
1141     * for <b>EACH</b> of your streaming threads and provide it with the
1142     * Sample::Read() call in order to avoid race conditions and crashes.
1143     *
1144     * You should free the memory occupied by the allocated buffer(s) once
1145     * you don't need one of your streaming threads anymore by calling
1146     * DestroyDecompressionBuffer().
1147     *
1148     * @param MaxReadSize - the maximum size (in sample points) you ever
1149     * expect to read with one Read() call
1150     * @returns allocated decompression buffer
1151     * @see DestroyDecompressionBuffer()
1152     */
1153     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1154     buffer_t result;
1155     const double worstCaseHeaderOverhead =
1156     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1157     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1158     result.pStart = new int8_t[result.Size];
1159     result.NullExtensionSize = 0;
1160     return result;
1161     }
1162    
1163     /**
1164     * Free decompression buffer, previously created with
1165     * CreateDecompressionBuffer().
1166     *
1167     * @param DecompressionBuffer - previously allocated decompression
1168     * buffer to free
1169     */
1170     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1171     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1172     delete[] (int8_t*) DecompressionBuffer.pStart;
1173     DecompressionBuffer.pStart = NULL;
1174     DecompressionBuffer.Size = 0;
1175     DecompressionBuffer.NullExtensionSize = 0;
1176     }
1177     }
1178    
1179 schoenebeck 930 /**
1180     * Returns pointer to the Group this Sample belongs to. In the .gig
1181     * format a sample always belongs to one group. If it wasn't explicitly
1182     * assigned to a certain group, it will be automatically assigned to a
1183     * default group.
1184     *
1185     * @returns Sample's Group (never NULL)
1186     */
1187     Group* Sample::GetGroup() const {
1188     return pGroup;
1189     }
1190    
1191 schoenebeck 2 Sample::~Sample() {
1192     Instances--;
1193 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1194     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1195     InternalDecompressionBuffer.pStart = NULL;
1196     InternalDecompressionBuffer.Size = 0;
1197 schoenebeck 355 }
1198 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1199     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1200     }
1201    
1202    
1203    
1204     // *************** DimensionRegion ***************
1205     // *
1206    
1207 schoenebeck 16 uint DimensionRegion::Instances = 0;
1208     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1209    
1210 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1211 schoenebeck 16 Instances++;
1212    
1213 schoenebeck 823 pSample = NULL;
1214    
1215 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1216 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1217 schoenebeck 2
1218     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1219 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1220 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1221 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1223     _3ewa->ReadInt16(); // unknown
1224     LFO1InternalDepth = _3ewa->ReadUint16();
1225     _3ewa->ReadInt16(); // unknown
1226     LFO3InternalDepth = _3ewa->ReadInt16();
1227     _3ewa->ReadInt16(); // unknown
1228     LFO1ControlDepth = _3ewa->ReadUint16();
1229     _3ewa->ReadInt16(); // unknown
1230     LFO3ControlDepth = _3ewa->ReadInt16();
1231     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1232     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1233     _3ewa->ReadInt16(); // unknown
1234     EG1Sustain = _3ewa->ReadUint16();
1235     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1236     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1237     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1238     EG1ControllerInvert = eg1ctrloptions & 0x01;
1239     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1240     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1241     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1242     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1243     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1244     EG2ControllerInvert = eg2ctrloptions & 0x01;
1245     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1246     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1247     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1248     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1249     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1250     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1251     _3ewa->ReadInt16(); // unknown
1252     EG2Sustain = _3ewa->ReadUint16();
1253     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1254     _3ewa->ReadInt16(); // unknown
1255     LFO2ControlDepth = _3ewa->ReadUint16();
1256     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1257     _3ewa->ReadInt16(); // unknown
1258     LFO2InternalDepth = _3ewa->ReadUint16();
1259     int32_t eg1decay2 = _3ewa->ReadInt32();
1260     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1261     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1262     _3ewa->ReadInt16(); // unknown
1263     EG1PreAttack = _3ewa->ReadUint16();
1264     int32_t eg2decay2 = _3ewa->ReadInt32();
1265     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1266     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1267     _3ewa->ReadInt16(); // unknown
1268     EG2PreAttack = _3ewa->ReadUint16();
1269     uint8_t velocityresponse = _3ewa->ReadUint8();
1270     if (velocityresponse < 5) {
1271     VelocityResponseCurve = curve_type_nonlinear;
1272     VelocityResponseDepth = velocityresponse;
1273     } else if (velocityresponse < 10) {
1274     VelocityResponseCurve = curve_type_linear;
1275     VelocityResponseDepth = velocityresponse - 5;
1276     } else if (velocityresponse < 15) {
1277     VelocityResponseCurve = curve_type_special;
1278     VelocityResponseDepth = velocityresponse - 10;
1279     } else {
1280     VelocityResponseCurve = curve_type_unknown;
1281     VelocityResponseDepth = 0;
1282     }
1283     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1284     if (releasevelocityresponse < 5) {
1285     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1286     ReleaseVelocityResponseDepth = releasevelocityresponse;
1287     } else if (releasevelocityresponse < 10) {
1288     ReleaseVelocityResponseCurve = curve_type_linear;
1289     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1290     } else if (releasevelocityresponse < 15) {
1291     ReleaseVelocityResponseCurve = curve_type_special;
1292     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1293     } else {
1294     ReleaseVelocityResponseCurve = curve_type_unknown;
1295     ReleaseVelocityResponseDepth = 0;
1296     }
1297     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1298     AttenuationControllerThreshold = _3ewa->ReadInt8();
1299     _3ewa->ReadInt32(); // unknown
1300     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1301     _3ewa->ReadInt16(); // unknown
1302     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1303     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1304     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1305     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1306     else DimensionBypass = dim_bypass_ctrl_none;
1307     uint8_t pan = _3ewa->ReadUint8();
1308     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1309     SelfMask = _3ewa->ReadInt8() & 0x01;
1310     _3ewa->ReadInt8(); // unknown
1311     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1312     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1313     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1314     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1315     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1316     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1317     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1318     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1319     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1320     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1321     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1322     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1323     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1324     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1325     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1326     : vcf_res_ctrl_none;
1327     uint16_t eg3depth = _3ewa->ReadUint16();
1328     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1329     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1330     _3ewa->ReadInt16(); // unknown
1331     ChannelOffset = _3ewa->ReadUint8() / 4;
1332     uint8_t regoptions = _3ewa->ReadUint8();
1333     MSDecode = regoptions & 0x01; // bit 0
1334     SustainDefeat = regoptions & 0x02; // bit 1
1335     _3ewa->ReadInt16(); // unknown
1336     VelocityUpperLimit = _3ewa->ReadInt8();
1337     _3ewa->ReadInt8(); // unknown
1338     _3ewa->ReadInt16(); // unknown
1339     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1340     _3ewa->ReadInt8(); // unknown
1341     _3ewa->ReadInt8(); // unknown
1342     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1343     uint8_t vcfcutoff = _3ewa->ReadUint8();
1344     VCFEnabled = vcfcutoff & 0x80; // bit 7
1345     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1346     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1347     uint8_t vcfvelscale = _3ewa->ReadUint8();
1348     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1349     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1350     _3ewa->ReadInt8(); // unknown
1351     uint8_t vcfresonance = _3ewa->ReadUint8();
1352     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1353     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1354     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1355     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1356     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1357     uint8_t vcfvelocity = _3ewa->ReadUint8();
1358     VCFVelocityDynamicRange = vcfvelocity % 5;
1359     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1360     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1361     if (VCFType == vcf_type_lowpass) {
1362     if (lfo3ctrl & 0x40) // bit 6
1363     VCFType = vcf_type_lowpassturbo;
1364     }
1365 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1366     _3ewa->Read(DimensionUpperLimits, 1, 8);
1367     } else {
1368     memset(DimensionUpperLimits, 0, 8);
1369     }
1370 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1371     // use default values
1372     LFO3Frequency = 1.0;
1373     EG3Attack = 0.0;
1374     LFO1InternalDepth = 0;
1375     LFO3InternalDepth = 0;
1376     LFO1ControlDepth = 0;
1377     LFO3ControlDepth = 0;
1378     EG1Attack = 0.0;
1379     EG1Decay1 = 0.0;
1380     EG1Sustain = 0;
1381     EG1Release = 0.0;
1382     EG1Controller.type = eg1_ctrl_t::type_none;
1383     EG1Controller.controller_number = 0;
1384     EG1ControllerInvert = false;
1385     EG1ControllerAttackInfluence = 0;
1386     EG1ControllerDecayInfluence = 0;
1387     EG1ControllerReleaseInfluence = 0;
1388     EG2Controller.type = eg2_ctrl_t::type_none;
1389     EG2Controller.controller_number = 0;
1390     EG2ControllerInvert = false;
1391     EG2ControllerAttackInfluence = 0;
1392     EG2ControllerDecayInfluence = 0;
1393     EG2ControllerReleaseInfluence = 0;
1394     LFO1Frequency = 1.0;
1395     EG2Attack = 0.0;
1396     EG2Decay1 = 0.0;
1397     EG2Sustain = 0;
1398     EG2Release = 0.0;
1399     LFO2ControlDepth = 0;
1400     LFO2Frequency = 1.0;
1401     LFO2InternalDepth = 0;
1402     EG1Decay2 = 0.0;
1403     EG1InfiniteSustain = false;
1404     EG1PreAttack = 1000;
1405     EG2Decay2 = 0.0;
1406     EG2InfiniteSustain = false;
1407     EG2PreAttack = 1000;
1408     VelocityResponseCurve = curve_type_nonlinear;
1409     VelocityResponseDepth = 3;
1410     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1411     ReleaseVelocityResponseDepth = 3;
1412     VelocityResponseCurveScaling = 32;
1413     AttenuationControllerThreshold = 0;
1414     SampleStartOffset = 0;
1415     PitchTrack = true;
1416     DimensionBypass = dim_bypass_ctrl_none;
1417     Pan = 0;
1418     SelfMask = true;
1419     LFO3Controller = lfo3_ctrl_modwheel;
1420     LFO3Sync = false;
1421     InvertAttenuationController = false;
1422     AttenuationController.type = attenuation_ctrl_t::type_none;
1423     AttenuationController.controller_number = 0;
1424     LFO2Controller = lfo2_ctrl_internal;
1425     LFO2FlipPhase = false;
1426     LFO2Sync = false;
1427     LFO1Controller = lfo1_ctrl_internal;
1428     LFO1FlipPhase = false;
1429     LFO1Sync = false;
1430     VCFResonanceController = vcf_res_ctrl_none;
1431     EG3Depth = 0;
1432     ChannelOffset = 0;
1433     MSDecode = false;
1434     SustainDefeat = false;
1435     VelocityUpperLimit = 0;
1436     ReleaseTriggerDecay = 0;
1437     EG1Hold = false;
1438     VCFEnabled = false;
1439     VCFCutoff = 0;
1440     VCFCutoffController = vcf_cutoff_ctrl_none;
1441     VCFCutoffControllerInvert = false;
1442     VCFVelocityScale = 0;
1443     VCFResonance = 0;
1444     VCFResonanceDynamic = false;
1445     VCFKeyboardTracking = false;
1446     VCFKeyboardTrackingBreakpoint = 0;
1447     VCFVelocityDynamicRange = 0x04;
1448     VCFVelocityCurve = curve_type_linear;
1449     VCFType = vcf_type_lowpass;
1450 persson 1070 memset(DimensionUpperLimits, 0, 8);
1451 schoenebeck 2 }
1452 schoenebeck 16
1453 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1454     VelocityResponseDepth,
1455     VelocityResponseCurveScaling);
1456    
1457     curve_type_t curveType = ReleaseVelocityResponseCurve;
1458     uint8_t depth = ReleaseVelocityResponseDepth;
1459    
1460     // this models a strange behaviour or bug in GSt: two of the
1461     // velocity response curves for release time are not used even
1462     // if specified, instead another curve is chosen.
1463     if ((curveType == curve_type_nonlinear && depth == 0) ||
1464     (curveType == curve_type_special && depth == 4)) {
1465     curveType = curve_type_nonlinear;
1466     depth = 3;
1467     }
1468     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1469    
1470 persson 728 curveType = VCFVelocityCurve;
1471     depth = VCFVelocityDynamicRange;
1472    
1473     // even stranger GSt: two of the velocity response curves for
1474     // filter cutoff are not used, instead another special curve
1475     // is chosen. This curve is not used anywhere else.
1476     if ((curveType == curve_type_nonlinear && depth == 0) ||
1477     (curveType == curve_type_special && depth == 4)) {
1478     curveType = curve_type_special;
1479     depth = 5;
1480     }
1481     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1482 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1483 persson 728
1484 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1485 persson 858 VelocityTable = 0;
1486 persson 613 }
1487    
1488 schoenebeck 809 /**
1489     * Apply dimension region settings to the respective RIFF chunks. You
1490     * have to call File::Save() to make changes persistent.
1491     *
1492     * Usually there is absolutely no need to call this method explicitly.
1493     * It will be called automatically when File::Save() was called.
1494     */
1495     void DimensionRegion::UpdateChunks() {
1496     // first update base class's chunk
1497     DLS::Sampler::UpdateChunks();
1498    
1499     // make sure '3ewa' chunk exists
1500     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1501     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1502     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1503    
1504     // update '3ewa' chunk with DimensionRegion's current settings
1505    
1506 persson 1070 const uint32_t chunksize = _3ewa->GetSize();
1507 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1508 schoenebeck 809
1509     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1510 persson 1179 store32(&pData[4], lfo3freq);
1511 schoenebeck 809
1512     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1513 persson 1179 store32(&pData[8], eg3attack);
1514 schoenebeck 809
1515     // next 2 bytes unknown
1516    
1517 persson 1179 store16(&pData[14], LFO1InternalDepth);
1518 schoenebeck 809
1519     // next 2 bytes unknown
1520    
1521 persson 1179 store16(&pData[18], LFO3InternalDepth);
1522 schoenebeck 809
1523     // next 2 bytes unknown
1524    
1525 persson 1179 store16(&pData[22], LFO1ControlDepth);
1526 schoenebeck 809
1527     // next 2 bytes unknown
1528    
1529 persson 1179 store16(&pData[26], LFO3ControlDepth);
1530 schoenebeck 809
1531     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1532 persson 1179 store32(&pData[28], eg1attack);
1533 schoenebeck 809
1534     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1535 persson 1179 store32(&pData[32], eg1decay1);
1536 schoenebeck 809
1537     // next 2 bytes unknown
1538    
1539 persson 1179 store16(&pData[38], EG1Sustain);
1540 schoenebeck 809
1541     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1542 persson 1179 store32(&pData[40], eg1release);
1543 schoenebeck 809
1544     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1545 persson 1179 pData[44] = eg1ctl;
1546 schoenebeck 809
1547     const uint8_t eg1ctrloptions =
1548     (EG1ControllerInvert) ? 0x01 : 0x00 |
1549     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1550     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1551     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1552 persson 1179 pData[45] = eg1ctrloptions;
1553 schoenebeck 809
1554     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1555 persson 1179 pData[46] = eg2ctl;
1556 schoenebeck 809
1557     const uint8_t eg2ctrloptions =
1558     (EG2ControllerInvert) ? 0x01 : 0x00 |
1559     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1560     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1561     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1562 persson 1179 pData[47] = eg2ctrloptions;
1563 schoenebeck 809
1564     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1565 persson 1179 store32(&pData[48], lfo1freq);
1566 schoenebeck 809
1567     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1568 persson 1179 store32(&pData[52], eg2attack);
1569 schoenebeck 809
1570     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1571 persson 1179 store32(&pData[56], eg2decay1);
1572 schoenebeck 809
1573     // next 2 bytes unknown
1574    
1575 persson 1179 store16(&pData[62], EG2Sustain);
1576 schoenebeck 809
1577     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1578 persson 1179 store32(&pData[64], eg2release);
1579 schoenebeck 809
1580     // next 2 bytes unknown
1581    
1582 persson 1179 store16(&pData[70], LFO2ControlDepth);
1583 schoenebeck 809
1584     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1585 persson 1179 store32(&pData[72], lfo2freq);
1586 schoenebeck 809
1587     // next 2 bytes unknown
1588    
1589 persson 1179 store16(&pData[78], LFO2InternalDepth);
1590 schoenebeck 809
1591     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1592 persson 1179 store32(&pData[80], eg1decay2);
1593 schoenebeck 809
1594     // next 2 bytes unknown
1595    
1596 persson 1179 store16(&pData[86], EG1PreAttack);
1597 schoenebeck 809
1598     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1599 persson 1179 store32(&pData[88], eg2decay2);
1600 schoenebeck 809
1601     // next 2 bytes unknown
1602    
1603 persson 1179 store16(&pData[94], EG2PreAttack);
1604 schoenebeck 809
1605     {
1606     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1607     uint8_t velocityresponse = VelocityResponseDepth;
1608     switch (VelocityResponseCurve) {
1609     case curve_type_nonlinear:
1610     break;
1611     case curve_type_linear:
1612     velocityresponse += 5;
1613     break;
1614     case curve_type_special:
1615     velocityresponse += 10;
1616     break;
1617     case curve_type_unknown:
1618     default:
1619     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1620     }
1621 persson 1179 pData[96] = velocityresponse;
1622 schoenebeck 809 }
1623    
1624     {
1625     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1626     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1627     switch (ReleaseVelocityResponseCurve) {
1628     case curve_type_nonlinear:
1629     break;
1630     case curve_type_linear:
1631     releasevelocityresponse += 5;
1632     break;
1633     case curve_type_special:
1634     releasevelocityresponse += 10;
1635     break;
1636     case curve_type_unknown:
1637     default:
1638     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1639     }
1640 persson 1179 pData[97] = releasevelocityresponse;
1641 schoenebeck 809 }
1642    
1643 persson 1179 pData[98] = VelocityResponseCurveScaling;
1644 schoenebeck 809
1645 persson 1179 pData[99] = AttenuationControllerThreshold;
1646 schoenebeck 809
1647     // next 4 bytes unknown
1648    
1649 persson 1179 store16(&pData[104], SampleStartOffset);
1650 schoenebeck 809
1651     // next 2 bytes unknown
1652    
1653     {
1654     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1655     switch (DimensionBypass) {
1656     case dim_bypass_ctrl_94:
1657     pitchTrackDimensionBypass |= 0x10;
1658     break;
1659     case dim_bypass_ctrl_95:
1660     pitchTrackDimensionBypass |= 0x20;
1661     break;
1662     case dim_bypass_ctrl_none:
1663     //FIXME: should we set anything here?
1664     break;
1665     default:
1666     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1667     }
1668 persson 1179 pData[108] = pitchTrackDimensionBypass;
1669 schoenebeck 809 }
1670    
1671     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1672 persson 1179 pData[109] = pan;
1673 schoenebeck 809
1674     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1675 persson 1179 pData[110] = selfmask;
1676 schoenebeck 809
1677     // next byte unknown
1678    
1679     {
1680     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1681     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1682     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1683     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1684 persson 1179 pData[112] = lfo3ctrl;
1685 schoenebeck 809 }
1686    
1687     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1688 persson 1179 pData[113] = attenctl;
1689 schoenebeck 809
1690     {
1691     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1692     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1693     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1694     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1695 persson 1179 pData[114] = lfo2ctrl;
1696 schoenebeck 809 }
1697    
1698     {
1699     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1700     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1701     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1702     if (VCFResonanceController != vcf_res_ctrl_none)
1703     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1704 persson 1179 pData[115] = lfo1ctrl;
1705 schoenebeck 809 }
1706    
1707     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1708     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1709 persson 1179 pData[116] = eg3depth;
1710 schoenebeck 809
1711     // next 2 bytes unknown
1712    
1713     const uint8_t channeloffset = ChannelOffset * 4;
1714 persson 1179 pData[120] = channeloffset;
1715 schoenebeck 809
1716     {
1717     uint8_t regoptions = 0;
1718     if (MSDecode) regoptions |= 0x01; // bit 0
1719     if (SustainDefeat) regoptions |= 0x02; // bit 1
1720 persson 1179 pData[121] = regoptions;
1721 schoenebeck 809 }
1722    
1723     // next 2 bytes unknown
1724    
1725 persson 1179 pData[124] = VelocityUpperLimit;
1726 schoenebeck 809
1727     // next 3 bytes unknown
1728    
1729 persson 1179 pData[128] = ReleaseTriggerDecay;
1730 schoenebeck 809
1731     // next 2 bytes unknown
1732    
1733     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1734 persson 1179 pData[131] = eg1hold;
1735 schoenebeck 809
1736     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1737 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1738 persson 1179 pData[132] = vcfcutoff;
1739 schoenebeck 809
1740 persson 1179 pData[133] = VCFCutoffController;
1741 schoenebeck 809
1742     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1743 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1744 persson 1179 pData[134] = vcfvelscale;
1745 schoenebeck 809
1746     // next byte unknown
1747    
1748     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1749 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1750 persson 1179 pData[136] = vcfresonance;
1751 schoenebeck 809
1752     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1753 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1754 persson 1179 pData[137] = vcfbreakpoint;
1755 schoenebeck 809
1756     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1757     VCFVelocityCurve * 5;
1758 persson 1179 pData[138] = vcfvelocity;
1759 schoenebeck 809
1760     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1761 persson 1179 pData[139] = vcftype;
1762 persson 1070
1763     if (chunksize >= 148) {
1764     memcpy(&pData[140], DimensionUpperLimits, 8);
1765     }
1766 schoenebeck 809 }
1767    
1768 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1769     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1770     {
1771     double* table;
1772     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1773 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1774 persson 613 table = (*pVelocityTables)[tableKey];
1775 schoenebeck 16 }
1776     else {
1777 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1778     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1779 schoenebeck 16 }
1780 persson 613 return table;
1781 schoenebeck 2 }
1782 schoenebeck 55
1783 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1784     leverage_ctrl_t decodedcontroller;
1785     switch (EncodedController) {
1786     // special controller
1787     case _lev_ctrl_none:
1788     decodedcontroller.type = leverage_ctrl_t::type_none;
1789     decodedcontroller.controller_number = 0;
1790     break;
1791     case _lev_ctrl_velocity:
1792     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1793     decodedcontroller.controller_number = 0;
1794     break;
1795     case _lev_ctrl_channelaftertouch:
1796     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1797     decodedcontroller.controller_number = 0;
1798     break;
1799 schoenebeck 55
1800 schoenebeck 36 // ordinary MIDI control change controller
1801     case _lev_ctrl_modwheel:
1802     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803     decodedcontroller.controller_number = 1;
1804     break;
1805     case _lev_ctrl_breath:
1806     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807     decodedcontroller.controller_number = 2;
1808     break;
1809     case _lev_ctrl_foot:
1810     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811     decodedcontroller.controller_number = 4;
1812     break;
1813     case _lev_ctrl_effect1:
1814     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815     decodedcontroller.controller_number = 12;
1816     break;
1817     case _lev_ctrl_effect2:
1818     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819     decodedcontroller.controller_number = 13;
1820     break;
1821     case _lev_ctrl_genpurpose1:
1822     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823     decodedcontroller.controller_number = 16;
1824     break;
1825     case _lev_ctrl_genpurpose2:
1826     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827     decodedcontroller.controller_number = 17;
1828     break;
1829     case _lev_ctrl_genpurpose3:
1830     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831     decodedcontroller.controller_number = 18;
1832     break;
1833     case _lev_ctrl_genpurpose4:
1834     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835     decodedcontroller.controller_number = 19;
1836     break;
1837     case _lev_ctrl_portamentotime:
1838     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839     decodedcontroller.controller_number = 5;
1840     break;
1841     case _lev_ctrl_sustainpedal:
1842     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843     decodedcontroller.controller_number = 64;
1844     break;
1845     case _lev_ctrl_portamento:
1846     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847     decodedcontroller.controller_number = 65;
1848     break;
1849     case _lev_ctrl_sostenutopedal:
1850     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851     decodedcontroller.controller_number = 66;
1852     break;
1853     case _lev_ctrl_softpedal:
1854     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855     decodedcontroller.controller_number = 67;
1856     break;
1857     case _lev_ctrl_genpurpose5:
1858     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859     decodedcontroller.controller_number = 80;
1860     break;
1861     case _lev_ctrl_genpurpose6:
1862     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863     decodedcontroller.controller_number = 81;
1864     break;
1865     case _lev_ctrl_genpurpose7:
1866     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867     decodedcontroller.controller_number = 82;
1868     break;
1869     case _lev_ctrl_genpurpose8:
1870     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1871     decodedcontroller.controller_number = 83;
1872     break;
1873     case _lev_ctrl_effect1depth:
1874     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1875     decodedcontroller.controller_number = 91;
1876     break;
1877     case _lev_ctrl_effect2depth:
1878     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1879     decodedcontroller.controller_number = 92;
1880     break;
1881     case _lev_ctrl_effect3depth:
1882     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1883     decodedcontroller.controller_number = 93;
1884     break;
1885     case _lev_ctrl_effect4depth:
1886     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1887     decodedcontroller.controller_number = 94;
1888     break;
1889     case _lev_ctrl_effect5depth:
1890     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1891     decodedcontroller.controller_number = 95;
1892     break;
1893 schoenebeck 55
1894 schoenebeck 36 // unknown controller type
1895     default:
1896     throw gig::Exception("Unknown leverage controller type.");
1897     }
1898     return decodedcontroller;
1899     }
1900 schoenebeck 2
1901 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1902     _lev_ctrl_t encodedcontroller;
1903     switch (DecodedController.type) {
1904     // special controller
1905     case leverage_ctrl_t::type_none:
1906     encodedcontroller = _lev_ctrl_none;
1907     break;
1908     case leverage_ctrl_t::type_velocity:
1909     encodedcontroller = _lev_ctrl_velocity;
1910     break;
1911     case leverage_ctrl_t::type_channelaftertouch:
1912     encodedcontroller = _lev_ctrl_channelaftertouch;
1913     break;
1914    
1915     // ordinary MIDI control change controller
1916     case leverage_ctrl_t::type_controlchange:
1917     switch (DecodedController.controller_number) {
1918     case 1:
1919     encodedcontroller = _lev_ctrl_modwheel;
1920     break;
1921     case 2:
1922     encodedcontroller = _lev_ctrl_breath;
1923     break;
1924     case 4:
1925     encodedcontroller = _lev_ctrl_foot;
1926     break;
1927     case 12:
1928     encodedcontroller = _lev_ctrl_effect1;
1929     break;
1930     case 13:
1931     encodedcontroller = _lev_ctrl_effect2;
1932     break;
1933     case 16:
1934     encodedcontroller = _lev_ctrl_genpurpose1;
1935     break;
1936     case 17:
1937     encodedcontroller = _lev_ctrl_genpurpose2;
1938     break;
1939     case 18:
1940     encodedcontroller = _lev_ctrl_genpurpose3;
1941     break;
1942     case 19:
1943     encodedcontroller = _lev_ctrl_genpurpose4;
1944     break;
1945     case 5:
1946     encodedcontroller = _lev_ctrl_portamentotime;
1947     break;
1948     case 64:
1949     encodedcontroller = _lev_ctrl_sustainpedal;
1950     break;
1951     case 65:
1952     encodedcontroller = _lev_ctrl_portamento;
1953     break;
1954     case 66:
1955     encodedcontroller = _lev_ctrl_sostenutopedal;
1956     break;
1957     case 67:
1958     encodedcontroller = _lev_ctrl_softpedal;
1959     break;
1960     case 80:
1961     encodedcontroller = _lev_ctrl_genpurpose5;
1962     break;
1963     case 81:
1964     encodedcontroller = _lev_ctrl_genpurpose6;
1965     break;
1966     case 82:
1967     encodedcontroller = _lev_ctrl_genpurpose7;
1968     break;
1969     case 83:
1970     encodedcontroller = _lev_ctrl_genpurpose8;
1971     break;
1972     case 91:
1973     encodedcontroller = _lev_ctrl_effect1depth;
1974     break;
1975     case 92:
1976     encodedcontroller = _lev_ctrl_effect2depth;
1977     break;
1978     case 93:
1979     encodedcontroller = _lev_ctrl_effect3depth;
1980     break;
1981     case 94:
1982     encodedcontroller = _lev_ctrl_effect4depth;
1983     break;
1984     case 95:
1985     encodedcontroller = _lev_ctrl_effect5depth;
1986     break;
1987     default:
1988     throw gig::Exception("leverage controller number is not supported by the gig format");
1989     }
1990     default:
1991     throw gig::Exception("Unknown leverage controller type.");
1992     }
1993     return encodedcontroller;
1994     }
1995    
1996 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1997     Instances--;
1998     if (!Instances) {
1999     // delete the velocity->volume tables
2000     VelocityTableMap::iterator iter;
2001     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2002     double* pTable = iter->second;
2003     if (pTable) delete[] pTable;
2004     }
2005     pVelocityTables->clear();
2006     delete pVelocityTables;
2007     pVelocityTables = NULL;
2008     }
2009 persson 858 if (VelocityTable) delete[] VelocityTable;
2010 schoenebeck 16 }
2011 schoenebeck 2
2012 schoenebeck 16 /**
2013     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2014     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2015     * and VelocityResponseCurveScaling) involved are taken into account to
2016     * calculate the amplitude factor. Use this method when a key was
2017     * triggered to get the volume with which the sample should be played
2018     * back.
2019     *
2020 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2021     * @returns amplitude factor (between 0.0 and 1.0)
2022 schoenebeck 16 */
2023     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2024     return pVelocityAttenuationTable[MIDIKeyVelocity];
2025     }
2026 schoenebeck 2
2027 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2028     return pVelocityReleaseTable[MIDIKeyVelocity];
2029     }
2030    
2031 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2032     return pVelocityCutoffTable[MIDIKeyVelocity];
2033     }
2034    
2035 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2036 schoenebeck 317
2037 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2038 schoenebeck 16
2039 schoenebeck 308 // linear
2040     const int lin0[] = { 1, 1, 127, 127 };
2041     const int lin1[] = { 1, 21, 127, 127 };
2042     const int lin2[] = { 1, 45, 127, 127 };
2043     const int lin3[] = { 1, 74, 127, 127 };
2044     const int lin4[] = { 1, 127, 127, 127 };
2045 schoenebeck 16
2046 schoenebeck 308 // non-linear
2047     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2048 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2049 schoenebeck 308 127, 127 };
2050     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2051     127, 127 };
2052     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2053     127, 127 };
2054     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2055 schoenebeck 317
2056 schoenebeck 308 // special
2057 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2058 schoenebeck 308 113, 127, 127, 127 };
2059     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2060     118, 127, 127, 127 };
2061 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2062 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2063 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2064 schoenebeck 308 117, 127, 127, 127 };
2065 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2066 schoenebeck 308 127, 127 };
2067 schoenebeck 317
2068 persson 728 // this is only used by the VCF velocity curve
2069     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2070     91, 127, 127, 127 };
2071    
2072 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2073 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2074 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2075 schoenebeck 317
2076 schoenebeck 308 double* const table = new double[128];
2077    
2078     const int* curve = curves[curveType * 5 + depth];
2079     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2080 schoenebeck 317
2081 schoenebeck 308 table[0] = 0;
2082     for (int x = 1 ; x < 128 ; x++) {
2083    
2084     if (x > curve[2]) curve += 2;
2085 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2086 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2087     y = y / 127;
2088    
2089     // Scale up for s > 20, down for s < 20. When
2090     // down-scaling, the curve still ends at 1.0.
2091     if (s < 20 && y >= 0.5)
2092     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2093     else
2094     y = y * (s / 20.0);
2095     if (y > 1) y = 1;
2096    
2097     table[x] = y;
2098     }
2099     return table;
2100     }
2101    
2102    
2103 schoenebeck 2 // *************** Region ***************
2104     // *
2105    
2106     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2107 persson 918 pInfo->UseFixedLengthStrings = true;
2108    
2109 schoenebeck 2 // Initialization
2110     Dimensions = 0;
2111 schoenebeck 347 for (int i = 0; i < 256; i++) {
2112 schoenebeck 2 pDimensionRegions[i] = NULL;
2113     }
2114 schoenebeck 282 Layers = 1;
2115 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2116     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2117 schoenebeck 2
2118     // Actual Loading
2119    
2120     LoadDimensionRegions(rgnList);
2121    
2122     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2123     if (_3lnk) {
2124     DimensionRegions = _3lnk->ReadUint32();
2125 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2126 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2127     uint8_t bits = _3lnk->ReadUint8();
2128 persson 774 _3lnk->ReadUint8(); // probably the position of the dimension
2129     _3lnk->ReadUint8(); // unknown
2130     uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2131 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2132     pDimensionDefinitions[i].dimension = dimension_none;
2133     pDimensionDefinitions[i].bits = 0;
2134     pDimensionDefinitions[i].zones = 0;
2135     pDimensionDefinitions[i].split_type = split_type_bit;
2136     pDimensionDefinitions[i].zone_size = 0;
2137     }
2138     else { // active dimension
2139     pDimensionDefinitions[i].dimension = dimension;
2140     pDimensionDefinitions[i].bits = bits;
2141 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2142 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2143     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2144 schoenebeck 2 Dimensions++;
2145 schoenebeck 282
2146     // if this is a layer dimension, remember the amount of layers
2147     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2148 schoenebeck 2 }
2149 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2150 schoenebeck 2 }
2151 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2152 schoenebeck 2
2153 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2154     // update the VelocityTables in the dimension regions
2155     UpdateVelocityTable();
2156 schoenebeck 2
2157 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2158     if (file->pVersion && file->pVersion->major == 3)
2159     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2160     else
2161     _3lnk->SetPos(44);
2162    
2163 schoenebeck 2 // load sample references
2164     for (uint i = 0; i < DimensionRegions; i++) {
2165     uint32_t wavepoolindex = _3lnk->ReadUint32();
2166 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2167 schoenebeck 2 }
2168 persson 918 GetSample(); // load global region sample reference
2169 persson 1102 } else {
2170     DimensionRegions = 0;
2171 schoenebeck 2 }
2172 schoenebeck 823
2173     // make sure there is at least one dimension region
2174     if (!DimensionRegions) {
2175     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2176     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2177     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2178     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2179     DimensionRegions = 1;
2180     }
2181 schoenebeck 2 }
2182    
2183 schoenebeck 809 /**
2184     * Apply Region settings and all its DimensionRegions to the respective
2185     * RIFF chunks. You have to call File::Save() to make changes persistent.
2186     *
2187     * Usually there is absolutely no need to call this method explicitly.
2188     * It will be called automatically when File::Save() was called.
2189     *
2190     * @throws gig::Exception if samples cannot be dereferenced
2191     */
2192     void Region::UpdateChunks() {
2193 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2194     // but we still have to provide some existing one to not corrupt the
2195     // file, so to avoid the latter we simply always assign the sample of
2196     // the first dimension region of this region
2197     pSample = pDimensionRegions[0]->pSample;
2198    
2199 schoenebeck 809 // first update base class's chunks
2200     DLS::Region::UpdateChunks();
2201    
2202     // update dimension region's chunks
2203 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2204 schoenebeck 809 pDimensionRegions[i]->UpdateChunks();
2205 schoenebeck 823 }
2206 schoenebeck 809
2207     File* pFile = (File*) GetParent()->GetParent();
2208     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2209     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2210    
2211     // make sure '3lnk' chunk exists
2212     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2213     if (!_3lnk) {
2214     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2215     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2216     }
2217    
2218     // update dimension definitions in '3lnk' chunk
2219     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2220 persson 1179 store32(&pData[0], DimensionRegions);
2221 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2222 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2223     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2224 schoenebeck 809 // next 2 bytes unknown
2225 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2226 schoenebeck 809 // next 3 bytes unknown
2227     }
2228    
2229     // update wave pool table in '3lnk' chunk
2230     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2231     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2232     int iWaveIndex = -1;
2233     if (i < DimensionRegions) {
2234 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2235     File::SampleList::iterator iter = pFile->pSamples->begin();
2236     File::SampleList::iterator end = pFile->pSamples->end();
2237 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2238 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2239     iWaveIndex = index;
2240     break;
2241     }
2242 schoenebeck 809 }
2243     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2244     }
2245 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2246 schoenebeck 809 }
2247     }
2248    
2249 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2250     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2251     if (_3prg) {
2252     int dimensionRegionNr = 0;
2253     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2254     while (_3ewl) {
2255     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2256     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2257     dimensionRegionNr++;
2258     }
2259     _3ewl = _3prg->GetNextSubList();
2260     }
2261     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2262     }
2263     }
2264    
2265 persson 858 void Region::UpdateVelocityTable() {
2266     // get velocity dimension's index
2267     int veldim = -1;
2268     for (int i = 0 ; i < Dimensions ; i++) {
2269     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2270     veldim = i;
2271 schoenebeck 809 break;
2272     }
2273     }
2274 persson 858 if (veldim == -1) return;
2275 schoenebeck 809
2276 persson 858 int step = 1;
2277     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2278     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2279     int end = step * pDimensionDefinitions[veldim].zones;
2280 schoenebeck 809
2281 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2282     int dim[8] = { 0 };
2283     for (int i = 0 ; i < DimensionRegions ; i++) {
2284    
2285 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2286     pDimensionRegions[i]->VelocityUpperLimit) {
2287 persson 858 // create the velocity table
2288     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2289     if (!table) {
2290     table = new uint8_t[128];
2291     pDimensionRegions[i]->VelocityTable = table;
2292     }
2293     int tableidx = 0;
2294     int velocityZone = 0;
2295 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2296     for (int k = i ; k < end ; k += step) {
2297     DimensionRegion *d = pDimensionRegions[k];
2298     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2299     velocityZone++;
2300     }
2301     } else { // gig2
2302     for (int k = i ; k < end ; k += step) {
2303     DimensionRegion *d = pDimensionRegions[k];
2304     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2305     velocityZone++;
2306     }
2307 persson 858 }
2308     } else {
2309     if (pDimensionRegions[i]->VelocityTable) {
2310     delete[] pDimensionRegions[i]->VelocityTable;
2311     pDimensionRegions[i]->VelocityTable = 0;
2312     }
2313 schoenebeck 809 }
2314 persson 858
2315     int j;
2316     int shift = 0;
2317     for (j = 0 ; j < Dimensions ; j++) {
2318     if (j == veldim) i += skipveldim; // skip velocity dimension
2319     else {
2320     dim[j]++;
2321     if (dim[j] < pDimensionDefinitions[j].zones) break;
2322     else {
2323