/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1869 - (hide annotations) (download)
Sun Mar 22 11:13:25 2009 UTC (10 years, 8 months ago) by persson
File size: 174668 byte(s)
* bugfix: destructor for base class RIFF::Chunk accessed members of
  derived class RIFF::File, which is bad, and caused crashes when
  using Visual C++
* bugfix: EG3 depth parameter was not saved correctly
* fixes for building with Visual C++

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 1851 * Copyright (C) 2003-2009 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31    
32 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
33     /// compressed sample wave streams - this value should always be bigger than
34     /// the biggest sample piece expected to be read by the sampler engine,
35     /// otherwise the buffer size will be raised at runtime and thus the buffer
36     /// reallocated which is time consuming and unefficient.
37     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38    
39     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52    
53 schoenebeck 515 namespace gig {
54 schoenebeck 2
55 schoenebeck 515 // *************** progress_t ***************
56     // *
57    
58     progress_t::progress_t() {
59     callback = NULL;
60 schoenebeck 516 custom = NULL;
61 schoenebeck 515 __range_min = 0.0f;
62     __range_max = 1.0f;
63     }
64    
65     // private helper function to convert progress of a subprocess into the global progress
66     static void __notify_progress(progress_t* pProgress, float subprogress) {
67     if (pProgress && pProgress->callback) {
68     const float totalrange = pProgress->__range_max - pProgress->__range_min;
69     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 schoenebeck 516 pProgress->factor = totalprogress;
71     pProgress->callback(pProgress); // now actually notify about the progress
72 schoenebeck 515 }
73     }
74    
75     // private helper function to divide a progress into subprogresses
76     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77     if (pParentProgress && pParentProgress->callback) {
78     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79     pSubProgress->callback = pParentProgress->callback;
80 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
81 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83     }
84     }
85    
86    
87 schoenebeck 809 // *************** Internal functions for sample decompression ***************
88 persson 365 // *
89    
90 schoenebeck 515 namespace {
91    
92 persson 365 inline int get12lo(const unsigned char* pSrc)
93     {
94     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95     return x & 0x800 ? x - 0x1000 : x;
96     }
97    
98     inline int get12hi(const unsigned char* pSrc)
99     {
100     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101     return x & 0x800 ? x - 0x1000 : x;
102     }
103    
104     inline int16_t get16(const unsigned char* pSrc)
105     {
106     return int16_t(pSrc[0] | pSrc[1] << 8);
107     }
108    
109     inline int get24(const unsigned char* pSrc)
110     {
111     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112     return x & 0x800000 ? x - 0x1000000 : x;
113     }
114    
115 persson 902 inline void store24(unsigned char* pDst, int x)
116     {
117     pDst[0] = x;
118     pDst[1] = x >> 8;
119     pDst[2] = x >> 16;
120     }
121    
122 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
123 persson 372 int srcStep, int dstStep,
124     const unsigned char* pSrc, int16_t* pDst,
125 persson 365 unsigned long currentframeoffset,
126     unsigned long copysamples)
127     {
128     switch (compressionmode) {
129     case 0: // 16 bit uncompressed
130     pSrc += currentframeoffset * srcStep;
131     while (copysamples) {
132     *pDst = get16(pSrc);
133 persson 372 pDst += dstStep;
134 persson 365 pSrc += srcStep;
135     copysamples--;
136     }
137     break;
138    
139     case 1: // 16 bit compressed to 8 bit
140     int y = get16(params);
141     int dy = get16(params + 2);
142     while (currentframeoffset) {
143     dy -= int8_t(*pSrc);
144     y -= dy;
145     pSrc += srcStep;
146     currentframeoffset--;
147     }
148     while (copysamples) {
149     dy -= int8_t(*pSrc);
150     y -= dy;
151     *pDst = y;
152 persson 372 pDst += dstStep;
153 persson 365 pSrc += srcStep;
154     copysamples--;
155     }
156     break;
157     }
158     }
159    
160     void Decompress24(int compressionmode, const unsigned char* params,
161 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 persson 365 unsigned long currentframeoffset,
163 persson 437 unsigned long copysamples, int truncatedBits)
164 persson 365 {
165 persson 695 int y, dy, ddy, dddy;
166 persson 437
167 persson 695 #define GET_PARAMS(params) \
168     y = get24(params); \
169     dy = y - get24((params) + 3); \
170     ddy = get24((params) + 6); \
171     dddy = get24((params) + 9)
172 persson 365
173     #define SKIP_ONE(x) \
174 persson 695 dddy -= (x); \
175     ddy -= dddy; \
176     dy = -dy - ddy; \
177     y += dy
178 persson 365
179     #define COPY_ONE(x) \
180     SKIP_ONE(x); \
181 persson 902 store24(pDst, y << truncatedBits); \
182 persson 372 pDst += dstStep
183 persson 365
184     switch (compressionmode) {
185     case 2: // 24 bit uncompressed
186     pSrc += currentframeoffset * 3;
187     while (copysamples) {
188 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
189 persson 372 pDst += dstStep;
190 persson 365 pSrc += 3;
191     copysamples--;
192     }
193     break;
194    
195     case 3: // 24 bit compressed to 16 bit
196     GET_PARAMS(params);
197     while (currentframeoffset) {
198     SKIP_ONE(get16(pSrc));
199     pSrc += 2;
200     currentframeoffset--;
201     }
202     while (copysamples) {
203     COPY_ONE(get16(pSrc));
204     pSrc += 2;
205     copysamples--;
206     }
207     break;
208    
209     case 4: // 24 bit compressed to 12 bit
210     GET_PARAMS(params);
211     while (currentframeoffset > 1) {
212     SKIP_ONE(get12lo(pSrc));
213     SKIP_ONE(get12hi(pSrc));
214     pSrc += 3;
215     currentframeoffset -= 2;
216     }
217     if (currentframeoffset) {
218     SKIP_ONE(get12lo(pSrc));
219     currentframeoffset--;
220     if (copysamples) {
221     COPY_ONE(get12hi(pSrc));
222     pSrc += 3;
223     copysamples--;
224     }
225     }
226     while (copysamples > 1) {
227     COPY_ONE(get12lo(pSrc));
228     COPY_ONE(get12hi(pSrc));
229     pSrc += 3;
230     copysamples -= 2;
231     }
232     if (copysamples) {
233     COPY_ONE(get12lo(pSrc));
234     }
235     break;
236    
237     case 5: // 24 bit compressed to 8 bit
238     GET_PARAMS(params);
239     while (currentframeoffset) {
240     SKIP_ONE(int8_t(*pSrc++));
241     currentframeoffset--;
242     }
243     while (copysamples) {
244     COPY_ONE(int8_t(*pSrc++));
245     copysamples--;
246     }
247     break;
248     }
249     }
250    
251     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255     }
256    
257    
258 schoenebeck 1113
259 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260     // *
261    
262     static uint32_t* __initCRCTable() {
263     static uint32_t res[256];
264    
265     for (int i = 0 ; i < 256 ; i++) {
266     uint32_t c = i;
267     for (int j = 0 ; j < 8 ; j++) {
268     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269     }
270     res[i] = c;
271     }
272     return res;
273     }
274    
275     static const uint32_t* __CRCTable = __initCRCTable();
276    
277     /**
278     * Initialize a CRC variable.
279     *
280     * @param crc - variable to be initialized
281     */
282     inline static void __resetCRC(uint32_t& crc) {
283     crc = 0xffffffff;
284     }
285    
286     /**
287     * Used to calculate checksums of the sample data in a gig file. The
288     * checksums are stored in the 3crc chunk of the gig file and
289     * automatically updated when a sample is written with Sample::Write().
290     *
291     * One should call __resetCRC() to initialize the CRC variable to be
292     * used before calling this function the first time.
293     *
294     * After initializing the CRC variable one can call this function
295     * arbitrary times, i.e. to split the overall CRC calculation into
296     * steps.
297     *
298     * Once the whole data was processed by __calculateCRC(), one should
299     * call __encodeCRC() to get the final CRC result.
300     *
301     * @param buf - pointer to data the CRC shall be calculated of
302     * @param bufSize - size of the data to be processed
303     * @param crc - variable the CRC sum shall be stored to
304     */
305     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306     for (int i = 0 ; i < bufSize ; i++) {
307     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308     }
309     }
310    
311     /**
312     * Returns the final CRC result.
313     *
314     * @param crc - variable previously passed to __calculateCRC()
315     */
316     inline static uint32_t __encodeCRC(const uint32_t& crc) {
317     return crc ^ 0xffffffff;
318     }
319    
320    
321    
322 schoenebeck 1113 // *************** Other Internal functions ***************
323     // *
324    
325     static split_type_t __resolveSplitType(dimension_t dimension) {
326     return (
327     dimension == dimension_layer ||
328     dimension == dimension_samplechannel ||
329     dimension == dimension_releasetrigger ||
330     dimension == dimension_keyboard ||
331     dimension == dimension_roundrobin ||
332     dimension == dimension_random ||
333     dimension == dimension_smartmidi ||
334     dimension == dimension_roundrobinkeyboard
335     ) ? split_type_bit : split_type_normal;
336     }
337    
338     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339     return (dimension_definition.split_type == split_type_normal)
340     ? int(128.0 / dimension_definition.zones) : 0;
341     }
342    
343    
344    
345 schoenebeck 2 // *************** Sample ***************
346     // *
347    
348 schoenebeck 384 unsigned int Sample::Instances = 0;
349     buffer_t Sample::InternalDecompressionBuffer;
350 schoenebeck 2
351 schoenebeck 809 /** @brief Constructor.
352     *
353     * Load an existing sample or create a new one. A 'wave' list chunk must
354     * be given to this constructor. In case the given 'wave' list chunk
355     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356     * format and sample data will be loaded from there, otherwise default
357     * values will be used and those chunks will be created when
358     * File::Save() will be called later on.
359     *
360     * @param pFile - pointer to gig::File where this sample is
361     * located (or will be located)
362     * @param waveList - pointer to 'wave' list chunk which is (or
363     * will be) associated with this sample
364     * @param WavePoolOffset - offset of this sample data from wave pool
365     * ('wvpl') list chunk
366     * @param fileNo - number of an extension file where this sample
367     * is located, 0 otherwise
368     */
369 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 persson 1180 { CHUNK_ID_INAM, 64 },
372     { 0, 0 }
373     };
374 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
375 schoenebeck 2 Instances++;
376 persson 666 FileNo = fileNo;
377 schoenebeck 2
378 schoenebeck 1381 __resetCRC(crc);
379    
380 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381     if (pCk3gix) {
382 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
384 schoenebeck 809 } else { // '3gix' chunk missing
385 schoenebeck 930 // by default assigned to that mandatory "Default Group"
386     pGroup = pFile->GetGroup(0);
387 schoenebeck 809 }
388 schoenebeck 2
389 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390     if (pCkSmpl) {
391     Manufacturer = pCkSmpl->ReadInt32();
392     Product = pCkSmpl->ReadInt32();
393     SamplePeriod = pCkSmpl->ReadInt32();
394     MIDIUnityNote = pCkSmpl->ReadInt32();
395     FineTune = pCkSmpl->ReadInt32();
396     pCkSmpl->Read(&SMPTEFormat, 1, 4);
397     SMPTEOffset = pCkSmpl->ReadInt32();
398     Loops = pCkSmpl->ReadInt32();
399     pCkSmpl->ReadInt32(); // manufByt
400     LoopID = pCkSmpl->ReadInt32();
401     pCkSmpl->Read(&LoopType, 1, 4);
402     LoopStart = pCkSmpl->ReadInt32();
403     LoopEnd = pCkSmpl->ReadInt32();
404     LoopFraction = pCkSmpl->ReadInt32();
405     LoopPlayCount = pCkSmpl->ReadInt32();
406     } else { // 'smpl' chunk missing
407     // use default values
408     Manufacturer = 0;
409     Product = 0;
410 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 persson 1218 MIDIUnityNote = 60;
412 schoenebeck 809 FineTune = 0;
413 persson 1182 SMPTEFormat = smpte_format_no_offset;
414 schoenebeck 809 SMPTEOffset = 0;
415     Loops = 0;
416     LoopID = 0;
417 persson 1182 LoopType = loop_type_normal;
418 schoenebeck 809 LoopStart = 0;
419     LoopEnd = 0;
420     LoopFraction = 0;
421     LoopPlayCount = 0;
422     }
423 schoenebeck 2
424     FrameTable = NULL;
425     SamplePos = 0;
426     RAMCache.Size = 0;
427     RAMCache.pStart = NULL;
428     RAMCache.NullExtensionSize = 0;
429    
430 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433     Compressed = ewav;
434     Dithered = false;
435     TruncatedBits = 0;
436 schoenebeck 2 if (Compressed) {
437 persson 437 uint32_t version = ewav->ReadInt32();
438     if (version == 3 && BitDepth == 24) {
439     Dithered = ewav->ReadInt32();
440     ewav->SetPos(Channels == 2 ? 84 : 64);
441     TruncatedBits = ewav->ReadInt32();
442     }
443 schoenebeck 2 ScanCompressedSample();
444     }
445 schoenebeck 317
446     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 schoenebeck 317 }
451 persson 437 FrameOffset = 0; // just for streaming compressed samples
452 schoenebeck 21
453 persson 864 LoopSize = LoopEnd - LoopStart + 1;
454 schoenebeck 2 }
455    
456 schoenebeck 809 /**
457     * Apply sample and its settings to the respective RIFF chunks. You have
458     * to call File::Save() to make changes persistent.
459     *
460     * Usually there is absolutely no need to call this method explicitly.
461     * It will be called automatically when File::Save() was called.
462     *
463 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 schoenebeck 809 * was provided yet
465     * @throws gig::Exception if there is any invalid sample setting
466     */
467     void Sample::UpdateChunks() {
468     // first update base class's chunks
469     DLS::Sample::UpdateChunks();
470    
471     // make sure 'smpl' chunk exists
472     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 persson 1182 if (!pCkSmpl) {
474     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475     memset(pCkSmpl->LoadChunkData(), 0, 60);
476     }
477 schoenebeck 809 // update 'smpl' chunk
478     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 persson 1179 store32(&pData[0], Manufacturer);
481     store32(&pData[4], Product);
482     store32(&pData[8], SamplePeriod);
483     store32(&pData[12], MIDIUnityNote);
484     store32(&pData[16], FineTune);
485     store32(&pData[20], SMPTEFormat);
486     store32(&pData[24], SMPTEOffset);
487     store32(&pData[28], Loops);
488 schoenebeck 809
489     // we skip 'manufByt' for now (4 bytes)
490    
491 persson 1179 store32(&pData[36], LoopID);
492     store32(&pData[40], LoopType);
493     store32(&pData[44], LoopStart);
494     store32(&pData[48], LoopEnd);
495     store32(&pData[52], LoopFraction);
496     store32(&pData[56], LoopPlayCount);
497 schoenebeck 809
498     // make sure '3gix' chunk exists
499     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
502 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
504     if (pFile->pGroups) {
505     std::list<Group*>::iterator iter = pFile->pGroups->begin();
506     std::list<Group*>::iterator end = pFile->pGroups->end();
507 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
508 schoenebeck 929 if (*iter == pGroup) {
509     iSampleGroup = i;
510     break; // found
511     }
512     }
513     }
514 schoenebeck 809 // update '3gix' chunk
515     pData = (uint8_t*) pCk3gix->LoadChunkData();
516 persson 1179 store16(&pData[0], iSampleGroup);
517 schoenebeck 809 }
518    
519 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520     void Sample::ScanCompressedSample() {
521     //TODO: we have to add some more scans here (e.g. determine compression rate)
522     this->SamplesTotal = 0;
523     std::list<unsigned long> frameOffsets;
524    
525 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 persson 365
528 schoenebeck 2 // Scanning
529     pCkData->SetPos(0);
530 persson 365 if (Channels == 2) { // Stereo
531     for (int i = 0 ; ; i++) {
532     // for 24 bit samples every 8:th frame offset is
533     // stored, to save some memory
534     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535    
536     const int mode_l = pCkData->ReadUint8();
537     const int mode_r = pCkData->ReadUint8();
538     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541     if (pCkData->RemainingBytes() <= frameSize) {
542     SamplesInLastFrame =
543     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545     SamplesTotal += SamplesInLastFrame;
546 schoenebeck 2 break;
547 persson 365 }
548     SamplesTotal += SamplesPerFrame;
549     pCkData->SetPos(frameSize, RIFF::stream_curpos);
550     }
551     }
552     else { // Mono
553     for (int i = 0 ; ; i++) {
554     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556     const int mode = pCkData->ReadUint8();
557     if (mode > 5) throw gig::Exception("Unknown compression mode");
558     const unsigned long frameSize = bytesPerFrame[mode];
559    
560     if (pCkData->RemainingBytes() <= frameSize) {
561     SamplesInLastFrame =
562     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563     SamplesTotal += SamplesInLastFrame;
564 schoenebeck 2 break;
565 persson 365 }
566     SamplesTotal += SamplesPerFrame;
567     pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 schoenebeck 2 }
569     }
570     pCkData->SetPos(0);
571    
572     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573     if (FrameTable) delete[] FrameTable;
574     FrameTable = new unsigned long[frameOffsets.size()];
575     std::list<unsigned long>::iterator end = frameOffsets.end();
576     std::list<unsigned long>::iterator iter = frameOffsets.begin();
577     for (int i = 0; iter != end; i++, iter++) {
578     FrameTable[i] = *iter;
579     }
580     }
581    
582     /**
583     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584     * ReleaseSampleData() to free the memory if you don't need the cached
585     * sample data anymore.
586     *
587     * @returns buffer_t structure with start address and size of the buffer
588     * in bytes
589     * @see ReleaseSampleData(), Read(), SetPos()
590     */
591     buffer_t Sample::LoadSampleData() {
592     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593     }
594    
595     /**
596     * Reads (uncompresses if needed) and caches the first \a SampleCount
597     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598     * memory space if you don't need the cached samples anymore. There is no
599     * guarantee that exactly \a SampleCount samples will be cached; this is
600     * not an error. The size will be eventually truncated e.g. to the
601     * beginning of a frame of a compressed sample. This is done for
602     * efficiency reasons while streaming the wave by your sampler engine
603     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604     * that will be returned to determine the actual cached samples, but note
605     * that the size is given in bytes! You get the number of actually cached
606     * samples by dividing it by the frame size of the sample:
607 schoenebeck 384 * @code
608 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609     * long cachedsamples = buf.Size / pSample->FrameSize;
610 schoenebeck 384 * @endcode
611 schoenebeck 2 *
612     * @param SampleCount - number of sample points to load into RAM
613     * @returns buffer_t structure with start address and size of
614     * the cached sample data in bytes
615     * @see ReleaseSampleData(), Read(), SetPos()
616     */
617     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619     }
620    
621     /**
622     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623     * ReleaseSampleData() to free the memory if you don't need the cached
624     * sample data anymore.
625     * The method will add \a NullSamplesCount silence samples past the
626     * official buffer end (this won't affect the 'Size' member of the
627     * buffer_t structure, that means 'Size' always reflects the size of the
628     * actual sample data, the buffer might be bigger though). Silence
629     * samples past the official buffer are needed for differential
630     * algorithms that always have to take subsequent samples into account
631     * (resampling/interpolation would be an important example) and avoids
632     * memory access faults in such cases.
633     *
634     * @param NullSamplesCount - number of silence samples the buffer should
635     * be extended past it's data end
636     * @returns buffer_t structure with start address and
637     * size of the buffer in bytes
638     * @see ReleaseSampleData(), Read(), SetPos()
639     */
640     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642     }
643    
644     /**
645     * Reads (uncompresses if needed) and caches the first \a SampleCount
646     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647     * memory space if you don't need the cached samples anymore. There is no
648     * guarantee that exactly \a SampleCount samples will be cached; this is
649     * not an error. The size will be eventually truncated e.g. to the
650     * beginning of a frame of a compressed sample. This is done for
651     * efficiency reasons while streaming the wave by your sampler engine
652     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653     * that will be returned to determine the actual cached samples, but note
654     * that the size is given in bytes! You get the number of actually cached
655     * samples by dividing it by the frame size of the sample:
656 schoenebeck 384 * @code
657 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658     * long cachedsamples = buf.Size / pSample->FrameSize;
659 schoenebeck 384 * @endcode
660 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
661     * official buffer end (this won't affect the 'Size' member of the
662     * buffer_t structure, that means 'Size' always reflects the size of the
663     * actual sample data, the buffer might be bigger though). Silence
664     * samples past the official buffer are needed for differential
665     * algorithms that always have to take subsequent samples into account
666     * (resampling/interpolation would be an important example) and avoids
667     * memory access faults in such cases.
668     *
669     * @param SampleCount - number of sample points to load into RAM
670     * @param NullSamplesCount - number of silence samples the buffer should
671     * be extended past it's data end
672     * @returns buffer_t structure with start address and
673     * size of the cached sample data in bytes
674     * @see ReleaseSampleData(), Read(), SetPos()
675     */
676     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
681 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
682     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684     // fill the remaining buffer space with silence samples
685     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686     return GetCache();
687     }
688    
689     /**
690     * Returns current cached sample points. A buffer_t structure will be
691     * returned which contains address pointer to the begin of the cache and
692     * the size of the cached sample data in bytes. Use
693     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694     * RAM.
695     *
696     * @returns buffer_t structure with current cached sample points
697     * @see LoadSampleData();
698     */
699     buffer_t Sample::GetCache() {
700     // return a copy of the buffer_t structure
701     buffer_t result;
702     result.Size = this->RAMCache.Size;
703     result.pStart = this->RAMCache.pStart;
704     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705     return result;
706     }
707    
708     /**
709     * Frees the cached sample from RAM if loaded with
710     * <i>LoadSampleData()</i> previously.
711     *
712     * @see LoadSampleData();
713     */
714     void Sample::ReleaseSampleData() {
715     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716     RAMCache.pStart = NULL;
717     RAMCache.Size = 0;
718 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
719 schoenebeck 2 }
720    
721 schoenebeck 809 /** @brief Resize sample.
722     *
723     * Resizes the sample's wave form data, that is the actual size of
724     * sample wave data possible to be written for this sample. This call
725     * will return immediately and just schedule the resize operation. You
726     * should call File::Save() to actually perform the resize operation(s)
727     * "physically" to the file. As this can take a while on large files, it
728     * is recommended to call Resize() first on all samples which have to be
729     * resized and finally to call File::Save() to perform all those resize
730     * operations in one rush.
731     *
732     * The actual size (in bytes) is dependant to the current FrameSize
733     * value. You may want to set FrameSize before calling Resize().
734     *
735     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736     * enlarged samples before calling File::Save() as this might exceed the
737     * current sample's boundary!
738     *
739 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 schoenebeck 809 * other formats will fail!
742     *
743     * @param iNewSize - new sample wave data size in sample points (must be
744     * greater than zero)
745 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 schoenebeck 809 * or if \a iNewSize is less than 1
747     * @throws gig::Exception if existing sample is compressed
748     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749     * DLS::Sample::FormatTag, File::Save()
750     */
751     void Sample::Resize(int iNewSize) {
752     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753     DLS::Sample::Resize(iNewSize);
754     }
755    
756 schoenebeck 2 /**
757     * Sets the position within the sample (in sample points, not in
758     * bytes). Use this method and <i>Read()</i> if you don't want to load
759     * the sample into RAM, thus for disk streaming.
760     *
761     * Although the original Gigasampler engine doesn't allow positioning
762     * within compressed samples, I decided to implement it. Even though
763     * the Gigasampler format doesn't allow to define loops for compressed
764     * samples at the moment, positioning within compressed samples might be
765     * interesting for some sampler engines though. The only drawback about
766     * my decision is that it takes longer to load compressed gig Files on
767     * startup, because it's neccessary to scan the samples for some
768     * mandatory informations. But I think as it doesn't affect the runtime
769     * efficiency, nobody will have a problem with that.
770     *
771     * @param SampleCount number of sample points to jump
772     * @param Whence optional: to which relation \a SampleCount refers
773     * to, if omited <i>RIFF::stream_start</i> is assumed
774     * @returns the new sample position
775     * @see Read()
776     */
777     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778     if (Compressed) {
779     switch (Whence) {
780     case RIFF::stream_curpos:
781     this->SamplePos += SampleCount;
782     break;
783     case RIFF::stream_end:
784     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785     break;
786     case RIFF::stream_backward:
787     this->SamplePos -= SampleCount;
788     break;
789     case RIFF::stream_start: default:
790     this->SamplePos = SampleCount;
791     break;
792     }
793     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794    
795     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798     return this->SamplePos;
799     }
800     else { // not compressed
801     unsigned long orderedBytes = SampleCount * this->FrameSize;
802     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803     return (result == orderedBytes) ? SampleCount
804     : result / this->FrameSize;
805     }
806     }
807    
808     /**
809     * Returns the current position in the sample (in sample points).
810     */
811     unsigned long Sample::GetPos() {
812     if (Compressed) return SamplePos;
813     else return pCkData->GetPos() / FrameSize;
814     }
815    
816     /**
817 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
818     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819     * the position within the sample respectively, this method honors the
820     * looping informations of the sample (if any). The sample wave stream
821     * will be decompressed on the fly if using a compressed sample. Use this
822     * method if you don't want to load the sample into RAM, thus for disk
823     * streaming. All this methods needs to know to proceed with streaming
824     * for the next time you call this method is stored in \a pPlaybackState.
825     * You have to allocate and initialize the playback_state_t structure by
826     * yourself before you use it to stream a sample:
827 schoenebeck 384 * @code
828     * gig::playback_state_t playbackstate;
829     * playbackstate.position = 0;
830     * playbackstate.reverse = false;
831     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832     * @endcode
833 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
834     * defined or if the current read position is located within a loop area.
835     * The method already handles such cases by itself.
836     *
837 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
838     * have to use an external decompression buffer for <b>EACH</b>
839     * streaming thread to avoid race conditions and crashes!
840     *
841 schoenebeck 24 * @param pBuffer destination buffer
842     * @param SampleCount number of sample points to read
843     * @param pPlaybackState will be used to store and reload the playback
844     * state for the next ReadAndLoop() call
845 persson 864 * @param pDimRgn dimension region with looping information
846 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 schoenebeck 24 * @returns number of successfully read sample points
848 schoenebeck 384 * @see CreateDecompressionBuffer()
849 schoenebeck 24 */
850 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853     uint8_t* pDst = (uint8_t*) pBuffer;
854    
855     SetPos(pPlaybackState->position); // recover position from the last time
856    
857 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 schoenebeck 24
859 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 schoenebeck 24
862 persson 864 if (GetPos() <= loopEnd) {
863     switch (loop.LoopType) {
864 schoenebeck 24
865 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
866     do {
867     // if not endless loop check if max. number of loop cycles have been passed
868     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 schoenebeck 24
870 persson 864 if (!pPlaybackState->reverse) { // forward playback
871     do {
872     samplestoloopend = loopEnd - GetPos();
873     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874     samplestoread -= readsamples;
875     totalreadsamples += readsamples;
876     if (readsamples == samplestoloopend) {
877     pPlaybackState->reverse = true;
878     break;
879     }
880     } while (samplestoread && readsamples);
881     }
882     else { // backward playback
883 schoenebeck 24
884 persson 864 // as we can only read forward from disk, we have to
885     // determine the end position within the loop first,
886     // read forward from that 'end' and finally after
887     // reading, swap all sample frames so it reflects
888     // backward playback
889 schoenebeck 24
890 persson 864 unsigned long swapareastart = totalreadsamples;
891     unsigned long loopoffset = GetPos() - loop.LoopStart;
892     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 schoenebeck 24
895 persson 864 SetPos(reverseplaybackend);
896 schoenebeck 24
897 persson 864 // read samples for backward playback
898     do {
899     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900     samplestoreadinloop -= readsamples;
901     samplestoread -= readsamples;
902     totalreadsamples += readsamples;
903     } while (samplestoreadinloop && readsamples);
904 schoenebeck 24
905 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
906    
907     if (reverseplaybackend == loop.LoopStart) {
908     pPlaybackState->loop_cycles_left--;
909     pPlaybackState->reverse = false;
910     }
911    
912     // reverse the sample frames for backward playback
913     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
914 schoenebeck 24 }
915 persson 864 } while (samplestoread && readsamples);
916     break;
917     }
918 schoenebeck 24
919 persson 864 case loop_type_backward: { // TODO: not tested yet!
920     // forward playback (not entered the loop yet)
921     if (!pPlaybackState->reverse) do {
922     samplestoloopend = loopEnd - GetPos();
923     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
924     samplestoread -= readsamples;
925     totalreadsamples += readsamples;
926     if (readsamples == samplestoloopend) {
927     pPlaybackState->reverse = true;
928     break;
929     }
930     } while (samplestoread && readsamples);
931 schoenebeck 24
932 persson 864 if (!samplestoread) break;
933 schoenebeck 24
934 persson 864 // as we can only read forward from disk, we have to
935     // determine the end position within the loop first,
936     // read forward from that 'end' and finally after
937     // reading, swap all sample frames so it reflects
938     // backward playback
939 schoenebeck 24
940 persson 864 unsigned long swapareastart = totalreadsamples;
941     unsigned long loopoffset = GetPos() - loop.LoopStart;
942     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
943     : samplestoread;
944     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
945 schoenebeck 24
946 persson 864 SetPos(reverseplaybackend);
947 schoenebeck 24
948 persson 864 // read samples for backward playback
949     do {
950     // if not endless loop check if max. number of loop cycles have been passed
951     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
952     samplestoloopend = loopEnd - GetPos();
953     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
954     samplestoreadinloop -= readsamples;
955     samplestoread -= readsamples;
956     totalreadsamples += readsamples;
957     if (readsamples == samplestoloopend) {
958     pPlaybackState->loop_cycles_left--;
959     SetPos(loop.LoopStart);
960     }
961     } while (samplestoreadinloop && readsamples);
962 schoenebeck 24
963 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
964 schoenebeck 24
965 persson 864 // reverse the sample frames for backward playback
966     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
967     break;
968     }
969 schoenebeck 24
970 persson 864 default: case loop_type_normal: {
971     do {
972     // if not endless loop check if max. number of loop cycles have been passed
973     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
974     samplestoloopend = loopEnd - GetPos();
975     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
976     samplestoread -= readsamples;
977     totalreadsamples += readsamples;
978     if (readsamples == samplestoloopend) {
979     pPlaybackState->loop_cycles_left--;
980     SetPos(loop.LoopStart);
981     }
982     } while (samplestoread && readsamples);
983     break;
984     }
985 schoenebeck 24 }
986     }
987     }
988    
989     // read on without looping
990     if (samplestoread) do {
991 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
992 schoenebeck 24 samplestoread -= readsamples;
993     totalreadsamples += readsamples;
994     } while (readsamples && samplestoread);
995    
996     // store current position
997     pPlaybackState->position = GetPos();
998    
999     return totalreadsamples;
1000     }
1001    
1002     /**
1003 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1004     * position into the buffer pointed by \a pBuffer and increments the
1005     * position within the sample. The sample wave stream will be
1006     * decompressed on the fly if using a compressed sample. Use this method
1007     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1008     * thus for disk streaming.
1009     *
1010 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1011     * have to use an external decompression buffer for <b>EACH</b>
1012     * streaming thread to avoid race conditions and crashes!
1013     *
1014 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1015     * (using native endianness). For 24 bit, the buffer will
1016     * contain three bytes per sample, little-endian.
1017     *
1018 schoenebeck 2 * @param pBuffer destination buffer
1019     * @param SampleCount number of sample points to read
1020 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1021 schoenebeck 2 * @returns number of successfully read sample points
1022 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1023 schoenebeck 2 */
1024 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1025 schoenebeck 21 if (SampleCount == 0) return 0;
1026 schoenebeck 317 if (!Compressed) {
1027     if (BitDepth == 24) {
1028 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1029 schoenebeck 317 }
1030 persson 365 else { // 16 bit
1031     // (pCkData->Read does endian correction)
1032     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1033     : pCkData->Read(pBuffer, SampleCount, 2);
1034     }
1035 schoenebeck 317 }
1036 persson 365 else {
1037 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1038 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1039     unsigned long assumedsize = GuessSize(SampleCount),
1040 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1041     remainingsamples = SampleCount,
1042 persson 365 copysamples, skipsamples,
1043     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1044 schoenebeck 2 this->FrameOffset = 0;
1045    
1046 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1047    
1048     // if decompression buffer too small, then reduce amount of samples to read
1049     if (pDecompressionBuffer->Size < assumedsize) {
1050     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1051     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1052     remainingsamples = SampleCount;
1053     assumedsize = GuessSize(SampleCount);
1054 schoenebeck 2 }
1055    
1056 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1057 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1058 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1059 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1060    
1061 persson 365 while (remainingsamples && remainingbytes) {
1062     unsigned long framesamples = SamplesPerFrame;
1063     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1064 schoenebeck 2
1065 persson 365 int mode_l = *pSrc++, mode_r = 0;
1066    
1067     if (Channels == 2) {
1068     mode_r = *pSrc++;
1069     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1070     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1071     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1072     if (remainingbytes < framebytes) { // last frame in sample
1073     framesamples = SamplesInLastFrame;
1074     if (mode_l == 4 && (framesamples & 1)) {
1075     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1076     }
1077     else {
1078     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1079     }
1080 schoenebeck 2 }
1081     }
1082 persson 365 else {
1083     framebytes = bytesPerFrame[mode_l] + 1;
1084     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1085     if (remainingbytes < framebytes) {
1086     framesamples = SamplesInLastFrame;
1087     }
1088     }
1089 schoenebeck 2
1090     // determine how many samples in this frame to skip and read
1091 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1092     if (currentframeoffset <= framesamples) {
1093     copysamples = framesamples - currentframeoffset;
1094     skipsamples = currentframeoffset;
1095     }
1096     else {
1097     copysamples = 0;
1098     skipsamples = framesamples;
1099     }
1100 schoenebeck 2 }
1101     else {
1102 persson 365 // This frame has enough data for pBuffer, but not
1103     // all of the frame is needed. Set file position
1104     // to start of this frame for next call to Read.
1105 schoenebeck 2 copysamples = remainingsamples;
1106 persson 365 skipsamples = currentframeoffset;
1107     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1108     this->FrameOffset = currentframeoffset + copysamples;
1109     }
1110     remainingsamples -= copysamples;
1111    
1112     if (remainingbytes > framebytes) {
1113     remainingbytes -= framebytes;
1114     if (remainingsamples == 0 &&
1115     currentframeoffset + copysamples == framesamples) {
1116     // This frame has enough data for pBuffer, and
1117     // all of the frame is needed. Set file
1118     // position to start of next frame for next
1119     // call to Read. FrameOffset is 0.
1120 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1121     }
1122     }
1123 persson 365 else remainingbytes = 0;
1124 schoenebeck 2
1125 persson 365 currentframeoffset -= skipsamples;
1126 schoenebeck 2
1127 persson 365 if (copysamples == 0) {
1128     // skip this frame
1129     pSrc += framebytes - Channels;
1130     }
1131     else {
1132     const unsigned char* const param_l = pSrc;
1133     if (BitDepth == 24) {
1134     if (mode_l != 2) pSrc += 12;
1135 schoenebeck 2
1136 persson 365 if (Channels == 2) { // Stereo
1137     const unsigned char* const param_r = pSrc;
1138     if (mode_r != 2) pSrc += 12;
1139    
1140 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1141 persson 437 skipsamples, copysamples, TruncatedBits);
1142 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1143 persson 437 skipsamples, copysamples, TruncatedBits);
1144 persson 902 pDst24 += copysamples * 6;
1145 schoenebeck 2 }
1146 persson 365 else { // Mono
1147 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1148 persson 437 skipsamples, copysamples, TruncatedBits);
1149 persson 902 pDst24 += copysamples * 3;
1150 schoenebeck 2 }
1151 persson 365 }
1152     else { // 16 bit
1153     if (mode_l) pSrc += 4;
1154 schoenebeck 2
1155 persson 365 int step;
1156     if (Channels == 2) { // Stereo
1157     const unsigned char* const param_r = pSrc;
1158     if (mode_r) pSrc += 4;
1159    
1160     step = (2 - mode_l) + (2 - mode_r);
1161 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1162     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1163 persson 365 skipsamples, copysamples);
1164     pDst += copysamples << 1;
1165 schoenebeck 2 }
1166 persson 365 else { // Mono
1167     step = 2 - mode_l;
1168 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1169 persson 365 pDst += copysamples;
1170 schoenebeck 2 }
1171 persson 365 }
1172     pSrc += nextFrameOffset;
1173     }
1174 schoenebeck 2
1175 persson 365 // reload from disk to local buffer if needed
1176     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1177     assumedsize = GuessSize(remainingsamples);
1178     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1179     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1180 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1181     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1182 schoenebeck 2 }
1183 persson 365 } // while
1184    
1185 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1186 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1187 schoenebeck 2 return (SampleCount - remainingsamples);
1188     }
1189     }
1190    
1191 schoenebeck 809 /** @brief Write sample wave data.
1192     *
1193     * Writes \a SampleCount number of sample points from the buffer pointed
1194     * by \a pBuffer and increments the position within the sample. Use this
1195     * method to directly write the sample data to disk, i.e. if you don't
1196     * want or cannot load the whole sample data into RAM.
1197     *
1198     * You have to Resize() the sample to the desired size and call
1199     * File::Save() <b>before</b> using Write().
1200     *
1201     * Note: there is currently no support for writing compressed samples.
1202     *
1203 persson 1264 * For 16 bit samples, the data in the source buffer should be
1204     * int16_t (using native endianness). For 24 bit, the buffer
1205     * should contain three bytes per sample, little-endian.
1206     *
1207 schoenebeck 809 * @param pBuffer - source buffer
1208     * @param SampleCount - number of sample points to write
1209     * @throws DLS::Exception if current sample size is too small
1210     * @throws gig::Exception if sample is compressed
1211     * @see DLS::LoadSampleData()
1212     */
1213     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1214     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1215 persson 1207
1216     // if this is the first write in this sample, reset the
1217     // checksum calculator
1218 persson 1199 if (pCkData->GetPos() == 0) {
1219 schoenebeck 1381 __resetCRC(crc);
1220 persson 1199 }
1221 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1222     unsigned long res;
1223     if (BitDepth == 24) {
1224     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1225     } else { // 16 bit
1226     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1227     : pCkData->Write(pBuffer, SampleCount, 2);
1228     }
1229 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1230 persson 1199
1231 persson 1207 // if this is the last write, update the checksum chunk in the
1232     // file
1233 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1234     File* pFile = static_cast<File*>(GetParent());
1235 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1236 persson 1199 }
1237     return res;
1238 schoenebeck 809 }
1239    
1240 schoenebeck 384 /**
1241     * Allocates a decompression buffer for streaming (compressed) samples
1242     * with Sample::Read(). If you are using more than one streaming thread
1243     * in your application you <b>HAVE</b> to create a decompression buffer
1244     * for <b>EACH</b> of your streaming threads and provide it with the
1245     * Sample::Read() call in order to avoid race conditions and crashes.
1246     *
1247     * You should free the memory occupied by the allocated buffer(s) once
1248     * you don't need one of your streaming threads anymore by calling
1249     * DestroyDecompressionBuffer().
1250     *
1251     * @param MaxReadSize - the maximum size (in sample points) you ever
1252     * expect to read with one Read() call
1253     * @returns allocated decompression buffer
1254     * @see DestroyDecompressionBuffer()
1255     */
1256     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1257     buffer_t result;
1258     const double worstCaseHeaderOverhead =
1259     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1260     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1261     result.pStart = new int8_t[result.Size];
1262     result.NullExtensionSize = 0;
1263     return result;
1264     }
1265    
1266     /**
1267     * Free decompression buffer, previously created with
1268     * CreateDecompressionBuffer().
1269     *
1270     * @param DecompressionBuffer - previously allocated decompression
1271     * buffer to free
1272     */
1273     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1274     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1275     delete[] (int8_t*) DecompressionBuffer.pStart;
1276     DecompressionBuffer.pStart = NULL;
1277     DecompressionBuffer.Size = 0;
1278     DecompressionBuffer.NullExtensionSize = 0;
1279     }
1280     }
1281    
1282 schoenebeck 930 /**
1283     * Returns pointer to the Group this Sample belongs to. In the .gig
1284     * format a sample always belongs to one group. If it wasn't explicitly
1285     * assigned to a certain group, it will be automatically assigned to a
1286     * default group.
1287     *
1288     * @returns Sample's Group (never NULL)
1289     */
1290     Group* Sample::GetGroup() const {
1291     return pGroup;
1292     }
1293    
1294 schoenebeck 2 Sample::~Sample() {
1295     Instances--;
1296 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1297     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1298     InternalDecompressionBuffer.pStart = NULL;
1299     InternalDecompressionBuffer.Size = 0;
1300 schoenebeck 355 }
1301 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1302     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1303     }
1304    
1305    
1306    
1307     // *************** DimensionRegion ***************
1308     // *
1309    
1310 schoenebeck 16 uint DimensionRegion::Instances = 0;
1311     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1312    
1313 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1314 schoenebeck 16 Instances++;
1315    
1316 schoenebeck 823 pSample = NULL;
1317 schoenebeck 1316 pRegion = pParent;
1318 schoenebeck 823
1319 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1320     else memset(&Crossfade, 0, 4);
1321    
1322 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1323 schoenebeck 2
1324     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1325 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1326 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1327 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1328     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329     _3ewa->ReadInt16(); // unknown
1330     LFO1InternalDepth = _3ewa->ReadUint16();
1331     _3ewa->ReadInt16(); // unknown
1332     LFO3InternalDepth = _3ewa->ReadInt16();
1333     _3ewa->ReadInt16(); // unknown
1334     LFO1ControlDepth = _3ewa->ReadUint16();
1335     _3ewa->ReadInt16(); // unknown
1336     LFO3ControlDepth = _3ewa->ReadInt16();
1337     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1338     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339     _3ewa->ReadInt16(); // unknown
1340     EG1Sustain = _3ewa->ReadUint16();
1341     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1342     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1343     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1344     EG1ControllerInvert = eg1ctrloptions & 0x01;
1345     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1346     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1347     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1348     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1349     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1350     EG2ControllerInvert = eg2ctrloptions & 0x01;
1351     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1352     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1353     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1354     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1355     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357     _3ewa->ReadInt16(); // unknown
1358     EG2Sustain = _3ewa->ReadUint16();
1359     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360     _3ewa->ReadInt16(); // unknown
1361     LFO2ControlDepth = _3ewa->ReadUint16();
1362     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1363     _3ewa->ReadInt16(); // unknown
1364     LFO2InternalDepth = _3ewa->ReadUint16();
1365     int32_t eg1decay2 = _3ewa->ReadInt32();
1366     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1367     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1368     _3ewa->ReadInt16(); // unknown
1369     EG1PreAttack = _3ewa->ReadUint16();
1370     int32_t eg2decay2 = _3ewa->ReadInt32();
1371     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1372     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1373     _3ewa->ReadInt16(); // unknown
1374     EG2PreAttack = _3ewa->ReadUint16();
1375     uint8_t velocityresponse = _3ewa->ReadUint8();
1376     if (velocityresponse < 5) {
1377     VelocityResponseCurve = curve_type_nonlinear;
1378     VelocityResponseDepth = velocityresponse;
1379     } else if (velocityresponse < 10) {
1380     VelocityResponseCurve = curve_type_linear;
1381     VelocityResponseDepth = velocityresponse - 5;
1382     } else if (velocityresponse < 15) {
1383     VelocityResponseCurve = curve_type_special;
1384     VelocityResponseDepth = velocityresponse - 10;
1385     } else {
1386     VelocityResponseCurve = curve_type_unknown;
1387     VelocityResponseDepth = 0;
1388     }
1389     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1390     if (releasevelocityresponse < 5) {
1391     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1392     ReleaseVelocityResponseDepth = releasevelocityresponse;
1393     } else if (releasevelocityresponse < 10) {
1394     ReleaseVelocityResponseCurve = curve_type_linear;
1395     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1396     } else if (releasevelocityresponse < 15) {
1397     ReleaseVelocityResponseCurve = curve_type_special;
1398     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1399     } else {
1400     ReleaseVelocityResponseCurve = curve_type_unknown;
1401     ReleaseVelocityResponseDepth = 0;
1402     }
1403     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1404     AttenuationControllerThreshold = _3ewa->ReadInt8();
1405     _3ewa->ReadInt32(); // unknown
1406     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1407     _3ewa->ReadInt16(); // unknown
1408     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1409     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1410     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1411     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1412     else DimensionBypass = dim_bypass_ctrl_none;
1413     uint8_t pan = _3ewa->ReadUint8();
1414     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1415     SelfMask = _3ewa->ReadInt8() & 0x01;
1416     _3ewa->ReadInt8(); // unknown
1417     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1418     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1419     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1420     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1421     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1422     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1423     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1424     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1425     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1426     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1427     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1428     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1429     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1430     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1431     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1432     : vcf_res_ctrl_none;
1433     uint16_t eg3depth = _3ewa->ReadUint16();
1434     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1435     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1436     _3ewa->ReadInt16(); // unknown
1437     ChannelOffset = _3ewa->ReadUint8() / 4;
1438     uint8_t regoptions = _3ewa->ReadUint8();
1439     MSDecode = regoptions & 0x01; // bit 0
1440     SustainDefeat = regoptions & 0x02; // bit 1
1441     _3ewa->ReadInt16(); // unknown
1442     VelocityUpperLimit = _3ewa->ReadInt8();
1443     _3ewa->ReadInt8(); // unknown
1444     _3ewa->ReadInt16(); // unknown
1445     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1446     _3ewa->ReadInt8(); // unknown
1447     _3ewa->ReadInt8(); // unknown
1448     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1449     uint8_t vcfcutoff = _3ewa->ReadUint8();
1450     VCFEnabled = vcfcutoff & 0x80; // bit 7
1451     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1452     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1453     uint8_t vcfvelscale = _3ewa->ReadUint8();
1454     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1455     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1456     _3ewa->ReadInt8(); // unknown
1457     uint8_t vcfresonance = _3ewa->ReadUint8();
1458     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1459     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1460     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1461     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1462     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1463     uint8_t vcfvelocity = _3ewa->ReadUint8();
1464     VCFVelocityDynamicRange = vcfvelocity % 5;
1465     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1466     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1467     if (VCFType == vcf_type_lowpass) {
1468     if (lfo3ctrl & 0x40) // bit 6
1469     VCFType = vcf_type_lowpassturbo;
1470     }
1471 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1472     _3ewa->Read(DimensionUpperLimits, 1, 8);
1473     } else {
1474     memset(DimensionUpperLimits, 0, 8);
1475     }
1476 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1477     // use default values
1478     LFO3Frequency = 1.0;
1479     EG3Attack = 0.0;
1480     LFO1InternalDepth = 0;
1481     LFO3InternalDepth = 0;
1482     LFO1ControlDepth = 0;
1483     LFO3ControlDepth = 0;
1484     EG1Attack = 0.0;
1485 persson 1218 EG1Decay1 = 0.005;
1486     EG1Sustain = 1000;
1487     EG1Release = 0.3;
1488 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1489     EG1Controller.controller_number = 0;
1490     EG1ControllerInvert = false;
1491     EG1ControllerAttackInfluence = 0;
1492     EG1ControllerDecayInfluence = 0;
1493     EG1ControllerReleaseInfluence = 0;
1494     EG2Controller.type = eg2_ctrl_t::type_none;
1495     EG2Controller.controller_number = 0;
1496     EG2ControllerInvert = false;
1497     EG2ControllerAttackInfluence = 0;
1498     EG2ControllerDecayInfluence = 0;
1499     EG2ControllerReleaseInfluence = 0;
1500     LFO1Frequency = 1.0;
1501     EG2Attack = 0.0;
1502 persson 1218 EG2Decay1 = 0.005;
1503     EG2Sustain = 1000;
1504     EG2Release = 0.3;
1505 schoenebeck 809 LFO2ControlDepth = 0;
1506     LFO2Frequency = 1.0;
1507     LFO2InternalDepth = 0;
1508     EG1Decay2 = 0.0;
1509 persson 1218 EG1InfiniteSustain = true;
1510     EG1PreAttack = 0;
1511 schoenebeck 809 EG2Decay2 = 0.0;
1512 persson 1218 EG2InfiniteSustain = true;
1513     EG2PreAttack = 0;
1514 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1515     VelocityResponseDepth = 3;
1516     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1517     ReleaseVelocityResponseDepth = 3;
1518     VelocityResponseCurveScaling = 32;
1519     AttenuationControllerThreshold = 0;
1520     SampleStartOffset = 0;
1521     PitchTrack = true;
1522     DimensionBypass = dim_bypass_ctrl_none;
1523     Pan = 0;
1524     SelfMask = true;
1525     LFO3Controller = lfo3_ctrl_modwheel;
1526     LFO3Sync = false;
1527     InvertAttenuationController = false;
1528     AttenuationController.type = attenuation_ctrl_t::type_none;
1529     AttenuationController.controller_number = 0;
1530     LFO2Controller = lfo2_ctrl_internal;
1531     LFO2FlipPhase = false;
1532     LFO2Sync = false;
1533     LFO1Controller = lfo1_ctrl_internal;
1534     LFO1FlipPhase = false;
1535     LFO1Sync = false;
1536     VCFResonanceController = vcf_res_ctrl_none;
1537     EG3Depth = 0;
1538     ChannelOffset = 0;
1539     MSDecode = false;
1540     SustainDefeat = false;
1541     VelocityUpperLimit = 0;
1542     ReleaseTriggerDecay = 0;
1543     EG1Hold = false;
1544     VCFEnabled = false;
1545     VCFCutoff = 0;
1546     VCFCutoffController = vcf_cutoff_ctrl_none;
1547     VCFCutoffControllerInvert = false;
1548     VCFVelocityScale = 0;
1549     VCFResonance = 0;
1550     VCFResonanceDynamic = false;
1551     VCFKeyboardTracking = false;
1552     VCFKeyboardTrackingBreakpoint = 0;
1553     VCFVelocityDynamicRange = 0x04;
1554     VCFVelocityCurve = curve_type_linear;
1555     VCFType = vcf_type_lowpass;
1556 persson 1247 memset(DimensionUpperLimits, 127, 8);
1557 schoenebeck 2 }
1558 schoenebeck 16
1559 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1560     VelocityResponseDepth,
1561     VelocityResponseCurveScaling);
1562    
1563 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1564     ReleaseVelocityResponseCurve,
1565     ReleaseVelocityResponseDepth
1566     );
1567 persson 613
1568 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1569     VCFVelocityDynamicRange,
1570     VCFVelocityScale,
1571     VCFCutoffController);
1572 persson 613
1573     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1574 persson 858 VelocityTable = 0;
1575 persson 613 }
1576    
1577 persson 1301 /*
1578     * Constructs a DimensionRegion by copying all parameters from
1579     * another DimensionRegion
1580     */
1581     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1582     Instances++;
1583     *this = src; // default memberwise shallow copy of all parameters
1584     pParentList = _3ewl; // restore the chunk pointer
1585    
1586     // deep copy of owned structures
1587     if (src.VelocityTable) {
1588     VelocityTable = new uint8_t[128];
1589     for (int k = 0 ; k < 128 ; k++)
1590     VelocityTable[k] = src.VelocityTable[k];
1591     }
1592     if (src.pSampleLoops) {
1593     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1594     for (int k = 0 ; k < src.SampleLoops ; k++)
1595     pSampleLoops[k] = src.pSampleLoops[k];
1596     }
1597     }
1598    
1599 schoenebeck 809 /**
1600 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1601     * which depends on this value.
1602     */
1603     void DimensionRegion::SetGain(int32_t gain) {
1604     DLS::Sampler::SetGain(gain);
1605     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1606     }
1607    
1608     /**
1609 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1610     * have to call File::Save() to make changes persistent.
1611     *
1612     * Usually there is absolutely no need to call this method explicitly.
1613     * It will be called automatically when File::Save() was called.
1614     */
1615     void DimensionRegion::UpdateChunks() {
1616     // first update base class's chunk
1617     DLS::Sampler::UpdateChunks();
1618    
1619 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1620     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1621     pData[12] = Crossfade.in_start;
1622     pData[13] = Crossfade.in_end;
1623     pData[14] = Crossfade.out_start;
1624     pData[15] = Crossfade.out_end;
1625    
1626 schoenebeck 809 // make sure '3ewa' chunk exists
1627     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1628 persson 1317 if (!_3ewa) {
1629     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1630     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1631     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1632 persson 1264 }
1633 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1634 schoenebeck 809
1635     // update '3ewa' chunk with DimensionRegion's current settings
1636    
1637 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1638 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1639 schoenebeck 809
1640     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1641 persson 1179 store32(&pData[4], lfo3freq);
1642 schoenebeck 809
1643     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1644 persson 1179 store32(&pData[8], eg3attack);
1645 schoenebeck 809
1646     // next 2 bytes unknown
1647    
1648 persson 1179 store16(&pData[14], LFO1InternalDepth);
1649 schoenebeck 809
1650     // next 2 bytes unknown
1651    
1652 persson 1179 store16(&pData[18], LFO3InternalDepth);
1653 schoenebeck 809
1654     // next 2 bytes unknown
1655    
1656 persson 1179 store16(&pData[22], LFO1ControlDepth);
1657 schoenebeck 809
1658     // next 2 bytes unknown
1659    
1660 persson 1179 store16(&pData[26], LFO3ControlDepth);
1661 schoenebeck 809
1662     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1663 persson 1179 store32(&pData[28], eg1attack);
1664 schoenebeck 809
1665     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1666 persson 1179 store32(&pData[32], eg1decay1);
1667 schoenebeck 809
1668     // next 2 bytes unknown
1669    
1670 persson 1179 store16(&pData[38], EG1Sustain);
1671 schoenebeck 809
1672     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1673 persson 1179 store32(&pData[40], eg1release);
1674 schoenebeck 809
1675     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1676 persson 1179 pData[44] = eg1ctl;
1677 schoenebeck 809
1678     const uint8_t eg1ctrloptions =
1679 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1680 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1681     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1682     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1683 persson 1179 pData[45] = eg1ctrloptions;
1684 schoenebeck 809
1685     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1686 persson 1179 pData[46] = eg2ctl;
1687 schoenebeck 809
1688     const uint8_t eg2ctrloptions =
1689 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1690 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1691     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1692     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1693 persson 1179 pData[47] = eg2ctrloptions;
1694 schoenebeck 809
1695     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1696 persson 1179 store32(&pData[48], lfo1freq);
1697 schoenebeck 809
1698     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1699 persson 1179 store32(&pData[52], eg2attack);
1700 schoenebeck 809
1701     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1702 persson 1179 store32(&pData[56], eg2decay1);
1703 schoenebeck 809
1704     // next 2 bytes unknown
1705    
1706 persson 1179 store16(&pData[62], EG2Sustain);
1707 schoenebeck 809
1708     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1709 persson 1179 store32(&pData[64], eg2release);
1710 schoenebeck 809
1711     // next 2 bytes unknown
1712    
1713 persson 1179 store16(&pData[70], LFO2ControlDepth);
1714 schoenebeck 809
1715     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1716 persson 1179 store32(&pData[72], lfo2freq);
1717 schoenebeck 809
1718     // next 2 bytes unknown
1719    
1720 persson 1179 store16(&pData[78], LFO2InternalDepth);
1721 schoenebeck 809
1722     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1723 persson 1179 store32(&pData[80], eg1decay2);
1724 schoenebeck 809
1725     // next 2 bytes unknown
1726    
1727 persson 1179 store16(&pData[86], EG1PreAttack);
1728 schoenebeck 809
1729     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1730 persson 1179 store32(&pData[88], eg2decay2);
1731 schoenebeck 809
1732     // next 2 bytes unknown
1733    
1734 persson 1179 store16(&pData[94], EG2PreAttack);
1735 schoenebeck 809
1736     {
1737     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1738     uint8_t velocityresponse = VelocityResponseDepth;
1739     switch (VelocityResponseCurve) {
1740     case curve_type_nonlinear:
1741     break;
1742     case curve_type_linear:
1743     velocityresponse += 5;
1744     break;
1745     case curve_type_special:
1746     velocityresponse += 10;
1747     break;
1748     case curve_type_unknown:
1749     default:
1750     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1751     }
1752 persson 1179 pData[96] = velocityresponse;
1753 schoenebeck 809 }
1754    
1755     {
1756     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1757     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1758     switch (ReleaseVelocityResponseCurve) {
1759     case curve_type_nonlinear:
1760     break;
1761     case curve_type_linear:
1762     releasevelocityresponse += 5;
1763     break;
1764     case curve_type_special:
1765     releasevelocityresponse += 10;
1766     break;
1767     case curve_type_unknown:
1768     default:
1769     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1770     }
1771 persson 1179 pData[97] = releasevelocityresponse;
1772 schoenebeck 809 }
1773    
1774 persson 1179 pData[98] = VelocityResponseCurveScaling;
1775 schoenebeck 809
1776 persson 1179 pData[99] = AttenuationControllerThreshold;
1777 schoenebeck 809
1778     // next 4 bytes unknown
1779    
1780 persson 1179 store16(&pData[104], SampleStartOffset);
1781 schoenebeck 809
1782     // next 2 bytes unknown
1783    
1784     {
1785     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1786     switch (DimensionBypass) {
1787     case dim_bypass_ctrl_94:
1788     pitchTrackDimensionBypass |= 0x10;
1789     break;
1790     case dim_bypass_ctrl_95:
1791     pitchTrackDimensionBypass |= 0x20;
1792     break;
1793     case dim_bypass_ctrl_none:
1794     //FIXME: should we set anything here?
1795     break;
1796     default:
1797     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1798     }
1799 persson 1179 pData[108] = pitchTrackDimensionBypass;
1800 schoenebeck 809 }
1801    
1802     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1803 persson 1179 pData[109] = pan;
1804 schoenebeck 809
1805     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1806 persson 1179 pData[110] = selfmask;
1807 schoenebeck 809
1808     // next byte unknown
1809    
1810     {
1811     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1812     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1813     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1814     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1815 persson 1179 pData[112] = lfo3ctrl;
1816 schoenebeck 809 }
1817    
1818     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1819 persson 1179 pData[113] = attenctl;
1820 schoenebeck 809
1821     {
1822     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1823     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1824     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1825     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1826 persson 1179 pData[114] = lfo2ctrl;
1827 schoenebeck 809 }
1828    
1829     {
1830     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1831     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1832     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1833     if (VCFResonanceController != vcf_res_ctrl_none)
1834     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1835 persson 1179 pData[115] = lfo1ctrl;
1836 schoenebeck 809 }
1837    
1838     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1839     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1840 persson 1869 store16(&pData[116], eg3depth);
1841 schoenebeck 809
1842     // next 2 bytes unknown
1843    
1844     const uint8_t channeloffset = ChannelOffset * 4;
1845 persson 1179 pData[120] = channeloffset;
1846 schoenebeck 809
1847     {
1848     uint8_t regoptions = 0;
1849     if (MSDecode) regoptions |= 0x01; // bit 0
1850     if (SustainDefeat) regoptions |= 0x02; // bit 1
1851 persson 1179 pData[121] = regoptions;
1852 schoenebeck 809 }
1853    
1854     // next 2 bytes unknown
1855    
1856 persson 1179 pData[124] = VelocityUpperLimit;
1857 schoenebeck 809
1858     // next 3 bytes unknown
1859    
1860 persson 1179 pData[128] = ReleaseTriggerDecay;
1861 schoenebeck 809
1862     // next 2 bytes unknown
1863    
1864     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1865 persson 1179 pData[131] = eg1hold;
1866 schoenebeck 809
1867 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1868 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1869 persson 1179 pData[132] = vcfcutoff;
1870 schoenebeck 809
1871 persson 1179 pData[133] = VCFCutoffController;
1872 schoenebeck 809
1873 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1874 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1875 persson 1179 pData[134] = vcfvelscale;
1876 schoenebeck 809
1877     // next byte unknown
1878    
1879 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1880 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1881 persson 1179 pData[136] = vcfresonance;
1882 schoenebeck 809
1883 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1884 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1885 persson 1179 pData[137] = vcfbreakpoint;
1886 schoenebeck 809
1887     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1888     VCFVelocityCurve * 5;
1889 persson 1179 pData[138] = vcfvelocity;
1890 schoenebeck 809
1891     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1892 persson 1179 pData[139] = vcftype;
1893 persson 1070
1894     if (chunksize >= 148) {
1895     memcpy(&pData[140], DimensionUpperLimits, 8);
1896     }
1897 schoenebeck 809 }
1898    
1899 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1900     curve_type_t curveType = releaseVelocityResponseCurve;
1901     uint8_t depth = releaseVelocityResponseDepth;
1902     // this models a strange behaviour or bug in GSt: two of the
1903     // velocity response curves for release time are not used even
1904     // if specified, instead another curve is chosen.
1905     if ((curveType == curve_type_nonlinear && depth == 0) ||
1906     (curveType == curve_type_special && depth == 4)) {
1907     curveType = curve_type_nonlinear;
1908     depth = 3;
1909     }
1910     return GetVelocityTable(curveType, depth, 0);
1911     }
1912    
1913     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1914     uint8_t vcfVelocityDynamicRange,
1915     uint8_t vcfVelocityScale,
1916     vcf_cutoff_ctrl_t vcfCutoffController)
1917     {
1918     curve_type_t curveType = vcfVelocityCurve;
1919     uint8_t depth = vcfVelocityDynamicRange;
1920     // even stranger GSt: two of the velocity response curves for
1921     // filter cutoff are not used, instead another special curve
1922     // is chosen. This curve is not used anywhere else.
1923     if ((curveType == curve_type_nonlinear && depth == 0) ||
1924     (curveType == curve_type_special && depth == 4)) {
1925     curveType = curve_type_special;
1926     depth = 5;
1927     }
1928     return GetVelocityTable(curveType, depth,
1929     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1930     ? vcfVelocityScale : 0);
1931     }
1932    
1933 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1934     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1935     {
1936     double* table;
1937     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1938 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1939 persson 613 table = (*pVelocityTables)[tableKey];
1940 schoenebeck 16 }
1941     else {
1942 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1943     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1944 schoenebeck 16 }
1945 persson 613 return table;
1946 schoenebeck 2 }
1947 schoenebeck 55
1948 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
1949     return pRegion;
1950     }
1951    
1952 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1953     leverage_ctrl_t decodedcontroller;
1954     switch (EncodedController) {
1955     // special controller
1956     case _lev_ctrl_none:
1957     decodedcontroller.type = leverage_ctrl_t::type_none;
1958     decodedcontroller.controller_number = 0;
1959     break;
1960     case _lev_ctrl_velocity:
1961     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1962     decodedcontroller.controller_number = 0;
1963     break;
1964     case _lev_ctrl_channelaftertouch:
1965     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1966     decodedcontroller.controller_number = 0;
1967     break;
1968 schoenebeck 55
1969 schoenebeck 36 // ordinary MIDI control change controller
1970     case _lev_ctrl_modwheel:
1971     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1972     decodedcontroller.controller_number = 1;
1973     break;
1974     case _lev_ctrl_breath:
1975     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1976     decodedcontroller.controller_number = 2;
1977     break;
1978     case _lev_ctrl_foot:
1979     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1980     decodedcontroller.controller_number = 4;
1981     break;
1982     case _lev_ctrl_effect1:
1983     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1984     decodedcontroller.controller_number = 12;
1985     break;
1986     case _lev_ctrl_effect2:
1987     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1988     decodedcontroller.controller_number = 13;
1989     break;
1990     case _lev_ctrl_genpurpose1:
1991     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1992     decodedcontroller.controller_number = 16;
1993     break;
1994     case _lev_ctrl_genpurpose2:
1995     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1996     decodedcontroller.controller_number = 17;
1997     break;
1998     case _lev_ctrl_genpurpose3:
1999     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2000     decodedcontroller.controller_number = 18;
2001     break;
2002     case _lev_ctrl_genpurpose4:
2003     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2004     decodedcontroller.controller_number = 19;
2005     break;
2006     case _lev_ctrl_portamentotime:
2007     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2008     decodedcontroller.controller_number = 5;
2009     break;
2010     case _lev_ctrl_sustainpedal:
2011     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2012     decodedcontroller.controller_number = 64;
2013     break;
2014     case _lev_ctrl_portamento:
2015     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2016     decodedcontroller.controller_number = 65;
2017     break;
2018     case _lev_ctrl_sostenutopedal:
2019     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2020     decodedcontroller.controller_number = 66;
2021     break;
2022     case _lev_ctrl_softpedal:
2023     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2024     decodedcontroller.controller_number = 67;
2025     break;
2026     case _lev_ctrl_genpurpose5:
2027     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2028     decodedcontroller.controller_number = 80;
2029     break;
2030     case _lev_ctrl_genpurpose6:
2031     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2032     decodedcontroller.controller_number = 81;
2033     break;
2034     case _lev_ctrl_genpurpose7:
2035     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2036     decodedcontroller.controller_number = 82;
2037     break;
2038     case _lev_ctrl_genpurpose8:
2039     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2040     decodedcontroller.controller_number = 83;
2041     break;
2042     case _lev_ctrl_effect1depth:
2043     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2044     decodedcontroller.controller_number = 91;
2045     break;
2046     case _lev_ctrl_effect2depth:
2047     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2048     decodedcontroller.controller_number = 92;
2049     break;
2050     case _lev_ctrl_effect3depth:
2051     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2052     decodedcontroller.controller_number = 93;
2053     break;
2054     case _lev_ctrl_effect4depth:
2055     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2056     decodedcontroller.controller_number = 94;
2057     break;
2058     case _lev_ctrl_effect5depth:
2059     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2060     decodedcontroller.controller_number = 95;
2061     break;
2062 schoenebeck 55
2063 schoenebeck 36 // unknown controller type
2064     default:
2065     throw gig::Exception("Unknown leverage controller type.");
2066     }
2067     return decodedcontroller;
2068     }
2069 schoenebeck 2
2070 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2071     _lev_ctrl_t encodedcontroller;
2072     switch (DecodedController.type) {
2073     // special controller
2074     case leverage_ctrl_t::type_none:
2075     encodedcontroller = _lev_ctrl_none;
2076     break;
2077     case leverage_ctrl_t::type_velocity:
2078     encodedcontroller = _lev_ctrl_velocity;
2079     break;
2080     case leverage_ctrl_t::type_channelaftertouch:
2081     encodedcontroller = _lev_ctrl_channelaftertouch;
2082     break;
2083    
2084     // ordinary MIDI control change controller
2085     case leverage_ctrl_t::type_controlchange:
2086     switch (DecodedController.controller_number) {
2087     case 1:
2088     encodedcontroller = _lev_ctrl_modwheel;
2089     break;
2090     case 2:
2091     encodedcontroller = _lev_ctrl_breath;
2092     break;
2093     case 4:
2094     encodedcontroller = _lev_ctrl_foot;
2095     break;
2096     case 12:
2097     encodedcontroller = _lev_ctrl_effect1;
2098     break;
2099     case 13:
2100     encodedcontroller = _lev_ctrl_effect2;
2101     break;
2102     case 16:
2103     encodedcontroller = _lev_ctrl_genpurpose1;
2104     break;
2105     case 17:
2106     encodedcontroller = _lev_ctrl_genpurpose2;
2107     break;
2108     case 18:
2109     encodedcontroller = _lev_ctrl_genpurpose3;
2110     break;
2111     case 19:
2112     encodedcontroller = _lev_ctrl_genpurpose4;
2113     break;
2114     case 5:
2115     encodedcontroller = _lev_ctrl_portamentotime;
2116     break;
2117     case 64:
2118     encodedcontroller = _lev_ctrl_sustainpedal;
2119     break;
2120     case 65:
2121     encodedcontroller = _lev_ctrl_portamento;
2122     break;
2123     case 66:
2124     encodedcontroller = _lev_ctrl_sostenutopedal;
2125     break;
2126     case 67:
2127     encodedcontroller = _lev_ctrl_softpedal;
2128     break;
2129     case 80:
2130     encodedcontroller = _lev_ctrl_genpurpose5;
2131     break;
2132     case 81:
2133     encodedcontroller = _lev_ctrl_genpurpose6;
2134     break;
2135     case 82:
2136     encodedcontroller = _lev_ctrl_genpurpose7;
2137     break;
2138     case 83:
2139     encodedcontroller = _lev_ctrl_genpurpose8;
2140     break;
2141     case 91:
2142     encodedcontroller = _lev_ctrl_effect1depth;
2143     break;
2144     case 92:
2145     encodedcontroller = _lev_ctrl_effect2depth;
2146     break;
2147     case 93:
2148     encodedcontroller = _lev_ctrl_effect3depth;
2149     break;
2150     case 94:
2151     encodedcontroller = _lev_ctrl_effect4depth;
2152     break;
2153     case 95:
2154     encodedcontroller = _lev_ctrl_effect5depth;
2155     break;
2156     default:
2157     throw gig::Exception("leverage controller number is not supported by the gig format");
2158     }
2159 persson 1182 break;
2160 schoenebeck 809 default:
2161     throw gig::Exception("Unknown leverage controller type.");
2162     }
2163     return encodedcontroller;
2164     }
2165    
2166 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2167     Instances--;
2168     if (!Instances) {
2169     // delete the velocity->volume tables
2170     VelocityTableMap::iterator iter;
2171     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2172     double* pTable = iter->second;
2173     if (pTable) delete[] pTable;
2174     }
2175     pVelocityTables->clear();
2176     delete pVelocityTables;
2177     pVelocityTables = NULL;
2178     }
2179 persson 858 if (VelocityTable) delete[] VelocityTable;
2180 schoenebeck 16 }
2181 schoenebeck 2
2182 schoenebeck 16 /**
2183     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2184     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2185     * and VelocityResponseCurveScaling) involved are taken into account to
2186     * calculate the amplitude factor. Use this method when a key was
2187     * triggered to get the volume with which the sample should be played
2188     * back.
2189     *
2190 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2191     * @returns amplitude factor (between 0.0 and 1.0)
2192 schoenebeck 16 */
2193     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2194     return pVelocityAttenuationTable[MIDIKeyVelocity];
2195     }
2196 schoenebeck 2
2197 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2198     return pVelocityReleaseTable[MIDIKeyVelocity];
2199     }
2200    
2201 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2202     return pVelocityCutoffTable[MIDIKeyVelocity];
2203     }
2204    
2205 schoenebeck 1358 /**
2206     * Updates the respective member variable and the lookup table / cache
2207     * that depends on this value.
2208     */
2209     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2210     pVelocityAttenuationTable =
2211     GetVelocityTable(
2212     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2213     );
2214     VelocityResponseCurve = curve;
2215     }
2216    
2217     /**
2218     * Updates the respective member variable and the lookup table / cache
2219     * that depends on this value.
2220     */
2221     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2222     pVelocityAttenuationTable =
2223     GetVelocityTable(
2224     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2225     );
2226     VelocityResponseDepth = depth;
2227     }
2228    
2229     /**
2230     * Updates the respective member variable and the lookup table / cache
2231     * that depends on this value.
2232     */
2233     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2234     pVelocityAttenuationTable =
2235     GetVelocityTable(
2236     VelocityResponseCurve, VelocityResponseDepth, scaling
2237     );
2238     VelocityResponseCurveScaling = scaling;
2239     }
2240    
2241     /**
2242     * Updates the respective member variable and the lookup table / cache
2243     * that depends on this value.
2244     */
2245     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2246     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2247     ReleaseVelocityResponseCurve = curve;
2248     }
2249    
2250     /**
2251     * Updates the respective member variable and the lookup table / cache
2252     * that depends on this value.
2253     */
2254     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2255     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2256     ReleaseVelocityResponseDepth = depth;
2257     }
2258    
2259     /**
2260     * Updates the respective member variable and the lookup table / cache
2261     * that depends on this value.
2262     */
2263     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2264     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2265     VCFCutoffController = controller;
2266     }
2267    
2268     /**
2269     * Updates the respective member variable and the lookup table / cache
2270     * that depends on this value.
2271     */
2272     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2273     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2274     VCFVelocityCurve = curve;
2275     }
2276    
2277     /**
2278     * Updates the respective member variable and the lookup table / cache
2279     * that depends on this value.
2280     */
2281     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2282     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2283     VCFVelocityDynamicRange = range;
2284     }
2285    
2286     /**
2287     * Updates the respective member variable and the lookup table / cache
2288     * that depends on this value.
2289     */
2290     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2291     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2292     VCFVelocityScale = scaling;
2293     }
2294    
2295 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2296 schoenebeck 317
2297 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2298 schoenebeck 16
2299 schoenebeck 308 // linear
2300     const int lin0[] = { 1, 1, 127, 127 };
2301     const int lin1[] = { 1, 21, 127, 127 };
2302     const int lin2[] = { 1, 45, 127, 127 };
2303     const int lin3[] = { 1, 74, 127, 127 };
2304     const int lin4[] = { 1, 127, 127, 127 };
2305 schoenebeck 16
2306 schoenebeck 308 // non-linear
2307     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2308 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2309 schoenebeck 308 127, 127 };
2310     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2311     127, 127 };
2312     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2313     127, 127 };
2314     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2315 schoenebeck 317
2316 schoenebeck 308 // special
2317 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2318 schoenebeck 308 113, 127, 127, 127 };
2319     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2320     118, 127, 127, 127 };
2321 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2322 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2323 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2324 schoenebeck 308 117, 127, 127, 127 };
2325 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2326 schoenebeck 308 127, 127 };
2327 schoenebeck 317
2328 persson 728 // this is only used by the VCF velocity curve
2329     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2330     91, 127, 127, 127 };
2331    
2332 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2333 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2334 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2335 schoenebeck 317
2336 schoenebeck 308 double* const table = new double[128];
2337    
2338     const int* curve = curves[curveType * 5 + depth];
2339     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2340 schoenebeck 317
2341 schoenebeck 308 table[0] = 0;
2342     for (int x = 1 ; x < 128 ; x++) {
2343    
2344     if (x > curve[2]) curve += 2;
2345 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2346 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2347     y = y / 127;
2348    
2349     // Scale up for s > 20, down for s < 20. When
2350     // down-scaling, the curve still ends at 1.0.
2351     if (s < 20 && y >= 0.5)
2352     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2353     else
2354     y = y * (s / 20.0);
2355     if (y > 1) y = 1;
2356    
2357     table[x] = y;
2358     }
2359     return table;
2360     }
2361    
2362    
2363 schoenebeck 2 // *************** Region ***************
2364     // *
2365    
2366     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {