/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1301 - (hide annotations) (download)
Sat Aug 25 09:59:53 2007 UTC (16 years, 7 months ago) by persson
File size: 164834 byte(s)
* AddDimension now copies all parameters from existing dimension
  regions and also makes sure that the samplechannel dimension is
  placed first
* Windows fixes: compile error in DLSID generator, saving a new file
  didn't work

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 persson 1218 MIDIUnityNote = 60;
366 schoenebeck 809 FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155 persson 1264 * For 16 bit samples, the data in the source buffer should be
1156     * int16_t (using native endianness). For 24 bit, the buffer
1157     * should contain three bytes per sample, little-endian.
1158     *
1159 schoenebeck 809 * @param pBuffer - source buffer
1160     * @param SampleCount - number of sample points to write
1161     * @throws DLS::Exception if current sample size is too small
1162     * @throws gig::Exception if sample is compressed
1163     * @see DLS::LoadSampleData()
1164     */
1165     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167 persson 1207
1168     // if this is the first write in this sample, reset the
1169     // checksum calculator
1170 persson 1199 if (pCkData->GetPos() == 0) {
1171     crc.reset();
1172     }
1173 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174     unsigned long res;
1175     if (BitDepth == 24) {
1176     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177     } else { // 16 bit
1178     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179     : pCkData->Write(pBuffer, SampleCount, 2);
1180     }
1181 persson 1199 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183 persson 1207 // if this is the last write, update the checksum chunk in the
1184     // file
1185 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1186     File* pFile = static_cast<File*>(GetParent());
1187     pFile->SetSampleChecksum(this, crc.getValue());
1188     }
1189     return res;
1190 schoenebeck 809 }
1191    
1192 schoenebeck 384 /**
1193     * Allocates a decompression buffer for streaming (compressed) samples
1194     * with Sample::Read(). If you are using more than one streaming thread
1195     * in your application you <b>HAVE</b> to create a decompression buffer
1196     * for <b>EACH</b> of your streaming threads and provide it with the
1197     * Sample::Read() call in order to avoid race conditions and crashes.
1198     *
1199     * You should free the memory occupied by the allocated buffer(s) once
1200     * you don't need one of your streaming threads anymore by calling
1201     * DestroyDecompressionBuffer().
1202     *
1203     * @param MaxReadSize - the maximum size (in sample points) you ever
1204     * expect to read with one Read() call
1205     * @returns allocated decompression buffer
1206     * @see DestroyDecompressionBuffer()
1207     */
1208     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209     buffer_t result;
1210     const double worstCaseHeaderOverhead =
1211     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213     result.pStart = new int8_t[result.Size];
1214     result.NullExtensionSize = 0;
1215     return result;
1216     }
1217    
1218     /**
1219     * Free decompression buffer, previously created with
1220     * CreateDecompressionBuffer().
1221     *
1222     * @param DecompressionBuffer - previously allocated decompression
1223     * buffer to free
1224     */
1225     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227     delete[] (int8_t*) DecompressionBuffer.pStart;
1228     DecompressionBuffer.pStart = NULL;
1229     DecompressionBuffer.Size = 0;
1230     DecompressionBuffer.NullExtensionSize = 0;
1231     }
1232     }
1233    
1234 schoenebeck 930 /**
1235     * Returns pointer to the Group this Sample belongs to. In the .gig
1236     * format a sample always belongs to one group. If it wasn't explicitly
1237     * assigned to a certain group, it will be automatically assigned to a
1238     * default group.
1239     *
1240     * @returns Sample's Group (never NULL)
1241     */
1242     Group* Sample::GetGroup() const {
1243     return pGroup;
1244     }
1245    
1246 schoenebeck 2 Sample::~Sample() {
1247     Instances--;
1248 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1249     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250     InternalDecompressionBuffer.pStart = NULL;
1251     InternalDecompressionBuffer.Size = 0;
1252 schoenebeck 355 }
1253 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1254     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255     }
1256    
1257    
1258    
1259     // *************** DimensionRegion ***************
1260     // *
1261    
1262 schoenebeck 16 uint DimensionRegion::Instances = 0;
1263     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264    
1265 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266 schoenebeck 16 Instances++;
1267    
1268 schoenebeck 823 pSample = NULL;
1269    
1270 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1271     else memset(&Crossfade, 0, 4);
1272    
1273 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1274 schoenebeck 2
1275     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1276 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1277 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1278 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1279     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280     _3ewa->ReadInt16(); // unknown
1281     LFO1InternalDepth = _3ewa->ReadUint16();
1282     _3ewa->ReadInt16(); // unknown
1283     LFO3InternalDepth = _3ewa->ReadInt16();
1284     _3ewa->ReadInt16(); // unknown
1285     LFO1ControlDepth = _3ewa->ReadUint16();
1286     _3ewa->ReadInt16(); // unknown
1287     LFO3ControlDepth = _3ewa->ReadInt16();
1288     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1289     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290     _3ewa->ReadInt16(); // unknown
1291     EG1Sustain = _3ewa->ReadUint16();
1292     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1294     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1295     EG1ControllerInvert = eg1ctrloptions & 0x01;
1296     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1297     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1298     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1299     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1300     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1301     EG2ControllerInvert = eg2ctrloptions & 0x01;
1302     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1303     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1304     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1305     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1306     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308     _3ewa->ReadInt16(); // unknown
1309     EG2Sustain = _3ewa->ReadUint16();
1310     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1311     _3ewa->ReadInt16(); // unknown
1312     LFO2ControlDepth = _3ewa->ReadUint16();
1313     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1314     _3ewa->ReadInt16(); // unknown
1315     LFO2InternalDepth = _3ewa->ReadUint16();
1316     int32_t eg1decay2 = _3ewa->ReadInt32();
1317     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1318     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1319     _3ewa->ReadInt16(); // unknown
1320     EG1PreAttack = _3ewa->ReadUint16();
1321     int32_t eg2decay2 = _3ewa->ReadInt32();
1322     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1323     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1324     _3ewa->ReadInt16(); // unknown
1325     EG2PreAttack = _3ewa->ReadUint16();
1326     uint8_t velocityresponse = _3ewa->ReadUint8();
1327     if (velocityresponse < 5) {
1328     VelocityResponseCurve = curve_type_nonlinear;
1329     VelocityResponseDepth = velocityresponse;
1330     } else if (velocityresponse < 10) {
1331     VelocityResponseCurve = curve_type_linear;
1332     VelocityResponseDepth = velocityresponse - 5;
1333     } else if (velocityresponse < 15) {
1334     VelocityResponseCurve = curve_type_special;
1335     VelocityResponseDepth = velocityresponse - 10;
1336     } else {
1337     VelocityResponseCurve = curve_type_unknown;
1338     VelocityResponseDepth = 0;
1339     }
1340     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1341     if (releasevelocityresponse < 5) {
1342     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1343     ReleaseVelocityResponseDepth = releasevelocityresponse;
1344     } else if (releasevelocityresponse < 10) {
1345     ReleaseVelocityResponseCurve = curve_type_linear;
1346     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1347     } else if (releasevelocityresponse < 15) {
1348     ReleaseVelocityResponseCurve = curve_type_special;
1349     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1350     } else {
1351     ReleaseVelocityResponseCurve = curve_type_unknown;
1352     ReleaseVelocityResponseDepth = 0;
1353     }
1354     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1355     AttenuationControllerThreshold = _3ewa->ReadInt8();
1356     _3ewa->ReadInt32(); // unknown
1357     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1358     _3ewa->ReadInt16(); // unknown
1359     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1360     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1361     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1362     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1363     else DimensionBypass = dim_bypass_ctrl_none;
1364     uint8_t pan = _3ewa->ReadUint8();
1365     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1366     SelfMask = _3ewa->ReadInt8() & 0x01;
1367     _3ewa->ReadInt8(); // unknown
1368     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1369     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1370     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1371     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1372     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1373     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1374     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1375     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1376     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1377     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1378     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1379     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1380     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1381     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1382     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1383     : vcf_res_ctrl_none;
1384     uint16_t eg3depth = _3ewa->ReadUint16();
1385     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1386     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1387     _3ewa->ReadInt16(); // unknown
1388     ChannelOffset = _3ewa->ReadUint8() / 4;
1389     uint8_t regoptions = _3ewa->ReadUint8();
1390     MSDecode = regoptions & 0x01; // bit 0
1391     SustainDefeat = regoptions & 0x02; // bit 1
1392     _3ewa->ReadInt16(); // unknown
1393     VelocityUpperLimit = _3ewa->ReadInt8();
1394     _3ewa->ReadInt8(); // unknown
1395     _3ewa->ReadInt16(); // unknown
1396     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1397     _3ewa->ReadInt8(); // unknown
1398     _3ewa->ReadInt8(); // unknown
1399     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1400     uint8_t vcfcutoff = _3ewa->ReadUint8();
1401     VCFEnabled = vcfcutoff & 0x80; // bit 7
1402     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1403     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1404     uint8_t vcfvelscale = _3ewa->ReadUint8();
1405     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1406     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1407     _3ewa->ReadInt8(); // unknown
1408     uint8_t vcfresonance = _3ewa->ReadUint8();
1409     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1410     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1411     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1412     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1413     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1414     uint8_t vcfvelocity = _3ewa->ReadUint8();
1415     VCFVelocityDynamicRange = vcfvelocity % 5;
1416     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1417     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1418     if (VCFType == vcf_type_lowpass) {
1419     if (lfo3ctrl & 0x40) // bit 6
1420     VCFType = vcf_type_lowpassturbo;
1421     }
1422 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1423     _3ewa->Read(DimensionUpperLimits, 1, 8);
1424     } else {
1425     memset(DimensionUpperLimits, 0, 8);
1426     }
1427 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1428     // use default values
1429     LFO3Frequency = 1.0;
1430     EG3Attack = 0.0;
1431     LFO1InternalDepth = 0;
1432     LFO3InternalDepth = 0;
1433     LFO1ControlDepth = 0;
1434     LFO3ControlDepth = 0;
1435     EG1Attack = 0.0;
1436 persson 1218 EG1Decay1 = 0.005;
1437     EG1Sustain = 1000;
1438     EG1Release = 0.3;
1439 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1440     EG1Controller.controller_number = 0;
1441     EG1ControllerInvert = false;
1442     EG1ControllerAttackInfluence = 0;
1443     EG1ControllerDecayInfluence = 0;
1444     EG1ControllerReleaseInfluence = 0;
1445     EG2Controller.type = eg2_ctrl_t::type_none;
1446     EG2Controller.controller_number = 0;
1447     EG2ControllerInvert = false;
1448     EG2ControllerAttackInfluence = 0;
1449     EG2ControllerDecayInfluence = 0;
1450     EG2ControllerReleaseInfluence = 0;
1451     LFO1Frequency = 1.0;
1452     EG2Attack = 0.0;
1453 persson 1218 EG2Decay1 = 0.005;
1454     EG2Sustain = 1000;
1455     EG2Release = 0.3;
1456 schoenebeck 809 LFO2ControlDepth = 0;
1457     LFO2Frequency = 1.0;
1458     LFO2InternalDepth = 0;
1459     EG1Decay2 = 0.0;
1460 persson 1218 EG1InfiniteSustain = true;
1461     EG1PreAttack = 0;
1462 schoenebeck 809 EG2Decay2 = 0.0;
1463 persson 1218 EG2InfiniteSustain = true;
1464     EG2PreAttack = 0;
1465 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1466     VelocityResponseDepth = 3;
1467     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468     ReleaseVelocityResponseDepth = 3;
1469     VelocityResponseCurveScaling = 32;
1470     AttenuationControllerThreshold = 0;
1471     SampleStartOffset = 0;
1472     PitchTrack = true;
1473     DimensionBypass = dim_bypass_ctrl_none;
1474     Pan = 0;
1475     SelfMask = true;
1476     LFO3Controller = lfo3_ctrl_modwheel;
1477     LFO3Sync = false;
1478     InvertAttenuationController = false;
1479     AttenuationController.type = attenuation_ctrl_t::type_none;
1480     AttenuationController.controller_number = 0;
1481     LFO2Controller = lfo2_ctrl_internal;
1482     LFO2FlipPhase = false;
1483     LFO2Sync = false;
1484     LFO1Controller = lfo1_ctrl_internal;
1485     LFO1FlipPhase = false;
1486     LFO1Sync = false;
1487     VCFResonanceController = vcf_res_ctrl_none;
1488     EG3Depth = 0;
1489     ChannelOffset = 0;
1490     MSDecode = false;
1491     SustainDefeat = false;
1492     VelocityUpperLimit = 0;
1493     ReleaseTriggerDecay = 0;
1494     EG1Hold = false;
1495     VCFEnabled = false;
1496     VCFCutoff = 0;
1497     VCFCutoffController = vcf_cutoff_ctrl_none;
1498     VCFCutoffControllerInvert = false;
1499     VCFVelocityScale = 0;
1500     VCFResonance = 0;
1501     VCFResonanceDynamic = false;
1502     VCFKeyboardTracking = false;
1503     VCFKeyboardTrackingBreakpoint = 0;
1504     VCFVelocityDynamicRange = 0x04;
1505     VCFVelocityCurve = curve_type_linear;
1506     VCFType = vcf_type_lowpass;
1507 persson 1247 memset(DimensionUpperLimits, 127, 8);
1508 schoenebeck 2 }
1509 schoenebeck 16
1510 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1511     VelocityResponseDepth,
1512     VelocityResponseCurveScaling);
1513    
1514     curve_type_t curveType = ReleaseVelocityResponseCurve;
1515     uint8_t depth = ReleaseVelocityResponseDepth;
1516    
1517     // this models a strange behaviour or bug in GSt: two of the
1518     // velocity response curves for release time are not used even
1519     // if specified, instead another curve is chosen.
1520     if ((curveType == curve_type_nonlinear && depth == 0) ||
1521     (curveType == curve_type_special && depth == 4)) {
1522     curveType = curve_type_nonlinear;
1523     depth = 3;
1524     }
1525     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1526    
1527 persson 728 curveType = VCFVelocityCurve;
1528     depth = VCFVelocityDynamicRange;
1529    
1530     // even stranger GSt: two of the velocity response curves for
1531     // filter cutoff are not used, instead another special curve
1532     // is chosen. This curve is not used anywhere else.
1533     if ((curveType == curve_type_nonlinear && depth == 0) ||
1534     (curveType == curve_type_special && depth == 4)) {
1535     curveType = curve_type_special;
1536     depth = 5;
1537     }
1538     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1539 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1540 persson 728
1541 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1542 persson 858 VelocityTable = 0;
1543 persson 613 }
1544    
1545 persson 1301 /*
1546     * Constructs a DimensionRegion by copying all parameters from
1547     * another DimensionRegion
1548     */
1549     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1550     Instances++;
1551     *this = src; // default memberwise shallow copy of all parameters
1552     pParentList = _3ewl; // restore the chunk pointer
1553    
1554     // deep copy of owned structures
1555     if (src.VelocityTable) {
1556     VelocityTable = new uint8_t[128];
1557     for (int k = 0 ; k < 128 ; k++)
1558     VelocityTable[k] = src.VelocityTable[k];
1559     }
1560     if (src.pSampleLoops) {
1561     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1562     for (int k = 0 ; k < src.SampleLoops ; k++)
1563     pSampleLoops[k] = src.pSampleLoops[k];
1564     }
1565     }
1566    
1567 schoenebeck 809 /**
1568     * Apply dimension region settings to the respective RIFF chunks. You
1569     * have to call File::Save() to make changes persistent.
1570     *
1571     * Usually there is absolutely no need to call this method explicitly.
1572     * It will be called automatically when File::Save() was called.
1573     */
1574     void DimensionRegion::UpdateChunks() {
1575 persson 1264 // check if wsmp is going to be created by
1576     // DLS::Sampler::UpdateChunks
1577     bool wsmp_created = !pParentList->GetSubChunk(CHUNK_ID_WSMP);
1578    
1579 schoenebeck 809 // first update base class's chunk
1580     DLS::Sampler::UpdateChunks();
1581    
1582 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1583     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1584     pData[12] = Crossfade.in_start;
1585     pData[13] = Crossfade.in_end;
1586     pData[14] = Crossfade.out_start;
1587     pData[15] = Crossfade.out_end;
1588    
1589 schoenebeck 809 // make sure '3ewa' chunk exists
1590     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1591     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1592 persson 1264 else if (wsmp_created) {
1593     // make sure the chunk order is: wsmp, 3ewa
1594     pParentList->MoveSubChunk(_3ewa, 0);
1595     }
1596 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1597 schoenebeck 809
1598     // update '3ewa' chunk with DimensionRegion's current settings
1599    
1600 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1601 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1602 schoenebeck 809
1603     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1604 persson 1179 store32(&pData[4], lfo3freq);
1605 schoenebeck 809
1606     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1607 persson 1179 store32(&pData[8], eg3attack);
1608 schoenebeck 809
1609     // next 2 bytes unknown
1610    
1611 persson 1179 store16(&pData[14], LFO1InternalDepth);
1612 schoenebeck 809
1613     // next 2 bytes unknown
1614    
1615 persson 1179 store16(&pData[18], LFO3InternalDepth);
1616 schoenebeck 809
1617     // next 2 bytes unknown
1618    
1619 persson 1179 store16(&pData[22], LFO1ControlDepth);
1620 schoenebeck 809
1621     // next 2 bytes unknown
1622    
1623 persson 1179 store16(&pData[26], LFO3ControlDepth);
1624 schoenebeck 809
1625     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1626 persson 1179 store32(&pData[28], eg1attack);
1627 schoenebeck 809
1628     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1629 persson 1179 store32(&pData[32], eg1decay1);
1630 schoenebeck 809
1631     // next 2 bytes unknown
1632    
1633 persson 1179 store16(&pData[38], EG1Sustain);
1634 schoenebeck 809
1635     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1636 persson 1179 store32(&pData[40], eg1release);
1637 schoenebeck 809
1638     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1639 persson 1179 pData[44] = eg1ctl;
1640 schoenebeck 809
1641     const uint8_t eg1ctrloptions =
1642 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1643 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1644     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1645     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1646 persson 1179 pData[45] = eg1ctrloptions;
1647 schoenebeck 809
1648     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1649 persson 1179 pData[46] = eg2ctl;
1650 schoenebeck 809
1651     const uint8_t eg2ctrloptions =
1652 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1653 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1654     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1655     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1656 persson 1179 pData[47] = eg2ctrloptions;
1657 schoenebeck 809
1658     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1659 persson 1179 store32(&pData[48], lfo1freq);
1660 schoenebeck 809
1661     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1662 persson 1179 store32(&pData[52], eg2attack);
1663 schoenebeck 809
1664     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1665 persson 1179 store32(&pData[56], eg2decay1);
1666 schoenebeck 809
1667     // next 2 bytes unknown
1668    
1669 persson 1179 store16(&pData[62], EG2Sustain);
1670 schoenebeck 809
1671     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1672 persson 1179 store32(&pData[64], eg2release);
1673 schoenebeck 809
1674     // next 2 bytes unknown
1675    
1676 persson 1179 store16(&pData[70], LFO2ControlDepth);
1677 schoenebeck 809
1678     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1679 persson 1179 store32(&pData[72], lfo2freq);
1680 schoenebeck 809
1681     // next 2 bytes unknown
1682    
1683 persson 1179 store16(&pData[78], LFO2InternalDepth);
1684 schoenebeck 809
1685     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1686 persson 1179 store32(&pData[80], eg1decay2);
1687 schoenebeck 809
1688     // next 2 bytes unknown
1689    
1690 persson 1179 store16(&pData[86], EG1PreAttack);
1691 schoenebeck 809
1692     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1693 persson 1179 store32(&pData[88], eg2decay2);
1694 schoenebeck 809
1695     // next 2 bytes unknown
1696    
1697 persson 1179 store16(&pData[94], EG2PreAttack);
1698 schoenebeck 809
1699     {
1700     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1701     uint8_t velocityresponse = VelocityResponseDepth;
1702     switch (VelocityResponseCurve) {
1703     case curve_type_nonlinear:
1704     break;
1705     case curve_type_linear:
1706     velocityresponse += 5;
1707     break;
1708     case curve_type_special:
1709     velocityresponse += 10;
1710     break;
1711     case curve_type_unknown:
1712     default:
1713     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1714     }
1715 persson 1179 pData[96] = velocityresponse;
1716 schoenebeck 809 }
1717    
1718     {
1719     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1720     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1721     switch (ReleaseVelocityResponseCurve) {
1722     case curve_type_nonlinear:
1723     break;
1724     case curve_type_linear:
1725     releasevelocityresponse += 5;
1726     break;
1727     case curve_type_special:
1728     releasevelocityresponse += 10;
1729     break;
1730     case curve_type_unknown:
1731     default:
1732     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1733     }
1734 persson 1179 pData[97] = releasevelocityresponse;
1735 schoenebeck 809 }
1736    
1737 persson 1179 pData[98] = VelocityResponseCurveScaling;
1738 schoenebeck 809
1739 persson 1179 pData[99] = AttenuationControllerThreshold;
1740 schoenebeck 809
1741     // next 4 bytes unknown
1742    
1743 persson 1179 store16(&pData[104], SampleStartOffset);
1744 schoenebeck 809
1745     // next 2 bytes unknown
1746    
1747     {
1748     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1749     switch (DimensionBypass) {
1750     case dim_bypass_ctrl_94:
1751     pitchTrackDimensionBypass |= 0x10;
1752     break;
1753     case dim_bypass_ctrl_95:
1754     pitchTrackDimensionBypass |= 0x20;
1755     break;
1756     case dim_bypass_ctrl_none:
1757     //FIXME: should we set anything here?
1758     break;
1759     default:
1760     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1761     }
1762 persson 1179 pData[108] = pitchTrackDimensionBypass;
1763 schoenebeck 809 }
1764    
1765     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1766 persson 1179 pData[109] = pan;
1767 schoenebeck 809
1768     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1769 persson 1179 pData[110] = selfmask;
1770 schoenebeck 809
1771     // next byte unknown
1772    
1773     {
1774     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1775     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1776     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1777     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1778 persson 1179 pData[112] = lfo3ctrl;
1779 schoenebeck 809 }
1780    
1781     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1782 persson 1179 pData[113] = attenctl;
1783 schoenebeck 809
1784     {
1785     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1786     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1787     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1788     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1789 persson 1179 pData[114] = lfo2ctrl;
1790 schoenebeck 809 }
1791    
1792     {
1793     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1794     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1795     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1796     if (VCFResonanceController != vcf_res_ctrl_none)
1797     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1798 persson 1179 pData[115] = lfo1ctrl;
1799 schoenebeck 809 }
1800    
1801     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1802     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1803 persson 1179 pData[116] = eg3depth;
1804 schoenebeck 809
1805     // next 2 bytes unknown
1806    
1807     const uint8_t channeloffset = ChannelOffset * 4;
1808 persson 1179 pData[120] = channeloffset;
1809 schoenebeck 809
1810     {
1811     uint8_t regoptions = 0;
1812     if (MSDecode) regoptions |= 0x01; // bit 0
1813     if (SustainDefeat) regoptions |= 0x02; // bit 1
1814 persson 1179 pData[121] = regoptions;
1815 schoenebeck 809 }
1816    
1817     // next 2 bytes unknown
1818    
1819 persson 1179 pData[124] = VelocityUpperLimit;
1820 schoenebeck 809
1821     // next 3 bytes unknown
1822    
1823 persson 1179 pData[128] = ReleaseTriggerDecay;
1824 schoenebeck 809
1825     // next 2 bytes unknown
1826    
1827     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1828 persson 1179 pData[131] = eg1hold;
1829 schoenebeck 809
1830 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1831 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1832 persson 1179 pData[132] = vcfcutoff;
1833 schoenebeck 809
1834 persson 1179 pData[133] = VCFCutoffController;
1835 schoenebeck 809
1836 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1837 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1838 persson 1179 pData[134] = vcfvelscale;
1839 schoenebeck 809
1840     // next byte unknown
1841    
1842 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1843 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1844 persson 1179 pData[136] = vcfresonance;
1845 schoenebeck 809
1846 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1847 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1848 persson 1179 pData[137] = vcfbreakpoint;
1849 schoenebeck 809
1850     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1851     VCFVelocityCurve * 5;
1852 persson 1179 pData[138] = vcfvelocity;
1853 schoenebeck 809
1854     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1855 persson 1179 pData[139] = vcftype;
1856 persson 1070
1857     if (chunksize >= 148) {
1858     memcpy(&pData[140], DimensionUpperLimits, 8);
1859     }
1860 schoenebeck 809 }
1861    
1862 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1863     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1864     {
1865     double* table;
1866     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1867 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1868 persson 613 table = (*pVelocityTables)[tableKey];
1869 schoenebeck 16 }
1870     else {
1871 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1872     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1873 schoenebeck 16 }
1874 persson 613 return table;
1875 schoenebeck 2 }
1876 schoenebeck 55
1877 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1878     leverage_ctrl_t decodedcontroller;
1879     switch (EncodedController) {
1880     // special controller
1881     case _lev_ctrl_none:
1882     decodedcontroller.type = leverage_ctrl_t::type_none;
1883     decodedcontroller.controller_number = 0;
1884     break;
1885     case _lev_ctrl_velocity:
1886     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1887     decodedcontroller.controller_number = 0;
1888     break;
1889     case _lev_ctrl_channelaftertouch:
1890     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1891     decodedcontroller.controller_number = 0;
1892     break;
1893 schoenebeck 55
1894 schoenebeck 36 // ordinary MIDI control change controller
1895     case _lev_ctrl_modwheel:
1896     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1897     decodedcontroller.controller_number = 1;
1898     break;
1899     case _lev_ctrl_breath:
1900     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1901     decodedcontroller.controller_number = 2;
1902     break;
1903     case _lev_ctrl_foot:
1904     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1905     decodedcontroller.controller_number = 4;
1906     break;
1907     case _lev_ctrl_effect1:
1908     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1909     decodedcontroller.controller_number = 12;
1910     break;
1911     case _lev_ctrl_effect2:
1912     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1913     decodedcontroller.controller_number = 13;
1914     break;
1915     case _lev_ctrl_genpurpose1:
1916     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1917     decodedcontroller.controller_number = 16;
1918     break;
1919     case _lev_ctrl_genpurpose2:
1920     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1921     decodedcontroller.controller_number = 17;
1922     break;
1923     case _lev_ctrl_genpurpose3:
1924     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1925     decodedcontroller.controller_number = 18;
1926     break;
1927     case _lev_ctrl_genpurpose4:
1928     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1929     decodedcontroller.controller_number = 19;
1930     break;
1931     case _lev_ctrl_portamentotime:
1932     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1933     decodedcontroller.controller_number = 5;
1934     break;
1935     case _lev_ctrl_sustainpedal:
1936     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1937     decodedcontroller.controller_number = 64;
1938     break;
1939     case _lev_ctrl_portamento:
1940     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1941     decodedcontroller.controller_number = 65;
1942     break;
1943     case _lev_ctrl_sostenutopedal:
1944     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1945     decodedcontroller.controller_number = 66;
1946     break;
1947     case _lev_ctrl_softpedal:
1948     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1949     decodedcontroller.controller_number = 67;
1950     break;
1951     case _lev_ctrl_genpurpose5:
1952     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1953     decodedcontroller.controller_number = 80;
1954     break;
1955     case _lev_ctrl_genpurpose6:
1956     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1957     decodedcontroller.controller_number = 81;
1958     break;
1959     case _lev_ctrl_genpurpose7:
1960     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1961     decodedcontroller.controller_number = 82;
1962     break;
1963     case _lev_ctrl_genpurpose8:
1964     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1965     decodedcontroller.controller_number = 83;
1966     break;
1967     case _lev_ctrl_effect1depth:
1968     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1969     decodedcontroller.controller_number = 91;
1970     break;
1971     case _lev_ctrl_effect2depth:
1972     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973     decodedcontroller.controller_number = 92;
1974     break;
1975     case _lev_ctrl_effect3depth:
1976     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977     decodedcontroller.controller_number = 93;
1978     break;
1979     case _lev_ctrl_effect4depth:
1980     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981     decodedcontroller.controller_number = 94;
1982     break;
1983     case _lev_ctrl_effect5depth:
1984     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985     decodedcontroller.controller_number = 95;
1986     break;
1987 schoenebeck 55
1988 schoenebeck 36 // unknown controller type
1989     default:
1990     throw gig::Exception("Unknown leverage controller type.");
1991     }
1992     return decodedcontroller;
1993     }
1994 schoenebeck 2
1995 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1996     _lev_ctrl_t encodedcontroller;
1997     switch (DecodedController.type) {
1998     // special controller
1999     case leverage_ctrl_t::type_none:
2000     encodedcontroller = _lev_ctrl_none;
2001     break;
2002     case leverage_ctrl_t::type_velocity:
2003     encodedcontroller = _lev_ctrl_velocity;
2004     break;
2005     case leverage_ctrl_t::type_channelaftertouch:
2006     encodedcontroller = _lev_ctrl_channelaftertouch;
2007     break;
2008    
2009     // ordinary MIDI control change controller
2010     case leverage_ctrl_t::type_controlchange:
2011     switch (DecodedController.controller_number) {
2012     case 1:
2013     encodedcontroller = _lev_ctrl_modwheel;
2014     break;
2015     case 2:
2016     encodedcontroller = _lev_ctrl_breath;
2017     break;
2018     case 4:
2019     encodedcontroller = _lev_ctrl_foot;
2020     break;
2021     case 12:
2022     encodedcontroller = _lev_ctrl_effect1;
2023     break;
2024     case 13:
2025     encodedcontroller = _lev_ctrl_effect2;
2026     break;
2027     case 16:
2028     encodedcontroller = _lev_ctrl_genpurpose1;
2029     break;
2030     case 17:
2031     encodedcontroller = _lev_ctrl_genpurpose2;
2032     break;
2033     case 18:
2034     encodedcontroller = _lev_ctrl_genpurpose3;
2035     break;
2036     case 19:
2037     encodedcontroller = _lev_ctrl_genpurpose4;
2038     break;
2039     case 5:
2040     encodedcontroller = _lev_ctrl_portamentotime;
2041     break;
2042     case 64:
2043     encodedcontroller = _lev_ctrl_sustainpedal;
2044     break;
2045     case 65:
2046     encodedcontroller = _lev_ctrl_portamento;
2047     break;
2048     case 66:
2049     encodedcontroller = _lev_ctrl_sostenutopedal;
2050     break;
2051     case 67:
2052     encodedcontroller = _lev_ctrl_softpedal;
2053     break;
2054     case 80:
2055     encodedcontroller = _lev_ctrl_genpurpose5;
2056     break;
2057     case 81:
2058     encodedcontroller = _lev_ctrl_genpurpose6;
2059     break;
2060     case 82:
2061     encodedcontroller = _lev_ctrl_genpurpose7;
2062     break;
2063     case 83:
2064     encodedcontroller = _lev_ctrl_genpurpose8;
2065     break;
2066     case 91:
2067     encodedcontroller = _lev_ctrl_effect1depth;
2068     break;
2069     case 92:
2070     encodedcontroller = _lev_ctrl_effect2depth;
2071     break;
2072     case 93:
2073     encodedcontroller = _lev_ctrl_effect3depth;
2074     break;
2075     case 94:
2076     encodedcontroller = _lev_ctrl_effect4depth;
2077     break;
2078     case 95:
2079     encodedcontroller = _lev_ctrl_effect5depth;
2080     break;
2081     default:
2082     throw gig::Exception("leverage controller number is not supported by the gig format");
2083     }
2084 persson 1182 break;
2085 schoenebeck 809 default:
2086     throw gig::Exception("Unknown leverage controller type.");
2087     }
2088     return encodedcontroller;
2089     }
2090    
2091 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2092     Instances--;
2093     if (!Instances) {
2094     // delete the velocity->volume tables
2095     VelocityTableMap::iterator iter;
2096     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2097     double* pTable = iter->second;
2098     if (pTable) delete[] pTable;
2099     }
2100     pVelocityTables->clear();
2101     delete pVelocityTables;
2102     pVelocityTables = NULL;
2103     }
2104 persson 858 if (VelocityTable) delete[] VelocityTable;
2105 schoenebeck 16 }
2106 schoenebeck 2
2107 schoenebeck 16 /**
2108     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2109     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2110     * and VelocityResponseCurveScaling) involved are taken into account to
2111     * calculate the amplitude factor. Use this method when a key was
2112     * triggered to get the volume with which the sample should be played
2113     * back.
2114     *
2115 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2116     * @returns amplitude factor (between 0.0 and 1.0)
2117 schoenebeck 16 */
2118     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2119     return pVelocityAttenuationTable[MIDIKeyVelocity];
2120     }
2121 schoenebeck 2
2122 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2123     return pVelocityReleaseTable[MIDIKeyVelocity];
2124     }
2125    
2126 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2127     return pVelocityCutoffTable[MIDIKeyVelocity];
2128     }
2129    
2130 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2131 schoenebeck 317
2132 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2133 schoenebeck 16
2134 schoenebeck 308 // linear
2135     const int lin0[] = { 1, 1, 127, 127 };
2136     const int lin1[] = { 1, 21, 127, 127 };
2137     const int lin2[] = { 1, 45, 127, 127 };
2138     const int lin3[] = { 1, 74, 127, 127 };
2139     const int lin4[] = { 1, 127, 127, 127 };
2140 schoenebeck 16
2141 schoenebeck 308 // non-linear
2142     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2143 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2144 schoenebeck 308 127, 127 };
2145     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2146     127, 127 };
2147     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2148     127, 127 };
2149     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2150 schoenebeck 317
2151 schoenebeck 308 // special
2152 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2153 schoenebeck 308 113, 127, 127, 127 };
2154     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2155     118, 127, 127, 127 };
2156 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2157 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2158 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2159 schoenebeck 308 117, 127, 127, 127 };
2160 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2161 schoenebeck 308 127, 127 };
2162 schoenebeck 317
2163 persson 728 // this is only used by the VCF velocity curve
2164     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2165     91, 127, 127, 127 };
2166    
2167 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2168 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2169 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2170 schoenebeck 317
2171 schoenebeck 308 double* const table = new double[128];
2172    
2173     const int* curve = curves[curveType * 5 + depth];
2174     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2175 schoenebeck 317
2176 schoenebeck 308 table[0] = 0;
2177     for (int x = 1 ; x < 128 ; x++) {
2178    
2179     if (x > curve[2]) curve += 2;
2180 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2181 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2182     y = y / 127;
2183    
2184     // Scale up for s > 20, down for s < 20. When
2185     // down-scaling, the curve still ends at 1.0.
2186     if (s < 20 && y >= 0.5)
2187     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2188     else
2189     y = y * (s / 20.0);
2190     if (y > 1) y = 1;
2191    
2192     table[x] = y;
2193     }
2194     return table;
2195     }
2196    
2197    
2198 schoenebeck 2 // *************** Region ***************
2199     // *
2200    
2201     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2202     // Initialization
2203     Dimensions = 0;
2204 schoenebeck 347 for (int i = 0; i < 256; i++) {
2205 schoenebeck 2 pDimensionRegions[i] = NULL;
2206     }
2207 schoenebeck 282 Layers = 1;
2208 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2209     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2210 schoenebeck 2
2211     // Actual Loading
2212    
2213     LoadDimensionRegions(rgnList);
2214    
2215     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2216     if (_3lnk) {
2217     DimensionRegions = _3lnk->ReadUint32();
2218 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2219 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2220     uint8_t bits = _3lnk->ReadUint8();
2221 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2222     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2223 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2224 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2225     pDimensionDefinitions[i].dimension = dimension_none;
2226     pDimensionDefinitions[i].bits = 0;
2227     pDimensionDefinitions[i].zones = 0;
2228     pDimensionDefinitions[i].split_type = split_type_bit;
2229     pDimensionDefinitions[i].zone_size = 0;
2230     }
2231     else { // active dimension
2232     pDimensionDefinitions[i].dimension = dimension;
2233     pDimensionDefinitions[i].bits = bits;
2234 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2235 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2236     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2237 schoenebeck 2 Dimensions++;
2238 schoenebeck 282
2239     // if this is a layer dimension, remember the amount of layers
2240     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2241 schoenebeck 2 }
2242 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2243 schoenebeck 2 }
2244 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2245 schoenebeck 2
2246 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2247     // update the VelocityTables in the dimension regions
2248     UpdateVelocityTable();
2249 schoenebeck 2
2250 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2251     if (file->pVersion && file->pVersion->major == 3)
2252     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2253     else
2254     _3lnk->SetPos(44);
2255    
2256 schoenebeck 2 // load sample references
2257     for (uint i = 0; i < DimensionRegions; i++) {
2258     uint32_t wavepoolindex = _3lnk->ReadUint32();
2259 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2260 schoenebeck 2 }
2261 persson 918 GetSample(); // load global region sample reference
2262 persson 1102 } else {
2263     DimensionRegions = 0;
2264 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2265     pDimensionDefinitions[i].dimension = dimension_none;
2266     pDimensionDefinitions[i].bits = 0;
2267     pDimensionDefinitions[i].zones = 0;
2268     }
2269 schoenebeck 2 }
2270 schoenebeck 823
2271     // make sure there is at least one dimension region
2272     if (!DimensionRegions) {
2273     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2274     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2275     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2276     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2277     DimensionRegions = 1;
2278     }
2279 schoenebeck 2 }
2280    
2281 schoenebeck 809 /**
2282     * Apply Region settings and all its DimensionRegions to the respective
2283     * RIFF chunks. You have to call File::Save() to make changes persistent.
2284     *
2285     * Usually there is absolutely no need to call this method explicitly.
2286     * It will be called automatically when File::Save() was called.
2287     *
2288     * @throws gig::Exception if samples cannot be dereferenced
2289     */
2290     void Region::UpdateChunks() {
2291 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2292     // but we still have to provide some existing one to not corrupt the
2293     // file, so to avoid the latter we simply always assign the sample of
2294     // the first dimension region of this region
2295     pSample = pDimensionRegions[0]->pSample;
2296    
2297 schoenebeck 809 // first update base class's chunks
2298     DLS::Region::UpdateChunks();
2299    
2300 persson 1247 File* pFile = (File*) GetParent()->GetParent();
2301     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2302    
2303 schoenebeck 809 // update dimension region's chunks
2304 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2305 persson 1247 DimensionRegion* d = pDimensionRegions[i];
2306    
2307     // make sure '3ewa' chunk exists (we need to this before
2308     // calling DimensionRegion::UpdateChunks, as
2309     // DimensionRegion doesn't know which file version it is)
2310     RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2311     if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2312    
2313     d->UpdateChunks();
2314 schoenebeck 823 }
2315 schoenebeck 809
2316 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2317     const int iMaxDimensionRegions = version3 ? 256 : 32;
2318 schoenebeck 809
2319     // make sure '3lnk' chunk exists
2320     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2321     if (!_3lnk) {
2322 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2323 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2324 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2325 persson 1192
2326     // move 3prg to last position
2327     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2328 schoenebeck 809 }
2329    
2330     // update dimension definitions in '3lnk' chunk
2331     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2332 persson 1179 store32(&pData[0], DimensionRegions);
2333 persson 1199 int shift = 0;
2334 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2335 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2336     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2337 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2338 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2339 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2340 persson 1199 // next 3 bytes unknown, always zero?
2341    
2342     shift += pDimensionDefinitions[i].bits;
2343 schoenebeck 809 }
2344    
2345     // update wave pool table in '3lnk' chunk
2346 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2347 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2348     int iWaveIndex = -1;
2349     if (i < DimensionRegions) {
2350 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2351     File::SampleList::iterator iter = pFile->pSamples->begin();
2352     File::SampleList::iterator end = pFile->pSamples->end();
2353 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2354 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2355     iWaveIndex = index;
2356     break;
2357     }
2358 schoenebeck 809 }
2359     }
2360 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2361 schoenebeck 809 }
2362     }
2363    
2364 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2365     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2366     if (_3prg) {
2367     int dimensionRegionNr = 0;
2368     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2369     while (_3ewl) {
2370     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2371     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2372     dimensionRegionNr++;
2373     }
2374     _3ewl = _3prg->GetNextSubList();
2375     }
2376     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2377     }
2378     }
2379    
2380 persson 858 void Region::UpdateVelocityTable() {
2381     // get velocity dimension's index
2382     int veldim = -1;
2383     for (int i = 0 ; i < Dimensions ; i++) {
2384     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2385     veldim = i;
2386 schoenebeck 809 break;
2387     }
2388     }
2389 persson 858 if (veldim == -1) return;
2390 schoenebeck 809
2391 persson 858 int step = 1;
2392     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2393     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2394     int end = step * pDimensionDefinitions[veldim].zones;
2395 schoenebeck 809
2396 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2397     int dim[8] = { 0 };
2398     for (int i = 0 ; i < DimensionRegions ; i++) {
2399    
2400 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2401     pDimensionRegions[i]->VelocityUpperLimit) {
2402 persson 858 // create the velocity table
2403     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2404     if (!table) {
2405     table = new uint8_t[128];
2406     pDimensionRegions[i]->VelocityTable = table;
2407     }
2408     int tableidx = 0;
2409     int velocityZone = 0;
2410 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2411     for (int k = i ; k < end ; k += step) {
2412     DimensionRegion *d = pDimensionRegions[k];
2413     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2414     velocityZone++;
2415     }
2416     } else { // gig2
2417     for (int k = i ; k < end ; k += step) {
2418     DimensionRegion *d = pDimensionRegions[k];
2419     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2420     velocityZone++;
2421     }
2422 persson 858 }
2423     } else {
2424     if (pDimensionRegions[i]->VelocityTable) {
2425     delete[] pDimensionRegions[i]->VelocityTable;
2426     pDimensionRegions[i]->VelocityTable = 0;
2427     }
2428 schoenebeck 809 }
2429 persson 858
2430     int j;
2431     int shift = 0;
2432     for (j = 0 ; j < Dimensions ; j++) {
2433     if (j == veldim) i += skipveldim; // skip velocity dimension
2434     else {
2435     dim[j]++;
2436     if (dim[j] < pDimensionDefinitions[j].zones) break;
2437     else {
2438     // skip unused dimension regions
2439     dim[j] = 0;
2440     i += ((1 << pDimensionDefinitions[j].bits) -
2441     pDimensionDefinitions[j].zones) << shift;
2442     }
2443     }
2444     shift += pDimensionDefinitions[j].bits;
2445     }
2446     if (j == Dimensions) break;
2447 schoenebeck 809 }
2448     }
2449    
2450     /** @brief Einstein would have dreamed of it - create a new dimension.
2451     *
2452     * Creates a new dimension with the dimension definition given by
2453     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2454     * There is a hard limit of dimensions and total amount of "bits" all
2455     * dimensions can have. This limit is dependant to what gig file format
2456     * version this file refers to. The gig v2 (and lower) format has a
2457     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2458     * format has a limit of 8.
2459     *
2460     * @param pDimDef - defintion of the new dimension
2461     * @throws gig::Exception if dimension of the same type exists already
2462     * @throws gig::Exception if amount of dimensions or total amount of
2463     * dimension bits limit is violated
2464     */
2465     void Region::AddDimension(dimension_def_t* pDimDef) {
2466     // check if max. amount of dimensions reached
2467     File* file = (File*) GetParent()->GetParent();
2468     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2469     if (Dimensions >= iMaxDimensions)
2470     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2471     // check if max. amount of dimension bits reached
2472     int iCurrentBits = 0;
2473     for (int i = 0; i < Dimensions; i++)
2474     iCurrentBits += pDimensionDefinitions[i].bits;
2475     if (iCurrentBits >= iMaxDimensions)
2476     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2477     const int iNewBits = iCurrentBits + pDimDef->bits;
2478     if (iNewBits > iMaxDimensions)
2479     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2480     // check if there's already a dimensions of the same type
2481     for (int i = 0; i < Dimensions; i++)
2482     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2483     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2484    
2485 persson 1301 // pos is where the new dimension should be placed, normally
2486     // last in list, except for the samplechannel dimension which
2487     // has to be first in list
2488     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2489     int bitpos = 0;
2490     for (int i = 0 ; i < pos ; i++)
2491     bitpos += pDimensionDefinitions[i].bits;
2492    
2493     // make room for the new dimension
2494     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2495     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2496     for (int j = Dimensions ; j > pos ; j--) {
2497     pDimensionRegions[i]->DimensionUpperLimits[j] =
2498     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2499     }
2500     }
2501    
2502 schoenebeck 809 // assign definition of new dimension
2503 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2504 schoenebeck 809
2505 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2506 persson 1301 pDimensionDefinitions[pos].split_type =
2507     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2508     pDimensionDefinitions[pos].zone_size =
2509     __resolveZoneSize(pDimensionDefinitions[pos]);
2510 schoenebeck 1113
2511 persson 1301 // create new dimension region(s) for this new dimension, and make
2512     // sure that the dimension regions are placed correctly in both the
2513     // RIFF list and the pDimensionRegions array
2514     RIFF::Chunk* moveTo = NULL;
2515     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2516     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2517     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2518     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2519     }
2520     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2521     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2522     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2523     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2524     // create a new dimension region and copy all parameter values from
2525     // an existing dimension region
2526     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2527     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2528 persson 1247
2529 persson 1301 DimensionRegions++;
2530     }
2531     }
2532     moveTo = pDimensionRegions[i]->pParentList;
2533 schoenebeck 809 }
2534    
2535 persson 1247 // initialize the upper limits for this dimension
2536 persson 1301 int mask = (1 << bitpos) - 1;
2537     for (int z = 0 ; z < pDimDef->zones ; z++) {
2538 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2539 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2540 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2541     (z << bitpos) |
2542     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2543 persson 1247 }
2544     }
2545    
2546 schoenebeck 809 Dimensions++;
2547    
2548     // if this is a layer dimension, update 'Layers' attribute
2549     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2550    
2551 persson 858 UpdateVelocityTable();
2552 schoenebeck 809 }
2553    
2554     /** @brief Delete an existing dimension.
2555     *
2556     * Deletes the dimension given by \a pDimDef and deletes all respective
2557     * dimension regions, that is all dimension regions where the dimension's
2558     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2559     * for example this would delete all dimension regions for the case(s)
2560     * where the sustain pedal is pressed down.
2561     *
2562     * @param pDimDef - dimension to delete
2563     * @throws gig::Exception if given dimension cannot be found
2564     */
2565     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2566     // get dimension's index
2567     int iDimensionNr = -1;
2568     for (int i = 0; i < Dimensions; i++) {
2569     if (&pDimensionDefinitions[i] == pDimDef) {
2570     iDimensionNr = i;
2571     break;
2572     }
2573     }
2574     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2575    
2576     // get amount of bits below the dimension to delete
2577     int iLowerBits = 0;
2578     for (int i = 0; i < iDimensionNr; i++)
2579     iLowerBits += pDimensionDefinitions[i].bits;
2580    
2581     // get amount ot bits above the dimension to delete
2582     int iUpperBits = 0;
2583     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2584     iUpperBits += pDimensionDefinitions[i].bits;
2585    
2586 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2587    
2588 schoenebeck 809 // delete dimension regions which belong to the given dimension
2589     // (that is where the dimension's bit > 0)
2590     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2591     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2592     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2593     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2594     iObsoleteBit << iLowerBits |
2595     iLowerBit;
2596 persson 1247
2597     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2598 schoenebeck 809 delete pDimensionRegions[iToDelete];
2599     pDimensionRegions[iToDelete] = NULL;
2600     DimensionRegions--;
2601     }
2602     }
2603     }
2604    
2605     // defrag pDimensionRegions array
2606     // (that is remove the NULL spaces within the pDimensionRegions array)
2607     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2608     if (!pDimensionRegions[iTo]) {
2609     if (iFrom <= iTo) iFrom = iTo + 1;
2610     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2611     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2612     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2613     pDimensionRegions[iFrom] = NULL;
2614     }
2615     }
2616     }
2617    
2618 persson 1247 // remove the this dimension from the upper limits arrays
2619     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2620     DimensionRegion* d = pDimensionRegions[j];
2621     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2622     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2623     }
2624     d->DimensionUpperLimits[Dimensions - 1] = 127;
2625     }
2626    
2627 schoenebeck 809 // 'remove' dimension definition
2628     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2629     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2630     }
2631     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2632     pDimensionDefinitions[Dimensions - 1].bits = 0;
2633     pDimensionDefinitions[Dimensions - 1].zones = 0;
2634    
2635     Dimensions--;
2636    
2637     // if this was a layer dimension, update 'Layers' attribute
2638     if (pDimDef->dimension == dimension_layer) Layers = 1;
2639     }
2640    
2641 schoenebeck 2 Region::~Region() {
2642 schoenebeck 350 for (int i = 0; i < 256; i++) {
2643 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2644     }
2645     }
2646    
2647     /**
2648     * Use this method in your audio engine to get the appropriate dimension
2649     * region with it's articulation data for the current situation. Just
2650     * call the method with the current MIDI controller values and you'll get
2651     * the DimensionRegion with the appropriate articulation data for the
2652     * current situation (for this Region of course only). To do that you'll
2653     * first have to look which dimensions with which controllers and in
2654     * which order are defined for this Region when you load the .gig file.
2655     * Special cases are e.g. layer or channel dimensions where you just put
2656     * in the index numbers instead of a MIDI controller value (means 0 for
2657     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2658     * etc.).
2659     *
2660 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2661 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2662     * @see pDimensionDefinitions
2663     * @see Dimensions
2664     */
2665 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2666 persson 858 uint8_t bits;
2667     int veldim = -1;
2668     int velbitpos;
2669     int bitpos = 0;
2670     int dimregidx = 0;
2671 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2672 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2673     // the velocity dimension must be handled after the other dimensions
2674     veldim = i;
2675     velbitpos = bitpos;
2676     } else {
2677     switch (pDimensionDefinitions[i].split_type) {
2678     case split_type_normal:
2679 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2680     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2681     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2682     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2683     }
2684     } else {
2685     // gig2: evenly sized zones
2686     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2687     }
2688 persson 858 break;
2689     case split_type_bit: // the value is already the sought dimension bit number
2690     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2691     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2692     break;
2693     }
2694     dimregidx |= bits << bitpos;
2695 schoenebeck 2 }
2696 persson 858 bitpos += pDimensionDefinitions[i].bits;
2697 schoenebeck 2 }
2698 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2699     if (veldim != -1) {
2700     // (dimreg is now the dimension region for the lowest velocity)
2701 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2702 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2703     else // normal split type
2704     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2705    
2706     dimregidx |= bits << velbitpos;
2707     dimreg = pDimensionRegions[dimregidx];
2708     }
2709     return dimreg;
2710 schoenebeck 2 }
2711    
2712     /**
2713     * Returns the appropriate DimensionRegion for the given dimension bit
2714     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2715     * instead of calling this method directly!
2716     *
2717 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2718 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2719     * bit numbers
2720     * @see GetDimensionRegionByValue()
2721     */
2722 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2723     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2724     << pDimensionDefinitions[5].bits | DimBits[5])
2725     << pDimensionDefinitions[4].bits | DimBits[4])
2726     << pDimensionDefinitions[3].bits | DimBits[3])
2727     << pDimensionDefinitions[2].bits | DimBits[2])
2728     << pDimensionDefinitions[1].bits | DimBits[1])
2729     << pDimensionDefinitions[0].bits | DimBits[0]];
2730 schoenebeck 2 }
2731    
2732     /**
2733     * Returns pointer address to the Sample referenced with this region.
2734     * This is the global Sample for the entire Region (not sure if this is
2735     * actually used by the Gigasampler engine - I would only use the Sample
2736     * referenced by the appropriate DimensionRegion instead of this sample).
2737     *
2738     * @returns address to Sample or NULL if there is no reference to a
2739     * sample saved in the .gig file
2740     */
2741     Sample* Region::GetSample() {
2742     if (pSample) return static_cast<gig::Sample*>(pSample);
2743     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2744     }
2745    
2746 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2747 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2748 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2749 persson 902 if (!file->pWavePoolTable) return NULL;
2750 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2751 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2752 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2753 schoenebeck 2 while (sample) {
2754 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2755 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2756 schoenebeck 2 sample = file->GetNextSample();
2757     }
2758     return NULL;
2759     }
2760    
2761    
2762    
2763     // *************** Instrument ***************
2764     // *
2765    
2766 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2767 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2768     { CHUNK_ID_INAM, 64 },
2769     { CHUNK_ID_ISFT, 12 },
2770     { 0, 0 }
2771     };
2772     pInfo->FixedStringLengths = fixedStringLengths;
2773 persson 918
2774 schoenebeck 2 // Initialization
2775     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2776 persson 1182 EffectSend = 0;
2777     Attenuation = 0;
2778     FineTune = 0;
2779     PitchbendRange = 0;
2780     PianoReleaseMode = false;
2781     DimensionKeyRange.low = 0;
2782     DimensionKeyRange.high = 0;
2783 schoenebeck 2
2784     // Loading
2785     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2786     if (lart) {
2787     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2788     if (_3ewg) {
2789     EffectSend = _3ewg->ReadUint16();
2790     Attenuation = _3ewg->ReadInt32();
2791     FineTune = _3ewg->ReadInt16();
2792     PitchbendRange = _3ewg->ReadInt16();
2793     uint8_t dimkeystart = _3ewg->ReadUint8();
2794     PianoReleaseMode = dimkeystart & 0x01;
2795     DimensionKeyRange.low = dimkeystart >> 1;
2796     DimensionKeyRange.high = _3ewg->ReadUint8();
2797     }
2798     }
2799    
2800 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2801 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2802 schoenebeck 809 if (lrgn) {
2803     RIFF::List* rgn = lrgn->GetFirstSubList();
2804     while (rgn) {
2805     if (rgn->GetListType() == LIST_TYPE_RGN) {
2806 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2807     pRegions->push_back(new Region(this, rgn));
2808 schoenebeck 809 }
2809     rgn = lrgn->GetNextSubList();
2810 schoenebeck 2 }
2811 schoenebeck 809 // Creating Region Key Table for fast lookup
2812     UpdateRegionKeyTable();
2813 schoenebeck 2 }
2814    
2815 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2816     }
2817    
2818     void Instrument::UpdateRegionKeyTable() {
2819 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2820     RegionList::iterator end = pRegions->end();
2821     for (; iter != end; ++iter) {
2822     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2823     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2824     RegionKeyTable[iKey] = pRegion;
2825 schoenebeck 2 }
2826     }
2827     }
2828    
2829     Instrument::~Instrument() {
2830     }
2831    
2832     /**
2833 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2834     * You have to call File::Save() to make changes persistent.
2835     *
2836     * Usually there is absolutely no need to call this method explicitly.
2837     * It will be called automatically when File::Save() was called.
2838     *
2839     * @throws gig::Exception if samples cannot be dereferenced
2840     */
2841     void Instrument::UpdateChunks() {
2842     // first update base classes' chunks
2843     DLS::Instrument::UpdateChunks();
2844    
2845     // update Regions' chunks
2846 schoenebeck 823 {
2847     RegionList::iterator iter = pRegions->begin();
2848     RegionList::iterator end = pRegions->end();
2849     for (; iter != end; ++iter)
2850     (*iter)->UpdateChunks();
2851     }
2852 schoenebeck 809
2853     // make sure 'lart' RIFF list chunk exists
2854     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2855     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2856     // make sure '3ewg' RIFF chunk exists
2857     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2858 persson 1264 if (!_3ewg) {
2859     File* pFile = (File*) GetParent();
2860    
2861     // 3ewg is bigger in gig3, as it includes the iMIDI rules
2862     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2863     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2864     memset(_3ewg->LoadChunkData(), 0, size);
2865     }
2866 schoenebeck 809 // update '3ewg' RIFF chunk
2867     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2868 persson 1179 store16(&pData[0], EffectSend);
2869     store32(&pData[2], Attenuation);
2870     store16(&pData[6], FineTune);
2871     store16(&pData[8], PitchbendRange);
2872 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2873 schoenebeck 809 DimensionKeyRange.low << 1;
2874 persson 1179 pData[10] = dimkeystart;
2875     pData[11] = DimensionKeyRange.high;
2876 schoenebeck 809 }
2877    
2878     /**
2879 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2880     *
2881     * @param Key MIDI Key number of triggered note / key (0 - 127)
2882     * @returns pointer adress to the appropriate Region or NULL if there
2883     * there is no Region defined for the given \a Key
2884     */
2885     Region* Instrument::GetRegion(unsigned int Key) {
2886 schoenebeck 823 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2887 schoenebeck 2 return RegionKeyTable[Key];
2888 schoenebeck 823
2889 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
2890     if (Key <= pRegions[i]->KeyRange.high &&
2891     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2892     }
2893     return NULL;*/
2894     }
2895    
2896     /**
2897     * Returns the first Region of the instrument. You have to call this
2898     * method once before you use GetNextRegion().
2899     *
2900     * @returns pointer address to first region or NULL if there is none
2901     * @see GetNextRegion()
2902     */
2903     Region* Instrument::GetFirstRegion() {
2904 schoenebeck 823 if (!pRegions) return NULL;
2905     RegionsIterator = pRegions->begin();
2906     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2907 schoenebeck 2 }
2908    
2909     /**
2910     * Returns the next Region of the instrument. You have to call
2911     * GetFirstRegion() once before you can use this method. By calling this
2912     * method multiple times it iterates through the available Regions.
2913     *
2914     * @returns pointer address to the next region or NULL if end reached
2915     * @see GetFirstRegion()
2916     */
2917     Region* Instrument::GetNextRegion() {
2918 schoenebeck 823 if (!pRegions) return NULL;
2919     RegionsIterator++;
2920     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2921 schoenebeck 2 }
2922    
2923 schoenebeck 809 Region* Instrument::AddRegion() {
2924     // create new Region object (and its RIFF chunks)
2925     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2926     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2927     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2928     Region* pNewRegion = new Region(this, rgn);
2929 schoenebeck 823 pRegions->push_back(pNewRegion);
2930     Regions = pRegions->size();
2931 schoenebeck 809 // update Region key table for fast lookup
2932     UpdateRegionKeyTable();
2933     // done
2934     return pNewRegion;
2935     }
2936 schoenebeck 2
2937 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2938     if (!pRegions) return;
2939 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2940 schoenebeck 809 // update Region key table for fast lookup
2941     UpdateRegionKeyTable();
2942     }
2943 schoenebeck 2
2944 schoenebeck 809
2945    
2946 schoenebeck 929 // *************** Group ***************
2947     // *
2948    
2949     /** @brief Constructor.
2950     *
2951 schoenebeck 930 * @param file - pointer to the gig::File object
2952     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2953     * NULL if this is a new Group
2954 schoenebeck 929 */
2955 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2956 schoenebeck 929 pFile = file;
2957     pNameChunk = ck3gnm;
2958     ::LoadString(pNameChunk, Name);
2959     }
2960    
2961     Group::~Group() {
2962 schoenebeck 1099 // remove the chunk associated with this group (if any)
2963     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2964 schoenebeck 929 }
2965    
2966     /** @brief Update chunks with current group settings.
2967     *
2968 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
2969     * to call File::Save() to make changes persistent.
2970     *
2971     * Usually there is absolutely no need to call this method explicitly.
2972     * It will be called automatically when File::Save() was called.
2973 schoenebeck 929 */
2974     void Group::UpdateChunks() {
2975     // make sure <3gri> and <3gnl> list chunks exist
2976 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2977 persson 1192 if (!_3gri) {
2978     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2979     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2980     }
2981 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2982 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2983 persson 1266
2984     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
2985     // v3 has a fixed list of 128 strings, find a free one
2986     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
2987     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
2988     pNameChunk = ck;
2989     break;
2990     }
2991     }
2992     }
2993    
2994 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2995     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2996     }
2997    
2998 schoenebeck 930 /**
2999     * Returns the first Sample of this Group. You have to call this method
3000     * once before you use GetNextSample().
3001     *
3002     * <b>Notice:</b> this method might block for a long time, in case the
3003     * samples of this .gig file were not scanned yet
3004     *
3005     * @returns pointer address to first Sample or NULL if there is none
3006     * applied to this Group
3007     * @see GetNextSample()
3008     */
3009     Sample* Group::GetFirstSample() {
3010     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3011     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3012     if (pSample->GetGroup() == this) return pSample;
3013     }
3014     return NULL;
3015     }
3016 schoenebeck 929
3017 schoenebeck 930 /**
3018     * Returns the next Sample of the Group. You have to call
3019     * GetFirstSample() once before you can use this method. By calling this
3020     * method multiple times it iterates through the Samples assigned to
3021     * this Group.
3022     *
3023     * @returns pointer address to the next Sample of this Group or NULL if
3024     * end reached
3025     * @see GetFirstSample()
3026     */
3027     Sample* Group::GetNextSample() {
3028     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3029     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3030     if (pSample->GetGroup() == this) return pSample;
3031     }
3032     return NULL;
3033     }
3034 schoenebeck 929
3035 schoenebeck 930 /**
3036     * Move Sample given by \a pSample from another Group to this Group.
3037     */
3038     void Group::AddSample(Sample* pSample) {
3039     pSample->pGroup = this;
3040     }
3041    
3042     /**
3043     * Move all members of this group to another group (preferably the 1st
3044     * one except this). This method is called explicitly by
3045     * File::DeleteGroup() thus when a Group was deleted. This code was
3046     * intentionally not placed in the destructor!
3047     */
3048     void Group::MoveAll() {
3049     // get "that" other group first
3050     Group* pOtherGroup = NULL;
3051     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3052     if (pOtherGroup != this) break;
3053     }
3054     if (!pOtherGroup) throw Exception(
3055     "Could not move samples to another group, since there is no "
3056     "other Group. This is a bug, report it!"
3057     );
3058     // now move all samples of this group to the other group
3059     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3060     pOtherGroup->AddSample(pSample);
3061     }
3062     }
3063    
3064    
3065    
3066 schoenebeck 2 // *************** File ***************
3067     // *
3068    
3069 persson 1199 // File version 2.0, 1998-06-28
3070     const DLS::version_t File::VERSION_2 = {
3071     0, 2, 19980628 & 0xffff, 19980628 >> 16
3072     };
3073    
3074     // File version 3.0, 2003-03-31
3075     const DLS::version_t File::VERSION_3 = {
3076     0, 3, 20030331 & 0xffff, 20030331 >> 16
3077     };
3078    
3079 persson 1180 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3080     { CHUNK_ID_IARL, 256 },
3081     { CHUNK_ID_IART, 128 },
3082     { CHUNK_ID_ICMS, 128 },
3083     { CHUNK_ID_ICMT, 1024 },
3084     { CHUNK_ID_ICOP, 128 },
3085     { CHUNK_ID_ICRD, 128 },
3086     { CHUNK_ID_IENG, 128 },
3087     { CHUNK_ID_IGNR, 128 },
3088     { CHUNK_ID_IKEY, 128 },
3089     { CHUNK_ID_IMED, 128 },
3090     { CHUNK_ID_INAM, 128 },
3091     { CHUNK_ID_IPRD, 128 },
3092     { CHUNK_ID_ISBJ, 128 },
3093     { CHUNK_ID_ISFT, 128 },
3094     { CHUNK_ID_ISRC, 128 },
3095     { CHUNK_ID_ISRF, 128 },
3096     { CHUNK_ID_ITCH, 128 },
3097     { 0, 0 }
3098     };
3099    
3100 schoenebeck 809 File::File() : DLS::File() {
3101 persson 1264 *pVersion = VERSION_3;
3102 schoenebeck 929 pGroups = NULL;
3103 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3104 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3105 persson 1192
3106     // add some mandatory chunks to get the file chunks in right
3107     // order (INFO chunk will be moved to first position later)
3108     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3109     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3110 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3111    
3112     GenerateDLSID();
3113 schoenebeck 809 }
3114    
3115 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3116 schoenebeck 929 pGroups = NULL;
3117 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3118 schoenebeck 2 }
3119    
3120 schoenebeck 929 File::~File() {
3121     if (pGroups) {
3122     std::list<Group*>::iterator iter = pGroups->begin();
3123     std::list<Group*>::iterator end = pGroups->end();
3124     while (iter != end) {
3125     delete *iter;
3126     ++iter;
3127     }
3128     delete pGroups;
3129     }
3130     }
3131    
3132 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3133     if (!pSamples) LoadSamples(pProgress);
3134 schoenebeck 2 if (!pSamples) return NULL;
3135     SamplesIterator = pSamples->begin();
3136     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3137     }
3138    
3139     Sample* File::GetNextSample() {
3140     if (!pSamples) return NULL;
3141     SamplesIterator++;
3142     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3143     }
3144    
3145 schoenebeck 809 /** @brief Add a new sample.
3146     *
3147     * This will create a new Sample object for the gig file. You have to
3148     * call Save() to make this persistent to the file.
3149     *
3150     * @returns pointer to new Sample object
3151     */
3152     Sample* File::AddSample() {
3153     if (!pSamples) LoadSamples();
3154     __ensureMandatoryChunksExist();
3155     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3156     // create new Sample object and its respective 'wave' list chunk
3157     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3158     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3159 persson 1192
3160     // add mandatory chunks to get the chunks in right order
3161     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3162     wave->AddSubList(LIST_TYPE_INFO);
3163    
3164 schoenebeck 809 pSamples->push_back(pSample);
3165     return pSample;
3166     }
3167    
3168     /** @brief Delete a sample.
3169     *
3170 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3171     * references to this sample from Regions and DimensionRegions will be
3172     * removed. You have to call Save() to make this persistent to the file.
3173 schoenebeck 809 *
3174     * @param pSample - sample to delete
3175     * @throws gig::Exception if given sample could not be found
3176     */
3177     void File::DeleteSample(Sample* pSample) {
3178 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3179     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3180 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3181 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3182 schoenebeck 809 pSamples->erase(iter);
3183     delete pSample;
3184 persson 1266
3185     // remove all references to the sample
3186     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3187     instrument = GetNextInstrument()) {
3188     for (Region* region = instrument->GetFirstRegion() ; region ;
3189     region = instrument->GetNextRegion()) {
3190    
3191     if (region->GetSample() == pSample) region->SetSample(NULL);
3192    
3193     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3194     gig::DimensionRegion *d = region->pDimensionRegions[i];
3195     if (d->pSample == pSample) d->pSample = NULL;
3196     }
3197     }
3198     }
3199 schoenebeck 809 }
3200    
3201 schoenebeck 823 void File::LoadSamples() {
3202     LoadSamples(NULL);
3203     }
3204    
3205 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3206 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3207     // to resolve the group they belong to
3208 schoenebeck 1158 if (!pGroups) LoadGroups();
3209 schoenebeck 930
3210 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3211    
3212 persson 666 RIFF::File* file = pRIFF;
3213 schoenebeck 515
3214 persson 666 // just for progress calculation
3215     int iSampleIndex = 0;
3216     int iTotalSamples = WavePoolCount;
3217 schoenebeck 515
3218 persson 666 // check if samples should be loaded from extension files
3219     int lastFileNo = 0;
3220     for (int i = 0 ; i < WavePoolCount ; i++) {
3221     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3222     }
3223 schoenebeck 780 String name(pRIFF->GetFileName());
3224     int nameLen = name.length();
3225 persson 666 char suffix[6];
3226 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3227 schoenebeck 515
3228 persson 666 for (int fileNo = 0 ; ; ) {
3229     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3230     if (wvpl) {
3231     unsigned long wvplFileOffset = wvpl->GetFilePos();
3232     RIFF::List* wave = wvpl->GetFirstSubList();
3233     while (wave) {
3234     if (wave->GetListType() == LIST_TYPE_WAVE) {
3235     // notify current progress
3236     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3237     __notify_progress(pProgress, subprogress);
3238    
3239     unsigned long waveFileOffset = wave->GetFilePos();
3240     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3241    
3242     iSampleIndex++;
3243     }
3244     wave = wvpl->GetNextSubList();
3245 schoenebeck 2 }
3246 persson 666
3247     if (fileNo == lastFileNo) break;
3248    
3249     // open extension file (*.gx01, *.gx02, ...)
3250     fileNo++;
3251     sprintf(suffix, ".gx%02d", fileNo);
3252     name.replace(nameLen, 5, suffix);
3253     file = new RIFF::File(name);
3254     ExtensionFiles.push_back(file);
3255 schoenebeck 823 } else break;
3256 schoenebeck 2 }
3257 persson 666
3258     __notify_progress(pProgress, 1.0); // notify done
3259 schoenebeck 2 }
3260    
3261     Instrument* File::GetFirstInstrument() {
3262     if (!pInstruments) LoadInstruments();
3263     if (!pInstruments) return NULL;
3264     InstrumentsIterator = pInstruments->begin();
3265 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3266 schoenebeck 2 }
3267    
3268     Instrument* File::GetNextInstrument() {
3269     if (!pInstruments) return NULL;
3270     InstrumentsIterator++;
3271 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3272 schoenebeck 2 }
3273    
3274 schoenebeck 21 /**
3275     * Returns the instrument with the given index.
3276     *
3277 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3278     * @param pProgress - optional: callback function for progress notification
3279 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3280     */
3281 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3282     if (!pInstruments) {
3283     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3284    
3285     // sample loading subtask
3286     progress_t subprogress;
3287     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3288     __notify_progress(&subprogress, 0.0f);
3289     GetFirstSample(&subprogress); // now force all samples to be loaded
3290     __notify_progress(&subprogress, 1.0f);
3291    
3292     // instrument loading subtask
3293     if (pProgress && pProgress->callback) {
3294     subprogress.__range_min = subprogress.__range_max;
3295     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3296     }
3297     __notify_progress(&subprogress, 0.0f);
3298     LoadInstruments(&subprogress);
3299     __notify_progress(&subprogress, 1.0f);
3300     }
3301 schoenebeck 21 if (!pInstruments) return NULL;
3302     InstrumentsIterator = pInstruments->begin();
3303     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3304 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3305 schoenebeck 21 InstrumentsIterator++;
3306     }
3307     return NULL;
3308     }
3309    
3310 schoenebeck 809 /** @brief Add a new instrument definition.
3311     *
3312     * This will create a new Instrument object for the gig file. You have
3313     * to call Save() to make this persistent to the file.
3314     *
3315     * @returns pointer to new Instrument object
3316     */
3317     Instrument* File::AddInstrument() {
3318     if (!pInstruments) LoadInstruments();
3319     __ensureMandatoryChunksExist();
3320     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3321     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3322 persson 1192
3323     // add mandatory chunks to get the chunks in right order
3324     lstInstr->AddSubList(LIST_TYPE_INFO);
3325 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3326 persson 1192
3327 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3328 persson 1209 pInstrument->GenerateDLSID();
3329 persson 1182
3330 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3331    
3332 persson 1182 // this string is needed for the gig to be loadable in GSt:
3333     pInstrument->pInfo->Software = "Endless Wave";
3334    
3335 schoenebeck 809 pInstruments->push_back(pInstrument);
3336     return pInstrument;
3337     }
3338    
3339     /** @brief Delete an instrument.
3340     *
3341     * This will delete the given Instrument object from the gig file. You
3342     * have to call Save() to make this persistent to the file.
3343     *
3344     * @param pInstrument - instrument to delete
3345 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3346 schoenebeck 809 */
3347     void File::DeleteInstrument(Instrument* pInstrument) {
3348     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3349 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3350 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3351     pInstruments->erase(iter);
3352     delete pInstrument;
3353     }
3354    
3355 schoenebeck 823 void File::LoadInstruments() {
3356     LoadInstruments(NULL);
3357     }
3358    
3359 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3360 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3361 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3362     if (lstInstruments) {
3363 schoenebeck 515 int iInstrumentIndex = 0;
3364 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3365     while (lstInstr) {
3366     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3367 schoenebeck 515 // notify current progress
3368     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3369     __notify_progress(pProgress, localProgress);
3370    
3371     // divide local progress into subprogress for loading current Instrument
3372     progress_t subprogress;
3373     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3374    
3375     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3376    
3377     iInstrumentIndex++;
3378 schoenebeck 2 }
3379     lstInstr = lstInstruments->GetNextSubList();
3380     }
3381 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3382 schoenebeck 2 }
3383     }
3384    
3385 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3386     /// update is done directly to disk, as this method is called
3387     /// after File::Save()
3388 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3389     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3390     if (!_3crc) return;
3391 persson 1207
3392     // get the index of the sample
3393 persson 1199 int iWaveIndex = -1;
3394     File::SampleList::iterator iter = pSamples->begin();
3395     File::SampleList::iterator end = pSamples->end();
3396     for (int index = 0; iter != end; ++iter, ++index) {
3397     if (*iter == pSample) {
3398     iWaveIndex = index;
3399     break;
3400     }
3401     }
3402     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3403    
3404 persson 1207 // write the CRC-32 checksum to disk
3405 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3406     uint32_t tmp = 1;
3407     _3crc->WriteUint32(&tmp); // unknown, always 1?
3408     _3crc->WriteUint32(&crc);
3409     }
3410    
3411 schoenebeck 929 Group* File::GetFirstGroup() {
3412     if (!pGroups) LoadGroups();
3413 schoenebeck 930 // there must always be at least one group
3414 schoenebeck 929 GroupsIterator = pGroups->begin();
3415 schoenebeck 930 return *GroupsIterator;
3416 schoenebeck 929 }
3417 schoenebeck 2
3418 schoenebeck 929 Group* File::GetNextGroup() {
3419     if (!pGroups) return NULL;
3420     ++GroupsIterator;
3421     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3422     }
3423 schoenebeck 2
3424 schoenebeck 929 /**
3425     * Returns the group with the given index.
3426     *
3427     * @param index - number of the sought group (0..n)
3428     * @returns sought group or NULL if there's no such group
3429     */
3430     Group* File::GetGroup(uint index) {
3431     if (!pGroups) LoadGroups();
3432     GroupsIterator = pGroups->begin();
3433     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3434     if (i == index) return *GroupsIterator;
3435     ++GroupsIterator;
3436     }
3437     return NULL;
3438     }
3439    
3440     Group* File::AddGroup() {
3441     if (!pGroups) LoadGroups();
3442 schoenebeck 930 // there must always be at least one group
3443 schoenebeck 929 __ensureMandatoryChunksExist();
3444 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3445 schoenebeck 929 pGroups->push_back(pGroup);
3446     return pGroup;
3447     }
3448    
3449 schoenebeck 1081 /** @brief Delete a group and its samples.
3450     *
3451     * This will delete the given Group object and all the samples that
3452     * belong to this group from the gig file. You have to call Save() to
3453     * make this persistent to the file.
3454     *
3455     * @param pGroup - group to delete
3456     * @throws gig::Exception if given group could not be found
3457     */
3458 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3459 schoenebeck 930 if (!pGroups) LoadGroups();
3460 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3461     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3462 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3463 schoenebeck 1081 // delete all members of this group
3464     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3465     DeleteSample(pSample);
3466     }
3467     // now delete this group object
3468     pGroups->erase(iter);
3469     delete pGroup;
3470     }
3471    
3472     /** @brief Delete a group.
3473     *
3474     * This will delete the given Group object from the gig file. All the
3475     * samples that belong to this group will not be deleted, but instead
3476     * be moved to another group. You have to call Save() to make this
3477     * persistent to the file.
3478     *
3479     * @param pGroup - group to delete
3480     * @throws gig::Exception if given group could not be found
3481     */
3482     void File::DeleteGroupOnly(Group* pGroup) {
3483     if (!pGroups) LoadGroups();
3484     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3485     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3486     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3487 schoenebeck 930 // move all members of this group to another group
3488     pGroup->MoveAll();
3489 schoenebeck 929 pGroups->erase(iter);
3490     delete pGroup;
3491     }
3492    
3493     void File::LoadGroups() {
3494     if (!pGroups) pGroups = new std::list<Group*>;
3495 schoenebeck 930 // try to read defined groups from file
3496 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3497 schoenebeck 930 if (lst3gri) {
3498     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3499     if (lst3gnl) {
3500     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3501     while (ck) {
3502     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3503 persson 1266 if (pVersion && pVersion->major == 3 &&
3504     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3505    
3506 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3507     }
3508     ck = lst3gnl->GetNextSubChunk();
3509 schoenebeck 929 }
3510     }
3511     }
3512 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3513     if (!pGroups->size()) {
3514     Group* pGroup = new Group(this, NULL);
3515     pGroup->Name = "Default Group";
3516     pGroups->push_back(pGroup);
3517     }
3518 schoenebeck 929 }
3519    
3520 schoenebeck 1098 /**
3521     * Apply all the gig file's current instruments, samples, groups and settings
3522     * to the respective RIFF chunks. You have to call Save() to make changes
3523     * persistent.
3524     *
3525     * Usually there is absolutely no need to call this method explicitly.
3526     * It will be called automatically when File::Save() was called.
3527     *
3528     * @throws Exception - on errors
3529     */
3530     void File::UpdateChunks() {
3531 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3532 persson 1192
3533 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3534    
3535 schoenebeck 1098 // first update base class's chunks
3536     DLS::File::UpdateChunks();
3537 schoenebeck 929
3538 persson 1199 if (newFile) {
3539 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3540     // is placed first in file
3541 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3542 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3543     if (first != info) {
3544     pRIFF->MoveSubChunk(info, first);
3545     }
3546     }
3547    
3548 schoenebeck 1098 // update group's chunks
3549     if (pGroups) {
3550     std::list<Group*>::iterator iter = pGroups->begin();
3551     std::list<Group*>::iterator end = pGroups->end();
3552     for (; iter != end; ++iter) {
3553     (*iter)->UpdateChunks();
3554     }
3555 persson 1266
3556     // v3: make sure the file has 128 3gnm chunks
3557     if (pVersion && pVersion->major == 3) {
3558     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3559     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3560     for (int i = 0 ; i < 128 ; i++) {
3561     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3562     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3563     }
3564     }
3565 schoenebeck 1098 }
3566 persson 1199
3567     // update einf chunk
3568    
3569     // The einf chunk contains statistics about the gig file, such
3570     // as the number of regions and samples used by each
3571     // instrument. It is divided in equally sized parts, where the
3572     // first part contains information about the whole gig file,
3573     // and the rest of the parts map to each instrument in the
3574     // file.
3575     //
3576     // At the end of each part there is a bit map of each sample
3577     // in the file, where a set bit means that the sample is used
3578     // by the file/instrument.
3579     //
3580     // Note that there are several fields with unknown use. These
3581     // are set to zero.
3582    
3583     int sublen = pSamples->size() / 8 + 49;
3584     int einfSize = (Instruments + 1) * sublen;
3585    
3586     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3587     if (einf) {
3588     if (einf->GetSize() != einfSize) {
3589     einf->Resize(einfSize);
3590     memset(einf->LoadChunkData(), 0, einfSize);
3591     }
3592     } else if (newFile) {
3593     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3594     }
3595     if (einf) {
3596     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3597    
3598     std::map<gig::Sample*,int> sampleMap;
3599     int sampleIdx = 0;
3600     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3601     sampleMap[pSample] = sampleIdx++;
3602     }
3603    
3604     int totnbusedsamples = 0;
3605     int totnbusedchannels = 0;
3606     int totnbregions = 0;
3607     int totnbdimregions = 0;
3608 persson 1264 int totnbloops = 0;
3609 persson 1199 int instrumentIdx = 0;
3610    
3611     memset(&pData[48], 0, sublen - 48);
3612    
3613     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3614     instrument = GetNextInstrument()) {
3615     int nbusedsamples = 0;
3616     int nbusedchannels = 0;
3617     int nbdimregions = 0;
3618 persson 1264 int nbloops = 0;
3619 persson 1199
3620     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3621    
3622     for (Region* region = instrument->GetFirstRegion() ; region ;
3623     region = instrument->GetNextRegion()) {
3624     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3625     gig::DimensionRegion *d = region->pDimensionRegions[i];
3626     if (d->pSample) {
3627     int sampleIdx = sampleMap[d->pSample];
3628     int byte = 48 + sampleIdx / 8;
3629     int bit = 1 << (sampleIdx & 7);
3630     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3631     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3632     nbusedsamples++;
3633     nbusedchannels += d->pSample->Channels;
3634    
3635     if ((pData[byte] & bit) == 0) {
3636     pData[byte] |= bit;
3637     totnbusedsamples++;
3638     totnbusedchannels += d->pSample->Channels;
3639     }
3640     }
3641     }
3642 persson 1264 if (d->SampleLoops) nbloops++;
3643 persson 1199 }
3644     nbdimregions += region->DimensionRegions;
3645     }
3646     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3647     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3648     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3649     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3650     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3651     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3652     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3653 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3654     // next 8 bytes unknown
3655 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3656     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3657     // next 4 bytes unknown
3658    
3659     totnbregions += instrument->Regions;
3660     totnbdimregions += nbdimregions;
3661 persson 1264 totnbloops += nbloops;
3662 persson 1199 instrumentIdx++;
3663     }
3664     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3665     // store32(&pData[0], sublen);
3666     store32(&pData[4], totnbusedchannels);
3667     store32(&pData[8], totnbusedsamples);
3668     store32(&pData[12], Instruments);
3669     store32(&pData[16], totnbregions);
3670     store32(&pData[20], totnbdimregions);
3671 persson 1264 store32(&pData[24], totnbloops);
3672     // next 8 bytes unknown
3673     // next 4 bytes unknown, not always 0
3674 persson 1199 store32(&pData[40], pSamples->size());
3675     // next 4 bytes unknown
3676     }
3677    
3678     // update 3crc chunk
3679    
3680     // The 3crc chunk contains CRC-32 checksums for the
3681     // samples. The actual checksum values will be filled in
3682     // later, by Sample::Write.
3683    
3684     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3685     if (_3crc) {
3686     _3crc->Resize(pSamples->size() * 8);
3687     } else if (newFile) {
3688     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3689     _3crc->LoadChunkData();
3690 persson 1264
3691     // the order of einf and 3crc is not the same in v2 and v3
3692     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3693 persson 1199 }
3694 schoenebeck 1098 }
3695 schoenebeck 929
3696 schoenebeck 1098
3697    
3698 schoenebeck 2 // *************** Exception ***************
3699     // *
3700    
3701     Exception::Exception(String Message) : DLS::Exception(Message) {
3702     }
3703    
3704     void Exception::PrintMessage() {
3705     std::cout << "gig::Exception: " << Message << std::endl;
3706     }
3707    
3708 schoenebeck 518
3709     // *************** functions ***************
3710     // *
3711    
3712     /**
3713     * Returns the name of this C++ library. This is usually "libgig" of
3714     * course. This call is equivalent to RIFF::libraryName() and
3715     * DLS::libraryName().
3716     */
3717     String libraryName() {
3718     return PACKAGE;
3719     }
3720    
3721     /**
3722     * Returns version of this C++ library. This call is equivalent to
3723     * RIFF::libraryVersion() and DLS::libraryVersion().
3724     */
3725     String libraryVersion() {
3726     return VERSION;
3727     }
3728    
3729 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC