/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1713 - (hide annotations) (download)
Thu Mar 6 20:42:22 2008 UTC (16 years ago) by persson
File size: 174558 byte(s)
* fixed compilation with gcc 4.3

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1050 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31    
32 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
33     /// compressed sample wave streams - this value should always be bigger than
34     /// the biggest sample piece expected to be read by the sampler engine,
35     /// otherwise the buffer size will be raised at runtime and thus the buffer
36     /// reallocated which is time consuming and unefficient.
37     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38    
39     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52    
53 schoenebeck 515 namespace gig {
54 schoenebeck 2
55 schoenebeck 515 // *************** progress_t ***************
56     // *
57    
58     progress_t::progress_t() {
59     callback = NULL;
60 schoenebeck 516 custom = NULL;
61 schoenebeck 515 __range_min = 0.0f;
62     __range_max = 1.0f;
63     }
64    
65     // private helper function to convert progress of a subprocess into the global progress
66     static void __notify_progress(progress_t* pProgress, float subprogress) {
67     if (pProgress && pProgress->callback) {
68     const float totalrange = pProgress->__range_max - pProgress->__range_min;
69     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 schoenebeck 516 pProgress->factor = totalprogress;
71     pProgress->callback(pProgress); // now actually notify about the progress
72 schoenebeck 515 }
73     }
74    
75     // private helper function to divide a progress into subprogresses
76     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77     if (pParentProgress && pParentProgress->callback) {
78     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79     pSubProgress->callback = pParentProgress->callback;
80 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
81 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83     }
84     }
85    
86    
87 schoenebeck 809 // *************** Internal functions for sample decompression ***************
88 persson 365 // *
89    
90 schoenebeck 515 namespace {
91    
92 persson 365 inline int get12lo(const unsigned char* pSrc)
93     {
94     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95     return x & 0x800 ? x - 0x1000 : x;
96     }
97    
98     inline int get12hi(const unsigned char* pSrc)
99     {
100     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101     return x & 0x800 ? x - 0x1000 : x;
102     }
103    
104     inline int16_t get16(const unsigned char* pSrc)
105     {
106     return int16_t(pSrc[0] | pSrc[1] << 8);
107     }
108    
109     inline int get24(const unsigned char* pSrc)
110     {
111     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112     return x & 0x800000 ? x - 0x1000000 : x;
113     }
114    
115 persson 902 inline void store24(unsigned char* pDst, int x)
116     {
117     pDst[0] = x;
118     pDst[1] = x >> 8;
119     pDst[2] = x >> 16;
120     }
121    
122 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
123 persson 372 int srcStep, int dstStep,
124     const unsigned char* pSrc, int16_t* pDst,
125 persson 365 unsigned long currentframeoffset,
126     unsigned long copysamples)
127     {
128     switch (compressionmode) {
129     case 0: // 16 bit uncompressed
130     pSrc += currentframeoffset * srcStep;
131     while (copysamples) {
132     *pDst = get16(pSrc);
133 persson 372 pDst += dstStep;
134 persson 365 pSrc += srcStep;
135     copysamples--;
136     }
137     break;
138    
139     case 1: // 16 bit compressed to 8 bit
140     int y = get16(params);
141     int dy = get16(params + 2);
142     while (currentframeoffset) {
143     dy -= int8_t(*pSrc);
144     y -= dy;
145     pSrc += srcStep;
146     currentframeoffset--;
147     }
148     while (copysamples) {
149     dy -= int8_t(*pSrc);
150     y -= dy;
151     *pDst = y;
152 persson 372 pDst += dstStep;
153 persson 365 pSrc += srcStep;
154     copysamples--;
155     }
156     break;
157     }
158     }
159    
160     void Decompress24(int compressionmode, const unsigned char* params,
161 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 persson 365 unsigned long currentframeoffset,
163 persson 437 unsigned long copysamples, int truncatedBits)
164 persson 365 {
165 persson 695 int y, dy, ddy, dddy;
166 persson 437
167 persson 695 #define GET_PARAMS(params) \
168     y = get24(params); \
169     dy = y - get24((params) + 3); \
170     ddy = get24((params) + 6); \
171     dddy = get24((params) + 9)
172 persson 365
173     #define SKIP_ONE(x) \
174 persson 695 dddy -= (x); \
175     ddy -= dddy; \
176     dy = -dy - ddy; \
177     y += dy
178 persson 365
179     #define COPY_ONE(x) \
180     SKIP_ONE(x); \
181 persson 902 store24(pDst, y << truncatedBits); \
182 persson 372 pDst += dstStep
183 persson 365
184     switch (compressionmode) {
185     case 2: // 24 bit uncompressed
186     pSrc += currentframeoffset * 3;
187     while (copysamples) {
188 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
189 persson 372 pDst += dstStep;
190 persson 365 pSrc += 3;
191     copysamples--;
192     }
193     break;
194    
195     case 3: // 24 bit compressed to 16 bit
196     GET_PARAMS(params);
197     while (currentframeoffset) {
198     SKIP_ONE(get16(pSrc));
199     pSrc += 2;
200     currentframeoffset--;
201     }
202     while (copysamples) {
203     COPY_ONE(get16(pSrc));
204     pSrc += 2;
205     copysamples--;
206     }
207     break;
208    
209     case 4: // 24 bit compressed to 12 bit
210     GET_PARAMS(params);
211     while (currentframeoffset > 1) {
212     SKIP_ONE(get12lo(pSrc));
213     SKIP_ONE(get12hi(pSrc));
214     pSrc += 3;
215     currentframeoffset -= 2;
216     }
217     if (currentframeoffset) {
218     SKIP_ONE(get12lo(pSrc));
219     currentframeoffset--;
220     if (copysamples) {
221     COPY_ONE(get12hi(pSrc));
222     pSrc += 3;
223     copysamples--;
224     }
225     }
226     while (copysamples > 1) {
227     COPY_ONE(get12lo(pSrc));
228     COPY_ONE(get12hi(pSrc));
229     pSrc += 3;
230     copysamples -= 2;
231     }
232     if (copysamples) {
233     COPY_ONE(get12lo(pSrc));
234     }
235     break;
236    
237     case 5: // 24 bit compressed to 8 bit
238     GET_PARAMS(params);
239     while (currentframeoffset) {
240     SKIP_ONE(int8_t(*pSrc++));
241     currentframeoffset--;
242     }
243     while (copysamples) {
244     COPY_ONE(int8_t(*pSrc++));
245     copysamples--;
246     }
247     break;
248     }
249     }
250    
251     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255     }
256    
257    
258 schoenebeck 1113
259 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260     // *
261    
262     static uint32_t* __initCRCTable() {
263     static uint32_t res[256];
264    
265     for (int i = 0 ; i < 256 ; i++) {
266     uint32_t c = i;
267     for (int j = 0 ; j < 8 ; j++) {
268     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269     }
270     res[i] = c;
271     }
272     return res;
273     }
274    
275     static const uint32_t* __CRCTable = __initCRCTable();
276    
277     /**
278     * Initialize a CRC variable.
279     *
280     * @param crc - variable to be initialized
281     */
282     inline static void __resetCRC(uint32_t& crc) {
283     crc = 0xffffffff;
284     }
285    
286     /**
287     * Used to calculate checksums of the sample data in a gig file. The
288     * checksums are stored in the 3crc chunk of the gig file and
289     * automatically updated when a sample is written with Sample::Write().
290     *
291     * One should call __resetCRC() to initialize the CRC variable to be
292     * used before calling this function the first time.
293     *
294     * After initializing the CRC variable one can call this function
295     * arbitrary times, i.e. to split the overall CRC calculation into
296     * steps.
297     *
298     * Once the whole data was processed by __calculateCRC(), one should
299     * call __encodeCRC() to get the final CRC result.
300     *
301     * @param buf - pointer to data the CRC shall be calculated of
302     * @param bufSize - size of the data to be processed
303     * @param crc - variable the CRC sum shall be stored to
304     */
305     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306     for (int i = 0 ; i < bufSize ; i++) {
307     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308     }
309     }
310    
311     /**
312     * Returns the final CRC result.
313     *
314     * @param crc - variable previously passed to __calculateCRC()
315     */
316     inline static uint32_t __encodeCRC(const uint32_t& crc) {
317     return crc ^ 0xffffffff;
318     }
319    
320    
321    
322 schoenebeck 1113 // *************** Other Internal functions ***************
323     // *
324    
325     static split_type_t __resolveSplitType(dimension_t dimension) {
326     return (
327     dimension == dimension_layer ||
328     dimension == dimension_samplechannel ||
329     dimension == dimension_releasetrigger ||
330     dimension == dimension_keyboard ||
331     dimension == dimension_roundrobin ||
332     dimension == dimension_random ||
333     dimension == dimension_smartmidi ||
334     dimension == dimension_roundrobinkeyboard
335     ) ? split_type_bit : split_type_normal;
336     }
337    
338     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339     return (dimension_definition.split_type == split_type_normal)
340     ? int(128.0 / dimension_definition.zones) : 0;
341     }
342    
343    
344    
345 schoenebeck 2 // *************** Sample ***************
346     // *
347    
348 schoenebeck 384 unsigned int Sample::Instances = 0;
349     buffer_t Sample::InternalDecompressionBuffer;
350 schoenebeck 2
351 schoenebeck 809 /** @brief Constructor.
352     *
353     * Load an existing sample or create a new one. A 'wave' list chunk must
354     * be given to this constructor. In case the given 'wave' list chunk
355     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356     * format and sample data will be loaded from there, otherwise default
357     * values will be used and those chunks will be created when
358     * File::Save() will be called later on.
359     *
360     * @param pFile - pointer to gig::File where this sample is
361     * located (or will be located)
362     * @param waveList - pointer to 'wave' list chunk which is (or
363     * will be) associated with this sample
364     * @param WavePoolOffset - offset of this sample data from wave pool
365     * ('wvpl') list chunk
366     * @param fileNo - number of an extension file where this sample
367     * is located, 0 otherwise
368     */
369 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 persson 1180 { CHUNK_ID_INAM, 64 },
372     { 0, 0 }
373     };
374 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
375 schoenebeck 2 Instances++;
376 persson 666 FileNo = fileNo;
377 schoenebeck 2
378 schoenebeck 1381 __resetCRC(crc);
379    
380 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381     if (pCk3gix) {
382 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
384 schoenebeck 809 } else { // '3gix' chunk missing
385 schoenebeck 930 // by default assigned to that mandatory "Default Group"
386     pGroup = pFile->GetGroup(0);
387 schoenebeck 809 }
388 schoenebeck 2
389 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390     if (pCkSmpl) {
391     Manufacturer = pCkSmpl->ReadInt32();
392     Product = pCkSmpl->ReadInt32();
393     SamplePeriod = pCkSmpl->ReadInt32();
394     MIDIUnityNote = pCkSmpl->ReadInt32();
395     FineTune = pCkSmpl->ReadInt32();
396     pCkSmpl->Read(&SMPTEFormat, 1, 4);
397     SMPTEOffset = pCkSmpl->ReadInt32();
398     Loops = pCkSmpl->ReadInt32();
399     pCkSmpl->ReadInt32(); // manufByt
400     LoopID = pCkSmpl->ReadInt32();
401     pCkSmpl->Read(&LoopType, 1, 4);
402     LoopStart = pCkSmpl->ReadInt32();
403     LoopEnd = pCkSmpl->ReadInt32();
404     LoopFraction = pCkSmpl->ReadInt32();
405     LoopPlayCount = pCkSmpl->ReadInt32();
406     } else { // 'smpl' chunk missing
407     // use default values
408     Manufacturer = 0;
409     Product = 0;
410 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 persson 1218 MIDIUnityNote = 60;
412 schoenebeck 809 FineTune = 0;
413 persson 1182 SMPTEFormat = smpte_format_no_offset;
414 schoenebeck 809 SMPTEOffset = 0;
415     Loops = 0;
416     LoopID = 0;
417 persson 1182 LoopType = loop_type_normal;
418 schoenebeck 809 LoopStart = 0;
419     LoopEnd = 0;
420     LoopFraction = 0;
421     LoopPlayCount = 0;
422     }
423 schoenebeck 2
424     FrameTable = NULL;
425     SamplePos = 0;
426     RAMCache.Size = 0;
427     RAMCache.pStart = NULL;
428     RAMCache.NullExtensionSize = 0;
429    
430 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433     Compressed = ewav;
434     Dithered = false;
435     TruncatedBits = 0;
436 schoenebeck 2 if (Compressed) {
437 persson 437 uint32_t version = ewav->ReadInt32();
438     if (version == 3 && BitDepth == 24) {
439     Dithered = ewav->ReadInt32();
440     ewav->SetPos(Channels == 2 ? 84 : 64);
441     TruncatedBits = ewav->ReadInt32();
442     }
443 schoenebeck 2 ScanCompressedSample();
444     }
445 schoenebeck 317
446     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 schoenebeck 317 }
451 persson 437 FrameOffset = 0; // just for streaming compressed samples
452 schoenebeck 21
453 persson 864 LoopSize = LoopEnd - LoopStart + 1;
454 schoenebeck 2 }
455    
456 schoenebeck 809 /**
457     * Apply sample and its settings to the respective RIFF chunks. You have
458     * to call File::Save() to make changes persistent.
459     *
460     * Usually there is absolutely no need to call this method explicitly.
461     * It will be called automatically when File::Save() was called.
462     *
463 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 schoenebeck 809 * was provided yet
465     * @throws gig::Exception if there is any invalid sample setting
466     */
467     void Sample::UpdateChunks() {
468     // first update base class's chunks
469     DLS::Sample::UpdateChunks();
470    
471     // make sure 'smpl' chunk exists
472     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 persson 1182 if (!pCkSmpl) {
474     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475     memset(pCkSmpl->LoadChunkData(), 0, 60);
476     }
477 schoenebeck 809 // update 'smpl' chunk
478     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 persson 1179 store32(&pData[0], Manufacturer);
481     store32(&pData[4], Product);
482     store32(&pData[8], SamplePeriod);
483     store32(&pData[12], MIDIUnityNote);
484     store32(&pData[16], FineTune);
485     store32(&pData[20], SMPTEFormat);
486     store32(&pData[24], SMPTEOffset);
487     store32(&pData[28], Loops);
488 schoenebeck 809
489     // we skip 'manufByt' for now (4 bytes)
490    
491 persson 1179 store32(&pData[36], LoopID);
492     store32(&pData[40], LoopType);
493     store32(&pData[44], LoopStart);
494     store32(&pData[48], LoopEnd);
495     store32(&pData[52], LoopFraction);
496     store32(&pData[56], LoopPlayCount);
497 schoenebeck 809
498     // make sure '3gix' chunk exists
499     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
502 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
504     if (pFile->pGroups) {
505     std::list<Group*>::iterator iter = pFile->pGroups->begin();
506     std::list<Group*>::iterator end = pFile->pGroups->end();
507 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
508 schoenebeck 929 if (*iter == pGroup) {
509     iSampleGroup = i;
510     break; // found
511     }
512     }
513     }
514 schoenebeck 809 // update '3gix' chunk
515     pData = (uint8_t*) pCk3gix->LoadChunkData();
516 persson 1179 store16(&pData[0], iSampleGroup);
517 schoenebeck 809 }
518    
519 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520     void Sample::ScanCompressedSample() {
521     //TODO: we have to add some more scans here (e.g. determine compression rate)
522     this->SamplesTotal = 0;
523     std::list<unsigned long> frameOffsets;
524    
525 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 persson 365
528 schoenebeck 2 // Scanning
529     pCkData->SetPos(0);
530 persson 365 if (Channels == 2) { // Stereo
531     for (int i = 0 ; ; i++) {
532     // for 24 bit samples every 8:th frame offset is
533     // stored, to save some memory
534     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535    
536     const int mode_l = pCkData->ReadUint8();
537     const int mode_r = pCkData->ReadUint8();
538     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541     if (pCkData->RemainingBytes() <= frameSize) {
542     SamplesInLastFrame =
543     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545     SamplesTotal += SamplesInLastFrame;
546 schoenebeck 2 break;
547 persson 365 }
548     SamplesTotal += SamplesPerFrame;
549     pCkData->SetPos(frameSize, RIFF::stream_curpos);
550     }
551     }
552     else { // Mono
553     for (int i = 0 ; ; i++) {
554     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556     const int mode = pCkData->ReadUint8();
557     if (mode > 5) throw gig::Exception("Unknown compression mode");
558     const unsigned long frameSize = bytesPerFrame[mode];
559    
560     if (pCkData->RemainingBytes() <= frameSize) {
561     SamplesInLastFrame =
562     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563     SamplesTotal += SamplesInLastFrame;
564 schoenebeck 2 break;
565 persson 365 }
566     SamplesTotal += SamplesPerFrame;
567     pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 schoenebeck 2 }
569     }
570     pCkData->SetPos(0);
571    
572     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573     if (FrameTable) delete[] FrameTable;
574     FrameTable = new unsigned long[frameOffsets.size()];
575     std::list<unsigned long>::iterator end = frameOffsets.end();
576     std::list<unsigned long>::iterator iter = frameOffsets.begin();
577     for (int i = 0; iter != end; i++, iter++) {
578     FrameTable[i] = *iter;
579     }
580     }
581    
582     /**
583     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584     * ReleaseSampleData() to free the memory if you don't need the cached
585     * sample data anymore.
