/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1851 - (hide annotations) (download)
Sun Mar 1 22:08:32 2009 UTC (15 years, 1 month ago) by schoenebeck
File size: 174659 byte(s)
* bugfix: refuse RIFF::Chunk::Read() in case chunk has just been added,
  that is not written physically yet (#82)
* bugfix in gig::Sample::LoadSampleData*(): reset sample read position
  to sample start before trying to (re)load sample data from file (#82)

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1851 * Copyright (C) 2003-2009 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31    
32 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
33     /// compressed sample wave streams - this value should always be bigger than
34     /// the biggest sample piece expected to be read by the sampler engine,
35     /// otherwise the buffer size will be raised at runtime and thus the buffer
36     /// reallocated which is time consuming and unefficient.
37     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38    
39     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52    
53 schoenebeck 515 namespace gig {
54 schoenebeck 2
55 schoenebeck 515 // *************** progress_t ***************
56     // *
57    
58     progress_t::progress_t() {
59     callback = NULL;
60 schoenebeck 516 custom = NULL;
61 schoenebeck 515 __range_min = 0.0f;
62     __range_max = 1.0f;
63     }
64    
65     // private helper function to convert progress of a subprocess into the global progress
66     static void __notify_progress(progress_t* pProgress, float subprogress) {
67     if (pProgress && pProgress->callback) {
68     const float totalrange = pProgress->__range_max - pProgress->__range_min;
69     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 schoenebeck 516 pProgress->factor = totalprogress;
71     pProgress->callback(pProgress); // now actually notify about the progress
72 schoenebeck 515 }
73     }
74    
75     // private helper function to divide a progress into subprogresses
76     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77     if (pParentProgress && pParentProgress->callback) {
78     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79     pSubProgress->callback = pParentProgress->callback;
80 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
81 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83     }
84     }
85    
86    
87 schoenebeck 809 // *************** Internal functions for sample decompression ***************
88 persson 365 // *
89    
90 schoenebeck 515 namespace {
91    
92 persson 365 inline int get12lo(const unsigned char* pSrc)
93     {
94     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95     return x & 0x800 ? x - 0x1000 : x;
96     }
97    
98     inline int get12hi(const unsigned char* pSrc)
99     {
100     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101     return x & 0x800 ? x - 0x1000 : x;
102     }
103    
104     inline int16_t get16(const unsigned char* pSrc)
105     {
106     return int16_t(pSrc[0] | pSrc[1] << 8);
107     }
108    
109     inline int get24(const unsigned char* pSrc)
110     {
111     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112     return x & 0x800000 ? x - 0x1000000 : x;
113     }
114    
115 persson 902 inline void store24(unsigned char* pDst, int x)
116     {
117     pDst[0] = x;
118     pDst[1] = x >> 8;
119     pDst[2] = x >> 16;
120     }
121    
122 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
123 persson 372 int srcStep, int dstStep,
124     const unsigned char* pSrc, int16_t* pDst,
125 persson 365 unsigned long currentframeoffset,
126     unsigned long copysamples)
127     {
128     switch (compressionmode) {
129     case 0: // 16 bit uncompressed
130     pSrc += currentframeoffset * srcStep;
131     while (copysamples) {
132     *pDst = get16(pSrc);
133 persson 372 pDst += dstStep;
134 persson 365 pSrc += srcStep;
135     copysamples--;
136     }
137     break;
138    
139     case 1: // 16 bit compressed to 8 bit
140     int y = get16(params);
141     int dy = get16(params + 2);
142     while (currentframeoffset) {
143     dy -= int8_t(*pSrc);
144     y -= dy;
145     pSrc += srcStep;
146     currentframeoffset--;
147     }
148     while (copysamples) {
149     dy -= int8_t(*pSrc);
150     y -= dy;
151     *pDst = y;
152 persson 372 pDst += dstStep;
153 persson 365 pSrc += srcStep;
154     copysamples--;
155     }
156     break;
157     }
158     }
159    
160     void Decompress24(int compressionmode, const unsigned char* params,
161 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 persson 365 unsigned long currentframeoffset,
163 persson 437 unsigned long copysamples, int truncatedBits)
164 persson 365 {
165 persson 695 int y, dy, ddy, dddy;
166 persson 437
167 persson 695 #define GET_PARAMS(params) \
168     y = get24(params); \
169     dy = y - get24((params) + 3); \
170     ddy = get24((params) + 6); \
171     dddy = get24((params) + 9)
172 persson 365
173     #define SKIP_ONE(x) \
174 persson 695 dddy -= (x); \
175     ddy -= dddy; \
176     dy = -dy - ddy; \
177     y += dy
178 persson 365
179     #define COPY_ONE(x) \
180     SKIP_ONE(x); \
181 persson 902 store24(pDst, y << truncatedBits); \
182 persson 372 pDst += dstStep
183 persson 365
184     switch (compressionmode) {
185     case 2: // 24 bit uncompressed
186     pSrc += currentframeoffset * 3;
187     while (copysamples) {
188 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
189 persson 372 pDst += dstStep;
190 persson 365 pSrc += 3;
191     copysamples--;
192     }
193     break;
194    
195     case 3: // 24 bit compressed to 16 bit
196     GET_PARAMS(params);
197     while (currentframeoffset) {
198     SKIP_ONE(get16(pSrc));
199     pSrc += 2;
200     currentframeoffset--;
201     }
202     while (copysamples) {
203     COPY_ONE(get16(pSrc));
204     pSrc += 2;
205     copysamples--;
206     }
207     break;
208    
209     case 4: // 24 bit compressed to 12 bit
210     GET_PARAMS(params);
211     while (currentframeoffset > 1) {
212     SKIP_ONE(get12lo(pSrc));
213     SKIP_ONE(get12hi(pSrc));
214     pSrc += 3;
215     currentframeoffset -= 2;
216     }
217     if (currentframeoffset) {
218     SKIP_ONE(get12lo(pSrc));
219     currentframeoffset--;
220     if (copysamples) {
221     COPY_ONE(get12hi(pSrc));
222     pSrc += 3;
223     copysamples--;
224     }
225     }
226     while (copysamples > 1) {
227     COPY_ONE(get12lo(pSrc));
228     COPY_ONE(get12hi(pSrc));
229     pSrc += 3;
230     copysamples -= 2;
231     }
232     if (copysamples) {
233     COPY_ONE(get12lo(pSrc));
234     }
235     break;
236    
237     case 5: // 24 bit compressed to 8 bit
238     GET_PARAMS(params);
239     while (currentframeoffset) {
240     SKIP_ONE(int8_t(*pSrc++));
241     currentframeoffset--;
242     }
243     while (copysamples) {
244     COPY_ONE(int8_t(*pSrc++));
245     copysamples--;
246     }
247     break;
248     }
249     }
250    
251     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255     }
256    
257    
258 schoenebeck 1113
259 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260     // *
261    
262     static uint32_t* __initCRCTable() {
263     static uint32_t res[256];
264    
265     for (int i = 0 ; i < 256 ; i++) {
266     uint32_t c = i;
267     for (int j = 0 ; j < 8 ; j++) {
268     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269     }
270     res[i] = c;
271     }
272     return res;
273     }
274    
275     static const uint32_t* __CRCTable = __initCRCTable();
276    
277     /**
278     * Initialize a CRC variable.
279     *
280     * @param crc - variable to be initialized
281     */
282     inline static void __resetCRC(uint32_t& crc) {
283     crc = 0xffffffff;
284     }
285    
286     /**
287     * Used to calculate checksums of the sample data in a gig file. The
288     * checksums are stored in the 3crc chunk of the gig file and
289     * automatically updated when a sample is written with Sample::Write().
290     *
291     * One should call __resetCRC() to initialize the CRC variable to be
292     * used before calling this function the first time.
293     *
294     * After initializing the CRC variable one can call this function
295     * arbitrary times, i.e. to split the overall CRC calculation into
296     * steps.
297     *
298     * Once the whole data was processed by __calculateCRC(), one should
299     * call __encodeCRC() to get the final CRC result.
300     *
301     * @param buf - pointer to data the CRC shall be calculated of
302     * @param bufSize - size of the data to be processed
303     * @param crc - variable the CRC sum shall be stored to
304     */
305     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306     for (int i = 0 ; i < bufSize ; i++) {
307     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308     }
309     }
310    
311     /**
312     * Returns the final CRC result.
313     *
314     * @param crc - variable previously passed to __calculateCRC()
315     */
316     inline static uint32_t __encodeCRC(const uint32_t& crc) {
317     return crc ^ 0xffffffff;
318     }
319    
320    
321    
322 schoenebeck 1113 // *************** Other Internal functions ***************
323     // *
324    
325     static split_type_t __resolveSplitType(dimension_t dimension) {
326     return (
327     dimension == dimension_layer ||
328     dimension == dimension_samplechannel ||
329     dimension == dimension_releasetrigger ||
330     dimension == dimension_keyboard ||
331     dimension == dimension_roundrobin ||
332     dimension == dimension_random ||
333     dimension == dimension_smartmidi ||
334     dimension == dimension_roundrobinkeyboard
335     ) ? split_type_bit : split_type_normal;
336     }
337    
338     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339     return (dimension_definition.split_type == split_type_normal)
340     ? int(128.0 / dimension_definition.zones) : 0;
341     }
342    
343    
344    
345 schoenebeck 2 // *************** Sample ***************
346     // *
347    
348 schoenebeck 384 unsigned int Sample::Instances = 0;
349     buffer_t Sample::InternalDecompressionBuffer;
350 schoenebeck 2
351 schoenebeck 809 /** @brief Constructor.
352     *
353     * Load an existing sample or create a new one. A 'wave' list chunk must
354     * be given to this constructor. In case the given 'wave' list chunk
355     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356     * format and sample data will be loaded from there, otherwise default
357     * values will be used and those chunks will be created when
358     * File::Save() will be called later on.
359     *
360     * @param pFile - pointer to gig::File where this sample is
361     * located (or will be located)
362     * @param waveList - pointer to 'wave' list chunk which is (or
363     * will be) associated with this sample
364     * @param WavePoolOffset - offset of this sample data from wave pool
365     * ('wvpl') list chunk
366     * @param fileNo - number of an extension file where this sample
367     * is located, 0 otherwise
368     */
369 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 persson 1180 { CHUNK_ID_INAM, 64 },
372     { 0, 0 }
373     };
374 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
375 schoenebeck 2 Instances++;
376 persson 666 FileNo = fileNo;
377 schoenebeck 2
378 schoenebeck 1381 __resetCRC(crc);
379    
380 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381     if (pCk3gix) {
382 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
384 schoenebeck 809 } else { // '3gix' chunk missing
385 schoenebeck 930 // by default assigned to that mandatory "Default Group"
386     pGroup = pFile->GetGroup(0);
387 schoenebeck 809 }
388 schoenebeck 2
389 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390     if (pCkSmpl) {
391     Manufacturer = pCkSmpl->ReadInt32();
392     Product = pCkSmpl->ReadInt32();
393     SamplePeriod = pCkSmpl->ReadInt32();
394     MIDIUnityNote = pCkSmpl->ReadInt32();
395     FineTune = pCkSmpl->ReadInt32();
396     pCkSmpl->Read(&SMPTEFormat, 1, 4);
397     SMPTEOffset = pCkSmpl->ReadInt32();
398     Loops = pCkSmpl->ReadInt32();
399     pCkSmpl->ReadInt32(); // manufByt
400     LoopID = pCkSmpl->ReadInt32();
401     pCkSmpl->Read(&LoopType, 1, 4);
402     LoopStart = pCkSmpl->ReadInt32();
403     LoopEnd = pCkSmpl->ReadInt32();
404     LoopFraction = pCkSmpl->ReadInt32();
405     LoopPlayCount = pCkSmpl->ReadInt32();
406     } else { // 'smpl' chunk missing
407     // use default values
408     Manufacturer = 0;
409     Product = 0;
410 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 persson 1218 MIDIUnityNote = 60;
412 schoenebeck 809 FineTune = 0;
413 persson 1182 SMPTEFormat = smpte_format_no_offset;
414 schoenebeck 809 SMPTEOffset = 0;
415     Loops = 0;
416     LoopID = 0;
417 persson 1182 LoopType = loop_type_normal;
418 schoenebeck 809 LoopStart = 0;
419     LoopEnd = 0;
420     LoopFraction = 0;
421     LoopPlayCount = 0;
422     }
423 schoenebeck 2
424     FrameTable = NULL;
425     SamplePos = 0;
426     RAMCache.Size = 0;
427     RAMCache.pStart = NULL;
428     RAMCache.NullExtensionSize = 0;
429    
430 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433     Compressed = ewav;
434     Dithered = false;
435     TruncatedBits = 0;
436 schoenebeck 2 if (Compressed) {
437 persson 437 uint32_t version = ewav->ReadInt32();
438     if (version == 3 && BitDepth == 24) {
439     Dithered = ewav->ReadInt32();
440     ewav->SetPos(Channels == 2 ? 84 : 64);
441     TruncatedBits = ewav->ReadInt32();
442     }
443 schoenebeck 2 ScanCompressedSample();
444     }
445 schoenebeck 317
446     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 schoenebeck 317 }
451 persson 437 FrameOffset = 0; // just for streaming compressed samples
452 schoenebeck 21
453 persson 864 LoopSize = LoopEnd - LoopStart + 1;
454 schoenebeck 2 }
455    
456 schoenebeck 809 /**
457     * Apply sample and its settings to the respective RIFF chunks. You have
458     * to call File::Save() to make changes persistent.
459     *
460     * Usually there is absolutely no need to call this method explicitly.
461     * It will be called automatically when File::Save() was called.
462     *
463 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 schoenebeck 809 * was provided yet
465     * @throws gig::Exception if there is any invalid sample setting
466     */
467     void Sample::UpdateChunks() {
468     // first update base class's chunks
469     DLS::Sample::UpdateChunks();
470    
471     // make sure 'smpl' chunk exists
472     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 persson 1182 if (!pCkSmpl) {
474     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475     memset(pCkSmpl->LoadChunkData(), 0, 60);
476     }
477 schoenebeck 809 // update 'smpl' chunk
478     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 persson 1179 store32(&pData[0], Manufacturer);
481     store32(&pData[4], Product);
482     store32(&pData[8], SamplePeriod);
483     store32(&pData[12], MIDIUnityNote);
484     store32(&pData[16], FineTune);
485     store32(&pData[20], SMPTEFormat);
486     store32(&pData[24], SMPTEOffset);
487     store32(&pData[28], Loops);
488 schoenebeck 809
489     // we skip 'manufByt' for now (4 bytes)
490    
491 persson 1179 store32(&pData[36], LoopID);
492     store32(&pData[40], LoopType);
493     store32(&pData[44], LoopStart);
494     store32(&pData[48], LoopEnd);
495     store32(&pData[52], LoopFraction);
496     store32(&pData[56], LoopPlayCount);
497 schoenebeck 809
498     // make sure '3gix' chunk exists
499     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
502 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
504     if (pFile->pGroups) {
505     std::list<Group*>::iterator iter = pFile->pGroups->begin();
506     std::list<Group*>::iterator end = pFile->pGroups->end();
507 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
508 schoenebeck 929 if (*iter == pGroup) {
509     iSampleGroup = i;
510     break; // found
511     }
512     }
513     }
514 schoenebeck 809 // update '3gix' chunk
515     pData = (uint8_t*) pCk3gix->LoadChunkData();
516 persson 1179 store16(&pData[0], iSampleGroup);
517 schoenebeck 809 }
518    
519 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520     void Sample::ScanCompressedSample() {
521     //TODO: we have to add some more scans here (e.g. determine compression rate)
522     this->SamplesTotal = 0;
523     std::list<unsigned long> frameOffsets;
524    
525 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 persson 365
528 schoenebeck 2 // Scanning
529     pCkData->SetPos(0);
530 persson 365 if (Channels == 2) { // Stereo
531     for (int i = 0 ; ; i++) {
532     // for 24 bit samples every 8:th frame offset is
533     // stored, to save some memory
534     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535    
536     const int mode_l = pCkData->ReadUint8();
537     const int mode_r = pCkData->ReadUint8();
538     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541     if (pCkData->RemainingBytes() <= frameSize) {
542     SamplesInLastFrame =
543     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545     SamplesTotal += SamplesInLastFrame;
546 schoenebeck 2 break;
547 persson 365 }
548     SamplesTotal += SamplesPerFrame;
549     pCkData->SetPos(frameSize, RIFF::stream_curpos);
550     }
551     }
552     else { // Mono
553     for (int i = 0 ; ; i++) {
554     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556     const int mode = pCkData->ReadUint8();
557     if (mode > 5) throw gig::Exception("Unknown compression mode");
558     const unsigned long frameSize = bytesPerFrame[mode];
559    
560     if (pCkData->RemainingBytes() <= frameSize) {
561     SamplesInLastFrame =
562     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563     SamplesTotal += SamplesInLastFrame;
564 schoenebeck 2 break;
565 persson 365 }
566     SamplesTotal += SamplesPerFrame;
567     pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 schoenebeck 2 }
569     }
570     pCkData->SetPos(0);
571    
572     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573     if (FrameTable) delete[] FrameTable;
574     FrameTable = new unsigned long[frameOffsets.size()];
575     std::list<unsigned long>::iterator end = frameOffsets.end();
576     std::list<unsigned long>::iterator iter = frameOffsets.begin();
577     for (int i = 0; iter != end; i++, iter++) {
578     FrameTable[i] = *iter;
579     }
580     }
581    
582     /**
583     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584     * ReleaseSampleData() to free the memory if you don't need the cached
585     * sample data anymore.
586     *
587     * @returns buffer_t structure with start address and size of the buffer
588     * in bytes
589     * @see ReleaseSampleData(), Read(), SetPos()
590     */
591     buffer_t Sample::LoadSampleData() {
592     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593     }
594    
595     /**
596     * Reads (uncompresses if needed) and caches the first \a SampleCount
597     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598     * memory space if you don't need the cached samples anymore. There is no
599     * guarantee that exactly \a SampleCount samples will be cached; this is
600     * not an error. The size will be eventually truncated e.g. to the
601     * beginning of a frame of a compressed sample. This is done for
602     * efficiency reasons while streaming the wave by your sampler engine
603     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604     * that will be returned to determine the actual cached samples, but note
605     * that the size is given in bytes! You get the number of actually cached
606     * samples by dividing it by the frame size of the sample:
607 schoenebeck 384 * @code
608 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609     * long cachedsamples = buf.Size / pSample->FrameSize;
610 schoenebeck 384 * @endcode
611 schoenebeck 2 *
612     * @param SampleCount - number of sample points to load into RAM
613     * @returns buffer_t structure with start address and size of
614     * the cached sample data in bytes
615     * @see ReleaseSampleData(), Read(), SetPos()
616     */
617     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619     }
620    
621     /**
622     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623     * ReleaseSampleData() to free the memory if you don't need the cached
624     * sample data anymore.
625     * The method will add \a NullSamplesCount silence samples past the
626     * official buffer end (this won't affect the 'Size' member of the
627     * buffer_t structure, that means 'Size' always reflects the size of the
628     * actual sample data, the buffer might be bigger though). Silence
629     * samples past the official buffer are needed for differential
630     * algorithms that always have to take subsequent samples into account
631     * (resampling/interpolation would be an important example) and avoids
632     * memory access faults in such cases.
633     *
634     * @param NullSamplesCount - number of silence samples the buffer should
635     * be extended past it's data end
636     * @returns buffer_t structure with start address and
637     * size of the buffer in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
661     * official buffer end (this won't affect the 'Size' member of the
662     * buffer_t structure, that means 'Size' always reflects the size of the
663     * actual sample data, the buffer might be bigger though). Silence
664     * samples past the official buffer are needed for differential
665     * algorithms that always have to take subsequent samples into account
666     * (resampling/interpolation would be an important example) and avoids
667     * memory access faults in such cases.
668     *
669     * @param SampleCount - number of sample points to load into RAM
670     * @param NullSamplesCount - number of silence samples the buffer should
671     * be extended past it's data end
672     * @returns buffer_t structure with start address and
673     * size of the cached sample data in bytes
674     * @see ReleaseSampleData(), Read(), SetPos()
675     */
676     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
681 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
682     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684     // fill the remaining buffer space with silence samples
685     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686     return GetCache();
687     }
688    
689     /**
690     * Returns current cached sample points. A buffer_t structure will be
691     * returned which contains address pointer to the begin of the cache and
692     * the size of the cached sample data in bytes. Use
693     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694     * RAM.
695     *
696     * @returns buffer_t structure with current cached sample points
697     * @see LoadSampleData();
698     */
699     buffer_t Sample::GetCache() {
700     // return a copy of the buffer_t structure
701     buffer_t result;
702     result.Size = this->RAMCache.Size;
703     result.pStart = this->RAMCache.pStart;
704     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705     return result;
706     }
707    
708     /**
709     * Frees the cached sample from RAM if loaded with
710     * <i>LoadSampleData()</i> previously.
711     *
712     * @see LoadSampleData();
713     */
714     void Sample::ReleaseSampleData() {
715     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716     RAMCache.pStart = NULL;
717     RAMCache.Size = 0;
718 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
719 schoenebeck 2 }
720    
721 schoenebeck 809 /** @brief Resize sample.
722     *
723     * Resizes the sample's wave form data, that is the actual size of
724     * sample wave data possible to be written for this sample. This call
725     * will return immediately and just schedule the resize operation. You
726     * should call File::Save() to actually perform the resize operation(s)
727     * "physically" to the file. As this can take a while on large files, it
728     * is recommended to call Resize() first on all samples which have to be
729     * resized and finally to call File::Save() to perform all those resize
730     * operations in one rush.
731     *
732     * The actual size (in bytes) is dependant to the current FrameSize
733     * value. You may want to set FrameSize before calling Resize().
734     *
735     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736     * enlarged samples before calling File::Save() as this might exceed the
737     * current sample's boundary!
738     *
739 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 schoenebeck 809 * other formats will fail!
742     *
743     * @param iNewSize - new sample wave data size in sample points (must be
744     * greater than zero)
745 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 schoenebeck 809 * or if \a iNewSize is less than 1
747     * @throws gig::Exception if existing sample is compressed
748     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749     * DLS::Sample::FormatTag, File::Save()
750     */
751     void Sample::Resize(int iNewSize) {
752     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753     DLS::Sample::Resize(iNewSize);
754     }
755    
756 schoenebeck 2 /**
757     * Sets the position within the sample (in sample points, not in
758     * bytes). Use this method and <i>Read()</i> if you don't want to load
759     * the sample into RAM, thus for disk streaming.
760     *
761     * Although the original Gigasampler engine doesn't allow positioning
762     * within compressed samples, I decided to implement it. Even though
763     * the Gigasampler format doesn't allow to define loops for compressed
764     * samples at the moment, positioning within compressed samples might be
765     * interesting for some sampler engines though. The only drawback about
766     * my decision is that it takes longer to load compressed gig Files on
767     * startup, because it's neccessary to scan the samples for some
768     * mandatory informations. But I think as it doesn't affect the runtime
769     * efficiency, nobody will have a problem with that.
770     *
771     * @param SampleCount number of sample points to jump
772     * @param Whence optional: to which relation \a SampleCount refers
773     * to, if omited <i>RIFF::stream_start</i> is assumed
774     * @returns the new sample position
775     * @see Read()
776     */
777     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778     if (Compressed) {
779     switch (Whence) {
780     case RIFF::stream_curpos:
781     this->SamplePos += SampleCount;
782     break;
783     case RIFF::stream_end:
784     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785     break;
786     case RIFF::stream_backward:
787     this->SamplePos -= SampleCount;
788     break;
789     case RIFF::stream_start: default:
790     this->SamplePos = SampleCount;
791     break;
792     }
793     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794    
795     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798     return this->SamplePos;
799     }
800     else { // not compressed
801     unsigned long orderedBytes = SampleCount * this->FrameSize;
802     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803     return (result == orderedBytes) ? SampleCount
804     : result / this->FrameSize;
805     }
806     }
807    
808     /**
809     * Returns the current position in the sample (in sample points).
810     */
811     unsigned long Sample::GetPos() {
812     if (Compressed) return SamplePos;
813     else return pCkData->GetPos() / FrameSize;
814     }
815    
816     /**
817 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
818     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819     * the position within the sample respectively, this method honors the
820     * looping informations of the sample (if any). The sample wave stream
821     * will be decompressed on the fly if using a compressed sample. Use this
822     * method if you don't want to load the sample into RAM, thus for disk
823     * streaming. All this methods needs to know to proceed with streaming
824     * for the next time you call this method is stored in \a pPlaybackState.
825     * You have to allocate and initialize the playback_state_t structure by
826     * yourself before you use it to stream a sample:
827 schoenebeck 384 * @code
828     * gig::playback_state_t playbackstate;
829     * playbackstate.position = 0;
830     * playbackstate.reverse = false;
831     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832     * @endcode
833 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
834     * defined or if the current read position is located within a loop area.
835     * The method already handles such cases by itself.
836     *
837 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
838     * have to use an external decompression buffer for <b>EACH</b>
839     * streaming thread to avoid race conditions and crashes!
840     *
841 schoenebeck 24 * @param pBuffer destination buffer
842     * @param SampleCount number of sample points to read
843     * @param pPlaybackState will be used to store and reload the playback
844     * state for the next ReadAndLoop() call
845 persson 864 * @param pDimRgn dimension region with looping information
846 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 schoenebeck 24 * @returns number of successfully read sample points
848 schoenebeck 384 * @see CreateDecompressionBuffer()
849 schoenebeck 24 */
850 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853     uint8_t* pDst = (uint8_t*) pBuffer;
854    
855     SetPos(pPlaybackState->position); // recover position from the last time
856    
857 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 schoenebeck 24
859 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 schoenebeck 24
862 persson 864 if (GetPos() <= loopEnd) {
863     switch (loop.LoopType) {
864 schoenebeck 24
865 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
866     do {
867     // if not endless loop check if max. number of loop cycles have been passed
868     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 schoenebeck 24
870 persson 864 if (!pPlaybackState->reverse) { // forward playback
871     do {
872     samplestoloopend = loopEnd - GetPos();
873     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874     samplestoread -= readsamples;
875     totalreadsamples += readsamples;
876     if (readsamples == samplestoloopend) {
877     pPlaybackState->reverse = true;
878     break;
879     }
880     } while (samplestoread && readsamples);
881     }
882     else { // backward playback
883 schoenebeck 24
884 persson 864 // as we can only read forward from disk, we have to
885     // determine the end position within the loop first,
886     // read forward from that 'end' and finally after
887     // reading, swap all sample frames so it reflects
888     // backward playback
889 schoenebeck 24
890 persson 864 unsigned long swapareastart = totalreadsamples;
891     unsigned long loopoffset = GetPos() - loop.LoopStart;
892     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 schoenebeck 24
895 persson 864 SetPos(reverseplaybackend);
896 schoenebeck 24
897 persson 864 // read samples for backward playback
898     do {
899     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900     samplestoreadinloop -= readsamples;
901     samplestoread -= readsamples;
902     totalreadsamples += readsamples;
903     } while (samplestoreadinloop && readsamples);
904 schoenebeck 24
905 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
906    
907     if (reverseplaybackend == loop.LoopStart) {
908     pPlaybackState->loop_cycles_left--;
909     pPlaybackState->reverse = false;
910     }
911    
912     // reverse the sample frames for backward playback
913     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
914 schoenebeck 24 }
915 persson 864 } while (samplestoread && readsamples);
916     break;
917     }
918 schoenebeck 24
919 persson 864 case loop_type_backward: { // TODO: not tested yet!
920     // forward playback (not entered the loop yet)
921     if (!pPlaybackState->reverse) do {
922     samplestoloopend = loopEnd - GetPos();
923     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
924     samplestoread -= readsamples;
925     totalreadsamples += readsamples;
926     if (readsamples == samplestoloopend) {
927     pPlaybackState->reverse = true;
928     break;
929     }
930     } while (samplestoread && readsamples);
931 schoenebeck 24
932 persson 864 if (!samplestoread) break;
933 schoenebeck 24
934 persson 864 // as we can only read forward from disk, we have to
935     // determine the end position within the loop first,
936     // read forward from that 'end' and finally after
937     // reading, swap all sample frames so it reflects
938     // backward playback
939 schoenebeck 24
940 persson 864 unsigned long swapareastart = totalreadsamples;
941     unsigned long loopoffset = GetPos() - loop.LoopStart;
942     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
943     : samplestoread;
944     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
945 schoenebeck 24
946 persson 864 SetPos(reverseplaybackend);
947 schoenebeck 24
948 persson 864 // read samples for backward playback
949     do {
950     // if not endless loop check if max. number of loop cycles have been passed
951     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
952     samplestoloopend = loopEnd - GetPos();
953     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
954     samplestoreadinloop -= readsamples;
955     samplestoread -= readsamples;
956     totalreadsamples += readsamples;
957     if (readsamples == samplestoloopend) {
958     pPlaybackState->loop_cycles_left--;
959     SetPos(loop.LoopStart);
960     }
961     } while (samplestoreadinloop && readsamples);
962 schoenebeck 24
963 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
964 schoenebeck 24
965 persson 864 // reverse the sample frames for backward playback
966     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
967     break;
968     }
969 schoenebeck 24
970 persson 864 default: case loop_type_normal: {
971     do {
972     // if not endless loop check if max. number of loop cycles have been passed
973     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
974     samplestoloopend = loopEnd - GetPos();
975     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
976     samplestoread -= readsamples;
977     totalreadsamples += readsamples;
978     if (readsamples == samplestoloopend) {
979     pPlaybackState->loop_cycles_left--;
980     SetPos(loop.LoopStart);
981     }
982     } while (samplestoread && readsamples);
983     break;
984     }
985 schoenebeck 24 }
986     }
987     }
988    
989     // read on without looping
990     if (samplestoread) do {
991 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
992 schoenebeck 24 samplestoread -= readsamples;
993     totalreadsamples += readsamples;
994     } while (readsamples && samplestoread);
995    
996     // store current position
997     pPlaybackState->position = GetPos();
998    
999     return totalreadsamples;
1000     }
1001    
1002     /**
1003 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1004     * position into the buffer pointed by \a pBuffer and increments the
1005     * position within the sample. The sample wave stream will be
1006     * decompressed on the fly if using a compressed sample. Use this method
1007     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1008     * thus for disk streaming.
1009     *
1010 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1011     * have to use an external decompression buffer for <b>EACH</b>
1012     * streaming thread to avoid race conditions and crashes!
1013     *
1014 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1015     * (using native endianness). For 24 bit, the buffer will
1016     * contain three bytes per sample, little-endian.
1017     *
1018 schoenebeck 2 * @param pBuffer destination buffer
1019     * @param SampleCount number of sample points to read
1020 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1021 schoenebeck 2 * @returns number of successfully read sample points
1022 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1023 schoenebeck 2 */
1024 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1025 schoenebeck 21 if (SampleCount == 0) return 0;
1026 schoenebeck 317 if (!Compressed) {
1027     if (BitDepth == 24) {
1028 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1029 schoenebeck 317 }
1030 persson 365 else { // 16 bit
1031     // (pCkData->Read does endian correction)
1032     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1033     : pCkData->Read(pBuffer, SampleCount, 2);
1034     }
1035 schoenebeck 317 }
1036 persson 365 else {
1037 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1038 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1039     unsigned long assumedsize = GuessSize(SampleCount),
1040 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1041     remainingsamples = SampleCount,
1042 persson 365 copysamples, skipsamples,
1043     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1044 schoenebeck 2 this->FrameOffset = 0;
1045    
1046 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1047    
1048     // if decompression buffer too small, then reduce amount of samples to read
1049     if (pDecompressionBuffer->Size < assumedsize) {
1050     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1051     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1052     remainingsamples = SampleCount;
1053     assumedsize = GuessSize(SampleCount);
1054 schoenebeck 2 }
1055    
1056 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1057 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1058 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1059 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1060    
1061 persson 365 while (remainingsamples && remainingbytes) {
1062     unsigned long framesamples = SamplesPerFrame;
1063     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1064 schoenebeck 2
1065 persson 365 int mode_l = *pSrc++, mode_r = 0;
1066    
1067     if (Channels == 2) {
1068     mode_r = *pSrc++;
1069     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1070     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1071     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1072     if (remainingbytes < framebytes) { // last frame in sample
1073     framesamples = SamplesInLastFrame;
1074     if (mode_l == 4 && (framesamples & 1)) {
1075     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1076     }
1077     else {
1078     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1079     }
1080 schoenebeck 2 }
1081     }
1082 persson 365 else {
1083     framebytes = bytesPerFrame[mode_l] + 1;
1084     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1085     if (remainingbytes < framebytes) {
1086     framesamples = SamplesInLastFrame;
1087     }
1088     }
1089 schoenebeck 2
1090     // determine how many samples in this frame to skip and read
1091 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1092     if (currentframeoffset <= framesamples) {
1093     copysamples = framesamples - currentframeoffset;
1094     skipsamples = currentframeoffset;
1095     }
1096     else {
1097     copysamples = 0;
1098     skipsamples = framesamples;
1099     }
1100 schoenebeck 2 }
1101     else {
1102 persson 365 // This frame has enough data for pBuffer, but not
1103     // all of the frame is needed. Set file position
1104     // to start of this frame for next call to Read.
1105 schoenebeck 2 copysamples = remainingsamples;
1106 persson 365 skipsamples = currentframeoffset;
1107     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1108     this->FrameOffset = currentframeoffset + copysamples;
1109     }
1110     remainingsamples -= copysamples;
1111    
1112     if (remainingbytes > framebytes) {
1113     remainingbytes -= framebytes;
1114     if (remainingsamples == 0 &&
1115     currentframeoffset + copysamples == framesamples) {
1116     // This frame has enough data for pBuffer, and
1117     // all of the frame is needed. Set file
1118     // position to start of next frame for next
1119     // call to Read. FrameOffset is 0.
1120 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1121     }
1122     }
1123 persson 365 else remainingbytes = 0;
1124 schoenebeck 2
1125 persson 365 currentframeoffset -= skipsamples;
1126 schoenebeck 2
1127 persson 365 if (copysamples == 0) {
1128     // skip this frame
1129     pSrc += framebytes - Channels;
1130     }
1131     else {
1132     const unsigned char* const param_l = pSrc;
1133     if (BitDepth == 24) {
1134     if (mode_l != 2) pSrc += 12;
1135 schoenebeck 2
1136 persson 365 if (Channels == 2) { // Stereo
1137     const unsigned char* const param_r = pSrc;
1138     if (mode_r != 2) pSrc += 12;
1139    
1140 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1141 persson 437 skipsamples, copysamples, TruncatedBits);
1142 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1143 persson 437 skipsamples, copysamples, TruncatedBits);
1144 persson 902 pDst24 += copysamples * 6;
1145 schoenebeck 2 }
1146 persson 365 else { // Mono
1147 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1148 persson 437 skipsamples, copysamples, TruncatedBits);
1149 persson 902 pDst24 += copysamples * 3;
1150 schoenebeck 2 }
1151 persson 365 }
1152     else { // 16 bit
1153     if (mode_l) pSrc += 4;
1154 schoenebeck 2
1155 persson 365 int step;
1156     if (Channels == 2) { // Stereo
1157     const unsigned char* const param_r = pSrc;
1158     if (mode_r) pSrc += 4;
1159    
1160     step = (2 - mode_l) + (2 - mode_r);
1161 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1162     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1163 persson 365 skipsamples, copysamples);
1164     pDst += copysamples << 1;
1165 schoenebeck 2 }
1166 persson 365 else { // Mono
1167     step = 2 - mode_l;
1168 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1169 persson 365 pDst += copysamples;
1170 schoenebeck 2 }
1171 persson 365 }
1172     pSrc += nextFrameOffset;
1173     }
1174 schoenebeck 2
1175 persson 365 // reload from disk to local buffer if needed
1176     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1177     assumedsize = GuessSize(remainingsamples);
1178     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1179     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1180 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1181     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1182 schoenebeck 2 }
1183 persson 365 } // while
1184    
1185 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1186 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1187 schoenebeck 2 return (SampleCount - remainingsamples);
1188     }
1189     }
1190    
1191 schoenebeck 809 /** @brief Write sample wave data.
1192     *
1193     * Writes \a SampleCount number of sample points from the buffer pointed
1194     * by \a pBuffer and increments the position within the sample. Use this
1195     * method to directly write the sample data to disk, i.e. if you don't
1196     * want or cannot load the whole sample data into RAM.
1197     *
1198     * You have to Resize() the sample to the desired size and call
1199     * File::Save() <b>before</b> using Write().
1200     *
1201     * Note: there is currently no support for writing compressed samples.
1202     *
1203 persson 1264 * For 16 bit samples, the data in the source buffer should be
1204     * int16_t (using native endianness). For 24 bit, the buffer
1205     * should contain three bytes per sample, little-endian.
1206     *
1207 schoenebeck 809 * @param pBuffer - source buffer
1208     * @param SampleCount - number of sample points to write
1209     * @throws DLS::Exception if current sample size is too small
1210     * @throws gig::Exception if sample is compressed
1211     * @see DLS::LoadSampleData()
1212     */
1213     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1214     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1215 persson 1207
1216     // if this is the first write in this sample, reset the
1217     // checksum calculator
1218 persson 1199 if (pCkData->GetPos() == 0) {
1219 schoenebeck 1381 __resetCRC(crc);
1220 persson 1199 }
1221 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1222     unsigned long res;
1223     if (BitDepth == 24) {
1224     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1225     } else { // 16 bit
1226     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1227     : pCkData->Write(pBuffer, SampleCount, 2);
1228     }
1229 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1230 persson 1199
1231 persson 1207 // if this is the last write, update the checksum chunk in the
1232     // file
1233 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1234     File* pFile = static_cast<File*>(GetParent());
1235 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1236 persson 1199 }
1237     return res;
1238 schoenebeck 809 }
1239    
1240 schoenebeck 384 /**
1241     * Allocates a decompression buffer for streaming (compressed) samples
1242     * with Sample::Read(). If you are using more than one streaming thread
1243     * in your application you <b>HAVE</b> to create a decompression buffer
1244     * for <b>EACH</b> of your streaming threads and provide it with the
1245     * Sample::Read() call in order to avoid race conditions and crashes.
1246     *
1247     * You should free the memory occupied by the allocated buffer(s) once
1248     * you don't need one of your streaming threads anymore by calling
1249     * DestroyDecompressionBuffer().
1250     *
1251     * @param MaxReadSize - the maximum size (in sample points) you ever
1252     * expect to read with one Read() call
1253     * @returns allocated decompression buffer
1254     * @see DestroyDecompressionBuffer()
1255     */
1256     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1257     buffer_t result;
1258     const double worstCaseHeaderOverhead =
1259     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1260     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1261     result.pStart = new int8_t[result.Size];
1262     result.NullExtensionSize = 0;
1263     return result;
1264     }
1265    
1266     /**
1267     * Free decompression buffer, previously created with
1268     * CreateDecompressionBuffer().
1269     *
1270     * @param DecompressionBuffer - previously allocated decompression
1271     * buffer to free
1272     */
1273     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1274     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1275     delete[] (int8_t*) DecompressionBuffer.pStart;
1276     DecompressionBuffer.pStart = NULL;
1277     DecompressionBuffer.Size = 0;
1278     DecompressionBuffer.NullExtensionSize = 0;
1279     }
1280     }
1281    
1282 schoenebeck 930 /**
1283     * Returns pointer to the Group this Sample belongs to. In the .gig
1284     * format a sample always belongs to one group. If it wasn't explicitly
1285     * assigned to a certain group, it will be automatically assigned to a
1286     * default group.
1287     *
1288     * @returns Sample's Group (never NULL)
1289     */
1290     Group* Sample::GetGroup() const {
1291     return pGroup;
1292     }
1293    
1294 schoenebeck 2 Sample::~Sample() {
1295     Instances--;
1296 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1297     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1298     InternalDecompressionBuffer.pStart = NULL;
1299     InternalDecompressionBuffer.Size = 0;
1300 schoenebeck 355 }
1301 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1302     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1303     }
1304    
1305    
1306    
1307     // *************** DimensionRegion ***************
1308     // *
1309    
1310 schoenebeck 16 uint DimensionRegion::Instances = 0;
1311     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1312    
1313 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1314 schoenebeck 16 Instances++;
1315    
1316 schoenebeck 823 pSample = NULL;
1317 schoenebeck 1316 pRegion = pParent;
1318 schoenebeck 823
1319 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1320     else memset(&Crossfade, 0, 4);
1321    
1322 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1323 schoenebeck 2
1324     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1325 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1326 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1327 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1328     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329     _3ewa->ReadInt16(); // unknown
1330     LFO1InternalDepth = _3ewa->ReadUint16();
1331     _3ewa->ReadInt16(); // unknown
1332     LFO3InternalDepth = _3ewa->ReadInt16();
1333     _3ewa->ReadInt16(); // unknown
1334     LFO1ControlDepth = _3ewa->ReadUint16();
1335     _3ewa->ReadInt16(); // unknown
1336     LFO3ControlDepth = _3ewa->ReadInt16();
1337     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1338     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     _3ewa->ReadInt16(); // unknown
1340     EG1Sustain = _3ewa->ReadUint16();
1341     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1342     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1343     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1344     EG1ControllerInvert = eg1ctrloptions & 0x01;
1345     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1346     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1347     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1348     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1349     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1350     EG2ControllerInvert = eg2ctrloptions & 0x01;
1351     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1352     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1353     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1354     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1355     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     _3ewa->ReadInt16(); // unknown
1358     EG2Sustain = _3ewa->ReadUint16();
1359     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360     _3ewa->ReadInt16(); // unknown
1361     LFO2ControlDepth = _3ewa->ReadUint16();
1362     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1363     _3ewa->ReadInt16(); // unknown
1364     LFO2InternalDepth = _3ewa->ReadUint16();
1365     int32_t eg1decay2 = _3ewa->ReadInt32();
1366     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1367     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1368     _3ewa->ReadInt16(); // unknown
1369     EG1PreAttack = _3ewa->ReadUint16();
1370     int32_t eg2decay2 = _3ewa->ReadInt32();
1371     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1372     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1373     _3ewa->ReadInt16(); // unknown
1374     EG2PreAttack = _3ewa->ReadUint16();
1375     uint8_t velocityresponse = _3ewa->ReadUint8();
1376     if (velocityresponse < 5) {
1377     VelocityResponseCurve = curve_type_nonlinear;
1378     VelocityResponseDepth = velocityresponse;
1379     } else if (velocityresponse < 10) {
1380     VelocityResponseCurve = curve_type_linear;
1381     VelocityResponseDepth = velocityresponse - 5;
1382     } else if (velocityresponse < 15) {
1383     VelocityResponseCurve = curve_type_special;
1384     VelocityResponseDepth = velocityresponse - 10;
1385     } else {
1386     VelocityResponseCurve = curve_type_unknown;
1387     VelocityResponseDepth = 0;
1388     }
1389     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1390     if (releasevelocityresponse < 5) {
1391     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1392     ReleaseVelocityResponseDepth = releasevelocityresponse;
1393     } else if (releasevelocityresponse < 10) {
1394     ReleaseVelocityResponseCurve = curve_type_linear;
1395     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1396     } else if (releasevelocityresponse < 15) {
1397     ReleaseVelocityResponseCurve = curve_type_special;
1398     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1399     } else {
1400     ReleaseVelocityResponseCurve = curve_type_unknown;
1401     ReleaseVelocityResponseDepth = 0;
1402     }
1403     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1404     AttenuationControllerThreshold = _3ewa->ReadInt8();
1405     _3ewa->ReadInt32(); // unknown
1406     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1407     _3ewa->ReadInt16(); // unknown
1408     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1409     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1410     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1411     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1412     else DimensionBypass = dim_bypass_ctrl_none;
1413     uint8_t pan = _3ewa->ReadUint8();
1414     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1415     SelfMask = _3ewa->ReadInt8() & 0x01;
1416     _3ewa->ReadInt8(); // unknown
1417     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1418     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1419     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1420     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1421     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1422     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1423     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1424     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1425     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1426     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1427     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1428     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1429     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1430     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1431     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1432     : vcf_res_ctrl_none;
1433     uint16_t eg3depth = _3ewa->ReadUint16();
1434     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1435     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1436     _3ewa->ReadInt16(); // unknown
1437     ChannelOffset = _3ewa->ReadUint8() / 4;
1438     uint8_t regoptions = _3ewa->ReadUint8();
1439     MSDecode = regoptions & 0x01; // bit 0
1440     SustainDefeat = regoptions & 0x02; // bit 1
1441     _3ewa->ReadInt16(); // unknown
1442     VelocityUpperLimit = _3ewa->ReadInt8();
1443     _3ewa->ReadInt8(); // unknown
1444     _3ewa->ReadInt16(); // unknown
1445     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1446     _3ewa->ReadInt8(); // unknown
1447     _3ewa->ReadInt8(); // unknown
1448     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1449     uint8_t vcfcutoff = _3ewa->ReadUint8();
1450     VCFEnabled = vcfcutoff & 0x80; // bit 7
1451     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1452     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1453     uint8_t vcfvelscale = _3ewa->ReadUint8();
1454     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1455     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1456     _3ewa->ReadInt8(); // unknown
1457     uint8_t vcfresonance = _3ewa->ReadUint8();
1458     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1459     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1460     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1461     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1462     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1463     uint8_t vcfvelocity = _3ewa->ReadUint8();
1464     VCFVelocityDynamicRange = vcfvelocity % 5;
1465     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1466     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1467     if (VCFType == vcf_type_lowpass) {
1468     if (lfo3ctrl & 0x40) // bit 6
1469     VCFType = vcf_type_lowpassturbo;
1470     }
1471 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1472     _3ewa->Read(DimensionUpperLimits, 1, 8);
1473     } else {
1474     memset(DimensionUpperLimits, 0, 8);
1475     }
1476 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1477     // use default values
1478     LFO3Frequency = 1.0;
1479     EG3Attack = 0.0;
1480     LFO1InternalDepth = 0;
1481     LFO3InternalDepth = 0;
1482     LFO1ControlDepth = 0;
1483     LFO3ControlDepth = 0;
1484     EG1Attack = 0.0;
1485 persson 1218 EG1Decay1 = 0.005;
1486     EG1Sustain = 1000;
1487     EG1Release = 0.3;
1488 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1489     EG1Controller.controller_number = 0;
1490     EG1ControllerInvert = false;
1491     EG1ControllerAttackInfluence = 0;
1492     EG1ControllerDecayInfluence = 0;
1493     EG1ControllerReleaseInfluence = 0;
1494     EG2Controller.type = eg2_ctrl_t::type_none;
1495     EG2Controller.controller_number = 0;
1496     EG2ControllerInvert = false;
1497     EG2ControllerAttackInfluence = 0;
1498     EG2ControllerDecayInfluence = 0;
1499     EG2ControllerReleaseInfluence = 0;
1500     LFO1Frequency = 1.0;
1501     EG2Attack = 0.0;
1502 persson 1218 EG2Decay1 = 0.005;
1503     EG2Sustain = 1000;
1504     EG2Release = 0.3;
1505 schoenebeck 809 LFO2ControlDepth = 0;
1506     LFO2Frequency = 1.0;
1507     LFO2InternalDepth = 0;
1508     EG1Decay2 = 0.0;
1509 persson 1218 EG1InfiniteSustain = true;
1510     EG1PreAttack = 0;
1511 schoenebeck 809 EG2Decay2 = 0.0;
1512 persson 1218 EG2InfiniteSustain = true;
1513     EG2PreAttack = 0;
1514 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1515     VelocityResponseDepth = 3;
1516     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1517     ReleaseVelocityResponseDepth = 3;
1518     VelocityResponseCurveScaling = 32;
1519     AttenuationControllerThreshold = 0;
1520     SampleStartOffset = 0;
1521     PitchTrack = true;
1522     DimensionBypass = dim_bypass_ctrl_none;
1523     Pan = 0;
1524     SelfMask = true;
1525     LFO3Controller = lfo3_ctrl_modwheel;
1526     LFO3Sync = false;
1527     InvertAttenuationController = false;
1528     AttenuationController.type = attenuation_ctrl_t::type_none;
1529     AttenuationController.controller_number = 0;
1530     LFO2Controller = lfo2_ctrl_internal;
1531     LFO2FlipPhase = false;
1532     LFO2Sync = false;
1533     LFO1Controller = lfo1_ctrl_internal;
1534     LFO1FlipPhase = false;
1535     LFO1Sync = false;
1536     VCFResonanceController = vcf_res_ctrl_none;
1537     EG3Depth = 0;
1538     ChannelOffset = 0;
1539     MSDecode = false;
1540     SustainDefeat = false;
1541     VelocityUpperLimit = 0;
1542     ReleaseTriggerDecay = 0;
1543     EG1Hold = false;
1544     VCFEnabled = false;
1545     VCFCutoff = 0;
1546     VCFCutoffController = vcf_cutoff_ctrl_none;
1547     VCFCutoffControllerInvert = false;
1548     VCFVelocityScale = 0;
1549     VCFResonance = 0;
1550     VCFResonanceDynamic = false;
1551     VCFKeyboardTracking = false;
1552     VCFKeyboardTrackingBreakpoint = 0;
1553     VCFVelocityDynamicRange = 0x04;
1554     VCFVelocityCurve = curve_type_linear;
1555     VCFType = vcf_type_lowpass;
1556 persson 1247 memset(DimensionUpperLimits, 127, 8);
1557 schoenebeck 2 }
1558 schoenebeck 16
1559 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1560     VelocityResponseDepth,
1561     VelocityResponseCurveScaling);
1562    
1563 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1564     ReleaseVelocityResponseCurve,
1565     ReleaseVelocityResponseDepth
1566     );
1567 persson 613
1568 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1569     VCFVelocityDynamicRange,
1570     VCFVelocityScale,
1571     VCFCutoffController);
1572 persson 613
1573     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1574 persson 858 VelocityTable = 0;
1575 persson 613 }
1576    
1577 persson 1301 /*
1578     * Constructs a DimensionRegion by copying all parameters from
1579     * another DimensionRegion
1580     */
1581     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1582     Instances++;
1583     *this = src; // default memberwise shallow copy of all parameters
1584     pParentList = _3ewl; // restore the chunk pointer
1585    
1586     // deep copy of owned structures
1587     if (src.VelocityTable) {
1588     VelocityTable = new uint8_t[128];
1589     for (int k = 0 ; k < 128 ; k++)
1590     VelocityTable[k] = src.VelocityTable[k];
1591     }
1592     if (src.pSampleLoops) {
1593     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1594     for (int k = 0 ; k < src.SampleLoops ; k++)
1595     pSampleLoops[k] = src.pSampleLoops[k];
1596     }
1597     }
1598    
1599 schoenebeck 809 /**
1600 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1601     * which depends on this value.
1602     */
1603     void DimensionRegion::SetGain(int32_t gain) {
1604     DLS::Sampler::SetGain(gain);
1605     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1606     }
1607    
1608     /**
1609 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1610     * have to call File::Save() to make changes persistent.
1611     *
1612     * Usually there is absolutely no need to call this method explicitly.
1613     * It will be called automatically when File::Save() was called.
1614     */
1615     void DimensionRegion::UpdateChunks() {
1616     // first update base class's chunk
1617     DLS::Sampler::UpdateChunks();
1618    
1619 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1620     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1621     pData[12] = Crossfade.in_start;
1622     pData[13] = Crossfade.in_end;
1623     pData[14] = Crossfade.out_start;
1624     pData[15] = Crossfade.out_end;
1625    
1626 schoenebeck 809 // make sure '3ewa' chunk exists
1627     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1628 persson 1317 if (!_3ewa) {
1629     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1630     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1631     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1632 persson 1264 }
1633 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1634 schoenebeck 809
1635     // update '3ewa' chunk with DimensionRegion's current settings
1636    
1637 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1638 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1639 schoenebeck 809
1640     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1641 persson 1179 store32(&pData[4], lfo3freq);
1642 schoenebeck 809
1643     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1644 persson 1179 store32(&pData[8], eg3attack);
1645 schoenebeck 809
1646     // next 2 bytes unknown
1647    
1648 persson 1179 store16(&pData[14], LFO1InternalDepth);
1649 schoenebeck 809
1650     // next 2 bytes unknown
1651    
1652 persson 1179 store16(&pData[18], LFO3InternalDepth);
1653 schoenebeck 809
1654     // next 2 bytes unknown
1655    
1656 persson 1179 store16(&pData[22], LFO1ControlDepth);
1657 schoenebeck 809
1658     // next 2 bytes unknown
1659    
1660 persson 1179 store16(&pData[26], LFO3ControlDepth);
1661 schoenebeck 809
1662     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1663 persson 1179 store32(&pData[28], eg1attack);
1664 schoenebeck 809
1665     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1666 persson 1179 store32(&pData[32], eg1decay1);
1667 schoenebeck 809
1668     // next 2 bytes unknown
1669    
1670 persson 1179 store16(&pData[38], EG1Sustain);
1671 schoenebeck 809
1672     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1673 persson 1179 store32(&pData[40], eg1release);
1674 schoenebeck 809
1675     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1676 persson 1179 pData[44] = eg1ctl;
1677 schoenebeck 809
1678     const uint8_t eg1ctrloptions =
1679 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1680 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1681     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1682     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1683 persson 1179 pData[45] = eg1ctrloptions;
1684 schoenebeck 809
1685     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1686 persson 1179 pData[46] = eg2ctl;
1687 schoenebeck 809
1688     const uint8_t eg2ctrloptions =
1689 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1690 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1691     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1692     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1693 persson 1179 pData[47] = eg2ctrloptions;
1694 schoenebeck 809
1695     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1696 persson 1179 store32(&pData[48], lfo1freq);
1697 schoenebeck 809
1698     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1699 persson 1179 store32(&pData[52], eg2attack);
1700 schoenebeck 809
1701     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1702 persson 1179 store32(&pData[56], eg2decay1);
1703 schoenebeck 809
1704     // next 2 bytes unknown
1705    
1706 persson 1179 store16(&pData[62], EG2Sustain);
1707 schoenebeck 809
1708     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1709 persson 1179 store32(&pData[64], eg2release);
1710 schoenebeck 809
1711     // next 2 bytes unknown
1712    
1713 persson 1179 store16(&pData[70], LFO2ControlDepth);
1714 schoenebeck 809
1715     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1716 persson 1179 store32(&pData[72], lfo2freq);
1717 schoenebeck 809
1718     // next 2 bytes unknown
1719    
1720 persson 1179 store16(&pData[78], LFO2InternalDepth);
1721 schoenebeck 809
1722     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1723 persson 1179 store32(&pData[80], eg1decay2);
1724 schoenebeck 809
1725     // next 2 bytes unknown
1726    
1727 persson 1179 store16(&pData[86], EG1PreAttack);
1728 schoenebeck 809
1729     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1730 persson 1179 store32(&pData[88], eg2decay2);
1731 schoenebeck 809
1732     // next 2 bytes unknown
1733    
1734 persson 1179 store16(&pData[94], EG2PreAttack);
1735 schoenebeck 809
1736     {
1737     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1738     uint8_t velocityresponse = VelocityResponseDepth;
1739     switch (VelocityResponseCurve) {
1740     case curve_type_nonlinear:
1741     break;
1742     case curve_type_linear:
1743     velocityresponse += 5;
1744     break;
1745     case curve_type_special:
1746     velocityresponse += 10;
1747     break;
1748     case curve_type_unknown:
1749     default:
1750     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1751     }
1752 persson 1179 pData[96] = velocityresponse;
1753 schoenebeck 809 }
1754    
1755     {
1756     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1757     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1758     switch (ReleaseVelocityResponseCurve) {
1759     case curve_type_nonlinear:
1760     break;
1761     case curve_type_linear:
1762     releasevelocityresponse += 5;
1763     break;
1764     case curve_type_special:
1765     releasevelocityresponse += 10;
1766     break;
1767     case curve_type_unknown:
1768     default:
1769     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1770     }
1771 persson 1179 pData[97] = releasevelocityresponse;
1772 schoenebeck 809 }
1773    
1774 persson 1179 pData[98] = VelocityResponseCurveScaling;
1775 schoenebeck 809
1776 persson 1179 pData[99] = AttenuationControllerThreshold;
1777 schoenebeck 809
1778     // next 4 bytes unknown
1779    
1780 persson 1179 store16(&pData[104], SampleStartOffset);
1781 schoenebeck 809
1782     // next 2 bytes unknown
1783    
1784     {
1785     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1786     switch (DimensionBypass) {
1787     case dim_bypass_ctrl_94:
1788     pitchTrackDimensionBypass |= 0x10;
1789     break;
1790     case dim_bypass_ctrl_95:
1791     pitchTrackDimensionBypass |= 0x20;
1792     break;
1793     case dim_bypass_ctrl_none:
1794     //FIXME: should we set anything here?
1795     break;
1796     default:
1797     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1798     }
1799 persson 1179 pData[108] = pitchTrackDimensionBypass;
1800 schoenebeck 809 }
1801    
1802     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1803 persson 1179 pData[109] = pan;
1804 schoenebeck 809
1805     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1806 persson 1179 pData[110] = selfmask;
1807 schoenebeck 809
1808     // next byte unknown
1809    
1810     {
1811     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1812     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1813     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1814     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1815 persson 1179 pData[112] = lfo3ctrl;
1816 schoenebeck 809 }
1817    
1818     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1819 persson 1179 pData[113] = attenctl;
1820 schoenebeck 809
1821     {
1822     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1823     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1824     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1825     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1826 persson 1179 pData[114] = lfo2ctrl;
1827 schoenebeck 809 }
1828    
1829     {
1830     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1831     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1832     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1833     if (VCFResonanceController != vcf_res_ctrl_none)
1834     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1835 persson 1179 pData[115] = lfo1ctrl;
1836 schoenebeck 809 }
1837    
1838     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1839     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1840 persson 1179 pData[116] = eg3depth;
1841 schoenebeck 809
1842     // next 2 bytes unknown
1843    
1844     const uint8_t channeloffset = ChannelOffset * 4;
1845 persson 1179 pData[120] = channeloffset;
1846 schoenebeck 809
1847     {
1848     uint8_t regoptions = 0;
1849     if (MSDecode) regoptions |= 0x01; // bit 0
1850     if (SustainDefeat) regoptions |= 0x02; // bit 1
1851 persson 1179 pData[121] = regoptions;
1852 schoenebeck 809 }
1853    
1854     // next 2 bytes unknown
1855    
1856 persson 1179 pData[124] = VelocityUpperLimit;
1857 schoenebeck 809
1858     // next 3 bytes unknown
1859    
1860 persson 1179 pData[128] = ReleaseTriggerDecay;
1861 schoenebeck 809
1862     // next 2 bytes unknown
1863    
1864     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1865 persson 1179 pData[131] = eg1hold;
1866 schoenebeck 809
1867 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1868 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1869 persson 1179 pData[132] = vcfcutoff;
1870 schoenebeck 809
1871 persson 1179 pData[133] = VCFCutoffController;
1872 schoenebeck 809
1873 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1874 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1875 persson 1179 pData[134] = vcfvelscale;
1876 schoenebeck 809
1877     // next byte unknown
1878    
1879 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1880 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1881 persson 1179 pData[136] = vcfresonance;
1882 schoenebeck 809
1883 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1884 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1885 persson 1179 pData[137] = vcfbreakpoint;
1886 schoenebeck 809
1887     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1888     VCFVelocityCurve * 5;
1889 persson 1179 pData[138] = vcfvelocity;
1890 schoenebeck 809
1891     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1892 persson 1179 pData[139] = vcftype;
1893 persson 1070
1894     if (chunksize >= 148) {
1895     memcpy(&pData[140], DimensionUpperLimits, 8);
1896     }
1897 schoenebeck 809 }
1898    
1899 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1900     curve_type_t curveType = releaseVelocityResponseCurve;
1901     uint8_t depth = releaseVelocityResponseDepth;
1902     // this models a strange behaviour or bug in GSt: two of the
1903     // velocity response curves for release time are not used even
1904     // if specified, instead another curve is chosen.
1905     if ((curveType == curve_type_nonlinear && depth == 0) ||
1906     (curveType == curve_type_special && depth == 4)) {
1907     curveType = curve_type_nonlinear;
1908     depth = 3;
1909     }
1910     return GetVelocityTable(curveType, depth, 0);
1911     }
1912    
1913     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1914     uint8_t vcfVelocityDynamicRange,
1915     uint8_t vcfVelocityScale,
1916     vcf_cutoff_ctrl_t vcfCutoffController)
1917     {
1918     curve_type_t curveType = vcfVelocityCurve;
1919     uint8_t depth = vcfVelocityDynamicRange;
1920     // even stranger GSt: two of the velocity response curves for
1921     // filter cutoff are not used, instead another special curve
1922     // is chosen. This curve is not used anywhere else.
1923     if ((curveType == curve_type_nonlinear && depth == 0) ||
1924     (curveType == curve_type_special && depth == 4)) {
1925     curveType = curve_type_special;
1926     depth = 5;
1927     }
1928     return GetVelocityTable(curveType, depth,
1929     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1930     ? vcfVelocityScale : 0);
1931     }
1932    
1933 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1934     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1935     {
1936     double* table;
1937     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1938 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1939 persson 613 table = (*pVelocityTables)[tableKey];
1940 schoenebeck 16 }
1941     else {
1942 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1943     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1944 schoenebeck 16 }
1945 persson 613 return table;
1946 schoenebeck 2 }
1947 schoenebeck 55
1948 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1949     return pRegion;
1950     }
1951    
1952 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1953     leverage_ctrl_t decodedcontroller;
1954     switch (EncodedController) {
1955     // special controller
1956     case _lev_ctrl_none:
1957     decodedcontroller.type = leverage_ctrl_t::type_none;
1958     decodedcontroller.controller_number = 0;
1959     break;
1960     case _lev_ctrl_velocity:
1961     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1962     decodedcontroller.controller_number = 0;
1963     break;
1964     case _lev_ctrl_channelaftertouch:
1965     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1966     decodedcontroller.controller_number = 0;
1967     break;
1968 schoenebeck 55
1969 schoenebeck 36 // ordinary MIDI control change controller
1970     case _lev_ctrl_modwheel:
1971     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1972     decodedcontroller.controller_number = 1;
1973     break;
1974     case _lev_ctrl_breath:
1975     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1976     decodedcontroller.controller_number = 2;
1977     break;
1978     case _lev_ctrl_foot:
1979     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1980     decodedcontroller.controller_number = 4;
1981     break;
1982     case _lev_ctrl_effect1:
1983     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1984     decodedcontroller.controller_number = 12;
1985     break;
1986     case _lev_ctrl_effect2:
1987     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1988     decodedcontroller.controller_number = 13;
1989     break;
1990     case _lev_ctrl_genpurpose1:
1991     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1992     decodedcontroller.controller_number = 16;
1993     break;
1994     case _lev_ctrl_genpurpose2:
1995     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1996     decodedcontroller.controller_number = 17;
1997     break;
1998     case _lev_ctrl_genpurpose3:
1999     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2000     decodedcontroller.controller_number = 18;
2001     break;
2002     case _lev_ctrl_genpurpose4:
2003     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2004     decodedcontroller.controller_number = 19;
2005     break;
2006     case _lev_ctrl_portamentotime:
2007     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2008     decodedcontroller.controller_number = 5;
2009     break;
2010     case _lev_ctrl_sustainpedal:
2011     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2012     decodedcontroller.controller_number = 64;
2013     break;
2014     case _lev_ctrl_portamento:
2015     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2016     decodedcontroller.controller_number = 65;
2017     break;
2018     case _lev_ctrl_sostenutopedal:
2019     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2020     decodedcontroller.controller_number = 66;
2021     break;
2022     case _lev_ctrl_softpedal:
2023     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2024     decodedcontroller.controller_number = 67;
2025     break;
2026     case _lev_ctrl_genpurpose5:
2027     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2028     decodedcontroller.controller_number = 80;
2029     break;
2030     case _lev_ctrl_genpurpose6:
2031     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2032     decodedcontroller.controller_number = 81;
2033     break;
2034     case _lev_ctrl_genpurpose7:
2035     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2036     decodedcontroller.controller_number = 82;
2037     break;
2038     case _lev_ctrl_genpurpose8:
2039     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2040     decodedcontroller.controller_number = 83;
2041     break;
2042     case _lev_ctrl_effect1depth:
2043     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2044     decodedcontroller.controller_number = 91;
2045     break;
2046     case _lev_ctrl_effect2depth:
2047     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2048     decodedcontroller.controller_number = 92;
2049     break;
2050     case _lev_ctrl_effect3depth:
2051     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2052     decodedcontroller.controller_number = 93;
2053     break;
2054     case _lev_ctrl_effect4depth:
2055     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2056     decodedcontroller.controller_number = 94;
2057     break;
2058     case _lev_ctrl_effect5depth:
2059     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2060     decodedcontroller.controller_number = 95;
2061     break;
2062 schoenebeck 55
2063 schoenebeck 36 // unknown controller type
2064     default:
2065     throw gig::Exception("Unknown leverage controller type.");
2066     }
2067     return decodedcontroller;
2068     }
2069 schoenebeck 2
2070 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2071     _lev_ctrl_t encodedcontroller;
2072     switch (DecodedController.type) {
2073     // special controller
2074     case leverage_ctrl_t::type_none:
2075     encodedcontroller = _lev_ctrl_none;
2076     break;
2077     case leverage_ctrl_t::type_velocity:
2078     encodedcontroller = _lev_ctrl_velocity;
2079     break;
2080     case leverage_ctrl_t::type_channelaftertouch:
2081     encodedcontroller = _lev_ctrl_channelaftertouch;
2082     break;
2083    
2084     // ordinary MIDI control change controller
2085     case leverage_ctrl_t::type_controlchange:
2086     switch (DecodedController.controller_number) {
2087     case 1:
2088     encodedcontroller = _lev_ctrl_modwheel;
2089     break;
2090     case 2:
2091     encodedcontroller = _lev_ctrl_breath;
2092     break;
2093     case 4:
2094     encodedcontroller = _lev_ctrl_foot;
2095     break;
2096     case 12:
2097     encodedcontroller = _lev_ctrl_effect1;
2098     break;
2099     case 13:
2100     encodedcontroller = _lev_ctrl_effect2;
2101     break;
2102     case 16:
2103     encodedcontroller = _lev_ctrl_genpurpose1;
2104     break;
2105     case 17:
2106     encodedcontroller = _lev_ctrl_genpurpose2;
2107     break;
2108     case 18:
2109     encodedcontroller = _lev_ctrl_genpurpose3;
2110     break;
2111     case 19:
2112     encodedcontroller = _lev_ctrl_genpurpose4;
2113     break;
2114     case 5:
2115     encodedcontroller = _lev_ctrl_portamentotime;
2116     break;
2117     case 64:
2118     encodedcontroller = _lev_ctrl_sustainpedal;
2119     break;
2120     case 65:
2121     encodedcontroller = _lev_ctrl_portamento;
2122     break;
2123     case 66:
2124     encodedcontroller = _lev_ctrl_sostenutopedal;
2125     break;
2126     case 67:
2127     encodedcontroller = _lev_ctrl_softpedal;
2128     break;
2129     case 80:
2130     encodedcontroller = _lev_ctrl_genpurpose5;
2131     break;
2132     case 81:
2133     encodedcontroller = _lev_ctrl_genpurpose6;
2134     break;
2135     case 82:
2136     encodedcontroller = _lev_ctrl_genpurpose7;
2137     break;
2138     case 83:
2139     encodedcontroller = _lev_ctrl_genpurpose8;
2140     break;
2141     case 91:
2142     encodedcontroller = _lev_ctrl_effect1depth;
2143     break;
2144     case 92:
2145     encodedcontroller = _lev_ctrl_effect2depth;
2146     break;
2147     case 93:
2148     encodedcontroller = _lev_ctrl_effect3depth;
2149     break;
2150     case 94:
2151     encodedcontroller = _lev_ctrl_effect4depth;
2152     break;
2153     case 95:
2154     encodedcontroller = _lev_ctrl_effect5depth;
2155     break;
2156     default:
2157     throw gig::Exception("leverage controller number is not supported by the gig format");
2158     }
2159 persson 1182 break;
2160 schoenebeck 809 default:
2161     throw gig::Exception("Unknown leverage controller type.");
2162     }
2163     return encodedcontroller;
2164     }
2165    
2166 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2167     Instances--;
2168     if (!Instances) {
2169     // delete the velocity->volume tables
2170     VelocityTableMap::iterator iter;
2171     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2172     double* pTable = iter->second;
2173     if (pTable) delete[] pTable;
2174     }
2175     pVelocityTables->clear();
2176     delete pVelocityTables;
2177     pVelocityTables = NULL;
2178     }
2179 persson 858 if (VelocityTable) delete[] VelocityTable;
2180 schoenebeck 16 }
2181 schoenebeck 2
2182 schoenebeck 16 /**
2183     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2184     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2185     * and VelocityResponseCurveScaling) involved are taken into account to
2186     * calculate the amplitude factor. Use this method when a key was
2187     * triggered to get the volume with which the sample should be played
2188     * back.
2189     *
2190 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2191     * @returns amplitude factor (between 0.0 and 1.0)
2192 schoenebeck 16 */
2193     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2194     return pVelocityAttenuationTable[MIDIKeyVelocity];
2195     }
2196 schoenebeck 2
2197 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2198     return pVelocityReleaseTable[MIDIKeyVelocity];
2199     }
2200    
2201 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2202     return pVelocityCutoffTable[MIDIKeyVelocity];
2203     }
2204    
2205 schoenebeck 1358 /**
2206     * Updates the respective member variable and the lookup table / cache
2207     * that depends on this value.
2208     */
2209     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2210     pVelocityAttenuationTable =
2211     GetVelocityTable(
2212     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2213     );
2214     VelocityResponseCurve = curve;
2215     }
2216    
2217     /**
2218     * Updates the respective member variable and the lookup table / cache
2219     * that depends on this value.
2220     */
2221     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2222     pVelocityAttenuationTable =
2223     GetVelocityTable(
2224     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2225     );
2226     VelocityResponseDepth = depth;
2227     }
2228    
2229     /**
2230     * Updates the respective member variable and the lookup table / cache
2231     * that depends on this value.
2232     */
2233     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2234     pVelocityAttenuationTable =
2235     GetVelocityTable(
2236     VelocityResponseCurve, VelocityResponseDepth, scaling
2237     );
2238     VelocityResponseCurveScaling = scaling;
2239     }
2240    
2241     /**
2242     * Updates the respective member variable and the lookup table / cache
2243     * that depends on this value.
2244     */
2245     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2246     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2247     ReleaseVelocityResponseCurve = curve;
2248     }
2249    
2250     /**
2251     * Updates the respective member variable and the lookup table / cache
2252     * that depends on this value.
2253     */
2254     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2255     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2256     ReleaseVelocityResponseDepth = depth;
2257     }
2258    
2259     /**
2260     * Updates the respective member variable and the lookup table / cache
2261     * that depends on this value.
2262     */
2263     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2264     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2265     VCFCutoffController = controller;
2266     }
2267    
2268     /**
2269     * Updates the respective member variable and the lookup table / cache
2270     * that depends on this value.
2271     */
2272     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2273     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2274     VCFVelocityCurve = curve;
2275     }
2276    
2277     /**
2278     * Updates the respective member variable and the lookup table / cache
2279     * that depends on this value.
2280     */
2281     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2282     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2283     VCFVelocityDynamicRange = range;
2284     }
2285    
2286     /**
2287     * Updates the respective member variable and the lookup table / cache
2288     * that depends on this value.
2289     */
2290     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2291     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2292     VCFVelocityScale = scaling;
2293     }
2294    
2295 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2296 schoenebeck 317
2297 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2298 schoenebeck 16
2299 schoenebeck 308 // linear
2300     const int lin0[] = { 1, 1, 127, 127 };
2301     const int lin1[] = { 1, 21, 127, 127 };
2302     const int lin2[] = { 1, 45, 127, 127 };
2303     const int lin3[] = { 1, 74, 127, 127 };
2304     const int lin4[] = { 1, 127, 127, 127 };
2305 schoenebeck 16
2306 schoenebeck 308 // non-linear
2307     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2308 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2309 schoenebeck 308 127, 127 };
2310     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2311     127, 127 };
2312     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2313     127, 127 };
2314     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2315 schoenebeck 317
2316 schoenebeck 308 // special
2317 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2318 schoenebeck 308 113, 127, 127, 127 };
2319     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2320     118, 127, 127, 127 };
2321 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2322 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2323 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2324 schoenebeck 308 117, 127, 127, 127 };
2325 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2326 schoenebeck 308 127, 127 };
2327 schoenebeck 317
2328 persson 728 // this is only used by the VCF velocity curve
2329     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2330     91, 127, 127, 127 };
2331    
2332 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2333 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2334 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2335 schoenebeck 317
2336 schoenebeck 308 double* const table = new double[128];
2337    
2338     const int* curve = curves[curveType * 5 + depth];
2339     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2340 schoenebeck 317
2341 schoenebeck 308 table[0] = 0;
2342     for (int x = 1 ; x < 128 ; x++) {
2343    
2344     if (x > curve[2]) curve += 2;
2345 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2346 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2347     y = y / 127;
2348    
2349     // Scale up for s > 20, down for s < 20. When
2350     // down-scaling, the curve still ends at 1.0.
2351     if (s < 20 && y >= 0.5)
2352     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2353     else
2354     y = y * (s / 20.0);
2355     if (y > 1) y = 1;
2356    
2357     table[x] = y;
2358     }
2359     return table;
2360     }
2361    
2362    
2363 schoenebeck 2 // *************** Region ***************
2364     // *
2365    
2366     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2367     // Initialization
2368     Dimensions = 0;
2369 schoenebeck 347 for (int i = 0; i < 256; i++) {
2370 schoenebeck 2 pDimensionRegions[i] = NULL;
2371     }
2372 schoenebeck 282 Layers = 1;
2373 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2374     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2375 schoenebeck 2
2376     // Actual Loading
2377    
2378 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2379    
2380 schoenebeck 2 LoadDimensionRegions(rgnList);
2381    
2382     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2383     if (_3lnk) {
2384     DimensionRegions = _3lnk->ReadUint32();
2385 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2386 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2387     uint8_t bits = _3lnk->ReadUint8();
2388 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2389     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2390 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2391 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2392     pDimensionDefinitions[i].dimension = dimension_none;
2393     pDimensionDefinitions[i].bits = 0;
2394     pDimensionDefinitions[i].zones = 0;
2395     pDimensionDefinitions[i].split_type = split_type_bit;
2396     pDimensionDefinitions[i].zone_size = 0;
2397     }
2398     else { // active dimension
2399     pDimensionDefinitions[i].dimension = dimension;
2400     pDimensionDefinitions[i].bits = bits;
2401 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2402 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2403     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2404 schoenebeck 2 Dimensions++;
2405 schoenebeck 282
2406     // if this is a layer dimension, remember the amount of layers
2407     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2408 schoenebeck 2 }
2409 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2410 schoenebeck 2 }
2411 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2412 schoenebeck 2
2413 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2414     // update the VelocityTables in the dimension regions
2415     UpdateVelocityTable();
2416 schoenebeck 2
2417 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2418     if (file->pVersion && file->pVersion->major == 3)
2419     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2420     else
2421     _3lnk->SetPos(44);
2422    
2423 schoenebeck 1524 // load sample references (if auto loading is enabled)
2424     if (file->GetAutoLoad()) {
2425     for (uint i = 0; i < DimensionRegions; i++) {
2426     uint32_t wavepoolindex = _3lnk->ReadUint32();
2427     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2428     }
2429     GetSample(); // load global region sample reference
2430 schoenebeck 2 }
2431 persson 1102 } else {
2432     DimensionRegions = 0;
2433 persson 1182 for (int i = 0 ; i < 8 ; i++) {
2434     pDimensionDefinitions[i].dimension = dimension_none;
2435     pDimensionDefinitions[i].bits = 0;
2436     pDimensionDefinitions[i].zones = 0;
2437     }
2438 schoenebeck 2 }
2439 schoenebeck 823
2440     // make sure there is at least one dimension region
2441     if (!DimensionRegions) {
2442     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2443     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2444     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2445 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2446 schoenebeck 823 DimensionRegions = 1;
2447     }
2448 schoenebeck 2 }
2449    
2450 schoenebeck 809 /**
2451     * Apply Region settings and all its DimensionRegions to the respective
2452     * RIFF chunks. You have to call File::Save() to make changes persistent.
2453     *
2454     * Usually there is absolutely no need to call this method explicitly.
2455     * It will be called automatically when File::Save() was called.
2456     *
2457     * @throws gig::Exception if samples cannot be dereferenced
2458     */
2459     void Region::UpdateChunks() {
2460 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
2461     // but we still have to provide some existing one to not corrupt the
2462     // file, so to avoid the latter we simply always assign the sample of
2463     // the first dimension region of this region
2464     pSample = pDimensionRegions[0]->pSample;
2465    
2466 schoenebeck 809 // first update base class's chunks
2467     DLS::Region::UpdateChunks();
2468    
2469     // update dimension region's chunks
2470 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2471 persson 1317 pDimensionRegions[i]->UpdateChunks();
2472 schoenebeck 823 }
2473 schoenebeck 809
2474 persson 1317 File* pFile = (File*) GetParent()->GetParent();
2475     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2476 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
2477     const int iMaxDimensionRegions = version3 ? 256 : 32;
2478 schoenebeck 809
2479     // make sure '3lnk' chunk exists
2480     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2481     if (!_3lnk) {
2482 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
2483 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2484 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2485 persson 1192
2486     // move 3prg to last position
2487     pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2488 schoenebeck 809 }
2489    
2490     // update dimension definitions in '3lnk' chunk
2491     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2492 persson 1179 store32(&pData[0], DimensionRegions);
2493 persson 1199 int shift = 0;
2494 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2495 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2496     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2497 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2498 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2499 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2500 persson 1199 // next 3 bytes unknown, always zero?
2501    
2502     shift += pDimensionDefinitions[i].bits;
2503 schoenebeck 809 }
2504    
2505     // update wave pool table in '3lnk' chunk
2506 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
2507 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2508     int iWaveIndex = -1;
2509     if (i < DimensionRegions) {
2510 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2511     File::SampleList::iterator iter = pFile->pSamples->begin();
2512     File::SampleList::iterator end = pFile->pSamples->end();
2513 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2514 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2515     iWaveIndex = index;
2516     break;
2517     }
2518 schoenebeck 809 }
2519     }
2520 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2521 schoenebeck 809 }
2522     }
2523    
2524 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2525     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2526     if (_3prg) {
2527     int dimensionRegionNr = 0;
2528     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2529     while (_3ewl) {
2530     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2531 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2532 schoenebeck 2 dimensionRegionNr++;
2533     }
2534     _3ewl = _3prg->GetNextSubList();
2535     }
2536     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2537     }
2538     }
2539    
2540 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2541     // update KeyRange struct and make sure regions are in correct order
2542     DLS::Region::SetKeyRange(Low, High);
2543     // update Region key table for fast lookup
2544     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2545     }
2546    
2547 persson 858 void Region::UpdateVelocityTable() {
2548     // get velocity dimension's index
2549     int veldim = -1;
2550     for (int i = 0 ; i < Dimensions ; i++) {
2551     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2552     veldim = i;
2553 schoenebeck 809 break;
2554     }
2555     }
2556 persson 858 if (veldim == -1) return;
2557 schoenebeck 809
2558 persson 858 int step = 1;
2559     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2560     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2561     int end = step * pDimensionDefinitions[veldim].zones;
2562 schoenebeck 809
2563 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2564     int dim[8] = { 0 };
2565     for (int i = 0 ; i < DimensionRegions ; i++) {
2566    
2567 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2568     pDimensionRegions[i]->VelocityUpperLimit) {
2569 persson 858 // create the velocity table
2570     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2571     if (!table) {
2572     table = new uint8_t[128];
2573     pDimensionRegions[i]->VelocityTable = table;
2574     }
2575     int tableidx = 0;
2576     int velocityZone = 0;
2577 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2578     for (int k = i ; k < end ; k += step) {
2579     DimensionRegion *d = pDimensionRegions[k];
2580     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2581     velocityZone++;
2582     }
2583     } else { // gig2
2584     for (int k = i ; k < end ; k += step) {
2585     DimensionRegion *d = pDimensionRegions[k];
2586     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2587     velocityZone++;
2588     }
2589 persson 858 }
2590     } else {
2591     if (pDimensionRegions[i]->VelocityTable) {
2592     delete[] pDimensionRegions[i]->VelocityTable;
2593     pDimensionRegions[i]->VelocityTable = 0;
2594     }
2595 schoenebeck 809 }
2596 persson 858
2597     int j;
2598     int shift = 0;
2599     for (j = 0 ; j < Dimensions ; j++) {
2600     if (j == veldim) i += skipveldim; // skip velocity dimension
2601     else {
2602     dim[j]++;
2603     if (dim[j] < pDimensionDefinitions[j].zones) break;
2604     else {
2605     // skip unused dimension regions
2606     dim[j] = 0;
2607     i += ((1 << pDimensionDefinitions[j].bits) -
2608     pDimensionDefinitions[j].zones) << shift;
2609     }
2610     }
2611     shift += pDimensionDefinitions[j].bits;
2612     }
2613     if (j == Dimensions) break;
2614 schoenebeck 809 }
2615     }
2616    
2617     /** @brief Einstein would have dreamed of it - create a new dimension.
2618     *
2619     * Creates a new dimension with the dimension definition given by
2620     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2621     * There is a hard limit of dimensions and total amount of "bits" all
2622     * dimensions can have. This limit is dependant to what gig file format
2623     * version this file refers to. The gig v2 (and lower) format has a
2624     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2625     * format has a limit of 8.
2626     *
2627     * @param pDimDef - defintion of the new dimension
2628     * @throws gig::Exception if dimension of the same type exists already
2629     * @throws gig::Exception if amount of dimensions or total amount of
2630     * dimension bits limit is violated
2631     */
2632     void Region::AddDimension(dimension_def_t* pDimDef) {
2633     // check if max. amount of dimensions reached
2634     File* file = (File*) GetParent()->GetParent();
2635     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2636     if (Dimensions >= iMaxDimensions)
2637     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2638     // check if max. amount of dimension bits reached
2639     int iCurrentBits = 0;
2640     for (int i = 0; i < Dimensions; i++)
2641     iCurrentBits += pDimensionDefinitions[i].bits;
2642     if (iCurrentBits >= iMaxDimensions)
2643     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2644     const int iNewBits = iCurrentBits + pDimDef->bits;
2645     if (iNewBits > iMaxDimensions)
2646     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2647     // check if there's already a dimensions of the same type
2648     for (int i = 0; i < Dimensions; i++)
2649     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2650     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2651    
2652 persson 1301 // pos is where the new dimension should be placed, normally
2653     // last in list, except for the samplechannel dimension which
2654     // has to be first in list
2655     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2656     int bitpos = 0;
2657     for (int i = 0 ; i < pos ; i++)
2658     bitpos += pDimensionDefinitions[i].bits;
2659    
2660     // make room for the new dimension
2661     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2662     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2663     for (int j = Dimensions ; j > pos ; j--) {
2664     pDimensionRegions[i]->DimensionUpperLimits[j] =
2665     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2666     }
2667     }
2668    
2669 schoenebeck 809 // assign definition of new dimension
2670 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
2671 schoenebeck 809
2672 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
2673 persson 1301 pDimensionDefinitions[pos].split_type =
2674     __resolveSplitType(pDimensionDefinitions[pos].dimension);
2675     pDimensionDefinitions[pos].zone_size =
2676     __resolveZoneSize(pDimensionDefinitions[pos]);
2677 schoenebeck 1113
2678 persson 1301 // create new dimension region(s) for this new dimension, and make
2679     // sure that the dimension regions are placed correctly in both the
2680     // RIFF list and the pDimensionRegions array
2681     RIFF::Chunk* moveTo = NULL;
2682     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2683     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2684     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2685     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2686     }
2687     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2688     for (int k = 0 ; k < (1 << bitpos) ; k++) {
2689     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2690     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2691     // create a new dimension region and copy all parameter values from
2692     // an existing dimension region
2693     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2694     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2695 persson 1247
2696 persson 1301 DimensionRegions++;
2697     }
2698     }
2699     moveTo = pDimensionRegions[i]->pParentList;
2700 schoenebeck 809 }
2701    
2702 persson 1247 // initialize the upper limits for this dimension
2703 persson 1301 int mask = (1 << bitpos) - 1;
2704     for (int z = 0 ; z < pDimDef->zones ; z++) {
2705 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2706 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2707 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2708     (z << bitpos) |
2709     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2710 persson 1247 }
2711     }
2712    
2713 schoenebeck 809 Dimensions++;
2714    
2715     // if this is a layer dimension, update 'Layers' attribute
2716     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2717    
2718 persson 858 UpdateVelocityTable();
2719 schoenebeck 809 }
2720    
2721     /** @brief Delete an existing dimension.
2722     *
2723     * Deletes the dimension given by \a pDimDef and deletes all respective
2724     * dimension regions, that is all dimension regions where the dimension's
2725     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2726     * for example this would delete all dimension regions for the case(s)
2727     * where the sustain pedal is pressed down.
2728     *
2729     * @param pDimDef - dimension to delete
2730     * @throws gig::Exception if given dimension cannot be found
2731     */
2732     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2733     // get dimension's index
2734     int iDimensionNr = -1;
2735     for (int i = 0; i < Dimensions; i++) {
2736     if (&pDimensionDefinitions[i] == pDimDef) {
2737     iDimensionNr = i;
2738     break;
2739     }
2740     }
2741     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2742    
2743     // get amount of bits below the dimension to delete
2744     int iLowerBits = 0;
2745     for (int i = 0; i < iDimensionNr; i++)
2746     iLowerBits += pDimensionDefinitions[i].bits;
2747    
2748     // get amount ot bits above the dimension to delete
2749     int iUpperBits = 0;
2750     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2751     iUpperBits += pDimensionDefinitions[i].bits;
2752    
2753 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2754    
2755 schoenebeck 809 // delete dimension regions which belong to the given dimension
2756     // (that is where the dimension's bit > 0)
2757     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2758     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2759     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2760     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2761     iObsoleteBit << iLowerBits |
2762     iLowerBit;
2763 persson 1247
2764     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2765 schoenebeck 809 delete pDimensionRegions[iToDelete];
2766     pDimensionRegions[iToDelete] = NULL;
2767     DimensionRegions--;
2768     }
2769     }
2770     }
2771    
2772     // defrag pDimensionRegions array
2773     // (that is remove the NULL spaces within the pDimensionRegions array)
2774     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2775     if (!pDimensionRegions[iTo]) {
2776     if (iFrom <= iTo) iFrom = iTo + 1;
2777     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2778     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2779     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2780     pDimensionRegions[iFrom] = NULL;
2781     }
2782     }
2783     }
2784    
2785 persson 1247 // remove the this dimension from the upper limits arrays
2786     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2787     DimensionRegion* d = pDimensionRegions[j];
2788     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2789     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2790     }
2791     d->DimensionUpperLimits[Dimensions - 1] = 127;
2792     }
2793    
2794 schoenebeck 809 // 'remove' dimension definition
2795     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2796     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2797     }
2798     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2799     pDimensionDefinitions[Dimensions - 1].bits = 0;
2800     pDimensionDefinitions[Dimensions - 1].zones = 0;
2801    
2802     Dimensions--;
2803    
2804     // if this was a layer dimension, update 'Layers' attribute
2805     if (pDimDef->dimension == dimension_layer) Layers = 1;
2806     }
2807    
2808 schoenebeck 2 Region::~Region() {
2809 schoenebeck 350 for (int i = 0; i < 256; i++) {
2810 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2811     }
2812     }
2813    
2814     /**
2815     * Use this method in your audio engine to get the appropriate dimension
2816     * region with it's articulation data for the current situation. Just
2817     * call the method with the current MIDI controller values and you'll get
2818     * the DimensionRegion with the appropriate articulation data for the
2819     * current situation (for this Region of course only). To do that you'll
2820     * first have to look which dimensions with which controllers and in
2821     * which order are defined for this Region when you load the .gig file.
2822     * Special cases are e.g. layer or channel dimensions where you just put
2823     * in the index numbers instead of a MIDI controller value (means 0 for
2824     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2825     * etc.).
2826     *
2827 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2828 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2829     * @see pDimensionDefinitions
2830     * @see Dimensions
2831     */
2832 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2833 persson 858 uint8_t bits;
2834     int veldim = -1;
2835     int velbitpos;
2836     int bitpos = 0;
2837     int dimregidx = 0;
2838 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2839 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2840     // the velocity dimension must be handled after the other dimensions
2841     veldim = i;
2842     velbitpos = bitpos;
2843     } else {
2844     switch (pDimensionDefinitions[i].split_type) {
2845     case split_type_normal:
2846 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2847     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2848     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2849     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2850     }
2851     } else {
2852     // gig2: evenly sized zones
2853     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2854     }
2855 persson 858 break;
2856     case split_type_bit: // the value is already the sought dimension bit number
2857     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2858     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2859     break;
2860     }
2861     dimregidx |= bits << bitpos;
2862 schoenebeck 2 }
2863 persson 858 bitpos += pDimensionDefinitions[i].bits;
2864 schoenebeck 2 }
2865 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2866     if (veldim != -1) {
2867     // (dimreg is now the dimension region for the lowest velocity)
2868 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
2869 persson 858 bits = dimreg->VelocityTable[DimValues[veldim]];
2870     else // normal split type
2871     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2872    
2873     dimregidx |= bits << velbitpos;
2874     dimreg = pDimensionRegions[dimregidx];
2875     }
2876     return dimreg;
2877 schoenebeck 2 }
2878    
2879     /**
2880     * Returns the appropriate DimensionRegion for the given dimension bit
2881     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2882     * instead of calling this method directly!
2883     *
2884 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2885 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2886     * bit numbers
2887     * @see GetDimensionRegionByValue()
2888     */
2889 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2890     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2891     << pDimensionDefinitions[5].bits | DimBits[5])
2892     << pDimensionDefinitions[4].bits | DimBits[4])
2893     << pDimensionDefinitions[3].bits | DimBits[3])
2894     << pDimensionDefinitions[2].bits | DimBits[2])
2895     << pDimensionDefinitions[1].bits | DimBits[1])
2896     << pDimensionDefinitions[0].bits | DimBits[0]];
2897 schoenebeck 2 }
2898    
2899     /**
2900     * Returns pointer address to the Sample referenced with this region.
2901     * This is the global Sample for the entire Region (not sure if this is
2902     * actually used by the Gigasampler engine - I would only use the Sample
2903     * referenced by the appropriate DimensionRegion instead of this sample).
2904     *
2905     * @returns address to Sample or NULL if there is no reference to a
2906     * sample saved in the .gig file
2907     */
2908     Sample* Region::GetSample() {
2909     if (pSample) return static_cast<gig::Sample*>(pSample);
2910     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2911     }
2912    
2913 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2914 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2915 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2916 persson 902 if (!file->pWavePoolTable) return NULL;
2917 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2918 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2919 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2920 schoenebeck 2 while (sample) {
2921 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2922 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2923 schoenebeck 2 sample = file->GetNextSample();
2924     }
2925     return NULL;
2926     }
2927    
2928    
2929 persson 1627 // *************** MidiRule ***************
2930     // *
2931 schoenebeck 2
2932 persson 1627 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2933     _3ewg->SetPos(36);
2934     Triggers = _3ewg->ReadUint8();
2935     _3ewg->SetPos(40);
2936     ControllerNumber = _3ewg->ReadUint8();
2937     _3ewg->SetPos(46);
2938     for (int i = 0 ; i < Triggers ; i++) {
2939     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2940     pTriggers[i].Descending = _3ewg->ReadUint8();
2941     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2942     pTriggers[i].Key = _3ewg->ReadUint8();
2943     pTriggers[i].NoteOff = _3ewg->ReadUint8();
2944     pTriggers[i].Velocity = _3ewg->ReadUint8();
2945     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2946     _3ewg->ReadUint8();
2947     }
2948     }
2949    
2950    
2951 schoenebeck 2 // *************** Instrument ***************
2952     // *
2953    
2954 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2955 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
2956 persson 1180 { CHUNK_ID_INAM, 64 },
2957     { CHUNK_ID_ISFT, 12 },
2958     { 0, 0 }
2959     };
2960 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
2961 persson 918
2962 schoenebeck 2 // Initialization
2963     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2964 persson 1182 EffectSend = 0;
2965     Attenuation = 0;
2966     FineTune = 0;
2967     PitchbendRange = 0;
2968     PianoReleaseMode = false;
2969     DimensionKeyRange.low = 0;
2970     DimensionKeyRange.high = 0;
2971 persson 1678 pMidiRules = new MidiRule*[3];
2972     pMidiRules[0] = NULL;
2973 schoenebeck 2
2974     // Loading
2975     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2976     if (lart) {
2977     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2978     if (_3ewg) {
2979     EffectSend = _3ewg->ReadUint16();
2980     Attenuation = _3ewg->ReadInt32();
2981     FineTune = _3ewg->ReadInt16();
2982     PitchbendRange = _3ewg->ReadInt16();
2983     uint8_t dimkeystart = _3ewg->ReadUint8();
2984     PianoReleaseMode = dimkeystart & 0x01;
2985     DimensionKeyRange.low = dimkeystart >> 1;
2986     DimensionKeyRange.high = _3ewg->ReadUint8();
2987 persson 1627
2988     if (_3ewg->GetSize() > 32) {
2989     // read MIDI rules
2990 persson 1678 int i = 0;
2991 persson 1627 _3ewg->SetPos(32);
2992     uint8_t id1 = _3ewg->ReadUint8();
2993     uint8_t id2 = _3ewg->ReadUint8();
2994    
2995     if (id1 == 4 && id2 == 16) {
2996 persson 1678 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2997 persson 1627 }
2998     //TODO: all the other types of rules
2999 persson 1678
3000     pMidiRules[i] = NULL;
3001 persson 1627 }
3002 schoenebeck 2 }
3003     }
3004    
3005 schoenebeck 1524 if (pFile->GetAutoLoad()) {
3006     if (!pRegions) pRegions = new RegionList;
3007     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3008     if (lrgn) {
3009     RIFF::List* rgn = lrgn->GetFirstSubList();
3010     while (rgn) {
3011     if (rgn->GetListType() == LIST_TYPE_RGN) {
3012     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3013     pRegions->push_back(new Region(this, rgn));
3014     }
3015     rgn = lrgn->GetNextSubList();
3016 schoenebeck 809 }
3017 schoenebeck 1524 // Creating Region Key Table for fast lookup
3018     UpdateRegionKeyTable();
3019 schoenebeck 2 }
3020     }
3021    
3022 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
3023     }
3024    
3025     void Instrument::UpdateRegionKeyTable() {
3026 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3027 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
3028     RegionList::iterator end = pRegions->end();
3029     for (; iter != end; ++iter) {
3030     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3031     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3032     RegionKeyTable[iKey] = pRegion;
3033 schoenebeck 2 }
3034     }
3035     }
3036    
3037     Instrument::~Instrument() {
3038 persson 1678 delete[] pMidiRules;
3039 schoenebeck 2 }
3040    
3041     /**
3042 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
3043     * You have to call File::Save() to make changes persistent.
3044     *
3045     * Usually there is absolutely no need to call this method explicitly.
3046     * It will be called automatically when File::Save() was called.
3047     *
3048     * @throws gig::Exception if samples cannot be dereferenced
3049     */
3050     void Instrument::UpdateChunks() {
3051     // first update base classes' chunks
3052     DLS::Instrument::UpdateChunks();
3053    
3054     // update Regions' chunks
3055 schoenebeck 823 {
3056     RegionList::iterator iter = pRegions->begin();
3057     RegionList::iterator end = pRegions->end();
3058     for (; iter != end; ++iter)
3059     (*iter)->UpdateChunks();
3060     }
3061 schoenebeck 809
3062     // make sure 'lart' RIFF list chunk exists
3063     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3064     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3065     // make sure '3ewg' RIFF chunk exists
3066     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3067 persson 1264 if (!_3ewg) {
3068     File* pFile = (File*) GetParent();
3069    
3070     // 3ewg is bigger in gig3, as it includes the iMIDI rules
3071     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3072     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3073     memset(_3ewg->LoadChunkData(), 0, size);
3074     }
3075 schoenebeck 809 // update '3ewg' RIFF chunk
3076     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3077 persson 1179 store16(&pData[0], EffectSend);
3078     store32(&pData[2], Attenuation);
3079     store16(&pData[6], FineTune);
3080     store16(&pData[8], PitchbendRange);
3081 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3082 schoenebeck 809 DimensionKeyRange.low << 1;
3083 persson 1179 pData[10] = dimkeystart;
3084     pData[11] = DimensionKeyRange.high;
3085 schoenebeck 809 }
3086    
3087     /**
3088 schoenebeck 2 * Returns the appropriate Region for a triggered note.
3089     *
3090     * @param Key MIDI Key number of triggered note / key (0 - 127)
3091     * @returns pointer adress to the appropriate Region or NULL if there
3092     * there is no Region defined for the given \a Key
3093     */
3094     Region* Instrument::GetRegion(unsigned int Key) {
3095 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3096 schoenebeck 2 return RegionKeyTable[Key];
3097 schoenebeck 823
3098 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
3099     if (Key <= pRegions[i]->KeyRange.high &&
3100     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3101     }
3102     return NULL;*/
3103     }
3104    
3105     /**
3106     * Returns the first Region of the instrument. You have to call this
3107     * method once before you use GetNextRegion().
3108     *
3109     * @returns pointer address to first region or NULL if there is none
3110     * @see GetNextRegion()
3111     */
3112     Region* Instrument::GetFirstRegion() {
3113 schoenebeck 823 if (!pRegions) return NULL;
3114     RegionsIterator = pRegions->begin();
3115     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3116 schoenebeck 2 }
3117    
3118     /**
3119     * Returns the next Region of the instrument. You have to call
3120     * GetFirstRegion() once before you can use this method. By calling this
3121     * method multiple times it iterates through the available Regions.
3122     *
3123     * @returns pointer address to the next region or NULL if end reached
3124     * @see GetFirstRegion()
3125     */
3126     Region* Instrument::GetNextRegion() {
3127 schoenebeck 823 if (!pRegions) return NULL;
3128     RegionsIterator++;
3129     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3130 schoenebeck 2 }
3131    
3132 schoenebeck 809 Region* Instrument::AddRegion() {
3133     // create new Region object (and its RIFF chunks)
3134     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3135     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3136     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3137     Region* pNewRegion = new Region(this, rgn);
3138 schoenebeck 823 pRegions->push_back(pNewRegion);
3139     Regions = pRegions->size();
3140 schoenebeck 809 // update Region key table for fast lookup
3141     UpdateRegionKeyTable();
3142     // done
3143     return pNewRegion;
3144     }
3145 schoenebeck 2
3146 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
3147     if (!pRegions) return;
3148 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3149 schoenebeck 809 // update Region key table for fast lookup
3150     UpdateRegionKeyTable();
3151     }
3152 schoenebeck 2
3153 persson 1627 /**
3154 persson 1678 * Returns a MIDI rule of the instrument.
3155 persson 1627 *
3156     * The list of MIDI rules, at least in gig v3, always contains at
3157     * most two rules. The second rule can only be the DEF filter
3158     * (which currently isn't supported by libgig).
3159     *
3160 persson 1678 * @param i - MIDI rule number
3161     * @returns pointer address to MIDI rule number i or NULL if there is none
3162 persson 1627 */
3163 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
3164     return pMidiRules[i];
3165 persson 1627 }
3166 schoenebeck 809
3167    
3168 schoenebeck 929 // *************** Group ***************
3169     // *
3170    
3171     /** @brief Constructor.
3172     *
3173 schoenebeck 930 * @param file - pointer to the gig::File object
3174     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3175     * NULL if this is a new Group
3176 schoenebeck 929 */
3177 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3178 schoenebeck 929 pFile = file;
3179     pNameChunk = ck3gnm;
3180     ::LoadString(pNameChunk, Name);
3181     }
3182    
3183     Group::~Group() {
3184 schoenebeck 1099 // remove the chunk associated with this group (if any)
3185     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3186 schoenebeck 929 }
3187    
3188     /** @brief Update chunks with current group settings.
3189     *
3190 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
3191     * to call File::Save() to make changes persistent.
3192     *
3193     * Usually there is absolutely no need to call this method explicitly.
3194     * It will be called automatically when File::Save() was called.
3195 schoenebeck 929 */
3196     void Group::UpdateChunks() {
3197     // make sure <3gri> and <3gnl> list chunks exist
3198 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3199 persson 1192 if (!_3gri) {
3200     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3201     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3202     }
3203 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3204 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3205 persson 1266
3206     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3207     // v3 has a fixed list of 128 strings, find a free one
3208     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3209     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3210     pNameChunk = ck;
3211     break;
3212     }
3213     }
3214     }
3215    
3216 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3217     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3218     }
3219    
3220 schoenebeck 930 /**
3221     * Returns the first Sample of this Group. You have to call this method
3222     * once before you use GetNextSample().
3223     *
3224     * <b>Notice:</b> this method might block for a long time, in case the
3225     * samples of this .gig file were not scanned yet
3226     *
3227     * @returns pointer address to first Sample or NULL if there is none
3228     * applied to this Group
3229     * @see GetNextSample()
3230     */
3231     Sample* Group::GetFirstSample() {
3232     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3233     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3234     if (pSample->GetGroup() == this) return pSample;
3235     }
3236     return NULL;
3237     }
3238 schoenebeck 929
3239 schoenebeck 930 /**
3240     * Returns the next Sample of the Group. You have to call
3241     * GetFirstSample() once before you can use this method. By calling this
3242     * method multiple times it iterates through the Samples assigned to
3243     * this Group.
3244     *
3245     * @returns pointer address to the next Sample of this Group or NULL if
3246     * end reached
3247     * @see GetFirstSample()
3248     */
3249     Sample* Group::GetNextSample() {
3250     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3251     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3252     if (pSample->GetGroup() == this) return pSample;
3253     }
3254     return NULL;
3255     }
3256 schoenebeck 929
3257 schoenebeck 930 /**
3258     * Move Sample given by \a pSample from another Group to this Group.
3259     */
3260     void Group::AddSample(Sample* pSample) {
3261     pSample->pGroup = this;
3262     }
3263    
3264     /**
3265     * Move all members of this group to another group (preferably the 1st
3266     * one except this). This method is called explicitly by
3267     * File::DeleteGroup() thus when a Group was deleted. This code was
3268     * intentionally not placed in the destructor!
3269     */
3270     void Group::MoveAll() {
3271     // get "that" other group first
3272     Group* pOtherGroup = NULL;
3273     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3274     if (pOtherGroup != this) break;
3275     }
3276     if (!pOtherGroup) throw Exception(
3277     "Could not move samples to another group, since there is no "
3278     "other Group. This is a bug, report it!"
3279     );
3280     // now move all samples of this group to the other group
3281     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3282     pOtherGroup->AddSample(pSample);
3283     }
3284     }
3285    
3286    
3287    
3288 schoenebeck 2 // *************** File ***************
3289     // *
3290    
3291 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3292 persson 1199 const DLS::version_t File::VERSION_2 = {
3293     0, 2, 19980628 & 0xffff, 19980628 >> 16
3294     };
3295    
3296 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3297 persson 1199 const DLS::version_t File::VERSION_3 = {
3298     0, 3, 20030331 & 0xffff, 20030331 >> 16
3299     };
3300    
3301 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3302 persson 1180 { CHUNK_ID_IARL, 256 },
3303     { CHUNK_ID_IART, 128 },
3304     { CHUNK_ID_ICMS, 128 },
3305     { CHUNK_ID_ICMT, 1024 },
3306     { CHUNK_ID_ICOP, 128 },
3307     { CHUNK_ID_ICRD, 128 },
3308     { CHUNK_ID_IENG, 128 },
3309     { CHUNK_ID_IGNR, 128 },
3310     { CHUNK_ID_IKEY, 128 },
3311     { CHUNK_ID_IMED, 128 },
3312     { CHUNK_ID_INAM, 128 },
3313     { CHUNK_ID_IPRD, 128 },
3314     { CHUNK_ID_ISBJ, 128 },
3315     { CHUNK_ID_ISFT, 128 },
3316     { CHUNK_ID_ISRC, 128 },
3317     { CHUNK_ID_ISRF, 128 },
3318     { CHUNK_ID_ITCH, 128 },
3319     { 0, 0 }
3320     };
3321    
3322 schoenebeck 809 File::File() : DLS::File() {
3323 schoenebeck 1524 bAutoLoad = true;
3324 persson 1264 *pVersion = VERSION_3;
3325 schoenebeck 929 pGroups = NULL;
3326 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3327 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
3328 persson 1192
3329     // add some mandatory chunks to get the file chunks in right
3330     // order (INFO chunk will be moved to first position later)
3331     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3332     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3333 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3334    
3335     GenerateDLSID();
3336 schoenebeck 809 }
3337    
3338 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3339 schoenebeck 1524 bAutoLoad = true;
3340 schoenebeck 929 pGroups = NULL;
3341 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3342 schoenebeck 2 }
3343    
3344 schoenebeck 929 File::~File() {
3345     if (pGroups) {
3346     std::list<Group*>::iterator iter = pGroups->begin();
3347     std::list<Group*>::iterator end = pGroups->end();
3348     while (iter != end) {
3349     delete *iter;
3350     ++iter;
3351     }
3352     delete pGroups;
3353     }
3354     }
3355    
3356 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
3357     if (!pSamples) LoadSamples(pProgress);
3358 schoenebeck 2 if (!pSamples) return NULL;
3359     SamplesIterator = pSamples->begin();
3360     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3361     }
3362    
3363     Sample* File::GetNextSample() {
3364     if (!pSamples) return NULL;
3365     SamplesIterator++;
3366     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3367     }
3368    
3369 schoenebeck 809 /** @brief Add a new sample.
3370     *
3371     * This will create a new Sample object for the gig file. You have to
3372     * call Save() to make this persistent to the file.
3373     *
3374     * @returns pointer to new Sample object
3375     */
3376     Sample* File::AddSample() {
3377     if (!pSamples) LoadSamples();
3378     __ensureMandatoryChunksExist();
3379     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3380     // create new Sample object and its respective 'wave' list chunk
3381     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3382     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3383 persson 1192
3384     // add mandatory chunks to get the chunks in right order
3385     wave->AddSubChunk(CHUNK_ID_FMT, 16);
3386     wave->AddSubList(LIST_TYPE_INFO);
3387    
3388 schoenebeck 809 pSamples->push_back(pSample);
3389     return pSample;
3390     }
3391    
3392     /** @brief Delete a sample.
3393     *
3394 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
3395     * references to this sample from Regions and DimensionRegions will be
3396     * removed. You have to call Save() to make this persistent to the file.
3397 schoenebeck 809 *
3398     * @param pSample - sample to delete
3399     * @throws gig::Exception if given sample could not be found
3400     */
3401     void File::DeleteSample(Sample* pSample) {
3402 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3403     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3404 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3405 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3406 schoenebeck 809 pSamples->erase(iter);
3407     delete pSample;
3408 persson 1266
3409 persson 1678 SampleList::iterator tmp = SamplesIterator;
3410 persson 1266 // remove all references to the sample
3411     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3412     instrument = GetNextInstrument()) {
3413     for (Region* region = instrument->GetFirstRegion() ; region ;
3414     region = instrument->GetNextRegion()) {
3415    
3416     if (region->GetSample() == pSample) region->SetSample(NULL);
3417    
3418     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3419     gig::DimensionRegion *d = region->pDimensionRegions[i];
3420     if (d->pSample == pSample) d->pSample = NULL;
3421     }
3422     }
3423     }
3424 persson 1678 SamplesIterator = tmp; // restore iterator
3425 schoenebeck 809 }
3426    
3427 schoenebeck 823 void File::LoadSamples() {
3428     LoadSamples(NULL);
3429     }
3430    
3431 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
3432 schoenebeck 930 // Groups must be loaded before samples, because samples will try
3433     // to resolve the group they belong to
3434 schoenebeck 1158 if (!pGroups) LoadGroups();
3435 schoenebeck 930
3436 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
3437    
3438 persson 666 RIFF::File* file = pRIFF;
3439 schoenebeck 515
3440 persson 666 // just for progress calculation
3441     int iSampleIndex = 0;
3442     int iTotalSamples = WavePoolCount;
3443 schoenebeck 515
3444 persson 666 // check if samples should be loaded from extension files
3445     int lastFileNo = 0;
3446     for (int i = 0 ; i < WavePoolCount ; i++) {
3447     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3448     }
3449 schoenebeck 780 String name(pRIFF->GetFileName());
3450     int nameLen = name.length();
3451 persson 666 char suffix[6];
3452 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3453 schoenebeck 515
3454 persson 666 for (int fileNo = 0 ; ; ) {
3455     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3456     if (wvpl) {
3457     unsigned long wvplFileOffset = wvpl->GetFilePos();
3458     RIFF::List* wave = wvpl->GetFirstSubList();
3459     while (wave) {
3460     if (wave->GetListType() == LIST_TYPE_WAVE) {
3461     // notify current progress
3462     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3463     __notify_progress(pProgress, subprogress);
3464    
3465     unsigned long waveFileOffset = wave->GetFilePos();
3466     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3467    
3468     iSampleIndex++;
3469     }
3470     wave = wvpl->GetNextSubList();
3471 schoenebeck 2 }
3472 persson 666
3473     if (fileNo == lastFileNo) break;
3474    
3475     // open extension file (*.gx01, *.gx02, ...)
3476     fileNo++;
3477     sprintf(suffix, ".gx%02d", fileNo);
3478     name.replace(nameLen, 5, suffix);
3479     file = new RIFF::File(name);
3480     ExtensionFiles.push_back(file);
3481 schoenebeck 823 } else break;
3482 schoenebeck 2 }
3483 persson 666
3484     __notify_progress(pProgress, 1.0); // notify done
3485 schoenebeck 2 }
3486    
3487     Instrument* File::GetFirstInstrument() {
3488     if (!pInstruments) LoadInstruments();
3489     if (!pInstruments) return NULL;
3490     InstrumentsIterator = pInstruments->begin();
3491 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3492 schoenebeck 2 }
3493    
3494     Instrument* File::GetNextInstrument() {
3495     if (!pInstruments) return NULL;
3496     InstrumentsIterator++;
3497 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3498 schoenebeck 2 }
3499    
3500 schoenebeck 21 /**
3501     * Returns the instrument with the given index.
3502     *
3503 schoenebeck 515 * @param index - number of the sought instrument (0..n)
3504     * @param pProgress - optional: callback function for progress notification
3505 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
3506     */
3507 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3508     if (!pInstruments) {
3509     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3510    
3511     // sample loading subtask
3512     progress_t subprogress;
3513     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3514     __notify_progress(&subprogress, 0.0f);
3515 schoenebeck 1524 if (GetAutoLoad())
3516     GetFirstSample(&subprogress); // now force all samples to be loaded
3517 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
3518    
3519     // instrument loading subtask
3520     if (pProgress && pProgress->callback) {
3521     subprogress.__range_min = subprogress.__range_max;
3522     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3523     }
3524     __notify_progress(&subprogress, 0.0f);
3525     LoadInstruments(&subprogress);
3526     __notify_progress(&subprogress, 1.0f);
3527     }
3528 schoenebeck 21 if (!pInstruments) return NULL;
3529     InstrumentsIterator = pInstruments->begin();
3530     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3531 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3532 schoenebeck 21 InstrumentsIterator++;
3533     }
3534     return NULL;
3535     }
3536    
3537 schoenebeck 809 /** @brief Add a new instrument definition.
3538     *
3539     * This will create a new Instrument object for the gig file. You have
3540     * to call Save() to make this persistent to the file.
3541     *
3542     * @returns pointer to new Instrument object
3543     */
3544     Instrument* File::AddInstrument() {
3545     if (!pInstruments) LoadInstruments();
3546     __ensureMandatoryChunksExist();
3547     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3548     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3549 persson 1192
3550     // add mandatory chunks to get the chunks in right order
3551     lstInstr->AddSubList(LIST_TYPE_INFO);
3552 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3553 persson 1192
3554 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
3555 persson 1209 pInstrument->GenerateDLSID();
3556 persson 1182
3557 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3558    
3559 persson 1182 // this string is needed for the gig to be loadable in GSt:
3560     pInstrument->pInfo->Software = "Endless Wave";
3561    
3562 schoenebeck 809 pInstruments->push_back(pInstrument);
3563     return pInstrument;
3564     }
3565    
3566     /** @brief Delete an instrument.
3567     *
3568     * This will delete the given Instrument object from the gig file. You
3569     * have to call Save() to make this persistent to the file.
3570     *
3571     * @param pInstrument - instrument to delete
3572 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
3573 schoenebeck 809 */
3574     void File::DeleteInstrument(Instrument* pInstrument) {
3575     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3576 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3577 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3578     pInstruments->erase(iter);
3579     delete pInstrument;
3580     }
3581    
3582 schoenebeck 823 void File::LoadInstruments() {
3583     LoadInstruments(NULL);
3584     }
3585    
3586 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
3587 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
3588 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3589     if (lstInstruments) {
3590 schoenebeck 515 int iInstrumentIndex = 0;
3591 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3592     while (lstInstr) {
3593     if (lstInstr->GetListType() == LIST_TYPE_INS) {
3594 schoenebeck 515 // notify current progress
3595     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3596     __notify_progress(pProgress, localProgress);
3597    
3598     // divide local progress into subprogress for loading current Instrument
3599     progress_t subprogress;
3600     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3601    
3602     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3603    
3604     iInstrumentIndex++;
3605 schoenebeck 2 }
3606     lstInstr = lstInstruments->GetNextSubList();
3607     }
3608 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
3609 schoenebeck 2 }
3610     }
3611    
3612 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
3613     /// update is done directly to disk, as this method is called
3614     /// after File::Save()
3615 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3616     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3617     if (!_3crc) return;
3618 persson 1207
3619     // get the index of the sample
3620 persson 1199 int iWaveIndex = -1;
3621     File::SampleList::iterator iter = pSamples->begin();
3622     File::SampleList::iterator end = pSamples->end();
3623     for (int index = 0; iter != end; ++iter, ++index) {
3624     if (*iter == pSample) {
3625     iWaveIndex = index;
3626     break;
3627     }
3628     }
3629     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3630    
3631 persson 1207 // write the CRC-32 checksum to disk
3632 persson 1199 _3crc->SetPos(iWaveIndex * 8);
3633     uint32_t tmp = 1;
3634     _3crc->WriteUint32(&tmp); // unknown, always 1?
3635     _3crc->WriteUint32(&crc);
3636     }
3637    
3638 schoenebeck 929 Group* File::GetFirstGroup() {
3639     if (!pGroups) LoadGroups();
3640 schoenebeck 930 // there must always be at least one group
3641 schoenebeck 929 GroupsIterator = pGroups->begin();
3642 schoenebeck 930 return *GroupsIterator;
3643 schoenebeck 929 }
3644 schoenebeck 2
3645 schoenebeck 929 Group* File::GetNextGroup() {
3646     if (!pGroups) return NULL;
3647     ++GroupsIterator;
3648     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3649     }
3650 schoenebeck 2
3651 schoenebeck 929 /**
3652     * Returns the group with the given index.
3653     *
3654     * @param index - number of the sought group (0..n)
3655     * @returns sought group or NULL if there's no such group
3656     */
3657     Group* File::GetGroup(uint index) {
3658     if (!pGroups) LoadGroups();
3659     GroupsIterator = pGroups->begin();
3660     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3661     if (i == index) return *GroupsIterator;
3662     ++GroupsIterator;
3663     }
3664     return NULL;
3665     }
3666    
3667     Group* File::AddGroup() {
3668     if (!pGroups) LoadGroups();
3669 schoenebeck 930 // there must always be at least one group
3670 schoenebeck 929 __ensureMandatoryChunksExist();
3671 schoenebeck 930 Group* pGroup = new Group(this, NULL);
3672 schoenebeck 929 pGroups->push_back(pGroup);
3673     return pGroup;
3674     }
3675    
3676 schoenebeck 1081 /** @brief Delete a group and its samples.
3677     *
3678     * This will delete the given Group object and all the samples that
3679     * belong to this group from the gig file. You have to call Save() to
3680     * make this persistent to the file.
3681     *
3682     * @param pGroup - group to delete
3683     * @throws gig::Exception if given group could not be found
3684     */
3685 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
3686 schoenebeck 930 if (!pGroups) LoadGroups();
3687 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3688     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3689 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3690 schoenebeck 1081 // delete all members of this group
3691     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3692     DeleteSample(pSample);
3693     }
3694     // now delete this group object
3695     pGroups->erase(iter);
3696     delete pGroup;
3697     }
3698    
3699     /** @brief Delete a group.
3700     *
3701     * This will delete the given Group object from the gig file. All the
3702     * samples that belong to this group will not be deleted, but instead
3703     * be moved to another group. You have to call Save() to make this
3704     * persistent to the file.
3705     *
3706     * @param pGroup - group to delete
3707     * @throws gig::Exception if given group could not be found
3708     */
3709     void File::DeleteGroupOnly(Group* pGroup) {
3710     if (!pGroups) LoadGroups();
3711     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3712     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3713     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3714 schoenebeck 930 // move all members of this group to another group
3715     pGroup->MoveAll();
3716 schoenebeck 929 pGroups->erase(iter);
3717     delete pGroup;
3718     }
3719    
3720     void File::LoadGroups() {
3721     if (!pGroups) pGroups = new std::list<Group*>;
3722 schoenebeck 930 // try to read defined groups from file
3723 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3724 schoenebeck 930 if (lst3gri) {
3725     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3726     if (lst3gnl) {
3727     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3728     while (ck) {
3729     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3730 persson 1266 if (pVersion && pVersion->major == 3 &&
3731     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3732    
3733 schoenebeck 930 pGroups->push_back(new Group(this, ck));
3734     }
3735     ck = lst3gnl->GetNextSubChunk();
3736 schoenebeck 929 }
3737     }
3738     }
3739 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
3740     if (!pGroups->size()) {
3741     Group* pGroup = new Group(this, NULL);
3742     pGroup->Name = "Default Group";
3743     pGroups->push_back(pGroup);
3744     }
3745 schoenebeck 929 }
3746    
3747 schoenebeck 1098 /**
3748     * Apply all the gig file's current instruments, samples, groups and settings
3749     * to the respective RIFF chunks. You have to call Save() to make changes
3750     * persistent.
3751     *
3752     * Usually there is absolutely no need to call this method explicitly.
3753     * It will be called automatically when File::Save() was called.
3754     *
3755     * @throws Exception - on errors
3756     */
3757     void File::UpdateChunks() {
3758 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3759 persson 1192
3760 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3761    
3762 schoenebeck 1098 // first update base class's chunks
3763     DLS::File::UpdateChunks();
3764 schoenebeck 929
3765 persson 1199 if (newFile) {
3766 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
3767     // is placed first in file
3768 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3769 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3770     if (first != info) {
3771     pRIFF->MoveSubChunk(info, first);
3772     }
3773     }
3774    
3775 schoenebeck 1098 // update group's chunks
3776     if (pGroups) {
3777     std::list<Group*>::iterator iter = pGroups->begin();
3778     std::list<Group*>::iterator end = pGroups->end();
3779     for (; iter != end; ++iter) {
3780     (*iter)->UpdateChunks();
3781     }
3782 persson 1266
3783     // v3: make sure the file has 128 3gnm chunks
3784     if (pVersion && pVersion->major == 3) {
3785     RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3786     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3787     for (int i = 0 ; i < 128 ; i++) {
3788     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3789     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3790     }
3791     }
3792 schoenebeck 1098 }
3793 persson 1199
3794     // update einf chunk
3795    
3796     // The einf chunk contains statistics about the gig file, such
3797     // as the number of regions and samples used by each
3798     // instrument. It is divided in equally sized parts, where the
3799     // first part contains information about the whole gig file,
3800     // and the rest of the parts map to each instrument in the
3801     // file.
3802     //
3803     // At the end of each part there is a bit map of each sample
3804     // in the file, where a set bit means that the sample is used
3805     // by the file/instrument.
3806     //
3807     // Note that there are several fields with unknown use. These
3808     // are set to zero.
3809    
3810     int sublen = pSamples->size() / 8 + 49;
3811     int einfSize = (Instruments + 1) * sublen;
3812    
3813     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3814     if (einf) {
3815     if (einf->GetSize() != einfSize) {
3816     einf->Resize(einfSize);
3817     memset(einf->LoadChunkData(), 0, einfSize);
3818     }
3819     } else if (newFile) {
3820     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3821     }
3822     if (einf) {
3823     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3824    
3825     std::map<gig::Sample*,int> sampleMap;
3826     int sampleIdx = 0;
3827     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3828     sampleMap[pSample] = sampleIdx++;
3829     }
3830    
3831     int totnbusedsamples = 0;
3832     int totnbusedchannels = 0;
3833     int totnbregions = 0;
3834     int totnbdimregions = 0;
3835 persson 1264 int totnbloops = 0;
3836 persson 1199 int instrumentIdx = 0;
3837    
3838     memset(&pData[48], 0, sublen - 48);
3839    
3840     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3841     instrument = GetNextInstrument()) {
3842     int nbusedsamples = 0;
3843     int nbusedchannels = 0;
3844     int nbdimregions = 0;
3845 persson 1264 int nbloops = 0;
3846 persson 1199
3847     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3848    
3849     for (Region* region = instrument->GetFirstRegion() ; region ;
3850     region = instrument->GetNextRegion()) {
3851     for (int i = 0 ; i < region->DimensionRegions ; i++) {
3852     gig::DimensionRegion *d = region->pDimensionRegions[i];
3853     if (d->pSample) {
3854     int sampleIdx = sampleMap[d->pSample];
3855     int byte = 48 + sampleIdx / 8;
3856     int bit = 1 << (sampleIdx & 7);
3857     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3858     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3859     nbusedsamples++;
3860     nbusedchannels += d->pSample->Channels;
3861    
3862     if ((pData[byte] & bit) == 0) {
3863     pData[byte] |= bit;
3864     totnbusedsamples++;
3865     totnbusedchannels += d->pSample->Channels;
3866     }
3867     }
3868     }
3869 persson 1264 if (d->SampleLoops) nbloops++;
3870 persson 1199 }
3871     nbdimregions += region->DimensionRegions;
3872     }
3873     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3874     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3875     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3876     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3877     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3878     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3879     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3880 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3881     // next 8 bytes unknown
3882 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3883     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3884     // next 4 bytes unknown
3885    
3886     totnbregions += instrument->Regions;
3887     totnbdimregions += nbdimregions;
3888 persson 1264 totnbloops += nbloops;
3889 persson 1199 instrumentIdx++;
3890     }
3891     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3892     // store32(&pData[0], sublen);
3893     store32(&pData[4], totnbusedchannels);
3894     store32(&pData[8], totnbusedsamples);
3895     store32(&pData[12], Instruments);
3896     store32(&pData[16], totnbregions);
3897     store32(&pData[20], totnbdimregions);
3898 persson 1264 store32(&pData[24], totnbloops);
3899     // next 8 bytes unknown
3900     // next 4 bytes unknown, not always 0
3901 persson 1199 store32(&pData[40], pSamples->size());
3902     // next 4 bytes unknown
3903     }
3904    
3905     // update 3crc chunk
3906    
3907     // The 3crc chunk contains CRC-32 checksums for the
3908     // samples. The actual checksum values will be filled in
3909     // later, by Sample::Write.
3910    
3911     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3912     if (_3crc) {
3913     _3crc->Resize(pSamples->size() * 8);
3914     } else if (newFile) {
3915     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3916     _3crc->LoadChunkData();
3917 persson 1264
3918     // the order of einf and 3crc is not the same in v2 and v3
3919     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3920 persson 1199 }
3921 schoenebeck 1098 }
3922 schoenebeck 929
3923 schoenebeck 1524 /**
3924     * Enable / disable automatic loading. By default this properyt is
3925     * enabled and all informations are loaded automatically. However
3926     * loading all Regions, DimensionRegions and especially samples might
3927     * take a long time for large .gig files, and sometimes one might only
3928     * be interested in retrieving very superficial informations like the
3929     * amount of instruments and their names. In this case one might disable
3930     * automatic loading to avoid very slow response times.
3931     *
3932     * @e CAUTION: by disabling this property many pointers (i.e. sample
3933     * references) and informations will have invalid or even undefined
3934     * data! This feature is currently only intended for retrieving very
3935     * superficial informations in a very fast way. Don't use it to retrieve
3936     * details like synthesis informations or even to modify .gig files!
3937     */
3938     void File::SetAutoLoad(bool b) {
3939     bAutoLoad = b;
3940     }
3941 schoenebeck 1098
3942 schoenebeck 1524 /**
3943     * Returns whether automatic loading is enabled.
3944     * @see SetAutoLoad()
3945     */
3946     bool File::GetAutoLoad() {
3947     return bAutoLoad;
3948     }
3949 schoenebeck 1098
3950 schoenebeck 1524
3951    
3952 schoenebeck 2 // *************** Exception ***************
3953     // *
3954    
3955     Exception::Exception(String Message) : DLS::Exception(Message) {
3956     }
3957    
3958     void Exception::PrintMessage() {
3959     std::cout << "gig::Exception: " << Message << std::endl;
3960     }
3961    
3962 schoenebeck 518
3963     // *************** functions ***************
3964     // *
3965    
3966     /**
3967     * Returns the name of this C++ library. This is usually "libgig" of
3968     * course. This call is equivalent to RIFF::libraryName() and
3969     * DLS::libraryName().
3970     */
3971     String libraryName() {
3972     return PACKAGE;
3973     }
3974    
3975     /**
3976     * Returns version of this C++ library. This call is equivalent to
3977     * RIFF::libraryVersion() and DLS::libraryVersion().
3978     */
3979     String libraryVersion() {
3980     return VERSION;
3981     }
3982    
3983 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC