/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1218 - (hide annotations) (download)
Fri Jun 1 19:19:28 2007 UTC (12 years ago) by persson
File size: 157226 byte(s)
* improved the default values for dimension region parameters

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 persson 1218 MIDIUnityNote = 60;
366 schoenebeck 809 FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155     * @param pBuffer - source buffer
1156     * @param SampleCount - number of sample points to write
1157     * @throws DLS::Exception if current sample size is too small
1158     * @throws gig::Exception if sample is compressed
1159     * @see DLS::LoadSampleData()
1160     */
1161     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163 persson 1207
1164     // if this is the first write in this sample, reset the
1165     // checksum calculator
1166 persson 1199 if (pCkData->GetPos() == 0) {
1167     crc.reset();
1168     }
1169     unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170     crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171    
1172 persson 1207 // if this is the last write, update the checksum chunk in the
1173     // file
1174 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1175     File* pFile = static_cast<File*>(GetParent());
1176     pFile->SetSampleChecksum(this, crc.getValue());
1177     }
1178     return res;
1179 schoenebeck 809 }
1180    
1181 schoenebeck 384 /**
1182     * Allocates a decompression buffer for streaming (compressed) samples
1183     * with Sample::Read(). If you are using more than one streaming thread
1184     * in your application you <b>HAVE</b> to create a decompression buffer
1185     * for <b>EACH</b> of your streaming threads and provide it with the
1186     * Sample::Read() call in order to avoid race conditions and crashes.
1187     *
1188     * You should free the memory occupied by the allocated buffer(s) once
1189     * you don't need one of your streaming threads anymore by calling
1190     * DestroyDecompressionBuffer().
1191     *
1192     * @param MaxReadSize - the maximum size (in sample points) you ever
1193     * expect to read with one Read() call
1194     * @returns allocated decompression buffer
1195     * @see DestroyDecompressionBuffer()
1196     */
1197     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1198     buffer_t result;
1199     const double worstCaseHeaderOverhead =
1200     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1201     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1202     result.pStart = new int8_t[result.Size];
1203     result.NullExtensionSize = 0;
1204     return result;
1205     }
1206    
1207     /**
1208     * Free decompression buffer, previously created with
1209     * CreateDecompressionBuffer().
1210     *
1211     * @param DecompressionBuffer - previously allocated decompression
1212     * buffer to free
1213     */
1214     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1215     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1216     delete[] (int8_t*) DecompressionBuffer.pStart;
1217     DecompressionBuffer.pStart = NULL;
1218     DecompressionBuffer.Size = 0;
1219     DecompressionBuffer.NullExtensionSize = 0;
1220     }
1221     }
1222    
1223 schoenebeck 930 /**
1224     * Returns pointer to the Group this Sample belongs to. In the .gig
1225     * format a sample always belongs to one group. If it wasn't explicitly
1226     * assigned to a certain group, it will be automatically assigned to a
1227     * default group.
1228     *
1229     * @returns Sample's Group (never NULL)
1230     */
1231     Group* Sample::GetGroup() const {
1232     return pGroup;
1233     }
1234    
1235 schoenebeck 2 Sample::~Sample() {
1236     Instances--;
1237 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1238     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1239     InternalDecompressionBuffer.pStart = NULL;
1240     InternalDecompressionBuffer.Size = 0;
1241 schoenebeck 355 }
1242 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1243     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1244     }
1245    
1246    
1247    
1248     // *************** DimensionRegion ***************
1249     // *
1250    
1251 schoenebeck 16 uint DimensionRegion::Instances = 0;
1252     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1253    
1254 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1255 schoenebeck 16 Instances++;
1256    
1257 schoenebeck 823 pSample = NULL;
1258    
1259 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1260 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1261 schoenebeck 2
1262     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1263 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1264 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1265 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1266     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1267     _3ewa->ReadInt16(); // unknown
1268     LFO1InternalDepth = _3ewa->ReadUint16();
1269     _3ewa->ReadInt16(); // unknown
1270     LFO3InternalDepth = _3ewa->ReadInt16();
1271     _3ewa->ReadInt16(); // unknown
1272     LFO1ControlDepth = _3ewa->ReadUint16();
1273     _3ewa->ReadInt16(); // unknown
1274     LFO3ControlDepth = _3ewa->ReadInt16();
1275     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1276     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1277     _3ewa->ReadInt16(); // unknown
1278     EG1Sustain = _3ewa->ReadUint16();
1279     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1281     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1282     EG1ControllerInvert = eg1ctrloptions & 0x01;
1283     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1284     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1285     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1286     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1287     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1288     EG2ControllerInvert = eg2ctrloptions & 0x01;
1289     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1290     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1291     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1292     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1295     _3ewa->ReadInt16(); // unknown
1296     EG2Sustain = _3ewa->ReadUint16();
1297     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1298     _3ewa->ReadInt16(); // unknown
1299     LFO2ControlDepth = _3ewa->ReadUint16();
1300     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1301     _3ewa->ReadInt16(); // unknown
1302     LFO2InternalDepth = _3ewa->ReadUint16();
1303     int32_t eg1decay2 = _3ewa->ReadInt32();
1304     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1305     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1306     _3ewa->ReadInt16(); // unknown
1307     EG1PreAttack = _3ewa->ReadUint16();
1308     int32_t eg2decay2 = _3ewa->ReadInt32();
1309     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1310     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1311     _3ewa->ReadInt16(); // unknown
1312     EG2PreAttack = _3ewa->ReadUint16();
1313     uint8_t velocityresponse = _3ewa->ReadUint8();
1314     if (velocityresponse < 5) {
1315     VelocityResponseCurve = curve_type_nonlinear;
1316     VelocityResponseDepth = velocityresponse;
1317     } else if (velocityresponse < 10) {
1318     VelocityResponseCurve = curve_type_linear;
1319     VelocityResponseDepth = velocityresponse - 5;
1320     } else if (velocityresponse < 15) {
1321     VelocityResponseCurve = curve_type_special;
1322     VelocityResponseDepth = velocityresponse - 10;
1323     } else {
1324     VelocityResponseCurve = curve_type_unknown;
1325     VelocityResponseDepth = 0;
1326     }
1327     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1328     if (releasevelocityresponse < 5) {
1329     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1330     ReleaseVelocityResponseDepth = releasevelocityresponse;
1331     } else if (releasevelocityresponse < 10) {
1332     ReleaseVelocityResponseCurve = curve_type_linear;
1333     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1334     } else if (releasevelocityresponse < 15) {
1335     ReleaseVelocityResponseCurve = curve_type_special;
1336     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1337     } else {
1338     ReleaseVelocityResponseCurve = curve_type_unknown;
1339     ReleaseVelocityResponseDepth = 0;
1340     }
1341     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1342     AttenuationControllerThreshold = _3ewa->ReadInt8();
1343     _3ewa->ReadInt32(); // unknown
1344     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1345     _3ewa->ReadInt16(); // unknown
1346     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1347     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1348     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1349     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1350     else DimensionBypass = dim_bypass_ctrl_none;
1351     uint8_t pan = _3ewa->ReadUint8();
1352     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1353     SelfMask = _3ewa->ReadInt8() & 0x01;
1354     _3ewa->ReadInt8(); // unknown
1355     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1356     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1357     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1358     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1359     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1360     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1361     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1362     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1363     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1364     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1365     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1366     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1367     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1368     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1369     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1370     : vcf_res_ctrl_none;
1371     uint16_t eg3depth = _3ewa->ReadUint16();
1372     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1373     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1374     _3ewa->ReadInt16(); // unknown
1375     ChannelOffset = _3ewa->ReadUint8() / 4;
1376     uint8_t regoptions = _3ewa->ReadUint8();
1377     MSDecode = regoptions & 0x01; // bit 0
1378     SustainDefeat = regoptions & 0x02; // bit 1
1379     _3ewa->ReadInt16(); // unknown
1380     VelocityUpperLimit = _3ewa->ReadInt8();
1381     _3ewa->ReadInt8(); // unknown
1382     _3ewa->ReadInt16(); // unknown
1383     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1384     _3ewa->ReadInt8(); // unknown
1385     _3ewa->ReadInt8(); // unknown
1386     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1387     uint8_t vcfcutoff = _3ewa->ReadUint8();
1388     VCFEnabled = vcfcutoff & 0x80; // bit 7
1389     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1390     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1391     uint8_t vcfvelscale = _3ewa->ReadUint8();
1392     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1393     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1394     _3ewa->ReadInt8(); // unknown
1395     uint8_t vcfresonance = _3ewa->ReadUint8();
1396     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1397     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1398     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1399     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1400     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1401     uint8_t vcfvelocity = _3ewa->ReadUint8();
1402     VCFVelocityDynamicRange = vcfvelocity % 5;
1403     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1404     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1405     if (VCFType == vcf_type_lowpass) {
1406     if (lfo3ctrl & 0x40) // bit 6
1407     VCFType = vcf_type_lowpassturbo;
1408     }
1409 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1410     _3ewa->Read(DimensionUpperLimits, 1, 8);
1411     } else {
1412     memset(DimensionUpperLimits, 0, 8);
1413     }
1414 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1415     // use default values
1416     LFO3Frequency = 1.0;
1417     EG3Attack = 0.0;
1418     LFO1InternalDepth = 0;
1419     LFO3InternalDepth = 0;
1420     LFO1ControlDepth = 0;
1421     LFO3ControlDepth = 0;
1422     EG1Attack = 0.0;
1423 persson 1218 EG1Decay1 = 0.005;
1424     EG1Sustain = 1000;
1425     EG1Release = 0.3;
1426 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1427     EG1Controller.controller_number = 0;
1428     EG1ControllerInvert = false;
1429     EG1ControllerAttackInfluence = 0;
1430     EG1ControllerDecayInfluence = 0;
1431     EG1ControllerReleaseInfluence = 0;
1432     EG2Controller.type = eg2_ctrl_t::type_none;
1433     EG2Controller.controller_number = 0;
1434     EG2ControllerInvert = false;
1435     EG2ControllerAttackInfluence = 0;
1436     EG2ControllerDecayInfluence = 0;
1437     EG2ControllerReleaseInfluence = 0;
1438     LFO1Frequency = 1.0;
1439     EG2Attack = 0.0;
1440 persson 1218 EG2Decay1 = 0.005;
1441     EG2Sustain = 1000;
1442     EG2Release = 0.3;
1443 schoenebeck 809 LFO2ControlDepth = 0;
1444     LFO2Frequency = 1.0;
1445     LFO2InternalDepth = 0;
1446     EG1Decay2 = 0.0;
1447 persson 1218 EG1InfiniteSustain = true;
1448     EG1PreAttack = 0;
1449 schoenebeck 809 EG2Decay2 = 0.0;
1450 persson 1218 EG2InfiniteSustain = true;
1451     EG2PreAttack = 0;
1452 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1453     VelocityResponseDepth = 3;
1454     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1455     ReleaseVelocityResponseDepth = 3;
1456     VelocityResponseCurveScaling = 32;
1457     AttenuationControllerThreshold = 0;
1458     SampleStartOffset = 0;
1459     PitchTrack = true;
1460     DimensionBypass = dim_bypass_ctrl_none;
1461     Pan = 0;
1462     SelfMask = true;
1463     LFO3Controller = lfo3_ctrl_modwheel;
1464     LFO3Sync = false;
1465     InvertAttenuationController = false;
1466     AttenuationController.type = attenuation_ctrl_t::type_none;
1467     AttenuationController.controller_number = 0;
1468     LFO2Controller = lfo2_ctrl_internal;
1469     LFO2FlipPhase = false;
1470     LFO2Sync = false;
1471     LFO1Controller = lfo1_ctrl_internal;
1472     LFO1FlipPhase = false;
1473     LFO1Sync = false;
1474     VCFResonanceController = vcf_res_ctrl_none;
1475     EG3Depth = 0;
1476     ChannelOffset = 0;
1477     MSDecode = false;
1478     SustainDefeat = false;
1479     VelocityUpperLimit = 0;
1480     ReleaseTriggerDecay = 0;
1481     EG1Hold = false;
1482     VCFEnabled = false;
1483     VCFCutoff = 0;
1484     VCFCutoffController = vcf_cutoff_ctrl_none;
1485     VCFCutoffControllerInvert = false;
1486     VCFVelocityScale = 0;
1487     VCFResonance = 0;
1488     VCFResonanceDynamic = false;
1489     VCFKeyboardTracking = false;
1490     VCFKeyboardTrackingBreakpoint = 0;
1491     VCFVelocityDynamicRange = 0x04;
1492     VCFVelocityCurve = curve_type_linear;
1493     VCFType = vcf_type_lowpass;
1494 persson 1070 memset(DimensionUpperLimits, 0, 8);
1495 schoenebeck 2 }
1496 schoenebeck 16
1497 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1498     VelocityResponseDepth,
1499     VelocityResponseCurveScaling);
1500    
1501     curve_type_t curveType = ReleaseVelocityResponseCurve;
1502     uint8_t depth = ReleaseVelocityResponseDepth;
1503    
1504     // this models a strange behaviour or bug in GSt: two of the
1505     // velocity response curves for release time are not used even
1506     // if specified, instead another curve is chosen.
1507     if ((curveType == curve_type_nonlinear && depth == 0) ||
1508     (curveType == curve_type_special && depth == 4)) {
1509     curveType = curve_type_nonlinear;
1510     depth = 3;
1511     }
1512     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1513    
1514 persson 728 curveType = VCFVelocityCurve;
1515     depth = VCFVelocityDynamicRange;
1516    
1517     // even stranger GSt: two of the velocity response curves for
1518     // filter cutoff are not used, instead another special curve
1519     // is chosen. This curve is not used anywhere else.
1520     if ((curveType == curve_type_nonlinear && depth == 0) ||
1521     (curveType == curve_type_special && depth == 4)) {
1522     curveType = curve_type_special;
1523     depth = 5;
1524     }
1525     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1526 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1527 persson 728
1528 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1529 persson 858 VelocityTable = 0;
1530 persson 613 }
1531    
1532 schoenebeck 809 /**
1533     * Apply dimension region settings to the respective RIFF chunks. You
1534     * have to call File::Save() to make changes persistent.
1535     *
1536     * Usually there is absolutely no need to call this method explicitly.
1537     * It will be called automatically when File::Save() was called.
1538     */
1539     void DimensionRegion::UpdateChunks() {
1540     // first update base class's chunk
1541     DLS::Sampler::UpdateChunks();
1542    
1543     // make sure '3ewa' chunk exists
1544     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1545     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1546     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1547    
1548     // update '3ewa' chunk with DimensionRegion's current settings
1549    
1550 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1551 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1552 schoenebeck 809
1553     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1554 persson 1179 store32(&pData[4], lfo3freq);
1555 schoenebeck 809
1556     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1557 persson 1179 store32(&pData[8], eg3attack);
1558 schoenebeck 809
1559     // next 2 bytes unknown
1560    
1561 persson 1179 store16(&pData[14], LFO1InternalDepth);
1562 schoenebeck 809
1563     // next 2 bytes unknown
1564    
1565 persson 1179 store16(&pData[18], LFO3InternalDepth);
1566 schoenebeck 809
1567     // next 2 bytes unknown
1568    
1569 persson 1179 store16(&pData[22], LFO1ControlDepth);
1570 schoenebeck 809
1571     // next 2 bytes unknown
1572    
1573 persson 1179 store16(&pData[26], LFO3ControlDepth);
1574 schoenebeck 809
1575     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1576 persson 1179 store32(&pData[28], eg1attack);
1577 schoenebeck 809
1578     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1579 persson 1179 store32(&pData[32], eg1decay1);
1580 schoenebeck 809
1581     // next 2 bytes unknown
1582    
1583 persson 1179 store16(&pData[38], EG1Sustain);
1584 schoenebeck 809
1585     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1586 persson 1179 store32(&pData[40], eg1release);
1587 schoenebeck 809
1588     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1589 persson 1179 pData[44] = eg1ctl;
1590 schoenebeck 809
1591     const uint8_t eg1ctrloptions =
1592     (EG1ControllerInvert) ? 0x01 : 0x00 |
1593     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1594     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1595     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1596 persson 1179 pData[45] = eg1ctrloptions;
1597 schoenebeck 809
1598     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1599 persson 1179 pData[46] = eg2ctl;
1600 schoenebeck 809
1601     const uint8_t eg2ctrloptions =
1602     (EG2ControllerInvert) ? 0x01 : 0x00 |
1603     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1604     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1605     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1606 persson 1179 pData[47] = eg2ctrloptions;
1607 schoenebeck 809
1608     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1609 persson 1179 store32(&pData[48], lfo1freq);
1610 schoenebeck 809
1611     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1612 persson 1179 store32(&pData[52], eg2attack);
1613 schoenebeck 809
1614     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1615 persson 1179 store32(&pData[56], eg2decay1);
1616 schoenebeck 809
1617     // next 2 bytes unknown
1618    
1619 persson 1179 store16(&pData[62], EG2Sustain);
1620 schoenebeck 809
1621     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1622 persson 1179 store32(&pData[64], eg2release);
1623 schoenebeck 809
1624     // next 2 bytes unknown
1625    
1626 persson 1179 store16(&pData[70], LFO2ControlDepth);
1627 schoenebeck 809
1628     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1629 persson 1179 store32(&pData[72], lfo2freq);
1630 schoenebeck 809
1631     // next 2 bytes unknown
1632    
1633 persson 1179 store16(&pData[78], LFO2InternalDepth);
1634 schoenebeck 809
1635     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1636 persson 1179 store32(&pData[80], eg1decay2);
1637 schoenebeck 809
1638     // next 2 bytes unknown
1639    
1640 persson 1179 store16(&pData[86], EG1PreAttack);
1641 schoenebeck 809
1642     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1643 persson 1179 store32(&pData[88], eg2decay2);
1644 schoenebeck 809
1645     // next 2 bytes unknown
1646    
1647 persson 1179 store16(&pData[94], EG2PreAttack);
1648 schoenebeck 809
1649     {
1650     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1651     uint8_t velocityresponse = VelocityResponseDepth;
1652     switch (VelocityResponseCurve) {
1653     case curve_type_nonlinear:
1654     break;
1655     case curve_type_linear:
1656     velocityresponse += 5;
1657     break;
1658     case curve_type_special:
1659     velocityresponse += 10;
1660     break;
1661     case curve_type_unknown:
1662     default:
1663     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1664     }
1665 persson 1179 pData[96] = velocityresponse;
1666 schoenebeck 809 }
1667    
1668     {
1669     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1670     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1671     switch (ReleaseVelocityResponseCurve) {
1672     case curve_type_nonlinear:
1673     break;
1674     case curve_type_linear:
1675     releasevelocityresponse += 5;
1676     break;
1677     case curve_type_special:
1678     releasevelocityresponse += 10;
1679     break;
1680     case curve_type_unknown:
1681     default:
1682     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1683     }
1684 persson 1179 pData[97] = releasevelocityresponse;
1685 schoenebeck 809 }
1686    
1687 persson 1179 pData[98] = VelocityResponseCurveScaling;
1688 schoenebeck 809
1689 persson 1179 pData[99] = AttenuationControllerThreshold;
1690 schoenebeck 809
1691     // next 4 bytes unknown
1692    
1693 persson 1179 store16(&pData[104], SampleStartOffset);
1694 schoenebeck 809
1695     // next 2 bytes unknown
1696    
1697     {
1698     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1699     switch (DimensionBypass) {
1700     case dim_bypass_ctrl_94:
1701     pitchTrackDimensionBypass |= 0x10;
1702     break;
1703     case dim_bypass_ctrl_95:
1704     pitchTrackDimensionBypass |= 0x20;
1705     break;
1706     case dim_bypass_ctrl_none:
1707     //FIXME: should we set anything here?
1708     break;
1709     default:
1710     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1711     }
1712 persson 1179 pData[108] = pitchTrackDimensionBypass;
1713 schoenebeck 809 }
1714    
1715     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1716 persson 1179 pData[109] = pan;
1717 schoenebeck 809
1718     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1719 persson 1179 pData[110] = selfmask;
1720 schoenebeck 809
1721     // next byte unknown
1722    
1723     {
1724     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1725     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1726     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1727     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1728 persson 1179 pData[112] = lfo3ctrl;
1729 schoenebeck 809 }
1730    
1731     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1732 persson 1179 pData[113] = attenctl;
1733 schoenebeck 809
1734     {
1735     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1736     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1737     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1738     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1739 persson 1179 pData[114] = lfo2ctrl;
1740 schoenebeck 809 }
1741    
1742     {
1743     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1744     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1745     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1746     if (VCFResonanceController != vcf_res_ctrl_none)
1747     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1748 persson 1179 pData[115] = lfo1ctrl;
1749 schoenebeck 809 }
1750    
1751     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1752     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1753 persson 1179 pData[116] = eg3depth;
1754 schoenebeck 809
1755     // next 2 bytes unknown
1756    
1757     const uint8_t channeloffset = ChannelOffset * 4;
1758 persson 1179 pData[120] = channeloffset;
1759 schoenebeck 809
1760     {
1761     uint8_t regoptions = 0;
1762     if (MSDecode) regoptions |= 0x01; // bit 0
1763     if (SustainDefeat) regoptions |= 0x02; // bit 1
1764 persson 1179 pData[121] = regoptions;
1765 schoenebeck 809 }
1766    
1767     // next 2 bytes unknown
1768    
1769 persson 1179 pData[124] = VelocityUpperLimit;
1770 schoenebeck 809
1771     // next 3 bytes unknown
1772    
1773 persson 1179 pData[128] = ReleaseTriggerDecay;
1774 schoenebeck 809
1775     // next 2 bytes unknown
1776    
1777     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1778 persson 1179 pData[131] = eg1hold;
1779 schoenebeck 809
1780     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1781 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1782 persson 1179 pData[132] = vcfcutoff;
1783 schoenebeck 809
1784 persson 1179 pData[133] = VCFCutoffController;
1785 schoenebeck 809
1786     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1787 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1788 persson 1179 pData[134] = vcfvelscale;
1789 schoenebeck 809
1790     // next byte unknown
1791    
1792     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1793 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1794 persson 1179 pData[136] = vcfresonance;
1795 schoenebeck 809
1796     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1797 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1798 persson 1179 pData[137] = vcfbreakpoint;
1799 schoenebeck 809
1800     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1801     VCFVelocityCurve * 5;
1802 persson 1179 pData[138] = vcfvelocity;
1803 schoenebeck 809
1804     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1805 persson 1179 pData[139] = vcftype;
1806 persson 1070
1807     if (chunksize >= 148) {
1808     memcpy(&pData[140], DimensionUpperLimits, 8);
1809     }
1810 schoenebeck 809 }
1811    
1812 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1813     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1814     {
1815     double* table;
1816     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1817 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1818 persson 613 table = (*pVelocityTables)[tableKey];
1819 schoenebeck 16 }
1820     else {
1821 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1822     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1823 schoenebeck 16 }
1824 persson 613 return table;
1825 schoenebeck 2 }
1826 schoenebeck 55
1827 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1828     leverage_ctrl_t decodedcontroller;
1829     switch (EncodedController) {
1830     // special controller
1831     case _lev_ctrl_none:
1832     decodedcontroller.type = leverage_ctrl_t::type_none;
1833     decodedcontroller.controller_number = 0;
1834     break;
1835     case _lev_ctrl_velocity:
1836     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1837     decodedcontroller.controller_number = 0;
1838     break;
1839     case _lev_ctrl_channelaftertouch:
1840     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1841     decodedcontroller.controller_number = 0;
1842     break;
1843 schoenebeck 55
1844 schoenebeck 36 // ordinary MIDI control change controller
1845     case _lev_ctrl_modwheel:
1846     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847     decodedcontroller.controller_number = 1;
1848     break;
1849     case _lev_ctrl_breath:
1850     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851     decodedcontroller.controller_number = 2;
1852     break;
1853     case _lev_ctrl_foot:
1854     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855     decodedcontroller.controller_number = 4;
1856     break;
1857     case _lev_ctrl_effect1:
1858     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859     decodedcontroller.controller_number = 12;
1860     break;
1861     case _lev_ctrl_effect2:
1862     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863     decodedcontroller.controller_number = 13;
1864     break;
1865     case _lev_ctrl_genpurpose1:
1866     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867     decodedcontroller.controller_number = 16;
1868     break;
1869     case _lev_ctrl_genpurpose2:
1870     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1871     decodedcontroller.controller_number = 17;
1872     break;
1873     case _lev_ctrl_genpurpose3:
1874     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1875     decodedcontroller.controller_number = 18;
1876     break;
1877     case _lev_ctrl_genpurpose4:
1878     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1879     decodedcontroller.controller_number = 19;
1880     break;
1881     case _lev_ctrl_portamentotime:
1882     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1883     decodedcontroller.controller_number = 5;
1884     break;
1885     case _lev_ctrl_sustainpedal:
1886     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1887     decodedcontroller.controller_number = 64;
1888     break;
1889     case _lev_ctrl_portamento:
1890     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1891     decodedcontroller.controller_number = 65;
1892     break;
1893     case _lev_ctrl_sostenutopedal:
1894     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1895     decodedcontroller.controller_number = 66;
1896     break;
1897     case _lev_ctrl_softpedal:
1898     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1899     decodedcontroller.controller_number = 67;
1900     break;
1901     case _lev_ctrl_genpurpose5:
1902     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1903     decodedcontroller.controller_number = 80;
1904     break;
1905     case _lev_ctrl_genpurpose6:
1906     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1907     decodedcontroller.controller_number = 81;
1908     break;
1909     case _lev_ctrl_genpurpose7:
1910     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1911     decodedcontroller.controller_number = 82;
1912     break;
1913     case _lev_ctrl_genpurpose8:
1914     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1915     decodedcontroller.controller_number = 83;
1916     break;
1917     case _lev_ctrl_effect1depth:
1918     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1919     decodedcontroller.controller_number = 91;
1920     break;
1921     case _lev_ctrl_effect2depth:
1922     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1923     decodedcontroller.controller_number = 92;
1924     break;
1925     case _lev_ctrl_effect3depth:
1926     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1927     decodedcontroller.controller_number = 93;
1928     break;
1929     case _lev_ctrl_effect4depth:
1930     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1931     decodedcontroller.controller_number = 94;
1932     break;
1933     case _lev_ctrl_effect5depth:
1934     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1935     decodedcontroller.controller_number = 95;
1936     break;
1937 schoenebeck 55
1938 schoenebeck 36 // unknown controller type
1939     default:
1940     throw gig::Exception("Unknown leverage controller type.");
1941     }
1942     return decodedcontroller;
1943     }
1944 schoenebeck 2
1945 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1946     _lev_ctrl_t encodedcontroller;
1947     switch (DecodedController.type) {
1948     // special controller
1949     case leverage_ctrl_t::type_none:
1950     encodedcontroller = _lev_ctrl_none;
1951     break;
1952     case leverage_ctrl_t::type_velocity:
1953     encodedcontroller = _lev_ctrl_velocity;
1954     break;
1955     case leverage_ctrl_t::type_channelaftertouch:
1956     encodedcontroller = _lev_ctrl_channelaftertouch;
1957     break;
1958    
1959     // ordinary MIDI control change controller
1960     case leverage_ctrl_t::type_controlchange:
1961     switch (DecodedController.controller_number) {
1962     case 1:
1963     encodedcontroller = _lev_ctrl_modwheel;
1964     break;
1965     case 2:
1966     encodedcontroller = _lev_ctrl_breath;
1967     break;
1968     case 4:
1969     encodedcontroller = _lev_ctrl_foot;
1970     break;
1971     case 12:
1972     encodedcontroller = _lev_ctrl_effect1;
1973     break;
1974     case 13:
1975     encodedcontroller = _lev_ctrl_effect2;
1976     break;
1977     case 16:
1978     encodedcontroller = _lev_ctrl_genpurpose1;
1979     break;
1980     case 17:
1981     encodedcontroller = _lev_ctrl_genpurpose2;
1982     break;
1983     case 18:
1984     encodedcontroller = _lev_ctrl_genpurpose3;
1985     break;
1986     case 19:
1987     encodedcontroller = _lev_ctrl_genpurpose4;
1988     break;
1989     case 5:
1990     encodedcontroller = _lev_ctrl_portamentotime;
1991     break;
1992     case 64:
1993     encodedcontroller = _lev_ctrl_sustainpedal;
1994     break;
1995     case 65:
1996     encodedcontroller = _lev_ctrl_portamento;
1997     break;
1998     case 66:
1999     encodedcontroller = _lev_ctrl_sostenutopedal;
2000     break;
2001     case 67:
2002     encodedcontroller = _lev_ctrl_softpedal;
2003     break;
2004     case 80:
2005     encodedcontroller = _lev_ctrl_genpurpose5;
2006     break;
2007     case 81:
2008     encodedcontroller = _lev_ctrl_genpurpose6;
2009     break;
2010     case 82:
2011     encodedcontroller = _lev_ctrl_genpurpose7;
2012     break;
2013     case 83:
2014     encodedcontroller = _lev_ctrl_genpurpose8;
2015     break;
2016     case 91:
2017     encodedcontroller = _lev_ctrl_effect1depth;
2018     break;
2019     case 92:
2020     encodedcontroller = _lev_ctrl_effect2depth;
2021     break;
2022     case 93:
2023     encodedcontroller = _lev_ctrl_effect3depth;
2024     break;
2025     case 94:
2026     encodedcontroller = _lev_ctrl_effect4depth;
2027     break;
2028     case 95:
2029     encodedcontroller = _lev_ctrl_effect5depth;
2030     break;
2031     default:
2032     throw gig::Exception("leverage controller number is not supported by the gig format");
2033     }
2034 persson 1182 break;
2035 schoenebeck 809 default:
2036     throw gig::Exception("Unknown leverage controller type.");
2037     }
2038     return encodedcontroller;
2039     }
2040    
2041 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2042     Instances--;
2043     if (!Instances) {
2044     // delete the velocity->volume tables
2045     VelocityTableMap::iterator iter;
2046     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2047     double* pTable = iter->second;
2048     if (pTable) delete[] pTable;
2049     }
2050     pVelocityTables->clear();
2051     delete pVelocityTables;
2052     pVelocityTables = NULL;
2053     }
2054 persson 858 if (VelocityTable) delete[] VelocityTable;
2055 schoenebeck 16 }
2056 schoenebeck 2
2057 schoenebeck 16 /**
2058     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2059     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2060     * and VelocityResponseCurveScaling) involved are taken into account to
2061     * calculate the amplitude factor. Use this method when a key was
2062     * triggered to get the volume with which the sample should be played
2063     * back.
2064     *
2065 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2066     * @returns amplitude factor (between 0.0 and 1.0)
2067 schoenebeck 16 */
2068     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2069     return pVelocityAttenuationTable[MIDIKeyVelocity];
2070     }
2071 schoenebeck 2
2072 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2073     return pVelocityReleaseTable[MIDIKeyVelocity];
2074     }
2075    
2076 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2077     return pVelocityCutoffTable[MIDIKeyVelocity];
2078     }
2079    
2080 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2081 schoenebeck 317
2082 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2083 schoenebeck 16
2084 schoenebeck 308 // linear
2085     const int lin0[] = { 1, 1, 127, 127 };
2086     const int lin1[] = { 1, 21, 127, 127 };
2087     const int lin2[] = { 1, 45, 127, 127 };
2088     const int lin3[] = { 1, 74, 127, 127 };
2089     const int lin4[] = { 1, 127, 127, 127 };
2090 schoenebeck 16
2091 schoenebeck 308 // non-linear
2092     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2093 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2094 schoenebeck 308 127, 127 };
2095     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2096     127, 127 };
2097     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2098     127, 127 };
2099     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2100 schoenebeck 317
2101 schoenebeck 308 // special
2102 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2103 schoenebeck 308 113, 127, 127, 127 };
2104     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2105     118, 127, 127, 127 };
2106 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2107 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2108 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2109 schoenebeck 308 117, 127, 127, 127 };
2110 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2111 schoenebeck 308 127, 127 };
2112 schoenebeck 317
2113 persson 728 // this is only used by the VCF velocity curve
2114     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2115     91, 127, 127, 127 };
2116    
2117 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2118 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2119 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2120 schoenebeck 317
2121 schoenebeck 308 double* const table = new double[128];
2122    
2123     const int* curve = curves[curveType * 5 + depth];
2124     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2125 schoenebeck 317
2126 schoenebeck 308 table[0] = 0;
2127     for (int x = 1 ; x < 128 ; x++) {
2128    
2129     if (x > curve[2]) curve += 2;
2130 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2131 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2132     y = y / 127;
2133    
2134     // Scale up for s > 20, down for s < 20. When
2135     // down-scaling, the curve still ends at 1.0.
2136     if (s < 20 && y >= 0.5)
2137     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2138     else
2139     y = y * (s / 20.0);
2140     if (y > 1) y = 1;
2141    
2142     table[x] = y;
2143     }
2144     return table;
2145     }
2146    
2147    
2148 schoenebeck 2 // *************** Region ***************
2149     // *
2150    
2151     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2152     // Initialization
2153     Dimensions = 0;
2154 schoenebeck 347 for (int i = 0; i < 256; i++) {
2155 schoenebeck 2 pDimensionRegions[i] = NULL;
2156     }
2157 schoenebeck 282 Layers = 1;
2158 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2159     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2160 schoenebeck 2
2161     // Actual Loading
2162    
2163     LoadDimensionRegions(rgnList);
2164    
2165     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2166     if (_3lnk) {
2167     DimensionRegions = _3lnk->ReadUint32();
2168 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2169 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2170     uint8_t bits = _3lnk->ReadUint8();
2171 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2172     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2173 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2174 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2175     pDimensionDefinitions[i].dimension = dimension_none;
2176     pDimensionDefinitions[i].bits = 0;
2177     pDimensionDefinitions[i].zones = 0;
2178     pDimensionDefinitions[i].split_type = split_type_bit;
2179     pDimensionDefinitions[i].zone_size = 0;
2180     }
2181     else { // active dimension
2182     pDimensionDefinitions[i].dimension = dimension;
2183     pDimensionDefinitions[i].bits = bits;
2184 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2185 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2186     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2187 schoenebeck 2 Dimensions++;
2188 schoenebeck 282
2189     // if this is a layer dimension, remember the amount of layers
2190     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2191 schoenebeck 2 }
2192 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2193 schoenebeck 2 }
2194 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2195 schoenebeck 2
2196 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2197     // update the VelocityTables in the dimension regions
2198     UpdateVelocityTable();
2199 schoenebeck 2
2200 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2201     if (file->pVersion && file->pVersion->major == 3)
2202     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2203     else
2204     _3lnk->SetPos(44);
2205    
2206 schoenebeck 2 // load sample references
2207     for (uint i = 0; i < DimensionRegions; i++) {
2208     uint32_t wavepoolindex = _3lnk->ReadUint32();
2209 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2210 schoenebeck 2 }
2211 persson 918 GetSample(); // load global region sample reference
2212 persson 1102 } else {
2213     DimensionRegions = 0;
2214 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2215     pDimensionDefinitions[i].dimension = dimension_none;
2216     pDimensionDefinitions[i].bits = 0;
2217     pDimensionDefinitions[i].zones = 0;
2218     }
2219 schoenebeck 2 }
2220 schoenebeck 823
2221     // make sure there is at least one dimension region
2222     if (!DimensionRegions) {
2223     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2224     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2225     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2226     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2227     DimensionRegions = 1;
2228     }
2229 schoenebeck 2 }
2230    
2231 schoenebeck 809 /**
2232     * Apply Region settings and all its DimensionRegions to the respective
2233     * RIFF chunks. You have to call File::Save() to make changes persistent.
2234     *
2235     * Usually there is absolutely no need to call this method explicitly.
2236     * It will be called automatically when File::Save() was called.
2237     *
2238     * @throws gig::Exception if samples cannot be dereferenced
2239     */
2240     void Region::UpdateChunks() {
2241 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2242     // but we still have to provide some existing one to not corrupt the
2243     // file, so to avoid the latter we simply always assign the sample of
2244     // the first dimension region of this region
2245     pSample = pDimensionRegions[0]->pSample;
2246    
2247 schoenebeck 809 // first update base class's chunks
2248     DLS::Region::UpdateChunks();
2249    
2250     // update dimension region's chunks
2251 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2252 schoenebeck 809 pDimensionRegions[i]->UpdateChunks();
2253 schoenebeck 823 }
2254 schoenebeck 809
2255     File* pFile = (File*) GetParent()->GetParent();
2256     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2257     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2258    
2259     // make sure '3lnk' chunk exists
2260     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2261     if (!_3lnk) {
2262     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2263     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2264 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2265 persson 1192
2266     // move 3prg to last position
2267     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2268 schoenebeck 809 }
2269    
2270     // update dimension definitions in '3lnk' chunk
2271     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2272 persson 1179 store32(&pData[0], DimensionRegions);
2273 persson 1199 int shift = 0;
2274 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2275 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2276     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2277 persson 1199 pData[6 + i * 8] = shift;
2278     pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2279 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2280 persson 1199 // next 3 bytes unknown, always zero?
2281    
2282     shift += pDimensionDefinitions[i].bits;
2283 schoenebeck 809 }
2284    
2285     // update wave pool table in '3lnk' chunk
2286     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2287     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2288     int iWaveIndex = -1;
2289     if (i < DimensionRegions) {
2290 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2291     File::SampleList::iterator iter = pFile->pSamples->begin();
2292     File::SampleList::iterator end = pFile->pSamples->end();
2293 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2294 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2295     iWaveIndex = index;
2296     break;
2297     }
2298 schoenebeck 809 }
2299     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2300     }
2301 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2302 schoenebeck 809 }
2303     }
2304    
2305 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2306     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2307     if (_3prg) {
2308     int dimensionRegionNr = 0;
2309     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2310     while (_3ewl) {
2311     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2312     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2313     dimensionRegionNr++;
2314     }
2315     _3ewl = _3prg->GetNextSubList();
2316     }
2317     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2318     }
2319     }
2320    
2321 persson 858 void Region::UpdateVelocityTable() {
2322     // get velocity dimension's index
2323     int veldim = -1;
2324     for (int i = 0 ; i < Dimensions ; i++) {
2325