/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1678 - (hide annotations) (download)
Sun Feb 10 16:07:22 2008 UTC (11 years, 4 months ago) by persson
File size: 174537 byte(s)
* bugfix: saving to the same file after the file size had been
  increased made the file corrupt (#82)
* bugfix: removed another iterator invalidation in DeleteSample
* changed the functions for midi rules, to get rid of the iterator

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 1113
258 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
259     // *
260    
261     static uint32_t* __initCRCTable() {
262     static uint32_t res[256];
263    
264     for (int i = 0 ; i < 256 ; i++) {
265     uint32_t c = i;
266     for (int j = 0 ; j < 8 ; j++) {
267     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268     }
269     res[i] = c;
270     }
271     return res;
272     }
273    
274     static const uint32_t* __CRCTable = __initCRCTable();
275    
276     /**
277     * Initialize a CRC variable.
278     *
279     * @param crc - variable to be initialized
280     */
281     inline static void __resetCRC(uint32_t& crc) {
282     crc = 0xffffffff;
283     }
284    
285     /**
286     * Used to calculate checksums of the sample data in a gig file. The
287     * checksums are stored in the 3crc chunk of the gig file and
288     * automatically updated when a sample is written with Sample::Write().
289     *
290     * One should call __resetCRC() to initialize the CRC variable to be
291     * used before calling this function the first time.
292     *
293     * After initializing the CRC variable one can call this function
294     * arbitrary times, i.e. to split the overall CRC calculation into
295     * steps.
296     *
297     * Once the whole data was processed by __calculateCRC(), one should
298     * call __encodeCRC() to get the final CRC result.
299     *
300     * @param buf - pointer to data the CRC shall be calculated of
301     * @param bufSize - size of the data to be processed
302     * @param crc - variable the CRC sum shall be stored to
303     */
304     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305     for (int i = 0 ; i < bufSize ; i++) {
306     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307     }
308     }
309    
310     /**
311     * Returns the final CRC result.
312     *
313     * @param crc - variable previously passed to __calculateCRC()
314     */
315     inline static uint32_t __encodeCRC(const uint32_t& crc) {
316     return crc ^ 0xffffffff;
317     }
318    
319    
320    
321 schoenebeck 1113 // *************** Other Internal functions ***************
322     // *
323    
324     static split_type_t __resolveSplitType(dimension_t dimension) {
325     return (
326     dimension == dimension_layer ||
327     dimension == dimension_samplechannel ||
328     dimension == dimension_releasetrigger ||
329     dimension == dimension_keyboard ||
330     dimension == dimension_roundrobin ||
331     dimension == dimension_random ||
332     dimension == dimension_smartmidi ||
333     dimension == dimension_roundrobinkeyboard
334     ) ? split_type_bit : split_type_normal;
335     }
336    
337     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338     return (dimension_definition.split_type == split_type_normal)
339     ? int(128.0 / dimension_definition.zones) : 0;
340     }
341    
342    
343    
344 schoenebeck 2 // *************** Sample ***************
345     // *
346    
347 schoenebeck 384 unsigned int Sample::Instances = 0;
348     buffer_t Sample::InternalDecompressionBuffer;
349 schoenebeck 2
350 schoenebeck 809 /** @brief Constructor.
351     *
352     * Load an existing sample or create a new one. A 'wave' list chunk must
353     * be given to this constructor. In case the given 'wave' list chunk
354     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355     * format and sample data will be loaded from there, otherwise default
356     * values will be used and those chunks will be created when
357     * File::Save() will be called later on.
358     *
359     * @param pFile - pointer to gig::File where this sample is
360     * located (or will be located)
361     * @param waveList - pointer to 'wave' list chunk which is (or
362     * will be) associated with this sample
363     * @param WavePoolOffset - offset of this sample data from wave pool
364     * ('wvpl') list chunk
365     * @param fileNo - number of an extension file where this sample
366     * is located, 0 otherwise
367     */
368 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
370 persson 1180 { CHUNK_ID_INAM, 64 },
371     { 0, 0 }
372     };
373 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
374 schoenebeck 2 Instances++;
375 persson 666 FileNo = fileNo;
376 schoenebeck 2
377 schoenebeck 1381 __resetCRC(crc);
378    
379 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380     if (pCk3gix) {
381 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
382 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
383 schoenebeck 809 } else { // '3gix' chunk missing
384 schoenebeck 930 // by default assigned to that mandatory "Default Group"
385     pGroup = pFile->GetGroup(0);
386 schoenebeck 809 }
387 schoenebeck 2
388 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
389     if (pCkSmpl) {
390     Manufacturer = pCkSmpl->ReadInt32();
391     Product = pCkSmpl->ReadInt32();
392     SamplePeriod = pCkSmpl->ReadInt32();
393     MIDIUnityNote = pCkSmpl->ReadInt32();
394     FineTune = pCkSmpl->ReadInt32();
395     pCkSmpl->Read(&SMPTEFormat, 1, 4);
396     SMPTEOffset = pCkSmpl->ReadInt32();
397     Loops = pCkSmpl->ReadInt32();
398     pCkSmpl->ReadInt32(); // manufByt
399     LoopID = pCkSmpl->ReadInt32();
400     pCkSmpl->Read(&LoopType, 1, 4);
401     LoopStart = pCkSmpl->ReadInt32();
402     LoopEnd = pCkSmpl->ReadInt32();
403     LoopFraction = pCkSmpl->ReadInt32();
404     LoopPlayCount = pCkSmpl->ReadInt32();
405     } else { // 'smpl' chunk missing
406     // use default values
407     Manufacturer = 0;
408     Product = 0;
409 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410 persson 1218 MIDIUnityNote = 60;
411 schoenebeck 809 FineTune = 0;
412 persson 1182 SMPTEFormat = smpte_format_no_offset;
413 schoenebeck 809 SMPTEOffset = 0;
414     Loops = 0;
415     LoopID = 0;
416 persson 1182 LoopType = loop_type_normal;
417 schoenebeck 809 LoopStart = 0;
418     LoopEnd = 0;
419     LoopFraction = 0;
420     LoopPlayCount = 0;
421     }
422 schoenebeck 2
423     FrameTable = NULL;
424     SamplePos = 0;
425     RAMCache.Size = 0;
426     RAMCache.pStart = NULL;
427     RAMCache.NullExtensionSize = 0;
428    
429 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
430    
431 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
432     Compressed = ewav;
433     Dithered = false;
434     TruncatedBits = 0;
435 schoenebeck 2 if (Compressed) {
436 persson 437 uint32_t version = ewav->ReadInt32();
437     if (version == 3 && BitDepth == 24) {
438     Dithered = ewav->ReadInt32();
439     ewav->SetPos(Channels == 2 ? 84 : 64);
440     TruncatedBits = ewav->ReadInt32();
441     }
442 schoenebeck 2 ScanCompressedSample();
443     }
444 schoenebeck 317
445     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
446 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
447     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
448     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
449 schoenebeck 317 }
450 persson 437 FrameOffset = 0; // just for streaming compressed samples
451 schoenebeck 21
452 persson 864 LoopSize = LoopEnd - LoopStart + 1;
453 schoenebeck 2 }
454    
455 schoenebeck 809 /**
456     * Apply sample and its settings to the respective RIFF chunks. You have
457     * to call File::Save() to make changes persistent.
458     *
459     * Usually there is absolutely no need to call this method explicitly.
460     * It will be called automatically when File::Save() was called.
461     *
462 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
463 schoenebeck 809 * was provided yet
464     * @throws gig::Exception if there is any invalid sample setting
465     */
466     void Sample::UpdateChunks() {
467     // first update base class's chunks
468     DLS::Sample::UpdateChunks();
469    
470     // make sure 'smpl' chunk exists
471     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472 persson 1182 if (!pCkSmpl) {
473     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474     memset(pCkSmpl->LoadChunkData(), 0, 60);
475     }
476 schoenebeck 809 // update 'smpl' chunk
477     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479 persson 1179 store32(&pData[0], Manufacturer);
480     store32(&pData[4], Product);
481     store32(&pData[8], SamplePeriod);
482     store32(&pData[12], MIDIUnityNote);
483     store32(&pData[16], FineTune);
484     store32(&pData[20], SMPTEFormat);
485     store32(&pData[24], SMPTEOffset);
486     store32(&pData[28], Loops);
487 schoenebeck 809
488     // we skip 'manufByt' for now (4 bytes)
489    
490 persson 1179 store32(&pData[36], LoopID);
491     store32(&pData[40], LoopType);
492     store32(&pData[44], LoopStart);
493     store32(&pData[48], LoopEnd);
494     store32(&pData[52], LoopFraction);
495     store32(&pData[56], LoopPlayCount);
496 schoenebeck 809
497     // make sure '3gix' chunk exists
498     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
499     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
500 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
501 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
502 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
503     if (pFile->pGroups) {
504     std::list<Group*>::iterator iter = pFile->pGroups->begin();
505     std::list<Group*>::iterator end = pFile->pGroups->end();
506 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
507 schoenebeck 929 if (*iter == pGroup) {
508     iSampleGroup = i;
509     break; // found
510     }
511     }
512     }
513 schoenebeck 809 // update '3gix' chunk
514     pData = (uint8_t*) pCk3gix->LoadChunkData();
515 persson 1179 store16(&pData[0], iSampleGroup);
516 schoenebeck 809 }
517    
518 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
519     void Sample::ScanCompressedSample() {
520     //TODO: we have to add some more scans here (e.g. determine compression rate)
521     this->SamplesTotal = 0;
522     std::list<unsigned long> frameOffsets;
523    
524 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
525 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
526 persson 365
527 schoenebeck 2 // Scanning
528     pCkData->SetPos(0);
529 persson 365 if (Channels == 2) { // Stereo
530     for (int i = 0 ; ; i++) {
531     // for 24 bit samples every 8:th frame offset is
532     // stored, to save some memory
533     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
534    
535     const int mode_l = pCkData->ReadUint8();
536     const int mode_r = pCkData->ReadUint8();
537     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
538     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
539    
540     if (pCkData->RemainingBytes() <= frameSize) {
541     SamplesInLastFrame =
542     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
543     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
544     SamplesTotal += SamplesInLastFrame;
545 schoenebeck 2 break;
546 persson 365 }
547     SamplesTotal += SamplesPerFrame;
548     pCkData->SetPos(frameSize, RIFF::stream_curpos);
549     }
550     }
551     else { // Mono
552     for (int i = 0 ; ; i++) {
553     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
554    
555     const int mode = pCkData->ReadUint8();
556     if (mode > 5) throw gig::Exception("Unknown compression mode");
557     const unsigned long frameSize = bytesPerFrame[mode];
558    
559     if (pCkData->RemainingBytes() <= frameSize) {
560     SamplesInLastFrame =
561     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
562     SamplesTotal += SamplesInLastFrame;
563 schoenebeck 2 break;
564 persson 365 }
565     SamplesTotal += SamplesPerFrame;
566     pCkData->SetPos(frameSize, RIFF::stream_curpos);
567 schoenebeck 2 }
568     }
569     pCkData->SetPos(0);
570    
571     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
572     if (FrameTable) delete[] FrameTable;
573     FrameTable = new unsigned long[frameOffsets.size()];
574     std::list<unsigned long>::iterator end = frameOffsets.end();
575     std::list<unsigned long>::iterator iter = frameOffsets.begin();
576     for (int i = 0; iter != end; i++, iter++) {
577     FrameTable[i] = *iter;
578     }
579     }
580    
581     /**
582     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
583     * ReleaseSampleData() to free the memory if you don't need the cached
584     * sample data anymore.
585     *
586     * @returns buffer_t structure with start address and size of the buffer
587     * in bytes
588     * @see ReleaseSampleData(), Read(), SetPos()
589     */
590     buffer_t Sample::LoadSampleData() {
591     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
592     }
593    
594     /**
595     * Reads (uncompresses if needed) and caches the first \a SampleCount
596     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
597     * memory space if you don't need the cached samples anymore. There is no
598     * guarantee that exactly \a SampleCount samples will be cached; this is
599     * not an error. The size will be eventually truncated e.g. to the
600     * beginning of a frame of a compressed sample. This is done for
601     * efficiency reasons while streaming the wave by your sampler engine
602     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
603     * that will be returned to determine the actual cached samples, but note
604     * that the size is given in bytes! You get the number of actually cached
605     * samples by dividing it by the frame size of the sample:
606 schoenebeck 384 * @code
607 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
608     * long cachedsamples = buf.Size / pSample->FrameSize;
609 schoenebeck 384 * @endcode
610 schoenebeck 2 *
611     * @param SampleCount - number of sample points to load into RAM
612     * @returns buffer_t structure with start address and size of
613     * the cached sample data in bytes
614     * @see ReleaseSampleData(), Read(), SetPos()
615     */
616     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
617     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
618     }
619    
620     /**
621     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
622     * ReleaseSampleData() to free the memory if you don't need the cached
623     * sample data anymore.
624     * The method will add \a NullSamplesCount silence samples past the
625     * official buffer end (this won't affect the 'Size' member of the
626     * buffer_t structure, that means 'Size' always reflects the size of the
627     * actual sample data, the buffer might be bigger though). Silence
628     * samples past the official buffer are needed for differential
629     * algorithms that always have to take subsequent samples into account
630     * (resampling/interpolation would be an important example) and avoids
631     * memory access faults in such cases.
632     *
633     * @param NullSamplesCount - number of silence samples the buffer should
634     * be extended past it's data end
635     * @returns buffer_t structure with start address and
636     * size of the buffer in bytes
637     * @see ReleaseSampleData(), Read(), SetPos()
638     */
639     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
640     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
641     }
642    
643     /**
644     * Reads (uncompresses if needed) and caches the first \a SampleCount
645     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
646     * memory space if you don't need the cached samples anymore. There is no
647     * guarantee that exactly \a SampleCount samples will be cached; this is
648     * not an error. The size will be eventually truncated e.g. to the
649     * beginning of a frame of a compressed sample. This is done for
650     * efficiency reasons while streaming the wave by your sampler engine
651     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
652     * that will be returned to determine the actual cached samples, but note
653     * that the size is given in bytes! You get the number of actually cached
654     * samples by dividing it by the frame size of the sample:
655 schoenebeck 384 * @code
656 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
657     * long cachedsamples = buf.Size / pSample->FrameSize;
658 schoenebeck 384 * @endcode
659 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
660     * official buffer end (this won't affect the 'Size' member of the
661     * buffer_t structure, that means 'Size' always reflects the size of the
662     * actual sample data, the buffer might be bigger though). Silence
663     * samples past the official buffer are needed for differential
664     * algorithms that always have to take subsequent samples into account
665     * (resampling/interpolation would be an important example) and avoids
666     * memory access faults in such cases.
667     *
668     * @param SampleCount - number of sample points to load into RAM
669     * @param NullSamplesCount - number of silence samples the buffer should
670     * be extended past it's data end
671     * @returns buffer_t structure with start address and
672     * size of the cached sample data in bytes
673     * @see ReleaseSampleData(), Read(), SetPos()
674     */
675     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
676     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
677     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
678     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
679     RAMCache.pStart = new int8_t[allocationsize];
680     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
681     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
682     // fill the remaining buffer space with silence samples
683     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
684     return GetCache();
685     }
686    
687     /**
688     * Returns current cached sample points. A buffer_t structure will be
689     * returned which contains address pointer to the begin of the cache and
690     * the size of the cached sample data in bytes. Use
691     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
692     * RAM.
693     *
694     * @returns buffer_t structure with current cached sample points
695     * @see LoadSampleData();
696     */
697     buffer_t Sample::GetCache() {
698     // return a copy of the buffer_t structure
699     buffer_t result;
700     result.Size = this->RAMCache.Size;
701     result.pStart = this->RAMCache.pStart;
702     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
703     return result;
704     }
705    
706     /**
707     * Frees the cached sample from RAM if loaded with
708     * <i>LoadSampleData()</i> previously.
709     *
710     * @see LoadSampleData();
711     */
712     void Sample::ReleaseSampleData() {
713     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
714     RAMCache.pStart = NULL;
715     RAMCache.Size = 0;
716     }
717    
718 schoenebeck 809 /** @brief Resize sample.
719     *
720     * Resizes the sample's wave form data, that is the actual size of
721     * sample wave data possible to be written for this sample. This call
722     * will return immediately and just schedule the resize operation. You
723     * should call File::Save() to actually perform the resize operation(s)
724     * "physically" to the file. As this can take a while on large files, it
725     * is recommended to call Resize() first on all samples which have to be
726     * resized and finally to call File::Save() to perform all those resize
727     * operations in one rush.
728     *
729     * The actual size (in bytes) is dependant to the current FrameSize
730     * value. You may want to set FrameSize before calling Resize().
731     *
732     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
733     * enlarged samples before calling File::Save() as this might exceed the
734     * current sample's boundary!
735     *
736 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
737     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
738 schoenebeck 809 * other formats will fail!
739     *
740     * @param iNewSize - new sample wave data size in sample points (must be
741     * greater than zero)
742 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
743 schoenebeck 809 * or if \a iNewSize is less than 1
744     * @throws gig::Exception if existing sample is compressed
745     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
746     * DLS::Sample::FormatTag, File::Save()
747     */
748     void Sample::Resize(int iNewSize) {
749     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
750     DLS::Sample::Resize(iNewSize);
751     }
752    
753 schoenebeck 2 /**
754     * Sets the position within the sample (in sample points, not in
755     * bytes). Use this method and <i>Read()</i> if you don't want to load
756     * the sample into RAM, thus for disk streaming.
757     *
758     * Although the original Gigasampler engine doesn't allow positioning
759     * within compressed samples, I decided to implement it. Even though
760     * the Gigasampler format doesn't allow to define loops for compressed
761     * samples at the moment, positioning within compressed samples might be
762     * interesting for some sampler engines though. The only drawback about
763     * my decision is that it takes longer to load compressed gig Files on
764     * startup, because it's neccessary to scan the samples for some
765     * mandatory informations. But I think as it doesn't affect the runtime
766     * efficiency, nobody will have a problem with that.
767     *
768     * @param SampleCount number of sample points to jump
769     * @param Whence optional: to which relation \a SampleCount refers
770     * to, if omited <i>RIFF::stream_start</i> is assumed
771     * @returns the new sample position
772     * @see Read()
773     */
774     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
775     if (Compressed) {
776     switch (Whence) {
777     case RIFF::stream_curpos:
778     this->SamplePos += SampleCount;
779     break;
780     case RIFF::stream_end:
781     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
782     break;
783     case RIFF::stream_backward:
784     this->SamplePos -= SampleCount;
785     break;
786     case RIFF::stream_start: default:
787     this->SamplePos = SampleCount;
788     break;
789     }
790     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
791    
792     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
793     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
794     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
795     return this->SamplePos;
796     }
797     else { // not compressed
798     unsigned long orderedBytes = SampleCount * this->FrameSize;
799     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
800     return (result == orderedBytes) ? SampleCount
801     : result / this->FrameSize;
802     }
803     }
804    
805     /**
806     * Returns the current position in the sample (in sample points).
807     */
808     unsigned long Sample::GetPos() {
809     if (Compressed) return SamplePos;
810     else return pCkData->GetPos() / FrameSize;
811     }
812    
813     /**
814 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
815     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
816     * the position within the sample respectively, this method honors the
817     * looping informations of the sample (if any). The sample wave stream
818     * will be decompressed on the fly if using a compressed sample. Use this
819     * method if you don't want to load the sample into RAM, thus for disk
820     * streaming. All this methods needs to know to proceed with streaming
821     * for the next time you call this method is stored in \a pPlaybackState.
822     * You have to allocate and initialize the playback_state_t structure by
823     * yourself before you use it to stream a sample:
824 schoenebeck 384 * @code
825     * gig::playback_state_t playbackstate;
826     * playbackstate.position = 0;
827     * playbackstate.reverse = false;
828     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
829     * @endcode
830 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
831     * defined or if the current read position is located within a loop area.
832     * The method already handles such cases by itself.
833     *
834 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
835     * have to use an external decompression buffer for <b>EACH</b>
836     * streaming thread to avoid race conditions and crashes!
837     *
838 schoenebeck 24 * @param pBuffer destination buffer
839     * @param SampleCount number of sample points to read
840     * @param pPlaybackState will be used to store and reload the playback
841     * state for the next ReadAndLoop() call
842 persson 864 * @param pDimRgn dimension region with looping information
843 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
844 schoenebeck 24 * @returns number of successfully read sample points
845 schoenebeck 384 * @see CreateDecompressionBuffer()
846 schoenebeck 24 */
847 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
848     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
849 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
850     uint8_t* pDst = (uint8_t*) pBuffer;
851    
852     SetPos(pPlaybackState->position); // recover position from the last time
853    
854 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
855 schoenebeck 24
856 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
857     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
858 schoenebeck 24
859 persson 864 if (GetPos() <= loopEnd) {
860     switch (loop.LoopType) {
861 schoenebeck 24
862 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
863     do {
864     // if not endless loop check if max. number of loop cycles have been passed
865     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
866 schoenebeck 24
867 persson 864 if (!pPlaybackState->reverse) { // forward playback
868     do {
869     samplestoloopend = loopEnd - GetPos();
870     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
871     samplestoread -= readsamples;
872     totalreadsamples += readsamples;
873     if (readsamples == samplestoloopend) {
874     pPlaybackState->reverse = true;
875     break;
876     }
877     } while (samplestoread && readsamples);
878     }
879     else { // backward playback
880 schoenebeck 24
881 persson 864 // as we can only read forward from disk, we have to
882     // determine the end position within the loop first,
883     // read forward from that 'end' and finally after
884     // reading, swap all sample frames so it reflects
885     // backward playback
886 schoenebeck 24
887 persson 864 unsigned long swapareastart = totalreadsamples;
888     unsigned long loopoffset = GetPos() - loop.LoopStart;
889     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
890     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
891 schoenebeck 24
892 persson 864 SetPos(reverseplaybackend);
893 schoenebeck 24
894 persson 864 // read samples for backward playback
895     do {
896     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
897     samplestoreadinloop -= readsamples;
898     samplestoread -= readsamples;
899     totalreadsamples += readsamples;
900     } while (samplestoreadinloop && readsamples);
901 schoenebeck 24
902 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
903    
904     if (reverseplaybackend == loop.LoopStart) {
905     pPlaybackState->loop_cycles_left--;
906     pPlaybackState->reverse = false;
907     }
908    
909     // reverse the sample frames for backward playback
910     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
911 schoenebeck 24 }
912 persson 864 } while (samplestoread && readsamples);
913     break;
914     }
915 schoenebeck 24
916 persson 864 case loop_type_backward: { // TODO: not tested yet!
917     // forward playback (not entered the loop yet)
918     if (!pPlaybackState->reverse) do {
919     samplestoloopend = loopEnd - GetPos();
920     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
921     samplestoread -= readsamples;
922     totalreadsamples += readsamples;
923     if (readsamples == samplestoloopend) {
924     pPlaybackState->reverse = true;
925     break;
926     }
927     } while (samplestoread && readsamples);
928 schoenebeck 24
929 persson 864 if (!samplestoread) break;
930 schoenebeck 24
931 persson 864 // as we can only read forward from disk, we have to
932     // determine the end position within the loop first,
933     // read forward from that 'end' and finally after
934     // reading, swap all sample frames so it reflects
935     // backward playback
936 schoenebeck 24
937 persson 864 unsigned long swapareastart = totalreadsamples;
938     unsigned long loopoffset = GetPos() - loop.LoopStart;
939     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
940     : samplestoread;
941     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
942 schoenebeck 24
943 persson 864 SetPos(reverseplaybackend);
944 schoenebeck 24
945 persson 864 // read samples for backward playback
946     do {
947     // if not endless loop check if max. number of loop cycles have been passed
948     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
949     samplestoloopend = loopEnd - GetPos();
950     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
951     samplestoreadinloop -= readsamples;
952     samplestoread -= readsamples;
953     totalreadsamples += readsamples;
954     if (readsamples == samplestoloopend) {
955     pPlaybackState->loop_cycles_left--;
956     SetPos(loop.LoopStart);
957     }
958     } while (samplestoreadinloop && readsamples);
959 schoenebeck 24
960 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
961 schoenebeck 24
962 persson 864 // reverse the sample frames for backward playback
963     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964     break;
965     }
966 schoenebeck 24
967 persson 864 default: case loop_type_normal: {
968     do {
969     // if not endless loop check if max. number of loop cycles have been passed
970     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
971     samplestoloopend = loopEnd - GetPos();
972     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
973     samplestoread -= readsamples;
974     totalreadsamples += readsamples;
975     if (readsamples == samplestoloopend) {
976     pPlaybackState->loop_cycles_left--;
977     SetPos(loop.LoopStart);
978     }
979     } while (samplestoread && readsamples);
980     break;
981     }
982 schoenebeck 24 }
983     }
984     }
985    
986     // read on without looping
987     if (samplestoread) do {
988 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
989 schoenebeck 24 samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     } while (readsamples && samplestoread);
992    
993     // store current position
994     pPlaybackState->position = GetPos();
995    
996     return totalreadsamples;
997     }
998    
999     /**
1000 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1001     * position into the buffer pointed by \a pBuffer and increments the
1002     * position within the sample. The sample wave stream will be
1003     * decompressed on the fly if using a compressed sample. Use this method
1004     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1005     * thus for disk streaming.
1006     *
1007 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1008     * have to use an external decompression buffer for <b>EACH</b>
1009     * streaming thread to avoid race conditions and crashes!
1010     *
1011 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1012     * (using native endianness). For 24 bit, the buffer will
1013     * contain three bytes per sample, little-endian.
1014     *
1015 schoenebeck 2 * @param pBuffer destination buffer
1016     * @param SampleCount number of sample points to read
1017 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1018 schoenebeck 2 * @returns number of successfully read sample points
1019 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1020 schoenebeck 2 */
1021 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1022 schoenebeck 21 if (SampleCount == 0) return 0;
1023 schoenebeck 317 if (!Compressed) {
1024     if (BitDepth == 24) {
1025 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1026 schoenebeck 317 }
1027 persson 365 else { // 16 bit
1028     // (pCkData->Read does endian correction)
1029     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1030     : pCkData->Read(pBuffer, SampleCount, 2);
1031     }
1032 schoenebeck 317 }
1033 persson 365 else {
1034 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1035 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1036     unsigned long assumedsize = GuessSize(SampleCount),
1037 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1038     remainingsamples = SampleCount,
1039 persson 365 copysamples, skipsamples,
1040     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1041 schoenebeck 2 this->FrameOffset = 0;
1042    
1043 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1044    
1045     // if decompression buffer too small, then reduce amount of samples to read
1046     if (pDecompressionBuffer->Size < assumedsize) {
1047     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1048     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1049     remainingsamples = SampleCount;
1050     assumedsize = GuessSize(SampleCount);
1051 schoenebeck 2 }
1052    
1053 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1054 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1055 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1056 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1057    
1058 persson 365 while (remainingsamples && remainingbytes) {
1059     unsigned long framesamples = SamplesPerFrame;
1060     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1061 schoenebeck 2
1062 persson 365 int mode_l = *pSrc++, mode_r = 0;
1063    
1064     if (Channels == 2) {
1065     mode_r = *pSrc++;
1066     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1067     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1068     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1069     if (remainingbytes < framebytes) { // last frame in sample
1070     framesamples = SamplesInLastFrame;
1071     if (mode_l == 4 && (framesamples & 1)) {
1072     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1073     }
1074     else {
1075     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1076     }
1077 schoenebeck 2 }
1078     }
1079 persson 365 else {
1080     framebytes = bytesPerFrame[mode_l] + 1;
1081     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1082     if (remainingbytes < framebytes) {
1083     framesamples = SamplesInLastFrame;
1084     }
1085     }
1086 schoenebeck 2
1087     // determine how many samples in this frame to skip and read
1088 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1089     if (currentframeoffset <= framesamples) {
1090     copysamples = framesamples - currentframeoffset;
1091     skipsamples = currentframeoffset;
1092     }
1093     else {
1094     copysamples = 0;
1095     skipsamples = framesamples;
1096     }
1097 schoenebeck 2 }
1098     else {
1099 persson 365 // This frame has enough data for pBuffer, but not
1100     // all of the frame is needed. Set file position
1101     // to start of this frame for next call to Read.
1102 schoenebeck 2 copysamples = remainingsamples;
1103 persson 365 skipsamples = currentframeoffset;
1104     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1105     this->FrameOffset = currentframeoffset + copysamples;
1106     }
1107     remainingsamples -= copysamples;
1108    
1109     if (remainingbytes > framebytes) {
1110     remainingbytes -= framebytes;
1111     if (remainingsamples == 0 &&
1112     currentframeoffset + copysamples == framesamples) {
1113     // This frame has enough data for pBuffer, and
1114     // all of the frame is needed. Set file
1115     // position to start of next frame for next
1116     // call to Read. FrameOffset is 0.
1117 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1118     }
1119     }
1120 persson 365 else remainingbytes = 0;
1121 schoenebeck 2
1122 persson 365 currentframeoffset -= skipsamples;
1123 schoenebeck 2
1124 persson 365 if (copysamples == 0) {
1125     // skip this frame
1126     pSrc += framebytes - Channels;
1127     }
1128     else {
1129     const unsigned char* const param_l = pSrc;
1130     if (BitDepth == 24) {
1131     if (mode_l != 2) pSrc += 12;
1132 schoenebeck 2
1133 persson 365 if (Channels == 2) { // Stereo
1134     const unsigned char* const param_r = pSrc;
1135     if (mode_r != 2) pSrc += 12;
1136    
1137 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1138 persson 437 skipsamples, copysamples, TruncatedBits);
1139 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1140 persson 437 skipsamples, copysamples, TruncatedBits);
1141 persson 902 pDst24 += copysamples * 6;
1142 schoenebeck 2 }
1143 persson 365 else { // Mono
1144 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1145 persson 437 skipsamples, copysamples, TruncatedBits);
1146 persson 902 pDst24 += copysamples * 3;
1147 schoenebeck 2 }
1148 persson 365 }
1149     else { // 16 bit
1150     if (mode_l) pSrc += 4;
1151 schoenebeck 2
1152 persson 365 int step;
1153     if (Channels == 2) { // Stereo
1154     const unsigned char* const param_r = pSrc;
1155     if (mode_r) pSrc += 4;
1156    
1157     step = (2 - mode_l) + (2 - mode_r);
1158 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1159     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1160 persson 365 skipsamples, copysamples);
1161     pDst += copysamples << 1;
1162 schoenebeck 2 }
1163 persson 365 else { // Mono
1164     step = 2 - mode_l;
1165 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1166 persson 365 pDst += copysamples;
1167 schoenebeck 2 }
1168 persson 365 }
1169     pSrc += nextFrameOffset;
1170     }
1171 schoenebeck 2
1172 persson 365 // reload from disk to local buffer if needed
1173     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1174     assumedsize = GuessSize(remainingsamples);
1175     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1176     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1177 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1178     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1179 schoenebeck 2 }
1180 persson 365 } // while
1181    
1182 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1183 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1184 schoenebeck 2 return (SampleCount - remainingsamples);
1185     }
1186     }
1187    
1188 schoenebeck 809 /** @brief Write sample wave data.
1189     *
1190     * Writes \a SampleCount number of sample points from the buffer pointed
1191     * by \a pBuffer and increments the position within the sample. Use this
1192     * method to directly write the sample data to disk, i.e. if you don't
1193     * want or cannot load the whole sample data into RAM.
1194     *
1195     * You have to Resize() the sample to the desired size and call
1196     * File::Save() <b>before</b> using Write().
1197     *
1198     * Note: there is currently no support for writing compressed samples.
1199     *
1200 persson 1264 * For 16 bit samples, the data in the source buffer should be
1201     * int16_t (using native endianness). For 24 bit, the buffer
1202     * should contain three bytes per sample, little-endian.
1203     *
1204 schoenebeck 809 * @param pBuffer - source buffer
1205     * @param SampleCount - number of sample points to write
1206     * @throws DLS::Exception if current sample size is too small
1207     * @throws gig::Exception if sample is compressed
1208     * @see DLS::LoadSampleData()
1209     */
1210     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212 persson 1207
1213     // if this is the first write in this sample, reset the
1214     // checksum calculator
1215 persson 1199 if (pCkData->GetPos() == 0) {
1216 schoenebeck 1381 __resetCRC(crc);
1217 persson 1199 }
1218 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219     unsigned long res;
1220     if (BitDepth == 24) {
1221     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222     } else { // 16 bit
1223     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224     : pCkData->Write(pBuffer, SampleCount, 2);
1225     }
1226 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227 persson 1199
1228 persson 1207 // if this is the last write, update the checksum chunk in the
1229     // file
1230 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1231     File* pFile = static_cast<File*>(GetParent());
1232 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233 persson 1199 }
1234     return res;
1235 schoenebeck 809 }
1236    
1237 schoenebeck 384 /**
1238     * Allocates a decompression buffer for streaming (compressed) samples
1239     * with Sample::Read(). If you are using more than one streaming thread
1240     * in your application you <b>HAVE</b> to create a decompression buffer
1241     * for <b>EACH</b> of your streaming threads and provide it with the
1242     * Sample::Read() call in order to avoid race conditions and crashes.
1243     *
1244     * You should free the memory occupied by the allocated buffer(s) once
1245     * you don't need one of your streaming threads anymore by calling
1246     * DestroyDecompressionBuffer().
1247     *
1248     * @param MaxReadSize - the maximum size (in sample points) you ever
1249     * expect to read with one Read() call
1250     * @returns allocated decompression buffer
1251     * @see DestroyDecompressionBuffer()
1252     */
1253     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1254     buffer_t result;
1255     const double worstCaseHeaderOverhead =
1256     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1257     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1258     result.pStart = new int8_t[result.Size];
1259     result.NullExtensionSize = 0;
1260     return result;
1261     }
1262    
1263     /**
1264     * Free decompression buffer, previously created with
1265     * CreateDecompressionBuffer().
1266     *
1267     * @param DecompressionBuffer - previously allocated decompression
1268     * buffer to free
1269     */
1270     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1271     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1272     delete[] (int8_t*) DecompressionBuffer.pStart;
1273     DecompressionBuffer.pStart = NULL;
1274     DecompressionBuffer.Size = 0;
1275     DecompressionBuffer.NullExtensionSize = 0;
1276     }
1277     }
1278    
1279 schoenebeck 930 /**
1280     * Returns pointer to the Group this Sample belongs to. In the .gig
1281     * format a sample always belongs to one group. If it wasn't explicitly
1282     * assigned to a certain group, it will be automatically assigned to a
1283     * default group.
1284     *
1285     * @returns Sample's Group (never NULL)
1286     */
1287     Group* Sample::GetGroup() const {
1288     return pGroup;
1289     }
1290    
1291 schoenebeck 2 Sample::~Sample() {
1292     Instances--;
1293 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1294     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1295     InternalDecompressionBuffer.pStart = NULL;
1296     InternalDecompressionBuffer.Size = 0;
1297 schoenebeck 355 }
1298 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1299     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1300     }
1301    
1302    
1303    
1304     // *************** DimensionRegion ***************
1305     // *
1306    
1307 schoenebeck 16 uint DimensionRegion::Instances = 0;
1308     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309    
1310 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311 schoenebeck 16 Instances++;
1312    
1313 schoenebeck 823 pSample = NULL;
1314 schoenebeck 1316 pRegion = pParent;
1315 schoenebeck 823
1316 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317     else memset(&Crossfade, 0, 4);
1318    
1319 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320 schoenebeck 2
1321     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1322 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1323 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1324 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1325     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326     _3ewa->ReadInt16(); // unknown
1327     LFO1InternalDepth = _3ewa->ReadUint16();
1328     _3ewa->ReadInt16(); // unknown
1329     LFO3InternalDepth = _3ewa->ReadInt16();
1330     _3ewa->ReadInt16(); // unknown
1331     LFO1ControlDepth = _3ewa->ReadUint16();
1332     _3ewa->ReadInt16(); // unknown
1333     LFO3ControlDepth = _3ewa->ReadInt16();
1334     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1335     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336     _3ewa->ReadInt16(); // unknown
1337     EG1Sustain = _3ewa->ReadUint16();
1338     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1340     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1341     EG1ControllerInvert = eg1ctrloptions & 0x01;
1342     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1343     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1344     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1345     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1346     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1347     EG2ControllerInvert = eg2ctrloptions & 0x01;
1348     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1349     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1350     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1351     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1352     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354     _3ewa->ReadInt16(); // unknown
1355     EG2Sustain = _3ewa->ReadUint16();
1356     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     _3ewa->ReadInt16(); // unknown
1358     LFO2ControlDepth = _3ewa->ReadUint16();
1359     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360     _3ewa->ReadInt16(); // unknown
1361     LFO2InternalDepth = _3ewa->ReadUint16();
1362     int32_t eg1decay2 = _3ewa->ReadInt32();
1363     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1364     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1365     _3ewa->ReadInt16(); // unknown
1366     EG1PreAttack = _3ewa->ReadUint16();
1367     int32_t eg2decay2 = _3ewa->ReadInt32();
1368     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1369     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1370     _3ewa->ReadInt16(); // unknown
1371     EG2PreAttack = _3ewa->ReadUint16();
1372     uint8_t velocityresponse = _3ewa->ReadUint8();
1373     if (velocityresponse < 5) {
1374     VelocityResponseCurve = curve_type_nonlinear;
1375     VelocityResponseDepth = velocityresponse;
1376     } else if (velocityresponse < 10) {
1377     VelocityResponseCurve = curve_type_linear;
1378     VelocityResponseDepth = velocityresponse - 5;
1379     } else if (velocityresponse < 15) {
1380     VelocityResponseCurve = curve_type_special;
1381     VelocityResponseDepth = velocityresponse - 10;
1382     } else {
1383     VelocityResponseCurve = curve_type_unknown;
1384     VelocityResponseDepth = 0;
1385     }
1386     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1387     if (releasevelocityresponse < 5) {
1388     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1389     ReleaseVelocityResponseDepth = releasevelocityresponse;
1390     } else if (releasevelocityresponse < 10) {
1391     ReleaseVelocityResponseCurve = curve_type_linear;
1392     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1393     } else if (releasevelocityresponse < 15) {
1394     ReleaseVelocityResponseCurve = curve_type_special;
1395     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1396     } else {
1397     ReleaseVelocityResponseCurve = curve_type_unknown;
1398     ReleaseVelocityResponseDepth = 0;
1399     }
1400     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1401     AttenuationControllerThreshold = _3ewa->ReadInt8();
1402     _3ewa->ReadInt32(); // unknown
1403     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1404     _3ewa->ReadInt16(); // unknown
1405     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1406     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1407     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1408     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1409     else DimensionBypass = dim_bypass_ctrl_none;
1410     uint8_t pan = _3ewa->ReadUint8();
1411     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1412     SelfMask = _3ewa->ReadInt8() & 0x01;
1413     _3ewa->ReadInt8(); // unknown
1414     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1415     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1416     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1417     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1418     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1420     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1421     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1422     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1423     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1424     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1425     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1426     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1427     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1428     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1429     : vcf_res_ctrl_none;
1430     uint16_t eg3depth = _3ewa->ReadUint16();
1431     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1432     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1433     _3ewa->ReadInt16(); // unknown
1434     ChannelOffset = _3ewa->ReadUint8() / 4;
1435     uint8_t regoptions = _3ewa->ReadUint8();
1436     MSDecode = regoptions & 0x01; // bit 0
1437     SustainDefeat = regoptions & 0x02; // bit 1
1438     _3ewa->ReadInt16(); // unknown
1439     VelocityUpperLimit = _3ewa->ReadInt8();
1440     _3ewa->ReadInt8(); // unknown
1441     _3ewa->ReadInt16(); // unknown
1442     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1443     _3ewa->ReadInt8(); // unknown
1444     _3ewa->ReadInt8(); // unknown
1445     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1446     uint8_t vcfcutoff = _3ewa->ReadUint8();
1447     VCFEnabled = vcfcutoff & 0x80; // bit 7
1448     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1449     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1450     uint8_t vcfvelscale = _3ewa->ReadUint8();
1451     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1452     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1453     _3ewa->ReadInt8(); // unknown
1454     uint8_t vcfresonance = _3ewa->ReadUint8();
1455     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1456     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1457     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1458     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1459     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1460     uint8_t vcfvelocity = _3ewa->ReadUint8();
1461     VCFVelocityDynamicRange = vcfvelocity % 5;
1462     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1463     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1464     if (VCFType == vcf_type_lowpass) {
1465     if (lfo3ctrl & 0x40) // bit 6
1466     VCFType = vcf_type_lowpassturbo;
1467     }
1468 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1469     _3ewa->Read(DimensionUpperLimits, 1, 8);
1470     } else {
1471     memset(DimensionUpperLimits, 0, 8);
1472     }
1473 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1474     // use default values
1475     LFO3Frequency = 1.0;
1476     EG3Attack = 0.0;
1477     LFO1InternalDepth = 0;
1478     LFO3InternalDepth = 0;
1479     LFO1ControlDepth = 0;
1480     LFO3ControlDepth = 0;
1481     EG1Attack = 0.0;
1482 persson 1218 EG1Decay1 = 0.005;
1483     EG1Sustain = 1000;
1484     EG1Release = 0.3;
1485 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1486     EG1Controller.controller_number = 0;
1487     EG1ControllerInvert = false;
1488     EG1ControllerAttackInfluence = 0;
1489     EG1ControllerDecayInfluence = 0;
1490     EG1ControllerReleaseInfluence = 0;
1491     EG2Controller.type = eg2_ctrl_t::type_none;
1492     EG2Controller.controller_number = 0;
1493     EG2ControllerInvert = false;
1494     EG2ControllerAttackInfluence = 0;
1495     EG2ControllerDecayInfluence = 0;
1496     EG2ControllerReleaseInfluence = 0;
1497     LFO1Frequency = 1.0;
1498     EG2Attack = 0.0;
1499 persson 1218 EG2Decay1 = 0.005;
1500     EG2Sustain = 1000;
1501     EG2Release = 0.3;
1502 schoenebeck 809 LFO2ControlDepth = 0;
1503     LFO2Frequency = 1.0;
1504     LFO2InternalDepth = 0;
1505     EG1Decay2 = 0.0;
1506 persson 1218 EG1InfiniteSustain = true;
1507     EG1PreAttack = 0;
1508 schoenebeck 809 EG2Decay2 = 0.0;
1509 persson 1218 EG2InfiniteSustain = true;
1510     EG2PreAttack = 0;
1511 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1512     VelocityResponseDepth = 3;
1513     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1514     ReleaseVelocityResponseDepth = 3;
1515     VelocityResponseCurveScaling = 32;
1516     AttenuationControllerThreshold = 0;
1517     SampleStartOffset = 0;
1518     PitchTrack = true;
1519     DimensionBypass = dim_bypass_ctrl_none;
1520     Pan = 0;
1521     SelfMask = true;
1522     LFO3Controller = lfo3_ctrl_modwheel;
1523     LFO3Sync = false;
1524     InvertAttenuationController = false;
1525     AttenuationController.type = attenuation_ctrl_t::type_none;
1526     AttenuationController.controller_number = 0;
1527     LFO2Controller = lfo2_ctrl_internal;
1528     LFO2FlipPhase = false;
1529     LFO2Sync = false;
1530     LFO1Controller = lfo1_ctrl_internal;
1531     LFO1FlipPhase = false;
1532     LFO1Sync = false;
1533     VCFResonanceController = vcf_res_ctrl_none;
1534     EG3Depth = 0;
1535     ChannelOffset = 0;
1536     MSDecode = false;
1537     SustainDefeat = false;
1538     VelocityUpperLimit = 0;
1539     ReleaseTriggerDecay = 0;
1540     EG1Hold = false;
1541     VCFEnabled = false;
1542     VCFCutoff = 0;
1543     VCFCutoffController = vcf_cutoff_ctrl_none;
1544     VCFCutoffControllerInvert = false;
1545     VCFVelocityScale = 0;
1546     VCFResonance = 0;
1547     VCFResonanceDynamic = false;
1548     VCFKeyboardTracking = false;
1549     VCFKeyboardTrackingBreakpoint = 0;
1550     VCFVelocityDynamicRange = 0x04;
1551     VCFVelocityCurve = curve_type_linear;
1552     VCFType = vcf_type_lowpass;
1553 persson 1247 memset(DimensionUpperLimits, 127, 8);
1554 schoenebeck 2 }
1555 schoenebeck 16
1556 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557     VelocityResponseDepth,
1558     VelocityResponseCurveScaling);
1559    
1560 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1561     ReleaseVelocityResponseCurve,
1562     ReleaseVelocityResponseDepth
1563     );
1564 persson 613
1565 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566     VCFVelocityDynamicRange,
1567     VCFVelocityScale,
1568     VCFCutoffController);
1569 persson 613
1570     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571 persson 858 VelocityTable = 0;
1572 persson 613 }
1573    
1574 persson 1301 /*
1575     * Constructs a DimensionRegion by copying all parameters from
1576     * another DimensionRegion
1577     */
1578     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579     Instances++;
1580     *this = src; // default memberwise shallow copy of all parameters
1581     pParentList = _3ewl; // restore the chunk pointer
1582    
1583     // deep copy of owned structures
1584     if (src.VelocityTable) {
1585     VelocityTable = new uint8_t[128];
1586     for (int k = 0 ; k < 128 ; k++)
1587     VelocityTable[k] = src.VelocityTable[k];
1588     }
1589     if (src.pSampleLoops) {
1590     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591     for (int k = 0 ; k < src.SampleLoops ; k++)
1592     pSampleLoops[k] = src.pSampleLoops[k];
1593     }
1594     }
1595    
1596 schoenebeck 809 /**
1597 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1598     * which depends on this value.
1599     */
1600     void DimensionRegion::SetGain(int32_t gain) {
1601     DLS::Sampler::SetGain(gain);
1602     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1603     }
1604    
1605     /**
1606 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1607     * have to call File::Save() to make changes persistent.
1608     *
1609     * Usually there is absolutely no need to call this method explicitly.
1610     * It will be called automatically when File::Save() was called.
1611     */
1612     void DimensionRegion::UpdateChunks() {
1613     // first update base class's chunk
1614     DLS::Sampler::UpdateChunks();
1615    
1616 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618     pData[12] = Crossfade.in_start;
1619     pData[13] = Crossfade.in_end;
1620     pData[14] = Crossfade.out_start;
1621     pData[15] = Crossfade.out_end;
1622    
1623 schoenebeck 809 // make sure '3ewa' chunk exists
1624     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625 persson 1317 if (!_3ewa) {
1626     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629 persson 1264 }
1630 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1631 schoenebeck 809
1632     // update '3ewa' chunk with DimensionRegion's current settings
1633    
1634 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1635 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1636 schoenebeck 809
1637     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638 persson 1179 store32(&pData[4], lfo3freq);
1639 schoenebeck 809
1640     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641 persson 1179 store32(&pData[8], eg3attack);
1642 schoenebeck 809
1643     // next 2 bytes unknown
1644    
1645 persson 1179 store16(&pData[14], LFO1InternalDepth);
1646 schoenebeck 809
1647     // next 2 bytes unknown
1648    
1649 persson 1179 store16(&pData[18], LFO3InternalDepth);
1650 schoenebeck 809
1651     // next 2 bytes unknown
1652    
1653 persson 1179 store16(&pData[22], LFO1ControlDepth);
1654 schoenebeck 809
1655     // next 2 bytes unknown
1656    
1657 persson 1179 store16(&pData[26], LFO3ControlDepth);
1658 schoenebeck 809
1659     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660 persson 1179 store32(&pData[28], eg1attack);
1661 schoenebeck 809
1662     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663 persson 1179 store32(&pData[32], eg1decay1);
1664 schoenebeck 809
1665     // next 2 bytes unknown
1666    
1667 persson 1179 store16(&pData[38], EG1Sustain);
1668 schoenebeck 809
1669     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670 persson 1179 store32(&pData[40], eg1release);
1671 schoenebeck 809
1672     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673 persson 1179 pData[44] = eg1ctl;
1674 schoenebeck 809
1675     const uint8_t eg1ctrloptions =
1676 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1677 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680 persson 1179 pData[45] = eg1ctrloptions;
1681 schoenebeck 809
1682     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683 persson 1179 pData[46] = eg2ctl;
1684 schoenebeck 809
1685     const uint8_t eg2ctrloptions =
1686 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1687 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690 persson 1179 pData[47] = eg2ctrloptions;
1691 schoenebeck 809
1692     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693 persson 1179 store32(&pData[48], lfo1freq);
1694 schoenebeck 809
1695     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696 persson 1179 store32(&pData[52], eg2attack);
1697 schoenebeck 809
1698     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699 persson 1179 store32(&pData[56], eg2decay1);
1700 schoenebeck 809
1701     // next 2 bytes unknown
1702    
1703 persson 1179 store16(&pData[62], EG2Sustain);
1704 schoenebeck 809
1705     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706 persson 1179 store32(&pData[64], eg2release);
1707 schoenebeck 809
1708     // next 2 bytes unknown
1709    
1710 persson 1179 store16(&pData[70], LFO2ControlDepth);
1711 schoenebeck 809
1712     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713 persson 1179 store32(&pData[72], lfo2freq);
1714 schoenebeck 809
1715     // next 2 bytes unknown
1716    
1717 persson 1179 store16(&pData[78], LFO2InternalDepth);
1718 schoenebeck 809
1719     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720 persson 1179 store32(&pData[80], eg1decay2);
1721 schoenebeck 809
1722     // next 2 bytes unknown
1723    
1724 persson 1179 store16(&pData[86], EG1PreAttack);
1725 schoenebeck 809
1726     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727 persson 1179 store32(&pData[88], eg2decay2);
1728 schoenebeck 809
1729     // next 2 bytes unknown
1730    
1731 persson 1179 store16(&pData[94], EG2PreAttack);
1732 schoenebeck 809
1733     {
1734     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1735     uint8_t velocityresponse = VelocityResponseDepth;
1736     switch (VelocityResponseCurve) {
1737     case curve_type_nonlinear:
1738     break;
1739     case curve_type_linear:
1740     velocityresponse += 5;
1741     break;
1742     case curve_type_special:
1743     velocityresponse += 10;
1744     break;
1745     case curve_type_unknown:
1746     default:
1747     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748     }
1749 persson 1179 pData[96] = velocityresponse;
1750 schoenebeck 809 }
1751    
1752     {
1753     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1754     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1755     switch (ReleaseVelocityResponseCurve) {
1756     case curve_type_nonlinear:
1757     break;
1758     case curve_type_linear:
1759     releasevelocityresponse += 5;
1760     break;
1761     case curve_type_special:
1762     releasevelocityresponse += 10;
1763     break;
1764     case curve_type_unknown:
1765     default:
1766     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767     }
1768 persson 1179 pData[97] = releasevelocityresponse;
1769 schoenebeck 809 }
1770    
1771 persson 1179 pData[98] = VelocityResponseCurveScaling;
1772 schoenebeck 809
1773 persson 1179 pData[99] = AttenuationControllerThreshold;
1774 schoenebeck 809
1775     // next 4 bytes unknown
1776    
1777 persson 1179 store16(&pData[104], SampleStartOffset);
1778 schoenebeck 809
1779     // next 2 bytes unknown
1780    
1781     {
1782     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1783     switch (DimensionBypass) {
1784     case dim_bypass_ctrl_94:
1785     pitchTrackDimensionBypass |= 0x10;
1786     break;
1787     case dim_bypass_ctrl_95:
1788     pitchTrackDimensionBypass |= 0x20;
1789     break;
1790     case dim_bypass_ctrl_none:
1791     //FIXME: should we set anything here?
1792     break;
1793     default:
1794     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795     }
1796 persson 1179 pData[108] = pitchTrackDimensionBypass;
1797 schoenebeck 809 }
1798    
1799     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800 persson 1179 pData[109] = pan;
1801 schoenebeck 809
1802     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803 persson 1179 pData[110] = selfmask;
1804 schoenebeck 809
1805     // next byte unknown
1806    
1807     {
1808     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1809     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812 persson 1179 pData[112] = lfo3ctrl;
1813 schoenebeck 809 }
1814    
1815     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816 persson 1179 pData[113] = attenctl;
1817 schoenebeck 809
1818     {
1819     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1822     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823 persson 1179 pData[114] = lfo2ctrl;
1824 schoenebeck 809 }
1825    
1826     {
1827     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1828     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1829     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1830     if (VCFResonanceController != vcf_res_ctrl_none)
1831     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832 persson 1179 pData[115] = lfo1ctrl;
1833 schoenebeck 809 }
1834    
1835     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837 persson 1179 pData[116] = eg3depth;
1838 schoenebeck 809
1839     // next 2 bytes unknown
1840    
1841     const uint8_t channeloffset = ChannelOffset * 4;
1842 persson 1179 pData[120] = channeloffset;
1843 schoenebeck 809
1844     {
1845     uint8_t regoptions = 0;
1846     if (MSDecode) regoptions |= 0x01; // bit 0
1847     if (SustainDefeat) regoptions |= 0x02; // bit 1
1848 persson 1179 pData[121] = regoptions;
1849 schoenebeck 809 }
1850    
1851     // next 2 bytes unknown
1852    
1853 persson 1179 pData[124] = VelocityUpperLimit;
1854 schoenebeck 809
1855     // next 3 bytes unknown
1856    
1857 persson 1179 pData[128] = ReleaseTriggerDecay;
1858 schoenebeck 809
1859     // next 2 bytes unknown
1860    
1861     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862 persson 1179 pData[131] = eg1hold;
1863 schoenebeck 809
1864 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1865 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1866 persson 1179 pData[132] = vcfcutoff;
1867 schoenebeck 809
1868 persson 1179 pData[133] = VCFCutoffController;
1869 schoenebeck 809
1870 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872 persson 1179 pData[134] = vcfvelscale;
1873 schoenebeck 809
1874     // next byte unknown
1875    
1876 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1878 persson 1179 pData[136] = vcfresonance;
1879 schoenebeck 809
1880 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882 persson 1179 pData[137] = vcfbreakpoint;
1883 schoenebeck 809
1884     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885     VCFVelocityCurve * 5;
1886 persson 1179 pData[138] = vcfvelocity;
1887 schoenebeck 809
1888     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889 persson 1179 pData[139] = vcftype;
1890 persson 1070
1891     if (chunksize >= 148) {
1892     memcpy(&pData[140], DimensionUpperLimits, 8);
1893     }
1894 schoenebeck 809 }
1895    
1896 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897     curve_type_t curveType = releaseVelocityResponseCurve;
1898     uint8_t depth = releaseVelocityResponseDepth;
1899     // this models a strange behaviour or bug in GSt: two of the
1900     // velocity response curves for release time are not used even
1901     // if specified, instead another curve is chosen.
1902     if ((curveType == curve_type_nonlinear && depth == 0) ||
1903     (curveType == curve_type_special && depth == 4)) {
1904     curveType = curve_type_nonlinear;
1905     depth = 3;
1906     }
1907     return GetVelocityTable(curveType, depth, 0);
1908     }
1909    
1910     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911     uint8_t vcfVelocityDynamicRange,
1912     uint8_t vcfVelocityScale,
1913     vcf_cutoff_ctrl_t vcfCutoffController)
1914     {
1915     curve_type_t curveType = vcfVelocityCurve;
1916     uint8_t depth = vcfVelocityDynamicRange;
1917     // even stranger GSt: two of the velocity response curves for
1918     // filter cutoff are not used, instead another special curve
1919     // is chosen. This curve is not used anywhere else.
1920     if ((curveType == curve_type_nonlinear && depth == 0) ||
1921     (curveType == curve_type_special && depth == 4)) {
1922     curveType = curve_type_special;
1923     depth = 5;
1924     }
1925     return GetVelocityTable(curveType, depth,
1926     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927     ? vcfVelocityScale : 0);
1928     }
1929    
1930 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1931     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1932     {
1933     double* table;
1934     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1935 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1936 persson 613 table = (*pVelocityTables)[tableKey];
1937 schoenebeck 16 }
1938     else {
1939 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1940     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1941 schoenebeck 16 }
1942 persson 613 return table;
1943 schoenebeck 2 }
1944 schoenebeck 55
1945 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1946     return pRegion;
1947     }
1948    
1949 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950     leverage_ctrl_t decodedcontroller;
1951     switch (EncodedController) {
1952     // special controller
1953     case _lev_ctrl_none:
1954     decodedcontroller.type = leverage_ctrl_t::type_none;
1955     decodedcontroller.controller_number = 0;
1956     break;
1957     case _lev_ctrl_velocity:
1958     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1959     decodedcontroller.controller_number = 0;
1960     break;
1961     case _lev_ctrl_channelaftertouch:
1962     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1963     decodedcontroller.controller_number = 0;
1964     break;
1965 schoenebeck 55
1966 schoenebeck 36 // ordinary MIDI control change controller
1967     case _lev_ctrl_modwheel:
1968     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1969     decodedcontroller.controller_number = 1;
1970     break;
1971     case _lev_ctrl_breath:
1972     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973     decodedcontroller.controller_number = 2;
1974     break;
1975     case _lev_ctrl_foot:
1976     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977     decodedcontroller.controller_number = 4;
1978     break;
1979     case _lev_ctrl_effect1:
1980     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981     decodedcontroller.controller_number = 12;
1982     break;
1983     case _lev_ctrl_effect2:
1984     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985     decodedcontroller.controller_number = 13;
1986     break;
1987     case _lev_ctrl_genpurpose1:
1988     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989     decodedcontroller.controller_number = 16;
1990     break;
1991     case _lev_ctrl_genpurpose2:
1992     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993     decodedcontroller.controller_number = 17;
1994     break;
1995     case _lev_ctrl_genpurpose3:
1996     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997     decodedcontroller.controller_number = 18;
1998     break;
1999     case _lev_ctrl_genpurpose4:
2000     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001     decodedcontroller.controller_number = 19;
2002     break;
2003     case _lev_ctrl_portamentotime:
2004     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005     decodedcontroller.controller_number = 5;
2006     break;
2007     case _lev_ctrl_sustainpedal:
2008     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009     decodedcontroller.controller_number = 64;
2010     break;
2011     case _lev_ctrl_portamento:
2012     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013     decodedcontroller.controller_number = 65;
2014     break;
2015     case _lev_ctrl_sostenutopedal:
2016     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017     decodedcontroller.controller_number = 66;
2018     break;
2019     case _lev_ctrl_softpedal:
2020     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021     decodedcontroller.controller_number = 67;
2022     break;
2023     case _lev_ctrl_genpurpose5:
2024     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025     decodedcontroller.controller_number = 80;
2026     break;
2027     case _lev_ctrl_genpurpose6:
2028     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029     decodedcontroller.controller_number = 81;
2030     break;
2031     case _lev_ctrl_genpurpose7:
2032     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033     decodedcontroller.controller_number = 82;
2034     break;
2035     case _lev_ctrl_genpurpose8:
2036     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037     decodedcontroller.controller_number = 83;
2038     break;
2039     case _lev_ctrl_effect1depth:
2040     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041     decodedcontroller.controller_number = 91;
2042     break;
2043     case _lev_ctrl_effect2depth:
2044     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045     decodedcontroller.controller_number = 92;
2046     break;
2047     case _lev_ctrl_effect3depth:
2048     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049     decodedcontroller.controller_number = 93;
2050     break;
2051     case _lev_ctrl_effect4depth:
2052     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053     decodedcontroller.controller_number = 94;
2054     break;
2055     case _lev_ctrl_effect5depth:
2056     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057     decodedcontroller.controller_number = 95;
2058     break;
2059 schoenebeck 55
2060 schoenebeck 36 // unknown controller type
2061     default:
2062     throw gig::Exception("Unknown leverage controller type.");
2063     }
2064     return decodedcontroller;
2065     }
2066 schoenebeck 2
2067 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2068     _lev_ctrl_t encodedcontroller;
2069     switch (DecodedController.type) {
2070     // special controller
2071     case leverage_ctrl_t::type_none:
2072     encodedcontroller = _lev_ctrl_none;
2073     break;
2074     case leverage_ctrl_t::type_velocity:
2075     encodedcontroller = _lev_ctrl_velocity;
2076     break;
2077     case leverage_ctrl_t::type_channelaftertouch:
2078     encodedcontroller = _lev_ctrl_channelaftertouch;
2079     break;
2080    
2081     // ordinary MIDI control change controller
2082     case leverage_ctrl_t::type_controlchange:
2083     switch (DecodedController.controller_number) {
2084     case 1:
2085     encodedcontroller = _lev_ctrl_modwheel;
2086     break;
2087     case 2:
2088     encodedcontroller = _lev_ctrl_breath;
2089     break;
2090     case 4:
2091     encodedcontroller = _lev_ctrl_foot;
2092     break;
2093     case 12:
2094     encodedcontroller = _lev_ctrl_effect1;
2095     break;
2096     case 13:
2097     encodedcontroller = _lev_ctrl_effect2;
2098     break;
2099     case 16:
2100     encodedcontroller = _lev_ctrl_genpurpose1;
2101     break;
2102     case 17:
2103     encodedcontroller = _lev_ctrl_genpurpose2;
2104     break;
2105     case 18:
2106     encodedcontroller = _lev_ctrl_genpurpose3;
2107     break;
2108     case 19:
2109     encodedcontroller = _lev_ctrl_genpurpose4;
2110     break;
2111     case 5:
2112     encodedcontroller = _lev_ctrl_portamentotime;
2113     break;
2114     case 64:
2115     encodedcontroller = _lev_ctrl_sustainpedal;
2116     break;
2117     case 65:
2118     encodedcontroller = _lev_ctrl_portamento;
2119     break;
2120     case 66:
2121     encodedcontroller = _lev_ctrl_sostenutopedal;
2122     break;
2123     case 67:
2124     encodedcontroller = _lev_ctrl_softpedal;
2125     break;
2126     case 80:
2127     encodedcontroller = _lev_ctrl_genpurpose5;
2128     break;
2129     case 81:
2130     encodedcontroller = _lev_ctrl_genpurpose6;
2131     break;
2132     case 82:
2133     encodedcontroller = _lev_ctrl_genpurpose7;
2134     break;
2135     case 83:
2136     encodedcontroller = _lev_ctrl_genpurpose8;
2137     break;
2138     case 91:
2139     encodedcontroller = _lev_ctrl_effect1depth;
2140     break;
2141     case 92:
2142     encodedcontroller = _lev_ctrl_effect2depth;
2143     break;
2144     case 93:
2145     encodedcontroller = _lev_ctrl_effect3depth;
2146     break;
2147     case 94:
2148     encodedcontroller = _lev_ctrl_effect4depth;
2149     break;
2150     case 95:
2151     encodedcontroller = _lev_ctrl_effect5depth;
2152     break;
2153     default:
2154     throw gig::Exception("leverage controller number is not supported by the gig format");
2155     }
2156 persson 1182 break;
2157 schoenebeck 809 default:
2158     throw gig::Exception("Unknown leverage controller type.");
2159     }
2160     return encodedcontroller;
2161     }
2162    
2163 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2164     Instances--;
2165     if (!Instances) {
2166     // delete the velocity->volume tables
2167     VelocityTableMap::iterator iter;
2168     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2169     double* pTable = iter->second;
2170     if (pTable) delete[] pTable;
2171     }
2172     pVelocityTables->clear();
2173     delete pVelocityTables;
2174     pVelocityTables = NULL;
2175     }
2176 persson 858 if (VelocityTable) delete[] VelocityTable;
2177 schoenebeck 16 }
2178 schoenebeck 2
2179 schoenebeck 16 /**
2180     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2181     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2182     * and VelocityResponseCurveScaling) involved are taken into account to
2183     * calculate the amplitude factor. Use this method when a key was
2184     * triggered to get the volume with which the sample should be played
2185     * back.
2186     *
2187 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2188     * @returns amplitude factor (between 0.0 and 1.0)
2189 schoenebeck 16 */
2190     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2191     return pVelocityAttenuationTable[MIDIKeyVelocity];
2192     }
2193 schoenebeck 2
2194 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2195     return pVelocityReleaseTable[MIDIKeyVelocity];
2196     }
2197    
2198 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2199     return pVelocityCutoffTable[MIDIKeyVelocity];
2200     }
2201    
2202 schoenebeck 1358 /**
2203     * Updates the respective member variable and the lookup table / cache
2204     * that depends on this value.
2205     */
2206     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207     pVelocityAttenuationTable =
2208     GetVelocityTable(
2209     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210     );
2211     VelocityResponseCurve = curve;
2212     }
2213    
2214     /**
2215     * Updates the respective member variable and the lookup table / cache
2216     * that depends on this value.
2217     */
2218     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219     pVelocityAttenuationTable =
2220     GetVelocityTable(
2221     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222     );
2223     VelocityResponseDepth = depth;
2224     }
2225    
2226     /**
2227     * Updates the respective member variable and the lookup table / cache
2228     * that depends on this value.
2229     */
2230     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231     pVelocityAttenuationTable =
2232     GetVelocityTable(
2233     VelocityResponseCurve, VelocityResponseDepth, scaling
2234     );
2235     VelocityResponseCurveScaling = scaling;
2236     }
2237    
2238     /**
2239     * Updates the respective member variable and the lookup table / cache
2240     * that depends on this value.
2241     */
2242     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244     ReleaseVelocityResponseCurve = curve;
2245     }
2246    
2247     /**
2248     * Updates the respective member variable and the lookup table / cache
2249     * that depends on this value.
2250     */
2251     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253     ReleaseVelocityResponseDepth = depth;
2254     }
2255    
2256     /**
2257     * Updates the respective member variable and the lookup table / cache
2258     * that depends on this value.
2259     */
2260     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262     VCFCutoffController = controller;
2263     }
2264    
2265     /**
2266     * Updates the respective member variable and the lookup table / cache
2267     * that depends on this value.
2268     */
2269     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271     VCFVelocityCurve = curve;
2272     }
2273    
2274     /**
2275     * Updates the respective member variable and the lookup table / cache
2276     * that depends on this value.
2277     */
2278     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280     VCFVelocityDynamicRange = range;
2281     }
2282    
2283     /**
2284     * Updates the respective member variable and the lookup table / cache
2285     * that depends on this value.
2286     */
2287     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289     VCFVelocityScale = scaling;
2290     }
2291    
2292 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293 schoenebeck 317
2294 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2295 schoenebeck 16
2296 schoenebeck 308 // linear
2297     const int lin0[] = { 1, 1, 127, 127 };
2298     const int lin1[] = { 1, 21, 127, 127 };
2299     const int lin2[] = { 1, 45, 127, 127 };
2300     const int lin3[] = { 1, 74, 127, 127 };
2301     const int lin4[] = { 1, 127, 127, 127 };
2302 schoenebeck 16
2303 schoenebeck 308 // non-linear
2304     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2305 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2306 schoenebeck 308 127, 127 };
2307     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2308     127, 127 };
2309     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2310     127, 127 };
2311     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2312 schoenebeck 317
2313 schoenebeck 308 // special
2314 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2315 schoenebeck 308 113, 127, 127, 127 };
2316     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2317     118, 127, 127, 127 };
2318 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2319 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2320 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2321 schoenebeck 308 117, 127, 127, 127 };
2322 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2323 schoenebeck 308 127, 127 };
2324 schoenebeck 317
2325 persson 728 // this is only used by the VCF velocity curve
2326     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2327     91, 127, 127, 127 };
2328    
2329 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2330 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2331 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2332 schoenebeck 317
2333 schoenebeck 308 double* const table = new double[128];
2334    
2335     const int* curve = curves[curveType * 5 + depth];
2336     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2337 schoenebeck 317
2338 schoenebeck 308 table[0] = 0;
2339     for (int x = 1 ; x < 128 ; x++) {
2340    
2341     if (x > curve[2]) curve += 2;
2342 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2343 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2344     y = y / 127;
2345    
2346     // Scale up for s > 20, down for s < 20. When
2347     // down-scaling, the curve still ends at 1.0.
2348     if (s < 20 && y >= 0.5)
2349     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2350     else
2351     y = y * (s / 20.0);
2352     if (y > 1) y = 1;
2353    
2354     table[x] = y;
2355     }
2356     return table;
2357     }
2358    
2359    
2360 schoenebeck 2 // *************** Region ***************
2361     // *
2362    
2363     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2364     // Initialization
2365     Dimensions = 0;
2366 schoenebeck 347 for (int i = 0; i < 256; i++) {
2367 schoenebeck 2 pDimensionRegions[i] = NULL;