586     *
587     * @returns buffer_t structure with start address and size of the buffer
588     * in bytes
589     * @see ReleaseSampleData(), Read(), SetPos()
590     */
591     buffer_t Sample::LoadSampleData() {
592     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593     }
594    
595     /**
596     * Reads (uncompresses if needed) and caches the first \a SampleCount
597     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598     * memory space if you don't need the cached samples anymore. There is no
599     * guarantee that exactly \a SampleCount samples will be cached; this is
600     * not an error. The size will be eventually truncated e.g. to the
601     * beginning of a frame of a compressed sample. This is done for
602     * efficiency reasons while streaming the wave by your sampler engine
603     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604     * that will be returned to determine the actual cached samples, but note
605     * that the size is given in bytes! You get the number of actually cached
606     * samples by dividing it by the frame size of the sample:
607 schoenebeck 384 * @code
608 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609     * long cachedsamples = buf.Size / pSample->FrameSize;
610 schoenebeck 384 * @endcode
611 schoenebeck 2 *
612     * @param SampleCount - number of sample points to load into RAM
613     * @returns buffer_t structure with start address and size of
614     * the cached sample data in bytes
615     * @see ReleaseSampleData(), Read(), SetPos()
616     */
617     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619     }
620    
621     /**
622     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623     * ReleaseSampleData() to free the memory if you don't need the cached
624     * sample data anymore.
625     * The method will add \a NullSamplesCount silence samples past the
626     * official buffer end (this won't affect the 'Size' member of the
627     * buffer_t structure, that means 'Size' always reflects the size of the
628     * actual sample data, the buffer might be bigger though). Silence
629     * samples past the official buffer are needed for differential
630     * algorithms that always have to take subsequent samples into account
631     * (resampling/interpolation would be an important example) and avoids
632     * memory access faults in such cases.
633     *
634     * @param NullSamplesCount - number of silence samples the buffer should
635     * be extended past it's data end
636     * @returns buffer_t structure with start address and
637     * size of the buffer in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
661     * official buffer end (this won't affect the 'Size' member of the
662     * buffer_t structure, that means 'Size' always reflects the size of the
663     * actual sample data, the buffer might be bigger though). Silence
664     * samples past the official buffer are needed for differential
665     * algorithms that always have to take subsequent samples into account
666     * (resampling/interpolation would be an important example) and avoids
667     * memory access faults in such cases.
668     *
669     * @param SampleCount - number of sample points to load into RAM
670     * @param NullSamplesCount - number of silence samples the buffer should
671     * be extended past it's data end
672     * @returns buffer_t structure with start address and
673     * size of the cached sample data in bytes
674     * @see ReleaseSampleData(), Read(), SetPos()
675     */
676     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680     RAMCache.pStart = new int8_t[allocationsize];
681     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
682     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
683     // fill the remaining buffer space with silence samples
684     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
685     return GetCache();
686     }
687    
688     /**
689     * Returns current cached sample points. A buffer_t structure will be
690     * returned which contains address pointer to the begin of the cache and
691     * the size of the cached sample data in bytes. Use
692     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
693     * RAM.
694     *
695     * @returns buffer_t structure with current cached sample points
696     * @see LoadSampleData();
697     */
698     buffer_t Sample::GetCache() {
699     // return a copy of the buffer_t structure
700     buffer_t result;
701     result.Size = this->RAMCache.Size;
702     result.pStart = this->RAMCache.pStart;
703     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
704     return result;
705     }
706    
707     /**
708     * Frees the cached sample from RAM if loaded with
709     * <i>LoadSampleData()</i> previously.
710     *
711     * @see LoadSampleData();
712     */
713     void Sample::ReleaseSampleData() {
714     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
715     RAMCache.pStart = NULL;
716     RAMCache.Size = 0;
717     }
718    
719 schoenebeck 809 /** @brief Resize sample.
720     *
721     * Resizes the sample's wave form data, that is the actual size of
722     * sample wave data possible to be written for this sample. This call
723     * will return immediately and just schedule the resize operation. You
724     * should call File::Save() to actually perform the resize operation(s)
725     * "physically" to the file. As this can take a while on large files, it
726     * is recommended to call Resize() first on all samples which have to be
727     * resized and finally to call File::Save() to perform all those resize
728     * operations in one rush.
729     *
730     * The actual size (in bytes) is dependant to the current FrameSize
731     * value. You may want to set FrameSize before calling Resize().
732     *
733     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
734     * enlarged samples before calling File::Save() as this might exceed the
735     * current sample's boundary!
736     *
737 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
738     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
739 schoenebeck 809 * other formats will fail!
740     *
741     * @param iNewSize - new sample wave data size in sample points (must be
742     * greater than zero)
743 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
744 schoenebeck 809 * or if \a iNewSize is less than 1
745     * @throws gig::Exception if existing sample is compressed
746     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
747     * DLS::Sample::FormatTag, File::Save()
748     */
749     void Sample::Resize(int iNewSize) {
750     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
751     DLS::Sample::Resize(iNewSize);
752     }
753    
754 schoenebeck 2 /**
755     * Sets the position within the sample (in sample points, not in
756     * bytes). Use this method and <i>Read()</i> if you don't want to load
757     * the sample into RAM, thus for disk streaming.
758     *
759     * Although the original Gigasampler engine doesn't allow positioning
760     * within compressed samples, I decided to implement it. Even though
761     * the Gigasampler format doesn't allow to define loops for compressed
762     * samples at the moment, positioning within compressed samples might be
763     * interesting for some sampler engines though. The only drawback about
764     * my decision is that it takes longer to load compressed gig Files on
765     * startup, because it's neccessary to scan the samples for some
766     * mandatory informations. But I think as it doesn't affect the runtime
767     * efficiency, nobody will have a problem with that.
768     *
769     * @param SampleCount number of sample points to jump
770     * @param Whence optional: to which relation \a SampleCount refers
771     * to, if omited <i>RIFF::stream_start</i> is assumed
772     * @returns the new sample position
773     * @see Read()
774     */
775     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
776     if (Compressed) {
777     switch (Whence) {
778     case RIFF::stream_curpos:
779     this->SamplePos += SampleCount;
780     break;
781     case RIFF::stream_end:
782     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
783     break;
784     case RIFF::stream_backward:
785     this->SamplePos -= SampleCount;
786     break;
787     case RIFF::stream_start: default:
788     this->SamplePos = SampleCount;
789     break;
790     }
791     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
792    
793     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
794     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
795     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
796     return this->SamplePos;
797     }
798     else { // not compressed
799     unsigned long orderedBytes = SampleCount * this->FrameSize;
800     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
801     return (result == orderedBytes) ? SampleCount
802     : result / this->FrameSize;
803     }
804     }
805    
806     /**
807     * Returns the current position in the sample (in sample points).
808     */
809     unsigned long Sample::GetPos() {
810     if (Compressed) return SamplePos;
811     else return pCkData->GetPos() / FrameSize;
812     }
813    
814     /**
815 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
816     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
817     * the position within the sample respectively, this method honors the
818     * looping informations of the sample (if any). The sample wave stream
819     * will be decompressed on the fly if using a compressed sample. Use this
820     * method if you don't want to load the sample into RAM, thus for disk
821     * streaming. All this methods needs to know to proceed with streaming
822     * for the next time you call this method is stored in \a pPlaybackState.
823     * You have to allocate and initialize the playback_state_t structure by
824     * yourself before you use it to stream a sample:
825 schoenebeck 384 * @code
826     * gig::playback_state_t playbackstate;
827     * playbackstate.position = 0;
828     * playbackstate.reverse = false;
829     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
830     * @endcode
831 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
832     * defined or if the current read position is located within a loop area.
833     * The method already handles such cases by itself.
834     *
835 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
836     * have to use an external decompression buffer for <b>EACH</b>
837     * streaming thread to avoid race conditions and crashes!
838     *
839 schoenebeck 24 * @param pBuffer destination buffer
840     * @param SampleCount number of sample points to read
841     * @param pPlaybackState will be used to store and reload the playback
842     * state for the next ReadAndLoop() call
843 persson 864 * @param pDimRgn dimension region with looping information
844 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
845 schoenebeck 24 * @returns number of successfully read sample points
846 schoenebeck 384 * @see CreateDecompressionBuffer()
847 schoenebeck 24 */
848 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
849     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
850 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
851     uint8_t* pDst = (uint8_t*) pBuffer;
852    
853     SetPos(pPlaybackState->position); // recover position from the last time
854    
855 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
856 schoenebeck 24
857 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
858     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
859 schoenebeck 24
860 persson 864 if (GetPos() <= loopEnd) {
861     switch (loop.LoopType) {
862 schoenebeck 24
863 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
864     do {
865     // if not endless loop check if max. number of loop cycles have been passed
866     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
867 schoenebeck 24
868 persson 864 if (!pPlaybackState->reverse) { // forward playback
869     do {
870     samplestoloopend = loopEnd - GetPos();
871     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
872     samplestoread -= readsamples;
873     totalreadsamples += readsamples;
874     if (readsamples == samplestoloopend) {
875     pPlaybackState->reverse = true;
876     break;
877     }
878     } while (samplestoread && readsamples);
879     }
880     else { // backward playback
881 schoenebeck 24
882 persson 864 // as we can only read forward from disk, we have to
883     // determine the end position within the loop first,
884     // read forward from that 'end' and finally after
885     // reading, swap all sample frames so it reflects
886     // backward playback
887 schoenebeck 24
888 persson 864 unsigned long swapareastart = totalreadsamples;
889     unsigned long loopoffset = GetPos() - loop.LoopStart;
890     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
891     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
892 schoenebeck 24
893 persson 864 SetPos(reverseplaybackend);
894 schoenebeck 24
895 persson 864 // read samples for backward playback
896     do {
897     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
898     samplestoreadinloop -= readsamples;
899     samplestoread -= readsamples;
900     totalreadsamples += readsamples;
901     } while (samplestoreadinloop && readsamples);
902 schoenebeck 24
903 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
904    
905     if (reverseplaybackend == loop.LoopStart) {
906     pPlaybackState->loop_cycles_left--;
907     pPlaybackState->reverse = false;
908     }
909    
910     // reverse the sample frames for backward playback
911     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
912 schoenebeck 24 }
913 persson 864 } while (samplestoread && readsamples);
914     break;
915     }
916 schoenebeck 24
917 persson 864 case loop_type_backward: { // TODO: not tested yet!
918     // forward playback (not entered the loop yet)
919     if (!pPlaybackState->reverse) do {
920     samplestoloopend = loopEnd - GetPos();
921     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
922     samplestoread -= readsamples;
923     totalreadsamples += readsamples;
924     if (readsamples == samplestoloopend) {
925     pPlaybackState->reverse = true;
926     break;
927     }
928     } while (samplestoread && readsamples);
929 schoenebeck 24
930 persson 864 if (!samplestoread) break;
931 schoenebeck 24
932 persson 864 // as we can only read forward from disk, we have to
933     // determine the end position within the loop first,
934     // read forward from that 'end' and finally after
935     // reading, swap all sample frames so it reflects
936     // backward playback
937 schoenebeck 24
938 persson 864 unsigned long swapareastart = totalreadsamples;
939     unsigned long loopoffset = GetPos() - loop.LoopStart;
940     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
941     : samplestoread;
942     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
943 schoenebeck 24
944 persson 864 SetPos(reverseplaybackend);
945 schoenebeck 24
946 persson 864 // read samples for backward playback
947     do {
948     // if not endless loop check if max. number of loop cycles have been passed
949     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
950     samplestoloopend = loopEnd - GetPos();
951     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
952     samplestoreadinloop -= readsamples;
953     samplestoread -= readsamples;
954     totalreadsamples += readsamples;
955     if (readsamples == samplestoloopend) {
956     pPlaybackState->loop_cycles_left--;
957     SetPos(loop.LoopStart);
958     }
959     } while (samplestoreadinloop && readsamples);
960 schoenebeck 24
961 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
962 schoenebeck 24
963 persson 864 // reverse the sample frames for backward playback
964     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
965     break;
966     }
967 schoenebeck 24
968 persson 864 default: case loop_type_normal: {
969     do {
970     // if not endless loop check if max. number of loop cycles have been passed
971     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
972     samplestoloopend = loopEnd - GetPos();
973     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974     samplestoread -= readsamples;
975     totalreadsamples += readsamples;
976     if (readsamples == samplestoloopend) {
977     pPlaybackState->loop_cycles_left--;
978     SetPos(loop.LoopStart);
979     }
980     } while (samplestoread && readsamples);
981     break;
982     }
983 schoenebeck 24 }
984     }
985     }
986    
987     // read on without looping
988     if (samplestoread) do {
989 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
990 schoenebeck 24 samplestoread -= readsamples;
991     totalreadsamples += readsamples;
992     } while (readsamples && samplestoread);
993    
994     // store current position
995     pPlaybackState->position = GetPos();
996    
997     return totalreadsamples;
998     }
999    
1000     /**
1001 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1002     * position into the buffer pointed by \a pBuffer and increments the
1003     * position within the sample. The sample wave stream will be
1004     * decompressed on the fly if using a compressed sample. Use this method
1005     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1006     * thus for disk streaming.
1007     *
1008 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1009     * have to use an external decompression buffer for <b>EACH</b>
1010     * streaming thread to avoid race conditions and crashes!
1011     *
1012 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1013     * (using native endianness). For 24 bit, the buffer will
1014     * contain three bytes per sample, little-endian.
1015     *
1016 schoenebeck 2 * @param pBuffer destination buffer
1017     * @param SampleCount number of sample points to read
1018 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1019 schoenebeck 2 * @returns number of successfully read sample points
1020 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1021 schoenebeck 2 */
1022 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1023 schoenebeck 21 if (SampleCount == 0) return 0;
1024 schoenebeck 317 if (!Compressed) {
1025     if (BitDepth == 24) {
1026 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1027 schoenebeck 317 }
1028 persson 365 else { // 16 bit
1029     // (pCkData->Read does endian correction)
1030     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1031     : pCkData->Read(pBuffer, SampleCount, 2);
1032     }
1033 schoenebeck 317 }
1034 persson 365 else {
1035 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1036 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1037     unsigned long assumedsize = GuessSize(SampleCount),
1038 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1039     remainingsamples = SampleCount,
1040 persson 365 copysamples, skipsamples,
1041     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1042 schoenebeck 2 this->FrameOffset = 0;
1043    
1044 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1045    
1046     // if decompression buffer too small, then reduce amount of samples to read
1047     if (pDecompressionBuffer->Size < assumedsize) {
1048     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1049     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1050     remainingsamples = SampleCount;
1051     assumedsize = GuessSize(SampleCount);
1052 schoenebeck 2 }
1053    
1054 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1055 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1056 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1057 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1058    
1059 persson 365 while (remainingsamples && remainingbytes) {
1060     unsigned long framesamples = SamplesPerFrame;
1061     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1062 schoenebeck 2
1063 persson 365 int mode_l = *pSrc++, mode_r = 0;
1064    
1065     if (Channels == 2) {
1066     mode_r = *pSrc++;
1067     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1068     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1069     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1070     if (remainingbytes < framebytes) { // last frame in sample
1071     framesamples = SamplesInLastFrame;
1072     if (mode_l == 4 && (framesamples & 1)) {
1073     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1074     }
1075     else {
1076     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1077     }
1078 schoenebeck 2 }
1079     }
1080 persson 365 else {
1081     framebytes = bytesPerFrame[mode_l] + 1;
1082     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1083     if (remainingbytes < framebytes) {
1084     framesamples = SamplesInLastFrame;
1085     }
1086     }
1087 schoenebeck 2
1088     // determine how many samples in this frame to skip and read
1089 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1090     if (currentframeoffset <= framesamples) {
1091     copysamples = framesamples - currentframeoffset;
1092     skipsamples = currentframeoffset;
1093     }
1094     else {
1095     copysamples = 0;
1096     skipsamples = framesamples;
1097     }
1098 schoenebeck 2 }
1099     else {
1100 persson 365 // This frame has enough data for pBuffer, but not
1101     // all of the frame is needed. Set file position
1102     // to start of this frame for next call to Read.
1103 schoenebeck 2 copysamples = remainingsamples;
1104 persson 365 skipsamples = currentframeoffset;
1105     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1106     this->FrameOffset = currentframeoffset + copysamples;
1107     }
1108     remainingsamples -= copysamples;
1109    
1110     if (remainingbytes > framebytes) {
1111     remainingbytes -= framebytes;
1112     if (remainingsamples == 0 &&
1113     currentframeoffset + copysamples == framesamples) {
1114     // This frame has enough data for pBuffer, and
1115     // all of the frame is needed. Set file
1116     // position to start of next frame for next
1117     // call to Read. FrameOffset is 0.
1118 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1119     }
1120     }
1121 persson 365 else remainingbytes = 0;
1122 schoenebeck 2
1123 persson 365 currentframeoffset -= skipsamples;
1124 schoenebeck 2
1125 persson 365 if (copysamples == 0) {
1126     // skip this frame
1127     pSrc += framebytes - Channels;
1128     }
1129     else {
1130     const unsigned char* const param_l = pSrc;
1131     if (BitDepth == 24) {
1132     if (mode_l != 2) pSrc += 12;
1133 schoenebeck 2
1134 persson 365 if (Channels == 2) { // Stereo
1135     const unsigned char* const param_r = pSrc;
1136     if (mode_r != 2) pSrc += 12;
1137    
1138 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1139 persson 437 skipsamples, copysamples, TruncatedBits);
1140 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1141 persson 437 skipsamples, copysamples, TruncatedBits);
1142 persson 902 pDst24 += copysamples * 6;
1143 schoenebeck 2 }
1144 persson 365 else { // Mono
1145 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1146 persson 437 skipsamples, copysamples, TruncatedBits);
1147 persson 902 pDst24 += copysamples * 3;
1148 schoenebeck 2 }
1149 persson 365 }
1150     else { // 16 bit
1151     if (mode_l) pSrc += 4;
1152 schoenebeck 2
1153 persson 365 int step;
1154     if (Channels == 2) { // Stereo
1155     const unsigned char* const param_r = pSrc;
1156     if (mode_r) pSrc += 4;
1157    
1158     step = (2 - mode_l) + (2 - mode_r);
1159 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1160     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1161 persson 365 skipsamples, copysamples);
1162     pDst += copysamples << 1;
1163 schoenebeck 2 }
1164 persson 365 else { // Mono
1165     step = 2 - mode_l;
1166 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1167 persson 365 pDst += copysamples;
1168 schoenebeck 2 }
1169 persson 365 }
1170     pSrc += nextFrameOffset;
1171     }
1172 schoenebeck 2
1173 persson 365 // reload from disk to local buffer if needed
1174     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1175     assumedsize = GuessSize(remainingsamples);
1176     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1177     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1178 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1179     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1180 schoenebeck 2 }
1181 persson 365 } // while
1182    
1183 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1184 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1185 schoenebeck 2 return (SampleCount - remainingsamples);
1186     }
1187     }
1188    
1189 schoenebeck 809 /** @brief Write sample wave data.
1190     *
1191     * Writes \a SampleCount number of sample points from the buffer pointed
1192     * by \a pBuffer and increments the position within the sample. Use this
1193     * method to directly write the sample data to disk, i.e. if you don't
1194     * want or cannot load the whole sample data into RAM.
1195     *
1196     * You have to Resize() the sample to the desired size and call
1197     * File::Save() <b>before</b> using Write().
1198     *
1199     * Note: there is currently no support for writing compressed samples.
1200     *
1201 persson 1264 * For 16 bit samples, the data in the source buffer should be
1202     * int16_t (using native endianness). For 24 bit, the buffer
1203     * should contain three bytes per sample, little-endian.
1204     *
1205 schoenebeck 809 * @param pBuffer - source buffer
1206     * @param SampleCount - number of sample points to write
1207     * @throws DLS::Exception if current sample size is too small
1208     * @throws gig::Exception if sample is compressed
1209     * @see DLS::LoadSampleData()
1210     */
1211     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1212     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1213 persson 1207
1214     // if this is the first write in this sample, reset the
1215     // checksum calculator
1216 persson 1199 if (pCkData->GetPos() == 0) {
1217 schoenebeck 1381 __resetCRC(crc);
1218 persson 1199 }
1219 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1220     unsigned long res;
1221     if (BitDepth == 24) {
1222     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1223     } else { // 16 bit
1224     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1225     : pCkData->Write(pBuffer, SampleCount, 2);
1226     }
1227 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1228 persson 1199
1229 persson 1207 // if this is the last write, update the checksum chunk in the
1230     // file
1231 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1232     File* pFile = static_cast<File*>(GetParent());
1233 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1234 persson 1199 }
1235     return res;
1236 schoenebeck 809 }
1237    
1238 schoenebeck 384 /**
1239     * Allocates a decompression buffer for streaming (compressed) samples
1240     * with Sample::Read(). If you are using more than one streaming thread
1241     * in your application you <b>HAVE</b> to create a decompression buffer
1242     * for <b>EACH</b> of your streaming threads and provide it with the
1243     * Sample::Read() call in order to avoid race conditions and crashes.
1244     *
1245     * You should free the memory occupied by the allocated buffer(s) once
1246     * you don't need one of your streaming threads anymore by calling
1247     * DestroyDecompressionBuffer().
1248     *
1249     * @param MaxReadSize - the maximum size (in sample points) you ever
1250     * expect to read with one Read() call
1251     * @returns allocated decompression buffer
1252     * @see DestroyDecompressionBuffer()
1253     */
1254     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1255     buffer_t result;
1256     const double worstCaseHeaderOverhead =
1257     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1258     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1259     result.pStart = new int8_t[result.Size];
1260     result.NullExtensionSize = 0;
1261     return result;
1262     }
1263    
1264     /**
1265     * Free decompression buffer, previously created with
1266     * CreateDecompressionBuffer().
1267     *
1268     * @param DecompressionBuffer - previously allocated decompression
1269     * buffer to free
1270     */
1271     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1272     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1273     delete[] (int8_t*) DecompressionBuffer.pStart;
1274     DecompressionBuffer.pStart = NULL;
1275     DecompressionBuffer.Size = 0;
1276     DecompressionBuffer.NullExtensionSize = 0;
1277     }
1278     }
1279    
1280 schoenebeck 930 /**
1281     * Returns pointer to the Group this Sample belongs to. In the .gig
1282     * format a sample always belongs to one group. If it wasn't explicitly
1283     * assigned to a certain group, it will be automatically assigned to a
1284     * default group.
1285     *
1286     * @returns Sample's Group (never NULL)
1287     */
1288     Group* Sample::GetGroup() const {
1289     return pGroup;
1290     }
1291    
1292 schoenebeck 2 Sample::~Sample() {
1293     Instances--;
1294 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1295     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1296     InternalDecompressionBuffer.pStart = NULL;
1297     InternalDecompressionBuffer.Size = 0;
1298 schoenebeck 355 }
1299 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1300     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1301     }
1302    
1303    
1304    
1305     // *************** DimensionRegion ***************
1306     // *
1307    
1308 schoenebeck 16 uint DimensionRegion::Instances = 0;
1309     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1310    
1311 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1312 schoenebeck 16 Instances++;
1313    
1314 schoenebeck 823 pSample = NULL;
1315 schoenebeck 1316 pRegion = pParent;
1316 schoenebeck 823
1317 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1318     else memset(&Crossfade, 0, 4);
1319    
1320 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1321 schoenebeck 2
1322     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1323 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1324 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1325 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1327     _3ewa->ReadInt16(); // unknown
1328     LFO1InternalDepth = _3ewa->ReadUint16();
1329     _3ewa->ReadInt16(); // unknown
1330     LFO3InternalDepth = _3ewa->ReadInt16();
1331     _3ewa->ReadInt16(); // unknown
1332     LFO1ControlDepth = _3ewa->ReadUint16();
1333     _3ewa->ReadInt16(); // unknown
1334     LFO3ControlDepth = _3ewa->ReadInt16();
1335     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1337     _3ewa->ReadInt16(); // unknown
1338     EG1Sustain = _3ewa->ReadUint16();
1339     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1341     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1342     EG1ControllerInvert = eg1ctrloptions & 0x01;
1343     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1344     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1345     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1346     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1347     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1348     EG2ControllerInvert = eg2ctrloptions & 0x01;
1349     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1350     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1351     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1352     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1355     _3ewa->ReadInt16(); // unknown
1356     EG2Sustain = _3ewa->ReadUint16();
1357     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358     _3ewa->ReadInt16(); // unknown
1359     LFO2ControlDepth = _3ewa->ReadUint16();
1360     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361     _3ewa->ReadInt16(); // unknown
1362     LFO2InternalDepth = _3ewa->ReadUint16();
1363     int32_t eg1decay2 = _3ewa->ReadInt32();
1364     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1365     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1366     _3ewa->ReadInt16(); // unknown
1367     EG1PreAttack = _3ewa->ReadUint16();
1368     int32_t eg2decay2 = _3ewa->ReadInt32();
1369     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1370     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1371     _3ewa->ReadInt16(); // unknown
1372     EG2PreAttack = _3ewa->ReadUint16();
1373     uint8_t velocityresponse = _3ewa->ReadUint8();
1374     if (velocityresponse < 5) {
1375     VelocityResponseCurve = curve_type_nonlinear;
1376     VelocityResponseDepth = velocityresponse;
1377     } else if (velocityresponse < 10) {
1378     VelocityResponseCurve = curve_type_linear;
1379     VelocityResponseDepth = velocityresponse - 5;
1380     } else if (velocityresponse < 15) {
1381     VelocityResponseCurve = curve_type_special;
1382     VelocityResponseDepth = velocityresponse - 10;
1383     } else {
1384     VelocityResponseCurve = curve_type_unknown;
1385     VelocityResponseDepth = 0;
1386     }
1387     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1388     if (releasevelocityresponse < 5) {
1389     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1390     ReleaseVelocityResponseDepth = releasevelocityresponse;
1391     } else if (releasevelocityresponse < 10) {
1392     ReleaseVelocityResponseCurve = curve_type_linear;
1393     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1394     } else if (releasevelocityresponse < 15) {
1395     ReleaseVelocityResponseCurve = curve_type_special;
1396     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1397     } else {
1398     ReleaseVelocityResponseCurve = curve_type_unknown;
1399     ReleaseVelocityResponseDepth = 0;
1400     }
1401     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1402     AttenuationControllerThreshold = _3ewa->ReadInt8();
1403     _3ewa->ReadInt32(); // unknown
1404     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1405     _3ewa->ReadInt16(); // unknown
1406     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1407     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1408     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1409     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1410     else DimensionBypass = dim_bypass_ctrl_none;
1411     uint8_t pan = _3ewa->ReadUint8();
1412     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1413     SelfMask = _3ewa->ReadInt8() & 0x01;
1414     _3ewa->ReadInt8(); // unknown
1415     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1416     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1417     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1418     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1419     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1421     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1422     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1423     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1424     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1425     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1426     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1427     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1428     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1429     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1430     : vcf_res_ctrl_none;
1431     uint16_t eg3depth = _3ewa->ReadUint16();
1432     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1433     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1434     _3ewa->ReadInt16(); // unknown
1435     ChannelOffset = _3ewa->ReadUint8() / 4;
1436     uint8_t regoptions = _3ewa->ReadUint8();
1437     MSDecode = regoptions & 0x01; // bit 0
1438     SustainDefeat = regoptions & 0x02; // bit 1
1439     _3ewa->ReadInt16(); // unknown
1440     VelocityUpperLimit = _3ewa->ReadInt8();
1441     _3ewa->ReadInt8(); // unknown
1442     _3ewa->ReadInt16(); // unknown
1443     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1444     _3ewa->ReadInt8(); // unknown
1445     _3ewa->ReadInt8(); // unknown
1446     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1447     uint8_t vcfcutoff = _3ewa->ReadUint8();
1448     VCFEnabled = vcfcutoff & 0x80; // bit 7
1449     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1450     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1451     uint8_t vcfvelscale = _3ewa->ReadUint8();
1452     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1453     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1454     _3ewa->ReadInt8(); // unknown
1455     uint8_t vcfresonance = _3ewa->ReadUint8();
1456     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1457     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1458     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1459     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1460     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1461     uint8_t vcfvelocity = _3ewa->ReadUint8();
1462     VCFVelocityDynamicRange = vcfvelocity % 5;
1463     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1464     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1465     if (VCFType == vcf_type_lowpass) {
1466     if (lfo3ctrl & 0x40) // bit 6
1467     VCFType = vcf_type_lowpassturbo;
1468     }
1469 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1470     _3ewa->Read(DimensionUpperLimits, 1, 8);
1471     } else {
1472     memset(DimensionUpperLimits, 0, 8);
1473     }
1474 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1475     // use default values
1476     LFO3Frequency = 1.0;
1477     EG3Attack = 0.0;
1478     LFO1InternalDepth = 0;
1479     LFO3InternalDepth = 0;
1480     LFO1ControlDepth = 0;
1481     LFO3ControlDepth = 0;
1482     EG1Attack = 0.0;
1483 persson 1218 EG1Decay1 = 0.005;
1484     EG1Sustain = 1000;
1485     EG1Release = 0.3;
1486 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1487     EG1Controller.controller_number = 0;
1488     EG1ControllerInvert = false;
1489     EG1ControllerAttackInfluence = 0;
1490     EG1ControllerDecayInfluence = 0;
1491     EG1ControllerReleaseInfluence = 0;
1492     EG2Controller.type = eg2_ctrl_t::type_none;
1493     EG2Controller.controller_number = 0;
1494     EG2ControllerInvert = false;
1495     EG2ControllerAttackInfluence = 0;
1496     EG2ControllerDecayInfluence = 0;
1497     EG2ControllerReleaseInfluence = 0;
1498     LFO1Frequency = 1.0;
1499     EG2Attack = 0.0;
1500 persson 1218 EG2Decay1 = 0.005;
1501     EG2Sustain = 1000;
1502     EG2Release = 0.3;
1503 schoenebeck 809 LFO2ControlDepth = 0;
1504     LFO2Frequency = 1.0;
1505     LFO2InternalDepth = 0;
1506     EG1Decay2 = 0.0;
1507 persson 1218 EG1InfiniteSustain = true;
1508     EG1PreAttack = 0;
1509 schoenebeck 809 EG2Decay2 = 0.0;
1510 persson 1218 EG2InfiniteSustain = true;
1511     EG2PreAttack = 0;
1512 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1513     VelocityResponseDepth = 3;
1514     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1515     ReleaseVelocityResponseDepth = 3;
1516     VelocityResponseCurveScaling = 32;
1517     AttenuationControllerThreshold = 0;
1518     SampleStartOffset = 0;
1519     PitchTrack = true;
1520     DimensionBypass = dim_bypass_ctrl_none;
1521     Pan = 0;
1522     SelfMask = true;
1523     LFO3Controller = lfo3_ctrl_modwheel;
1524     LFO3Sync = false;
1525     InvertAttenuationController = false;
1526     AttenuationController.type = attenuation_ctrl_t::type_none;
1527     AttenuationController.controller_number = 0;
1528     LFO2Controller = lfo2_ctrl_internal;
1529     LFO2FlipPhase = false;
1530     LFO2Sync = false;
1531     LFO1Controller = lfo1_ctrl_internal;
1532     LFO1FlipPhase = false;
1533     LFO1Sync = false;
1534     VCFResonanceController = vcf_res_ctrl_none;
1535     EG3Depth = 0;
1536     ChannelOffset = 0;
1537     MSDecode = false;
1538     SustainDefeat = false;
1539     VelocityUpperLimit = 0;
1540     ReleaseTriggerDecay = 0;
1541     EG1Hold = false;
1542     VCFEnabled = false;
1543     VCFCutoff = 0;
1544     VCFCutoffController = vcf_cutoff_ctrl_none;
1545     VCFCutoffControllerInvert = false;
1546     VCFVelocityScale = 0;
1547     VCFResonance = 0;
1548     VCFResonanceDynamic = false;
1549     VCFKeyboardTracking = false;
1550     VCFKeyboardTrackingBreakpoint = 0;
1551     VCFVelocityDynamicRange = 0x04;
1552     VCFVelocityCurve = curve_type_linear;
1553     VCFType = vcf_type_lowpass;
1554 persson 1247 memset(DimensionUpperLimits, 127, 8);
1555 schoenebeck 2 }
1556 schoenebeck 16
1557 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1558     VelocityResponseDepth,
1559     VelocityResponseCurveScaling);
1560    
1561 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1562     ReleaseVelocityResponseCurve,
1563     ReleaseVelocityResponseDepth
1564     );
1565 persson 613
1566 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1567     VCFVelocityDynamicRange,
1568     VCFVelocityScale,
1569     VCFCutoffController);
1570 persson 613
1571     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1572 persson 858 VelocityTable = 0;
1573 persson 613 }
1574    
1575 persson 1301 /*
1576     * Constructs a DimensionRegion by copying all parameters from
1577     * another DimensionRegion
1578     */
1579     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1580     Instances++;
1581     *this = src; // default memberwise shallow copy of all parameters
1582     pParentList = _3ewl; // restore the chunk pointer
1583    
1584     // deep copy of owned structures
1585     if (src.VelocityTable) {
1586     VelocityTable = new uint8_t[128];
1587     for (int k = 0 ; k < 128 ; k++)
1588     VelocityTable[k] = src.VelocityTable[k];
1589     }
1590     if (src.pSampleLoops) {
1591     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1592     for (int k = 0 ; k < src.SampleLoops ; k++)
1593     pSampleLoops[k] = src.pSampleLoops[k];
1594     }
1595     }
1596    
1597 schoenebeck 809 /**
1598 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1599     * which depends on this value.
1600     */
1601     void DimensionRegion::SetGain(int32_t gain) {
1602     DLS::Sampler::SetGain(gain);
1603     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1604     }
1605    
1606     /**
1607 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1608     * have to call File::Save() to make changes persistent.
1609     *
1610     * Usually there is absolutely no need to call this method explicitly.
1611     * It will be called automatically when File::Save() was called.
1612     */
1613     void DimensionRegion::UpdateChunks() {
1614     // first update base class's chunk
1615     DLS::Sampler::UpdateChunks();
1616    
1617 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1618     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1619     pData[12] = Crossfade.in_start;
1620     pData[13] = Crossfade.in_end;
1621     pData[14] = Crossfade.out_start;
1622     pData[15] = Crossfade.out_end;
1623    
1624 schoenebeck 809 // make sure '3ewa' chunk exists
1625     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1626 persson 1317 if (!_3ewa) {
1627     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1628     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1629     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1630 persson 1264 }
1631 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1632 schoenebeck 809
1633     // update '3ewa' chunk with DimensionRegion's current settings
1634    
1635 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1636 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1637 schoenebeck 809
1638     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1639 persson 1179 store32(&pData[4], lfo3freq);
1640 schoenebeck 809
1641     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1642 persson 1179 store32(&pData[8], eg3attack);
1643 schoenebeck 809
1644     // next 2 bytes unknown
1645    
1646 persson 1179 store16(&pData[14], LFO1InternalDepth);
1647 schoenebeck 809
1648     // next 2 bytes unknown
1649    
1650 persson 1179 store16(&pData[18], LFO3InternalDepth);
1651 schoenebeck 809
1652     // next 2 bytes unknown
1653    
1654 persson 1179 store16(&pData[22], LFO1ControlDepth);
1655 schoenebeck 809
1656     // next 2 bytes unknown
1657    
1658 persson 1179 store16(&pData[26], LFO3ControlDepth);
1659 schoenebeck 809
1660     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1661 persson 1179 store32(&pData[28], eg1attack);
1662 schoenebeck 809
1663     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1664 persson 1179 store32(&pData[32], eg1decay1);
1665 schoenebeck 809
1666     // next 2 bytes unknown
1667    
1668 persson 1179 store16(&pData[38], EG1Sustain);
1669 schoenebeck 809
1670     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1671 persson 1179 store32(&pData[40], eg1release);
1672 schoenebeck 809
1673     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1674 persson 1179 pData[44] = eg1ctl;
1675 schoenebeck 809
1676     const uint8_t eg1ctrloptions =
1677 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1678 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1679     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1680     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1681 persson 1179 pData[45] = eg1ctrloptions;
1682 schoenebeck 809
1683     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1684 persson 1179 pData[46] = eg2ctl;
1685 schoenebeck 809
1686     const uint8_t eg2ctrloptions =
1687 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1688 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1689     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1690     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1691 persson 1179 pData[47] = eg2ctrloptions;
1692 schoenebeck 809
1693     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1694 persson 1179 store32(&pData[48], lfo1freq);
1695 schoenebeck 809
1696     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1697 persson 1179 store32(&pData[52], eg2attack);
1698 schoenebeck 809
1699     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1700 persson 1179 store32(&pData[56], eg2decay1);
1701 schoenebeck 809
1702     // next 2 bytes unknown
1703    
1704 persson 1179 store16(&pData[62], EG2Sustain);
1705 schoenebeck 809
1706     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1707 persson 1179 store32(&pData[64], eg2release);
1708 schoenebeck 809
1709     // next 2 bytes unknown
1710    
1711 persson 1179 store16(&pData[70], LFO2ControlDepth);
1712 schoenebeck 809
1713     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1714 persson 1179 store32(&pData[72], lfo2freq);
1715 schoenebeck 809
1716     // next 2 bytes unknown
1717    
1718 persson 1179 store16(&pData[78], LFO2InternalDepth);
1719 schoenebeck 809
1720     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1721 persson 1179 store32(&pData[80], eg1decay2);
1722 schoenebeck 809
1723     // next 2 bytes unknown
1724    
1725 persson 1179 store16(&pData[86], EG1PreAttack);
1726 schoenebeck 809
1727     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1728 persson 1179 store32(&pData[88], eg2decay2);
1729 schoenebeck 809
1730     // next 2 bytes unknown
1731    
1732 persson 1179 store16(&pData[94], EG2PreAttack);
1733 schoenebeck 809
1734     {
1735     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1736     uint8_t velocityresponse = VelocityResponseDepth;
1737     switch (VelocityResponseCurve) {
1738     case curve_type_nonlinear:
1739     break;
1740     case curve_type_linear:
1741     velocityresponse += 5;
1742     break;
1743     case curve_type_special:
1744     velocityresponse += 10;
1745     break;
1746     case curve_type_unknown:
1747     default:
1748     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1749     }
1750 persson 1179 pData[96] = velocityresponse;
1751 schoenebeck 809 }
1752    
1753     {
1754     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1755     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1756     switch (ReleaseVelocityResponseCurve) {
1757     case curve_type_nonlinear:
1758     break;
1759     case curve_type_linear:
1760     releasevelocityresponse += 5;
1761     break;
1762     case curve_type_special:
1763     releasevelocityresponse += 10;
1764     break;
1765     case curve_type_unknown:
1766     default:
1767     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1768     }
1769 persson 1179 pData[97] = releasevelocityresponse;
1770 schoenebeck 809 }
1771    
1772 persson 1179 pData[98] = VelocityResponseCurveScaling;
1773 schoenebeck 809
1774 persson 1179 pData[99] = AttenuationControllerThreshold;
1775 schoenebeck 809
1776     // next 4 bytes unknown
1777    
1778 persson 1179 store16(&pData[104], SampleStartOffset);
1779 schoenebeck 809
1780     // next 2 bytes unknown
1781    
1782     {
1783     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1784     switch (DimensionBypass) {
1785     case dim_bypass_ctrl_94:
1786     pitchTrackDimensionBypass |= 0x10;
1787     break;
1788     case dim_bypass_ctrl_95:
1789     pitchTrackDimensionBypass |= 0x20;
1790     break;
1791     case dim_bypass_ctrl_none:
1792     //FIXME: should we set anything here?
1793     break;
1794     default:
1795     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1796     }
1797 persson 1179 pData[108] = pitchTrackDimensionBypass;
1798 schoenebeck 809 }
1799    
1800     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1801 persson 1179 pData[109] = pan;
1802 schoenebeck 809
1803     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1804 persson 1179 pData[110] = selfmask;
1805 schoenebeck 809
1806     // next byte unknown
1807    
1808     {
1809     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1810     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1811     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1812     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1813 persson 1179 pData[112] = lfo3ctrl;
1814 schoenebeck 809 }
1815    
1816     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1817 persson 1179 pData[113] = attenctl;
1818 schoenebeck 809
1819     {
1820     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1821     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1822     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1823     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1824 persson 1179 pData[114] = lfo2ctrl;
1825 schoenebeck 809 }
1826    
1827     {
1828     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1829     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1830     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1831     if (VCFResonanceController != vcf_res_ctrl_none)
1832     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1833 persson 1179 pData[115] = lfo1ctrl;
1834 schoenebeck 809 }
1835    
1836     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1837     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1838 persson 1179 pData[116] = eg3depth;
1839 schoenebeck 809
1840     // next 2 bytes unknown
1841    
1842     const uint8_t channeloffset = ChannelOffset * 4;
1843 persson 1179 pData[120] = channeloffset;
1844 schoenebeck 809
1845     {
1846     uint8_t regoptions = 0;
1847     if (MSDecode) regoptions |= 0x01; // bit 0
1848     if (SustainDefeat) regoptions |= 0x02; // bit 1
1849 persson 1179 pData[121] = regoptions;
1850 schoenebeck 809 }
1851    
1852     // next 2 bytes unknown
1853    
1854 persson 1179 pData[124] = VelocityUpperLimit;
1855 schoenebeck 809
1856     // next 3 bytes unknown
1857    
1858 persson 1179 pData[128] = ReleaseTriggerDecay;
1859 schoenebeck 809
1860     // next 2 bytes unknown
1861    
1862     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1863 persson 1179 pData[131] = eg1hold;
1864 schoenebeck 809
1865 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1866 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1867 persson 1179 pData[132] = vcfcutoff;
1868 schoenebeck 809
1869 persson 1179 pData[133] = VCFCutoffController;
1870 schoenebeck 809
1871 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1872 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1873 persson 1179 pData[134] = vcfvelscale;
1874 schoenebeck 809
1875     // next byte unknown
1876    
1877 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1878 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1879 persson 1179 pData[136] = vcfresonance;
1880 schoenebeck 809
1881 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1882 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1883 persson 1179 pData[137] = vcfbreakpoint;
1884 schoenebeck 809
1885     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1886     VCFVelocityCurve * 5;
1887 persson 1179 pData[138] = vcfvelocity;
1888 schoenebeck 809
1889     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1890 persson 1179 pData[139] = vcftype;
1891 persson 1070
1892     if (chunksize >= 148) {
1893     memcpy(&pData[140], DimensionUpperLimits, 8);
1894     }
1895 schoenebeck 809 }
1896    
1897 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1898     curve_type_t curveType = releaseVelocityResponseCurve;
1899     uint8_t depth = releaseVelocityResponseDepth;
1900     // this models a strange behaviour or bug in GSt: two of the
1901     // velocity response curves for release time are not used even
1902     // if specified, instead another curve is chosen.
1903     if ((curveType == curve_type_nonlinear && depth == 0) ||
1904     (curveType == curve_type_special && depth == 4)) {
1905     curveType = curve_type_nonlinear;
1906     depth = 3;
1907     }
1908     return GetVelocityTable(curveType, depth, 0);
1909     }
1910    
1911     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1912     uint8_t vcfVelocityDynamicRange,
1913     uint8_t vcfVelocityScale,
1914     vcf_cutoff_ctrl_t vcfCutoffController)
1915     {
1916     curve_type_t curveType = vcfVelocityCurve;
1917     uint8_t depth = vcfVelocityDynamicRange;
1918     // even stranger GSt: two of the velocity response curves for
1919     // filter cutoff are not used, instead another special curve
1920     // is chosen. This curve is not used anywhere else.
1921     if ((curveType == curve_type_nonlinear && depth == 0) ||
1922     (curveType == curve_type_special && depth == 4)) {
1923     curveType = curve_type_special;
1924     depth = 5;
1925     }
1926     return GetVelocityTable(curveType, depth,
1927     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1928     ? vcfVelocityScale : 0);
1929     }
1930    
1931 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1932     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1933     {
1934     double* table;
1935     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1936 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1937 persson 613 table = (*pVelocityTables)[tableKey];
1938 schoenebeck 16 }
1939     else {
1940 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1941     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1942 schoenebeck 16 }
1943 persson 613 return table;
1944 schoenebeck 2 }
1945 schoenebeck 55
1946 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1947     return pRegion;
1948     }
1949    
1950 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1951     leverage_ctrl_t decodedcontroller;
1952     switch (EncodedController) {
1953     // special controller
1954     case _lev_ctrl_none:
1955     decodedcontroller.type = leverage_ctrl_t::type_none;
1956     decodedcontroller.controller_number = 0;
1957     break;
1958     case _lev_ctrl_velocity:
1959     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1960     decodedcontroller.controller_number = 0;
1961     break;
1962     case _lev_ctrl_channelaftertouch:
1963     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1964     decodedcontroller.controller_number = 0;
1965     break;
1966 schoenebeck 55
1967 schoenebeck 36 // ordinary MIDI control change controller
1968     case _lev_ctrl_modwheel:
1969     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1970     decodedcontroller.controller_number = 1;
1971     break;
1972     case _lev_ctrl_breath:
1973     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1974     decodedcontroller.controller_number = 2;
1975     break;
1976     case _lev_ctrl_foot:
1977     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1978     decodedcontroller.controller_number = 4;
1979     break;
1980     case _lev_ctrl_effect1:
1981     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1982     decodedcontroller.controller_number = 12;
1983     break;
1984     case _lev_ctrl_effect2:
1985     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1986     decodedcontroller.controller_number = 13;
1987     break;
1988     case _lev_ctrl_genpurpose1:
1989     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1990     decodedcontroller.controller_number = 16;
1991     break;
1992     case _lev_ctrl_genpurpose2:
1993     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1994     decodedcontroller.controller_number = 17;
1995     break;
1996     case _lev_ctrl_genpurpose3:
1997     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1998     decodedcontroller.controller_number = 18;
1999     break;
2000     case _lev_ctrl_genpurpose4:
2001     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2002     decodedcontroller.controller_number = 19;
2003     break;
2004     case _lev_ctrl_portamentotime:
2005     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2006     decodedcontroller.controller_number = 5;
2007     break;
2008     case _lev_ctrl_sustainpedal:
2009     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2010     decodedcontroller.controller_number = 64;
2011     break;
2012     case _lev_ctrl_portamento:
2013     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2014     decodedcontroller.controller_number = 65;
2015     break;
2016     case _lev_ctrl_sostenutopedal:
2017     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2018     decodedcontroller.controller_number = 66;
2019     break;
2020     case _lev_ctrl_softpedal:
2021     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2022     decodedcontroller.controller_number = 67;
2023     break;
2024     case _lev_ctrl_genpurpose5:
2025     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2026     decodedcontroller.controller_number = 80;
2027     break;
2028     case _lev_ctrl_genpurpose6:
2029     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2030     decodedcontroller.controller_number = 81;
2031     break;
2032     case _lev_ctrl_genpurpose7:
2033     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2034     decodedcontroller.controller_number = 82;
2035     break;
2036     case _lev_ctrl_genpurpose8:
2037     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2038     decodedcontroller.controller_number = 83;
2039     break;
2040     case _lev_ctrl_effect1depth:
2041     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2042     decodedcontroller.controller_number = 91;
2043     break;
2044     case _lev_ctrl_effect2depth:
2045     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2046     decodedcontroller.controller_number = 92;
2047     break;
2048     case _lev_ctrl_effect3depth:
2049     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2050     decodedcontroller.controller_number = 93;
2051     break;
2052     case _lev_ctrl_effect4depth:
2053     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2054     decodedcontroller.controller_number = 94;
2055     break;
2056     case _lev_ctrl_effect5depth:
2057     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2058     decodedcontroller.controller_number = 95;
2059     break;
2060 schoenebeck 55
2061 schoenebeck 36 // unknown controller type
2062     default:
2063     throw gig::Exception("Unknown leverage controller type.");
2064     }
2065     return decodedcontroller;
2066     }
2067 schoenebeck 2
2068 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2069     _lev_ctrl_t encodedcontroller;
2070     switch (DecodedController.type) {
2071     // special controller
2072     case leverage_ctrl_t::type_none:
2073     encodedcontroller = _lev_ctrl_none;
2074     break;
2075     case leverage_ctrl_t::type_velocity:
2076     encodedcontroller = _lev_ctrl_velocity;
2077     break;
2078     case leverage_ctrl_t::type_channelaftertouch:
2079     encodedcontroller = _lev_ctrl_channelaftertouch;
2080     break;
2081    
2082     // ordinary MIDI control change controller
2083     case leverage_ctrl_t::type_controlchange:
2084     switch (DecodedController.controller_number) {
2085     case 1:
2086     encodedcontroller = _lev_ctrl_modwheel;
2087     break;
2088     case 2:
2089     encodedcontroller = _lev_ctrl_breath;
2090     break;
2091     case 4:
2092     encodedcontroller = _lev_ctrl_foot;
2093     break;
2094     case 12:
2095     encodedcontroller = _lev_ctrl_effect1;
2096     break;
2097     case 13:
2098     encodedcontroller = _lev_ctrl_effect2;
2099     break;
2100     case 16:
2101     encodedcontroller = _lev_ctrl_genpurpose1;
2102     break;
2103     case 17:
2104     encodedcontroller = _lev_ctrl_genpurpose2;
2105     break;
2106     case 18:
2107     encodedcontroller = _lev_ctrl_genpurpose3;
2108     break;
2109     case 19:
2110     encodedcontroller = _lev_ctrl_genpurpose4;
2111     break;
2112     case 5:
2113     encodedcontroller = _lev_ctrl_portamentotime;
2114     break;
2115     case 64:
2116     encodedcontroller = _lev_ctrl_sustainpedal;
2117     break;
2118     case 65:
2119     encodedcontroller = _lev_ctrl_portamento;
2120     break;
2121     case 66:
2122     encodedcontroller = _lev_ctrl_sostenutopedal;
2123     break;
2124     case 67:
2125     encodedcontroller = _lev_ctrl_softpedal;
2126     break;
2127     case 80:
2128     encodedcontroller = _lev_ctrl_genpurpose5;
2129     break;
2130     case 81:
2131     encodedcontroller = _lev_ctrl_genpurpose6;
2132     break;
2133     case 82:
2134     encodedcontroller = _lev_ctrl_genpurpose7;
2135     break;
2136     case 83:
2137     encodedcontroller = _lev_ctrl_genpurpose8;
2138     break;
2139     case 91:
2140     encodedcontroller = _lev_ctrl_effect1depth;
2141     break;
2142     case 92:
2143     encodedcontroller = _lev_ctrl_effect2depth;
2144     break;
2145     case 93:
2146     encodedcontroller = _lev_ctrl_effect3depth;
2147     break;
2148     case 94:
2149     encodedcontroller = _lev_ctrl_effect4depth;
2150     break;
2151     case 95:
2152     encodedcontroller = _lev_ctrl_effect5depth;
2153     break;
2154     default:
2155     throw gig::Exception("leverage controller number is not supported by the gig format");
2156     }
2157 persson 1182 break;
2158 schoenebeck 809 default:
2159     throw gig::Exception("Unknown leverage controller type.");
2160     }
2161     return encodedcontroller;
2162     }
2163    
2164 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2165     Instances--;
2166     if (!Instances) {
2167     // delete the velocity->volume tables
2168     VelocityTableMap::iterator iter;
2169     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2170     double* pTable = iter->second;
2171     if (pTable) delete[] pTable;
2172     }
2173     pVelocityTables->clear();
2174     delete pVelocityTables;
2175     pVelocityTables = NULL;
2176     }
2177 persson 858 if (VelocityTable) delete[] VelocityTable;
2178 schoenebeck 16 }
2179 schoenebeck 2
2180 schoenebeck 16 /**
2181     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2182     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2183     * and VelocityResponseCurveScaling) involved are taken into account to
2184     * calculate the amplitude factor. Use this method when a key was
2185     * triggered to get the volume with which the sample should be played
2186     * back.
2187     *
2188 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2189     * @returns amplitude factor (between 0.0 and 1.0)
2190 schoenebeck 16 */
2191     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2192     return pVelocityAttenuationTable[MIDIKeyVelocity];
2193     }
2194 schoenebeck 2
2195 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2196     return pVelocityReleaseTable[MIDIKeyVelocity];
2197     }
2198    
2199 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2200     return pVelocityCutoffTable[MIDIKeyVelocity];
2201     }
2202    
2203 schoenebeck 1358 /**
2204     * Updates the respective member variable and the lookup table / cache
2205     * that depends on this value.
2206     */
2207     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2208     pVelocityAttenuationTable =
2209     GetVelocityTable(
2210     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2211     );
2212     VelocityResponseCurve = curve;
2213     }
2214    
2215     /**
2216     * Updates the respective member variable and the lookup table / cache
2217     * that depends on this value.
2218     */
2219     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2220     pVelocityAttenuationTable =
2221     GetVelocityTable(
2222     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2223     );
2224     VelocityResponseDepth = depth;
2225     }
2226    
2227     /**
2228     * Updates the respective member variable and the lookup table / cache
2229     * that depends on this value.
2230     */
2231     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2232     pVelocityAttenuationTable =
2233     GetVelocityTable(
2234     VelocityResponseCurve, VelocityResponseDepth, scaling
2235     );
2236     VelocityResponseCurveScaling = scaling;
2237     }
2238    
2239     /**
2240     * Updates the respective member variable and the lookup table / cache
2241     * that depends on this value.
2242     */
2243     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2244     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2245     ReleaseVelocityResponseCurve = curve;
2246     }
2247    
2248     /**
2249     * Updates the respective member variable and the lookup table / cache
2250     * that depends on this value.
2251     */
2252     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2253     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2254     ReleaseVelocityResponseDepth = depth;
2255     }
2256    
2257     /**
2258     * Updates the respective member variable and the lookup table / cache
2259     * that depends on this value.
2260     */
2261     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2262     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2263     VCFCutoffController = controller;
2264     }
2265    
2266     /**
2267     * Updates the respective member variable and the lookup table / cache
2268     * that depends on this value.
2269     */
2270     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2271     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2272     VCFVelocityCurve = curve;
2273     }
2274    
2275     /**
2276     * Updates the respective member variable and the lookup table / cache
2277     * that depends on this value.
2278     */
2279     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2280     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2281     VCFVelocityDynamicRange = range;
2282     }
2283    
2284     /**
2285     * Updates the respective member variable and the lookup table / cache
2286     * that depends on this value.
2287     */
2288     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2289     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2290     VCFVelocityScale = scaling;
2291     }
2292    
2293 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2294 schoenebeck 317
2295 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2296 schoenebeck 16
2297 schoenebeck 308 // linear
2298     const int lin0[] = { 1, 1, 127, 127 };
2299     const int lin1[] = { 1, 21, 127, 127 };
2300     const int lin2[] = { 1, 45, 127, 127 };
2301     const int lin3[] = { 1, 74, 127, 127 };
2302     const int lin4[] = { 1, 127, 127, 127 };
2303 schoenebeck 16
2304 schoenebeck 308 // non-linear
2305     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2306 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2307 schoenebeck 308 127, 127 };
2308     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2309     127, 127 };
2310     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2311     127, 127 };
2312     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2313 schoenebeck 317
2314 schoenebeck 308 // special
2315 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2316 schoenebeck 308 113, 127, 127, 127 };
2317     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2318     118, 127, 127, 127 };
2319 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2320 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2321 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2322 schoenebeck 308 117, 127, 127, 127 };
2323 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2324 schoenebeck 308 127, 127 };
2325 schoenebeck 317
2326 persson 728 // this is only used by the VCF velocity curve
2327     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2328     91, 127, 127, 127 };
2329    
2330 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2331 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2332 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2333 schoenebeck 317
2334 schoenebeck 308 double* const table = new double[128];
2335    
2336     const int* curve = curves[curveType * 5 + depth];
2337     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2338 schoenebeck 317
2339 schoenebeck 308 table[0] = 0;
2340     for (int x = 1 ; x < 128 ; x++) {
2341    
2342     if (x > curve[2]) curve += 2;
2343 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2344 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2345     y = y / 127;
2346    
2347     // Scale up for s > 20, down for s < 20. When
2348     // down-scaling, the curve still ends at 1.0.
2349     if (s < 20 && y >= 0.5)
2350     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2351     else
2352     y = y * (s / 20.0);
2353     if (y > 1) y = 1;
2354    
2355     table[x] = y;
2356     }
2357     return table;
2358     }
2359    
2360    
2361 schoenebeck 2 // *************** Region ***************
2362     // *
2363    
2364     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2365     // Initialization
2366     Dimensions = 0;
2367 schoenebeck 347 for (int i = 0; i < 256; i++) {
2368 schoenebeck 2 pDimensionRegions[i] = NULL;
2369     }
2370 schoenebeck 282 Layers = 1;
2371 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2372     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2373 schoenebeck 2
2374     // Actual Loading
2375    
2376 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2377    
2378 schoenebeck 2 LoadDimensionRegions(rgnList);
2379    
2380     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2381     if (_3lnk) {
2382     DimensionRegions = _3lnk->ReadUint32();
2383 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2384 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2385     uint8_t bits = _3lnk->ReadUint8();
2386 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2387     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2388 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2389 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2390     pDimensionDefinitions[i].dimension = dimension_none;
2391     pDimensionDefinitions[i].bits = 0;
2392     pDimensionDefinitions[i].zones = 0;
2393     pDimensionDefinitions[i].split_type = split_type_bit;
2394     pDimensionDefinitions[i].zone_size = 0;
2395     }
2396     else { // active dimension
2397     pDimensionDefinitions[i].dimension = dimension;
2398     pDimensionDefinitions[i].bits = bits;
2399 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2400 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2401     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2402 schoenebeck 2 Dimensions++;
2403 schoenebeck 282
2404     // if this is a layer dimension, remember the amount of layers
2405     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2406 schoenebeck 2 }
2407 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2408 schoenebeck 2 }
2409 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2410 schoenebeck 2
2411 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2412     // update the VelocityTables in the dimension regions
2413     UpdateVelocityTable();
2414 schoenebeck 2
2415 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2416     if (file->pVersion && file->pVersion->major == 3)
2417     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2418     else
2419     _3lnk->SetPos(44);
2420    
2421 schoenebeck 1524 // load sample references (if auto loading is enabled)
2422     if (file->GetAutoLoad()) {
2423     for (uint i = 0; i < DimensionRegions; i++) {
2424     uint32_t wavepoolindex = _3lnk->ReadUint32();
2425     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2426     }
2427     GetSample(); // load global region sample reference
2428 schoenebeck 2 }
2429 persson 1102 } else {
2430     DimensionRegions = 0;
2431 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2432     pDimensionDefinitions[i].dimension = dimension_none;
2433     pDimensionDefinitions[i].bits = 0;
2434     pDimensionDefinitions[i].zones = 0;
2435     }
2436 schoenebeck 2 }
2437 schoenebeck 823
2438     // make sure there is at least one dimension region
2439     if (!DimensionRegions) {
2440     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2441     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2442     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2443 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2444 schoenebeck 823 DimensionRegions = 1;
2445     }
2446 schoenebeck 2 }
2447    
2448 schoenebeck 809 /**
2449     * Apply Region settings and all its DimensionRegions to the respective
2450     * RIFF chunks. You have to call File::Save() to make changes persistent.
2451     *
2452     * Usually there is absolutely no need to call this method explicitly.
2453     * It will be called automatically when File::Save() was called.
2454     *
2455     * @throws gig::Exception if samples cannot be dereferenced
2456     */
2457     void Region::UpdateChunks() {
2458 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2459     // but we still have to provide some existing one to not corrupt the
2460     // file, so to avoid the latter we simply always assign the sample of
2461     // the first dimension region of this region
2462     pSample = pDimensionRegions[0]->pSample;
2463    
2464 schoenebeck 809 // first update base class's chunks
2465     DLS::Region::UpdateChunks();
2466    
2467     // update dimension region's chunks
2468 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2469 persson 1317 pDimensionRegions[i]->UpdateChunks();
2470 schoenebeck 823 }
2471 schoenebeck 809
2472 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2473     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2474 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2475     const int iMaxDimensionRegions = version3 ? 256 : 32;
2476 schoenebeck 809
2477     // make sure '3lnk' chunk exists
2478     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2479     if (!_3lnk) {
2480 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2481 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2482 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2483 persson 1192
2484     // move 3prg to last position
2485     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2486 schoenebeck 809 }
2487    
2488     // update dimension definitions in '3lnk' chunk
2489     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2490 persson 1179 store32(&pData[0], DimensionRegions);
2491 persson 1199 int shift = 0;
2492 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2493 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2494     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2495 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2496 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2497 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2498 persson 1199 // next 3 bytes unknown, always zero?
2499    
2500     shift += pDimensionDefinitions[i].bits;
2501 schoenebeck 809 }
2502    
2503     // update wave pool table in '3lnk' chunk
2504 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2505 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2506     int iWaveIndex = -1;
2507     if (i < DimensionRegions) {
2508 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2509     File::SampleList::iterator iter = pFile->pSamples->begin();
2510     File::SampleList::iterator end = pFile->pSamples->end();
2511 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2512 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2513     iWaveIndex = index;
2514     break;
2515     }
2516 schoenebeck 809 }
2517     }
2518 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2519 schoenebeck 809 }
2520     }
2521    
2522 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2523     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2524     if (_3prg) {
2525     int dimensionRegionNr = 0;
2526     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2527     while (_3ewl) {
2528     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2529 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2530 schoenebeck 2 dimensionRegionNr++;
2531     }
2532     _3ewl = _3prg->GetNextSubList();
2533     }
2534     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2535     }
2536     }
2537    
2538 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2539     // update KeyRange struct and make sure regions are in correct order
2540     DLS::Region::SetKeyRange(Low, High);
2541     // update Region key table for fast lookup
2542     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2543     }
2544    
2545 persson 858 void Region::UpdateVelocityTable() {
2546     // get velocity dimension's index
2547     int veldim = -1;
2548     for (int i = 0 ; i < Dimensions ; i++) {
2549     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2550     veldim = i;
2551 schoenebeck 809 break;
2552     }
2553     }
2554 persson 858 if (veldim == -1) return;
2555 schoenebeck 809
2556 persson 858 int step = 1;
2557     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2558     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2559     int end = step * pDimensionDefinitions[veldim].zones;
2560 schoenebeck 809
2561 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2562     int dim[8] = { 0 };
2563     for (int i = 0 ; i < DimensionRegions ; i++) {
2564    
2565 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2566     pDimensionRegions[i]->VelocityUpperLimit) {
2567 persson 858 // create the velocity table
2568     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2569     if (!table) {
2570     table = new uint8_t[128];
2571     pDimensionRegions[i]->VelocityTable = table;
2572     }
2573     int tableidx = 0;
2574     int velocityZone = 0;
2575 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2576     for (int k = i ; k < end ; k += step) {
2577     DimensionRegion *d = pDimensionRegions[k];
2578     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2579     velocityZone++;
2580     }
2581     } else { // gig2
2582     for (int k = i ; k < end ; k += step) {
2583     DimensionRegion *d = pDimensionRegions[k];
2584     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2585     velocityZone++;
2586     }
2587 persson 858 }
2588     } else {
2589     if (pDimensionRegions[i]->VelocityTable) {
2590     delete[] pDimensionRegions[i]->VelocityTable;
2591     pDimensionRegions[i]->VelocityTable = 0;
2592     }
2593 schoenebeck 809 }
2594 persson 858
2595     int j;
2596     int shift = 0;
2597     for (j = 0 ; j < Dimensions ; j++) {
2598     if (j == veldim) i += skipveldim; // skip velocity dimension
2599     else {
2600     dim[j]++;
2601     if (dim[j] < pDimensionDefinitions[j].zones) break;
2602     else {
2603     // skip unused dimension regions
2604     dim[j] = 0;
2605     i += ((1 << pDimensionDefinitions[j].bits) -
2606     pDimensionDefinitions[j].zones) << shift;
2607     }
2608     }
2609     shift += pDimensionDefinitions[j].bits;
2610     }
2611     if (j == Dimensions) break;
2612 schoenebeck 809 }
2613     }
2614    
2615     /** @brief Einstein would have dreamed of it - create a new dimension.
2616     *
2617     * Creates a new dimension with the dimension definition given by
2618     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2619     * There is a hard limit of dimensions and total amount of "bits" all
2620     * dimensions can have. This limit is dependant to what gig file format
2621     * version this file refers to. The gig v2 (and lower) format has a
2622     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2623     * format has a limit of 8.
2624     *
2625     * @param pDimDef - defintion of the new dimension
2626     * @throws gig::Exception if dimension of the same type exists already
2627     * @throws gig::Exception if amount of dimensions or total amount of
2628     * dimension bits limit is violated
2629     */
2630     void Region::AddDimension(dimension_def_t* pDimDef) {
2631     // check if max. amount of dimensions reached
2632     File* file = (File*) GetParent()->GetParent();
2633     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2634     if (Dimensions >= iMaxDimensions)
2635     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2636     // check if max. amount of dimension bits reached
2637     int iCurrentBits = 0;
2638     for (int i = 0; i < Dimensions; i++)
2639     iCurrentBits += pDimensionDefinitions[i].bits;
2640     if (iCurrentBits >= iMaxDimensions)
2641     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2642     const int iNewBits = iCurrentBits + pDimDef->bits;
2643     if (iNewBits > iMaxDimensions)
2644     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2645     // check if there's already a dimensions of the same type
2646     for (int i = 0; i < Dimensions; i++)
2647     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2648     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2649    
2650 persson 1301 // pos is where the new dimension should be placed, normally
2651     // last in list, except for the samplechannel dimension which
2652     // has to be first in list
2653     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2654     int bitpos = 0;
2655     for (int i = 0 ; i < pos ; i++)
2656     bitpos += pDimensionDefinitions[i].bits;
2657    
2658     // make room for the new dimension
2659     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2660     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2661     for (int j = Dimensions ; j > pos ; j--) {
2662     pDimensionRegions[i]->DimensionUpperLimits[j] =
2663     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2664     }
2665     }
2666    
2667 schoenebeck 809 // assign definition of new dimension
2668 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2669 schoenebeck 809
2670 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2671 persson 1301 pDimensionDefinitions[pos].split_type =
2672     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2673     pDimensionDefinitions[pos].zone_size =
2674     __resolveZoneSize(pDimensionDefinitions[pos]);
2675 schoenebeck 1113
2676 persson 1301 // create new dimension region(s) for this new dimension, and make
2677     // sure that the dimension regions are placed correctly in both the
2678     // RIFF list and the pDimensionRegions array
2679     RIFF::Chunk* moveTo = NULL;
2680     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2681     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2682     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2683     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2684     }
2685     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2686     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2687     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2688     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2689     // create a new dimension region and copy all parameter values from
2690     // an existing dimension region
2691     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2692     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2693 persson 1247
2694 persson 1301 DimensionRegions++;
2695     }
2696     }
2697     moveTo = pDimensionRegions[i]->pParentList;
2698 schoenebeck 809 }
2699    
2700 persson 1247 // initialize the upper limits for this dimension
2701 persson 1301 int mask = (1 << bitpos) - 1;
2702     for (int z = 0 ; z < pDimDef->zones ; z++) {
2703 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2704 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2705 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2706     (z << bitpos) |
2707     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2708 persson 1247 }
2709     }
2710    
2711 schoenebeck 809 Dimensions++;
2712    
2713     // if this is a layer dimension, update 'Layers' attribute
2714     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2715    
2716 persson 858 UpdateVelocityTable();
2717 schoenebeck 809 }
2718    
2719     /** @brief Delete an existing dimension.
2720     *
2721     * Deletes the dimension given by \a pDimDef and deletes all respective
2722     * dimension regions, that is all dimension regions where the dimension's
2723     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2724     * for example this would delete all dimension regions for the case(s)
2725     * where the sustain pedal is pressed down.
2726     *
2727     * @param pDimDef - dimension to delete
2728     * @throws gig::Exception if given dimension cannot be found
2729     */
2730     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2731     // get dimension's index
2732     int iDimensionNr = -1;
2733     for (int i = 0; i < Dimensions; i++) {
2734     if (&pDimensionDefinitions[i] == pDimDef) {
2735     iDimensionNr = i;
2736     break;
2737     }
2738     }
2739     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2740    
2741     // get amount of bits below the dimension to delete
2742     int iLowerBits = 0;
2743     for (int i = 0; i < iDimensionNr; i++)
2744     iLowerBits += pDimensionDefinitions[i].bits;
2745    
2746     // get amount ot bits above the dimension to delete
2747     int iUpperBits = 0;
2748     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2749     iUpperBits += pDimensionDefinitions[i].bits;
2750    
2751 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2752    
2753 schoenebeck 809 // delete dimension regions which belong to the given dimension
2754     // (that is where the dimension's bit > 0)
2755     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2756     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2757     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2758     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2759     iObsoleteBit << iLowerBits |
2760     iLowerBit;
2761 persson 1247
2762     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2763 schoenebeck 809 delete pDimensionRegions[iToDelete];
2764     pDimensionRegions[iToDelete] = NULL;
2765     DimensionRegions--;
2766     }
2767     }
2768     }
2769    
2770     // defrag pDimensionRegions array
2771     // (that is remove the NULL spaces within the pDimensionRegions array)
2772     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2773     if (!pDimensionRegions[iTo]) {
2774     if (iFrom <= iTo) iFrom = iTo + 1;
2775     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2776     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2777     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2778     pDimensionRegions[iFrom] = NULL;
2779     }
2780     }
2781     }
2782    
2783 persson 1247 // remove the this dimension from the upper limits arrays
2784     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2785     DimensionRegion* d = pDimensionRegions[j];
2786     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2787     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2788     }
2789     d->DimensionUpperLimits[Dimensions - 1] = 127;
2790     }
2791    
2792 schoenebeck 809 // 'remove' dimension definition
2793     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2794     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2795     }
2796     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2797     pDimensionDefinitions[Dimensions - 1].bits = 0;
2798     pDimensionDefinitions[Dimensions - 1].zones = 0;
2799    
2800     Dimensions--;
2801    
2802     // if this was a layer dimension, update 'Layers' attribute
2803     if (pDimDef->dimension == dimension_layer) Layers = 1;
2804     }
2805    
2806 schoenebeck 2 Region::~Region() {
2807 schoenebeck 350 for (int i = 0; i < 256; i++) {
2808 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2809     }
2810     }
2811    
2812     /**
2813     * Use this method in your audio engine to get the appropriate dimension
2814     * region with it's articulation data for the current situation. Just
2815     * call the method with the current MIDI controller values and you'll get
2816     * the DimensionRegion with the appropriate articulation data for the
2817     * current situation (for this Region of course only). To do that you'll
2818     * first have to look which dimensions with which controllers and in
2819     * which order are defined for this Region when you load the .gig file.
2820     * Special cases are e.g. layer or channel dimensions where you just put
2821     * in the index numbers instead of a MIDI controller value (means 0 for
2822     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2823     * etc.).
2824     *
2825 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2826 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2827     * @see pDimensionDefinitions
2828     * @see Dimensions
2829     */
2830 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2831 persson 858 uint8_t bits;
2832     int veldim = -1;
2833     int velbitpos;
2834     int bitpos = 0;
2835     int dimregidx = 0;
2836 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2837 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2838     // the velocity dimension must be handled after the other dimensions
2839     veldim = i;
2840     velbitpos = bitpos;
2841     } else {
2842     switch (pDimensionDefinitions[i].split_type) {
2843     case split_type_normal:
2844 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2845     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2846     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2847     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2848     }
2849     } else {
2850     // gig2: evenly sized zones
2851     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2852     }
2853 persson 858 break;
2854     case split_type_bit: // the value is already the sought dimension bit number
2855     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2856     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2857     break;
2858     }
2859     dimregidx |= bits << bitpos;
2860 schoenebeck 2 }
2861 persson 858 bitpos += pDimensionDefinitions[i].bits;
2862 schoenebeck 2 }
2863 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2864     if (veldim != -1) {
2865     // (dimreg is now the dimension region for the lowest velocity)
2866 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2867 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2868     else // normal split type
2869     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2870    
2871     dimregidx |= bits << velbitpos;
2872     dimreg = pDimensionRegions[dimregidx];
2873     }
2874     return dimreg;
2875 schoenebeck 2 }
2876    
2877     /**
2878     * Returns the appropriate DimensionRegion for the given dimension bit
2879     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2880     * instead of calling this method directly!
2881     *
2882 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2883 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2884     * bit numbers
2885     * @see GetDimensionRegionByValue()
2886     */
2887 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2888     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2889     << pDimensionDefinitions[5].bits | DimBits[5])
2890     << pDimensionDefinitions[4].bits | DimBits[4])
2891     << pDimensionDefinitions[3].bits | DimBits[3])
2892     << pDimensionDefinitions[2].bits | DimBits[2])
2893     << pDimensionDefinitions[1].bits | DimBits[1])
2894     << pDimensionDefinitions[0].bits | DimBits[0]];
2895 schoenebeck 2 }
2896    
2897     /**
2898     * Returns pointer address to the Sample referenced with this region.
2899     * This is the global Sample for the entire Region (not sure if this is
2900     * actually used by the Gigasampler engine - I would only use the Sample
2901     * referenced by the appropriate DimensionRegion instead of this sample).
2902     *
2903     * @returns address to Sample or NULL if there is no reference to a
2904     * sample saved in the .gig file
2905     */
2906     Sample* Region::GetSample() {
2907     if (pSample) return static_cast<gig::Sample*>(pSample);
2908     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2909     }
2910    
2911 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2912 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2913 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2914 persson 902 if (!file->pWavePoolTable) return NULL;
2915 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2916 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2917 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2918 schoenebeck 2 while (sample) {
2919 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2920 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2921 schoenebeck 2 sample = file->GetNextSample();
2922     }
2923     return NULL;
2924     }
2925    
2926    
2927 persson 1627 // *************** MidiRule ***************
2928     // *
2929 schoenebeck 2
2930 persson 1627 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2931     _3ewg->SetPos(36);
2932     Triggers = _3ewg->ReadUint8();
2933     _3ewg->SetPos(40);
2934     ControllerNumber = _3ewg->ReadUint8();
2935     _3ewg->SetPos(46);
2936     for (int i = 0 ; i < Triggers ; i++) {
2937     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2938     pTriggers[i].Descending = _3ewg->ReadUint8();
2939     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2940     pTriggers[i].Key = _3ewg->ReadUint8();
2941     pTriggers[i].NoteOff = _3ewg->ReadUint8();
2942     pTriggers[i].Velocity = _3ewg->ReadUint8();
2943     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2944     _3ewg->ReadUint8();
2945     }
2946     }
2947    
2948    
2949 schoenebeck 2 // *************** Instrument ***************
2950     // *
2951    
2952 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2953 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
2954 persson 1180 { CHUNK_ID_INAM, 64 },
2955     { CHUNK_ID_ISFT, 12 },
2956     { 0, 0 }
2957     };
2958 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
2959 persson 918
2960 schoenebeck 2 // Initialization
2961     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2962 persson 1182 EffectSend = 0;
2963     Attenuation = 0;
2964     FineTune = 0;
2965     PitchbendRange = 0;
2966     PianoReleaseMode = false;
2967     DimensionKeyRange.low = 0;
2968     DimensionKeyRange.high = 0;
2969 persson 1678 pMidiRules = new MidiRule*[3];
2970     pMidiRules[0] = NULL;
2971 schoenebeck 2
2972     // Loading
2973     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2974     if (lart) {
2975     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2976     if (_3ewg) {
2977     EffectSend = _3ewg->ReadUint16();
2978     Attenuation = _3ewg->ReadInt32();
2979     FineTune = _3ewg->ReadInt16();
2980     PitchbendRange = _3ewg->ReadInt16();
2981     uint8_t dimkeystart = _3ewg->ReadUint8();
2982     PianoReleaseMode = dimkeystart & 0x01;
2983     DimensionKeyRange.low = dimkeystart >> 1;
2984     DimensionKeyRange.high = _3ewg->ReadUint8();
2985 persson 1627
2986     if (_3ewg->GetSize() > 32) {
2987     // read MIDI rules
2988 persson 1678 int i = 0;
2989 persson 1627 _3ewg->SetPos(32);
2990     uint8_t id1 = _3ewg->ReadUint8();
2991     uint8_t id2 = _3ewg->ReadUint8();
2992    
2993     if (id1 == 4 && id2 == 16) {
2994 persson 1678 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2995 persson 1627 }
2996     //TODO: all the other types of rules
2997 persson 1678
2998     pMidiRules[i] = NULL;
2999 persson 1627 }
3000 schoenebeck 2 }
3001     }
3002    
3003 schoenebeck 1524 if (pFile->GetAutoLoad()) {
3004     if (!pRegions) pRegions = new RegionList;
3005     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3006     if (lrgn) {
3007     RIFF::List* rgn = lrgn->GetFirstSubList();
3008     while (rgn) {
3009     if (rgn->GetListType() == LIST_TYPE_RGN) {
3010     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3011     pRegions->push_back(new Region(this, rgn));
3012     }
3013     rgn = lrgn->GetNextSubList();
3014 schoenebeck 809 }
3015 schoenebeck 1524 // Creating Region Key Table for fast lookup
3016     UpdateRegionKeyTable();
3017 schoenebeck 2 }
3018     }
3019    
3020 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
3021     }
3022    
3023     void Instrument::UpdateRegionKeyTable() {
3024 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3025 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
3026     RegionList::iterator end = pRegions->end();
3027     for (; iter != end; ++iter) {
3028     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3029     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3030     RegionKeyTable[iKey] = pRegion;
3031 schoenebeck 2 }
3032     }
3033     }
3034    
3035     Instrument::~Instrument() {
3036 persson 1678 delete[] pMidiRules;
3037 schoenebeck 2 }
3038    
3039     /**
3040 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
3041     * You have to call File::Save() to make changes persistent.
3042     *
3043     * Usually there is absolutely no need to call this method explicitly.
3044     * It will be called automatically when File::Save() was called.
3045     *
3046     * @throws gig::Exception if samples cannot be dereferenced
3047     */
3048     void Instrument::UpdateChunks() {
3049     // first update base classes' chunks
3050     DLS::Instrument::UpdateChunks();
3051    
3052     // update Regions' chunks
3053 schoenebeck 823 {
3054     RegionList::iterator iter = pRegions->begin();
3055     RegionList::iterator end = pRegions->end();
3056     for (; iter != end; ++iter)
3057     (*iter)->UpdateChunks();
3058     }
3059 schoenebeck 809
3060     // make sure 'lart' RIFF list chunk exists
3061     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3062     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3063     // make sure '3ewg' RIFF chunk exists
3064     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3065 persson 1264 if (!_3ewg) {
3066     File* pFile = (File*) GetParent();
3067    
3068     // 3ewg is bigger in gig3, as it includes the iMIDI rules
3069     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3070     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3071     memset(_3ewg->LoadChunkData(), 0, size);
3072     }
3073 schoenebeck 809 // update '3ewg' RIFF chunk
3074     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3075 persson 1179 store16(&pData[0], EffectSend);
3076     store32(&pData[2], Attenuation);
3077     store16(&pData[6], FineTune);
3078     store16(&pData[8], PitchbendRange);
3079 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3080 schoenebeck 809 DimensionKeyRange.low << 1;
3081 persson 1179 pData[10] = dimkeystart;
3082     pData[11] = DimensionKeyRange.high;
3083 schoenebeck 809 }
3084    
3085     /**
3086 schoenebeck 2 * Returns the appropriate Region for a triggered note.
3087     *
3088     * @param Key MIDI Key number of triggered note / key (0 - 127)
3089     * @returns pointer adress to the appropriate Region or NULL if there
3090     * there is no Region defined for the given \a Key
3091     */
3092     Region* Instrument::GetRegion(unsigned int Key) {
3093 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3094 schoenebeck 2 return RegionKeyTable[Key];
3095 schoenebeck 823
3096 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3097     if (Key <= pRegions[i]->KeyRange.high &&
3098     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3099     }
3100     return NULL;*/
3101     }
3102    
3103     /**
3104     * Returns the first Region of the instrument. You have to call this
3105     * method once before you use GetNextRegion().
3106     *
3107     * @returns pointer address to first region or NULL if there is none
3108     * @see GetNextRegion()
3109     */
3110     Region* Instrument::GetFirstRegion() {
3111 schoenebeck 823 if (!pRegions) return NULL;
3112     RegionsIterator = pRegions->begin();
3113     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3114 schoenebeck 2 }
3115    
3116     /**
3117     * Returns the next Region of the instrument. You have to call
3118     * GetFirstRegion() once before you can use this method. By calling this
3119     * method multiple times it iterates through the available Regions.
3120     *
3121     * @returns pointer address to the next region or NULL if end reached
3122     * @see GetFirstRegion()
3123     */
3124     Region* Instrument::GetNextRegion() {
3125 schoenebeck 823 if (!pRegions) return NULL;
3126     RegionsIterator++;
3127     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3128 schoenebeck 2 }
3129    
3130 schoenebeck 809 Region* Instrument::AddRegion() {
3131     // create new Region object (and its RIFF chunks)
3132     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3133     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3134     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3135     Region* pNewRegion = new Region(this, rgn);
3136 schoenebeck 823 pRegions->push_back(pNewRegion);
3137     Regions = pRegions->size();
3138 schoenebeck 809 // update Region key table for fast lookup
3139     UpdateRegionKeyTable();
3140     // done
3141     return pNewRegion;
3142     }
3143 schoenebeck 2
3144 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3145     if (!pRegions) return;
3146 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3147 schoenebeck 809 // update Region key table for fast lookup
3148     UpdateRegionKeyTable();
3149     }
3150 schoenebeck 2
3151 persson 1627 /**
3152 persson 1678 * Returns a MIDI rule of the instrument.
3153 persson 1627 *
3154     * The list of MIDI rules, at least in gig v3, always contains at
3155     * most two rules. The second rule can only be the DEF filter
3156     * (which currently isn't supported by libgig).
3157     *
3158 persson 1678 * @param i - MIDI rule number
3159     * @returns pointer address to MIDI rule number i or NULL if there is none
3160 persson 1627 */
3161 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
3162     return pMidiRules[i];
3163 persson 1627 }
3164 schoenebeck 809
3165    
3166 schoenebeck 929 // *************** Group ***************
3167     // *
3168    
3169     /** @brief Constructor.
3170     *
3171 schoenebeck 930 * @param file - pointer to the gig::File object
3172     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3173     * NULL if this is a new Group
3174 schoenebeck 929 */
3175 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3176 schoenebeck 929 pFile = file;
3177     pNameChunk = ck3gnm;
3178     ::LoadString(pNameChunk, Name);
3179     }
3180    
3181     Group::~Group() {
3182 schoenebeck 1099 // remove the chunk associated with this group (if any)
3183     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3184 schoenebeck 929 }
3185    
3186     /** @brief Update chunks with current group settings.
3187     *
3188 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3189     * to call File::Save() to make changes persistent.
3190     *
3191     * Usually there is absolutely no need to call this method explicitly.
3192     * It will be called automatically when File::Save() was called.
3193 schoenebeck 929 */
3194     void Group::UpdateChunks() {
3195     // make sure <3gri> and <3gnl> list chunks exist
3196 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3197 persson 1192 if (!_3gri) {
3198     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3199     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3200     }
3201 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3202 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3203 persson 1266
3204     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3205     // v3 has a fixed list of 128 strings, find a free one
3206     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3207     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3208     pNameChunk = ck;
3209     break;
3210     }
3211     }
3212     }
3213    
3214 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3215     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3216     }
3217    
3218 schoenebeck 930 /**
3219     * Returns the first Sample of this Group. You have to call this method
3220     * once before you use GetNextSample().
3221     *
3222     * <b>Notice:</b> this method might block for a long time, in case the
3223     * samples of this .gig file were not scanned yet
3224     *
3225     * @returns pointer address to first Sample or NULL if there is none
3226     * applied to this Group
3227     * @see GetNextSample()
3228     */
3229     Sample* Group::GetFirstSample() {
3230     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3231     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3232     if (pSample->GetGroup() == this) return pSample;
3233     }
3234     return NULL;
3235     }
3236 schoenebeck 929
3237 schoenebeck 930 /**
3238     * Returns the next Sample of the Group. You have to call
3239     * GetFirstSample() once before you can use this method. By calling this
3240     * method multiple times it iterates through the Samples assigned to
3241     * this Group.
3242     *
3243     * @returns pointer address to the next Sample of this Group or NULL if
3244     * end reached
3245     * @see GetFirstSample()
3246     */
3247     Sample* Group::GetNextSample() {
3248     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3249     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3250     if (pSample->GetGroup() == this) return pSample;
3251     }
3252     return NULL;
3253     }
3254 schoenebeck 929
3255 schoenebeck 930 /**
3256     * Move Sample given by \a pSample from another Group to this Group.
3257     */
3258     void Group::AddSample(Sample* pSample) {
3259     pSample->pGroup = this;
3260     }
3261    
3262     /**
3263     * Move all members of this group to another group (preferably the 1st
3264     * one except this). This method is called explicitly by
3265     * File::DeleteGroup() thus when a Group was deleted. This code was
3266     * intentionally not placed in the destructor!
3267     */
3268     void Group::MoveAll() {
3269     // get "that" other group first
3270     Group* pOtherGroup = NULL;
3271     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3272     if (pOtherGroup != this) break;
3273     }
3274     if (!pOtherGroup) throw Exception(
3275     "Could not move samples to another group, since there is no "
3276     "other Group. This is a bug, report it!"
3277     );
3278     // now move all samples of this group to the other group
3279     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3280     pOtherGroup->AddSample(pSample);
3281     }
3282     }
3283    
3284    
3285    
3286 schoenebeck 2 // *************** File ***************
3287     // *
3288    
3289 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3290 persson 1199 const DLS::version_t File::VERSION_2 = {
3291     0, 2, 19980628 & 0xffff, 19980628 >> 16
3292     };
3293    
3294 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3295 persson 1199 const DLS::version_t File::VERSION_3 = {
3296     0, 3, 20030331 & 0xffff, 20030331 >> 16
3297     };
3298    
3299 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3300 persson 1180 { CHUNK_ID_IARL, 256 },
3301     { CHUNK_ID_IART, 128 },
3302     { CHUNK_ID_ICMS, 128 },
3303     { CHUNK_ID_ICMT, 1024 },
3304     { CHUNK_ID_ICOP, 128 },
3305     { CHUNK_ID_ICRD, 128 },
3306     { CHUNK_ID_IENG, 128 },
3307     { CHUNK_ID_IGNR, 128 },
3308     { CHUNK_ID_IKEY, 128 },
3309     { CHUNK_ID_IMED, 128 },
3310     { CHUNK_ID_INAM, 128 },
3311     { CHUNK_ID_IPRD, 128 },
3312     { CHUNK_ID_ISBJ, 128 },
3313     { CHUNK_ID_ISFT, 128 },
3314     { CHUNK_ID_ISRC, 128 },
3315     { CHUNK_ID_ISRF, 128 },
3316     { CHUNK_ID_ITCH, 128 },
3317     { 0, 0 }
3318     };
3319    
3320 schoenebeck 809 File::File() : DLS::File() {
3321 schoenebeck 1524 bAutoLoad = true;
3322 persson 1264 *pVersion = VERSION_3;
3323 schoenebeck 929 pGroups = NULL;
3324 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3325 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3326 persson 1192
3327     // add some mandatory chunks to get the file chunks in right
3328     // order (INFO chunk will be moved to first position later)
3329     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3330     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3331 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3332    
3333     GenerateDLSID();
3334 schoenebeck 809 }
3335    
3336 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3337 schoenebeck 1524 bAutoLoad = true;
3338 schoenebeck 929 pGroups = NULL;
3339 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3340 schoenebeck 2 }
3341    
3342 schoenebeck 929 File::~File() {
3343     if (pGroups) {
3344     std::list<Group*>::iterator iter = pGroups->begin();
3345     std::list<Group*>::iterator end = pGroups->end();
3346     while (iter != end) {
3347     delete *iter;
3348     ++iter;
3349     }
3350     delete pGroups;
3351     }
3352     }
3353    
3354 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3355     if (!pSamples) LoadSamples(pProgress);
3356 schoenebeck 2 if (!pSamples) return NULL;
3357     SamplesIterator = pSamples->begin();
3358     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3359     }
3360    
3361     Sample* File::GetNextSample() {
3362     if (!pSamples) return NULL;
3363     SamplesIterator++;
3364     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3365     }
3366    
3367 schoenebeck 809 /** @brief Add a new sample.
3368     *
3369     * This will create a new Sample object for the gig file. You have to
3370     * call Save() to make this persistent to the file.
3371     *
3372     * @returns pointer to new Sample object
3373     */
3374     Sample* File::AddSample() {
3375     if (!pSamples) LoadSamples();
3376     __ensureMandatoryChunksExist();
3377     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3378     // create new Sample object and its respective 'wave' list chunk
3379     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3380     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3381 persson 1192
3382     // add mandatory chunks to get the chunks in right order
3383     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3384     wave->AddSubList(LIST_TYPE_INFO);
3385    
3386 schoenebeck 809 pSamples->push_back(pSample);
3387     return pSample;
3388     }
3389    
3390     /** @brief Delete a sample.
3391     *
3392 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3393     * references to this sample from Regions and DimensionRegions will be
3394     * removed. You have to call Save() to make this persistent to the file.
3395 schoenebeck 809 *
3396     * @param pSample - sample to delete
3397     * @throws gig::Exception if given sample could not be found
3398     */
3399     void File::DeleteSample(Sample* pSample) {
3400 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3401     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3402 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3403 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3404 schoenebeck 809 pSamples->erase(iter);
3405     delete pSample;
3406 persson 1266
3407 persson 1678 SampleList::iterator tmp = SamplesIterator;
3408 persson 1266 // remove all references to the sample
3409     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3410     instrument = GetNextInstrument()) {
3411     for (Region* region = instrument->GetFirstRegion() ; region ;
3412     region = instrument->GetNextRegion()) {
3413    
3414     if (region->GetSample() == pSample) region->SetSample(NULL);
3415    
3416     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3417     gig::DimensionRegion *d = region->pDimensionRegions[i];
3418     if (d->pSample == pSample) d->pSample = NULL;
3419     }
3420     }
3421     }
3422 persson 1678 SamplesIterator = tmp; // restore iterator
3423 schoenebeck 809 }
3424    
3425 schoenebeck 823 void File::LoadSamples() {
3426     LoadSamples(NULL);
3427     }
3428    
3429 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3430 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3431     // to resolve the group they belong to
3432 schoenebeck 1158 if (!pGroups) LoadGroups();
3433 schoenebeck 930
3434 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3435    
3436 persson 666 RIFF::File* file = pRIFF;
3437 schoenebeck 515
3438 persson 666 // just for progress calculation
3439     int iSampleIndex = 0;
3440     int iTotalSamples = WavePoolCount;
3441 schoenebeck 515
3442 persson 666 // check if samples should be loaded from extension files
3443     int lastFileNo = 0;
3444     for (int i = 0 ; i < WavePoolCount ; i++) {
3445     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3446     }
3447 schoenebeck 780 String name(pRIFF->GetFileName());
3448     int nameLen = name.length();
3449 persson 666 char suffix[6];
3450 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3451 schoenebeck 515
3452 persson 666 for (int fileNo = 0 ; ; ) {
3453     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3454     if (wvpl) {
3455     unsigned long wvplFileOffset = wvpl->GetFilePos();
3456     RIFF::List* wave = wvpl->GetFirstSubList();
3457     while (wave) {
3458     if (wave->GetListType() == LIST_TYPE_WAVE) {
3459     // notify current progress
3460     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3461     __notify_progress(pProgress, subprogress);
3462    
3463     unsigned long waveFileOffset = wave->GetFilePos();
3464     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3465    
3466     iSampleIndex++;
3467     }
3468     wave = wvpl->GetNextSubList();
3469 schoenebeck 2 }
3470 persson 666
3471     if (fileNo == lastFileNo) break;
3472    
3473     // open extension file (*.gx01, *.gx02, ...)
3474     fileNo++;
3475     sprintf(suffix, ".gx%02d", fileNo);
3476     name.replace(nameLen, 5, suffix);
3477     file = new RIFF::File(name);
3478     ExtensionFiles.push_back(file);
3479 schoenebeck 823 } else break;
3480 schoenebeck 2 }
3481 persson 666
3482     __notify_progress(pProgress, 1.0); // notify done
3483 schoenebeck 2 }
3484    
3485     Instrument* File::GetFirstInstrument() {
3486     if (!pInstruments) LoadInstruments();
3487     if (!pInstruments) return NULL;
3488     InstrumentsIterator = pInstruments->begin();
3489 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3490 schoenebeck 2 }
3491    
3492     Instrument* File::GetNextInstrument() {
3493     if (!pInstruments) return NULL;
3494     InstrumentsIterator++;
3495 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3496 schoenebeck 2 }
3497    
3498 schoenebeck 21 /**
3499     * Returns the instrument with the given index.
3500     *
3501 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3502     * @param pProgress - optional: callback function for progress notification
3503 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3504     */
3505 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3506     if (!pInstruments) {
3507     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3508    
3509     // sample loading subtask
3510     progress_t subprogress;
3511     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3512     __notify_progress(&subprogress, 0.0f);
3513 schoenebeck 1524 if (GetAutoLoad())
3514     GetFirstSample(&subprogress); // now force all samples to be loaded
3515 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
3516    
3517     // instrument loading subtask
3518     if (pProgress && pProgress->callback) {
3519     subprogress.__range_min = subprogress.__range_max;
3520     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3521     }
3522     __notify_progress(&subprogress, 0.0f);
3523     LoadInstruments(&subprogress);
3524     __notify_progress(&subprogress, 1.0f);
3525     }
3526 schoenebeck 21 if (!pInstruments) return NULL;
3527     InstrumentsIterator = pInstruments->begin();
3528     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3529 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3530 schoenebeck 21 InstrumentsIterator++;
3531     }
3532     return NULL;
3533     }
3534    
3535 schoenebeck 809 /** @brief Add a new instrument definition.
3536     *
3537     * This will create a new Instrument object for the gig file. You have
3538     * to call Save() to make this persistent to the file.
3539     *
3540     * @returns pointer to new Instrument object
3541     */
3542     Instrument* File::AddInstrument() {
3543     if (!pInstruments) LoadInstruments();
3544     __ensureMandatoryChunksExist();
3545     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3546     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3547 persson 1192
3548     // add mandatory chunks to get the chunks in right order
3549     lstInstr->AddSubList(LIST_TYPE_INFO);
3550 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3551 persson 1192
3552 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3553 persson 1209 pInstrument->GenerateDLSID();
3554 persson 1182
3555 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3556    
3557 persson 1182 // this string is needed for the gig to be loadable in GSt:
3558     pInstrument->pInfo->Software = "Endless Wave";
3559    
3560 schoenebeck 809 pInstruments->push_back(pInstrument);
3561     return pInstrument;
3562     }
3563    
3564     /** @brief Delete an instrument.
3565     *
3566     * This will delete the given Instrument object from the gig file. You
3567     * have to call Save() to make this persistent to the file.
3568     *
3569     * @param pInstrument - instrument to delete
3570 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3571 schoenebeck 809 */
3572     void File::DeleteInstrument(Instrument* pInstrument) {
3573     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3574 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3575 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3576     pInstruments->erase(iter);
3577     delete pInstrument;
3578     }
3579    
3580 schoenebeck 823 void File::LoadInstruments() {
3581     LoadInstruments(NULL);
3582     }
3583    
3584 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3585 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3586 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3587     if (lstInstruments) {
3588 schoenebeck 515 int iInstrumentIndex = 0;
3589 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3590     while (lstInstr) {
3591     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3592 schoenebeck 515 // notify current progress
3593     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3594     __notify_progress(pProgress, localProgress);
3595    
3596     // divide local progress into subprogress for loading current Instrument
3597     progress_t subprogress;
3598     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3599    
3600     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3601    
3602     iInstrumentIndex++;
3603 schoenebeck 2 }
3604     lstInstr = lstInstruments->GetNextSubList();
3605     }
3606 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3607 schoenebeck 2 }
3608     }
3609    
3610 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3611     /// update is done directly to disk, as this method is called
3612     /// after File::Save()
3613 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3614     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3615     if (!_3crc) return;
3616 persson 1207
3617     // get the index of the sample
3618 persson 1199 int iWaveIndex = -1;
3619     File::SampleList::iterator iter = pSamples->begin();
3620     File::SampleList::iterator end = pSamples->end();
3621     for (int index = 0; iter != end; ++iter, ++index) {
3622     if (*iter == pSample) {
3623     iWaveIndex = index;
3624     break;
3625     }
3626     }
3627     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3628    
3629 persson 1207 // write the CRC-32 checksum to disk
3630 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3631     uint32_t tmp = 1;
3632     _3crc->WriteUint32(&tmp); // unknown, always 1?
3633     _3crc->WriteUint32(&crc);
3634     }
3635    
3636 schoenebeck 929 Group* File::GetFirstGroup() {
3637     if (!pGroups) LoadGroups();
3638 schoenebeck 930 // there must always be at least one group
3639 schoenebeck 929 GroupsIterator = pGroups->begin();
3640 schoenebeck 930 return *GroupsIterator;
3641 schoenebeck 929 }
3642 schoenebeck 2
3643 schoenebeck 929 Group* File::GetNextGroup() {
3644     if (!pGroups) return NULL;
3645     ++GroupsIterator;
3646     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3647     }
3648 schoenebeck 2
3649 schoenebeck 929 /**
3650     * Returns the group with the given index.
3651     *
3652     * @param index - number of the sought group (0..n)
3653     * @returns sought group or NULL if there's no such group
3654     */
3655     Group* File::GetGroup(uint index) {
3656     if (!pGroups) LoadGroups();
3657     GroupsIterator = pGroups->begin();
3658     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3659     if (i == index) return *GroupsIterator;
3660     ++GroupsIterator;
3661     }
3662     return NULL;
3663     }
3664    
3665     Group* File::AddGroup() {
3666     if (!pGroups) LoadGroups();
3667 schoenebeck 930 // there must always be at least one group
3668 schoenebeck 929 __ensureMandatoryChunksExist();
3669 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3670 schoenebeck 929 pGroups->push_back(pGroup);
3671     return pGroup;
3672     }
3673    
3674 schoenebeck 1081 /** @brief Delete a group and its samples.
3675     *
3676     * This will delete the given Group object and all the samples that
3677     * belong to this group from the gig file. You have to call Save() to
3678     * make this persistent to the file.
3679     *
3680     * @param pGroup - group to delete
3681     * @throws gig::Exception if given group could not be found
3682     */
3683 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3684 schoenebeck 930 if (!pGroups) LoadGroups();
3685 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3686     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3687 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3688 schoenebeck 1081 // delete all members of this group
3689     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3690     DeleteSample(pSample);
3691     }
3692     // now delete this group object
3693     pGroups->erase(iter);
3694     delete pGroup;
3695     }
3696    
3697     /** @brief Delete a group.
3698     *
3699     * This will delete the given Group object from the gig file. All the
3700     * samples that belong to this group will not be deleted, but instead
3701     * be moved to another group. You have to call Save() to make this
3702     * persistent to the file.
3703     *
3704     * @param pGroup - group to delete
3705     * @throws gig::Exception if given group could not be found
3706     */
3707     void File::DeleteGroupOnly(Group* pGroup) {
3708     if (!pGroups) LoadGroups();
3709     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3710     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3711     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3712 schoenebeck 930 // move all members of this group to another group
3713     pGroup->MoveAll();
3714 schoenebeck 929 pGroups->erase(iter);
3715     delete pGroup;
3716     }
3717    
3718     void File::LoadGroups() {
3719     if (!pGroups) pGroups = new std::list<Group*>;
3720 schoenebeck 930 // try to read defined groups from file
3721 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3722 schoenebeck 930 if (lst3gri) {
3723     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3724     if (lst3gnl) {
3725     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3726     while (ck) {
3727     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3728 persson 1266 if (pVersion && pVersion->major == 3 &&
3729     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3730    
3731 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3732     }
3733     ck = lst3gnl->GetNextSubChunk();
3734 schoenebeck 929 }
3735     }
3736     }
3737 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3738     if (!pGroups->size()) {
3739     Group* pGroup = new Group(this, NULL);
3740     pGroup->Name = "Default Group";
3741     pGroups->push_back(pGroup);
3742     }
3743 schoenebeck 929 }
3744    
3745 schoenebeck 1098 /**
3746     * Apply all the gig file's current instruments, samples, groups and settings
3747     * to the respective RIFF chunks. You have to call Save() to make changes
3748     * persistent.
3749     *
3750     * Usually there is absolutely no need to call this method explicitly.
3751     * It will be called automatically when File::Save() was called.
3752     *
3753     * @throws Exception - on errors
3754     */
3755     void File::UpdateChunks() {
3756 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3757 persson 1192
3758 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3759    
3760 schoenebeck 1098 // first update base class's chunks
3761     DLS::File::UpdateChunks();
3762 schoenebeck 929
3763 persson 1199 if (newFile) {
3764 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3765     // is placed first in file
3766 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3767 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3768     if (first != info) {
3769     pRIFF->MoveSubChunk(info, first);
3770     }
3771     }
3772    
3773 schoenebeck 1098 // update group's chunks
3774     if (pGroups) {
3775     std::list<Group*>::iterator iter = pGroups->begin();
3776     std::list<Group*>::iterator end = pGroups->end();
3777     for (; iter != end; ++iter) {
3778     (*iter)->UpdateChunks();
3779     }
3780 persson 1266
3781     // v3: make sure the file has 128 3gnm chunks
3782     if (pVersion && pVersion->major == 3) {
3783     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3784     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3785     for (int i = 0 ; i < 128 ; i++) {
3786     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3787     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3788     }
3789     }
3790 schoenebeck 1098 }
3791 persson 1199
3792     // update einf chunk
3793    
3794     // The einf chunk contains statistics about the gig file, such
3795     // as the number of regions and samples used by each
3796     // instrument. It is divided in equally sized parts, where the
3797     // first part contains information about the whole gig file,
3798     // and the rest of the parts map to each instrument in the
3799     // file.
3800     //
3801     // At the end of each part there is a bit map of each sample
3802     // in the file, where a set bit means that the sample is used
3803     // by the file/instrument.
3804     //
3805     // Note that there are several fields with unknown use. These
3806     // are set to zero.
3807    
3808     int sublen = pSamples->size() / 8 + 49;
3809     int einfSize = (Instruments + 1) * sublen;
3810    
3811     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3812     if (einf) {
3813     if (einf->GetSize() != einfSize) {
3814     einf->Resize(einfSize);
3815     memset(einf->LoadChunkData(), 0, einfSize);
3816     }
3817     } else if (newFile) {
3818     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3819     }
3820     if (einf) {
3821     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3822    
3823     std::map<gig::Sample*,int> sampleMap;
3824     int sampleIdx = 0;
3825     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3826     sampleMap[pSample] = sampleIdx++;
3827     }
3828    
3829     int totnbusedsamples = 0;
3830     int totnbusedchannels = 0;
3831     int totnbregions = 0;
3832     int totnbdimregions = 0;
3833 persson 1264 int totnbloops = 0;
3834 persson 1199 int instrumentIdx = 0;
3835    
3836     memset(&pData[48], 0, sublen - 48);
3837    
3838     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3839     instrument = GetNextInstrument()) {
3840     int nbusedsamples = 0;
3841     int nbusedchannels = 0;
3842     int nbdimregions = 0;
3843 persson 1264 int nbloops = 0;
3844 persson 1199
3845     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3846    
3847     for (Region* region = instrument->GetFirstRegion() ; region ;
3848     region = instrument->GetNextRegion()) {
3849     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3850     gig::DimensionRegion *d = region->pDimensionRegions[i];
3851     if (d->pSample) {
3852     int sampleIdx = sampleMap[d->pSample];
3853     int byte = 48 + sampleIdx / 8;
3854     int bit = 1 << (sampleIdx & 7);
3855     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3856     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3857     nbusedsamples++;
3858     nbusedchannels += d->pSample->Channels;
3859    
3860     if ((pData[byte] & bit) == 0) {
3861     pData[byte] |= bit;
3862     totnbusedsamples++;
3863     totnbusedchannels += d->pSample->Channels;
3864     }
3865     }
3866     }
3867 persson 1264 if (d->SampleLoops) nbloops++;
3868 persson 1199 }
3869     nbdimregions += region->DimensionRegions;
3870     }
3871     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3872     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3873     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3874     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3875     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3876     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3877     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3878 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3879     // next 8 bytes unknown
3880 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3881     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3882     // next 4 bytes unknown
3883    
3884     totnbregions += instrument->Regions;
3885     totnbdimregions += nbdimregions;
3886 persson 1264 totnbloops += nbloops;
3887 persson 1199 instrumentIdx++;
3888     }
3889     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3890     // store32(&pData[0], sublen);
3891     store32(&pData[4], totnbusedchannels);
3892     store32(&pData[8], totnbusedsamples);
3893     store32(&pData[12], Instruments);
3894     store32(&pData[16], totnbregions);
3895     store32(&pData[20], totnbdimregions);
3896 persson 1264 store32(&pData[24], totnbloops);
3897     // next 8 bytes unknown
3898     // next 4 bytes unknown, not always 0
3899 persson 1199 store32(&pData[40], pSamples->size());
3900     // next 4 bytes unknown
3901     }
3902    
3903     // update 3crc chunk
3904    
3905     // The 3crc chunk contains CRC-32 checksums for the
3906     // samples. The actual checksum values will be filled in
3907     // later, by Sample::Write.
3908    
3909     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3910     if (_3crc) {
3911     _3crc->Resize(pSamples->size() * 8);
3912     } else if (newFile) {
3913     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3914     _3crc->LoadChunkData();
3915 persson 1264
3916     // the order of einf and 3crc is not the same in v2 and v3
3917     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3918 persson 1199 }
3919 schoenebeck 1098 }
3920 schoenebeck 929
3921 schoenebeck 1524 /**
3922     * Enable / disable automatic loading. By default this properyt is
3923     * enabled and all informations are loaded automatically. However
3924     * loading all Regions, DimensionRegions and especially samples might
3925     * take a long time for large .gig files, and sometimes one might only
3926     * be interested in retrieving very superficial informations like the
3927     * amount of instruments and their names. In this case one might disable
3928     * automatic loading to avoid very slow response times.
3929     *
3930     * @e CAUTION: by disabling this property many pointers (i.e. sample
3931     * references) and informations will have invalid or even undefined
3932     * data! This feature is currently only intended for retrieving very
3933     * superficial informations in a very fast way. Don't use it to retrieve
3934     * details like synthesis informations or even to modify .gig files!
3935     */
3936     void File::SetAutoLoad(bool b) {
3937     bAutoLoad = b;
3938     }
3939 schoenebeck 1098
3940 schoenebeck 1524 /**
3941     * Returns whether automatic loading is enabled.
3942     * @see SetAutoLoad()
3943     */
3944     bool File::GetAutoLoad() {
3945     return bAutoLoad;
3946     }
3947 schoenebeck 1098
3948 schoenebeck 1524
3949    
3950 schoenebeck 2 // *************** Exception ***************
3951     // *
3952    
3953     Exception::Exception(String Message) : DLS::Exception(Message) {
3954     }
3955    
3956     void Exception::PrintMessage() {
3957     std::cout << "gig::Exception: " << Message << std::endl;
3958     }
3959    
3960 schoenebeck 518
3961     // *************** functions ***************
3962     // *
3963    
3964     /**
3965     * Returns the name of this C++ library. This is usually "libgig" of
3966     * course. This call is equivalent to RIFF::libraryName() and
3967     * DLS::libraryName().
3968     */
3969     String libraryName() {
3970     return PACKAGE;
3971     }
3972    
3973     /**
3974     * Returns version of this C++ library. This call is equivalent to
3975     * RIFF::libraryVersion() and DLS::libraryVersion().
3976     */
3977     String libraryVersion() {
3978     return VERSION;
3979     }
3980    
3981 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC