/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1199 - (hide annotations) (download)
Sun May 20 10:11:39 2007 UTC (16 years, 10 months ago) by persson
File size: 156638 byte(s)
* added write support for the 3crc and einf chunks
* two previously unknown fields in dimension definition are now saved
* added constants for gig file versions

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 schoenebeck 809 MIDIUnityNote = 64;
366     FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155     * @param pBuffer - source buffer
1156     * @param SampleCount - number of sample points to write
1157     * @throws DLS::Exception if current sample size is too small
1158     * @throws gig::Exception if sample is compressed
1159     * @see DLS::LoadSampleData()
1160     */
1161     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163 persson 1199 if (pCkData->GetPos() == 0) {
1164     crc.reset();
1165     }
1166     unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1167     crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1168    
1169     if (pCkData->GetPos() == pCkData->GetSize()) {
1170     File* pFile = static_cast<File*>(GetParent());
1171     pFile->SetSampleChecksum(this, crc.getValue());
1172     }
1173     return res;
1174 schoenebeck 809 }
1175    
1176 schoenebeck 384 /**
1177     * Allocates a decompression buffer for streaming (compressed) samples
1178     * with Sample::Read(). If you are using more than one streaming thread
1179     * in your application you <b>HAVE</b> to create a decompression buffer
1180     * for <b>EACH</b> of your streaming threads and provide it with the
1181     * Sample::Read() call in order to avoid race conditions and crashes.
1182     *
1183     * You should free the memory occupied by the allocated buffer(s) once
1184     * you don't need one of your streaming threads anymore by calling
1185     * DestroyDecompressionBuffer().
1186     *
1187     * @param MaxReadSize - the maximum size (in sample points) you ever
1188     * expect to read with one Read() call
1189     * @returns allocated decompression buffer
1190     * @see DestroyDecompressionBuffer()
1191     */
1192     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1193     buffer_t result;
1194     const double worstCaseHeaderOverhead =
1195     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1196     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1197     result.pStart = new int8_t[result.Size];
1198     result.NullExtensionSize = 0;
1199     return result;
1200     }
1201    
1202     /**
1203     * Free decompression buffer, previously created with
1204     * CreateDecompressionBuffer().
1205     *
1206     * @param DecompressionBuffer - previously allocated decompression
1207     * buffer to free
1208     */
1209     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1210     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1211     delete[] (int8_t*) DecompressionBuffer.pStart;
1212     DecompressionBuffer.pStart = NULL;
1213     DecompressionBuffer.Size = 0;
1214     DecompressionBuffer.NullExtensionSize = 0;
1215     }
1216     }
1217    
1218 schoenebeck 930 /**
1219     * Returns pointer to the Group this Sample belongs to. In the .gig
1220     * format a sample always belongs to one group. If it wasn't explicitly
1221     * assigned to a certain group, it will be automatically assigned to a
1222     * default group.
1223     *
1224     * @returns Sample's Group (never NULL)
1225     */
1226     Group* Sample::GetGroup() const {
1227     return pGroup;
1228     }
1229    
1230 schoenebeck 2 Sample::~Sample() {
1231     Instances--;
1232 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1233     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1234     InternalDecompressionBuffer.pStart = NULL;
1235     InternalDecompressionBuffer.Size = 0;
1236 schoenebeck 355 }
1237 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1238     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1239     }
1240    
1241    
1242    
1243     // *************** DimensionRegion ***************
1244     // *
1245    
1246 schoenebeck 16 uint DimensionRegion::Instances = 0;
1247     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1248    
1249 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1250 schoenebeck 16 Instances++;
1251    
1252 schoenebeck 823 pSample = NULL;
1253    
1254 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1255 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1256 schoenebeck 2
1257     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1258 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1259 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1260 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1261     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1262     _3ewa->ReadInt16(); // unknown
1263     LFO1InternalDepth = _3ewa->ReadUint16();
1264     _3ewa->ReadInt16(); // unknown
1265     LFO3InternalDepth = _3ewa->ReadInt16();
1266     _3ewa->ReadInt16(); // unknown
1267     LFO1ControlDepth = _3ewa->ReadUint16();
1268     _3ewa->ReadInt16(); // unknown
1269     LFO3ControlDepth = _3ewa->ReadInt16();
1270     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1271     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1272     _3ewa->ReadInt16(); // unknown
1273     EG1Sustain = _3ewa->ReadUint16();
1274     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1275     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1276     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1277     EG1ControllerInvert = eg1ctrloptions & 0x01;
1278     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1279     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1280     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1281     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1282     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1283     EG2ControllerInvert = eg2ctrloptions & 0x01;
1284     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1285     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1286     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1287     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1288     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1289     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290     _3ewa->ReadInt16(); // unknown
1291     EG2Sustain = _3ewa->ReadUint16();
1292     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293     _3ewa->ReadInt16(); // unknown
1294     LFO2ControlDepth = _3ewa->ReadUint16();
1295     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1296     _3ewa->ReadInt16(); // unknown
1297     LFO2InternalDepth = _3ewa->ReadUint16();
1298     int32_t eg1decay2 = _3ewa->ReadInt32();
1299     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1300     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1301     _3ewa->ReadInt16(); // unknown
1302     EG1PreAttack = _3ewa->ReadUint16();
1303     int32_t eg2decay2 = _3ewa->ReadInt32();
1304     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1305     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1306     _3ewa->ReadInt16(); // unknown
1307     EG2PreAttack = _3ewa->ReadUint16();
1308     uint8_t velocityresponse = _3ewa->ReadUint8();
1309     if (velocityresponse < 5) {
1310     VelocityResponseCurve = curve_type_nonlinear;
1311     VelocityResponseDepth = velocityresponse;
1312     } else if (velocityresponse < 10) {
1313     VelocityResponseCurve = curve_type_linear;
1314     VelocityResponseDepth = velocityresponse - 5;
1315     } else if (velocityresponse < 15) {
1316     VelocityResponseCurve = curve_type_special;
1317     VelocityResponseDepth = velocityresponse - 10;
1318     } else {
1319     VelocityResponseCurve = curve_type_unknown;
1320     VelocityResponseDepth = 0;
1321     }
1322     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1323     if (releasevelocityresponse < 5) {
1324     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1325     ReleaseVelocityResponseDepth = releasevelocityresponse;
1326     } else if (releasevelocityresponse < 10) {
1327     ReleaseVelocityResponseCurve = curve_type_linear;
1328     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1329     } else if (releasevelocityresponse < 15) {
1330     ReleaseVelocityResponseCurve = curve_type_special;
1331     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1332     } else {
1333     ReleaseVelocityResponseCurve = curve_type_unknown;
1334     ReleaseVelocityResponseDepth = 0;
1335     }
1336     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1337     AttenuationControllerThreshold = _3ewa->ReadInt8();
1338     _3ewa->ReadInt32(); // unknown
1339     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1340     _3ewa->ReadInt16(); // unknown
1341     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1342     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1343     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1344     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1345     else DimensionBypass = dim_bypass_ctrl_none;
1346     uint8_t pan = _3ewa->ReadUint8();
1347     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1348     SelfMask = _3ewa->ReadInt8() & 0x01;
1349     _3ewa->ReadInt8(); // unknown
1350     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1351     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1352     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1353     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1354     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1355     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1356     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1357     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1358     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1359     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1360     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1361     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1362     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1363     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1364     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1365     : vcf_res_ctrl_none;
1366     uint16_t eg3depth = _3ewa->ReadUint16();
1367     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1368     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1369     _3ewa->ReadInt16(); // unknown
1370     ChannelOffset = _3ewa->ReadUint8() / 4;
1371     uint8_t regoptions = _3ewa->ReadUint8();
1372     MSDecode = regoptions & 0x01; // bit 0
1373     SustainDefeat = regoptions & 0x02; // bit 1
1374     _3ewa->ReadInt16(); // unknown
1375     VelocityUpperLimit = _3ewa->ReadInt8();
1376     _3ewa->ReadInt8(); // unknown
1377     _3ewa->ReadInt16(); // unknown
1378     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1379     _3ewa->ReadInt8(); // unknown
1380     _3ewa->ReadInt8(); // unknown
1381     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1382     uint8_t vcfcutoff = _3ewa->ReadUint8();
1383     VCFEnabled = vcfcutoff & 0x80; // bit 7
1384     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1385     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1386     uint8_t vcfvelscale = _3ewa->ReadUint8();
1387     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1388     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1389     _3ewa->ReadInt8(); // unknown
1390     uint8_t vcfresonance = _3ewa->ReadUint8();
1391     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1392     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1393     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1394     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1395     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1396     uint8_t vcfvelocity = _3ewa->ReadUint8();
1397     VCFVelocityDynamicRange = vcfvelocity % 5;
1398     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1399     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1400     if (VCFType == vcf_type_lowpass) {
1401     if (lfo3ctrl & 0x40) // bit 6
1402     VCFType = vcf_type_lowpassturbo;
1403     }
1404 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1405     _3ewa->Read(DimensionUpperLimits, 1, 8);
1406     } else {
1407     memset(DimensionUpperLimits, 0, 8);
1408     }
1409 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1410     // use default values
1411     LFO3Frequency = 1.0;
1412     EG3Attack = 0.0;
1413     LFO1InternalDepth = 0;
1414     LFO3InternalDepth = 0;
1415     LFO1ControlDepth = 0;
1416     LFO3ControlDepth = 0;
1417     EG1Attack = 0.0;
1418     EG1Decay1 = 0.0;
1419     EG1Sustain = 0;
1420     EG1Release = 0.0;
1421     EG1Controller.type = eg1_ctrl_t::type_none;
1422     EG1Controller.controller_number = 0;
1423     EG1ControllerInvert = false;
1424     EG1ControllerAttackInfluence = 0;
1425     EG1ControllerDecayInfluence = 0;
1426     EG1ControllerReleaseInfluence = 0;
1427     EG2Controller.type = eg2_ctrl_t::type_none;
1428     EG2Controller.controller_number = 0;
1429     EG2ControllerInvert = false;
1430     EG2ControllerAttackInfluence = 0;
1431     EG2ControllerDecayInfluence = 0;
1432     EG2ControllerReleaseInfluence = 0;
1433     LFO1Frequency = 1.0;
1434     EG2Attack = 0.0;
1435     EG2Decay1 = 0.0;
1436     EG2Sustain = 0;
1437     EG2Release = 0.0;
1438     LFO2ControlDepth = 0;
1439     LFO2Frequency = 1.0;
1440     LFO2InternalDepth = 0;
1441     EG1Decay2 = 0.0;
1442     EG1InfiniteSustain = false;
1443     EG1PreAttack = 1000;
1444     EG2Decay2 = 0.0;
1445     EG2InfiniteSustain = false;
1446     EG2PreAttack = 1000;
1447     VelocityResponseCurve = curve_type_nonlinear;
1448     VelocityResponseDepth = 3;
1449     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1450     ReleaseVelocityResponseDepth = 3;
1451     VelocityResponseCurveScaling = 32;
1452     AttenuationControllerThreshold = 0;
1453     SampleStartOffset = 0;
1454     PitchTrack = true;
1455     DimensionBypass = dim_bypass_ctrl_none;
1456     Pan = 0;
1457     SelfMask = true;
1458     LFO3Controller = lfo3_ctrl_modwheel;
1459     LFO3Sync = false;
1460     InvertAttenuationController = false;
1461     AttenuationController.type = attenuation_ctrl_t::type_none;
1462     AttenuationController.controller_number = 0;
1463     LFO2Controller = lfo2_ctrl_internal;
1464     LFO2FlipPhase = false;
1465     LFO2Sync = false;
1466     LFO1Controller = lfo1_ctrl_internal;
1467     LFO1FlipPhase = false;
1468     LFO1Sync = false;
1469     VCFResonanceController = vcf_res_ctrl_none;
1470     EG3Depth = 0;
1471     ChannelOffset = 0;
1472     MSDecode = false;
1473     SustainDefeat = false;
1474     VelocityUpperLimit = 0;
1475     ReleaseTriggerDecay = 0;
1476     EG1Hold = false;
1477     VCFEnabled = false;
1478     VCFCutoff = 0;
1479     VCFCutoffController = vcf_cutoff_ctrl_none;
1480     VCFCutoffControllerInvert = false;
1481     VCFVelocityScale = 0;
1482     VCFResonance = 0;
1483     VCFResonanceDynamic = false;
1484     VCFKeyboardTracking = false;
1485     VCFKeyboardTrackingBreakpoint = 0;
1486     VCFVelocityDynamicRange = 0x04;
1487     VCFVelocityCurve = curve_type_linear;
1488     VCFType = vcf_type_lowpass;
1489 persson 1070 memset(DimensionUpperLimits, 0, 8);
1490 schoenebeck 2 }
1491 schoenebeck 16
1492 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1493     VelocityResponseDepth,
1494     VelocityResponseCurveScaling);
1495    
1496     curve_type_t curveType = ReleaseVelocityResponseCurve;
1497     uint8_t depth = ReleaseVelocityResponseDepth;
1498    
1499     // this models a strange behaviour or bug in GSt: two of the
1500     // velocity response curves for release time are not used even
1501     // if specified, instead another curve is chosen.
1502     if ((curveType == curve_type_nonlinear && depth == 0) ||
1503     (curveType == curve_type_special && depth == 4)) {
1504     curveType = curve_type_nonlinear;
1505     depth = 3;
1506     }
1507     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1508    
1509 persson 728 curveType = VCFVelocityCurve;
1510     depth = VCFVelocityDynamicRange;
1511    
1512     // even stranger GSt: two of the velocity response curves for
1513     // filter cutoff are not used, instead another special curve
1514     // is chosen. This curve is not used anywhere else.
1515     if ((curveType == curve_type_nonlinear && depth == 0) ||
1516     (curveType == curve_type_special && depth == 4)) {
1517     curveType = curve_type_special;
1518     depth = 5;
1519     }
1520     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1521 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1522 persson 728
1523 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1524 persson 858 VelocityTable = 0;
1525 persson 613 }
1526    
1527 schoenebeck 809 /**
1528     * Apply dimension region settings to the respective RIFF chunks. You
1529     * have to call File::Save() to make changes persistent.
1530     *
1531     * Usually there is absolutely no need to call this method explicitly.
1532     * It will be called automatically when File::Save() was called.
1533     */
1534     void DimensionRegion::UpdateChunks() {
1535     // first update base class's chunk
1536     DLS::Sampler::UpdateChunks();
1537    
1538     // make sure '3ewa' chunk exists
1539     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1540     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1541     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1542    
1543     // update '3ewa' chunk with DimensionRegion's current settings
1544    
1545 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1546 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1547 schoenebeck 809
1548     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1549 persson 1179 store32(&pData[4], lfo3freq);
1550 schoenebeck 809
1551     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1552 persson 1179 store32(&pData[8], eg3attack);
1553 schoenebeck 809
1554     // next 2 bytes unknown
1555    
1556 persson 1179 store16(&pData[14], LFO1InternalDepth);
1557 schoenebeck 809
1558     // next 2 bytes unknown
1559    
1560 persson 1179 store16(&pData[18], LFO3InternalDepth);
1561 schoenebeck 809
1562     // next 2 bytes unknown
1563    
1564 persson 1179 store16(&pData[22], LFO1ControlDepth);
1565 schoenebeck 809
1566     // next 2 bytes unknown
1567    
1568 persson 1179 store16(&pData[26], LFO3ControlDepth);
1569 schoenebeck 809
1570     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1571 persson 1179 store32(&pData[28], eg1attack);
1572 schoenebeck 809
1573     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1574 persson 1179 store32(&pData[32], eg1decay1);
1575 schoenebeck 809
1576     // next 2 bytes unknown
1577    
1578 persson 1179 store16(&pData[38], EG1Sustain);
1579 schoenebeck 809
1580     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1581 persson 1179 store32(&pData[40], eg1release);
1582 schoenebeck 809
1583     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1584 persson 1179 pData[44] = eg1ctl;
1585 schoenebeck 809
1586     const uint8_t eg1ctrloptions =
1587     (EG1ControllerInvert) ? 0x01 : 0x00 |
1588     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1589     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1590     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1591 persson 1179 pData[45] = eg1ctrloptions;
1592 schoenebeck 809
1593     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1594 persson 1179 pData[46] = eg2ctl;
1595 schoenebeck 809
1596     const uint8_t eg2ctrloptions =
1597     (EG2ControllerInvert) ? 0x01 : 0x00 |
1598     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1599     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1600     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1601 persson 1179 pData[47] = eg2ctrloptions;
1602 schoenebeck 809
1603     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1604 persson 1179 store32(&pData[48], lfo1freq);
1605 schoenebeck 809
1606     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1607 persson 1179 store32(&pData[52], eg2attack);
1608 schoenebeck 809
1609     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1610 persson 1179 store32(&pData[56], eg2decay1);
1611 schoenebeck 809
1612     // next 2 bytes unknown
1613    
1614 persson 1179 store16(&pData[62], EG2Sustain);
1615 schoenebeck 809
1616     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1617 persson 1179 store32(&pData[64], eg2release);
1618 schoenebeck 809
1619     // next 2 bytes unknown
1620    
1621 persson 1179 store16(&pData[70], LFO2ControlDepth);
1622 schoenebeck 809
1623     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1624 persson 1179 store32(&pData[72], lfo2freq);
1625 schoenebeck 809
1626     // next 2 bytes unknown
1627    
1628 persson 1179 store16(&pData[78], LFO2InternalDepth);
1629 schoenebeck 809
1630     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1631 persson 1179 store32(&pData[80], eg1decay2);
1632 schoenebeck 809
1633     // next 2 bytes unknown
1634    
1635 persson 1179 store16(&pData[86], EG1PreAttack);
1636 schoenebeck 809
1637     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1638 persson 1179 store32(&pData[88], eg2decay2);
1639 schoenebeck 809
1640     // next 2 bytes unknown
1641    
1642 persson 1179 store16(&pData[94], EG2PreAttack);
1643 schoenebeck 809
1644     {
1645     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1646     uint8_t velocityresponse = VelocityResponseDepth;
1647     switch (VelocityResponseCurve) {
1648     case curve_type_nonlinear:
1649     break;
1650     case curve_type_linear:
1651     velocityresponse += 5;
1652     break;
1653     case curve_type_special:
1654     velocityresponse += 10;
1655     break;
1656     case curve_type_unknown:
1657     default:
1658     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1659     }
1660 persson 1179 pData[96] = velocityresponse;
1661 schoenebeck 809 }
1662    
1663     {
1664     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1665     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1666     switch (ReleaseVelocityResponseCurve) {
1667     case curve_type_nonlinear:
1668     break;
1669     case curve_type_linear:
1670     releasevelocityresponse += 5;
1671     break;
1672     case curve_type_special:
1673     releasevelocityresponse += 10;
1674     break;
1675     case curve_type_unknown:
1676     default:
1677     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1678     }
1679 persson 1179 pData[97] = releasevelocityresponse;
1680 schoenebeck 809 }
1681    
1682 persson 1179 pData[98] = VelocityResponseCurveScaling;
1683 schoenebeck 809
1684 persson 1179 pData[99] = AttenuationControllerThreshold;
1685 schoenebeck 809
1686     // next 4 bytes unknown
1687    
1688 persson 1179 store16(&pData[104], SampleStartOffset);
1689 schoenebeck 809
1690     // next 2 bytes unknown
1691    
1692     {
1693     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1694     switch (DimensionBypass) {
1695     case dim_bypass_ctrl_94:
1696     pitchTrackDimensionBypass |= 0x10;
1697     break;
1698     case dim_bypass_ctrl_95:
1699     pitchTrackDimensionBypass |= 0x20;
1700     break;
1701     case dim_bypass_ctrl_none:
1702     //FIXME: should we set anything here?
1703     break;
1704     default:
1705     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1706     }
1707 persson 1179 pData[108] = pitchTrackDimensionBypass;
1708 schoenebeck 809 }
1709    
1710     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1711 persson 1179 pData[109] = pan;
1712 schoenebeck 809
1713     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1714 persson 1179 pData[110] = selfmask;
1715 schoenebeck 809
1716     // next byte unknown
1717    
1718     {
1719     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1720     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1721     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1722     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1723 persson 1179 pData[112] = lfo3ctrl;
1724 schoenebeck 809 }
1725    
1726     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1727 persson 1179 pData[113] = attenctl;
1728 schoenebeck 809
1729     {
1730     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1731     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1732     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1733     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1734 persson 1179 pData[114] = lfo2ctrl;
1735 schoenebeck 809 }
1736    
1737     {
1738     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1739     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1740     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1741     if (VCFResonanceController != vcf_res_ctrl_none)
1742     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1743 persson 1179 pData[115] = lfo1ctrl;
1744 schoenebeck 809 }
1745    
1746     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1747     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1748 persson 1179 pData[116] = eg3depth;
1749 schoenebeck 809
1750     // next 2 bytes unknown
1751    
1752     const uint8_t channeloffset = ChannelOffset * 4;
1753 persson 1179 pData[120] = channeloffset;
1754 schoenebeck 809
1755     {
1756     uint8_t regoptions = 0;
1757     if (MSDecode) regoptions |= 0x01; // bit 0
1758     if (SustainDefeat) regoptions |= 0x02; // bit 1
1759 persson 1179 pData[121] = regoptions;
1760 schoenebeck 809 }
1761    
1762     // next 2 bytes unknown
1763    
1764 persson 1179 pData[124] = VelocityUpperLimit;
1765 schoenebeck 809
1766     // next 3 bytes unknown
1767    
1768 persson 1179 pData[128] = ReleaseTriggerDecay;
1769 schoenebeck 809
1770     // next 2 bytes unknown
1771    
1772     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1773 persson 1179 pData[131] = eg1hold;
1774 schoenebeck 809
1775     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1776 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1777 persson 1179 pData[132] = vcfcutoff;
1778 schoenebeck 809
1779 persson 1179 pData[133] = VCFCutoffController;
1780 schoenebeck 809
1781     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1782 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1783 persson 1179 pData[134] = vcfvelscale;
1784 schoenebeck 809
1785     // next byte unknown
1786    
1787     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1788 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1789 persson 1179 pData[136] = vcfresonance;
1790 schoenebeck 809
1791     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1792 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1793 persson 1179 pData[137] = vcfbreakpoint;
1794 schoenebeck 809
1795     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1796     VCFVelocityCurve * 5;
1797 persson 1179 pData[138] = vcfvelocity;
1798 schoenebeck 809
1799     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1800 persson 1179 pData[139] = vcftype;
1801 persson 1070
1802     if (chunksize >= 148) {
1803     memcpy(&pData[140], DimensionUpperLimits, 8);
1804     }
1805 schoenebeck 809 }
1806    
1807 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1808     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1809     {
1810     double* table;
1811     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1812 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1813 persson 613 table = (*pVelocityTables)[tableKey];
1814 schoenebeck 16 }
1815     else {
1816 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1817     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1818 schoenebeck 16 }
1819 persson 613 return table;
1820 schoenebeck 2 }
1821 schoenebeck 55
1822 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1823     leverage_ctrl_t decodedcontroller;
1824     switch (EncodedController) {
1825     // special controller
1826     case _lev_ctrl_none:
1827     decodedcontroller.type = leverage_ctrl_t::type_none;
1828     decodedcontroller.controller_number = 0;
1829     break;
1830     case _lev_ctrl_velocity:
1831     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1832     decodedcontroller.controller_number = 0;
1833     break;
1834     case _lev_ctrl_channelaftertouch:
1835     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1836     decodedcontroller.controller_number = 0;
1837     break;
1838 schoenebeck 55
1839 schoenebeck 36 // ordinary MIDI control change controller
1840     case _lev_ctrl_modwheel:
1841     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1842     decodedcontroller.controller_number = 1;
1843     break;
1844     case _lev_ctrl_breath:
1845     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1846     decodedcontroller.controller_number = 2;
1847     break;
1848     case _lev_ctrl_foot:
1849     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1850     decodedcontroller.controller_number = 4;
1851     break;
1852     case _lev_ctrl_effect1:
1853     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1854     decodedcontroller.controller_number = 12;
1855     break;
1856     case _lev_ctrl_effect2:
1857     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1858     decodedcontroller.controller_number = 13;
1859     break;
1860     case _lev_ctrl_genpurpose1:
1861     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1862     decodedcontroller.controller_number = 16;
1863     break;
1864     case _lev_ctrl_genpurpose2:
1865     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1866     decodedcontroller.controller_number = 17;
1867     break;
1868     case _lev_ctrl_genpurpose3:
1869     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1870     decodedcontroller.controller_number = 18;
1871     break;
1872     case _lev_ctrl_genpurpose4:
1873     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1874     decodedcontroller.controller_number = 19;
1875     break;
1876     case _lev_ctrl_portamentotime:
1877     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1878     decodedcontroller.controller_number = 5;
1879     break;
1880     case _lev_ctrl_sustainpedal:
1881     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1882     decodedcontroller.controller_number = 64;
1883     break;
1884     case _lev_ctrl_portamento:
1885     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1886     decodedcontroller.controller_number = 65;
1887     break;
1888     case _lev_ctrl_sostenutopedal:
1889     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1890     decodedcontroller.controller_number = 66;
1891     break;
1892     case _lev_ctrl_softpedal:
1893     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1894     decodedcontroller.controller_number = 67;
1895     break;
1896     case _lev_ctrl_genpurpose5:
1897     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1898     decodedcontroller.controller_number = 80;
1899     break;
1900     case _lev_ctrl_genpurpose6:
1901     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1902     decodedcontroller.controller_number = 81;
1903     break;
1904     case _lev_ctrl_genpurpose7:
1905     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1906     decodedcontroller.controller_number = 82;
1907     break;
1908     case _lev_ctrl_genpurpose8:
1909     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1910     decodedcontroller.controller_number = 83;
1911     break;
1912     case _lev_ctrl_effect1depth:
1913     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1914     decodedcontroller.controller_number = 91;
1915     break;
1916     case _lev_ctrl_effect2depth:
1917     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1918     decodedcontroller.controller_number = 92;
1919     break;
1920     case _lev_ctrl_effect3depth:
1921     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1922     decodedcontroller.controller_number = 93;
1923     break;
1924     case _lev_ctrl_effect4depth:
1925     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1926     decodedcontroller.controller_number = 94;
1927     break;
1928     case _lev_ctrl_effect5depth:
1929     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1930     decodedcontroller.controller_number = 95;
1931     break;
1932 schoenebeck 55
1933 schoenebeck 36 // unknown controller type
1934     default:
1935     throw gig::Exception("Unknown leverage controller type.");
1936     }
1937     return decodedcontroller;
1938     }
1939 schoenebeck 2
1940 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1941     _lev_ctrl_t encodedcontroller;
1942     switch (DecodedController.type) {
1943     // special controller
1944     case leverage_ctrl_t::type_none:
1945     encodedcontroller = _lev_ctrl_none;
1946     break;
1947     case leverage_ctrl_t::type_velocity:
1948     encodedcontroller = _lev_ctrl_velocity;
1949     break;
1950     case leverage_ctrl_t::type_channelaftertouch:
1951     encodedcontroller = _lev_ctrl_channelaftertouch;
1952     break;
1953    
1954     // ordinary MIDI control change controller
1955     case leverage_ctrl_t::type_controlchange:
1956     switch (DecodedController.controller_number) {
1957     case 1:
1958     encodedcontroller = _lev_ctrl_modwheel;
1959     break;
1960     case 2:
1961     encodedcontroller = _lev_ctrl_breath;
1962     break;
1963     case 4:
1964     encodedcontroller = _lev_ctrl_foot;
1965     break;
1966     case 12:
1967     encodedcontroller = _lev_ctrl_effect1;
1968     break;
1969     case 13:
1970     encodedcontroller = _lev_ctrl_effect2;
1971     break;
1972     case 16:
1973     encodedcontroller = _lev_ctrl_genpurpose1;
1974     break;
1975     case 17:
1976     encodedcontroller = _lev_ctrl_genpurpose2;
1977     break;
1978     case 18:
1979     encodedcontroller = _lev_ctrl_genpurpose3;
1980     break;
1981     case 19:
1982     encodedcontroller = _lev_ctrl_genpurpose4;
1983     break;
1984     case 5:
1985     encodedcontroller = _lev_ctrl_portamentotime;
1986     break;
1987     case 64:
1988     encodedcontroller = _lev_ctrl_sustainpedal;
1989     break;
1990     case 65:
1991     encodedcontroller = _lev_ctrl_portamento;
1992     break;
1993     case 66:
1994     encodedcontroller = _lev_ctrl_sostenutopedal;
1995     break;
1996     case 67:
1997     encodedcontroller = _lev_ctrl_softpedal;
1998     break;
1999     case 80:
2000     encodedcontroller = _lev_ctrl_genpurpose5;
2001     break;
2002     case 81:
2003     encodedcontroller = _lev_ctrl_genpurpose6;
2004     break;
2005     case 82:
2006     encodedcontroller = _lev_ctrl_genpurpose7;
2007     break;
2008     case 83:
2009     encodedcontroller = _lev_ctrl_genpurpose8;
2010     break;
2011     case 91:
2012     encodedcontroller = _lev_ctrl_effect1depth;
2013     break;
2014     case 92:
2015     encodedcontroller = _lev_ctrl_effect2depth;
2016     break;
2017     case 93:
2018     encodedcontroller = _lev_ctrl_effect3depth;
2019     break;
2020     case 94:
2021     encodedcontroller = _lev_ctrl_effect4depth;
2022     break;
2023     case 95:
2024     encodedcontroller = _lev_ctrl_effect5depth;
2025     break;
2026     default:
2027     throw gig::Exception("leverage controller number is not supported by the gig format");
2028     }
2029 persson 1182 break;
2030 schoenebeck 809 default:
2031     throw gig::Exception("Unknown leverage controller type.");
2032     }
2033     return encodedcontroller;
2034     }
2035    
2036 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2037     Instances--;
2038     if (!Instances) {
2039     // delete the velocity->volume tables
2040     VelocityTableMap::iterator iter;
2041     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2042     double* pTable = iter->second;
2043     if (pTable) delete[] pTable;
2044     }
2045     pVelocityTables->clear();
2046     delete pVelocityTables;
2047     pVelocityTables = NULL;
2048     }
2049 persson 858 if (VelocityTable) delete[] VelocityTable;
2050 schoenebeck 16 }
2051 schoenebeck 2
2052 schoenebeck 16 /**
2053     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2054     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2055     * and VelocityResponseCurveScaling) involved are taken into account to
2056     * calculate the amplitude factor. Use this method when a key was
2057     * triggered to get the volume with which the sample should be played
2058     * back.
2059     *
2060 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2061     * @returns amplitude factor (between 0.0 and 1.0)
2062 schoenebeck 16 */
2063     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2064     return pVelocityAttenuationTable[MIDIKeyVelocity];
2065     }
2066 schoenebeck 2
2067 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2068     return pVelocityReleaseTable[MIDIKeyVelocity];
2069     }
2070    
2071 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2072     return pVelocityCutoffTable[MIDIKeyVelocity];
2073     }
2074    
2075 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2076 schoenebeck 317
2077 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2078 schoenebeck 16
2079 schoenebeck 308 // linear
2080     const int lin0[] = { 1, 1, 127, 127 };
2081     const int lin1[] = { 1, 21, 127, 127 };
2082     const int lin2[] = { 1, 45, 127, 127 };
2083     const int lin3[] = { 1, 74, 127, 127 };
2084     const int lin4[] = { 1, 127, 127, 127 };
2085 schoenebeck 16
2086 schoenebeck 308 // non-linear
2087     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2088 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2089 schoenebeck 308 127, 127 };
2090     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2091     127, 127 };
2092     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2093     127, 127 };
2094     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2095 schoenebeck 317
2096 schoenebeck 308 // special
2097 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2098 schoenebeck 308 113, 127, 127, 127 };
2099     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2100     118, 127, 127, 127 };
2101 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2102 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2103 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2104 schoenebeck 308 117, 127, 127, 127 };
2105 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2106 schoenebeck 308 127, 127 };
2107 schoenebeck 317
2108 persson 728 // this is only used by the VCF velocity curve
2109     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2110     91, 127, 127, 127 };
2111    
2112 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2113 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2114 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2115 schoenebeck 317
2116 schoenebeck 308 double* const table = new double[128];
2117    
2118     const int* curve = curves[curveType * 5 + depth];
2119     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2120 schoenebeck 317
2121 schoenebeck 308 table[0] = 0;
2122     for (int x = 1 ; x < 128 ; x++) {
2123    
2124     if (x > curve[2]) curve += 2;
2125 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2126 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2127     y = y / 127;
2128    
2129     // Scale up for s > 20, down for s < 20. When
2130     // down-scaling, the curve still ends at 1.0.
2131     if (s < 20 && y >= 0.5)
2132     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2133     else
2134     y = y * (s / 20.0);
2135     if (y > 1) y = 1;
2136    
2137     table[x] = y;
2138     }
2139     return table;
2140     }
2141    
2142    
2143 schoenebeck 2 // *************** Region ***************
2144     // *
2145    
2146     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2147     // Initialization
2148     Dimensions = 0;
2149 schoenebeck 347 for (int i = 0; i < 256; i++) {
2150 schoenebeck 2 pDimensionRegions[i] = NULL;
2151     }
2152 schoenebeck 282 Layers = 1;
2153 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2154     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2155 schoenebeck 2
2156     // Actual Loading
2157    
2158     LoadDimensionRegions(rgnList);
2159    
2160     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2161     if (_3lnk) {
2162     DimensionRegions = _3lnk->ReadUint32();
2163 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2164 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2165     uint8_t bits = _3lnk->ReadUint8();
2166 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2167     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2168 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2169 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2170     pDimensionDefinitions[i].dimension = dimension_none;
2171     pDimensionDefinitions[i].bits = 0;
2172     pDimensionDefinitions[i].zones = 0;
2173     pDimensionDefinitions[i].split_type = split_type_bit;
2174     pDimensionDefinitions[i].zone_size = 0;
2175     }
2176     else { // active dimension
2177     pDimensionDefinitions[i].dimension = dimension;
2178     pDimensionDefinitions[i].bits = bits;
2179 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2180 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2181     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2182 schoenebeck 2 Dimensions++;
2183 schoenebeck 282
2184     // if this is a layer dimension, remember the amount of layers
2185     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2186 schoenebeck 2 }
2187 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2188 schoenebeck 2 }
2189 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2190 schoenebeck 2
2191 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2192     // update the VelocityTables in the dimension regions
2193     UpdateVelocityTable();
2194 schoenebeck 2
2195 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2196     if (file->pVersion && file->pVersion->major == 3)
2197     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2198     else
2199     _3lnk->SetPos(44);
2200    
2201 schoenebeck 2 // load sample references
2202     for (uint i = 0; i < DimensionRegions; i++) {
2203     uint32_t wavepoolindex = _3lnk->ReadUint32();
2204 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2205 schoenebeck 2 }
2206 persson 918 GetSample(); // load global region sample reference
2207 persson 1102 } else {
2208     DimensionRegions = 0;
2209 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2210     pDimensionDefinitions[i].dimension = dimension_none;
2211     pDimensionDefinitions[i].bits = 0;
2212     pDimensionDefinitions[i].zones = 0;
2213     }
2214 schoenebeck 2 }
2215 schoenebeck 823
2216     // make sure there is at least one dimension region
2217     if (!DimensionRegions) {
2218     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2219     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2220     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2221     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2222     DimensionRegions = 1;
2223     }
2224 schoenebeck 2 }
2225    
2226 schoenebeck 809 /**
2227     * Apply Region settings and all its DimensionRegions to the respective
2228     * RIFF chunks. You have to call File::Save() to make changes persistent.
2229     *
2230     * Usually there is absolutely no need to call this method explicitly.
2231     * It will be called automatically when File::Save() was called.
2232     *
2233     * @throws gig::Exception if samples cannot be dereferenced
2234     */
2235     void Region::UpdateChunks() {
2236 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2237     // but we still have to provide some existing one to not corrupt the
2238     // file, so to avoid the latter we simply always assign the sample of
2239     // the first dimension region of this region
2240     pSample = pDimensionRegions[0]->pSample;
2241    
2242 schoenebeck 809 // first update base class's chunks
2243     DLS::Region::UpdateChunks();
2244    
2245     // update dimension region's chunks
2246 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2247 schoenebeck 809 pDimensionRegions[i]->UpdateChunks();
2248 schoenebeck 823 }
2249 schoenebeck 809
2250     File* pFile = (File*) GetParent()->GetParent();
2251     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2252     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2253    
2254     // make sure '3lnk' chunk exists
2255     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2256     if (!_3lnk) {
2257     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2258     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2259 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2260 persson 1192
2261     // move 3prg to last position
2262     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2263 schoenebeck 809 }
2264    
2265     // update dimension definitions in '3lnk' chunk
2266     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2267 persson 1179 store32(&pData[0], DimensionRegions);
2268 persson 1199 int shift = 0;
2269 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2270 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2271     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2272 persson 1199 pData[6 + i * 8] = shift;
2273     pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2274 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2275 persson 1199 // next 3 bytes unknown, always zero?
2276    
2277     shift += pDimensionDefinitions[i].bits;
2278 schoenebeck 809 }
2279    
2280     // update wave pool table in '3lnk' chunk
2281     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2282     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2283     int iWaveIndex = -1;
2284     if (i < DimensionRegions) {
2285 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2286     File::SampleList::iterator iter = pFile->pSamples->begin();
2287     File::SampleList::iterator end = pFile->pSamples->end();
2288 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2289 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2290     iWaveIndex = index;
2291     break;
2292     }
2293 schoenebeck 809 }
2294     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2295     }
2296 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2297 schoenebeck 809 }
2298     }
2299    
2300 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2301     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2302     if (_3prg) {
2303     int dimensionRegionNr = 0;
2304     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2305     while (_3ewl) {
2306     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2307     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2308     dimensionRegionNr++;
2309     }
2310     _3ewl = _3prg->GetNextSubList();
2311     }
2312     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2313     }
2314     }
2315    
2316 persson 858 void Region::UpdateVelocityTable() {
2317     // get velocity dimension's index
2318     int veldim = -1;
2319     for (int i = 0 ; i < Dimensions ; i++) {
2320     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2321     veldim = i;
2322 schoenebeck 809 break;
2323     }
2324     }
2325 persson 858 if (veldim == -1) return;
2326 schoenebeck 809
2327 persson 858 int step = 1;
2328     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2329     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2330     int end = step * pDimensionDefinitions[veldim].zones;
2331 schoenebeck 809
2332 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2333     int dim[8] = { 0 };
2334     for (int i = 0 ; i < DimensionRegions ; i++) {
2335    
2336 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2337     pDimensionRegions[i]->VelocityUpperLimit) {
2338 persson 858 // create the velocity table
2339     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2340     if (!table) {
2341     table = new uint8_t[128];
2342     pDimensionRegions[i]->VelocityTable = table;
2343     }
2344     int tableidx = 0;
2345     int velocityZone = 0;
2346 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2347     for (int k = i ; k < end ; k += step) {
2348     DimensionRegion *d = pDimensionRegions[k];
2349     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2350     velocityZone++;
2351     }
2352     } else { // gig2
2353     for (int k = i ; k < end ; k += step) {
2354     DimensionRegion *d = pDimensionRegions[k];
2355     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2356     velocityZone++;
2357     }
2358 persson 858 }
2359     } else {
2360     if (pDimensionRegions[i]->VelocityTable) {
2361     delete[] pDimensionRegions[i]->VelocityTable;
2362     pDimensionRegions[i]->VelocityTable = 0;
2363     }
2364 schoenebeck 809 }
2365 persson 858
2366     int j;
2367     int shift = 0;
2368     for (j = 0 ; j < Dimensions ; j++) {
2369     if (j == veldim) i += skipveldim; // skip velocity dimension
2370     else {
2371     dim[j]++;
2372     if (dim[j] < pDimensionDefinitions[j].zones) break;
2373     else {
2374     // skip unused dimension regions
2375     dim[j] = 0;
2376     i += ((1 << pDimensionDefinitions[j].bits) -
2377     pDimensionDefinitions[j].zones) << shift;
2378     }
2379     }
2380     shift += pDimensionDefinitions[j].bits;
2381     }
2382     if (j == Dimensions) break;
2383 schoenebeck 809 }
2384     }
2385    
2386     /** @brief Einstein would have dreamed of it - create a new dimension.
2387     *
2388     * Creates a new dimension with the dimension definition given by
2389     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2390     * There is a hard limit of dimensions and total amount of "bits" all
2391     * dimensions can have. This limit is dependant to what gig file format
2392     * version this file refers to. The gig v2 (and lower) format has a
2393     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2394     * format has a limit of 8.
2395     *
2396     * @param pDimDef - defintion of the new dimension
2397     * @throws gig::Exception if dimension of the same type exists already
2398     * @throws gig::Exception if amount of dimensions or total amount of
2399     * dimension bits limit is violated
2400     */
2401     void Region::AddDimension(dimension_def_t* pDimDef) {
2402     // check if max. amount of dimensions reached
2403     File* file = (File*) GetParent()->GetParent();
2404     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2405     if (Dimensions >= iMaxDimensions)
2406     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2407     // check if max. amount of dimension bits reached
2408     int iCurrentBits = 0;
2409     for (int i = 0; i < Dimensions; i++)
2410     iCurrentBits += pDimensionDefinitions[i].bits;
2411     if (iCurrentBits >= iMaxDimensions)
2412     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2413     const int iNewBits = iCurrentBits + pDimDef->bits;
2414     if (iNewBits > iMaxDimensions)
2415     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2416     // check if there's already a dimensions of the same type
2417     for (int i = 0; i < Dimensions; i++)
2418     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2419     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2420    
2421     // assign definition of new dimension
2422     pDimensionDefinitions[Dimensions] = *pDimDef;
2423    
2424 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2425     pDimensionDefinitions[Dimensions].split_type =
2426     __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2427     pDimensionDefinitions[Dimensions].zone_size =
2428     __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2429    
2430 schoenebeck 809 // create new dimension region(s) for this new dimension
2431     for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2432     //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2433 persson 1195 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2434     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2435 schoenebeck 809 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2436     DimensionRegions++;
2437     }
2438    
2439     Dimensions++;
2440    
2441     // if this is a layer dimension, update 'Layers' attribute
2442     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2443    
2444 persson 858 UpdateVelocityTable();
2445 schoenebeck 809 }
2446    
2447     /** @brief Delete an existing dimension.
2448     *
2449     * Deletes the dimension given by \a pDimDef and deletes all respective
2450     * dimension regions, that is all dimension regions where the dimension's
2451     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2452     * for example this would delete all dimension regions for the case(s)
2453     * where the sustain pedal is pressed down.
2454     *
2455     * @param pDimDef - dimension to delete
2456     * @throws gig::Exception if given dimension cannot be found
2457     */
2458     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2459     // get dimension's index
2460     int iDimensionNr = -1;
2461     for (int i = 0; i < Dimensions; i++) {
2462     if (&pDimensionDefinitions[i] == pDimDef) {
2463     iDimensionNr = i;
2464     break;
2465     }
2466     }
2467     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2468    
2469     // get amount of bits below the dimension to delete
2470     int iLowerBits = 0;
2471     for (int i = 0; i < iDimensionNr; i++)
2472     iLowerBits += pDimensionDefinitions[i].bits;
2473    
2474     // get amount ot bits above the dimension to delete
2475     int iUpperBits = 0;
2476     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2477     iUpperBits += pDimensionDefinitions[i].bits;
2478    
2479     // delete dimension regions which belong to the given dimension
2480     // (that is where the dimension's bit > 0)
2481     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2482     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2483     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2484     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2485     iObsoleteBit << iLowerBits |
2486     iLowerBit;
2487     delete pDimensionRegions[iToDelete];
2488     pDimensionRegions[iToDelete] = NULL;
2489     DimensionRegions--;
2490     }
2491     }
2492     }
2493    
2494     // defrag pDimensionRegions array
2495     // (that is remove the NULL spaces within the pDimensionRegions array)
2496     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2497     if (!pDimensionRegions[iTo]) {
2498     if (iFrom <= iTo) iFrom = iTo + 1;
2499     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2500     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2501     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2502     pDimensionRegions[iFrom] = NULL;
2503     }
2504     }
2505     }
2506    
2507     // 'remove' dimension definition
2508     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2509     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2510     }
2511     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2512     pDimensionDefinitions[Dimensions - 1].bits = 0;
2513     pDimensionDefinitions[Dimensions - 1].zones = 0;
2514    
2515     Dimensions--;
2516    
2517     // if this was a layer dimension, update 'Layers' attribute
2518     if (pDimDef->dimension == dimension_layer) Layers = 1;
2519     }
2520    
2521 schoenebeck 2 Region::~Region() {
2522 schoenebeck 350 for (int i = 0; i < 256; i++) {
2523 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2524     }
2525     }
2526    
2527     /**
2528     * Use this method in your audio engine to get the appropriate dimension
2529     * region with it's articulation data for the current situation. Just
2530     * call the method with the current MIDI controller values and you'll get
2531     * the DimensionRegion with the appropriate articulation data for the
2532     * current situation (for this Region of course only). To do that you'll
2533     * first have to look which dimensions with which controllers and in
2534     * which order are defined for this Region when you load the .gig file.
2535     * Special cases are e.g. layer or channel dimensions where you just put
2536     * in the index numbers instead of a MIDI controller value (means 0 for
2537     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2538     * etc.).
2539     *
2540 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2541 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2542     * @see pDimensionDefinitions
2543     * @see Dimensions
2544     */
2545 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2546 persson 858 uint8_t bits;
2547     int veldim = -1;
2548     int velbitpos;
2549     int bitpos = 0;
2550     int dimregidx = 0;
2551 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2552 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2553     // the velocity dimension must be handled after the other dimensions
2554     veldim = i;
2555     velbitpos = bitpos;
2556     } else {
2557     switch (pDimensionDefinitions[i].split_type) {
2558     case split_type_normal:
2559 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2560     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2561     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2562     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2563     }
2564     } else {
2565     // gig2: evenly sized zones
2566     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2567     }
2568 persson 858 break;
2569     case split_type_bit: // the value is already the sought dimension bit number
2570     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2571     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2572     break;
2573     }
2574     dimregidx |= bits << bitpos;
2575 schoenebeck 2 }
2576 persson 858 bitpos += pDimensionDefinitions[i].bits;
2577 schoenebeck 2 }
2578 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2579     if (veldim != -1) {
2580     // (dimreg is now the dimension region for the lowest velocity)
2581 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2582 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2583     else // normal split type
2584     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2585    
2586     dimregidx |= bits << velbitpos;
2587     dimreg = pDimensionRegions[dimregidx];
2588     }
2589     return dimreg;
2590 schoenebeck 2 }
2591    
2592     /**
2593     * Returns the appropriate DimensionRegion for the given dimension bit
2594     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2595     * instead of calling this method directly!
2596     *
2597 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2598 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2599     * bit numbers
2600     * @see GetDimensionRegionByValue()
2601     */
2602 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2603     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2604     << pDimensionDefinitions[5].bits | DimBits[5])
2605     << pDimensionDefinitions[4].bits | DimBits[4])
2606     << pDimensionDefinitions[3].bits | DimBits[3])
2607     << pDimensionDefinitions[2].bits | DimBits[2])
2608     << pDimensionDefinitions[1].bits | DimBits[1])
2609     << pDimensionDefinitions[0].bits | DimBits[0]];
2610 schoenebeck 2 }
2611    
2612     /**
2613     * Returns pointer address to the Sample referenced with this region.
2614     * This is the global Sample for the entire Region (not sure if this is
2615     * actually used by the Gigasampler engine - I would only use the Sample
2616     * referenced by the appropriate DimensionRegion instead of this sample).
2617     *
2618     * @returns address to Sample or NULL if there is no reference to a
2619     * sample saved in the .gig file
2620     */
2621     Sample* Region::GetSample() {
2622     if (pSample) return static_cast<gig::Sample*>(pSample);
2623     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2624     }
2625    
2626 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2627 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2628 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2629 persson 902 if (!file->pWavePoolTable) return NULL;
2630 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2631 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2632 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2633 schoenebeck 2 while (sample) {
2634 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2635 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2636 schoenebeck 2 sample = file->GetNextSample();
2637     }
2638     return NULL;
2639     }
2640    
2641    
2642    
2643     // *************** Instrument ***************
2644     // *
2645    
2646 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2647 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2648     { CHUNK_ID_INAM, 64 },
2649     { CHUNK_ID_ISFT, 12 },
2650     { 0, 0 }
2651     };
2652     pInfo->FixedStringLengths = fixedStringLengths;
2653 persson 918
2654 schoenebeck 2 // Initialization
2655     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2656 persson 1182 EffectSend = 0;
2657     Attenuation = 0;
2658     FineTune = 0;
2659     PitchbendRange = 0;
2660     PianoReleaseMode = false;
2661     DimensionKeyRange.low = 0;
2662     DimensionKeyRange.high = 0;
2663 schoenebeck 2
2664     // Loading
2665     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2666     if (lart) {
2667     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2668     if (_3ewg) {
2669     EffectSend = _3ewg->ReadUint16();
2670     Attenuation = _3ewg->ReadInt32();
2671     FineTune = _3ewg->ReadInt16();
2672     PitchbendRange = _3ewg->ReadInt16();
2673     uint8_t dimkeystart = _3ewg->ReadUint8();
2674     PianoReleaseMode = dimkeystart & 0x01;
2675     DimensionKeyRange.low = dimkeystart >> 1;
2676     DimensionKeyRange.high = _3ewg->ReadUint8();
2677     }
2678     }
2679    
2680 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2681 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2682 schoenebeck 809 if (lrgn) {
2683     RIFF::List* rgn = lrgn->GetFirstSubList();
2684     while (rgn) {
2685     if (rgn->GetListType() == LIST_TYPE_RGN) {
2686 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2687     pRegions->push_back(new Region(this, rgn));
2688 schoenebeck 809 }
2689     rgn = lrgn->GetNextSubList();
2690 schoenebeck 2 }
2691 schoenebeck 809 // Creating Region Key Table for fast lookup
2692     UpdateRegionKeyTable();
2693 schoenebeck 2 }
2694    
2695 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2696     }
2697    
2698     void Instrument::UpdateRegionKeyTable() {
2699 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2700     RegionList::iterator end = pRegions->end();
2701     for (; iter != end; ++iter) {
2702     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2703     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2704     RegionKeyTable[iKey] = pRegion;
2705 schoenebeck 2 }
2706     }
2707     }
2708    
2709     Instrument::~Instrument() {
2710     }
2711    
2712     /**
2713 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2714     * You have to call File::Save() to make changes persistent.
2715     *
2716     * Usually there is absolutely no need to call this method explicitly.
2717     * It will be called automatically when File::Save() was called.
2718     *
2719     * @throws gig::Exception if samples cannot be dereferenced
2720     */
2721     void Instrument::UpdateChunks() {
2722     // first update base classes' chunks
2723     DLS::Instrument::UpdateChunks();
2724    
2725     // update Regions' chunks
2726 schoenebeck 823 {
2727     RegionList::iterator iter = pRegions->begin();
2728     RegionList::iterator end = pRegions->end();
2729     for (; iter != end; ++iter)
2730     (*iter)->UpdateChunks();
2731     }
2732 schoenebeck 809
2733     // make sure 'lart' RIFF list chunk exists
2734     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2735     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2736     // make sure '3ewg' RIFF chunk exists
2737     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2738     if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2739     // update '3ewg' RIFF chunk
2740     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2741 persson 1179 store16(&pData[0], EffectSend);
2742     store32(&pData[2], Attenuation);
2743     store16(&pData[6], FineTune);
2744     store16(&pData[8], PitchbendRange);
2745 schoenebeck 809 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2746     DimensionKeyRange.low << 1;
2747 persson 1179 pData[10] = dimkeystart;
2748     pData[11] = DimensionKeyRange.high;
2749 schoenebeck 809 }
2750    
2751     /**
2752 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2753     *
2754     * @param Key MIDI Key number of triggered note / key (0 - 127)
2755     * @returns pointer adress to the appropriate Region or NULL if there
2756     * there is no Region defined for the given \a Key
2757     */
2758     Region* Instrument::GetRegion(unsigned int Key) {
2759 schoenebeck 823 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2760 schoenebeck 2 return RegionKeyTable[Key];
2761 schoenebeck 823
2762 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
2763     if (Key <= pRegions[i]->KeyRange.high &&
2764     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2765     }
2766     return NULL;*/
2767     }
2768    
2769     /**
2770     * Returns the first Region of the instrument. You have to call this
2771     * method once before you use GetNextRegion().
2772     *
2773     * @returns pointer address to first region or NULL if there is none
2774     * @see GetNextRegion()
2775     */
2776     Region* Instrument::GetFirstRegion() {
2777 schoenebeck 823 if (!pRegions) return NULL;
2778     RegionsIterator = pRegions->begin();
2779     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2780 schoenebeck 2 }
2781    
2782     /**
2783     * Returns the next Region of the instrument. You have to call
2784     * GetFirstRegion() once before you can use this method. By calling this
2785     * method multiple times it iterates through the available Regions.
2786     *
2787     * @returns pointer address to the next region or NULL if end reached
2788     * @see GetFirstRegion()
2789     */
2790     Region* Instrument::GetNextRegion() {
2791 schoenebeck 823 if (!pRegions) return NULL;
2792     RegionsIterator++;
2793     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2794 schoenebeck 2 }
2795    
2796 schoenebeck 809 Region* Instrument::AddRegion() {
2797     // create new Region object (and its RIFF chunks)
2798     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2799     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2800     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2801     Region* pNewRegion = new Region(this, rgn);
2802 schoenebeck 823 pRegions->push_back(pNewRegion);
2803     Regions = pRegions->size();
2804 schoenebeck 809 // update Region key table for fast lookup
2805     UpdateRegionKeyTable();
2806     // done
2807     return pNewRegion;
2808     }
2809 schoenebeck 2
2810 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2811     if (!pRegions) return;
2812 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2813 schoenebeck 809 // update Region key table for fast lookup
2814     UpdateRegionKeyTable();
2815     }
2816 schoenebeck 2
2817 schoenebeck 809
2818    
2819 schoenebeck 929 // *************** Group ***************
2820     // *
2821    
2822     /** @brief Constructor.
2823     *
2824 schoenebeck 930 * @param file - pointer to the gig::File object
2825     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2826     * NULL if this is a new Group
2827 schoenebeck 929 */
2828 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2829 schoenebeck 929 pFile = file;
2830     pNameChunk = ck3gnm;
2831     ::LoadString(pNameChunk, Name);
2832     }
2833    
2834     Group::~Group() {
2835 schoenebeck 1099 // remove the chunk associated with this group (if any)
2836     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2837 schoenebeck 929 }
2838    
2839     /** @brief Update chunks with current group settings.
2840     *
2841 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
2842     * to call File::Save() to make changes persistent.
2843     *
2844     * Usually there is absolutely no need to call this method explicitly.
2845     * It will be called automatically when File::Save() was called.
2846 schoenebeck 929 */
2847     void Group::UpdateChunks() {
2848     // make sure <3gri> and <3gnl> list chunks exist
2849 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2850 persson 1192 if (!_3gri) {
2851     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2852     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2853     }
2854 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2855 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2856 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2857     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2858     }
2859    
2860 schoenebeck 930 /**
2861     * Returns the first Sample of this Group. You have to call this method
2862     * once before you use GetNextSample().
2863     *
2864     * <b>Notice:</b> this method might block for a long time, in case the
2865     * samples of this .gig file were not scanned yet
2866     *
2867     * @returns pointer address to first Sample or NULL if there is none
2868     * applied to this Group
2869     * @see GetNextSample()
2870     */
2871     Sample* Group::GetFirstSample() {
2872     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2873     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2874     if (pSample->GetGroup() == this) return pSample;
2875     }
2876     return NULL;
2877     }
2878 schoenebeck 929
2879 schoenebeck 930 /**
2880     * Returns the next Sample of the Group. You have to call
2881     * GetFirstSample() once before you can use this method. By calling this
2882     * method multiple times it iterates through the Samples assigned to
2883     * this Group.
2884     *
2885     * @returns pointer address to the next Sample of this Group or NULL if
2886     * end reached
2887     * @see GetFirstSample()
2888     */
2889     Sample* Group::GetNextSample() {
2890     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2891     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2892     if (pSample->GetGroup() == this) return pSample;
2893     }
2894     return NULL;
2895     }
2896 schoenebeck 929
2897 schoenebeck 930 /**
2898     * Move Sample given by \a pSample from another Group to this Group.
2899     */
2900     void Group::AddSample(Sample* pSample) {
2901     pSample->pGroup = this;
2902     }
2903    
2904     /**
2905     * Move all members of this group to another group (preferably the 1st
2906     * one except this). This method is called explicitly by
2907     * File::DeleteGroup() thus when a Group was deleted. This code was
2908     * intentionally not placed in the destructor!
2909     */
2910     void Group::MoveAll() {
2911     // get "that" other group first
2912     Group* pOtherGroup = NULL;
2913     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2914     if (pOtherGroup != this) break;
2915     }
2916     if (!pOtherGroup) throw Exception(
2917     "Could not move samples to another group, since there is no "
2918     "other Group. This is a bug, report it!"
2919     );
2920     // now move all samples of this group to the other group
2921     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2922     pOtherGroup->AddSample(pSample);
2923     }
2924     }
2925    
2926    
2927    
2928 schoenebeck 2 // *************** File ***************
2929     // *
2930    
2931 persson 1199 // File version 2.0, 1998-06-28
2932     const DLS::version_t File::VERSION_2 = {
2933     0, 2, 19980628 & 0xffff, 19980628 >> 16
2934     };
2935    
2936     // File version 3.0, 2003-03-31
2937     const DLS::version_t File::VERSION_3 = {
2938     0, 3, 20030331 & 0xffff, 20030331 >> 16
2939     };
2940    
2941 persson 1180 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2942     { CHUNK_ID_IARL, 256 },
2943     { CHUNK_ID_IART, 128 },
2944     { CHUNK_ID_ICMS, 128 },
2945     { CHUNK_ID_ICMT, 1024 },
2946     { CHUNK_ID_ICOP, 128 },
2947     { CHUNK_ID_ICRD, 128 },
2948     { CHUNK_ID_IENG, 128 },
2949     { CHUNK_ID_IGNR, 128 },
2950     { CHUNK_ID_IKEY, 128 },
2951     { CHUNK_ID_IMED, 128 },
2952     { CHUNK_ID_INAM, 128 },
2953     { CHUNK_ID_IPRD, 128 },
2954     { CHUNK_ID_ISBJ, 128 },
2955     { CHUNK_ID_ISFT, 128 },
2956     { CHUNK_ID_ISRC, 128 },
2957     { CHUNK_ID_ISRF, 128 },
2958     { CHUNK_ID_ITCH, 128 },
2959     { 0, 0 }
2960     };
2961    
2962 schoenebeck 809 File::File() : DLS::File() {
2963 schoenebeck 929 pGroups = NULL;
2964 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
2965 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
2966 persson 1192
2967     // add some mandatory chunks to get the file chunks in right
2968     // order (INFO chunk will be moved to first position later)
2969     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2970     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2971 schoenebeck 809 }
2972    
2973 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2974 schoenebeck 929 pGroups = NULL;
2975 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
2976 schoenebeck 2 }
2977    
2978 schoenebeck 929 File::~File() {
2979     if (pGroups) {
2980     std::list<Group*>::iterator iter = pGroups->begin();
2981     std::list<Group*>::iterator end = pGroups->end();
2982     while (iter != end) {
2983     delete *iter;
2984     ++iter;
2985     }
2986     delete pGroups;
2987     }
2988     }
2989    
2990 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
2991     if (!pSamples) LoadSamples(pProgress);
2992 schoenebeck 2 if (!pSamples) return NULL;
2993     SamplesIterator = pSamples->begin();
2994     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2995     }
2996    
2997     Sample* File::GetNextSample() {
2998     if (!pSamples) return NULL;
2999     SamplesIterator++;
3000     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3001     }
3002    
3003 schoenebeck 809 /** @brief Add a new sample.
3004     *
3005     * This will create a new Sample object for the gig file. You have to
3006     * call Save() to make this persistent to the file.
3007     *
3008     * @returns pointer to new Sample object
3009     */
3010     Sample* File::AddSample() {
3011     if (!pSamples) LoadSamples();
3012     __ensureMandatoryChunksExist();
3013     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3014     // create new Sample object and its respective 'wave' list chunk
3015     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3016     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3017 persson 1192
3018     // add mandatory chunks to get the chunks in right order
3019     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3020     wave->AddSubList(LIST_TYPE_INFO);
3021    
3022 schoenebeck 809 pSamples->push_back(pSample);
3023     return pSample;
3024     }
3025    
3026     /** @brief Delete a sample.
3027     *
3028     * This will delete the given Sample object from the gig file. You have
3029     * to call Save() to make this persistent to the file.
3030     *
3031     * @param pSample - sample to delete
3032     * @throws gig::Exception if given sample could not be found
3033     */
3034     void File::DeleteSample(Sample* pSample) {
3035 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3036     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3037 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3038 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3039 schoenebeck 809 pSamples->erase(iter);
3040     delete pSample;
3041     }
3042    
3043 schoenebeck 823 void File::LoadSamples() {
3044     LoadSamples(NULL);
3045     }
3046    
3047 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3048 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3049     // to resolve the group they belong to
3050 schoenebeck 1158 if (!pGroups) LoadGroups();
3051 schoenebeck 930
3052 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3053    
3054 persson 666 RIFF::File* file = pRIFF;
3055 schoenebeck 515
3056 persson 666 // just for progress calculation
3057     int iSampleIndex = 0;
3058     int iTotalSamples = WavePoolCount;
3059 schoenebeck 515
3060 persson 666 // check if samples should be loaded from extension files
3061     int lastFileNo = 0;
3062     for (int i = 0 ; i < WavePoolCount ; i++) {
3063     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3064     }
3065 schoenebeck 780 String name(pRIFF->GetFileName());
3066     int nameLen = name.length();
3067 persson 666 char suffix[6];
3068 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3069 schoenebeck 515
3070 persson 666 for (int fileNo = 0 ; ; ) {
3071     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3072     if (wvpl) {
3073     unsigned long wvplFileOffset = wvpl->GetFilePos();
3074     RIFF::List* wave = wvpl->GetFirstSubList();
3075     while (wave) {
3076     if (wave->GetListType() == LIST_TYPE_WAVE) {
3077     // notify current progress
3078     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3079     __notify_progress(pProgress, subprogress);
3080    
3081     unsigned long waveFileOffset = wave->GetFilePos();
3082     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3083    
3084     iSampleIndex++;
3085     }
3086     wave = wvpl->GetNextSubList();
3087 schoenebeck 2 }
3088 persson 666
3089     if (fileNo == lastFileNo) break;
3090    
3091     // open extension file (*.gx01, *.gx02, ...)
3092     fileNo++;
3093     sprintf(suffix, ".gx%02d", fileNo);
3094     name.replace(nameLen, 5, suffix);
3095     file = new RIFF::File(name);
3096     ExtensionFiles.push_back(file);
3097 schoenebeck 823 } else break;
3098 schoenebeck 2 }
3099 persson 666
3100     __notify_progress(pProgress, 1.0); // notify done
3101 schoenebeck 2 }
3102    
3103     Instrument* File::GetFirstInstrument() {
3104     if (!pInstruments) LoadInstruments();
3105     if (!pInstruments) return NULL;
3106     InstrumentsIterator = pInstruments->begin();
3107 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3108 schoenebeck 2 }
3109    
3110     Instrument* File::GetNextInstrument() {
3111     if (!pInstruments) return NULL;
3112     InstrumentsIterator++;
3113 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3114 schoenebeck 2 }
3115    
3116 schoenebeck 21 /**
3117     * Returns the instrument with the given index.
3118     *
3119 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3120     * @param pProgress - optional: callback function for progress notification
3121 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3122     */
3123 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3124     if (!pInstruments) {
3125     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3126    
3127     // sample loading subtask
3128     progress_t subprogress;
3129     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3130     __notify_progress(&subprogress, 0.0f);
3131     GetFirstSample(&subprogress); // now force all samples to be loaded
3132     __notify_progress(&subprogress, 1.0f);
3133    
3134     // instrument loading subtask
3135     if (pProgress && pProgress->callback) {
3136     subprogress.__range_min = subprogress.__range_max;
3137     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3138     }
3139     __notify_progress(&subprogress, 0.0f);
3140     LoadInstruments(&subprogress);
3141     __notify_progress(&subprogress, 1.0f);
3142     }
3143 schoenebeck 21 if (!pInstruments) return NULL;
3144     InstrumentsIterator = pInstruments->begin();
3145     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3146 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3147 schoenebeck 21 InstrumentsIterator++;
3148     }
3149     return NULL;
3150     }
3151    
3152 schoenebeck 809 /** @brief Add a new instrument definition.
3153     *
3154     * This will create a new Instrument object for the gig file. You have
3155     * to call Save() to make this persistent to the file.
3156     *
3157     * @returns pointer to new Instrument object
3158     */
3159     Instrument* File::AddInstrument() {
3160     if (!pInstruments) LoadInstruments();
3161     __ensureMandatoryChunksExist();
3162     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3163     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3164 persson 1192
3165     // add mandatory chunks to get the chunks in right order
3166     lstInstr->AddSubList(LIST_TYPE_INFO);
3167    
3168 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3169 persson 1182
3170 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3171    
3172 persson 1182 // this string is needed for the gig to be loadable in GSt:
3173     pInstrument->pInfo->Software = "Endless Wave";
3174    
3175 schoenebeck 809 pInstruments->push_back(pInstrument);
3176     return pInstrument;
3177     }
3178    
3179     /** @brief Delete an instrument.
3180     *
3181     * This will delete the given Instrument object from the gig file. You
3182     * have to call Save() to make this persistent to the file.
3183     *
3184     * @param pInstrument - instrument to delete
3185 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3186 schoenebeck 809 */
3187     void File::DeleteInstrument(Instrument* pInstrument) {
3188     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3189 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3190 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3191     pInstruments->erase(iter);
3192     delete pInstrument;
3193     }
3194    
3195 schoenebeck 823 void File::LoadInstruments() {
3196     LoadInstruments(NULL);
3197     }
3198    
3199 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3200 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3201 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3202     if (lstInstruments) {
3203 schoenebeck 515 int iInstrumentIndex = 0;
3204 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3205     while (lstInstr) {
3206     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3207 schoenebeck 515 // notify current progress
3208     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3209     __notify_progress(pProgress, localProgress);
3210    
3211     // divide local progress into subprogress for loading current Instrument
3212     progress_t subprogress;
3213     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3214    
3215     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3216    
3217     iInstrumentIndex++;
3218 schoenebeck 2 }
3219     lstInstr = lstInstruments->GetNextSubList();
3220     }
3221 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3222 schoenebeck 2 }
3223     }
3224    
3225 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3226     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3227     if (!_3crc) return;
3228     int iWaveIndex = -1;
3229     File::SampleList::iterator iter = pSamples->begin();
3230     File::SampleList::iterator end = pSamples->end();
3231     for (int index = 0; iter != end; ++iter, ++index) {
3232     if (*iter == pSample) {
3233     iWaveIndex = index;
3234     break;
3235     }
3236     }
3237     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3238    
3239     _3crc->SetPos(iWaveIndex * 8);
3240     uint32_t tmp = 1;
3241     _3crc->WriteUint32(&tmp); // unknown, always 1?
3242     _3crc->WriteUint32(&crc);
3243     }
3244    
3245 schoenebeck 929 Group* File::GetFirstGroup() {
3246     if (!pGroups) LoadGroups();
3247 schoenebeck 930 // there must always be at least one group
3248 schoenebeck 929 GroupsIterator = pGroups->begin();
3249 schoenebeck 930 return *GroupsIterator;
3250 schoenebeck 929 }
3251 schoenebeck 2
3252 schoenebeck 929 Group* File::GetNextGroup() {
3253     if (!pGroups) return NULL;
3254     ++GroupsIterator;
3255     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3256     }
3257 schoenebeck 2
3258 schoenebeck 929 /**
3259     * Returns the group with the given index.
3260     *
3261     * @param index - number of the sought group (0..n)
3262     * @returns sought group or NULL if there's no such group
3263     */
3264     Group* File::GetGroup(uint index) {
3265     if (!pGroups) LoadGroups();
3266     GroupsIterator = pGroups->begin();
3267     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3268     if (i == index) return *GroupsIterator;
3269     ++GroupsIterator;
3270     }
3271     return NULL;
3272     }
3273    
3274     Group* File::AddGroup() {
3275     if (!pGroups) LoadGroups();
3276 schoenebeck 930 // there must always be at least one group
3277 schoenebeck 929 __ensureMandatoryChunksExist();
3278 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3279 schoenebeck 929 pGroups->push_back(pGroup);
3280     return pGroup;
3281     }
3282    
3283 schoenebeck 1081 /** @brief Delete a group and its samples.
3284     *
3285     * This will delete the given Group object and all the samples that
3286     * belong to this group from the gig file. You have to call Save() to
3287     * make this persistent to the file.
3288     *
3289     * @param pGroup - group to delete
3290     * @throws gig::Exception if given group could not be found
3291     */
3292 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3293 schoenebeck 930 if (!pGroups) LoadGroups();
3294 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3295     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3296 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3297 schoenebeck 1081 // delete all members of this group
3298     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3299     DeleteSample(pSample);
3300     }
3301     // now delete this group object
3302     pGroups->erase(iter);
3303     delete pGroup;
3304     }
3305    
3306     /** @brief Delete a group.
3307     *
3308     * This will delete the given Group object from the gig file. All the
3309     * samples that belong to this group will not be deleted, but instead
3310     * be moved to another group. You have to call Save() to make this
3311     * persistent to the file.
3312     *
3313     * @param pGroup - group to delete
3314     * @throws gig::Exception if given group could not be found
3315     */
3316     void File::DeleteGroupOnly(Group* pGroup) {
3317     if (!pGroups) LoadGroups();
3318     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3319     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3320     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3321 schoenebeck 930 // move all members of this group to another group
3322     pGroup->MoveAll();
3323 schoenebeck 929 pGroups->erase(iter);
3324     delete pGroup;
3325     }
3326    
3327     void File::LoadGroups() {
3328     if (!pGroups) pGroups = new std::list<Group*>;
3329 schoenebeck 930 // try to read defined groups from file
3330 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3331 schoenebeck 930 if (lst3gri) {
3332     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3333     if (lst3gnl) {
3334     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3335     while (ck) {
3336     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3337     pGroups->push_back(new Group(this, ck));
3338     }
3339     ck = lst3gnl->GetNextSubChunk();
3340 schoenebeck 929 }
3341     }
3342     }
3343 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3344     if (!pGroups->size()) {
3345     Group* pGroup = new Group(this, NULL);
3346     pGroup->Name = "Default Group";
3347     pGroups->push_back(pGroup);
3348     }
3349 schoenebeck 929 }
3350    
3351 schoenebeck 1098 /**
3352     * Apply all the gig file's current instruments, samples, groups and settings
3353     * to the respective RIFF chunks. You have to call Save() to make changes
3354     * persistent.
3355     *
3356     * Usually there is absolutely no need to call this method explicitly.
3357     * It will be called automatically when File::Save() was called.
3358     *
3359     * @throws Exception - on errors
3360     */
3361     void File::UpdateChunks() {
3362 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3363 persson 1192
3364 schoenebeck 1098 // first update base class's chunks
3365     DLS::File::UpdateChunks();
3366 schoenebeck 929
3367 persson 1199 if (newFile) {
3368 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3369     // is placed first in file
3370 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3371 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3372     if (first != info) {
3373     pRIFF->MoveSubChunk(info, first);
3374     }
3375     }
3376    
3377 schoenebeck 1098 // update group's chunks
3378     if (pGroups) {
3379     std::list<Group*>::iterator iter = pGroups->begin();
3380     std::list<Group*>::iterator end = pGroups->end();
3381     for (; iter != end; ++iter) {
3382     (*iter)->UpdateChunks();
3383     }
3384     }
3385 persson 1199
3386     // update einf chunk
3387    
3388     // The einf chunk contains statistics about the gig file, such
3389     // as the number of regions and samples used by each
3390     // instrument. It is divided in equally sized parts, where the
3391     // first part contains information about the whole gig file,
3392     // and the rest of the parts map to each instrument in the
3393     // file.
3394     //
3395     // At the end of each part there is a bit map of each sample
3396     // in the file, where a set bit means that the sample is used
3397     // by the file/instrument.
3398     //
3399     // Note that there are several fields with unknown use. These
3400     // are set to zero.
3401    
3402     int sublen = pSamples->size() / 8 + 49;
3403     int einfSize = (Instruments + 1) * sublen;
3404    
3405     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3406     if (einf) {
3407     if (einf->GetSize() != einfSize) {
3408     einf->Resize(einfSize);
3409     memset(einf->LoadChunkData(), 0, einfSize);
3410     }
3411     } else if (newFile) {
3412     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3413     }
3414     if (einf) {
3415     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3416    
3417     std::map<gig::Sample*,int> sampleMap;
3418     int sampleIdx = 0;
3419     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3420     sampleMap[pSample] = sampleIdx++;
3421     }
3422    
3423     int totnbusedsamples = 0;
3424     int totnbusedchannels = 0;
3425     int totnbregions = 0;
3426     int totnbdimregions = 0;
3427     int instrumentIdx = 0;
3428    
3429     memset(&pData[48], 0, sublen - 48);
3430    
3431     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3432     instrument = GetNextInstrument()) {
3433     int nbusedsamples = 0;
3434     int nbusedchannels = 0;
3435     int nbdimregions = 0;
3436    
3437     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3438    
3439     for (Region* region = instrument->GetFirstRegion() ; region ;
3440     region = instrument->GetNextRegion()) {
3441     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3442     gig::DimensionRegion *d = region->pDimensionRegions[i];
3443     if (d->pSample) {
3444     int sampleIdx = sampleMap[d->pSample];
3445     int byte = 48 + sampleIdx / 8;
3446     int bit = 1 << (sampleIdx & 7);
3447     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3448     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3449     nbusedsamples++;
3450     nbusedchannels += d->pSample->Channels;
3451    
3452     if ((pData[byte] & bit) == 0) {
3453     pData[byte] |= bit;
3454     totnbusedsamples++;
3455     totnbusedchannels += d->pSample->Channels;
3456     }
3457     }
3458     }
3459     }
3460     nbdimregions += region->DimensionRegions;
3461     }
3462     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3463     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3464     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3465     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3466     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3467     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3468     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3469     // next 12 bytes unknown
3470     store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3471     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3472     // next 4 bytes unknown
3473    
3474     totnbregions += instrument->Regions;
3475     totnbdimregions += nbdimregions;
3476     instrumentIdx++;
3477     }
3478     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3479     // store32(&pData[0], sublen);
3480     store32(&pData[4], totnbusedchannels);
3481     store32(&pData[8], totnbusedsamples);
3482     store32(&pData[12], Instruments);
3483     store32(&pData[16], totnbregions);
3484     store32(&pData[20], totnbdimregions);
3485     // next 12 bytes unknown
3486     // next 4 bytes unknown, always 0?
3487     store32(&pData[40], pSamples->size());
3488     // next 4 bytes unknown
3489     }
3490    
3491     // update 3crc chunk
3492    
3493     // The 3crc chunk contains CRC-32 checksums for the
3494     // samples. The actual checksum values will be filled in
3495     // later, by Sample::Write.
3496    
3497     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3498     if (_3crc) {
3499     _3crc->Resize(pSamples->size() * 8);
3500     } else if (newFile) {
3501     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3502     _3crc->LoadChunkData();
3503     }
3504 schoenebeck 1098 }
3505 schoenebeck 929
3506 schoenebeck 1098
3507    
3508 schoenebeck 2 // *************** Exception ***************
3509     // *
3510    
3511     Exception::Exception(String Message) : DLS::Exception(Message) {
3512     }
3513    
3514     void Exception::PrintMessage() {
3515     std::cout << "gig::Exception: " << Message << std::endl;
3516     }
3517    
3518 schoenebeck 518
3519     // *************** functions ***************
3520     // *
3521    
3522     /**
3523     * Returns the name of this C++ library. This is usually "libgig" of
3524     * course. This call is equivalent to RIFF::libraryName() and
3525     * DLS::libraryName().
3526     */
3527     String libraryName() {
3528     return PACKAGE;
3529     }
3530    
3531     /**
3532     * Returns version of this C++ library. This call is equivalent to
3533     * RIFF::libraryVersion() and DLS::libraryVersion().
3534     */
3535     String libraryVersion() {
3536     return VERSION;
3537     }
3538    
3539 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC