/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1317 - (hide annotations) (download)
Sat Sep 1 07:15:53 2007 UTC (16 years, 7 months ago) by persson
File size: 164449 byte(s)
- minor code cleanup with help of the new GetParent function

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258     // *************** Other Internal functions ***************
259     // *
260    
261     static split_type_t __resolveSplitType(dimension_t dimension) {
262     return (
263     dimension == dimension_layer ||
264     dimension == dimension_samplechannel ||
265     dimension == dimension_releasetrigger ||
266     dimension == dimension_keyboard ||
267     dimension == dimension_roundrobin ||
268     dimension == dimension_random ||
269     dimension == dimension_smartmidi ||
270     dimension == dimension_roundrobinkeyboard
271     ) ? split_type_bit : split_type_normal;
272     }
273    
274     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275     return (dimension_definition.split_type == split_type_normal)
276     ? int(128.0 / dimension_definition.zones) : 0;
277     }
278    
279    
280    
281 persson 1199 // *************** CRC ***************
282     // *
283    
284     const uint32_t* CRC::table(initTable());
285    
286     uint32_t* CRC::initTable() {
287     uint32_t* res = new uint32_t[256];
288    
289     for (int i = 0 ; i < 256 ; i++) {
290     uint32_t c = i;
291     for (int j = 0 ; j < 8 ; j++) {
292     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293     }
294     res[i] = c;
295     }
296     return res;
297     }
298    
299    
300    
301 schoenebeck 2 // *************** Sample ***************
302     // *
303    
304 schoenebeck 384 unsigned int Sample::Instances = 0;
305     buffer_t Sample::InternalDecompressionBuffer;
306 schoenebeck 2
307 schoenebeck 809 /** @brief Constructor.
308     *
309     * Load an existing sample or create a new one. A 'wave' list chunk must
310     * be given to this constructor. In case the given 'wave' list chunk
311     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312     * format and sample data will be loaded from there, otherwise default
313     * values will be used and those chunks will be created when
314     * File::Save() will be called later on.
315     *
316     * @param pFile - pointer to gig::File where this sample is
317     * located (or will be located)
318     * @param waveList - pointer to 'wave' list chunk which is (or
319     * will be) associated with this sample
320     * @param WavePoolOffset - offset of this sample data from wave pool
321     * ('wvpl') list chunk
322     * @param fileNo - number of an extension file where this sample
323     * is located, 0 otherwise
324     */
325 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327     { CHUNK_ID_INAM, 64 },
328     { 0, 0 }
329     };
330     pInfo->FixedStringLengths = fixedStringLengths;
331 schoenebeck 2 Instances++;
332 persson 666 FileNo = fileNo;
333 schoenebeck 2
334 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335     if (pCk3gix) {
336 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
338 schoenebeck 809 } else { // '3gix' chunk missing
339 schoenebeck 930 // by default assigned to that mandatory "Default Group"
340     pGroup = pFile->GetGroup(0);
341 schoenebeck 809 }
342 schoenebeck 2
343 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344     if (pCkSmpl) {
345     Manufacturer = pCkSmpl->ReadInt32();
346     Product = pCkSmpl->ReadInt32();
347     SamplePeriod = pCkSmpl->ReadInt32();
348     MIDIUnityNote = pCkSmpl->ReadInt32();
349     FineTune = pCkSmpl->ReadInt32();
350     pCkSmpl->Read(&SMPTEFormat, 1, 4);
351     SMPTEOffset = pCkSmpl->ReadInt32();
352     Loops = pCkSmpl->ReadInt32();
353     pCkSmpl->ReadInt32(); // manufByt
354     LoopID = pCkSmpl->ReadInt32();
355     pCkSmpl->Read(&LoopType, 1, 4);
356     LoopStart = pCkSmpl->ReadInt32();
357     LoopEnd = pCkSmpl->ReadInt32();
358     LoopFraction = pCkSmpl->ReadInt32();
359     LoopPlayCount = pCkSmpl->ReadInt32();
360     } else { // 'smpl' chunk missing
361     // use default values
362     Manufacturer = 0;
363     Product = 0;
364 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 persson 1218 MIDIUnityNote = 60;
366 schoenebeck 809 FineTune = 0;
367 persson 1182 SMPTEFormat = smpte_format_no_offset;
368 schoenebeck 809 SMPTEOffset = 0;
369     Loops = 0;
370     LoopID = 0;
371 persson 1182 LoopType = loop_type_normal;
372 schoenebeck 809 LoopStart = 0;
373     LoopEnd = 0;
374     LoopFraction = 0;
375     LoopPlayCount = 0;
376     }
377 schoenebeck 2
378     FrameTable = NULL;
379     SamplePos = 0;
380     RAMCache.Size = 0;
381     RAMCache.pStart = NULL;
382     RAMCache.NullExtensionSize = 0;
383    
384 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387     Compressed = ewav;
388     Dithered = false;
389     TruncatedBits = 0;
390 schoenebeck 2 if (Compressed) {
391 persson 437 uint32_t version = ewav->ReadInt32();
392     if (version == 3 && BitDepth == 24) {
393     Dithered = ewav->ReadInt32();
394     ewav->SetPos(Channels == 2 ? 84 : 64);
395     TruncatedBits = ewav->ReadInt32();
396     }
397 schoenebeck 2 ScanCompressedSample();
398     }
399 schoenebeck 317
400     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 schoenebeck 317 }
405 persson 437 FrameOffset = 0; // just for streaming compressed samples
406 schoenebeck 21
407 persson 864 LoopSize = LoopEnd - LoopStart + 1;
408 schoenebeck 2 }
409    
410 schoenebeck 809 /**
411     * Apply sample and its settings to the respective RIFF chunks. You have
412     * to call File::Save() to make changes persistent.
413     *
414     * Usually there is absolutely no need to call this method explicitly.
415     * It will be called automatically when File::Save() was called.
416     *
417 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 schoenebeck 809 * was provided yet
419     * @throws gig::Exception if there is any invalid sample setting
420     */
421     void Sample::UpdateChunks() {
422     // first update base class's chunks
423     DLS::Sample::UpdateChunks();
424    
425     // make sure 'smpl' chunk exists
426     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 persson 1182 if (!pCkSmpl) {
428     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429     memset(pCkSmpl->LoadChunkData(), 0, 60);
430     }
431 schoenebeck 809 // update 'smpl' chunk
432     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 persson 1179 store32(&pData[0], Manufacturer);
435     store32(&pData[4], Product);
436     store32(&pData[8], SamplePeriod);
437     store32(&pData[12], MIDIUnityNote);
438     store32(&pData[16], FineTune);
439     store32(&pData[20], SMPTEFormat);
440     store32(&pData[24], SMPTEOffset);
441     store32(&pData[28], Loops);
442 schoenebeck 809
443     // we skip 'manufByt' for now (4 bytes)
444    
445 persson 1179 store32(&pData[36], LoopID);
446     store32(&pData[40], LoopType);
447     store32(&pData[44], LoopStart);
448     store32(&pData[48], LoopEnd);
449     store32(&pData[52], LoopFraction);
450     store32(&pData[56], LoopPlayCount);
451 schoenebeck 809
452     // make sure '3gix' chunk exists
453     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
456 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
458     if (pFile->pGroups) {
459     std::list<Group*>::iterator iter = pFile->pGroups->begin();
460     std::list<Group*>::iterator end = pFile->pGroups->end();
461 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
462 schoenebeck 929 if (*iter == pGroup) {
463     iSampleGroup = i;
464     break; // found
465     }
466     }
467     }
468 schoenebeck 809 // update '3gix' chunk
469     pData = (uint8_t*) pCk3gix->LoadChunkData();
470 persson 1179 store16(&pData[0], iSampleGroup);
471 schoenebeck 809 }
472    
473 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474     void Sample::ScanCompressedSample() {
475     //TODO: we have to add some more scans here (e.g. determine compression rate)
476     this->SamplesTotal = 0;
477     std::list<unsigned long> frameOffsets;
478    
479 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481 persson 365
482 schoenebeck 2 // Scanning
483     pCkData->SetPos(0);
484 persson 365 if (Channels == 2) { // Stereo
485     for (int i = 0 ; ; i++) {
486     // for 24 bit samples every 8:th frame offset is
487     // stored, to save some memory
488     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490     const int mode_l = pCkData->ReadUint8();
491     const int mode_r = pCkData->ReadUint8();
492     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495     if (pCkData->RemainingBytes() <= frameSize) {
496     SamplesInLastFrame =
497     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499     SamplesTotal += SamplesInLastFrame;
500 schoenebeck 2 break;
501 persson 365 }
502     SamplesTotal += SamplesPerFrame;
503     pCkData->SetPos(frameSize, RIFF::stream_curpos);
504     }
505     }
506     else { // Mono
507     for (int i = 0 ; ; i++) {
508     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510     const int mode = pCkData->ReadUint8();
511     if (mode > 5) throw gig::Exception("Unknown compression mode");
512     const unsigned long frameSize = bytesPerFrame[mode];
513    
514     if (pCkData->RemainingBytes() <= frameSize) {
515     SamplesInLastFrame =
516     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517     SamplesTotal += SamplesInLastFrame;
518 schoenebeck 2 break;
519 persson 365 }
520     SamplesTotal += SamplesPerFrame;
521     pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 schoenebeck 2 }
523     }
524     pCkData->SetPos(0);
525    
526     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527     if (FrameTable) delete[] FrameTable;
528     FrameTable = new unsigned long[frameOffsets.size()];
529     std::list<unsigned long>::iterator end = frameOffsets.end();
530     std::list<unsigned long>::iterator iter = frameOffsets.begin();
531     for (int i = 0; iter != end; i++, iter++) {
532     FrameTable[i] = *iter;
533     }
534     }
535    
536     /**
537     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538     * ReleaseSampleData() to free the memory if you don't need the cached
539     * sample data anymore.
540     *
541     * @returns buffer_t structure with start address and size of the buffer
542     * in bytes
543     * @see ReleaseSampleData(), Read(), SetPos()
544     */
545     buffer_t Sample::LoadSampleData() {
546     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547     }
548    
549     /**
550     * Reads (uncompresses if needed) and caches the first \a SampleCount
551     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552     * memory space if you don't need the cached samples anymore. There is no
553     * guarantee that exactly \a SampleCount samples will be cached; this is
554     * not an error. The size will be eventually truncated e.g. to the
555     * beginning of a frame of a compressed sample. This is done for
556     * efficiency reasons while streaming the wave by your sampler engine
557     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558     * that will be returned to determine the actual cached samples, but note
559     * that the size is given in bytes! You get the number of actually cached
560     * samples by dividing it by the frame size of the sample:
561 schoenebeck 384 * @code
562 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563     * long cachedsamples = buf.Size / pSample->FrameSize;
564 schoenebeck 384 * @endcode
565 schoenebeck 2 *
566     * @param SampleCount - number of sample points to load into RAM
567     * @returns buffer_t structure with start address and size of
568     * the cached sample data in bytes
569     * @see ReleaseSampleData(), Read(), SetPos()
570     */
571     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573     }
574    
575     /**
576     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577     * ReleaseSampleData() to free the memory if you don't need the cached
578     * sample data anymore.
579     * The method will add \a NullSamplesCount silence samples past the
580     * official buffer end (this won't affect the 'Size' member of the
581     * buffer_t structure, that means 'Size' always reflects the size of the
582     * actual sample data, the buffer might be bigger though). Silence
583     * samples past the official buffer are needed for differential
584     * algorithms that always have to take subsequent samples into account
585     * (resampling/interpolation would be an important example) and avoids
586     * memory access faults in such cases.
587     *
588     * @param NullSamplesCount - number of silence samples the buffer should
589     * be extended past it's data end
590     * @returns buffer_t structure with start address and
591     * size of the buffer in bytes
592     * @see ReleaseSampleData(), Read(), SetPos()
593     */
594     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596     }
597    
598     /**
599     * Reads (uncompresses if needed) and caches the first \a SampleCount
600     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601     * memory space if you don't need the cached samples anymore. There is no
602     * guarantee that exactly \a SampleCount samples will be cached; this is
603     * not an error. The size will be eventually truncated e.g. to the
604     * beginning of a frame of a compressed sample. This is done for
605     * efficiency reasons while streaming the wave by your sampler engine
606     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607     * that will be returned to determine the actual cached samples, but note
608     * that the size is given in bytes! You get the number of actually cached
609     * samples by dividing it by the frame size of the sample:
610 schoenebeck 384 * @code
611 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612     * long cachedsamples = buf.Size / pSample->FrameSize;
613 schoenebeck 384 * @endcode
614 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
615     * official buffer end (this won't affect the 'Size' member of the
616     * buffer_t structure, that means 'Size' always reflects the size of the
617     * actual sample data, the buffer might be bigger though). Silence
618     * samples past the official buffer are needed for differential
619     * algorithms that always have to take subsequent samples into account
620     * (resampling/interpolation would be an important example) and avoids
621     * memory access faults in such cases.
622     *
623     * @param SampleCount - number of sample points to load into RAM
624     * @param NullSamplesCount - number of silence samples the buffer should
625     * be extended past it's data end
626     * @returns buffer_t structure with start address and
627     * size of the cached sample data in bytes
628     * @see ReleaseSampleData(), Read(), SetPos()
629     */
630     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634     RAMCache.pStart = new int8_t[allocationsize];
635     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637     // fill the remaining buffer space with silence samples
638     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639     return GetCache();
640     }
641    
642     /**
643     * Returns current cached sample points. A buffer_t structure will be
644     * returned which contains address pointer to the begin of the cache and
645     * the size of the cached sample data in bytes. Use
646     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647     * RAM.
648     *
649     * @returns buffer_t structure with current cached sample points
650     * @see LoadSampleData();
651     */
652     buffer_t Sample::GetCache() {
653     // return a copy of the buffer_t structure
654     buffer_t result;
655     result.Size = this->RAMCache.Size;
656     result.pStart = this->RAMCache.pStart;
657     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658     return result;
659     }
660    
661     /**
662     * Frees the cached sample from RAM if loaded with
663     * <i>LoadSampleData()</i> previously.
664     *
665     * @see LoadSampleData();
666     */
667     void Sample::ReleaseSampleData() {
668     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669     RAMCache.pStart = NULL;
670     RAMCache.Size = 0;
671     }
672    
673 schoenebeck 809 /** @brief Resize sample.
674     *
675     * Resizes the sample's wave form data, that is the actual size of
676     * sample wave data possible to be written for this sample. This call
677     * will return immediately and just schedule the resize operation. You
678     * should call File::Save() to actually perform the resize operation(s)
679     * "physically" to the file. As this can take a while on large files, it
680     * is recommended to call Resize() first on all samples which have to be
681     * resized and finally to call File::Save() to perform all those resize
682     * operations in one rush.
683     *
684     * The actual size (in bytes) is dependant to the current FrameSize
685     * value. You may want to set FrameSize before calling Resize().
686     *
687     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688     * enlarged samples before calling File::Save() as this might exceed the
689     * current sample's boundary!
690     *
691 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 schoenebeck 809 * other formats will fail!
694     *
695     * @param iNewSize - new sample wave data size in sample points (must be
696     * greater than zero)
697 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 schoenebeck 809 * or if \a iNewSize is less than 1
699     * @throws gig::Exception if existing sample is compressed
700     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701     * DLS::Sample::FormatTag, File::Save()
702     */
703     void Sample::Resize(int iNewSize) {
704     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705     DLS::Sample::Resize(iNewSize);
706     }
707    
708 schoenebeck 2 /**
709     * Sets the position within the sample (in sample points, not in
710     * bytes). Use this method and <i>Read()</i> if you don't want to load
711     * the sample into RAM, thus for disk streaming.
712     *
713     * Although the original Gigasampler engine doesn't allow positioning
714     * within compressed samples, I decided to implement it. Even though
715     * the Gigasampler format doesn't allow to define loops for compressed
716     * samples at the moment, positioning within compressed samples might be
717     * interesting for some sampler engines though. The only drawback about
718     * my decision is that it takes longer to load compressed gig Files on
719     * startup, because it's neccessary to scan the samples for some
720     * mandatory informations. But I think as it doesn't affect the runtime
721     * efficiency, nobody will have a problem with that.
722     *
723     * @param SampleCount number of sample points to jump
724     * @param Whence optional: to which relation \a SampleCount refers
725     * to, if omited <i>RIFF::stream_start</i> is assumed
726     * @returns the new sample position
727     * @see Read()
728     */
729     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730     if (Compressed) {
731     switch (Whence) {
732     case RIFF::stream_curpos:
733     this->SamplePos += SampleCount;
734     break;
735     case RIFF::stream_end:
736     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737     break;
738     case RIFF::stream_backward:
739     this->SamplePos -= SampleCount;
740     break;
741     case RIFF::stream_start: default:
742     this->SamplePos = SampleCount;
743     break;
744     }
745     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746    
747     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750     return this->SamplePos;
751     }
752     else { // not compressed
753     unsigned long orderedBytes = SampleCount * this->FrameSize;
754     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755     return (result == orderedBytes) ? SampleCount
756     : result / this->FrameSize;
757     }
758     }
759    
760     /**
761     * Returns the current position in the sample (in sample points).
762     */
763     unsigned long Sample::GetPos() {
764     if (Compressed) return SamplePos;
765     else return pCkData->GetPos() / FrameSize;
766     }
767    
768     /**
769 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
770     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771     * the position within the sample respectively, this method honors the
772     * looping informations of the sample (if any). The sample wave stream
773     * will be decompressed on the fly if using a compressed sample. Use this
774     * method if you don't want to load the sample into RAM, thus for disk
775     * streaming. All this methods needs to know to proceed with streaming
776     * for the next time you call this method is stored in \a pPlaybackState.
777     * You have to allocate and initialize the playback_state_t structure by
778     * yourself before you use it to stream a sample:
779 schoenebeck 384 * @code
780     * gig::playback_state_t playbackstate;
781     * playbackstate.position = 0;
782     * playbackstate.reverse = false;
783     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784     * @endcode
785 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
786     * defined or if the current read position is located within a loop area.
787     * The method already handles such cases by itself.
788     *
789 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
790     * have to use an external decompression buffer for <b>EACH</b>
791     * streaming thread to avoid race conditions and crashes!
792     *
793 schoenebeck 24 * @param pBuffer destination buffer
794     * @param SampleCount number of sample points to read
795     * @param pPlaybackState will be used to store and reload the playback
796     * state for the next ReadAndLoop() call
797 persson 864 * @param pDimRgn dimension region with looping information
798 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 schoenebeck 24 * @returns number of successfully read sample points
800 schoenebeck 384 * @see CreateDecompressionBuffer()
801 schoenebeck 24 */
802 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805     uint8_t* pDst = (uint8_t*) pBuffer;
806    
807     SetPos(pPlaybackState->position); // recover position from the last time
808    
809 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810 schoenebeck 24
811 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813 schoenebeck 24
814 persson 864 if (GetPos() <= loopEnd) {
815     switch (loop.LoopType) {
816 schoenebeck 24
817 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
818     do {
819     // if not endless loop check if max. number of loop cycles have been passed
820     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821 schoenebeck 24
822 persson 864 if (!pPlaybackState->reverse) { // forward playback
823     do {
824     samplestoloopend = loopEnd - GetPos();
825     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826     samplestoread -= readsamples;
827     totalreadsamples += readsamples;
828     if (readsamples == samplestoloopend) {
829     pPlaybackState->reverse = true;
830     break;
831     }
832     } while (samplestoread && readsamples);
833     }
834     else { // backward playback
835 schoenebeck 24
836 persson 864 // as we can only read forward from disk, we have to
837     // determine the end position within the loop first,
838     // read forward from that 'end' and finally after
839     // reading, swap all sample frames so it reflects
840     // backward playback
841 schoenebeck 24
842 persson 864 unsigned long swapareastart = totalreadsamples;
843     unsigned long loopoffset = GetPos() - loop.LoopStart;
844     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846 schoenebeck 24
847 persson 864 SetPos(reverseplaybackend);
848 schoenebeck 24
849 persson 864 // read samples for backward playback
850     do {
851     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852     samplestoreadinloop -= readsamples;
853     samplestoread -= readsamples;
854     totalreadsamples += readsamples;
855     } while (samplestoreadinloop && readsamples);
856 schoenebeck 24
857 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     if (reverseplaybackend == loop.LoopStart) {
860     pPlaybackState->loop_cycles_left--;
861     pPlaybackState->reverse = false;
862     }
863    
864     // reverse the sample frames for backward playback
865     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 schoenebeck 24 }
867 persson 864 } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24
871 persson 864 case loop_type_backward: { // TODO: not tested yet!
872     // forward playback (not entered the loop yet)
873     if (!pPlaybackState->reverse) do {
874     samplestoloopend = loopEnd - GetPos();
875     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876     samplestoread -= readsamples;
877     totalreadsamples += readsamples;
878     if (readsamples == samplestoloopend) {
879     pPlaybackState->reverse = true;
880     break;
881     }
882     } while (samplestoread && readsamples);
883 schoenebeck 24
884 persson 864 if (!samplestoread) break;
885 schoenebeck 24
886 persson 864 // as we can only read forward from disk, we have to
887     // determine the end position within the loop first,
888     // read forward from that 'end' and finally after
889     // reading, swap all sample frames so it reflects
890     // backward playback
891 schoenebeck 24
892 persson 864 unsigned long swapareastart = totalreadsamples;
893     unsigned long loopoffset = GetPos() - loop.LoopStart;
894     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895     : samplestoread;
896     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897 schoenebeck 24
898 persson 864 SetPos(reverseplaybackend);
899 schoenebeck 24
900 persson 864 // read samples for backward playback
901     do {
902     // if not endless loop check if max. number of loop cycles have been passed
903     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904     samplestoloopend = loopEnd - GetPos();
905     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906     samplestoreadinloop -= readsamples;
907     samplestoread -= readsamples;
908     totalreadsamples += readsamples;
909     if (readsamples == samplestoloopend) {
910     pPlaybackState->loop_cycles_left--;
911     SetPos(loop.LoopStart);
912     }
913     } while (samplestoreadinloop && readsamples);
914 schoenebeck 24
915 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
916 schoenebeck 24
917 persson 864 // reverse the sample frames for backward playback
918     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919     break;
920     }
921 schoenebeck 24
922 persson 864 default: case loop_type_normal: {
923     do {
924     // if not endless loop check if max. number of loop cycles have been passed
925     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926     samplestoloopend = loopEnd - GetPos();
927     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928     samplestoread -= readsamples;
929     totalreadsamples += readsamples;
930     if (readsamples == samplestoloopend) {
931     pPlaybackState->loop_cycles_left--;
932     SetPos(loop.LoopStart);
933     }
934     } while (samplestoread && readsamples);
935     break;
936     }
937 schoenebeck 24 }
938     }
939     }
940    
941     // read on without looping
942     if (samplestoread) do {
943 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 schoenebeck 24 samplestoread -= readsamples;
945     totalreadsamples += readsamples;
946     } while (readsamples && samplestoread);
947    
948     // store current position
949     pPlaybackState->position = GetPos();
950    
951     return totalreadsamples;
952     }
953    
954     /**
955 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
956     * position into the buffer pointed by \a pBuffer and increments the
957     * position within the sample. The sample wave stream will be
958     * decompressed on the fly if using a compressed sample. Use this method
959     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960     * thus for disk streaming.
961     *
962 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
963     * have to use an external decompression buffer for <b>EACH</b>
964     * streaming thread to avoid race conditions and crashes!
965     *
966 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
967     * (using native endianness). For 24 bit, the buffer will
968     * contain three bytes per sample, little-endian.
969     *
970 schoenebeck 2 * @param pBuffer destination buffer
971     * @param SampleCount number of sample points to read
972 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 schoenebeck 2 * @returns number of successfully read sample points
974 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
975 schoenebeck 2 */
976 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 schoenebeck 21 if (SampleCount == 0) return 0;
978 schoenebeck 317 if (!Compressed) {
979     if (BitDepth == 24) {
980 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 schoenebeck 317 }
982 persson 365 else { // 16 bit
983     // (pCkData->Read does endian correction)
984     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985     : pCkData->Read(pBuffer, SampleCount, 2);
986     }
987 schoenebeck 317 }
988 persson 365 else {
989 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
990 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
991     unsigned long assumedsize = GuessSize(SampleCount),
992 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
993     remainingsamples = SampleCount,
994 persson 365 copysamples, skipsamples,
995     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 schoenebeck 2 this->FrameOffset = 0;
997    
998 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999    
1000     // if decompression buffer too small, then reduce amount of samples to read
1001     if (pDecompressionBuffer->Size < assumedsize) {
1002     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004     remainingsamples = SampleCount;
1005     assumedsize = GuessSize(SampleCount);
1006 schoenebeck 2 }
1007    
1008 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013 persson 365 while (remainingsamples && remainingbytes) {
1014     unsigned long framesamples = SamplesPerFrame;
1015     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016 schoenebeck 2
1017 persson 365 int mode_l = *pSrc++, mode_r = 0;
1018    
1019     if (Channels == 2) {
1020     mode_r = *pSrc++;
1021     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024     if (remainingbytes < framebytes) { // last frame in sample
1025     framesamples = SamplesInLastFrame;
1026     if (mode_l == 4 && (framesamples & 1)) {
1027     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028     }
1029     else {
1030     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031     }
1032 schoenebeck 2 }
1033     }
1034 persson 365 else {
1035     framebytes = bytesPerFrame[mode_l] + 1;
1036     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037     if (remainingbytes < framebytes) {
1038     framesamples = SamplesInLastFrame;
1039     }
1040     }
1041 schoenebeck 2
1042     // determine how many samples in this frame to skip and read
1043 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1044     if (currentframeoffset <= framesamples) {
1045     copysamples = framesamples - currentframeoffset;
1046     skipsamples = currentframeoffset;
1047     }
1048     else {
1049     copysamples = 0;
1050     skipsamples = framesamples;
1051     }
1052 schoenebeck 2 }
1053     else {
1054 persson 365 // This frame has enough data for pBuffer, but not
1055     // all of the frame is needed. Set file position
1056     // to start of this frame for next call to Read.
1057 schoenebeck 2 copysamples = remainingsamples;
1058 persson 365 skipsamples = currentframeoffset;
1059     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060     this->FrameOffset = currentframeoffset + copysamples;
1061     }
1062     remainingsamples -= copysamples;
1063    
1064     if (remainingbytes > framebytes) {
1065     remainingbytes -= framebytes;
1066     if (remainingsamples == 0 &&
1067     currentframeoffset + copysamples == framesamples) {
1068     // This frame has enough data for pBuffer, and
1069     // all of the frame is needed. Set file
1070     // position to start of next frame for next
1071     // call to Read. FrameOffset is 0.
1072 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073     }
1074     }
1075 persson 365 else remainingbytes = 0;
1076 schoenebeck 2
1077 persson 365 currentframeoffset -= skipsamples;
1078 schoenebeck 2
1079 persson 365 if (copysamples == 0) {
1080     // skip this frame
1081     pSrc += framebytes - Channels;
1082     }
1083     else {
1084     const unsigned char* const param_l = pSrc;
1085     if (BitDepth == 24) {
1086     if (mode_l != 2) pSrc += 12;
1087 schoenebeck 2
1088 persson 365 if (Channels == 2) { // Stereo
1089     const unsigned char* const param_r = pSrc;
1090     if (mode_r != 2) pSrc += 12;
1091    
1092 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 persson 437 skipsamples, copysamples, TruncatedBits);
1094 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 persson 437 skipsamples, copysamples, TruncatedBits);
1096 persson 902 pDst24 += copysamples * 6;
1097 schoenebeck 2 }
1098 persson 365 else { // Mono
1099 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 persson 437 skipsamples, copysamples, TruncatedBits);
1101 persson 902 pDst24 += copysamples * 3;
1102 schoenebeck 2 }
1103 persson 365 }
1104     else { // 16 bit
1105     if (mode_l) pSrc += 4;
1106 schoenebeck 2
1107 persson 365 int step;
1108     if (Channels == 2) { // Stereo
1109     const unsigned char* const param_r = pSrc;
1110     if (mode_r) pSrc += 4;
1111    
1112     step = (2 - mode_l) + (2 - mode_r);
1113 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 persson 365 skipsamples, copysamples);
1116     pDst += copysamples << 1;
1117 schoenebeck 2 }
1118 persson 365 else { // Mono
1119     step = 2 - mode_l;
1120 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 persson 365 pDst += copysamples;
1122 schoenebeck 2 }
1123 persson 365 }
1124     pSrc += nextFrameOffset;
1125     }
1126 schoenebeck 2
1127 persson 365 // reload from disk to local buffer if needed
1128     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129     assumedsize = GuessSize(remainingsamples);
1130     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 schoenebeck 2 }
1135 persson 365 } // while
1136    
1137 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1138 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 schoenebeck 2 return (SampleCount - remainingsamples);
1140     }
1141     }
1142    
1143 schoenebeck 809 /** @brief Write sample wave data.
1144     *
1145     * Writes \a SampleCount number of sample points from the buffer pointed
1146     * by \a pBuffer and increments the position within the sample. Use this
1147     * method to directly write the sample data to disk, i.e. if you don't
1148     * want or cannot load the whole sample data into RAM.
1149     *
1150     * You have to Resize() the sample to the desired size and call
1151     * File::Save() <b>before</b> using Write().
1152     *
1153     * Note: there is currently no support for writing compressed samples.
1154     *
1155 persson 1264 * For 16 bit samples, the data in the source buffer should be
1156     * int16_t (using native endianness). For 24 bit, the buffer
1157     * should contain three bytes per sample, little-endian.
1158     *
1159 schoenebeck 809 * @param pBuffer - source buffer
1160     * @param SampleCount - number of sample points to write
1161     * @throws DLS::Exception if current sample size is too small
1162     * @throws gig::Exception if sample is compressed
1163     * @see DLS::LoadSampleData()
1164     */
1165     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167 persson 1207
1168     // if this is the first write in this sample, reset the
1169     // checksum calculator
1170 persson 1199 if (pCkData->GetPos() == 0) {
1171     crc.reset();
1172     }
1173 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174     unsigned long res;
1175     if (BitDepth == 24) {
1176     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177     } else { // 16 bit
1178     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179     : pCkData->Write(pBuffer, SampleCount, 2);
1180     }
1181 persson 1199 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183 persson 1207 // if this is the last write, update the checksum chunk in the
1184     // file
1185 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1186     File* pFile = static_cast<File*>(GetParent());
1187     pFile->SetSampleChecksum(this, crc.getValue());
1188     }
1189     return res;
1190 schoenebeck 809 }
1191    
1192 schoenebeck 384 /**
1193     * Allocates a decompression buffer for streaming (compressed) samples
1194     * with Sample::Read(). If you are using more than one streaming thread
1195     * in your application you <b>HAVE</b> to create a decompression buffer
1196     * for <b>EACH</b> of your streaming threads and provide it with the
1197     * Sample::Read() call in order to avoid race conditions and crashes.
1198     *
1199     * You should free the memory occupied by the allocated buffer(s) once
1200     * you don't need one of your streaming threads anymore by calling
1201     * DestroyDecompressionBuffer().
1202     *
1203     * @param MaxReadSize - the maximum size (in sample points) you ever
1204     * expect to read with one Read() call
1205     * @returns allocated decompression buffer
1206     * @see DestroyDecompressionBuffer()
1207     */
1208     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209     buffer_t result;
1210     const double worstCaseHeaderOverhead =
1211     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213     result.pStart = new int8_t[result.Size];
1214     result.NullExtensionSize = 0;
1215     return result;
1216     }
1217    
1218     /**
1219     * Free decompression buffer, previously created with
1220     * CreateDecompressionBuffer().
1221     *
1222     * @param DecompressionBuffer - previously allocated decompression
1223     * buffer to free
1224     */
1225     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227     delete[] (int8_t*) DecompressionBuffer.pStart;
1228     DecompressionBuffer.pStart = NULL;
1229     DecompressionBuffer.Size = 0;
1230     DecompressionBuffer.NullExtensionSize = 0;
1231     }
1232     }
1233    
1234 schoenebeck 930 /**
1235     * Returns pointer to the Group this Sample belongs to. In the .gig
1236     * format a sample always belongs to one group. If it wasn't explicitly
1237     * assigned to a certain group, it will be automatically assigned to a
1238     * default group.
1239     *
1240     * @returns Sample's Group (never NULL)
1241     */
1242     Group* Sample::GetGroup() const {
1243     return pGroup;
1244     }
1245    
1246 schoenebeck 2 Sample::~Sample() {
1247     Instances--;
1248 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1249     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250     InternalDecompressionBuffer.pStart = NULL;
1251     InternalDecompressionBuffer.Size = 0;
1252 schoenebeck 355 }
1253 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1254     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255     }
1256    
1257    
1258    
1259     // *************** DimensionRegion ***************
1260     // *
1261    
1262 schoenebeck 16 uint DimensionRegion::Instances = 0;
1263     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264    
1265 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266 schoenebeck 16 Instances++;
1267    
1268 schoenebeck 823 pSample = NULL;
1269 schoenebeck 1316 pRegion = pParent;
1270 schoenebeck 823
1271 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1272     else memset(&Crossfade, 0, 4);
1273    
1274 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1275 schoenebeck 2
1276     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1277 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1278 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1279 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1281     _3ewa->ReadInt16(); // unknown
1282     LFO1InternalDepth = _3ewa->ReadUint16();
1283     _3ewa->ReadInt16(); // unknown
1284     LFO3InternalDepth = _3ewa->ReadInt16();
1285     _3ewa->ReadInt16(); // unknown
1286     LFO1ControlDepth = _3ewa->ReadUint16();
1287     _3ewa->ReadInt16(); // unknown
1288     LFO3ControlDepth = _3ewa->ReadInt16();
1289     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1291     _3ewa->ReadInt16(); // unknown
1292     EG1Sustain = _3ewa->ReadUint16();
1293     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1295     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1296     EG1ControllerInvert = eg1ctrloptions & 0x01;
1297     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1298     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1299     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1300     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1301     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1302     EG2ControllerInvert = eg2ctrloptions & 0x01;
1303     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1304     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1305     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1306     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1309     _3ewa->ReadInt16(); // unknown
1310     EG2Sustain = _3ewa->ReadUint16();
1311     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1312     _3ewa->ReadInt16(); // unknown
1313     LFO2ControlDepth = _3ewa->ReadUint16();
1314     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1315     _3ewa->ReadInt16(); // unknown
1316     LFO2InternalDepth = _3ewa->ReadUint16();
1317     int32_t eg1decay2 = _3ewa->ReadInt32();
1318     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1319     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1320     _3ewa->ReadInt16(); // unknown
1321     EG1PreAttack = _3ewa->ReadUint16();
1322     int32_t eg2decay2 = _3ewa->ReadInt32();
1323     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1324     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1325     _3ewa->ReadInt16(); // unknown
1326     EG2PreAttack = _3ewa->ReadUint16();
1327     uint8_t velocityresponse = _3ewa->ReadUint8();
1328     if (velocityresponse < 5) {
1329     VelocityResponseCurve = curve_type_nonlinear;
1330     VelocityResponseDepth = velocityresponse;
1331     } else if (velocityresponse < 10) {
1332     VelocityResponseCurve = curve_type_linear;
1333     VelocityResponseDepth = velocityresponse - 5;
1334     } else if (velocityresponse < 15) {
1335     VelocityResponseCurve = curve_type_special;
1336     VelocityResponseDepth = velocityresponse - 10;
1337     } else {
1338     VelocityResponseCurve = curve_type_unknown;
1339     VelocityResponseDepth = 0;
1340     }
1341     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1342     if (releasevelocityresponse < 5) {
1343     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1344     ReleaseVelocityResponseDepth = releasevelocityresponse;
1345     } else if (releasevelocityresponse < 10) {
1346     ReleaseVelocityResponseCurve = curve_type_linear;
1347     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1348     } else if (releasevelocityresponse < 15) {
1349     ReleaseVelocityResponseCurve = curve_type_special;
1350     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1351     } else {
1352     ReleaseVelocityResponseCurve = curve_type_unknown;
1353     ReleaseVelocityResponseDepth = 0;
1354     }
1355     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1356     AttenuationControllerThreshold = _3ewa->ReadInt8();
1357     _3ewa->ReadInt32(); // unknown
1358     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1359     _3ewa->ReadInt16(); // unknown
1360     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1361     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1362     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1363     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1364     else DimensionBypass = dim_bypass_ctrl_none;
1365     uint8_t pan = _3ewa->ReadUint8();
1366     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1367     SelfMask = _3ewa->ReadInt8() & 0x01;
1368     _3ewa->ReadInt8(); // unknown
1369     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1370     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1371     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1372     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1373     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1374     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1375     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1376     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1377     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1378     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1379     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1380     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1381     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1382     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1383     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1384     : vcf_res_ctrl_none;
1385     uint16_t eg3depth = _3ewa->ReadUint16();
1386     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1387     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1388     _3ewa->ReadInt16(); // unknown
1389     ChannelOffset = _3ewa->ReadUint8() / 4;
1390     uint8_t regoptions = _3ewa->ReadUint8();
1391     MSDecode = regoptions & 0x01; // bit 0
1392     SustainDefeat = regoptions & 0x02; // bit 1
1393     _3ewa->ReadInt16(); // unknown
1394     VelocityUpperLimit = _3ewa->ReadInt8();
1395     _3ewa->ReadInt8(); // unknown
1396     _3ewa->ReadInt16(); // unknown
1397     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1398     _3ewa->ReadInt8(); // unknown
1399     _3ewa->ReadInt8(); // unknown
1400     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1401     uint8_t vcfcutoff = _3ewa->ReadUint8();
1402     VCFEnabled = vcfcutoff & 0x80; // bit 7
1403     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1404     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1405     uint8_t vcfvelscale = _3ewa->ReadUint8();
1406     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1407     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1408     _3ewa->ReadInt8(); // unknown
1409     uint8_t vcfresonance = _3ewa->ReadUint8();
1410     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1411     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1412     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1413     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1414     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1415     uint8_t vcfvelocity = _3ewa->ReadUint8();
1416     VCFVelocityDynamicRange = vcfvelocity % 5;
1417     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1418     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1419     if (VCFType == vcf_type_lowpass) {
1420     if (lfo3ctrl & 0x40) // bit 6
1421     VCFType = vcf_type_lowpassturbo;
1422     }
1423 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1424     _3ewa->Read(DimensionUpperLimits, 1, 8);
1425     } else {
1426     memset(DimensionUpperLimits, 0, 8);
1427     }
1428 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1429     // use default values
1430     LFO3Frequency = 1.0;
1431     EG3Attack = 0.0;
1432     LFO1InternalDepth = 0;
1433     LFO3InternalDepth = 0;
1434     LFO1ControlDepth = 0;
1435     LFO3ControlDepth = 0;
1436     EG1Attack = 0.0;
1437 persson 1218 EG1Decay1 = 0.005;
1438     EG1Sustain = 1000;
1439     EG1Release = 0.3;
1440 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1441     EG1Controller.controller_number = 0;
1442     EG1ControllerInvert = false;
1443     EG1ControllerAttackInfluence = 0;
1444     EG1ControllerDecayInfluence = 0;
1445     EG1ControllerReleaseInfluence = 0;
1446     EG2Controller.type = eg2_ctrl_t::type_none;
1447     EG2Controller.controller_number = 0;
1448     EG2ControllerInvert = false;
1449     EG2ControllerAttackInfluence = 0;
1450     EG2ControllerDecayInfluence = 0;
1451     EG2ControllerReleaseInfluence = 0;
1452     LFO1Frequency = 1.0;
1453     EG2Attack = 0.0;
1454 persson 1218 EG2Decay1 = 0.005;
1455     EG2Sustain = 1000;
1456     EG2Release = 0.3;
1457 schoenebeck 809 LFO2ControlDepth = 0;
1458     LFO2Frequency = 1.0;
1459     LFO2InternalDepth = 0;
1460     EG1Decay2 = 0.0;
1461 persson 1218 EG1InfiniteSustain = true;
1462     EG1PreAttack = 0;
1463 schoenebeck 809 EG2Decay2 = 0.0;
1464 persson 1218 EG2InfiniteSustain = true;
1465     EG2PreAttack = 0;
1466 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1467     VelocityResponseDepth = 3;
1468     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469     ReleaseVelocityResponseDepth = 3;
1470     VelocityResponseCurveScaling = 32;
1471     AttenuationControllerThreshold = 0;
1472     SampleStartOffset = 0;
1473     PitchTrack = true;
1474     DimensionBypass = dim_bypass_ctrl_none;
1475     Pan = 0;
1476     SelfMask = true;
1477     LFO3Controller = lfo3_ctrl_modwheel;
1478     LFO3Sync = false;
1479     InvertAttenuationController = false;
1480     AttenuationController.type = attenuation_ctrl_t::type_none;
1481     AttenuationController.controller_number = 0;
1482     LFO2Controller = lfo2_ctrl_internal;
1483     LFO2FlipPhase = false;
1484     LFO2Sync = false;
1485     LFO1Controller = lfo1_ctrl_internal;
1486     LFO1FlipPhase = false;
1487     LFO1Sync = false;
1488     VCFResonanceController = vcf_res_ctrl_none;
1489     EG3Depth = 0;
1490     ChannelOffset = 0;
1491     MSDecode = false;
1492     SustainDefeat = false;
1493     VelocityUpperLimit = 0;
1494     ReleaseTriggerDecay = 0;
1495     EG1Hold = false;
1496     VCFEnabled = false;
1497     VCFCutoff = 0;
1498     VCFCutoffController = vcf_cutoff_ctrl_none;
1499     VCFCutoffControllerInvert = false;
1500     VCFVelocityScale = 0;
1501     VCFResonance = 0;
1502     VCFResonanceDynamic = false;
1503     VCFKeyboardTracking = false;
1504     VCFKeyboardTrackingBreakpoint = 0;
1505     VCFVelocityDynamicRange = 0x04;
1506     VCFVelocityCurve = curve_type_linear;
1507     VCFType = vcf_type_lowpass;
1508 persson 1247 memset(DimensionUpperLimits, 127, 8);
1509 schoenebeck 2 }
1510 schoenebeck 16
1511 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1512     VelocityResponseDepth,
1513     VelocityResponseCurveScaling);
1514    
1515     curve_type_t curveType = ReleaseVelocityResponseCurve;
1516     uint8_t depth = ReleaseVelocityResponseDepth;
1517    
1518     // this models a strange behaviour or bug in GSt: two of the
1519     // velocity response curves for release time are not used even
1520     // if specified, instead another curve is chosen.
1521     if ((curveType == curve_type_nonlinear && depth == 0) ||
1522     (curveType == curve_type_special && depth == 4)) {
1523     curveType = curve_type_nonlinear;
1524     depth = 3;
1525     }
1526     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1527    
1528 persson 728 curveType = VCFVelocityCurve;
1529     depth = VCFVelocityDynamicRange;
1530    
1531     // even stranger GSt: two of the velocity response curves for
1532     // filter cutoff are not used, instead another special curve
1533     // is chosen. This curve is not used anywhere else.
1534     if ((curveType == curve_type_nonlinear && depth == 0) ||
1535     (curveType == curve_type_special && depth == 4)) {
1536     curveType = curve_type_special;
1537     depth = 5;
1538     }
1539     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1540 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1541 persson 728
1542 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1543 persson 858 VelocityTable = 0;
1544 persson 613 }
1545    
1546 persson 1301 /*
1547     * Constructs a DimensionRegion by copying all parameters from
1548     * another DimensionRegion
1549     */
1550     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1551     Instances++;
1552     *this = src; // default memberwise shallow copy of all parameters
1553     pParentList = _3ewl; // restore the chunk pointer
1554    
1555     // deep copy of owned structures
1556     if (src.VelocityTable) {
1557     VelocityTable = new uint8_t[128];
1558     for (int k = 0 ; k < 128 ; k++)
1559     VelocityTable[k] = src.VelocityTable[k];
1560     }
1561     if (src.pSampleLoops) {
1562     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1563     for (int k = 0 ; k < src.SampleLoops ; k++)
1564     pSampleLoops[k] = src.pSampleLoops[k];
1565     }
1566     }
1567    
1568 schoenebeck 809 /**
1569     * Apply dimension region settings to the respective RIFF chunks. You
1570     * have to call File::Save() to make changes persistent.
1571     *
1572     * Usually there is absolutely no need to call this method explicitly.
1573     * It will be called automatically when File::Save() was called.
1574     */
1575     void DimensionRegion::UpdateChunks() {
1576     // first update base class's chunk
1577     DLS::Sampler::UpdateChunks();
1578    
1579 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1580     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1581     pData[12] = Crossfade.in_start;
1582     pData[13] = Crossfade.in_end;
1583     pData[14] = Crossfade.out_start;
1584     pData[15] = Crossfade.out_end;
1585    
1586 schoenebeck 809 // make sure '3ewa' chunk exists
1587     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1588 persson 1317 if (!_3ewa) {
1589     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1590     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1591     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1592 persson 1264 }
1593 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1594 schoenebeck 809
1595     // update '3ewa' chunk with DimensionRegion's current settings
1596    
1597 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1598 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1599 schoenebeck 809
1600     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1601 persson 1179 store32(&pData[4], lfo3freq);
1602 schoenebeck 809
1603     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1604 persson 1179 store32(&pData[8], eg3attack);
1605 schoenebeck 809
1606     // next 2 bytes unknown
1607    
1608 persson 1179 store16(&pData[14], LFO1InternalDepth);
1609 schoenebeck 809
1610     // next 2 bytes unknown
1611    
1612 persson 1179 store16(&pData[18], LFO3InternalDepth);
1613 schoenebeck 809
1614     // next 2 bytes unknown
1615    
1616 persson 1179 store16(&pData[22], LFO1ControlDepth);
1617 schoenebeck 809
1618     // next 2 bytes unknown
1619    
1620 persson 1179 store16(&pData[26], LFO3ControlDepth);
1621 schoenebeck 809
1622     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1623 persson 1179 store32(&pData[28], eg1attack);
1624 schoenebeck 809
1625     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1626 persson 1179 store32(&pData[32], eg1decay1);
1627 schoenebeck 809
1628     // next 2 bytes unknown
1629    
1630 persson 1179 store16(&pData[38], EG1Sustain);
1631 schoenebeck 809
1632     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1633 persson 1179 store32(&pData[40], eg1release);
1634 schoenebeck 809
1635     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1636 persson 1179 pData[44] = eg1ctl;
1637 schoenebeck 809
1638     const uint8_t eg1ctrloptions =
1639 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1640 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1641     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1642     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1643 persson 1179 pData[45] = eg1ctrloptions;
1644 schoenebeck 809
1645     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1646 persson 1179 pData[46] = eg2ctl;
1647 schoenebeck 809
1648     const uint8_t eg2ctrloptions =
1649 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1650 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1651     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1652     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1653 persson 1179 pData[47] = eg2ctrloptions;
1654 schoenebeck 809
1655     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1656 persson 1179 store32(&pData[48], lfo1freq);
1657 schoenebeck 809
1658     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1659 persson 1179 store32(&pData[52], eg2attack);
1660 schoenebeck 809
1661     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1662 persson 1179 store32(&pData[56], eg2decay1);
1663 schoenebeck 809
1664     // next 2 bytes unknown
1665    
1666 persson 1179 store16(&pData[62], EG2Sustain);
1667 schoenebeck 809
1668     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1669 persson 1179 store32(&pData[64], eg2release);
1670 schoenebeck 809
1671     // next 2 bytes unknown
1672    
1673 persson 1179 store16(&pData[70], LFO2ControlDepth);
1674 schoenebeck 809
1675     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1676 persson 1179 store32(&pData[72], lfo2freq);
1677 schoenebeck 809
1678     // next 2 bytes unknown
1679    
1680 persson 1179 store16(&pData[78], LFO2InternalDepth);
1681 schoenebeck 809
1682     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1683 persson 1179 store32(&pData[80], eg1decay2);
1684 schoenebeck 809
1685     // next 2 bytes unknown
1686    
1687 persson 1179 store16(&pData[86], EG1PreAttack);
1688 schoenebeck 809
1689     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1690 persson 1179 store32(&pData[88], eg2decay2);
1691 schoenebeck 809
1692     // next 2 bytes unknown
1693    
1694 persson 1179 store16(&pData[94], EG2PreAttack);
1695 schoenebeck 809
1696     {
1697     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1698     uint8_t velocityresponse = VelocityResponseDepth;
1699     switch (VelocityResponseCurve) {
1700     case curve_type_nonlinear:
1701     break;
1702     case curve_type_linear:
1703     velocityresponse += 5;
1704     break;
1705     case curve_type_special:
1706     velocityresponse += 10;
1707     break;
1708     case curve_type_unknown:
1709     default:
1710     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1711     }
1712 persson 1179 pData[96] = velocityresponse;
1713 schoenebeck 809 }
1714    
1715     {
1716     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1717     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1718     switch (ReleaseVelocityResponseCurve) {
1719     case curve_type_nonlinear:
1720     break;
1721     case curve_type_linear:
1722     releasevelocityresponse += 5;
1723     break;
1724     case curve_type_special:
1725     releasevelocityresponse += 10;
1726     break;
1727     case curve_type_unknown:
1728     default:
1729     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1730     }
1731 persson 1179 pData[97] = releasevelocityresponse;
1732 schoenebeck 809 }
1733    
1734 persson 1179 pData[98] = VelocityResponseCurveScaling;
1735 schoenebeck 809
1736 persson 1179 pData[99] = AttenuationControllerThreshold;
1737 schoenebeck 809
1738     // next 4 bytes unknown
1739    
1740 persson 1179 store16(&pData[104], SampleStartOffset);
1741 schoenebeck 809
1742     // next 2 bytes unknown
1743    
1744     {
1745     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1746     switch (DimensionBypass) {
1747     case dim_bypass_ctrl_94:
1748     pitchTrackDimensionBypass |= 0x10;
1749     break;
1750     case dim_bypass_ctrl_95:
1751     pitchTrackDimensionBypass |= 0x20;
1752     break;
1753     case dim_bypass_ctrl_none:
1754     //FIXME: should we set anything here?
1755     break;
1756     default:
1757     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1758     }
1759 persson 1179 pData[108] = pitchTrackDimensionBypass;
1760 schoenebeck 809 }
1761    
1762     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1763 persson 1179 pData[109] = pan;
1764 schoenebeck 809
1765     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1766 persson 1179 pData[110] = selfmask;
1767 schoenebeck 809
1768     // next byte unknown
1769    
1770     {
1771     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1772     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1773     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1774     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1775 persson 1179 pData[112] = lfo3ctrl;
1776 schoenebeck 809 }
1777    
1778     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1779 persson 1179 pData[113] = attenctl;
1780 schoenebeck 809
1781     {
1782     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1783     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1784     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1785     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1786 persson 1179 pData[114] = lfo2ctrl;
1787 schoenebeck 809 }
1788    
1789     {
1790     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1791     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1792     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1793     if (VCFResonanceController != vcf_res_ctrl_none)
1794     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1795 persson 1179 pData[115] = lfo1ctrl;
1796 schoenebeck 809 }
1797    
1798     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1799     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1800 persson 1179 pData[116] = eg3depth;
1801 schoenebeck 809
1802     // next 2 bytes unknown
1803    
1804     const uint8_t channeloffset = ChannelOffset * 4;
1805 persson 1179 pData[120] = channeloffset;
1806 schoenebeck 809
1807     {
1808     uint8_t regoptions = 0;
1809     if (MSDecode) regoptions |= 0x01; // bit 0
1810     if (SustainDefeat) regoptions |= 0x02; // bit 1
1811 persson 1179 pData[121] = regoptions;
1812 schoenebeck 809 }
1813    
1814     // next 2 bytes unknown
1815    
1816 persson 1179 pData[124] = VelocityUpperLimit;
1817 schoenebeck 809
1818     // next 3 bytes unknown
1819    
1820 persson 1179 pData[128] = ReleaseTriggerDecay;
1821 schoenebeck 809
1822     // next 2 bytes unknown
1823    
1824     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1825 persson 1179 pData[131] = eg1hold;
1826 schoenebeck 809
1827 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1828 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1829 persson 1179 pData[132] = vcfcutoff;
1830 schoenebeck 809
1831 persson 1179 pData[133] = VCFCutoffController;
1832 schoenebeck 809
1833 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1834 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1835 persson 1179 pData[134] = vcfvelscale;
1836 schoenebeck 809
1837     // next byte unknown
1838    
1839 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1840 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1841 persson 1179 pData[136] = vcfresonance;
1842 schoenebeck 809
1843 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1844 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1845 persson 1179 pData[137] = vcfbreakpoint;
1846 schoenebeck 809
1847     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1848     VCFVelocityCurve * 5;
1849 persson 1179 pData[138] = vcfvelocity;
1850 schoenebeck 809
1851     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1852 persson 1179 pData[139] = vcftype;
1853 persson 1070
1854     if (chunksize >= 148) {
1855     memcpy(&pData[140], DimensionUpperLimits, 8);
1856     }
1857 schoenebeck 809 }
1858    
1859 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1860     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1861     {
1862     double* table;
1863     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1864 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1865 persson 613 table = (*pVelocityTables)[tableKey];
1866 schoenebeck 16 }
1867     else {
1868 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1869     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1870 schoenebeck 16 }
1871 persson 613 return table;
1872 schoenebeck 2 }
1873 schoenebeck 55
1874 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1875     return pRegion;
1876     }
1877    
1878 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1879     leverage_ctrl_t decodedcontroller;
1880     switch (EncodedController) {
1881     // special controller
1882     case _lev_ctrl_none:
1883     decodedcontroller.type = leverage_ctrl_t::type_none;
1884     decodedcontroller.controller_number = 0;
1885     break;
1886     case _lev_ctrl_velocity:
1887     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1888     decodedcontroller.controller_number = 0;
1889     break;
1890     case _lev_ctrl_channelaftertouch:
1891     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1892     decodedcontroller.controller_number = 0;
1893     break;
1894 schoenebeck 55
1895 schoenebeck 36 // ordinary MIDI control change controller
1896     case _lev_ctrl_modwheel:
1897     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1898     decodedcontroller.controller_number = 1;
1899     break;
1900     case _lev_ctrl_breath:
1901     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1902     decodedcontroller.controller_number = 2;
1903     break;
1904     case _lev_ctrl_foot:
1905     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1906     decodedcontroller.controller_number = 4;
1907     break;
1908     case _lev_ctrl_effect1:
1909     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1910     decodedcontroller.controller_number = 12;
1911     break;
1912     case _lev_ctrl_effect2:
1913     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1914     decodedcontroller.controller_number = 13;
1915     break;
1916     case _lev_ctrl_genpurpose1:
1917     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1918     decodedcontroller.controller_number = 16;
1919     break;
1920     case _lev_ctrl_genpurpose2:
1921     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1922     decodedcontroller.controller_number = 17;
1923     break;
1924     case _lev_ctrl_genpurpose3:
1925     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1926     decodedcontroller.controller_number = 18;
1927     break;
1928     case _lev_ctrl_genpurpose4:
1929     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1930     decodedcontroller.controller_number = 19;
1931     break;
1932     case _lev_ctrl_portamentotime:
1933     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1934     decodedcontroller.controller_number = 5;
1935     break;
1936     case _lev_ctrl_sustainpedal:
1937     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1938     decodedcontroller.controller_number = 64;
1939     break;
1940     case _lev_ctrl_portamento:
1941     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1942     decodedcontroller.controller_number = 65;
1943     break;
1944     case _lev_ctrl_sostenutopedal:
1945     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1946     decodedcontroller.controller_number = 66;
1947     break;
1948     case _lev_ctrl_softpedal:
1949     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1950     decodedcontroller.controller_number = 67;
1951     break;
1952     case _lev_ctrl_genpurpose5:
1953     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1954     decodedcontroller.controller_number = 80;
1955     break;
1956     case _lev_ctrl_genpurpose6:
1957     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1958     decodedcontroller.controller_number = 81;
1959     break;
1960     case _lev_ctrl_genpurpose7:
1961     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1962     decodedcontroller.controller_number = 82;
1963     break;
1964     case _lev_ctrl_genpurpose8:
1965     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1966     decodedcontroller.controller_number = 83;
1967     break;
1968     case _lev_ctrl_effect1depth:
1969     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1970     decodedcontroller.controller_number = 91;
1971     break;
1972     case _lev_ctrl_effect2depth:
1973     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1974     decodedcontroller.controller_number = 92;
1975     break;
1976     case _lev_ctrl_effect3depth:
1977     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1978     decodedcontroller.controller_number = 93;
1979     break;
1980     case _lev_ctrl_effect4depth:
1981     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1982     decodedcontroller.controller_number = 94;
1983     break;
1984     case _lev_ctrl_effect5depth:
1985     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1986     decodedcontroller.controller_number = 95;
1987     break;
1988 schoenebeck 55
1989 schoenebeck 36 // unknown controller type
1990     default:
1991     throw gig::Exception("Unknown leverage controller type.");
1992     }
1993     return decodedcontroller;
1994     }
1995 schoenebeck 2
1996 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1997     _lev_ctrl_t encodedcontroller;
1998     switch (DecodedController.type) {
1999     // special controller
2000     case leverage_ctrl_t::type_none:
2001     encodedcontroller = _lev_ctrl_none;
2002     break;
2003     case leverage_ctrl_t::type_velocity:
2004     encodedcontroller = _lev_ctrl_velocity;
2005     break;
2006     case leverage_ctrl_t::type_channelaftertouch:
2007     encodedcontroller = _lev_ctrl_channelaftertouch;
2008     break;
2009    
2010     // ordinary MIDI control change controller
2011     case leverage_ctrl_t::type_controlchange:
2012     switch (DecodedController.controller_number) {
2013     case 1:
2014     encodedcontroller = _lev_ctrl_modwheel;
2015     break;
2016     case 2:
2017     encodedcontroller = _lev_ctrl_breath;
2018     break;
2019     case 4:
2020     encodedcontroller = _lev_ctrl_foot;
2021     break;
2022     case 12:
2023     encodedcontroller = _lev_ctrl_effect1;
2024     break;
2025     case 13:
2026     encodedcontroller = _lev_ctrl_effect2;
2027     break;
2028     case 16:
2029     encodedcontroller = _lev_ctrl_genpurpose1;
2030     break;
2031     case 17:
2032     encodedcontroller = _lev_ctrl_genpurpose2;
2033     break;
2034     case 18:
2035     encodedcontroller = _lev_ctrl_genpurpose3;
2036     break;
2037     case 19:
2038     encodedcontroller = _lev_ctrl_genpurpose4;
2039     break;
2040     case 5:
2041     encodedcontroller = _lev_ctrl_portamentotime;
2042     break;
2043     case 64:
2044     encodedcontroller = _lev_ctrl_sustainpedal;
2045     break;
2046     case 65:
2047     encodedcontroller = _lev_ctrl_portamento;
2048     break;
2049     case 66:
2050     encodedcontroller = _lev_ctrl_sostenutopedal;
2051     break;
2052     case 67:
2053     encodedcontroller = _lev_ctrl_softpedal;
2054     break;
2055     case 80:
2056     encodedcontroller = _lev_ctrl_genpurpose5;
2057     break;
2058     case 81:
2059     encodedcontroller = _lev_ctrl_genpurpose6;
2060     break;
2061     case 82:
2062     encodedcontroller = _lev_ctrl_genpurpose7;
2063     break;
2064     case 83:
2065     encodedcontroller = _lev_ctrl_genpurpose8;
2066     break;
2067     case 91:
2068     encodedcontroller = _lev_ctrl_effect1depth;
2069     break;
2070     case 92:
2071     encodedcontroller = _lev_ctrl_effect2depth;
2072     break;
2073     case 93:
2074     encodedcontroller = _lev_ctrl_effect3depth;
2075     break;
2076     case 94:
2077     encodedcontroller = _lev_ctrl_effect4depth;
2078     break;
2079     case 95:
2080     encodedcontroller = _lev_ctrl_effect5depth;
2081     break;
2082     default:
2083     throw gig::Exception("leverage controller number is not supported by the gig format");
2084     }
2085 persson 1182 break;
2086 schoenebeck 809 default:
2087     throw gig::Exception("Unknown leverage controller type.");
2088     }
2089     return encodedcontroller;
2090     }
2091    
2092 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2093     Instances--;
2094     if (!Instances) {
2095     // delete the velocity->volume tables
2096     VelocityTableMap::iterator iter;
2097     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2098     double* pTable = iter->second;
2099     if (pTable) delete[] pTable;
2100     }
2101     pVelocityTables->clear();
2102     delete pVelocityTables;
2103     pVelocityTables = NULL;
2104     }
2105 persson 858 if (VelocityTable) delete[] VelocityTable;
2106 schoenebeck 16 }
2107 schoenebeck 2
2108 schoenebeck 16 /**
2109     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2110     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2111     * and VelocityResponseCurveScaling) involved are taken into account to
2112     * calculate the amplitude factor. Use this method when a key was
2113     * triggered to get the volume with which the sample should be played
2114     * back.
2115     *
2116 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2117     * @returns amplitude factor (between 0.0 and 1.0)
2118 schoenebeck 16 */
2119     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2120     return pVelocityAttenuationTable[MIDIKeyVelocity];
2121     }
2122 schoenebeck 2
2123 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2124     return pVelocityReleaseTable[MIDIKeyVelocity];
2125     }
2126    
2127 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2128     return pVelocityCutoffTable[MIDIKeyVelocity];
2129     }
2130    
2131 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2132 schoenebeck 317
2133 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2134 schoenebeck 16
2135 schoenebeck 308 // linear
2136     const int lin0[] = { 1, 1, 127, 127 };
2137     const int lin1[] = { 1, 21, 127, 127 };
2138     const int lin2[] = { 1, 45, 127, 127 };
2139     const int lin3[] = { 1, 74, 127, 127 };
2140     const int lin4[] = { 1, 127, 127, 127 };
2141 schoenebeck 16
2142 schoenebeck 308 // non-linear
2143     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2144 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2145 schoenebeck 308 127, 127 };
2146     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2147     127, 127 };
2148     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2149     127, 127 };
2150     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2151 schoenebeck 317
2152 schoenebeck 308 // special
2153 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2154 schoenebeck 308 113, 127, 127, 127 };
2155     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2156     118, 127, 127, 127 };
2157 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2158 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2159 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2160 schoenebeck 308 117, 127, 127, 127 };
2161 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2162 schoenebeck 308 127, 127 };
2163 schoenebeck 317
2164 persson 728 // this is only used by the VCF velocity curve
2165     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2166     91, 127, 127, 127 };
2167    
2168 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2169 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2170 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2171 schoenebeck 317
2172 schoenebeck 308 double* const table = new double[128];
2173    
2174     const int* curve = curves[curveType * 5 + depth];
2175     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2176 schoenebeck 317
2177 schoenebeck 308 table[0] = 0;
2178     for (int x = 1 ; x < 128 ; x++) {
2179    
2180     if (x > curve[2]) curve += 2;
2181 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2182 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2183     y = y / 127;
2184    
2185     // Scale up for s > 20, down for s < 20. When
2186     // down-scaling, the curve still ends at 1.0.
2187     if (s < 20 && y >= 0.5)
2188     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2189     else
2190     y = y * (s / 20.0);
2191     if (y > 1) y = 1;
2192    
2193     table[x] = y;
2194     }
2195     return table;
2196     }
2197    
2198    
2199 schoenebeck 2 // *************** Region ***************
2200     // *
2201    
2202     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2203     // Initialization
2204     Dimensions = 0;
2205 schoenebeck 347 for (int i = 0; i < 256; i++) {
2206 schoenebeck 2 pDimensionRegions[i] = NULL;
2207     }
2208 schoenebeck 282 Layers = 1;
2209 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2210     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2211 schoenebeck 2
2212     // Actual Loading
2213    
2214     LoadDimensionRegions(rgnList);
2215    
2216     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2217     if (_3lnk) {
2218     DimensionRegions = _3lnk->ReadUint32();
2219 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2220 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2221     uint8_t bits = _3lnk->ReadUint8();
2222 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2223     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2224 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2225 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2226     pDimensionDefinitions[i].dimension = dimension_none;
2227     pDimensionDefinitions[i].bits = 0;
2228     pDimensionDefinitions[i].zones = 0;
2229     pDimensionDefinitions[i].split_type = split_type_bit;
2230     pDimensionDefinitions[i].zone_size = 0;
2231     }
2232     else { // active dimension
2233     pDimensionDefinitions[i].dimension = dimension;
2234     pDimensionDefinitions[i].bits = bits;
2235 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2236 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2237     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2238 schoenebeck 2 Dimensions++;
2239 schoenebeck 282
2240     // if this is a layer dimension, remember the amount of layers
2241     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2242 schoenebeck 2 }
2243 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2244 schoenebeck 2 }
2245 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2246 schoenebeck 2
2247 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2248     // update the VelocityTables in the dimension regions
2249     UpdateVelocityTable();
2250 schoenebeck 2
2251 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2252     if (file->pVersion && file->pVersion->major == 3)
2253     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2254     else
2255     _3lnk->SetPos(44);
2256    
2257 schoenebeck 2 // load sample references
2258     for (uint i = 0; i < DimensionRegions; i++) {
2259     uint32_t wavepoolindex = _3lnk->ReadUint32();
2260 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2261 schoenebeck 2 }
2262 persson 918 GetSample(); // load global region sample reference
2263 persson 1102 } else {
2264     DimensionRegions = 0;
2265 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2266     pDimensionDefinitions[i].dimension = dimension_none;
2267     pDimensionDefinitions[i].bits = 0;
2268     pDimensionDefinitions[i].zones = 0;
2269     }
2270 schoenebeck 2 }
2271 schoenebeck 823
2272     // make sure there is at least one dimension region
2273     if (!DimensionRegions) {
2274     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2275     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2276     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2277 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2278 schoenebeck 823 DimensionRegions = 1;
2279     }
2280 schoenebeck 2 }
2281    
2282 schoenebeck 809 /**
2283     * Apply Region settings and all its DimensionRegions to the respective
2284     * RIFF chunks. You have to call File::Save() to make changes persistent.
2285     *
2286     * Usually there is absolutely no need to call this method explicitly.
2287     * It will be called automatically when File::Save() was called.
2288     *
2289     * @throws gig::Exception if samples cannot be dereferenced
2290     */
2291     void Region::UpdateChunks() {
2292 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2293     // but we still have to provide some existing one to not corrupt the
2294     // file, so to avoid the latter we simply always assign the sample of
2295     // the first dimension region of this region
2296     pSample = pDimensionRegions[0]->pSample;
2297    
2298 schoenebeck 809 // first update base class's chunks
2299     DLS::Region::UpdateChunks();
2300    
2301     // update dimension region's chunks
2302 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2303 persson 1317 pDimensionRegions[i]->UpdateChunks();
2304 schoenebeck 823 }
2305 schoenebeck 809
2306 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2307     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2308 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2309     const int iMaxDimensionRegions = version3 ? 256 : 32;
2310 schoenebeck 809
2311     // make sure '3lnk' chunk exists
2312     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2313     if (!_3lnk) {
2314 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2315 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2316 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2317 persson 1192
2318     // move 3prg to last position
2319     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2320 schoenebeck 809 }
2321    
2322     // update dimension definitions in '3lnk' chunk
2323     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2324 persson 1179 store32(&pData[0], DimensionRegions);
2325 persson 1199 int shift = 0;
2326 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2327 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2328     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2329 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2330 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2331 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2332 persson 1199 // next 3 bytes unknown, always zero?
2333    
2334     shift += pDimensionDefinitions[i].bits;
2335 schoenebeck 809 }
2336    
2337     // update wave pool table in '3lnk' chunk
2338 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2339 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2340     int iWaveIndex = -1;
2341     if (i < DimensionRegions) {
2342 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2343     File::SampleList::iterator iter = pFile->pSamples->begin();
2344     File::SampleList::iterator end = pFile->pSamples->end();
2345 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2346 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2347     iWaveIndex = index;
2348     break;
2349     }
2350 schoenebeck 809 }
2351     }
2352 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2353 schoenebeck 809 }
2354     }
2355    
2356 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2357     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2358     if (_3prg) {
2359     int dimensionRegionNr = 0;
2360     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2361     while (_3ewl) {
2362     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2363 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2364 schoenebeck 2 dimensionRegionNr++;
2365     }
2366     _3ewl = _3prg->GetNextSubList();
2367     }
2368     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2369     }
2370     }
2371    
2372 persson 858 void Region::UpdateVelocityTable() {
2373     // get velocity dimension's index
2374     int veldim = -1;
2375     for (int i = 0 ; i < Dimensions ; i++) {
2376     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2377     veldim = i;
2378 schoenebeck 809 break;
2379     }
2380     }
2381 persson 858 if (veldim == -1) return;
2382 schoenebeck 809
2383 persson 858 int step = 1;
2384     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2385     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2386     int end = step * pDimensionDefinitions[veldim].zones;
2387 schoenebeck 809
2388 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2389     int dim[8] = { 0 };
2390     for (int i = 0 ; i < DimensionRegions ; i++) {
2391    
2392 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2393     pDimensionRegions[i]->VelocityUpperLimit) {
2394 persson 858 // create the velocity table
2395     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2396     if (!table) {
2397     table = new uint8_t[128];
2398     pDimensionRegions[i]->VelocityTable = table;
2399     }
2400     int tableidx = 0;
2401     int velocityZone = 0;
2402 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2403     for (int k = i ; k < end ; k += step) {
2404     DimensionRegion *d = pDimensionRegions[k];
2405     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2406     velocityZone++;
2407     }
2408     } else { // gig2
2409     for (int k = i ; k < end ; k += step) {
2410     DimensionRegion *d = pDimensionRegions[k];
2411     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2412     velocityZone++;
2413     }
2414 persson 858 }
2415     } else {
2416     if (pDimensionRegions[i]->VelocityTable) {
2417     delete[] pDimensionRegions[i]->VelocityTable;
2418     pDimensionRegions[i]->VelocityTable = 0;
2419     }
2420 schoenebeck 809 }
2421 persson 858
2422     int j;
2423     int shift = 0;
2424     for (j = 0 ; j < Dimensions ; j++) {
2425     if (j == veldim) i += skipveldim; // skip velocity dimension
2426     else {
2427     dim[j]++;
2428     if (dim[j] < pDimensionDefinitions[j].zones) break;
2429     else {
2430     // skip unused dimension regions
2431     dim[j] = 0;
2432     i += ((1 << pDimensionDefinitions[j].bits) -
2433     pDimensionDefinitions[j].zones) << shift;
2434     }
2435     }
2436     shift += pDimensionDefinitions[j].bits;
2437     }
2438     if (j == Dimensions) break;
2439 schoenebeck 809 }
2440     }
2441    
2442     /** @brief Einstein would have dreamed of it - create a new dimension.
2443     *
2444     * Creates a new dimension with the dimension definition given by
2445     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2446     * There is a hard limit of dimensions and total amount of "bits" all
2447     * dimensions can have. This limit is dependant to what gig file format
2448     * version this file refers to. The gig v2 (and lower) format has a
2449     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2450     * format has a limit of 8.
2451     *
2452     * @param pDimDef - defintion of the new dimension
2453     * @throws gig::Exception if dimension of the same type exists already
2454     * @throws gig::Exception if amount of dimensions or total amount of
2455     * dimension bits limit is violated
2456     */
2457     void Region::AddDimension(dimension_def_t* pDimDef) {
2458     // check if max. amount of dimensions reached
2459     File* file = (File*) GetParent()->GetParent();
2460     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2461     if (Dimensions >= iMaxDimensions)
2462     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2463     // check if max. amount of dimension bits reached
2464     int iCurrentBits = 0;
2465     for (int i = 0; i < Dimensions; i++)
2466     iCurrentBits += pDimensionDefinitions[i].bits;
2467     if (iCurrentBits >= iMaxDimensions)
2468     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2469     const int iNewBits = iCurrentBits + pDimDef->bits;
2470     if (iNewBits > iMaxDimensions)
2471     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2472     // check if there's already a dimensions of the same type
2473     for (int i = 0; i < Dimensions; i++)
2474     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2475     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2476    
2477 persson 1301 // pos is where the new dimension should be placed, normally
2478     // last in list, except for the samplechannel dimension which
2479     // has to be first in list
2480     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2481     int bitpos = 0;
2482     for (int i = 0 ; i < pos ; i++)
2483     bitpos += pDimensionDefinitions[i].bits;
2484    
2485     // make room for the new dimension
2486     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2487     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2488     for (int j = Dimensions ; j > pos ; j--) {
2489     pDimensionRegions[i]->DimensionUpperLimits[j] =
2490     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2491     }
2492     }
2493    
2494 schoenebeck 809 // assign definition of new dimension
2495 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2496 schoenebeck 809
2497 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2498 persson 1301 pDimensionDefinitions[pos].split_type =
2499     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2500     pDimensionDefinitions[pos].zone_size =
2501     __resolveZoneSize(pDimensionDefinitions[pos]);
2502 schoenebeck 1113
2503 persson 1301 // create new dimension region(s) for this new dimension, and make
2504     // sure that the dimension regions are placed correctly in both the
2505     // RIFF list and the pDimensionRegions array
2506     RIFF::Chunk* moveTo = NULL;
2507     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2508     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2509     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2510     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2511     }
2512     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2513     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2514     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2515     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2516     // create a new dimension region and copy all parameter values from
2517     // an existing dimension region
2518     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2519     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2520 persson 1247
2521 persson 1301 DimensionRegions++;
2522     }
2523     }
2524     moveTo = pDimensionRegions[i]->pParentList;
2525 schoenebeck 809 }
2526    
2527 persson 1247 // initialize the upper limits for this dimension
2528 persson 1301 int mask = (1 << bitpos) - 1;
2529     for (int z = 0 ; z < pDimDef->zones ; z++) {
2530 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2531 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2532 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2533     (z << bitpos) |
2534     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2535 persson 1247 }
2536     }
2537    
2538 schoenebeck 809 Dimensions++;
2539    
2540     // if this is a layer dimension, update 'Layers' attribute
2541     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2542    
2543 persson 858 UpdateVelocityTable();
2544 schoenebeck 809 }
2545    
2546     /** @brief Delete an existing dimension.
2547     *
2548     * Deletes the dimension given by \a pDimDef and deletes all respective
2549     * dimension regions, that is all dimension regions where the dimension's
2550     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2551     * for example this would delete all dimension regions for the case(s)
2552     * where the sustain pedal is pressed down.
2553     *
2554     * @param pDimDef - dimension to delete
2555     * @throws gig::Exception if given dimension cannot be found
2556     */
2557     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2558     // get dimension's index
2559     int iDimensionNr = -1;
2560     for (int i = 0; i < Dimensions; i++) {
2561     if (&pDimensionDefinitions[i] == pDimDef) {
2562     iDimensionNr = i;
2563     break;
2564     }
2565     }
2566     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2567    
2568     // get amount of bits below the dimension to delete
2569     int iLowerBits = 0;
2570     for (int i = 0; i < iDimensionNr; i++)
2571     iLowerBits += pDimensionDefinitions[i].bits;
2572    
2573     // get amount ot bits above the dimension to delete
2574     int iUpperBits = 0;
2575     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2576     iUpperBits += pDimensionDefinitions[i].bits;
2577    
2578 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2579    
2580 schoenebeck 809 // delete dimension regions which belong to the given dimension
2581     // (that is where the dimension's bit > 0)
2582     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2583     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2584     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2585     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2586     iObsoleteBit << iLowerBits |
2587     iLowerBit;
2588 persson 1247
2589     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2590 schoenebeck 809 delete pDimensionRegions[iToDelete];
2591     pDimensionRegions[iToDelete] = NULL;
2592     DimensionRegions--;
2593     }
2594     }
2595     }
2596    
2597     // defrag pDimensionRegions array
2598     // (that is remove the NULL spaces within the pDimensionRegions array)
2599     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2600     if (!pDimensionRegions[iTo]) {
2601     if (iFrom <= iTo) iFrom = iTo + 1;
2602     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2603     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2604     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2605     pDimensionRegions[iFrom] = NULL;
2606     }
2607     }
2608     }
2609    
2610 persson 1247 // remove the this dimension from the upper limits arrays
2611     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2612     DimensionRegion* d = pDimensionRegions[j];
2613     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2614     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2615     }
2616     d->DimensionUpperLimits[Dimensions - 1] = 127;
2617     }
2618    
2619 schoenebeck 809 // 'remove' dimension definition
2620     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2621     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2622     }
2623     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2624     pDimensionDefinitions[Dimensions - 1].bits = 0;
2625     pDimensionDefinitions[Dimensions - 1].zones = 0;
2626    
2627     Dimensions--;
2628    
2629     // if this was a layer dimension, update 'Layers' attribute
2630     if (pDimDef->dimension == dimension_layer) Layers = 1;
2631     }
2632    
2633 schoenebeck 2 Region::~Region() {
2634 schoenebeck 350 for (int i = 0; i < 256; i++) {
2635 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2636     }
2637     }
2638    
2639     /**
2640     * Use this method in your audio engine to get the appropriate dimension
2641     * region with it's articulation data for the current situation. Just
2642     * call the method with the current MIDI controller values and you'll get
2643     * the DimensionRegion with the appropriate articulation data for the
2644     * current situation (for this Region of course only). To do that you'll
2645     * first have to look which dimensions with which controllers and in
2646     * which order are defined for this Region when you load the .gig file.
2647     * Special cases are e.g. layer or channel dimensions where you just put
2648     * in the index numbers instead of a MIDI controller value (means 0 for
2649     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2650     * etc.).
2651     *
2652 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2653 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2654     * @see pDimensionDefinitions
2655     * @see Dimensions
2656     */
2657 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2658 persson 858 uint8_t bits;
2659     int veldim = -1;
2660     int velbitpos;
2661     int bitpos = 0;
2662     int dimregidx = 0;
2663 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2664 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2665     // the velocity dimension must be handled after the other dimensions
2666     veldim = i;
2667     velbitpos = bitpos;
2668     } else {
2669     switch (pDimensionDefinitions[i].split_type) {
2670     case split_type_normal:
2671 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2672     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2673     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2674     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2675     }
2676     } else {
2677     // gig2: evenly sized zones
2678     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2679     }
2680 persson 858 break;
2681     case split_type_bit: // the value is already the sought dimension bit number
2682     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2683     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2684     break;
2685     }
2686     dimregidx |= bits << bitpos;
2687 schoenebeck 2 }
2688 persson 858 bitpos += pDimensionDefinitions[i].bits;
2689 schoenebeck 2 }
2690 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2691     if (veldim != -1) {
2692     // (dimreg is now the dimension region for the lowest velocity)
2693 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2694 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2695     else // normal split type
2696     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2697    
2698     dimregidx |= bits << velbitpos;
2699     dimreg = pDimensionRegions[dimregidx];
2700     }
2701     return dimreg;
2702 schoenebeck 2 }
2703    
2704     /**
2705     * Returns the appropriate DimensionRegion for the given dimension bit
2706     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2707     * instead of calling this method directly!
2708     *
2709 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2710 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2711     * bit numbers
2712     * @see GetDimensionRegionByValue()
2713     */
2714 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2715     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2716     << pDimensionDefinitions[5].bits | DimBits[5])
2717     << pDimensionDefinitions[4].bits | DimBits[4])
2718     << pDimensionDefinitions[3].bits | DimBits[3])
2719     << pDimensionDefinitions[2].bits | DimBits[2])
2720     << pDimensionDefinitions[1].bits | DimBits[1])
2721     << pDimensionDefinitions[0].bits | DimBits[0]];
2722 schoenebeck 2 }
2723    
2724     /**
2725     * Returns pointer address to the Sample referenced with this region.
2726     * This is the global Sample for the entire Region (not sure if this is
2727     * actually used by the Gigasampler engine - I would only use the Sample
2728     * referenced by the appropriate DimensionRegion instead of this sample).
2729     *
2730     * @returns address to Sample or NULL if there is no reference to a
2731     * sample saved in the .gig file
2732     */
2733     Sample* Region::GetSample() {
2734     if (pSample) return static_cast<gig::Sample*>(pSample);
2735     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2736     }
2737    
2738 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2739 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2740 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2741 persson 902 if (!file->pWavePoolTable) return NULL;
2742 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2743 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2744 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2745 schoenebeck 2 while (sample) {
2746 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2747 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2748 schoenebeck 2 sample = file->GetNextSample();
2749     }
2750     return NULL;
2751     }
2752    
2753    
2754    
2755     // *************** Instrument ***************
2756     // *
2757    
2758 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2759 persson 1180 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2760     { CHUNK_ID_INAM, 64 },
2761     { CHUNK_ID_ISFT, 12 },
2762     { 0, 0 }
2763     };
2764     pInfo->FixedStringLengths = fixedStringLengths;
2765 persson 918
2766 schoenebeck 2 // Initialization
2767     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2768 persson 1182 EffectSend = 0;
2769     Attenuation = 0;
2770     FineTune = 0;
2771     PitchbendRange = 0;
2772     PianoReleaseMode = false;
2773     DimensionKeyRange.low = 0;
2774     DimensionKeyRange.high = 0;
2775 schoenebeck 2
2776     // Loading
2777     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2778     if (lart) {
2779     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2780     if (_3ewg) {
2781     EffectSend = _3ewg->ReadUint16();
2782     Attenuation = _3ewg->ReadInt32();
2783     FineTune = _3ewg->ReadInt16();
2784     PitchbendRange = _3ewg->ReadInt16();
2785     uint8_t dimkeystart = _3ewg->ReadUint8();
2786     PianoReleaseMode = dimkeystart & 0x01;
2787     DimensionKeyRange.low = dimkeystart >> 1;
2788     DimensionKeyRange.high = _3ewg->ReadUint8();
2789     }
2790     }
2791    
2792 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2793 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2794 schoenebeck 809 if (lrgn) {
2795     RIFF::List* rgn = lrgn->GetFirstSubList();
2796     while (rgn) {
2797     if (rgn->GetListType() == LIST_TYPE_RGN) {
2798 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2799     pRegions->push_back(new Region(this, rgn));
2800 schoenebeck 809 }
2801     rgn = lrgn->GetNextSubList();
2802 schoenebeck 2 }
2803 schoenebeck 809 // Creating Region Key Table for fast lookup
2804     UpdateRegionKeyTable();
2805 schoenebeck 2 }
2806    
2807 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2808     }
2809    
2810     void Instrument::UpdateRegionKeyTable() {
2811 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2812     RegionList::iterator end = pRegions->end();
2813     for (; iter != end; ++iter) {
2814     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2815     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2816     RegionKeyTable[iKey] = pRegion;
2817 schoenebeck 2 }
2818     }
2819     }
2820    
2821     Instrument::~Instrument() {
2822     }
2823    
2824     /**
2825 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2826     * You have to call File::Save() to make changes persistent.
2827     *
2828     * Usually there is absolutely no need to call this method explicitly.
2829     * It will be called automatically when File::Save() was called.
2830     *
2831     * @throws gig::Exception if samples cannot be dereferenced
2832     */
2833     void Instrument::UpdateChunks() {
2834     // first update base classes' chunks
2835     DLS::Instrument::UpdateChunks();
2836    
2837     // update Regions' chunks
2838 schoenebeck 823 {
2839     RegionList::iterator iter = pRegions->begin();
2840     RegionList::iterator end = pRegions->end();
2841     for (; iter != end; ++iter)
2842     (*iter)->UpdateChunks();
2843     }
2844 schoenebeck 809
2845     // make sure 'lart' RIFF list chunk exists
2846     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2847     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2848     // make sure '3ewg' RIFF chunk exists
2849     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2850 persson 1264 if (!_3ewg) {
2851     File* pFile = (File*) GetParent();
2852    
2853     // 3ewg is bigger in gig3, as it includes the iMIDI rules
2854     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2855     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2856     memset(_3ewg->LoadChunkData(), 0, size);
2857     }
2858 schoenebeck 809 // update '3ewg' RIFF chunk
2859     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2860 persson 1179 store16(&pData[0], EffectSend);
2861     store32(&pData[2], Attenuation);
2862     store16(&pData[6], FineTune);
2863     store16(&pData[8], PitchbendRange);
2864 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2865 schoenebeck 809 DimensionKeyRange.low << 1;
2866 persson 1179 pData[10] = dimkeystart;
2867     pData[11] = DimensionKeyRange.high;
2868 schoenebeck 809 }
2869    
2870     /**
2871 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2872     *
2873     * @param Key MIDI Key number of triggered note / key (0 - 127)
2874     * @returns pointer adress to the appropriate Region or NULL if there
2875     * there is no Region defined for the given \a Key
2876     */
2877     Region* Instrument::GetRegion(unsigned int Key) {
2878 schoenebeck 823 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2879 schoenebeck 2 return RegionKeyTable[Key];
2880 schoenebeck 823
2881 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
2882     if (Key <= pRegions[i]->KeyRange.high &&
2883     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2884     }
2885     return NULL;*/
2886     }
2887    
2888     /**
2889     * Returns the first Region of the instrument. You have to call this
2890     * method once before you use GetNextRegion().
2891     *
2892     * @returns pointer address to first region or NULL if there is none
2893     * @see GetNextRegion()
2894     */
2895     Region* Instrument::GetFirstRegion() {
2896 schoenebeck 823 if (!pRegions) return NULL;
2897     RegionsIterator = pRegions->begin();
2898     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2899 schoenebeck 2 }
2900    
2901     /**
2902     * Returns the next Region of the instrument. You have to call
2903     * GetFirstRegion() once before you can use this method. By calling this
2904     * method multiple times it iterates through the available Regions.
2905     *
2906     * @returns pointer address to the next region or NULL if end reached
2907     * @see GetFirstRegion()
2908     */
2909     Region* Instrument::GetNextRegion() {
2910 schoenebeck 823 if (!pRegions) return NULL;
2911     RegionsIterator++;
2912     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2913 schoenebeck 2 }
2914    
2915 schoenebeck 809 Region* Instrument::AddRegion() {
2916     // create new Region object (and its RIFF chunks)
2917     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2918     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2919     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2920     Region* pNewRegion = new Region(this, rgn);
2921 schoenebeck 823 pRegions->push_back(pNewRegion);
2922     Regions = pRegions->size();
2923 schoenebeck 809 // update Region key table for fast lookup
2924     UpdateRegionKeyTable();
2925     // done
2926     return pNewRegion;
2927     }
2928 schoenebeck 2
2929 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2930     if (!pRegions) return;
2931 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2932 schoenebeck 809 // update Region key table for fast lookup
2933     UpdateRegionKeyTable();
2934     }
2935 schoenebeck 2
2936 schoenebeck 809
2937    
2938 schoenebeck 929 // *************** Group ***************
2939     // *
2940    
2941     /** @brief Constructor.
2942     *
2943 schoenebeck 930 * @param file - pointer to the gig::File object
2944     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2945     * NULL if this is a new Group
2946 schoenebeck 929 */
2947 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2948 schoenebeck 929 pFile = file;
2949     pNameChunk = ck3gnm;
2950     ::LoadString(pNameChunk, Name);
2951     }
2952    
2953     Group::~Group() {
2954 schoenebeck 1099 // remove the chunk associated with this group (if any)
2955     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2956 schoenebeck 929 }
2957    
2958     /** @brief Update chunks with current group settings.
2959     *
2960 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
2961     * to call File::Save() to make changes persistent.
2962     *
2963     * Usually there is absolutely no need to call this method explicitly.
2964     * It will be called automatically when File::Save() was called.
2965 schoenebeck 929 */
2966     void Group::UpdateChunks() {
2967     // make sure <3gri> and <3gnl> list chunks exist
2968 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2969 persson 1192 if (!_3gri) {
2970     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2971     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2972     }
2973 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2974 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2975 persson 1266
2976     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
2977     // v3 has a fixed list of 128 strings, find a free one
2978     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
2979     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
2980     pNameChunk = ck;
2981     break;
2982     }
2983     }
2984     }
2985    
2986 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2987     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2988     }
2989    
2990 schoenebeck 930 /**
2991     * Returns the first Sample of this Group. You have to call this method
2992     * once before you use GetNextSample().
2993     *
2994     * <b>Notice:</b> this method might block for a long time, in case the
2995     * samples of this .gig file were not scanned yet
2996     *
2997     * @returns pointer address to first Sample or NULL if there is none
2998     * applied to this Group
2999     * @see GetNextSample()
3000     */
3001     Sample* Group::GetFirstSample() {
3002     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3003     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3004     if (pSample->GetGroup() == this) return pSample;
3005     }
3006     return NULL;
3007     }
3008 schoenebeck 929
3009 schoenebeck 930 /**
3010     * Returns the next Sample of the Group. You have to call
3011     * GetFirstSample() once before you can use this method. By calling this
3012     * method multiple times it iterates through the Samples assigned to
3013     * this Group.
3014     *
3015     * @returns pointer address to the next Sample of this Group or NULL if
3016     * end reached
3017     * @see GetFirstSample()
3018     */
3019     Sample* Group::GetNextSample() {
3020     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3021     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3022     if (pSample->GetGroup() == this) return pSample;
3023     }
3024     return NULL;
3025     }
3026 schoenebeck 929
3027 schoenebeck 930 /**
3028     * Move Sample given by \a pSample from another Group to this Group.
3029     */
3030     void Group::AddSample(Sample* pSample) {
3031     pSample->pGroup = this;
3032     }
3033    
3034     /**
3035     * Move all members of this group to another group (preferably the 1st
3036     * one except this). This method is called explicitly by
3037     * File::DeleteGroup() thus when a Group was deleted. This code was
3038     * intentionally not placed in the destructor!
3039     */
3040     void Group::MoveAll() {
3041     // get "that" other group first
3042     Group* pOtherGroup = NULL;
3043     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3044     if (pOtherGroup != this) break;
3045     }
3046     if (!pOtherGroup) throw Exception(
3047     "Could not move samples to another group, since there is no "
3048     "other Group. This is a bug, report it!"
3049     );
3050     // now move all samples of this group to the other group
3051     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3052     pOtherGroup->AddSample(pSample);
3053     }
3054     }
3055    
3056    
3057    
3058 schoenebeck 2 // *************** File ***************
3059     // *
3060    
3061 persson 1199 // File version 2.0, 1998-06-28
3062     const DLS::version_t File::VERSION_2 = {
3063     0, 2, 19980628 & 0xffff, 19980628 >> 16
3064     };
3065    
3066     // File version 3.0, 2003-03-31
3067     const DLS::version_t File::VERSION_3 = {
3068     0, 3, 20030331 & 0xffff, 20030331 >> 16
3069     };
3070    
3071 persson 1180 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3072     { CHUNK_ID_IARL, 256 },
3073     { CHUNK_ID_IART, 128 },
3074     { CHUNK_ID_ICMS, 128 },
3075     { CHUNK_ID_ICMT, 1024 },
3076     { CHUNK_ID_ICOP, 128 },
3077     { CHUNK_ID_ICRD, 128 },
3078     { CHUNK_ID_IENG, 128 },
3079     { CHUNK_ID_IGNR, 128 },
3080     { CHUNK_ID_IKEY, 128 },
3081     { CHUNK_ID_IMED, 128 },
3082     { CHUNK_ID_INAM, 128 },
3083     { CHUNK_ID_IPRD, 128 },
3084     { CHUNK_ID_ISBJ, 128 },
3085     { CHUNK_ID_ISFT, 128 },
3086     { CHUNK_ID_ISRC, 128 },
3087     { CHUNK_ID_ISRF, 128 },
3088     { CHUNK_ID_ITCH, 128 },
3089     { 0, 0 }
3090     };
3091    
3092 schoenebeck 809 File::File() : DLS::File() {
3093 persson 1264 *pVersion = VERSION_3;
3094 schoenebeck 929 pGroups = NULL;
3095 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3096 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3097 persson 1192
3098     // add some mandatory chunks to get the file chunks in right
3099     // order (INFO chunk will be moved to first position later)
3100     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3101     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3102 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3103    
3104     GenerateDLSID();
3105 schoenebeck 809 }
3106    
3107 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3108 schoenebeck 929 pGroups = NULL;
3109 persson 1180 pInfo->FixedStringLengths = FixedStringLengths;
3110 schoenebeck 2 }
3111    
3112 schoenebeck 929 File::~File() {
3113     if (pGroups) {
3114     std::list<Group*>::iterator iter = pGroups->begin();
3115     std::list<Group*>::iterator end = pGroups->end();
3116     while (iter != end) {
3117     delete *iter;
3118     ++iter;
3119     }
3120     delete pGroups;
3121     }
3122     }
3123    
3124 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3125     if (!pSamples) LoadSamples(pProgress);
3126 schoenebeck 2 if (!pSamples) return NULL;
3127     SamplesIterator = pSamples->begin();
3128     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3129     }
3130    
3131     Sample* File::GetNextSample() {
3132     if (!pSamples) return NULL;
3133     SamplesIterator++;
3134     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3135     }
3136    
3137 schoenebeck 809 /** @brief Add a new sample.
3138     *
3139     * This will create a new Sample object for the gig file. You have to
3140     * call Save() to make this persistent to the file.
3141     *
3142     * @returns pointer to new Sample object
3143     */
3144     Sample* File::AddSample() {
3145     if (!pSamples) LoadSamples();
3146     __ensureMandatoryChunksExist();
3147     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3148     // create new Sample object and its respective 'wave' list chunk
3149     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3150     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3151 persson 1192
3152     // add mandatory chunks to get the chunks in right order
3153     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3154     wave->AddSubList(LIST_TYPE_INFO);
3155    
3156 schoenebeck 809 pSamples->push_back(pSample);
3157     return pSample;
3158     }
3159    
3160     /** @brief Delete a sample.
3161     *
3162 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3163     * references to this sample from Regions and DimensionRegions will be
3164     * removed. You have to call Save() to make this persistent to the file.
3165 schoenebeck 809 *
3166     * @param pSample - sample to delete
3167     * @throws gig::Exception if given sample could not be found
3168     */
3169     void File::DeleteSample(Sample* pSample) {
3170 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3171     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3172 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3173 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3174 schoenebeck 809 pSamples->erase(iter);
3175     delete pSample;
3176 persson 1266
3177     // remove all references to the sample
3178     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3179     instrument = GetNextInstrument()) {
3180     for (Region* region = instrument->GetFirstRegion() ; region ;
3181     region = instrument->GetNextRegion()) {
3182    
3183     if (region->GetSample() == pSample) region->SetSample(NULL);
3184    
3185     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3186     gig::DimensionRegion *d = region->pDimensionRegions[i];
3187     if (d->pSample == pSample) d->pSample = NULL;
3188     }
3189     }
3190     }
3191 schoenebeck 809 }
3192    
3193 schoenebeck 823 void File::LoadSamples() {
3194     LoadSamples(NULL);
3195     }
3196    
3197 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3198 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3199     // to resolve the group they belong to
3200 schoenebeck 1158 if (!pGroups) LoadGroups();
3201 schoenebeck 930
3202 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3203    
3204 persson 666 RIFF::File* file = pRIFF;
3205 schoenebeck 515
3206 persson 666 // just for progress calculation
3207     int iSampleIndex = 0;
3208     int iTotalSamples = WavePoolCount;
3209 schoenebeck 515
3210 persson 666 // check if samples should be loaded from extension files
3211     int lastFileNo = 0;
3212     for (int i = 0 ; i < WavePoolCount ; i++) {
3213     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3214     }
3215 schoenebeck 780 String name(pRIFF->GetFileName());
3216     int nameLen = name.length();
3217 persson 666 char suffix[6];
3218 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3219 schoenebeck 515
3220 persson 666 for (int fileNo = 0 ; ; ) {
3221     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3222     if (wvpl) {
3223     unsigned long wvplFileOffset = wvpl->GetFilePos();
3224     RIFF::List* wave = wvpl->GetFirstSubList();
3225     while (wave) {
3226     if (wave->GetListType() == LIST_TYPE_WAVE) {
3227     // notify current progress
3228     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3229     __notify_progress(pProgress, subprogress);
3230    
3231     unsigned long waveFileOffset = wave->GetFilePos();
3232     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3233    
3234     iSampleIndex++;
3235     }
3236     wave = wvpl->GetNextSubList();
3237 schoenebeck 2 }
3238 persson 666
3239     if (fileNo == lastFileNo) break;
3240    
3241     // open extension file (*.gx01, *.gx02, ...)
3242     fileNo++;
3243     sprintf(suffix, ".gx%02d", fileNo);
3244     name.replace(nameLen, 5, suffix);
3245     file = new RIFF::File(name);
3246     ExtensionFiles.push_back(file);
3247 schoenebeck 823 } else break;
3248 schoenebeck 2 }
3249 persson 666
3250     __notify_progress(pProgress, 1.0); // notify done
3251 schoenebeck 2 }
3252    
3253     Instrument* File::GetFirstInstrument() {
3254     if (!pInstruments) LoadInstruments();
3255     if (!pInstruments) return NULL;
3256     InstrumentsIterator = pInstruments->begin();
3257 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3258 schoenebeck 2 }
3259    
3260     Instrument* File::GetNextInstrument() {
3261     if (!pInstruments) return NULL;
3262     InstrumentsIterator++;
3263 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3264 schoenebeck 2 }
3265    
3266 schoenebeck 21 /**
3267     * Returns the instrument with the given index.
3268     *
3269 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3270     * @param pProgress - optional: callback function for progress notification
3271 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3272     */
3273 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3274     if (!pInstruments) {
3275     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3276    
3277     // sample loading subtask
3278     progress_t subprogress;
3279     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3280     __notify_progress(&subprogress, 0.0f);
3281     GetFirstSample(&subprogress); // now force all samples to be loaded
3282     __notify_progress(&subprogress, 1.0f);
3283    
3284     // instrument loading subtask
3285     if (pProgress && pProgress->callback) {
3286     subprogress.__range_min = subprogress.__range_max;
3287     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3288     }
3289     __notify_progress(&subprogress, 0.0f);
3290     LoadInstruments(&subprogress);
3291     __notify_progress(&subprogress, 1.0f);
3292     }
3293 schoenebeck 21 if (!pInstruments) return NULL;
3294     InstrumentsIterator = pInstruments->begin();
3295     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3296 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3297 schoenebeck 21 InstrumentsIterator++;
3298     }
3299     return NULL;
3300     }
3301    
3302 schoenebeck 809 /** @brief Add a new instrument definition.
3303     *
3304     * This will create a new Instrument object for the gig file. You have
3305     * to call Save() to make this persistent to the file.
3306     *
3307     * @returns pointer to new Instrument object
3308     */
3309     Instrument* File::AddInstrument() {
3310     if (!pInstruments) LoadInstruments();
3311     __ensureMandatoryChunksExist();
3312     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3313     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3314 persson 1192
3315     // add mandatory chunks to get the chunks in right order
3316     lstInstr->AddSubList(LIST_TYPE_INFO);
3317 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3318 persson 1192
3319 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3320 persson 1209 pInstrument->GenerateDLSID();
3321 persson 1182
3322 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3323    
3324 persson 1182 // this string is needed for the gig to be loadable in GSt:
3325     pInstrument->pInfo->Software = "Endless Wave";
3326    
3327 schoenebeck 809 pInstruments->push_back(pInstrument);
3328     return pInstrument;
3329     }
3330    
3331     /** @brief Delete an instrument.
3332     *
3333     * This will delete the given Instrument object from the gig file. You
3334     * have to call Save() to make this persistent to the file.
3335     *
3336     * @param pInstrument - instrument to delete
3337 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3338 schoenebeck 809 */
3339     void File::DeleteInstrument(Instrument* pInstrument) {
3340     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3341 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3342 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3343     pInstruments->erase(iter);
3344     delete pInstrument;
3345     }
3346    
3347 schoenebeck 823 void File::LoadInstruments() {
3348     LoadInstruments(NULL);
3349     }
3350    
3351 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3352 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3353 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3354     if (lstInstruments) {
3355 schoenebeck 515 int iInstrumentIndex = 0;
3356 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3357     while (lstInstr) {
3358     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3359 schoenebeck 515 // notify current progress
3360     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3361     __notify_progress(pProgress, localProgress);
3362    
3363     // divide local progress into subprogress for loading current Instrument
3364     progress_t subprogress;
3365     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3366    
3367     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3368    
3369     iInstrumentIndex++;
3370 schoenebeck 2 }
3371     lstInstr = lstInstruments->GetNextSubList();
3372     }
3373 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3374 schoenebeck 2 }
3375     }
3376    
3377 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3378     /// update is done directly to disk, as this method is called
3379     /// after File::Save()
3380 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3381     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3382     if (!_3crc) return;
3383 persson 1207
3384     // get the index of the sample
3385 persson 1199 int iWaveIndex = -1;
3386     File::SampleList::iterator iter = pSamples->begin();
3387     File::SampleList::iterator end = pSamples->end();
3388     for (int index = 0; iter != end; ++iter, ++index) {
3389     if (*iter == pSample) {
3390     iWaveIndex = index;
3391     break;
3392     }
3393     }
3394     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3395    
3396 persson 1207 // write the CRC-32 checksum to disk
3397 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3398     uint32_t tmp = 1;
3399     _3crc->WriteUint32(&tmp); // unknown, always 1?
3400     _3crc->WriteUint32(&crc);
3401     }
3402    
3403 schoenebeck 929 Group* File::GetFirstGroup() {
3404     if (!pGroups) LoadGroups();
3405 schoenebeck 930 // there must always be at least one group
3406 schoenebeck 929 GroupsIterator = pGroups->begin();
3407 schoenebeck 930 return *GroupsIterator;
3408 schoenebeck 929 }
3409 schoenebeck 2
3410 schoenebeck 929 Group* File::GetNextGroup() {
3411     if (!pGroups) return NULL;
3412     ++GroupsIterator;
3413     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3414     }
3415 schoenebeck 2
3416 schoenebeck 929 /**
3417     * Returns the group with the given index.
3418     *
3419     * @param index - number of the sought group (0..n)
3420     * @returns sought group or NULL if there's no such group
3421     */
3422     Group* File::GetGroup(uint index) {
3423     if (!pGroups) LoadGroups();
3424     GroupsIterator = pGroups->begin();
3425     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3426     if (i == index) return *GroupsIterator;
3427     ++GroupsIterator;
3428     }
3429     return NULL;
3430     }
3431    
3432     Group* File::AddGroup() {
3433     if (!pGroups) LoadGroups();
3434 schoenebeck 930 // there must always be at least one group
3435 schoenebeck 929 __ensureMandatoryChunksExist();
3436 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3437 schoenebeck 929 pGroups->push_back(pGroup);
3438     return pGroup;
3439     }
3440    
3441 schoenebeck 1081 /** @brief Delete a group and its samples.
3442     *
3443     * This will delete the given Group object and all the samples that
3444     * belong to this group from the gig file. You have to call Save() to
3445     * make this persistent to the file.
3446     *
3447     * @param pGroup - group to delete
3448     * @throws gig::Exception if given group could not be found
3449     */
3450 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3451 schoenebeck 930 if (!pGroups) LoadGroups();
3452 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3453     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3454 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3455 schoenebeck 1081 // delete all members of this group
3456     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3457     DeleteSample(pSample);
3458     }
3459     // now delete this group object
3460     pGroups->erase(iter);
3461     delete pGroup;
3462     }
3463    
3464     /** @brief Delete a group.
3465     *
3466     * This will delete the given Group object from the gig file. All the
3467     * samples that belong to this group will not be deleted, but instead
3468     * be moved to another group. You have to call Save() to make this
3469     * persistent to the file.
3470     *
3471     * @param pGroup - group to delete
3472     * @throws gig::Exception if given group could not be found
3473     */
3474     void File::DeleteGroupOnly(Group* pGroup) {
3475     if (!pGroups) LoadGroups();
3476     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3477     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3478     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3479 schoenebeck 930 // move all members of this group to another group
3480     pGroup->MoveAll();
3481 schoenebeck 929 pGroups->erase(iter);
3482     delete pGroup;
3483     }
3484    
3485     void File::LoadGroups() {
3486     if (!pGroups) pGroups = new std::list<Group*>;
3487 schoenebeck 930 // try to read defined groups from file
3488 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3489 schoenebeck 930 if (lst3gri) {
3490     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3491     if (lst3gnl) {
3492     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3493     while (ck) {
3494     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3495 persson 1266 if (pVersion && pVersion->major == 3 &&
3496     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3497    
3498 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3499     }
3500     ck = lst3gnl->GetNextSubChunk();
3501 schoenebeck 929 }
3502     }
3503     }
3504 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3505     if (!pGroups->size()) {
3506     Group* pGroup = new Group(this, NULL);
3507     pGroup->Name = "Default Group";
3508     pGroups->push_back(pGroup);
3509     }
3510 schoenebeck 929 }
3511    
3512 schoenebeck 1098 /**
3513     * Apply all the gig file's current instruments, samples, groups and settings
3514     * to the respective RIFF chunks. You have to call Save() to make changes
3515     * persistent.
3516     *
3517     * Usually there is absolutely no need to call this method explicitly.
3518     * It will be called automatically when File::Save() was called.
3519     *
3520     * @throws Exception - on errors
3521     */
3522     void File::UpdateChunks() {
3523 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3524 persson 1192
3525 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3526    
3527 schoenebeck 1098 // first update base class's chunks
3528     DLS::File::UpdateChunks();
3529 schoenebeck 929
3530 persson 1199 if (newFile) {
3531 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3532     // is placed first in file
3533 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3534 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3535     if (first != info) {
3536     pRIFF->MoveSubChunk(info, first);
3537     }
3538     }
3539    
3540 schoenebeck 1098 // update group's chunks
3541     if (pGroups) {
3542     std::list<Group*>::iterator iter = pGroups->begin();
3543     std::list<Group*>::iterator end = pGroups->end();
3544     for (; iter != end; ++iter) {
3545     (*iter)->UpdateChunks();
3546     }
3547 persson 1266
3548     // v3: make sure the file has 128 3gnm chunks
3549     if (pVersion && pVersion->major == 3) {
3550     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3551     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3552     for (int i = 0 ; i < 128 ; i++) {
3553     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3554     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3555     }
3556     }
3557 schoenebeck 1098 }
3558 persson 1199
3559     // update einf chunk
3560    
3561     // The einf chunk contains statistics about the gig file, such
3562     // as the number of regions and samples used by each
3563     // instrument. It is divided in equally sized parts, where the
3564     // first part contains information about the whole gig file,
3565     // and the rest of the parts map to each instrument in the
3566     // file.
3567     //
3568     // At the end of each part there is a bit map of each sample
3569     // in the file, where a set bit means that the sample is used
3570     // by the file/instrument.
3571     //
3572     // Note that there are several fields with unknown use. These
3573     // are set to zero.
3574    
3575     int sublen = pSamples->size() / 8 + 49;
3576     int einfSize = (Instruments + 1) * sublen;
3577    
3578     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3579     if (einf) {
3580     if (einf->GetSize() != einfSize) {
3581     einf->Resize(einfSize);
3582     memset(einf->LoadChunkData(), 0, einfSize);
3583     }
3584     } else if (newFile) {
3585     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3586     }
3587     if (einf) {
3588     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3589    
3590     std::map<gig::Sample*,int> sampleMap;
3591     int sampleIdx = 0;
3592     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3593     sampleMap[pSample] = sampleIdx++;
3594     }
3595    
3596     int totnbusedsamples = 0;
3597     int totnbusedchannels = 0;
3598     int totnbregions = 0;
3599     int totnbdimregions = 0;
3600 persson 1264 int totnbloops = 0;
3601 persson 1199 int instrumentIdx = 0;
3602    
3603     memset(&pData[48], 0, sublen - 48);
3604    
3605     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3606     instrument = GetNextInstrument()) {
3607     int nbusedsamples = 0;
3608     int nbusedchannels = 0;
3609     int nbdimregions = 0;
3610 persson 1264 int nbloops = 0;
3611 persson 1199
3612     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3613    
3614     for (Region* region = instrument->GetFirstRegion() ; region ;
3615     region = instrument->GetNextRegion()) {
3616     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3617     gig::DimensionRegion *d = region->pDimensionRegions[i];
3618     if (d->pSample) {
3619     int sampleIdx = sampleMap[d->pSample];
3620     int byte = 48 + sampleIdx / 8;
3621     int bit = 1 << (sampleIdx & 7);
3622     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3623     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3624     nbusedsamples++;
3625     nbusedchannels += d->pSample->Channels;
3626    
3627     if ((pData[byte] & bit) == 0) {
3628     pData[byte] |= bit;
3629     totnbusedsamples++;
3630     totnbusedchannels += d->pSample->Channels;
3631     }
3632     }
3633     }
3634 persson 1264 if (d->SampleLoops) nbloops++;
3635 persson 1199 }
3636     nbdimregions += region->DimensionRegions;
3637     }
3638     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3639     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3640     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3641     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3642     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3643     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3644     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3645 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3646     // next 8 bytes unknown
3647 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3648     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3649     // next 4 bytes unknown
3650    
3651     totnbregions += instrument->Regions;
3652     totnbdimregions += nbdimregions;
3653 persson 1264 totnbloops += nbloops;
3654 persson 1199 instrumentIdx++;
3655     }
3656     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3657     // store32(&pData[0], sublen);
3658     store32(&pData[4], totnbusedchannels);
3659     store32(&pData[8], totnbusedsamples);
3660     store32(&pData[12], Instruments);
3661     store32(&pData[16], totnbregions);
3662     store32(&pData[20], totnbdimregions);
3663 persson 1264 store32(&pData[24], totnbloops);
3664     // next 8 bytes unknown
3665     // next 4 bytes unknown, not always 0
3666 persson 1199 store32(&pData[40], pSamples->size());
3667     // next 4 bytes unknown
3668     }
3669    
3670     // update 3crc chunk
3671    
3672     // The 3crc chunk contains CRC-32 checksums for the
3673     // samples. The actual checksum values will be filled in
3674     // later, by Sample::Write.
3675    
3676     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3677     if (_3crc) {
3678     _3crc->Resize(pSamples->size() * 8);
3679     } else if (newFile) {
3680     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3681     _3crc->LoadChunkData();
3682 persson 1264
3683     // the order of einf and 3crc is not the same in v2 and v3
3684     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3685 persson 1199 }
3686 schoenebeck 1098 }
3687 schoenebeck 929
3688 schoenebeck 1098
3689    
3690 schoenebeck 2 // *************** Exception ***************
3691     // *
3692    
3693     Exception::Exception(String Message) : DLS::Exception(Message) {
3694     }
3695    
3696     void Exception::PrintMessage() {
3697     std::cout << "gig::Exception: " << Message << std::endl;
3698     }
3699    
3700 schoenebeck 518
3701     // *************** functions ***************
3702     // *
3703    
3704     /**
3705     * Returns the name of this C++ library. This is usually "libgig" of
3706     * course. This call is equivalent to RIFF::libraryName() and
3707     * DLS::libraryName().
3708     */
3709     String libraryName() {
3710     return PACKAGE;
3711     }
3712    
3713     /**
3714     * Returns version of this C++ library. This call is equivalent to
3715     * RIFF::libraryVersion() and DLS::libraryVersion().
3716     */
3717     String libraryVersion() {
3718     return VERSION;
3719     }
3720    
3721 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC