/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2648 - (hide annotations) (download)
Wed Jun 18 14:32:33 2014 UTC (9 years, 9 months ago) by schoenebeck
File size: 262372 byte(s)
* gig: Fixed file corruption if instrument(s) with script slot(s)
  were loaded and saved before their scripts were ever referenced.
* gig: Backward compatibility fix: Remove own custom RIFF chunks
  if all script slots were deleted.
* Bumped version (3.3.0.svn19).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2540 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28 persson 1713 #include <algorithm>
29 schoenebeck 809 #include <math.h>
30 schoenebeck 384 #include <iostream>
31 schoenebeck 2555 #include <assert.h>
32 schoenebeck 384
33 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
34     /// compressed sample wave streams - this value should always be bigger than
35     /// the biggest sample piece expected to be read by the sampler engine,
36     /// otherwise the buffer size will be raised at runtime and thus the buffer
37     /// reallocated which is time consuming and unefficient.
38     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
39    
40     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
41     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
42     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
43     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
44     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
45     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
46     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
47     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
48     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
49     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
50     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
51     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
52     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
53    
54 schoenebeck 515 namespace gig {
55 schoenebeck 2
56 schoenebeck 515 // *************** progress_t ***************
57     // *
58    
59     progress_t::progress_t() {
60     callback = NULL;
61 schoenebeck 516 custom = NULL;
62 schoenebeck 515 __range_min = 0.0f;
63     __range_max = 1.0f;
64     }
65    
66     // private helper function to convert progress of a subprocess into the global progress
67     static void __notify_progress(progress_t* pProgress, float subprogress) {
68     if (pProgress && pProgress->callback) {
69     const float totalrange = pProgress->__range_max - pProgress->__range_min;
70     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
71 schoenebeck 516 pProgress->factor = totalprogress;
72     pProgress->callback(pProgress); // now actually notify about the progress
73 schoenebeck 515 }
74     }
75    
76     // private helper function to divide a progress into subprogresses
77     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
78     if (pParentProgress && pParentProgress->callback) {
79     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
80     pSubProgress->callback = pParentProgress->callback;
81 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
82 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
83     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
84     }
85     }
86    
87    
88 schoenebeck 809 // *************** Internal functions for sample decompression ***************
89 persson 365 // *
90    
91 schoenebeck 515 namespace {
92    
93 persson 365 inline int get12lo(const unsigned char* pSrc)
94     {
95     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
96     return x & 0x800 ? x - 0x1000 : x;
97     }
98    
99     inline int get12hi(const unsigned char* pSrc)
100     {
101     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
102     return x & 0x800 ? x - 0x1000 : x;
103     }
104    
105     inline int16_t get16(const unsigned char* pSrc)
106     {
107     return int16_t(pSrc[0] | pSrc[1] << 8);
108     }
109    
110     inline int get24(const unsigned char* pSrc)
111     {
112     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
113     return x & 0x800000 ? x - 0x1000000 : x;
114     }
115    
116 persson 902 inline void store24(unsigned char* pDst, int x)
117     {
118     pDst[0] = x;
119     pDst[1] = x >> 8;
120     pDst[2] = x >> 16;
121     }
122    
123 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
124 persson 372 int srcStep, int dstStep,
125     const unsigned char* pSrc, int16_t* pDst,
126 persson 365 unsigned long currentframeoffset,
127     unsigned long copysamples)
128     {
129     switch (compressionmode) {
130     case 0: // 16 bit uncompressed
131     pSrc += currentframeoffset * srcStep;
132     while (copysamples) {
133     *pDst = get16(pSrc);
134 persson 372 pDst += dstStep;
135 persson 365 pSrc += srcStep;
136     copysamples--;
137     }
138     break;
139    
140     case 1: // 16 bit compressed to 8 bit
141     int y = get16(params);
142     int dy = get16(params + 2);
143     while (currentframeoffset) {
144     dy -= int8_t(*pSrc);
145     y -= dy;
146     pSrc += srcStep;
147     currentframeoffset--;
148     }
149     while (copysamples) {
150     dy -= int8_t(*pSrc);
151     y -= dy;
152     *pDst = y;
153 persson 372 pDst += dstStep;
154 persson 365 pSrc += srcStep;
155     copysamples--;
156     }
157     break;
158     }
159     }
160    
161     void Decompress24(int compressionmode, const unsigned char* params,
162 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
163 persson 365 unsigned long currentframeoffset,
164 persson 437 unsigned long copysamples, int truncatedBits)
165 persson 365 {
166 persson 695 int y, dy, ddy, dddy;
167 persson 437
168 persson 695 #define GET_PARAMS(params) \
169     y = get24(params); \
170     dy = y - get24((params) + 3); \
171     ddy = get24((params) + 6); \
172     dddy = get24((params) + 9)
173 persson 365
174     #define SKIP_ONE(x) \
175 persson 695 dddy -= (x); \
176     ddy -= dddy; \
177     dy = -dy - ddy; \
178     y += dy
179 persson 365
180     #define COPY_ONE(x) \
181     SKIP_ONE(x); \
182 persson 902 store24(pDst, y << truncatedBits); \
183 persson 372 pDst += dstStep
184 persson 365
185     switch (compressionmode) {
186     case 2: // 24 bit uncompressed
187     pSrc += currentframeoffset * 3;
188     while (copysamples) {
189 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
190 persson 372 pDst += dstStep;
191 persson 365 pSrc += 3;
192     copysamples--;
193     }
194     break;
195    
196     case 3: // 24 bit compressed to 16 bit
197     GET_PARAMS(params);
198     while (currentframeoffset) {
199     SKIP_ONE(get16(pSrc));
200     pSrc += 2;
201     currentframeoffset--;
202     }
203     while (copysamples) {
204     COPY_ONE(get16(pSrc));
205     pSrc += 2;
206     copysamples--;
207     }
208     break;
209    
210     case 4: // 24 bit compressed to 12 bit
211     GET_PARAMS(params);
212     while (currentframeoffset > 1) {
213     SKIP_ONE(get12lo(pSrc));
214     SKIP_ONE(get12hi(pSrc));
215     pSrc += 3;
216     currentframeoffset -= 2;
217     }
218     if (currentframeoffset) {
219     SKIP_ONE(get12lo(pSrc));
220     currentframeoffset--;
221     if (copysamples) {
222     COPY_ONE(get12hi(pSrc));
223     pSrc += 3;
224     copysamples--;
225     }
226     }
227     while (copysamples > 1) {
228     COPY_ONE(get12lo(pSrc));
229     COPY_ONE(get12hi(pSrc));
230     pSrc += 3;
231     copysamples -= 2;
232     }
233     if (copysamples) {
234     COPY_ONE(get12lo(pSrc));
235     }
236     break;
237    
238     case 5: // 24 bit compressed to 8 bit
239     GET_PARAMS(params);
240     while (currentframeoffset) {
241     SKIP_ONE(int8_t(*pSrc++));
242     currentframeoffset--;
243     }
244     while (copysamples) {
245     COPY_ONE(int8_t(*pSrc++));
246     copysamples--;
247     }
248     break;
249     }
250     }
251    
252     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
253     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
254     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
255     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
256     }
257    
258    
259 schoenebeck 1113
260 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
261     // *
262    
263     static uint32_t* __initCRCTable() {
264     static uint32_t res[256];
265    
266     for (int i = 0 ; i < 256 ; i++) {
267     uint32_t c = i;
268     for (int j = 0 ; j < 8 ; j++) {
269     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
270     }
271     res[i] = c;
272     }
273     return res;
274     }
275    
276     static const uint32_t* __CRCTable = __initCRCTable();
277    
278     /**
279     * Initialize a CRC variable.
280     *
281     * @param crc - variable to be initialized
282     */
283     inline static void __resetCRC(uint32_t& crc) {
284     crc = 0xffffffff;
285     }
286    
287     /**
288     * Used to calculate checksums of the sample data in a gig file. The
289     * checksums are stored in the 3crc chunk of the gig file and
290     * automatically updated when a sample is written with Sample::Write().
291     *
292     * One should call __resetCRC() to initialize the CRC variable to be
293     * used before calling this function the first time.
294     *
295     * After initializing the CRC variable one can call this function
296     * arbitrary times, i.e. to split the overall CRC calculation into
297     * steps.
298     *
299     * Once the whole data was processed by __calculateCRC(), one should
300     * call __encodeCRC() to get the final CRC result.
301     *
302     * @param buf - pointer to data the CRC shall be calculated of
303     * @param bufSize - size of the data to be processed
304     * @param crc - variable the CRC sum shall be stored to
305     */
306     static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
307     for (int i = 0 ; i < bufSize ; i++) {
308     crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
309     }
310     }
311    
312     /**
313     * Returns the final CRC result.
314     *
315     * @param crc - variable previously passed to __calculateCRC()
316     */
317     inline static uint32_t __encodeCRC(const uint32_t& crc) {
318     return crc ^ 0xffffffff;
319     }
320    
321    
322    
323 schoenebeck 1113 // *************** Other Internal functions ***************
324     // *
325    
326     static split_type_t __resolveSplitType(dimension_t dimension) {
327     return (
328     dimension == dimension_layer ||
329     dimension == dimension_samplechannel ||
330     dimension == dimension_releasetrigger ||
331     dimension == dimension_keyboard ||
332     dimension == dimension_roundrobin ||
333     dimension == dimension_random ||
334     dimension == dimension_smartmidi ||
335     dimension == dimension_roundrobinkeyboard
336     ) ? split_type_bit : split_type_normal;
337     }
338    
339     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
340     return (dimension_definition.split_type == split_type_normal)
341     ? int(128.0 / dimension_definition.zones) : 0;
342     }
343    
344    
345    
346 schoenebeck 2 // *************** Sample ***************
347     // *
348    
349 schoenebeck 384 unsigned int Sample::Instances = 0;
350     buffer_t Sample::InternalDecompressionBuffer;
351 schoenebeck 2
352 schoenebeck 809 /** @brief Constructor.
353     *
354     * Load an existing sample or create a new one. A 'wave' list chunk must
355     * be given to this constructor. In case the given 'wave' list chunk
356     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
357     * format and sample data will be loaded from there, otherwise default
358     * values will be used and those chunks will be created when
359     * File::Save() will be called later on.
360     *
361     * @param pFile - pointer to gig::File where this sample is
362     * located (or will be located)
363     * @param waveList - pointer to 'wave' list chunk which is (or
364     * will be) associated with this sample
365     * @param WavePoolOffset - offset of this sample data from wave pool
366     * ('wvpl') list chunk
367     * @param fileNo - number of an extension file where this sample
368     * is located, 0 otherwise
369     */
370 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
371 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
372 persson 1180 { CHUNK_ID_INAM, 64 },
373     { 0, 0 }
374     };
375 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
376 schoenebeck 2 Instances++;
377 persson 666 FileNo = fileNo;
378 schoenebeck 2
379 schoenebeck 1381 __resetCRC(crc);
380    
381 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
382     if (pCk3gix) {
383 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
384 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
385 schoenebeck 809 } else { // '3gix' chunk missing
386 schoenebeck 930 // by default assigned to that mandatory "Default Group"
387     pGroup = pFile->GetGroup(0);
388 schoenebeck 809 }
389 schoenebeck 2
390 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
391     if (pCkSmpl) {
392     Manufacturer = pCkSmpl->ReadInt32();
393     Product = pCkSmpl->ReadInt32();
394     SamplePeriod = pCkSmpl->ReadInt32();
395     MIDIUnityNote = pCkSmpl->ReadInt32();
396     FineTune = pCkSmpl->ReadInt32();
397     pCkSmpl->Read(&SMPTEFormat, 1, 4);
398     SMPTEOffset = pCkSmpl->ReadInt32();
399     Loops = pCkSmpl->ReadInt32();
400     pCkSmpl->ReadInt32(); // manufByt
401     LoopID = pCkSmpl->ReadInt32();
402     pCkSmpl->Read(&LoopType, 1, 4);
403     LoopStart = pCkSmpl->ReadInt32();
404     LoopEnd = pCkSmpl->ReadInt32();
405     LoopFraction = pCkSmpl->ReadInt32();
406     LoopPlayCount = pCkSmpl->ReadInt32();
407     } else { // 'smpl' chunk missing
408     // use default values
409     Manufacturer = 0;
410     Product = 0;
411 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
412 persson 1218 MIDIUnityNote = 60;
413 schoenebeck 809 FineTune = 0;
414 persson 1182 SMPTEFormat = smpte_format_no_offset;
415 schoenebeck 809 SMPTEOffset = 0;
416     Loops = 0;
417     LoopID = 0;
418 persson 1182 LoopType = loop_type_normal;
419 schoenebeck 809 LoopStart = 0;
420     LoopEnd = 0;
421     LoopFraction = 0;
422     LoopPlayCount = 0;
423     }
424 schoenebeck 2
425     FrameTable = NULL;
426     SamplePos = 0;
427     RAMCache.Size = 0;
428     RAMCache.pStart = NULL;
429     RAMCache.NullExtensionSize = 0;
430    
431 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
432    
433 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
434     Compressed = ewav;
435     Dithered = false;
436     TruncatedBits = 0;
437 schoenebeck 2 if (Compressed) {
438 persson 437 uint32_t version = ewav->ReadInt32();
439     if (version == 3 && BitDepth == 24) {
440     Dithered = ewav->ReadInt32();
441     ewav->SetPos(Channels == 2 ? 84 : 64);
442     TruncatedBits = ewav->ReadInt32();
443     }
444 schoenebeck 2 ScanCompressedSample();
445     }
446 schoenebeck 317
447     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
448 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
449     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
450     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
451 schoenebeck 317 }
452 persson 437 FrameOffset = 0; // just for streaming compressed samples
453 schoenebeck 21
454 persson 864 LoopSize = LoopEnd - LoopStart + 1;
455 schoenebeck 2 }
456    
457 schoenebeck 809 /**
458 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
459     * the actual waveform data) and assign it to this object.
460     *
461     * Discussion: copying .gig samples is a bit tricky. It requires three
462     * steps:
463     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
464     * its new sample waveform data size.
465     * 2. Saving the file (done by File::Save()) so that it gains correct size
466     * and layout for writing the actual wave form data directly to disc
467     * in next step.
468     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
469     *
470     * @param orig - original Sample object to be copied from
471     */
472     void Sample::CopyAssignMeta(const Sample* orig) {
473     // handle base classes
474     DLS::Sample::CopyAssignCore(orig);
475    
476     // handle actual own attributes of this class
477     Manufacturer = orig->Manufacturer;
478     Product = orig->Product;
479     SamplePeriod = orig->SamplePeriod;
480     MIDIUnityNote = orig->MIDIUnityNote;
481     FineTune = orig->FineTune;
482     SMPTEFormat = orig->SMPTEFormat;
483     SMPTEOffset = orig->SMPTEOffset;
484     Loops = orig->Loops;
485     LoopID = orig->LoopID;
486     LoopType = orig->LoopType;
487     LoopStart = orig->LoopStart;
488     LoopEnd = orig->LoopEnd;
489     LoopSize = orig->LoopSize;
490     LoopFraction = orig->LoopFraction;
491     LoopPlayCount = orig->LoopPlayCount;
492    
493     // schedule resizing this sample to the given sample's size
494     Resize(orig->GetSize());
495     }
496    
497     /**
498     * Should be called after CopyAssignMeta() and File::Save() sequence.
499     * Read more about it in the discussion of CopyAssignMeta(). This method
500     * copies the actual waveform data by disk streaming.
501     *
502     * @e CAUTION: this method is currently not thread safe! During this
503     * operation the sample must not be used for other purposes by other
504     * threads!
505     *
506     * @param orig - original Sample object to be copied from
507     */
508     void Sample::CopyAssignWave(const Sample* orig) {
509     const int iReadAtOnce = 32*1024;
510     char* buf = new char[iReadAtOnce * orig->FrameSize];
511     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
512     unsigned long restorePos = pOrig->GetPos();
513     pOrig->SetPos(0);
514     SetPos(0);
515     for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
516     n = pOrig->Read(buf, iReadAtOnce))
517     {
518     Write(buf, n);
519     }
520     pOrig->SetPos(restorePos);
521     delete [] buf;
522     }
523    
524     /**
525 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
526     * to call File::Save() to make changes persistent.
527     *
528     * Usually there is absolutely no need to call this method explicitly.
529     * It will be called automatically when File::Save() was called.
530     *
531 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
532 schoenebeck 809 * was provided yet
533     * @throws gig::Exception if there is any invalid sample setting
534     */
535     void Sample::UpdateChunks() {
536     // first update base class's chunks
537     DLS::Sample::UpdateChunks();
538    
539     // make sure 'smpl' chunk exists
540     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
541 persson 1182 if (!pCkSmpl) {
542     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
543     memset(pCkSmpl->LoadChunkData(), 0, 60);
544     }
545 schoenebeck 809 // update 'smpl' chunk
546     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
547 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
548 persson 1179 store32(&pData[0], Manufacturer);
549     store32(&pData[4], Product);
550     store32(&pData[8], SamplePeriod);
551     store32(&pData[12], MIDIUnityNote);
552     store32(&pData[16], FineTune);
553     store32(&pData[20], SMPTEFormat);
554     store32(&pData[24], SMPTEOffset);
555     store32(&pData[28], Loops);
556 schoenebeck 809
557     // we skip 'manufByt' for now (4 bytes)
558    
559 persson 1179 store32(&pData[36], LoopID);
560     store32(&pData[40], LoopType);
561     store32(&pData[44], LoopStart);
562     store32(&pData[48], LoopEnd);
563     store32(&pData[52], LoopFraction);
564     store32(&pData[56], LoopPlayCount);
565 schoenebeck 809
566     // make sure '3gix' chunk exists
567     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
568     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
569 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
570 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
571 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
572     if (pFile->pGroups) {
573     std::list<Group*>::iterator iter = pFile->pGroups->begin();
574     std::list<Group*>::iterator end = pFile->pGroups->end();
575 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
576 schoenebeck 929 if (*iter == pGroup) {
577     iSampleGroup = i;
578     break; // found
579     }
580     }
581     }
582 schoenebeck 809 // update '3gix' chunk
583     pData = (uint8_t*) pCk3gix->LoadChunkData();
584 persson 1179 store16(&pData[0], iSampleGroup);
585 schoenebeck 2484
586     // if the library user toggled the "Compressed" attribute from true to
587     // false, then the EWAV chunk associated with compressed samples needs
588     // to be deleted
589     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
590     if (ewav && !Compressed) {
591     pWaveList->DeleteSubChunk(ewav);
592     }
593 schoenebeck 809 }
594    
595 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
596     void Sample::ScanCompressedSample() {
597     //TODO: we have to add some more scans here (e.g. determine compression rate)
598     this->SamplesTotal = 0;
599     std::list<unsigned long> frameOffsets;
600    
601 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
602 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
603 persson 365
604 schoenebeck 2 // Scanning
605     pCkData->SetPos(0);
606 persson 365 if (Channels == 2) { // Stereo
607     for (int i = 0 ; ; i++) {
608     // for 24 bit samples every 8:th frame offset is
609     // stored, to save some memory
610     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
611    
612     const int mode_l = pCkData->ReadUint8();
613     const int mode_r = pCkData->ReadUint8();
614     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
615     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
616    
617     if (pCkData->RemainingBytes() <= frameSize) {
618     SamplesInLastFrame =
619     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
620     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
621     SamplesTotal += SamplesInLastFrame;
622 schoenebeck 2 break;
623 persson 365 }
624     SamplesTotal += SamplesPerFrame;
625     pCkData->SetPos(frameSize, RIFF::stream_curpos);
626     }
627     }
628     else { // Mono
629     for (int i = 0 ; ; i++) {
630     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
631    
632     const int mode = pCkData->ReadUint8();
633     if (mode > 5) throw gig::Exception("Unknown compression mode");
634     const unsigned long frameSize = bytesPerFrame[mode];
635    
636     if (pCkData->RemainingBytes() <= frameSize) {
637     SamplesInLastFrame =
638     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
639     SamplesTotal += SamplesInLastFrame;
640 schoenebeck 2 break;
641 persson 365 }
642     SamplesTotal += SamplesPerFrame;
643     pCkData->SetPos(frameSize, RIFF::stream_curpos);
644 schoenebeck 2 }
645     }
646     pCkData->SetPos(0);
647    
648     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
649     if (FrameTable) delete[] FrameTable;
650     FrameTable = new unsigned long[frameOffsets.size()];
651     std::list<unsigned long>::iterator end = frameOffsets.end();
652     std::list<unsigned long>::iterator iter = frameOffsets.begin();
653     for (int i = 0; iter != end; i++, iter++) {
654     FrameTable[i] = *iter;
655     }
656     }
657    
658     /**
659     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
660     * ReleaseSampleData() to free the memory if you don't need the cached
661     * sample data anymore.
662     *
663     * @returns buffer_t structure with start address and size of the buffer
664     * in bytes
665     * @see ReleaseSampleData(), Read(), SetPos()
666     */
667     buffer_t Sample::LoadSampleData() {
668     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
669     }
670    
671     /**
672     * Reads (uncompresses if needed) and caches the first \a SampleCount
673     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
674     * memory space if you don't need the cached samples anymore. There is no
675     * guarantee that exactly \a SampleCount samples will be cached; this is
676     * not an error. The size will be eventually truncated e.g. to the
677     * beginning of a frame of a compressed sample. This is done for
678     * efficiency reasons while streaming the wave by your sampler engine
679     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
680     * that will be returned to determine the actual cached samples, but note
681     * that the size is given in bytes! You get the number of actually cached
682     * samples by dividing it by the frame size of the sample:
683 schoenebeck 384 * @code
684 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
685     * long cachedsamples = buf.Size / pSample->FrameSize;
686 schoenebeck 384 * @endcode
687 schoenebeck 2 *
688     * @param SampleCount - number of sample points to load into RAM
689     * @returns buffer_t structure with start address and size of
690     * the cached sample data in bytes
691     * @see ReleaseSampleData(), Read(), SetPos()
692     */
693     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
694     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
695     }
696    
697     /**
698     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699     * ReleaseSampleData() to free the memory if you don't need the cached
700     * sample data anymore.
701     * The method will add \a NullSamplesCount silence samples past the
702     * official buffer end (this won't affect the 'Size' member of the
703     * buffer_t structure, that means 'Size' always reflects the size of the
704     * actual sample data, the buffer might be bigger though). Silence
705     * samples past the official buffer are needed for differential
706     * algorithms that always have to take subsequent samples into account
707     * (resampling/interpolation would be an important example) and avoids
708     * memory access faults in such cases.
709     *
710     * @param NullSamplesCount - number of silence samples the buffer should
711     * be extended past it's data end
712     * @returns buffer_t structure with start address and
713     * size of the buffer in bytes
714     * @see ReleaseSampleData(), Read(), SetPos()
715     */
716     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
717     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
718     }
719    
720     /**
721     * Reads (uncompresses if needed) and caches the first \a SampleCount
722     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
723     * memory space if you don't need the cached samples anymore. There is no
724     * guarantee that exactly \a SampleCount samples will be cached; this is
725     * not an error. The size will be eventually truncated e.g. to the
726     * beginning of a frame of a compressed sample. This is done for
727     * efficiency reasons while streaming the wave by your sampler engine
728     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
729     * that will be returned to determine the actual cached samples, but note
730     * that the size is given in bytes! You get the number of actually cached
731     * samples by dividing it by the frame size of the sample:
732 schoenebeck 384 * @code
733 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
734     * long cachedsamples = buf.Size / pSample->FrameSize;
735 schoenebeck 384 * @endcode
736 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
737     * official buffer end (this won't affect the 'Size' member of the
738     * buffer_t structure, that means 'Size' always reflects the size of the
739     * actual sample data, the buffer might be bigger though). Silence
740     * samples past the official buffer are needed for differential
741     * algorithms that always have to take subsequent samples into account
742     * (resampling/interpolation would be an important example) and avoids
743     * memory access faults in such cases.
744     *
745     * @param SampleCount - number of sample points to load into RAM
746     * @param NullSamplesCount - number of silence samples the buffer should
747     * be extended past it's data end
748     * @returns buffer_t structure with start address and
749     * size of the cached sample data in bytes
750     * @see ReleaseSampleData(), Read(), SetPos()
751     */
752     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
753     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
754     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
755     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
756 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
757 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
758     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
759     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
760     // fill the remaining buffer space with silence samples
761     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
762     return GetCache();
763     }
764    
765     /**
766     * Returns current cached sample points. A buffer_t structure will be
767     * returned which contains address pointer to the begin of the cache and
768     * the size of the cached sample data in bytes. Use
769     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
770     * RAM.
771     *
772     * @returns buffer_t structure with current cached sample points
773     * @see LoadSampleData();
774     */
775     buffer_t Sample::GetCache() {
776     // return a copy of the buffer_t structure
777     buffer_t result;
778     result.Size = this->RAMCache.Size;
779     result.pStart = this->RAMCache.pStart;
780     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
781     return result;
782     }
783    
784     /**
785     * Frees the cached sample from RAM if loaded with
786     * <i>LoadSampleData()</i> previously.
787     *
788     * @see LoadSampleData();
789     */
790     void Sample::ReleaseSampleData() {
791     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
792     RAMCache.pStart = NULL;
793     RAMCache.Size = 0;
794 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
795 schoenebeck 2 }
796    
797 schoenebeck 809 /** @brief Resize sample.
798     *
799     * Resizes the sample's wave form data, that is the actual size of
800     * sample wave data possible to be written for this sample. This call
801     * will return immediately and just schedule the resize operation. You
802     * should call File::Save() to actually perform the resize operation(s)
803     * "physically" to the file. As this can take a while on large files, it
804     * is recommended to call Resize() first on all samples which have to be
805     * resized and finally to call File::Save() to perform all those resize
806     * operations in one rush.
807     *
808     * The actual size (in bytes) is dependant to the current FrameSize
809     * value. You may want to set FrameSize before calling Resize().
810     *
811     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
812     * enlarged samples before calling File::Save() as this might exceed the
813     * current sample's boundary!
814     *
815 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
816     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
817 schoenebeck 809 * other formats will fail!
818     *
819     * @param iNewSize - new sample wave data size in sample points (must be
820     * greater than zero)
821 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
822 schoenebeck 809 * or if \a iNewSize is less than 1
823     * @throws gig::Exception if existing sample is compressed
824     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
825     * DLS::Sample::FormatTag, File::Save()
826     */
827     void Sample::Resize(int iNewSize) {
828     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
829     DLS::Sample::Resize(iNewSize);
830     }
831    
832 schoenebeck 2 /**
833     * Sets the position within the sample (in sample points, not in
834     * bytes). Use this method and <i>Read()</i> if you don't want to load
835     * the sample into RAM, thus for disk streaming.
836     *
837     * Although the original Gigasampler engine doesn't allow positioning
838     * within compressed samples, I decided to implement it. Even though
839     * the Gigasampler format doesn't allow to define loops for compressed
840     * samples at the moment, positioning within compressed samples might be
841     * interesting for some sampler engines though. The only drawback about
842     * my decision is that it takes longer to load compressed gig Files on
843     * startup, because it's neccessary to scan the samples for some
844     * mandatory informations. But I think as it doesn't affect the runtime
845     * efficiency, nobody will have a problem with that.
846     *
847     * @param SampleCount number of sample points to jump
848     * @param Whence optional: to which relation \a SampleCount refers
849     * to, if omited <i>RIFF::stream_start</i> is assumed
850     * @returns the new sample position
851     * @see Read()
852     */
853     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
854     if (Compressed) {
855     switch (Whence) {
856     case RIFF::stream_curpos:
857     this->SamplePos += SampleCount;
858     break;
859     case RIFF::stream_end:
860     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
861     break;
862     case RIFF::stream_backward:
863     this->SamplePos -= SampleCount;
864     break;
865     case RIFF::stream_start: default:
866     this->SamplePos = SampleCount;
867     break;
868     }
869     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
870    
871     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
872     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
873     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
874     return this->SamplePos;
875     }
876     else { // not compressed
877     unsigned long orderedBytes = SampleCount * this->FrameSize;
878     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
879     return (result == orderedBytes) ? SampleCount
880     : result / this->FrameSize;
881     }
882     }
883    
884     /**
885     * Returns the current position in the sample (in sample points).
886     */
887 schoenebeck 2482 unsigned long Sample::GetPos() const {
888 schoenebeck 2 if (Compressed) return SamplePos;
889     else return pCkData->GetPos() / FrameSize;
890     }
891    
892     /**
893 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
894     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
895     * the position within the sample respectively, this method honors the
896     * looping informations of the sample (if any). The sample wave stream
897     * will be decompressed on the fly if using a compressed sample. Use this
898     * method if you don't want to load the sample into RAM, thus for disk
899     * streaming. All this methods needs to know to proceed with streaming
900     * for the next time you call this method is stored in \a pPlaybackState.
901     * You have to allocate and initialize the playback_state_t structure by
902     * yourself before you use it to stream a sample:
903 schoenebeck 384 * @code
904     * gig::playback_state_t playbackstate;
905     * playbackstate.position = 0;
906     * playbackstate.reverse = false;
907     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
908     * @endcode
909 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
910     * defined or if the current read position is located within a loop area.
911     * The method already handles such cases by itself.
912     *
913 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
914     * have to use an external decompression buffer for <b>EACH</b>
915     * streaming thread to avoid race conditions and crashes!
916     *
917 schoenebeck 24 * @param pBuffer destination buffer
918     * @param SampleCount number of sample points to read
919     * @param pPlaybackState will be used to store and reload the playback
920     * state for the next ReadAndLoop() call
921 persson 864 * @param pDimRgn dimension region with looping information
922 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
923 schoenebeck 24 * @returns number of successfully read sample points
924 schoenebeck 384 * @see CreateDecompressionBuffer()
925 schoenebeck 24 */
926 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
927     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
928 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
929     uint8_t* pDst = (uint8_t*) pBuffer;
930    
931     SetPos(pPlaybackState->position); // recover position from the last time
932    
933 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
934 schoenebeck 24
935 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
936     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
937 schoenebeck 24
938 persson 864 if (GetPos() <= loopEnd) {
939     switch (loop.LoopType) {
940 schoenebeck 24
941 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
942     do {
943     // if not endless loop check if max. number of loop cycles have been passed
944     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
945 schoenebeck 24
946 persson 864 if (!pPlaybackState->reverse) { // forward playback
947     do {
948     samplestoloopend = loopEnd - GetPos();
949     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
950     samplestoread -= readsamples;
951     totalreadsamples += readsamples;
952     if (readsamples == samplestoloopend) {
953     pPlaybackState->reverse = true;
954     break;
955     }
956     } while (samplestoread && readsamples);
957     }
958     else { // backward playback
959 schoenebeck 24
960 persson 864 // as we can only read forward from disk, we have to
961     // determine the end position within the loop first,
962     // read forward from that 'end' and finally after
963     // reading, swap all sample frames so it reflects
964     // backward playback
965 schoenebeck 24
966 persson 864 unsigned long swapareastart = totalreadsamples;
967     unsigned long loopoffset = GetPos() - loop.LoopStart;
968     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
969     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
970 schoenebeck 24
971 persson 864 SetPos(reverseplaybackend);
972 schoenebeck 24
973 persson 864 // read samples for backward playback
974     do {
975     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
976     samplestoreadinloop -= readsamples;
977     samplestoread -= readsamples;
978     totalreadsamples += readsamples;
979     } while (samplestoreadinloop && readsamples);
980 schoenebeck 24
981 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
982    
983     if (reverseplaybackend == loop.LoopStart) {
984     pPlaybackState->loop_cycles_left--;
985     pPlaybackState->reverse = false;
986     }
987    
988     // reverse the sample frames for backward playback
989 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
990     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
991 schoenebeck 24 }
992 persson 864 } while (samplestoread && readsamples);
993     break;
994     }
995 schoenebeck 24
996 persson 864 case loop_type_backward: { // TODO: not tested yet!
997     // forward playback (not entered the loop yet)
998     if (!pPlaybackState->reverse) do {
999     samplestoloopend = loopEnd - GetPos();
1000     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1001     samplestoread -= readsamples;
1002     totalreadsamples += readsamples;
1003     if (readsamples == samplestoloopend) {
1004     pPlaybackState->reverse = true;
1005     break;
1006     }
1007     } while (samplestoread && readsamples);
1008 schoenebeck 24
1009 persson 864 if (!samplestoread) break;
1010 schoenebeck 24
1011 persson 864 // as we can only read forward from disk, we have to
1012     // determine the end position within the loop first,
1013     // read forward from that 'end' and finally after
1014     // reading, swap all sample frames so it reflects
1015     // backward playback
1016 schoenebeck 24
1017 persson 864 unsigned long swapareastart = totalreadsamples;
1018     unsigned long loopoffset = GetPos() - loop.LoopStart;
1019     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1020     : samplestoread;
1021     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1022 schoenebeck 24
1023 persson 864 SetPos(reverseplaybackend);
1024 schoenebeck 24
1025 persson 864 // read samples for backward playback
1026     do {
1027     // if not endless loop check if max. number of loop cycles have been passed
1028     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1029     samplestoloopend = loopEnd - GetPos();
1030     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1031     samplestoreadinloop -= readsamples;
1032     samplestoread -= readsamples;
1033     totalreadsamples += readsamples;
1034     if (readsamples == samplestoloopend) {
1035     pPlaybackState->loop_cycles_left--;
1036     SetPos(loop.LoopStart);
1037     }
1038     } while (samplestoreadinloop && readsamples);
1039 schoenebeck 24
1040 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1041 schoenebeck 24
1042 persson 864 // reverse the sample frames for backward playback
1043     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1044     break;
1045     }
1046 schoenebeck 24
1047 persson 864 default: case loop_type_normal: {
1048     do {
1049     // if not endless loop check if max. number of loop cycles have been passed
1050     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1051     samplestoloopend = loopEnd - GetPos();
1052     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1053     samplestoread -= readsamples;
1054     totalreadsamples += readsamples;
1055     if (readsamples == samplestoloopend) {
1056     pPlaybackState->loop_cycles_left--;
1057     SetPos(loop.LoopStart);
1058     }
1059     } while (samplestoread && readsamples);
1060     break;
1061     }
1062 schoenebeck 24 }
1063     }
1064     }
1065    
1066     // read on without looping
1067     if (samplestoread) do {
1068 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1069 schoenebeck 24 samplestoread -= readsamples;
1070     totalreadsamples += readsamples;
1071     } while (readsamples && samplestoread);
1072    
1073     // store current position
1074     pPlaybackState->position = GetPos();
1075    
1076     return totalreadsamples;
1077     }
1078    
1079     /**
1080 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1081     * position into the buffer pointed by \a pBuffer and increments the
1082     * position within the sample. The sample wave stream will be
1083     * decompressed on the fly if using a compressed sample. Use this method
1084     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1085     * thus for disk streaming.
1086     *
1087 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1088     * have to use an external decompression buffer for <b>EACH</b>
1089     * streaming thread to avoid race conditions and crashes!
1090     *
1091 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1092     * (using native endianness). For 24 bit, the buffer will
1093     * contain three bytes per sample, little-endian.
1094     *
1095 schoenebeck 2 * @param pBuffer destination buffer
1096     * @param SampleCount number of sample points to read
1097 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1098 schoenebeck 2 * @returns number of successfully read sample points
1099 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1100 schoenebeck 2 */
1101 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1102 schoenebeck 21 if (SampleCount == 0) return 0;
1103 schoenebeck 317 if (!Compressed) {
1104     if (BitDepth == 24) {
1105 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1106 schoenebeck 317 }
1107 persson 365 else { // 16 bit
1108     // (pCkData->Read does endian correction)
1109     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1110     : pCkData->Read(pBuffer, SampleCount, 2);
1111     }
1112 schoenebeck 317 }
1113 persson 365 else {
1114 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1115 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1116     unsigned long assumedsize = GuessSize(SampleCount),
1117 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1118     remainingsamples = SampleCount,
1119 persson 365 copysamples, skipsamples,
1120     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1121 schoenebeck 2 this->FrameOffset = 0;
1122    
1123 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1124    
1125     // if decompression buffer too small, then reduce amount of samples to read
1126     if (pDecompressionBuffer->Size < assumedsize) {
1127     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1128     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1129     remainingsamples = SampleCount;
1130     assumedsize = GuessSize(SampleCount);
1131 schoenebeck 2 }
1132    
1133 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1135 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1136 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1137    
1138 persson 365 while (remainingsamples && remainingbytes) {
1139     unsigned long framesamples = SamplesPerFrame;
1140     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1141 schoenebeck 2
1142 persson 365 int mode_l = *pSrc++, mode_r = 0;
1143    
1144     if (Channels == 2) {
1145     mode_r = *pSrc++;
1146     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1147     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1148     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1149     if (remainingbytes < framebytes) { // last frame in sample
1150     framesamples = SamplesInLastFrame;
1151     if (mode_l == 4 && (framesamples & 1)) {
1152     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1153     }
1154     else {
1155     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1156     }
1157 schoenebeck 2 }
1158     }
1159 persson 365 else {
1160     framebytes = bytesPerFrame[mode_l] + 1;
1161     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1162     if (remainingbytes < framebytes) {
1163     framesamples = SamplesInLastFrame;
1164     }
1165     }
1166 schoenebeck 2
1167     // determine how many samples in this frame to skip and read
1168 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1169     if (currentframeoffset <= framesamples) {
1170     copysamples = framesamples - currentframeoffset;
1171     skipsamples = currentframeoffset;
1172     }
1173     else {
1174     copysamples = 0;
1175     skipsamples = framesamples;
1176     }
1177 schoenebeck 2 }
1178     else {
1179 persson 365 // This frame has enough data for pBuffer, but not
1180     // all of the frame is needed. Set file position
1181     // to start of this frame for next call to Read.
1182 schoenebeck 2 copysamples = remainingsamples;
1183 persson 365 skipsamples = currentframeoffset;
1184     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1185     this->FrameOffset = currentframeoffset + copysamples;
1186     }
1187     remainingsamples -= copysamples;
1188    
1189     if (remainingbytes > framebytes) {
1190     remainingbytes -= framebytes;
1191     if (remainingsamples == 0 &&
1192     currentframeoffset + copysamples == framesamples) {
1193     // This frame has enough data for pBuffer, and
1194     // all of the frame is needed. Set file
1195     // position to start of next frame for next
1196     // call to Read. FrameOffset is 0.
1197 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1198     }
1199     }
1200 persson 365 else remainingbytes = 0;
1201 schoenebeck 2
1202 persson 365 currentframeoffset -= skipsamples;
1203 schoenebeck 2
1204 persson 365 if (copysamples == 0) {
1205     // skip this frame
1206     pSrc += framebytes - Channels;
1207     }
1208     else {
1209     const unsigned char* const param_l = pSrc;
1210     if (BitDepth == 24) {
1211     if (mode_l != 2) pSrc += 12;
1212 schoenebeck 2
1213 persson 365 if (Channels == 2) { // Stereo
1214     const unsigned char* const param_r = pSrc;
1215     if (mode_r != 2) pSrc += 12;
1216    
1217 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1218 persson 437 skipsamples, copysamples, TruncatedBits);
1219 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1220 persson 437 skipsamples, copysamples, TruncatedBits);
1221 persson 902 pDst24 += copysamples * 6;
1222 schoenebeck 2 }
1223 persson 365 else { // Mono
1224 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1225 persson 437 skipsamples, copysamples, TruncatedBits);
1226 persson 902 pDst24 += copysamples * 3;
1227 schoenebeck 2 }
1228 persson 365 }
1229     else { // 16 bit
1230     if (mode_l) pSrc += 4;
1231 schoenebeck 2
1232 persson 365 int step;
1233     if (Channels == 2) { // Stereo
1234     const unsigned char* const param_r = pSrc;
1235     if (mode_r) pSrc += 4;
1236    
1237     step = (2 - mode_l) + (2 - mode_r);
1238 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1239     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1240 persson 365 skipsamples, copysamples);
1241     pDst += copysamples << 1;
1242 schoenebeck 2 }
1243 persson 365 else { // Mono
1244     step = 2 - mode_l;
1245 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1246 persson 365 pDst += copysamples;
1247 schoenebeck 2 }
1248 persson 365 }
1249     pSrc += nextFrameOffset;
1250     }
1251 schoenebeck 2
1252 persson 365 // reload from disk to local buffer if needed
1253     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1254     assumedsize = GuessSize(remainingsamples);
1255     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1256     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1257 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1258     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1259 schoenebeck 2 }
1260 persson 365 } // while
1261    
1262 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1263 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1264 schoenebeck 2 return (SampleCount - remainingsamples);
1265     }
1266     }
1267    
1268 schoenebeck 809 /** @brief Write sample wave data.
1269     *
1270     * Writes \a SampleCount number of sample points from the buffer pointed
1271     * by \a pBuffer and increments the position within the sample. Use this
1272     * method to directly write the sample data to disk, i.e. if you don't
1273     * want or cannot load the whole sample data into RAM.
1274     *
1275     * You have to Resize() the sample to the desired size and call
1276     * File::Save() <b>before</b> using Write().
1277     *
1278     * Note: there is currently no support for writing compressed samples.
1279     *
1280 persson 1264 * For 16 bit samples, the data in the source buffer should be
1281     * int16_t (using native endianness). For 24 bit, the buffer
1282     * should contain three bytes per sample, little-endian.
1283     *
1284 schoenebeck 809 * @param pBuffer - source buffer
1285     * @param SampleCount - number of sample points to write
1286     * @throws DLS::Exception if current sample size is too small
1287     * @throws gig::Exception if sample is compressed
1288     * @see DLS::LoadSampleData()
1289     */
1290     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1291     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1292 persson 1207
1293     // if this is the first write in this sample, reset the
1294     // checksum calculator
1295 persson 1199 if (pCkData->GetPos() == 0) {
1296 schoenebeck 1381 __resetCRC(crc);
1297 persson 1199 }
1298 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1299     unsigned long res;
1300     if (BitDepth == 24) {
1301     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1302     } else { // 16 bit
1303     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1304     : pCkData->Write(pBuffer, SampleCount, 2);
1305     }
1306 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1307 persson 1199
1308 persson 1207 // if this is the last write, update the checksum chunk in the
1309     // file
1310 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1311     File* pFile = static_cast<File*>(GetParent());
1312 schoenebeck 1381 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1313 persson 1199 }
1314     return res;
1315 schoenebeck 809 }
1316    
1317 schoenebeck 384 /**
1318     * Allocates a decompression buffer for streaming (compressed) samples
1319     * with Sample::Read(). If you are using more than one streaming thread
1320     * in your application you <b>HAVE</b> to create a decompression buffer
1321     * for <b>EACH</b> of your streaming threads and provide it with the
1322     * Sample::Read() call in order to avoid race conditions and crashes.
1323     *
1324     * You should free the memory occupied by the allocated buffer(s) once
1325     * you don't need one of your streaming threads anymore by calling
1326     * DestroyDecompressionBuffer().
1327     *
1328     * @param MaxReadSize - the maximum size (in sample points) you ever
1329     * expect to read with one Read() call
1330     * @returns allocated decompression buffer
1331     * @see DestroyDecompressionBuffer()
1332     */
1333     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1334     buffer_t result;
1335     const double worstCaseHeaderOverhead =
1336     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1337     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1338     result.pStart = new int8_t[result.Size];
1339     result.NullExtensionSize = 0;
1340     return result;
1341     }
1342    
1343     /**
1344     * Free decompression buffer, previously created with
1345     * CreateDecompressionBuffer().
1346     *
1347     * @param DecompressionBuffer - previously allocated decompression
1348     * buffer to free
1349     */
1350     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1351     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1352     delete[] (int8_t*) DecompressionBuffer.pStart;
1353     DecompressionBuffer.pStart = NULL;
1354     DecompressionBuffer.Size = 0;
1355     DecompressionBuffer.NullExtensionSize = 0;
1356     }
1357     }
1358    
1359 schoenebeck 930 /**
1360     * Returns pointer to the Group this Sample belongs to. In the .gig
1361     * format a sample always belongs to one group. If it wasn't explicitly
1362     * assigned to a certain group, it will be automatically assigned to a
1363     * default group.
1364     *
1365     * @returns Sample's Group (never NULL)
1366     */
1367     Group* Sample::GetGroup() const {
1368     return pGroup;
1369     }
1370    
1371 schoenebeck 2 Sample::~Sample() {
1372     Instances--;
1373 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1374     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1375     InternalDecompressionBuffer.pStart = NULL;
1376     InternalDecompressionBuffer.Size = 0;
1377 schoenebeck 355 }
1378 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1379     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1380     }
1381    
1382    
1383    
1384     // *************** DimensionRegion ***************
1385     // *
1386    
1387 schoenebeck 16 uint DimensionRegion::Instances = 0;
1388     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1389    
1390 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1391 schoenebeck 16 Instances++;
1392    
1393 schoenebeck 823 pSample = NULL;
1394 schoenebeck 1316 pRegion = pParent;
1395 schoenebeck 823
1396 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1397     else memset(&Crossfade, 0, 4);
1398    
1399 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1400 schoenebeck 2
1401     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1402 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1403 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1404 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406     _3ewa->ReadInt16(); // unknown
1407     LFO1InternalDepth = _3ewa->ReadUint16();
1408     _3ewa->ReadInt16(); // unknown
1409     LFO3InternalDepth = _3ewa->ReadInt16();
1410     _3ewa->ReadInt16(); // unknown
1411     LFO1ControlDepth = _3ewa->ReadUint16();
1412     _3ewa->ReadInt16(); // unknown
1413     LFO3ControlDepth = _3ewa->ReadInt16();
1414     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1416     _3ewa->ReadInt16(); // unknown
1417     EG1Sustain = _3ewa->ReadUint16();
1418     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1419     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1421     EG1ControllerInvert = eg1ctrloptions & 0x01;
1422     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1423     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1424     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1425     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1426     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1427     EG2ControllerInvert = eg2ctrloptions & 0x01;
1428     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1429     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1430     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1431     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434     _3ewa->ReadInt16(); // unknown
1435     EG2Sustain = _3ewa->ReadUint16();
1436     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437     _3ewa->ReadInt16(); // unknown
1438     LFO2ControlDepth = _3ewa->ReadUint16();
1439     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1440     _3ewa->ReadInt16(); // unknown
1441     LFO2InternalDepth = _3ewa->ReadUint16();
1442     int32_t eg1decay2 = _3ewa->ReadInt32();
1443     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1444     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1445     _3ewa->ReadInt16(); // unknown
1446     EG1PreAttack = _3ewa->ReadUint16();
1447     int32_t eg2decay2 = _3ewa->ReadInt32();
1448     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1449     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1450     _3ewa->ReadInt16(); // unknown
1451     EG2PreAttack = _3ewa->ReadUint16();
1452     uint8_t velocityresponse = _3ewa->ReadUint8();
1453     if (velocityresponse < 5) {
1454     VelocityResponseCurve = curve_type_nonlinear;
1455     VelocityResponseDepth = velocityresponse;
1456     } else if (velocityresponse < 10) {
1457     VelocityResponseCurve = curve_type_linear;
1458     VelocityResponseDepth = velocityresponse - 5;
1459     } else if (velocityresponse < 15) {
1460     VelocityResponseCurve = curve_type_special;
1461     VelocityResponseDepth = velocityresponse - 10;
1462     } else {
1463     VelocityResponseCurve = curve_type_unknown;
1464     VelocityResponseDepth = 0;
1465     }
1466     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1467     if (releasevelocityresponse < 5) {
1468     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469     ReleaseVelocityResponseDepth = releasevelocityresponse;
1470     } else if (releasevelocityresponse < 10) {
1471     ReleaseVelocityResponseCurve = curve_type_linear;
1472     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1473     } else if (releasevelocityresponse < 15) {
1474     ReleaseVelocityResponseCurve = curve_type_special;
1475     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1476     } else {
1477     ReleaseVelocityResponseCurve = curve_type_unknown;
1478     ReleaseVelocityResponseDepth = 0;
1479     }
1480     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1481     AttenuationControllerThreshold = _3ewa->ReadInt8();
1482     _3ewa->ReadInt32(); // unknown
1483     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1484     _3ewa->ReadInt16(); // unknown
1485     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1486     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1487     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1488     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1489     else DimensionBypass = dim_bypass_ctrl_none;
1490     uint8_t pan = _3ewa->ReadUint8();
1491     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1492     SelfMask = _3ewa->ReadInt8() & 0x01;
1493     _3ewa->ReadInt8(); // unknown
1494     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1495     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1496     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1497     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1498     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1500     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1501     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1502     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1503     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1504     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1505     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1506     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1507     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1508     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1509     : vcf_res_ctrl_none;
1510     uint16_t eg3depth = _3ewa->ReadUint16();
1511     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1512 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1513 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1514     ChannelOffset = _3ewa->ReadUint8() / 4;
1515     uint8_t regoptions = _3ewa->ReadUint8();
1516     MSDecode = regoptions & 0x01; // bit 0
1517     SustainDefeat = regoptions & 0x02; // bit 1
1518     _3ewa->ReadInt16(); // unknown
1519     VelocityUpperLimit = _3ewa->ReadInt8();
1520     _3ewa->ReadInt8(); // unknown
1521     _3ewa->ReadInt16(); // unknown
1522     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1523     _3ewa->ReadInt8(); // unknown
1524     _3ewa->ReadInt8(); // unknown
1525     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1526     uint8_t vcfcutoff = _3ewa->ReadUint8();
1527     VCFEnabled = vcfcutoff & 0x80; // bit 7
1528     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1529     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1530     uint8_t vcfvelscale = _3ewa->ReadUint8();
1531     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1532     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1533     _3ewa->ReadInt8(); // unknown
1534     uint8_t vcfresonance = _3ewa->ReadUint8();
1535     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1536     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1537     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1538     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1539     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1540     uint8_t vcfvelocity = _3ewa->ReadUint8();
1541     VCFVelocityDynamicRange = vcfvelocity % 5;
1542     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1543     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1544     if (VCFType == vcf_type_lowpass) {
1545     if (lfo3ctrl & 0x40) // bit 6
1546     VCFType = vcf_type_lowpassturbo;
1547     }
1548 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1549     _3ewa->Read(DimensionUpperLimits, 1, 8);
1550     } else {
1551     memset(DimensionUpperLimits, 0, 8);
1552     }
1553 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1554     // use default values
1555     LFO3Frequency = 1.0;
1556     EG3Attack = 0.0;
1557     LFO1InternalDepth = 0;
1558     LFO3InternalDepth = 0;
1559     LFO1ControlDepth = 0;
1560     LFO3ControlDepth = 0;
1561     EG1Attack = 0.0;
1562 persson 1218 EG1Decay1 = 0.005;
1563     EG1Sustain = 1000;
1564     EG1Release = 0.3;
1565 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1566     EG1Controller.controller_number = 0;
1567     EG1ControllerInvert = false;
1568     EG1ControllerAttackInfluence = 0;
1569     EG1ControllerDecayInfluence = 0;
1570     EG1ControllerReleaseInfluence = 0;
1571     EG2Controller.type = eg2_ctrl_t::type_none;
1572     EG2Controller.controller_number = 0;
1573     EG2ControllerInvert = false;
1574     EG2ControllerAttackInfluence = 0;
1575     EG2ControllerDecayInfluence = 0;
1576     EG2ControllerReleaseInfluence = 0;
1577     LFO1Frequency = 1.0;
1578     EG2Attack = 0.0;
1579 persson 1218 EG2Decay1 = 0.005;
1580     EG2Sustain = 1000;
1581     EG2Release = 0.3;
1582 schoenebeck 809 LFO2ControlDepth = 0;
1583     LFO2Frequency = 1.0;
1584     LFO2InternalDepth = 0;
1585     EG1Decay2 = 0.0;
1586 persson 1218 EG1InfiniteSustain = true;
1587     EG1PreAttack = 0;
1588 schoenebeck 809 EG2Decay2 = 0.0;
1589 persson 1218 EG2InfiniteSustain = true;
1590     EG2PreAttack = 0;
1591 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1592     VelocityResponseDepth = 3;
1593     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1594     ReleaseVelocityResponseDepth = 3;
1595     VelocityResponseCurveScaling = 32;
1596     AttenuationControllerThreshold = 0;
1597     SampleStartOffset = 0;
1598     PitchTrack = true;
1599     DimensionBypass = dim_bypass_ctrl_none;
1600     Pan = 0;
1601     SelfMask = true;
1602     LFO3Controller = lfo3_ctrl_modwheel;
1603     LFO3Sync = false;
1604     InvertAttenuationController = false;
1605     AttenuationController.type = attenuation_ctrl_t::type_none;
1606     AttenuationController.controller_number = 0;
1607     LFO2Controller = lfo2_ctrl_internal;
1608     LFO2FlipPhase = false;
1609     LFO2Sync = false;
1610     LFO1Controller = lfo1_ctrl_internal;
1611     LFO1FlipPhase = false;
1612     LFO1Sync = false;
1613     VCFResonanceController = vcf_res_ctrl_none;
1614     EG3Depth = 0;
1615     ChannelOffset = 0;
1616     MSDecode = false;
1617     SustainDefeat = false;
1618     VelocityUpperLimit = 0;
1619     ReleaseTriggerDecay = 0;
1620     EG1Hold = false;
1621     VCFEnabled = false;
1622     VCFCutoff = 0;
1623     VCFCutoffController = vcf_cutoff_ctrl_none;
1624     VCFCutoffControllerInvert = false;
1625     VCFVelocityScale = 0;
1626     VCFResonance = 0;
1627     VCFResonanceDynamic = false;
1628     VCFKeyboardTracking = false;
1629     VCFKeyboardTrackingBreakpoint = 0;
1630     VCFVelocityDynamicRange = 0x04;
1631     VCFVelocityCurve = curve_type_linear;
1632     VCFType = vcf_type_lowpass;
1633 persson 1247 memset(DimensionUpperLimits, 127, 8);
1634 schoenebeck 2 }
1635 schoenebeck 16
1636 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1637     VelocityResponseDepth,
1638     VelocityResponseCurveScaling);
1639    
1640 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1641     ReleaseVelocityResponseCurve,
1642     ReleaseVelocityResponseDepth
1643     );
1644 persson 613
1645 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1646     VCFVelocityDynamicRange,
1647     VCFVelocityScale,
1648     VCFCutoffController);
1649 persson 613
1650     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1651 persson 858 VelocityTable = 0;
1652 persson 613 }
1653    
1654 persson 1301 /*
1655     * Constructs a DimensionRegion by copying all parameters from
1656     * another DimensionRegion
1657     */
1658     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1659     Instances++;
1660 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1661 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1662     pParentList = _3ewl; // restore the chunk pointer
1663    
1664     // deep copy of owned structures
1665     if (src.VelocityTable) {
1666     VelocityTable = new uint8_t[128];
1667     for (int k = 0 ; k < 128 ; k++)
1668     VelocityTable[k] = src.VelocityTable[k];
1669     }
1670     if (src.pSampleLoops) {
1671     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1672     for (int k = 0 ; k < src.SampleLoops ; k++)
1673     pSampleLoops[k] = src.pSampleLoops[k];
1674     }
1675     }
1676 schoenebeck 2394
1677     /**
1678     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1679     * and assign it to this object.
1680     *
1681     * Note that all sample pointers referenced by @a orig are simply copied as
1682     * memory address. Thus the respective samples are shared, not duplicated!
1683     *
1684     * @param orig - original DimensionRegion object to be copied from
1685     */
1686     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1687 schoenebeck 2482 CopyAssign(orig, NULL);
1688     }
1689    
1690     /**
1691     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1692     * and assign it to this object.
1693     *
1694     * @param orig - original DimensionRegion object to be copied from
1695     * @param mSamples - crosslink map between the foreign file's samples and
1696     * this file's samples
1697     */
1698     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1699 schoenebeck 2394 // delete all allocated data first
1700     if (VelocityTable) delete [] VelocityTable;
1701     if (pSampleLoops) delete [] pSampleLoops;
1702    
1703     // backup parent list pointer
1704     RIFF::List* p = pParentList;
1705    
1706 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1707     gig::Region* pOriginalRegion = pRegion;
1708    
1709 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1710    
1711     *this = *orig; // default memberwise shallow copy of all parameters
1712 schoenebeck 2547
1713     // restore members that shall not be altered
1714 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1715 schoenebeck 2547 pRegion = pOriginalRegion;
1716 schoenebeck 2482
1717 schoenebeck 2547 // only take the raw sample reference reference if the
1718 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1719     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1720     pSample = pOriginalSample;
1721     }
1722    
1723     if (mSamples && mSamples->count(orig->pSample)) {
1724     pSample = mSamples->find(orig->pSample)->second;
1725     }
1726 persson 1301
1727 schoenebeck 2394 // deep copy of owned structures
1728     if (orig->VelocityTable) {
1729     VelocityTable = new uint8_t[128];
1730     for (int k = 0 ; k < 128 ; k++)
1731     VelocityTable[k] = orig->VelocityTable[k];
1732     }
1733     if (orig->pSampleLoops) {
1734     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1735     for (int k = 0 ; k < orig->SampleLoops ; k++)
1736     pSampleLoops[k] = orig->pSampleLoops[k];
1737     }
1738     }
1739    
1740 schoenebeck 809 /**
1741 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1742     * which depends on this value.
1743     */
1744     void DimensionRegion::SetGain(int32_t gain) {
1745     DLS::Sampler::SetGain(gain);
1746     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1747     }
1748    
1749     /**
1750 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1751     * have to call File::Save() to make changes persistent.
1752     *
1753     * Usually there is absolutely no need to call this method explicitly.
1754     * It will be called automatically when File::Save() was called.
1755     */
1756     void DimensionRegion::UpdateChunks() {
1757     // first update base class's chunk
1758     DLS::Sampler::UpdateChunks();
1759    
1760 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1761     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1762     pData[12] = Crossfade.in_start;
1763     pData[13] = Crossfade.in_end;
1764     pData[14] = Crossfade.out_start;
1765     pData[15] = Crossfade.out_end;
1766    
1767 schoenebeck 809 // make sure '3ewa' chunk exists
1768     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1769 persson 1317 if (!_3ewa) {
1770     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1771     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1772     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1773 persson 1264 }
1774 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1775 schoenebeck 809
1776     // update '3ewa' chunk with DimensionRegion's current settings
1777    
1778 persson 1182 const uint32_t chunksize = _3ewa->GetNewSize();
1779 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1780 schoenebeck 809
1781     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1782 persson 1179 store32(&pData[4], lfo3freq);
1783 schoenebeck 809
1784     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1785 persson 1179 store32(&pData[8], eg3attack);
1786 schoenebeck 809
1787     // next 2 bytes unknown
1788    
1789 persson 1179 store16(&pData[14], LFO1InternalDepth);
1790 schoenebeck 809
1791     // next 2 bytes unknown
1792    
1793 persson 1179 store16(&pData[18], LFO3InternalDepth);
1794 schoenebeck 809
1795     // next 2 bytes unknown
1796    
1797 persson 1179 store16(&pData[22], LFO1ControlDepth);
1798 schoenebeck 809
1799     // next 2 bytes unknown
1800    
1801 persson 1179 store16(&pData[26], LFO3ControlDepth);
1802 schoenebeck 809
1803     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1804 persson 1179 store32(&pData[28], eg1attack);
1805 schoenebeck 809
1806     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1807 persson 1179 store32(&pData[32], eg1decay1);
1808 schoenebeck 809
1809     // next 2 bytes unknown
1810    
1811 persson 1179 store16(&pData[38], EG1Sustain);
1812 schoenebeck 809
1813     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1814 persson 1179 store32(&pData[40], eg1release);
1815 schoenebeck 809
1816     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1817 persson 1179 pData[44] = eg1ctl;
1818 schoenebeck 809
1819     const uint8_t eg1ctrloptions =
1820 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1821 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1822     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1823     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1824 persson 1179 pData[45] = eg1ctrloptions;
1825 schoenebeck 809
1826     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1827 persson 1179 pData[46] = eg2ctl;
1828 schoenebeck 809
1829     const uint8_t eg2ctrloptions =
1830 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
1831 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1832     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1833     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1834 persson 1179 pData[47] = eg2ctrloptions;
1835 schoenebeck 809
1836     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1837 persson 1179 store32(&pData[48], lfo1freq);
1838 schoenebeck 809
1839     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1840 persson 1179 store32(&pData[52], eg2attack);
1841 schoenebeck 809
1842     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1843 persson 1179 store32(&pData[56], eg2decay1);
1844 schoenebeck 809
1845     // next 2 bytes unknown
1846    
1847 persson 1179 store16(&pData[62], EG2Sustain);
1848 schoenebeck 809
1849     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1850 persson 1179 store32(&pData[64], eg2release);
1851 schoenebeck 809
1852     // next 2 bytes unknown
1853    
1854 persson 1179 store16(&pData[70], LFO2ControlDepth);
1855 schoenebeck 809
1856     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1857 persson 1179 store32(&pData[72], lfo2freq);
1858 schoenebeck 809
1859     // next 2 bytes unknown
1860    
1861 persson 1179 store16(&pData[78], LFO2InternalDepth);
1862 schoenebeck 809
1863     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1864 persson 1179 store32(&pData[80], eg1decay2);
1865 schoenebeck 809
1866     // next 2 bytes unknown
1867    
1868 persson 1179 store16(&pData[86], EG1PreAttack);
1869 schoenebeck 809
1870     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1871 persson 1179 store32(&pData[88], eg2decay2);
1872 schoenebeck 809
1873     // next 2 bytes unknown
1874    
1875 persson 1179 store16(&pData[94], EG2PreAttack);
1876 schoenebeck 809
1877     {
1878     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1879     uint8_t velocityresponse = VelocityResponseDepth;
1880     switch (VelocityResponseCurve) {
1881     case curve_type_nonlinear:
1882     break;
1883     case curve_type_linear:
1884     velocityresponse += 5;
1885     break;
1886     case curve_type_special:
1887     velocityresponse += 10;
1888     break;
1889     case curve_type_unknown:
1890     default:
1891     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1892     }
1893 persson 1179 pData[96] = velocityresponse;
1894 schoenebeck 809 }
1895    
1896     {
1897     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1898     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1899     switch (ReleaseVelocityResponseCurve) {
1900     case curve_type_nonlinear:
1901     break;
1902     case curve_type_linear:
1903     releasevelocityresponse += 5;
1904     break;
1905     case curve_type_special:
1906     releasevelocityresponse += 10;
1907     break;
1908     case curve_type_unknown:
1909     default:
1910     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1911     }
1912 persson 1179 pData[97] = releasevelocityresponse;
1913 schoenebeck 809 }
1914    
1915 persson 1179 pData[98] = VelocityResponseCurveScaling;
1916 schoenebeck 809
1917 persson 1179 pData[99] = AttenuationControllerThreshold;
1918 schoenebeck 809
1919     // next 4 bytes unknown
1920    
1921 persson 1179 store16(&pData[104], SampleStartOffset);
1922 schoenebeck 809
1923     // next 2 bytes unknown
1924    
1925     {
1926     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1927     switch (DimensionBypass) {
1928     case dim_bypass_ctrl_94:
1929     pitchTrackDimensionBypass |= 0x10;
1930     break;
1931     case dim_bypass_ctrl_95:
1932     pitchTrackDimensionBypass |= 0x20;
1933     break;
1934     case dim_bypass_ctrl_none:
1935     //FIXME: should we set anything here?
1936     break;
1937     default:
1938     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1939     }
1940 persson 1179 pData[108] = pitchTrackDimensionBypass;
1941 schoenebeck 809 }
1942    
1943     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1944 persson 1179 pData[109] = pan;
1945 schoenebeck 809
1946     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1947 persson 1179 pData[110] = selfmask;
1948 schoenebeck 809
1949     // next byte unknown
1950    
1951     {
1952     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1953     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1954     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1955     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1956 persson 1179 pData[112] = lfo3ctrl;
1957 schoenebeck 809 }
1958    
1959     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1960 persson 1179 pData[113] = attenctl;
1961 schoenebeck 809
1962     {
1963     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1964     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1965     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1966     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1967 persson 1179 pData[114] = lfo2ctrl;
1968 schoenebeck 809 }
1969    
1970     {
1971     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1972     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1973     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1974     if (VCFResonanceController != vcf_res_ctrl_none)
1975     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1976 persson 1179 pData[115] = lfo1ctrl;
1977 schoenebeck 809 }
1978    
1979     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1980 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1981 persson 1869 store16(&pData[116], eg3depth);
1982 schoenebeck 809
1983     // next 2 bytes unknown
1984    
1985     const uint8_t channeloffset = ChannelOffset * 4;
1986 persson 1179 pData[120] = channeloffset;
1987 schoenebeck 809
1988     {
1989     uint8_t regoptions = 0;
1990     if (MSDecode) regoptions |= 0x01; // bit 0
1991     if (SustainDefeat) regoptions |= 0x02; // bit 1
1992 persson 1179 pData[121] = regoptions;
1993 schoenebeck 809 }
1994    
1995     // next 2 bytes unknown
1996    
1997 persson 1179 pData[124] = VelocityUpperLimit;
1998 schoenebeck 809
1999     // next 3 bytes unknown
2000    
2001 persson 1179 pData[128] = ReleaseTriggerDecay;
2002 schoenebeck 809
2003     // next 2 bytes unknown
2004    
2005     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2006 persson 1179 pData[131] = eg1hold;
2007 schoenebeck 809
2008 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2009 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2010 persson 1179 pData[132] = vcfcutoff;
2011 schoenebeck 809
2012 persson 1179 pData[133] = VCFCutoffController;
2013 schoenebeck 809
2014 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2015 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2016 persson 1179 pData[134] = vcfvelscale;
2017 schoenebeck 809
2018     // next byte unknown
2019    
2020 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2021 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2022 persson 1179 pData[136] = vcfresonance;
2023 schoenebeck 809
2024 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2025 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2026 persson 1179 pData[137] = vcfbreakpoint;
2027 schoenebeck 809
2028 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2029 schoenebeck 809 VCFVelocityCurve * 5;
2030 persson 1179 pData[138] = vcfvelocity;
2031 schoenebeck 809
2032     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2033 persson 1179 pData[139] = vcftype;
2034 persson 1070
2035     if (chunksize >= 148) {
2036     memcpy(&pData[140], DimensionUpperLimits, 8);
2037     }
2038 schoenebeck 809 }
2039    
2040 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2041     curve_type_t curveType = releaseVelocityResponseCurve;
2042     uint8_t depth = releaseVelocityResponseDepth;
2043     // this models a strange behaviour or bug in GSt: two of the
2044     // velocity response curves for release time are not used even
2045     // if specified, instead another curve is chosen.
2046     if ((curveType == curve_type_nonlinear && depth == 0) ||
2047     (curveType == curve_type_special && depth == 4)) {
2048     curveType = curve_type_nonlinear;
2049     depth = 3;
2050     }
2051     return GetVelocityTable(curveType, depth, 0);
2052     }
2053    
2054     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2055     uint8_t vcfVelocityDynamicRange,
2056     uint8_t vcfVelocityScale,
2057     vcf_cutoff_ctrl_t vcfCutoffController)
2058     {
2059     curve_type_t curveType = vcfVelocityCurve;
2060     uint8_t depth = vcfVelocityDynamicRange;
2061     // even stranger GSt: two of the velocity response curves for
2062     // filter cutoff are not used, instead another special curve
2063     // is chosen. This curve is not used anywhere else.
2064     if ((curveType == curve_type_nonlinear && depth == 0) ||
2065     (curveType == curve_type_special && depth == 4)) {
2066     curveType = curve_type_special;
2067     depth = 5;
2068     }
2069     return GetVelocityTable(curveType, depth,
2070     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2071     ? vcfVelocityScale : 0);
2072     }
2073    
2074 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2075     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2076     {
2077     double* table;
2078     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2079 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2080 persson 613 table = (*pVelocityTables)[tableKey];
2081 schoenebeck 16 }
2082     else {
2083 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2084     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2085 schoenebeck 16 }
2086 persson 613 return table;
2087 schoenebeck 2 }
2088 schoenebeck 55
2089 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2090     return pRegion;
2091     }
2092    
2093 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2094     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2095     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2096     //#pragma GCC diagnostic push
2097     //#pragma GCC diagnostic error "-Wswitch"
2098    
2099 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2100     leverage_ctrl_t decodedcontroller;
2101     switch (EncodedController) {
2102     // special controller
2103     case _lev_ctrl_none:
2104     decodedcontroller.type = leverage_ctrl_t::type_none;
2105     decodedcontroller.controller_number = 0;
2106     break;
2107     case _lev_ctrl_velocity:
2108     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2109     decodedcontroller.controller_number = 0;
2110     break;
2111     case _lev_ctrl_channelaftertouch:
2112     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2113     decodedcontroller.controller_number = 0;
2114     break;
2115 schoenebeck 55
2116 schoenebeck 36 // ordinary MIDI control change controller
2117     case _lev_ctrl_modwheel:
2118     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2119     decodedcontroller.controller_number = 1;
2120     break;
2121     case _lev_ctrl_breath:
2122     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2123     decodedcontroller.controller_number = 2;
2124     break;
2125     case _lev_ctrl_foot:
2126     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2127     decodedcontroller.controller_number = 4;
2128     break;
2129     case _lev_ctrl_effect1:
2130     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2131     decodedcontroller.controller_number = 12;
2132     break;
2133     case _lev_ctrl_effect2:
2134     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2135     decodedcontroller.controller_number = 13;
2136     break;
2137     case _lev_ctrl_genpurpose1:
2138     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139     decodedcontroller.controller_number = 16;
2140     break;
2141     case _lev_ctrl_genpurpose2:
2142     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143     decodedcontroller.controller_number = 17;
2144     break;
2145     case _lev_ctrl_genpurpose3:
2146     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147     decodedcontroller.controller_number = 18;
2148     break;
2149     case _lev_ctrl_genpurpose4:
2150     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151     decodedcontroller.controller_number = 19;
2152     break;
2153     case _lev_ctrl_portamentotime:
2154     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155     decodedcontroller.controller_number = 5;
2156     break;
2157     case _lev_ctrl_sustainpedal:
2158     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159     decodedcontroller.controller_number = 64;
2160     break;
2161     case _lev_ctrl_portamento:
2162     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163     decodedcontroller.controller_number = 65;
2164     break;
2165     case _lev_ctrl_sostenutopedal:
2166     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167     decodedcontroller.controller_number = 66;
2168     break;
2169     case _lev_ctrl_softpedal:
2170     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171     decodedcontroller.controller_number = 67;
2172     break;
2173     case _lev_ctrl_genpurpose5:
2174     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175     decodedcontroller.controller_number = 80;
2176     break;
2177     case _lev_ctrl_genpurpose6:
2178     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179     decodedcontroller.controller_number = 81;
2180     break;
2181     case _lev_ctrl_genpurpose7:
2182     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183     decodedcontroller.controller_number = 82;
2184     break;
2185     case _lev_ctrl_genpurpose8:
2186     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187     decodedcontroller.controller_number = 83;
2188     break;
2189     case _lev_ctrl_effect1depth:
2190     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191     decodedcontroller.controller_number = 91;
2192     break;
2193     case _lev_ctrl_effect2depth:
2194     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195     decodedcontroller.controller_number = 92;
2196     break;
2197     case _lev_ctrl_effect3depth:
2198     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199     decodedcontroller.controller_number = 93;
2200     break;
2201     case _lev_ctrl_effect4depth:
2202     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203     decodedcontroller.controller_number = 94;
2204     break;
2205     case _lev_ctrl_effect5depth:
2206     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207     decodedcontroller.controller_number = 95;
2208     break;
2209 schoenebeck 55
2210 schoenebeck 2540 // format extension (these controllers are so far only supported by
2211     // LinuxSampler & gigedit) they will *NOT* work with
2212     // Gigasampler/GigaStudio !
2213     case _lev_ctrl_CC3_EXT:
2214     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215     decodedcontroller.controller_number = 3;
2216     break;
2217     case _lev_ctrl_CC6_EXT:
2218     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219     decodedcontroller.controller_number = 6;
2220     break;
2221     case _lev_ctrl_CC7_EXT:
2222     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223     decodedcontroller.controller_number = 7;
2224     break;
2225     case _lev_ctrl_CC8_EXT:
2226     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227     decodedcontroller.controller_number = 8;
2228     break;
2229     case _lev_ctrl_CC9_EXT:
2230     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2231     decodedcontroller.controller_number = 9;
2232     break;
2233     case _lev_ctrl_CC10_EXT:
2234     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235     decodedcontroller.controller_number = 10;
2236     break;
2237     case _lev_ctrl_CC11_EXT:
2238     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239     decodedcontroller.controller_number = 11;
2240     break;
2241     case _lev_ctrl_CC14_EXT:
2242     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243     decodedcontroller.controller_number = 14;
2244     break;
2245     case _lev_ctrl_CC15_EXT:
2246     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247     decodedcontroller.controller_number = 15;
2248     break;
2249     case _lev_ctrl_CC20_EXT:
2250     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251     decodedcontroller.controller_number = 20;
2252     break;
2253     case _lev_ctrl_CC21_EXT:
2254     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255     decodedcontroller.controller_number = 21;
2256     break;
2257     case _lev_ctrl_CC22_EXT:
2258     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259     decodedcontroller.controller_number = 22;
2260     break;
2261     case _lev_ctrl_CC23_EXT:
2262     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263     decodedcontroller.controller_number = 23;
2264     break;
2265     case _lev_ctrl_CC24_EXT:
2266     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267     decodedcontroller.controller_number = 24;
2268     break;
2269     case _lev_ctrl_CC25_EXT:
2270     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271     decodedcontroller.controller_number = 25;
2272     break;
2273     case _lev_ctrl_CC26_EXT:
2274     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275     decodedcontroller.controller_number = 26;
2276     break;
2277     case _lev_ctrl_CC27_EXT:
2278     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279     decodedcontroller.controller_number = 27;
2280     break;
2281     case _lev_ctrl_CC28_EXT:
2282     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283     decodedcontroller.controller_number = 28;
2284     break;
2285     case _lev_ctrl_CC29_EXT:
2286     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287     decodedcontroller.controller_number = 29;
2288     break;
2289     case _lev_ctrl_CC30_EXT:
2290     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291     decodedcontroller.controller_number = 30;
2292     break;
2293     case _lev_ctrl_CC31_EXT:
2294     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295     decodedcontroller.controller_number = 31;
2296     break;
2297     case _lev_ctrl_CC68_EXT:
2298     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299     decodedcontroller.controller_number = 68;
2300     break;
2301     case _lev_ctrl_CC69_EXT:
2302     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303     decodedcontroller.controller_number = 69;
2304     break;
2305     case _lev_ctrl_CC70_EXT:
2306     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307     decodedcontroller.controller_number = 70;
2308     break;
2309     case _lev_ctrl_CC71_EXT:
2310     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311     decodedcontroller.controller_number = 71;
2312     break;
2313     case _lev_ctrl_CC72_EXT:
2314     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315     decodedcontroller.controller_number = 72;
2316     break;
2317     case _lev_ctrl_CC73_EXT:
2318     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319     decodedcontroller.controller_number = 73;
2320     break;
2321     case _lev_ctrl_CC74_EXT:
2322     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323     decodedcontroller.controller_number = 74;
2324     break;
2325     case _lev_ctrl_CC75_EXT:
2326     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327     decodedcontroller.controller_number = 75;
2328     break;
2329     case _lev_ctrl_CC76_EXT:
2330     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331     decodedcontroller.controller_number = 76;
2332     break;
2333     case _lev_ctrl_CC77_EXT:
2334     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335     decodedcontroller.controller_number = 77;
2336     break;
2337     case _lev_ctrl_CC78_EXT:
2338     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339     decodedcontroller.controller_number = 78;
2340     break;
2341     case _lev_ctrl_CC79_EXT:
2342     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343     decodedcontroller.controller_number = 79;
2344     break;
2345     case _lev_ctrl_CC84_EXT:
2346     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347     decodedcontroller.controller_number = 84;
2348     break;
2349     case _lev_ctrl_CC85_EXT:
2350     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351     decodedcontroller.controller_number = 85;
2352     break;
2353     case _lev_ctrl_CC86_EXT:
2354     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355     decodedcontroller.controller_number = 86;
2356     break;
2357     case _lev_ctrl_CC87_EXT:
2358     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359     decodedcontroller.controller_number = 87;
2360     break;
2361     case _lev_ctrl_CC89_EXT:
2362     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363     decodedcontroller.controller_number = 89;
2364     break;
2365     case _lev_ctrl_CC90_EXT:
2366     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367     decodedcontroller.controller_number = 90;
2368     break;
2369     case _lev_ctrl_CC96_EXT:
2370     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371     decodedcontroller.controller_number = 96;
2372     break;
2373     case _lev_ctrl_CC97_EXT:
2374     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375     decodedcontroller.controller_number = 97;
2376     break;
2377     case _lev_ctrl_CC102_EXT:
2378     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379     decodedcontroller.controller_number = 102;
2380     break;
2381     case _lev_ctrl_CC103_EXT:
2382     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383     decodedcontroller.controller_number = 103;
2384     break;
2385     case _lev_ctrl_CC104_EXT:
2386     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387     decodedcontroller.controller_number = 104;
2388     break;
2389     case _lev_ctrl_CC105_EXT:
2390     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391     decodedcontroller.controller_number = 105;
2392     break;
2393     case _lev_ctrl_CC106_EXT:
2394     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395     decodedcontroller.controller_number = 106;
2396     break;
2397     case _lev_ctrl_CC107_EXT:
2398     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399     decodedcontroller.controller_number = 107;
2400     break;
2401     case _lev_ctrl_CC108_EXT:
2402     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403     decodedcontroller.controller_number = 108;
2404     break;
2405     case _lev_ctrl_CC109_EXT:
2406     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407     decodedcontroller.controller_number = 109;
2408     break;
2409     case _lev_ctrl_CC110_EXT:
2410     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411     decodedcontroller.controller_number = 110;
2412     break;
2413     case _lev_ctrl_CC111_EXT:
2414     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415     decodedcontroller.controller_number = 111;
2416     break;
2417     case _lev_ctrl_CC112_EXT:
2418     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419     decodedcontroller.controller_number = 112;
2420     break;
2421     case _lev_ctrl_CC113_EXT:
2422     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423     decodedcontroller.controller_number = 113;
2424     break;
2425     case _lev_ctrl_CC114_EXT:
2426     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427     decodedcontroller.controller_number = 114;
2428     break;
2429     case _lev_ctrl_CC115_EXT:
2430     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431     decodedcontroller.controller_number = 115;
2432     break;
2433     case _lev_ctrl_CC116_EXT:
2434     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435     decodedcontroller.controller_number = 116;
2436     break;
2437     case _lev_ctrl_CC117_EXT:
2438     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439     decodedcontroller.controller_number = 117;
2440     break;
2441     case _lev_ctrl_CC118_EXT:
2442     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443     decodedcontroller.controller_number = 118;
2444     break;
2445     case _lev_ctrl_CC119_EXT:
2446     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447     decodedcontroller.controller_number = 119;
2448     break;
2449    
2450 schoenebeck 36 // unknown controller type
2451     default:
2452     throw gig::Exception("Unknown leverage controller type.");
2453     }
2454     return decodedcontroller;
2455     }
2456 schoenebeck 2540
2457     // see above (diagnostic push not supported prior GCC 4.6)
2458     //#pragma GCC diagnostic pop
2459 schoenebeck 2
2460 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2461     _lev_ctrl_t encodedcontroller;
2462     switch (DecodedController.type) {
2463     // special controller
2464     case leverage_ctrl_t::type_none:
2465     encodedcontroller = _lev_ctrl_none;
2466     break;
2467     case leverage_ctrl_t::type_velocity:
2468     encodedcontroller = _lev_ctrl_velocity;
2469     break;
2470     case leverage_ctrl_t::type_channelaftertouch:
2471     encodedcontroller = _lev_ctrl_channelaftertouch;
2472     break;
2473    
2474     // ordinary MIDI control change controller
2475     case leverage_ctrl_t::type_controlchange:
2476     switch (DecodedController.controller_number) {
2477     case 1:
2478     encodedcontroller = _lev_ctrl_modwheel;
2479     break;
2480     case 2:
2481     encodedcontroller = _lev_ctrl_breath;
2482     break;
2483     case 4:
2484     encodedcontroller = _lev_ctrl_foot;
2485     break;
2486     case 12:
2487     encodedcontroller = _lev_ctrl_effect1;
2488     break;
2489     case 13:
2490     encodedcontroller = _lev_ctrl_effect2;
2491     break;
2492     case 16:
2493     encodedcontroller = _lev_ctrl_genpurpose1;
2494     break;
2495     case 17:
2496     encodedcontroller = _lev_ctrl_genpurpose2;
2497     break;
2498     case 18:
2499     encodedcontroller = _lev_ctrl_genpurpose3;
2500     break;
2501     case 19:
2502     encodedcontroller = _lev_ctrl_genpurpose4;
2503     break;
2504     case 5:
2505     encodedcontroller = _lev_ctrl_portamentotime;
2506     break;
2507     case 64:
2508     encodedcontroller = _lev_ctrl_sustainpedal;
2509     break;
2510     case 65:
2511     encodedcontroller = _lev_ctrl_portamento;
2512     break;
2513     case 66:
2514     encodedcontroller = _lev_ctrl_sostenutopedal;
2515     break;
2516     case 67:
2517     encodedcontroller = _lev_ctrl_softpedal;
2518     break;
2519     case 80:
2520     encodedcontroller = _lev_ctrl_genpurpose5;
2521     break;
2522     case 81:
2523     encodedcontroller = _lev_ctrl_genpurpose6;
2524     break;
2525     case 82:
2526     encodedcontroller = _lev_ctrl_genpurpose7;
2527     break;
2528     case 83:
2529     encodedcontroller = _lev_ctrl_genpurpose8;
2530     break;
2531     case 91:
2532     encodedcontroller = _lev_ctrl_effect1depth;
2533     break;
2534     case 92:
2535     encodedcontroller = _lev_ctrl_effect2depth;
2536     break;
2537     case 93:
2538     encodedcontroller = _lev_ctrl_effect3depth;
2539     break;
2540     case 94:
2541     encodedcontroller = _lev_ctrl_effect4depth;
2542     break;
2543     case 95:
2544     encodedcontroller = _lev_ctrl_effect5depth;
2545     break;
2546 schoenebeck 2540
2547     // format extension (these controllers are so far only
2548     // supported by LinuxSampler & gigedit) they will *NOT*
2549     // work with Gigasampler/GigaStudio !
2550     case 3:
2551     encodedcontroller = _lev_ctrl_CC3_EXT;
2552     break;
2553     case 6:
2554     encodedcontroller = _lev_ctrl_CC6_EXT;
2555     break;
2556     case 7:
2557     encodedcontroller = _lev_ctrl_CC7_EXT;
2558     break;
2559     case 8:
2560     encodedcontroller = _lev_ctrl_CC8_EXT;
2561     break;
2562     case 9:
2563     encodedcontroller = _lev_ctrl_CC9_EXT;
2564     break;
2565     case 10:
2566     encodedcontroller = _lev_ctrl_CC10_EXT;
2567     break;
2568     case 11:
2569     encodedcontroller = _lev_ctrl_CC11_EXT;
2570     break;
2571     case 14:
2572     encodedcontroller = _lev_ctrl_CC14_EXT;
2573     break;
2574     case 15:
2575     encodedcontroller = _lev_ctrl_CC15_EXT;
2576     break;
2577     case 20:
2578     encodedcontroller = _lev_ctrl_CC20_EXT;
2579     break;
2580     case 21:
2581     encodedcontroller = _lev_ctrl_CC21_EXT;
2582     break;
2583     case 22:
2584     encodedcontroller = _lev_ctrl_CC22_EXT;
2585     break;
2586     case 23:
2587     encodedcontroller = _lev_ctrl_CC23_EXT;
2588     break;
2589     case 24:
2590     encodedcontroller = _lev_ctrl_CC24_EXT;
2591     break;
2592     case 25:
2593     encodedcontroller = _lev_ctrl_CC25_EXT;
2594     break;
2595     case 26:
2596     encodedcontroller = _lev_ctrl_CC26_EXT;
2597     break;
2598     case 27:
2599     encodedcontroller = _lev_ctrl_CC27_EXT;
2600     break;
2601     case 28:
2602     encodedcontroller = _lev_ctrl_CC28_EXT;
2603     break;
2604     case 29:
2605     encodedcontroller = _lev_ctrl_CC29_EXT;
2606     break;
2607     case 30:
2608     encodedcontroller = _lev_ctrl_CC30_EXT;
2609     break;
2610     case 31:
2611     encodedcontroller = _lev_ctrl_CC31_EXT;
2612     break;
2613     case 68:
2614     encodedcontroller = _lev_ctrl_CC68_EXT;
2615     break;
2616     case 69:
2617     encodedcontroller = _lev_ctrl_CC69_EXT;
2618     break;
2619     case 70:
2620     encodedcontroller = _lev_ctrl_CC70_EXT;
2621     break;
2622     case 71:
2623     encodedcontroller = _lev_ctrl_CC71_EXT;
2624     break;
2625     case 72:
2626     encodedcontroller = _lev_ctrl_CC72_EXT;
2627     break;
2628     case 73:
2629     encodedcontroller = _lev_ctrl_CC73_EXT;
2630     break;
2631     case 74:
2632     encodedcontroller = _lev_ctrl_CC74_EXT;
2633     break;
2634     case 75:
2635     encodedcontroller = _lev_ctrl_CC75_EXT;
2636     break;
2637     case 76:
2638     encodedcontroller = _lev_ctrl_CC76_EXT;
2639     break;
2640     case 77:
2641     encodedcontroller = _lev_ctrl_CC77_EXT;
2642     break;
2643     case 78:
2644     encodedcontroller = _lev_ctrl_CC78_EXT;
2645     break;
2646     case 79:
2647     encodedcontroller = _lev_ctrl_CC79_EXT;
2648     break;
2649     case 84:
2650     encodedcontroller = _lev_ctrl_CC84_EXT;
2651     break;
2652     case 85:
2653     encodedcontroller = _lev_ctrl_CC85_EXT;
2654     break;
2655     case 86:
2656     encodedcontroller = _lev_ctrl_CC86_EXT;
2657     break;
2658     case 87:
2659     encodedcontroller = _lev_ctrl_CC87_EXT;
2660     break;
2661     case 89:
2662     encodedcontroller = _lev_ctrl_CC89_EXT;
2663     break;
2664     case 90:
2665     encodedcontroller = _lev_ctrl_CC90_EXT;
2666     break;
2667     case 96:
2668     encodedcontroller = _lev_ctrl_CC96_EXT;
2669     break;
2670     case 97:
2671     encodedcontroller = _lev_ctrl_CC97_EXT;
2672     break;
2673     case 102:
2674     encodedcontroller = _lev_ctrl_CC102_EXT;
2675     break;
2676     case 103:
2677     encodedcontroller = _lev_ctrl_CC103_EXT;
2678     break;
2679     case 104:
2680     encodedcontroller = _lev_ctrl_CC104_EXT;
2681     break;
2682     case 105:
2683     encodedcontroller = _lev_ctrl_CC105_EXT;
2684     break;
2685     case 106:
2686     encodedcontroller = _lev_ctrl_CC106_EXT;
2687     break;
2688     case 107:
2689     encodedcontroller = _lev_ctrl_CC107_EXT;
2690     break;
2691     case 108:
2692     encodedcontroller = _lev_ctrl_CC108_EXT;
2693     break;
2694     case 109:
2695     encodedcontroller = _lev_ctrl_CC109_EXT;
2696     break;
2697     case 110:
2698     encodedcontroller = _lev_ctrl_CC110_EXT;
2699     break;
2700     case 111:
2701     encodedcontroller = _lev_ctrl_CC111_EXT;
2702     break;
2703     case 112:
2704     encodedcontroller = _lev_ctrl_CC112_EXT;
2705     break;
2706     case 113:
2707     encodedcontroller = _lev_ctrl_CC113_EXT;
2708     break;
2709     case 114:
2710     encodedcontroller = _lev_ctrl_CC114_EXT;
2711     break;
2712     case 115:
2713     encodedcontroller = _lev_ctrl_CC115_EXT;
2714     break;
2715     case 116:
2716     encodedcontroller = _lev_ctrl_CC116_EXT;
2717     break;
2718     case 117:
2719     encodedcontroller = _lev_ctrl_CC117_EXT;
2720     break;
2721     case 118:
2722     encodedcontroller = _lev_ctrl_CC118_EXT;
2723     break;
2724     case 119:
2725     encodedcontroller = _lev_ctrl_CC119_EXT;
2726     break;
2727    
2728 schoenebeck 809 default:
2729     throw gig::Exception("leverage controller number is not supported by the gig format");
2730     }
2731 persson 1182 break;
2732 schoenebeck 809 default:
2733     throw gig::Exception("Unknown leverage controller type.");
2734     }
2735     return encodedcontroller;
2736     }
2737    
2738 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2739     Instances--;
2740     if (!Instances) {
2741     // delete the velocity->volume tables
2742     VelocityTableMap::iterator iter;
2743     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2744     double* pTable = iter->second;
2745     if (pTable) delete[] pTable;
2746     }
2747     pVelocityTables->clear();
2748     delete pVelocityTables;
2749     pVelocityTables = NULL;
2750     }
2751 persson 858 if (VelocityTable) delete[] VelocityTable;
2752 schoenebeck 16 }
2753 schoenebeck 2
2754 schoenebeck 16 /**
2755     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2756     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2757     * and VelocityResponseCurveScaling) involved are taken into account to
2758     * calculate the amplitude factor. Use this method when a key was
2759     * triggered to get the volume with which the sample should be played
2760     * back.
2761     *
2762 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2763     * @returns amplitude factor (between 0.0 and 1.0)
2764 schoenebeck 16 */
2765     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2766     return pVelocityAttenuationTable[MIDIKeyVelocity];
2767     }
2768 schoenebeck 2
2769 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2770     return pVelocityReleaseTable[MIDIKeyVelocity];
2771     }
2772    
2773 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2774     return pVelocityCutoffTable[MIDIKeyVelocity];
2775     }
2776    
2777 schoenebeck 1358 /**
2778     * Updates the respective member variable and the lookup table / cache
2779     * that depends on this value.
2780     */
2781     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2782     pVelocityAttenuationTable =
2783     GetVelocityTable(
2784     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2785     );
2786     VelocityResponseCurve = curve;
2787     }
2788    
2789     /**
2790     * Updates the respective member variable and the lookup table / cache
2791     * that depends on this value.
2792     */
2793     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2794     pVelocityAttenuationTable =
2795     GetVelocityTable(
2796     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2797     );
2798     VelocityResponseDepth = depth;
2799     }
2800    
2801     /**
2802     * Updates the respective member variable and the lookup table / cache
2803     * that depends on this value.
2804     */
2805     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2806     pVelocityAttenuationTable =
2807     GetVelocityTable(
2808     VelocityResponseCurve, VelocityResponseDepth, scaling
2809     );
2810     VelocityResponseCurveScaling = scaling;
2811     }
2812    
2813     /**
2814     * Updates the respective member variable and the lookup table / cache
2815     * that depends on this value.
2816     */
2817     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2818     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2819     ReleaseVelocityResponseCurve = curve;
2820     }
2821    
2822     /**
2823     * Updates the respective member variable and the lookup table / cache
2824     * that depends on this value.
2825     */
2826     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2827     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2828     ReleaseVelocityResponseDepth = depth;
2829     }
2830    
2831     /**
2832     * Updates the respective member variable and the lookup table / cache
2833     * that depends on this value.
2834     */
2835     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2836     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2837     VCFCutoffController = controller;
2838     }
2839    
2840     /**
2841     * Updates the respective member variable and the lookup table / cache
2842     * that depends on this value.
2843     */
2844     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2845     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2846     VCFVelocityCurve = curve;
2847     }
2848    
2849     /**
2850     * Updates the respective member variable and the lookup table / cache
2851     * that depends on this value.
2852     */
2853     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2854     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2855     VCFVelocityDynamicRange = range;
2856     }
2857    
2858     /**
2859     * Updates the respective member variable and the lookup table / cache
2860     * that depends on this value.
2861     */
2862     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2863     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2864     VCFVelocityScale = scaling;
2865     }
2866    
2867 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2868 schoenebeck 317
2869 schoenebeck 308 // line-segment approximations of the 15 velocity curves
2870 schoenebeck 16
2871 schoenebeck 308 // linear
2872     const int lin0[] = { 1, 1, 127, 127 };
2873     const int lin1[] = { 1, 21, 127, 127 };
2874     const int lin2[] = { 1, 45, 127, 127 };
2875     const int lin3[] = { 1, 74, 127, 127 };
2876     const int lin4[] = { 1, 127, 127, 127 };
2877 schoenebeck 16
2878 schoenebeck 308 // non-linear
2879     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2880 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2881 schoenebeck 308 127, 127 };
2882     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2883     127, 127 };
2884     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2885     127, 127 };
2886     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2887 schoenebeck 317
2888 schoenebeck 308 // special
2889 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2890 schoenebeck 308 113, 127, 127, 127 };
2891     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2892     118, 127, 127, 127 };
2893 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2894 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2895 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2896 schoenebeck 308 117, 127, 127, 127 };
2897 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2898 schoenebeck 308 127, 127 };
2899 schoenebeck 317
2900 persson 728 // this is only used by the VCF velocity curve
2901     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2902     91, 127, 127, 127 };
2903    
2904 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2905 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2906 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2907 schoenebeck 317
2908 schoenebeck 308 double* const table = new double[128];
2909    
2910     const int* curve = curves[curveType * 5 + depth];
2911     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2912 schoenebeck 317
2913 schoenebeck 308 table[0] = 0;
2914     for (int x = 1 ; x < 128 ; x++) {
2915    
2916     if (x > curve[2]) curve += 2;
2917 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2918 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2919     y = y / 127;
2920    
2921     // Scale up for s > 20, down for s < 20. When
2922     // down-scaling, the curve still ends at 1.0.
2923     if (s < 20 && y >= 0.5)
2924     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2925     else
2926     y = y * (s / 20.0);
2927     if (y > 1) y = 1;
2928    
2929     table[x] = y;
2930     }
2931     return table;
2932     }
2933    
2934    
2935 schoenebeck 2 // *************** Region ***************
2936     // *
2937    
2938     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2939     // Initialization
2940     Dimensions = 0;
2941 schoenebeck 347 for (int i = 0; i < 256; i++) {
2942 schoenebeck 2 pDimensionRegions[i] = NULL;
2943     }
2944 schoenebeck 282 Layers = 1;
2945 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2946     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2947 schoenebeck 2
2948     // Actual Loading
2949    
2950 schoenebeck 1524 if (!file->GetAutoLoad()) return;
2951    
2952 schoenebeck 2 LoadDimensionRegions(rgnList);
2953    
2954     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2955     if (_3lnk) {
2956     DimensionRegions = _3lnk->ReadUint32();
2957 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2958 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2959     uint8_t bits = _3lnk->ReadUint8();
2960 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2961     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2962 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2963 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2964     pDimensionDefinitions[i].dimension = dimension_none;
2965     pDimensionDefinitions[i].bits = 0;
2966     pDimensionDefinitions[i].zones = 0;
2967     pDimensionDefinitions[i].split_type = split_type_bit;
2968     pDimensionDefinitions[i].zone_size = 0;
2969     }
2970     else { // active dimension
2971     pDimensionDefinitions[i].dimension = dimension;
2972     pDimensionDefinitions[i].bits = bits;
2973 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2974 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2975     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2976 schoenebeck 2 Dimensions++;
2977 schoenebeck 282
2978     // if this is a layer dimension, remember the amount of layers
2979     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2980 schoenebeck 2 }
2981 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2982 schoenebeck 2 }
2983 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2984 schoenebeck 2
2985 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2986     // update the VelocityTables in the dimension regions
2987     UpdateVelocityTable();
2988 schoenebeck 2
2989 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2990     if (file->pVersion && file->pVersion->major == 3)
2991     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2992     else
2993     _3lnk->SetPos(44);
2994    
2995 schoenebeck 1524 // load sample references (if auto loading is enabled)
2996     if (file->GetAutoLoad()) {
2997     for (uint i = 0; i < DimensionRegions; i++) {
2998     uint32_t wavepoolindex = _3lnk->ReadUint32();
2999     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3000     }
3001     GetSample(); // load global region sample reference
3002 schoenebeck 2 }
3003 persson 1102 } else {
3004     DimensionRegions = 0;
3005 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3006     pDimensionDefinitions[i].dimension = dimension_none;
3007     pDimensionDefinitions[i].bits = 0;
3008     pDimensionDefinitions[i].zones = 0;
3009     }
3010 schoenebeck 2 }
3011 schoenebeck 823
3012     // make sure there is at least one dimension region
3013     if (!DimensionRegions) {
3014     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3015     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3016     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3017 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3018 schoenebeck 823 DimensionRegions = 1;
3019     }
3020 schoenebeck 2 }
3021    
3022 schoenebeck 809 /**
3023     * Apply Region settings and all its DimensionRegions to the respective
3024     * RIFF chunks. You have to call File::Save() to make changes persistent.
3025     *
3026     * Usually there is absolutely no need to call this method explicitly.
3027     * It will be called automatically when File::Save() was called.
3028     *
3029     * @throws gig::Exception if samples cannot be dereferenced
3030     */
3031     void Region::UpdateChunks() {
3032 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3033     // but we still have to provide some existing one to not corrupt the
3034     // file, so to avoid the latter we simply always assign the sample of
3035     // the first dimension region of this region
3036     pSample = pDimensionRegions[0]->pSample;
3037    
3038 schoenebeck 809 // first update base class's chunks
3039     DLS::Region::UpdateChunks();
3040    
3041     // update dimension region's chunks
3042 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3043 persson 1317 pDimensionRegions[i]->UpdateChunks();
3044 schoenebeck 823 }
3045 schoenebeck 809
3046 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3047     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3048 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3049     const int iMaxDimensionRegions = version3 ? 256 : 32;
3050 schoenebeck 809
3051     // make sure '3lnk' chunk exists
3052     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3053     if (!_3lnk) {
3054 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3055 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3056 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3057 persson 1192
3058     // move 3prg to last position
3059 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3060 schoenebeck 809 }
3061    
3062     // update dimension definitions in '3lnk' chunk
3063     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3064 persson 1179 store32(&pData[0], DimensionRegions);
3065 persson 1199 int shift = 0;
3066 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3067 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3068     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3069 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3070 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3071 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3072 persson 1199 // next 3 bytes unknown, always zero?
3073    
3074     shift += pDimensionDefinitions[i].bits;
3075 schoenebeck 809 }
3076    
3077     // update wave pool table in '3lnk' chunk
3078 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3079 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3080     int iWaveIndex = -1;
3081     if (i < DimensionRegions) {
3082 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3083     File::SampleList::iterator iter = pFile->pSamples->begin();
3084     File::SampleList::iterator end = pFile->pSamples->end();
3085 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3086 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3087     iWaveIndex = index;
3088     break;
3089     }
3090 schoenebeck 809 }
3091     }
3092 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3093 schoenebeck 809 }
3094     }
3095    
3096 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3097     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3098     if (_3prg) {
3099     int dimensionRegionNr = 0;
3100     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3101     while (_3ewl) {
3102     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3103 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3104 schoenebeck 2 dimensionRegionNr++;
3105     }
3106     _3ewl = _3prg->GetNextSubList();
3107     }
3108     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3109     }
3110     }
3111    
3112 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3113     // update KeyRange struct and make sure regions are in correct order
3114     DLS::Region::SetKeyRange(Low, High);
3115     // update Region key table for fast lookup
3116     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3117     }
3118    
3119 persson 858 void Region::UpdateVelocityTable() {
3120     // get velocity dimension's index
3121     int veldim = -1;
3122     for (int i = 0 ; i < Dimensions ; i++) {
3123     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3124     veldim = i;
3125 schoenebeck 809 break;
3126     }
3127     }
3128 persson 858 if (veldim == -1) return;
3129 schoenebeck 809
3130 persson 858 int step = 1;
3131     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3132     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3133     int end = step * pDimensionDefinitions[veldim].zones;
3134 schoenebeck 809
3135 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3136     int dim[8] = { 0 };
3137     for (int i = 0 ; i < DimensionRegions ; i++) {
3138    
3139 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3140     pDimensionRegions[i]->VelocityUpperLimit) {
3141 persson 858 // create the velocity table
3142     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3143     if (!table) {
3144     table = new uint8_t[128];
3145     pDimensionRegions[i]->VelocityTable = table;
3146     }
3147     int tableidx = 0;
3148     int velocityZone = 0;
3149 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3150     for (int k = i ; k < end ; k += step) {
3151     DimensionRegion *d = pDimensionRegions[k];
3152     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3153     velocityZone++;
3154     }
3155     } else { // gig2
3156     for (int k = i ; k < end ; k += step) {
3157     DimensionRegion *d = pDimensionRegions[k];
3158     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3159     velocityZone++;
3160     }
3161 persson 858 }
3162     } else {
3163     if (pDimensionRegions[i]->VelocityTable) {
3164     delete[] pDimensionRegions[i]->VelocityTable;
3165     pDimensionRegions[i]->VelocityTable = 0;
3166     }
3167 schoenebeck 809 }
3168 persson 858
3169     int j;
3170     int shift = 0;
3171     for (j = 0 ; j < Dimensions ; j++) {
3172     if (j == veldim) i += skipveldim; // skip velocity dimension
3173     else {
3174     dim[j]++;
3175     if (dim[j] < pDimensionDefinitions[j].zones) break;
3176     else {
3177     // skip unused dimension regions
3178     dim[j] = 0;
3179     i += ((1 << pDimensionDefinitions[j].bits) -
3180     pDimensionDefinitions[j].zones) << shift;
3181     }
3182     }
3183     shift += pDimensionDefinitions[j].bits;
3184     }
3185     if (j == Dimensions) break;
3186 schoenebeck 809 }
3187     }
3188    
3189     /** @brief Einstein would have dreamed of it - create a new dimension.
3190     *
3191     * Creates a new dimension with the dimension definition given by
3192     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3193     * There is a hard limit of dimensions and total amount of "bits" all
3194     * dimensions can have. This limit is dependant to what gig file format
3195     * version this file refers to. The gig v2 (and lower) format has a
3196     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3197     * format has a limit of 8.
3198     *
3199     * @param pDimDef - defintion of the new dimension
3200     * @throws gig::Exception if dimension of the same type exists already
3201     * @throws gig::Exception if amount of dimensions or total amount of
3202     * dimension bits limit is violated
3203     */
3204     void Region::AddDimension(dimension_def_t* pDimDef) {
3205 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3206     if (pDimDef->zones < 2)
3207     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3208     if (pDimDef->bits < 1)
3209     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3210     if (pDimDef->dimension == dimension_samplechannel) {
3211     if (pDimDef->zones != 2)
3212     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3213     if (pDimDef->bits != 1)
3214     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3215     }
3216    
3217 schoenebeck 809 // check if max. amount of dimensions reached
3218     File* file = (File*) GetParent()->GetParent();
3219     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3220     if (Dimensions >= iMaxDimensions)
3221     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3222     // check if max. amount of dimension bits reached
3223     int iCurrentBits = 0;
3224     for (int i = 0; i < Dimensions; i++)
3225     iCurrentBits += pDimensionDefinitions[i].bits;
3226     if (iCurrentBits >= iMaxDimensions)
3227     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3228     const int iNewBits = iCurrentBits + pDimDef->bits;
3229     if (iNewBits > iMaxDimensions)
3230     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3231     // check if there's already a dimensions of the same type
3232     for (int i = 0; i < Dimensions; i++)
3233     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3234     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3235    
3236 persson 1301 // pos is where the new dimension should be placed, normally
3237     // last in list, except for the samplechannel dimension which
3238     // has to be first in list
3239     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3240     int bitpos = 0;
3241     for (int i = 0 ; i < pos ; i++)
3242     bitpos += pDimensionDefinitions[i].bits;
3243    
3244     // make room for the new dimension
3245     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3246     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3247     for (int j = Dimensions ; j > pos ; j--) {
3248     pDimensionRegions[i]->DimensionUpperLimits[j] =
3249     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3250     }
3251     }
3252    
3253 schoenebeck 809 // assign definition of new dimension
3254 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3255 schoenebeck 809
3256 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3257 persson 1301 pDimensionDefinitions[pos].split_type =
3258     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3259     pDimensionDefinitions[pos].zone_size =
3260     __resolveZoneSize(pDimensionDefinitions[pos]);
3261 schoenebeck 1113
3262 persson 1301 // create new dimension region(s) for this new dimension, and make
3263     // sure that the dimension regions are placed correctly in both the
3264     // RIFF list and the pDimensionRegions array
3265     RIFF::Chunk* moveTo = NULL;
3266     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3267     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3268     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3269     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3270     }
3271     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3272     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3273     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3274     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3275     // create a new dimension region and copy all parameter values from
3276     // an existing dimension region
3277     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3278     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3279 persson 1247
3280 persson 1301 DimensionRegions++;
3281     }
3282     }
3283     moveTo = pDimensionRegions[i]->pParentList;
3284 schoenebeck 809 }
3285    
3286 persson 1247 // initialize the upper limits for this dimension
3287 persson 1301 int mask = (1 << bitpos) - 1;
3288     for (int z = 0 ; z < pDimDef->zones ; z++) {
3289 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3290 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3291 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3292     (z << bitpos) |
3293     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3294 persson 1247 }
3295     }
3296    
3297 schoenebeck 809 Dimensions++;
3298    
3299     // if this is a layer dimension, update 'Layers' attribute
3300     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3301    
3302 persson 858 UpdateVelocityTable();
3303 schoenebeck 809 }
3304    
3305     /** @brief Delete an existing dimension.
3306     *
3307     * Deletes the dimension given by \a pDimDef and deletes all respective
3308     * dimension regions, that is all dimension regions where the dimension's
3309     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3310     * for example this would delete all dimension regions for the case(s)
3311     * where the sustain pedal is pressed down.
3312     *
3313     * @param pDimDef - dimension to delete
3314     * @throws gig::Exception if given dimension cannot be found
3315     */
3316     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3317     // get dimension's index
3318     int iDimensionNr = -1;
3319     for (int i = 0; i < Dimensions; i++) {
3320     if (&pDimensionDefinitions[i] == pDimDef) {
3321     iDimensionNr = i;
3322     break;
3323     }
3324     }
3325     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3326    
3327     // get amount of bits below the dimension to delete
3328     int iLowerBits = 0;
3329     for (int i = 0; i < iDimensionNr; i++)
3330     iLowerBits += pDimensionDefinitions[i].bits;
3331    
3332     // get amount ot bits above the dimension to delete
3333     int iUpperBits = 0;
3334     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3335     iUpperBits += pDimensionDefinitions[i].bits;
3336    
3337 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3338    
3339 schoenebeck 809 // delete dimension regions which belong to the given dimension
3340     // (that is where the dimension's bit > 0)
3341     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3342     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3343     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3344     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3345     iObsoleteBit << iLowerBits |
3346     iLowerBit;
3347 persson 1247
3348     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3349 schoenebeck 809 delete pDimensionRegions[iToDelete];
3350     pDimensionRegions[iToDelete] = NULL;
3351     DimensionRegions--;
3352     }
3353     }
3354     }
3355    
3356     // defrag pDimensionRegions array
3357     // (that is remove the NULL spaces within the pDimensionRegions array)
3358     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3359     if (!pDimensionRegions[iTo]) {
3360     if (iFrom <= iTo) iFrom = iTo + 1;
3361     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3362     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3363     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3364     pDimensionRegions[iFrom] = NULL;
3365     }
3366     }
3367     }
3368    
3369 persson 1247 // remove the this dimension from the upper limits arrays
3370     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3371     DimensionRegion* d = pDimensionRegions[j];
3372     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3373     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3374     }
3375     d->DimensionUpperLimits[Dimensions - 1] = 127;
3376     }
3377    
3378 schoenebeck 809 // 'remove' dimension definition
3379     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3380     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3381     }
3382     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3383     pDimensionDefinitions[Dimensions - 1].bits = 0;
3384     pDimensionDefinitions[Dimensions - 1].zones = 0;
3385    
3386     Dimensions--;
3387    
3388     // if this was a layer dimension, update 'Layers' attribute
3389     if (pDimDef->dimension == dimension_layer) Layers = 1;
3390     }
3391    
3392 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3393     *
3394     * Instead of deleting an entire dimensions, this method will only delete
3395     * one particular split zone given by @a zone of the Region's dimension
3396     * given by @a type. So this method will simply decrement the amount of
3397     * zones by one of the dimension in question. To be able to do that, the
3398     * respective dimension must exist on this Region and it must have at least
3399     * 3 zones. All DimensionRegion objects associated with the zone will be
3400     * deleted.
3401     *
3402     * @param type - identifies the dimension where a zone shall be deleted
3403     * @param zone - index of the dimension split zone that shall be deleted
3404     * @throws gig::Exception if requested zone could not be deleted
3405     */
3406     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3407     dimension_def_t* oldDef = GetDimensionDefinition(type);
3408     if (!oldDef)
3409     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3410     if (oldDef->zones <= 2)
3411     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3412     if (zone < 0 || zone >= oldDef->zones)
3413     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3414    
3415     const int newZoneSize = oldDef->zones - 1;
3416    
3417     // create a temporary Region which just acts as a temporary copy
3418     // container and will be deleted at the end of this function and will
3419     // also not be visible through the API during this process
3420     gig::Region* tempRgn = NULL;
3421     {
3422     // adding these temporary chunks is probably not even necessary
3423     Instrument* instr = static_cast<Instrument*>(GetParent());
3424     RIFF::List* pCkInstrument = instr->pCkInstrument;
3425     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3426     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3427     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3428     tempRgn = new Region(instr, rgn);
3429     }
3430    
3431     // copy this region's dimensions (with already the dimension split size
3432     // requested by the arguments of this method call) to the temporary
3433     // region, and don't use Region::CopyAssign() here for this task, since
3434     // it would also alter fast lookup helper variables here and there
3435     dimension_def_t newDef;
3436     for (int i = 0; i < Dimensions; ++i) {
3437     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3438     // is this the dimension requested by the method arguments? ...
3439     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3440     def.zones = newZoneSize;
3441     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3442     newDef = def;
3443     }
3444     tempRgn->AddDimension(&def);
3445     }
3446    
3447     // find the dimension index in the tempRegion which is the dimension
3448     // type passed to this method (paranoidly expecting different order)
3449     int tempReducedDimensionIndex = -1;
3450     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3451     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3452     tempReducedDimensionIndex = d;
3453     break;
3454     }
3455     }
3456    
3457     // copy dimension regions from this region to the temporary region
3458     for (int iDst = 0; iDst < 256; ++iDst) {
3459     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3460     if (!dstDimRgn) continue;
3461     std::map<dimension_t,int> dimCase;
3462     bool isValidZone = true;
3463     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3464     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3465     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3466     (iDst >> baseBits) & ((1 << dstBits) - 1);
3467     baseBits += dstBits;
3468     // there are also DimensionRegion objects of unused zones, skip them
3469     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3470     isValidZone = false;
3471     break;
3472     }
3473     }
3474     if (!isValidZone) continue;
3475     // a bit paranoid: cope with the chance that the dimensions would
3476     // have different order in source and destination regions
3477     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3478     if (dimCase[type] >= zone) dimCase[type]++;
3479     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3480     dstDimRgn->CopyAssign(srcDimRgn);
3481     // if this is the upper most zone of the dimension passed to this
3482     // method, then correct (raise) its upper limit to 127
3483     if (newDef.split_type == split_type_normal && isLastZone)
3484     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3485     }
3486    
3487     // now tempRegion's dimensions and DimensionRegions basically reflect
3488     // what we wanted to get for this actual Region here, so we now just
3489     // delete and recreate the dimension in question with the new amount
3490     // zones and then copy back from tempRegion
3491     DeleteDimension(oldDef);
3492     AddDimension(&newDef);
3493     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3494     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3495     if (!srcDimRgn) continue;
3496     std::map<dimension_t,int> dimCase;
3497     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3498     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3499     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3500     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3501     baseBits += srcBits;
3502     }
3503     // a bit paranoid: cope with the chance that the dimensions would
3504     // have different order in source and destination regions
3505     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3506     if (!dstDimRgn) continue;
3507     dstDimRgn->CopyAssign(srcDimRgn);
3508     }
3509    
3510     // delete temporary region
3511     delete tempRgn;
3512 schoenebeck 2557
3513     UpdateVelocityTable();
3514 schoenebeck 2555 }
3515    
3516     /** @brief Divide split zone of a dimension in two (increment zone amount).
3517     *
3518     * This will increment the amount of zones for the dimension (given by
3519     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3520     * in the middle of its zone range in two. So the two zones resulting from
3521     * the zone being splitted, will be an equivalent copy regarding all their
3522     * articulation informations and sample reference. The two zones will only
3523     * differ in their zone's upper limit
3524     * (DimensionRegion::DimensionUpperLimits).
3525     *
3526     * @param type - identifies the dimension where a zone shall be splitted
3527     * @param zone - index of the dimension split zone that shall be splitted
3528     * @throws gig::Exception if requested zone could not be splitted
3529     */
3530     void Region::SplitDimensionZone(dimension_t type, int zone) {
3531     dimension_def_t* oldDef = GetDimensionDefinition(type);
3532     if (!oldDef)
3533     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3534     if (zone < 0 || zone >= oldDef->zones)
3535     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3536    
3537     const int newZoneSize = oldDef->zones + 1;
3538    
3539     // create a temporary Region which just acts as a temporary copy
3540     // container and will be deleted at the end of this function and will
3541     // also not be visible through the API during this process
3542     gig::Region* tempRgn = NULL;
3543     {
3544     // adding these temporary chunks is probably not even necessary
3545     Instrument* instr = static_cast<Instrument*>(GetParent());
3546     RIFF::List* pCkInstrument = instr->pCkInstrument;
3547     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3548     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3549     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3550     tempRgn = new Region(instr, rgn);
3551     }
3552    
3553     // copy this region's dimensions (with already the dimension split size
3554     // requested by the arguments of this method call) to the temporary
3555     // region, and don't use Region::CopyAssign() here for this task, since
3556     // it would also alter fast lookup helper variables here and there
3557     dimension_def_t newDef;
3558     for (int i = 0; i < Dimensions; ++i) {
3559     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3560     // is this the dimension requested by the method arguments? ...
3561     if (def.dimension == type) { // ... if yes, increment zone amount by one
3562     def.zones = newZoneSize;
3563     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3564     newDef = def;
3565     }
3566     tempRgn->AddDimension(&def);
3567     }
3568    
3569     // find the dimension index in the tempRegion which is the dimension
3570     // type passed to this method (paranoidly expecting different order)
3571     int tempIncreasedDimensionIndex = -1;
3572     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3573     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3574     tempIncreasedDimensionIndex = d;
3575     break;
3576     }
3577     }
3578    
3579     // copy dimension regions from this region to the temporary region
3580     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3581     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3582     if (!srcDimRgn) continue;
3583     std::map<dimension_t,int> dimCase;
3584     bool isValidZone = true;
3585     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3586     const int srcBits = pDimensionDefinitions[d].bits;
3587     dimCase[pDimensionDefinitions[d].dimension] =
3588     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3589     // there are also DimensionRegion objects for unused zones, skip them
3590     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3591     isValidZone = false;
3592     break;
3593     }
3594     baseBits += srcBits;
3595     }
3596     if (!isValidZone) continue;
3597     // a bit paranoid: cope with the chance that the dimensions would
3598     // have different order in source and destination regions
3599     if (dimCase[type] > zone) dimCase[type]++;
3600     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3601     dstDimRgn->CopyAssign(srcDimRgn);
3602     // if this is the requested zone to be splitted, then also copy
3603     // the source DimensionRegion to the newly created target zone
3604     // and set the old zones upper limit lower
3605     if (dimCase[type] == zone) {
3606     // lower old zones upper limit
3607     if (newDef.split_type == split_type_normal) {
3608     const int high =
3609     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3610     int low = 0;
3611     if (zone > 0) {
3612     std::map<dimension_t,int> lowerCase = dimCase;
3613     lowerCase[type]--;
3614     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3615     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3616     }
3617     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3618     }
3619     // fill the newly created zone of the divided zone as well
3620     dimCase[type]++;
3621     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3622     dstDimRgn->CopyAssign(srcDimRgn);
3623     }
3624     }
3625    
3626     // now tempRegion's dimensions and DimensionRegions basically reflect
3627     // what we wanted to get for this actual Region here, so we now just
3628     // delete and recreate the dimension in question with the new amount
3629     // zones and then copy back from tempRegion
3630     DeleteDimension(oldDef);
3631     AddDimension(&newDef);
3632     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3633     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3634     if (!srcDimRgn) continue;
3635     std::map<dimension_t,int> dimCase;
3636     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3637     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3638     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3639     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3640     baseBits += srcBits;
3641     }
3642     // a bit paranoid: cope with the chance that the dimensions would
3643     // have different order in source and destination regions
3644     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3645     if (!dstDimRgn) continue;
3646     dstDimRgn->CopyAssign(srcDimRgn);
3647     }
3648    
3649     // delete temporary region
3650     delete tempRgn;
3651 schoenebeck 2557
3652     UpdateVelocityTable();
3653 schoenebeck 2555 }
3654    
3655 schoenebeck 2639 /** @brief Change type of an existing dimension.
3656     *
3657     * Alters the dimension type of a dimension already existing on this
3658     * region. If there is currently no dimension on this Region with type
3659     * @a oldType, then this call with throw an Exception. Likewise there are
3660     * cases where the requested dimension type cannot be performed. For example
3661     * if the new dimension type shall be gig::dimension_samplechannel, and the
3662     * current dimension has more than 2 zones. In such cases an Exception is
3663     * thrown as well.
3664     *
3665     * @param oldType - identifies the existing dimension to be changed
3666     * @param newType - to which dimension type it should be changed to
3667     * @throws gig::Exception if requested change cannot be performed
3668     */
3669     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3670     if (oldType == newType) return;
3671     dimension_def_t* def = GetDimensionDefinition(oldType);
3672     if (!def)
3673     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3674     if (newType == dimension_samplechannel && def->zones != 2)
3675     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3676 schoenebeck 2640 if (GetDimensionDefinition(newType))
3677     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3678     def->dimension = newType;
3679 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3680     }
3681    
3682 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3683     uint8_t bits[8] = {};
3684     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3685     it != DimCase.end(); ++it)
3686     {
3687     for (int d = 0; d < Dimensions; ++d) {
3688     if (pDimensionDefinitions[d].dimension == it->first) {
3689     bits[d] = it->second;
3690     goto nextDimCaseSlice;
3691     }
3692     }
3693     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3694     nextDimCaseSlice:
3695     ; // noop
3696     }
3697     return GetDimensionRegionByBit(bits);
3698     }
3699    
3700 schoenebeck 2547 /**
3701     * Searches in the current Region for a dimension of the given dimension
3702     * type and returns the precise configuration of that dimension in this
3703     * Region.
3704     *
3705     * @param type - dimension type of the sought dimension
3706     * @returns dimension definition or NULL if there is no dimension with
3707     * sought type in this Region.
3708     */
3709     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3710     for (int i = 0; i < Dimensions; ++i)
3711     if (pDimensionDefinitions[i].dimension == type)
3712     return &pDimensionDefinitions[i];
3713     return NULL;
3714     }
3715    
3716 schoenebeck 2 Region::~Region() {
3717 schoenebeck 350 for (int i = 0; i < 256; i++) {
3718 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3719     }
3720     }
3721    
3722     /**
3723     * Use this method in your audio engine to get the appropriate dimension
3724     * region with it's articulation data for the current situation. Just
3725     * call the method with the current MIDI controller values and you'll get
3726     * the DimensionRegion with the appropriate articulation data for the
3727     * current situation (for this Region of course only). To do that you'll
3728     * first have to look which dimensions with which controllers and in
3729     * which order are defined for this Region when you load the .gig file.
3730     * Special cases are e.g. layer or channel dimensions where you just put
3731     * in the index numbers instead of a MIDI controller value (means 0 for
3732     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3733     * etc.).
3734     *
3735 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3736 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3737     * @see pDimensionDefinitions
3738     * @see Dimensions
3739     */
3740 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3741 persson 858 uint8_t bits;
3742     int veldim = -1;
3743     int velbitpos;
3744     int bitpos = 0;
3745     int dimregidx = 0;
3746 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3747 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3748     // the velocity dimension must be handled after the other dimensions
3749     veldim = i;
3750     velbitpos = bitpos;
3751     } else {
3752     switch (pDimensionDefinitions[i].split_type) {
3753     case split_type_normal:
3754 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3755     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3756     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3757     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3758     }
3759     } else {
3760     // gig2: evenly sized zones
3761     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3762     }
3763 persson 858 break;
3764     case split_type_bit: // the value is already the sought dimension bit number
3765     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3766     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3767     break;
3768     }
3769     dimregidx |= bits << bitpos;
3770 schoenebeck 2 }
3771 persson 858 bitpos += pDimensionDefinitions[i].bits;
3772 schoenebeck 2 }
3773 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3774     if (!dimreg) return NULL;
3775 persson 858 if (veldim != -1) {
3776     // (dimreg is now the dimension region for the lowest velocity)
3777 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3778 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3779 persson 858 else // normal split type
3780 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3781 persson 858
3782 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3783     dimregidx |= (bits & limiter_mask) << velbitpos;
3784     dimreg = pDimensionRegions[dimregidx & 255];
3785 persson 858 }
3786     return dimreg;
3787 schoenebeck 2 }
3788    
3789 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3790     uint8_t bits;
3791     int veldim = -1;
3792     int velbitpos;
3793     int bitpos = 0;
3794     int dimregidx = 0;
3795     for (uint i = 0; i < Dimensions; i++) {
3796     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3797     // the velocity dimension must be handled after the other dimensions
3798     veldim = i;
3799     velbitpos = bitpos;
3800     } else {
3801     switch (pDimensionDefinitions[i].split_type) {
3802     case split_type_normal:
3803     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3804     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3805     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3806     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3807     }
3808     } else {
3809     // gig2: evenly sized zones
3810     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3811     }
3812     break;
3813     case split_type_bit: // the value is already the sought dimension bit number
3814     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3815     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3816     break;
3817     }
3818     dimregidx |= bits << bitpos;
3819     }
3820     bitpos += pDimensionDefinitions[i].bits;
3821     }
3822     dimregidx &= 255;
3823     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3824     if (!dimreg) return -1;
3825     if (veldim != -1) {
3826     // (dimreg is now the dimension region for the lowest velocity)
3827     if (dimreg->VelocityTable) // custom defined zone ranges
3828     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3829     else // normal split type
3830     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3831    
3832     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3833     dimregidx |= (bits & limiter_mask) << velbitpos;
3834     dimregidx &= 255;
3835     }
3836     return dimregidx;
3837     }
3838    
3839 schoenebeck 2 /**
3840     * Returns the appropriate DimensionRegion for the given dimension bit
3841     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3842     * instead of calling this method directly!
3843     *
3844 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
3845 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
3846     * bit numbers
3847     * @see GetDimensionRegionByValue()
3848     */
3849 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3850     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3851     << pDimensionDefinitions[5].bits | DimBits[5])
3852     << pDimensionDefinitions[4].bits | DimBits[4])
3853     << pDimensionDefinitions[3].bits | DimBits[3])
3854     << pDimensionDefinitions[2].bits | DimBits[2])
3855     << pDimensionDefinitions[1].bits | DimBits[1])
3856     << pDimensionDefinitions[0].bits | DimBits[0]];
3857 schoenebeck 2 }
3858    
3859     /**
3860     * Returns pointer address to the Sample referenced with this region.
3861     * This is the global Sample for the entire Region (not sure if this is
3862     * actually used by the Gigasampler engine - I would only use the Sample
3863     * referenced by the appropriate DimensionRegion instead of this sample).
3864     *
3865     * @returns address to Sample or NULL if there is no reference to a
3866     * sample saved in the .gig file
3867     */
3868     Sample* Region::GetSample() {
3869     if (pSample) return static_cast<gig::Sample*>(pSample);
3870     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3871     }
3872    
3873 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3874 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3875 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
3876 persson 902 if (!file->pWavePoolTable) return NULL;
3877 schoenebeck 2 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3878 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3879 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
3880 schoenebeck 2 while (sample) {
3881 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
3882 persson 918 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3883 schoenebeck 2 sample = file->GetNextSample();
3884     }
3885     return NULL;
3886     }
3887 schoenebeck 2394
3888     /**
3889     * Make a (semi) deep copy of the Region object given by @a orig
3890     * and assign it to this object.
3891     *
3892     * Note that all sample pointers referenced by @a orig are simply copied as
3893     * memory address. Thus the respective samples are shared, not duplicated!
3894     *
3895     * @param orig - original Region object to be copied from
3896     */
3897     void Region::CopyAssign(const Region* orig) {
3898 schoenebeck 2482 CopyAssign(orig, NULL);
3899     }
3900    
3901     /**
3902     * Make a (semi) deep copy of the Region object given by @a orig and
3903     * assign it to this object
3904     *
3905     * @param mSamples - crosslink map between the foreign file's samples and
3906     * this file's samples
3907     */
3908     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3909 schoenebeck 2394 // handle base classes
3910     DLS::Region::CopyAssign(orig);
3911    
3912 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3913     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3914     }
3915    
3916 schoenebeck 2394 // handle own member variables
3917     for (int i = Dimensions - 1; i >= 0; --i) {
3918     DeleteDimension(&pDimensionDefinitions[i]);
3919     }
3920     Layers = 0; // just to be sure
3921     for (int i = 0; i < orig->Dimensions; i++) {
3922     // we need to copy the dim definition here, to avoid the compiler
3923     // complaining about const-ness issue
3924     dimension_def_t def = orig->pDimensionDefinitions[i];
3925     AddDimension(&def);
3926     }
3927     for (int i = 0; i < 256; i++) {
3928     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3929     pDimensionRegions[i]->CopyAssign(
3930 schoenebeck 2482 orig->pDimensionRegions[i],
3931     mSamples
3932 schoenebeck 2394 );
3933     }
3934     }
3935     Layers = orig->Layers;
3936     }
3937 schoenebeck 2
3938    
3939 persson 1627 // *************** MidiRule ***************
3940     // *
3941 schoenebeck 2
3942 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3943     _3ewg->SetPos(36);
3944     Triggers = _3ewg->ReadUint8();
3945     _3ewg->SetPos(40);
3946     ControllerNumber = _3ewg->ReadUint8();
3947     _3ewg->SetPos(46);
3948     for (int i = 0 ; i < Triggers ; i++) {
3949     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3950     pTriggers[i].Descending = _3ewg->ReadUint8();
3951     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3952     pTriggers[i].Key = _3ewg->ReadUint8();
3953     pTriggers[i].NoteOff = _3ewg->ReadUint8();
3954     pTriggers[i].Velocity = _3ewg->ReadUint8();
3955     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3956     _3ewg->ReadUint8();
3957     }
3958 persson 1627 }
3959    
3960 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3961     ControllerNumber(0),
3962     Triggers(0) {
3963     }
3964 persson 1627
3965 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3966     pData[32] = 4;
3967     pData[33] = 16;
3968     pData[36] = Triggers;
3969     pData[40] = ControllerNumber;
3970     for (int i = 0 ; i < Triggers ; i++) {
3971     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3972     pData[47 + i * 8] = pTriggers[i].Descending;
3973     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3974     pData[49 + i * 8] = pTriggers[i].Key;
3975     pData[50 + i * 8] = pTriggers[i].NoteOff;
3976     pData[51 + i * 8] = pTriggers[i].Velocity;
3977     pData[52 + i * 8] = pTriggers[i].OverridePedal;
3978     }
3979     }
3980    
3981     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3982     _3ewg->SetPos(36);
3983     LegatoSamples = _3ewg->ReadUint8(); // always 12
3984     _3ewg->SetPos(40);
3985     BypassUseController = _3ewg->ReadUint8();
3986     BypassKey = _3ewg->ReadUint8();
3987     BypassController = _3ewg->ReadUint8();
3988     ThresholdTime = _3ewg->ReadUint16();
3989     _3ewg->ReadInt16();
3990     ReleaseTime = _3ewg->ReadUint16();
3991     _3ewg->ReadInt16();
3992     KeyRange.low = _3ewg->ReadUint8();
3993     KeyRange.high = _3ewg->ReadUint8();
3994     _3ewg->SetPos(64);
3995     ReleaseTriggerKey = _3ewg->ReadUint8();
3996     AltSustain1Key = _3ewg->ReadUint8();
3997     AltSustain2Key = _3ewg->ReadUint8();
3998     }
3999    
4000     MidiRuleLegato::MidiRuleLegato() :
4001     LegatoSamples(12),
4002     BypassUseController(false),
4003     BypassKey(0),
4004     BypassController(1),
4005     ThresholdTime(20),
4006     ReleaseTime(20),
4007     ReleaseTriggerKey(0),
4008     AltSustain1Key(0),
4009     AltSustain2Key(0)
4010     {
4011     KeyRange.low = KeyRange.high = 0;
4012     }
4013    
4014     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4015     pData[32] = 0;
4016     pData[33] = 16;
4017     pData[36] = LegatoSamples;
4018     pData[40] = BypassUseController;
4019     pData[41] = BypassKey;
4020     pData[42] = BypassController;
4021     store16(&pData[43], ThresholdTime);
4022     store16(&pData[47], ReleaseTime);
4023     pData[51] = KeyRange.low;
4024     pData[52] = KeyRange.high;
4025     pData[64] = ReleaseTriggerKey;
4026     pData[65] = AltSustain1Key;
4027     pData[66] = AltSustain2Key;
4028     }
4029    
4030     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4031     _3ewg->SetPos(36);
4032     Articulations = _3ewg->ReadUint8();
4033     int flags = _3ewg->ReadUint8();
4034     Polyphonic = flags & 8;
4035     Chained = flags & 4;
4036     Selector = (flags & 2) ? selector_controller :
4037     (flags & 1) ? selector_key_switch : selector_none;
4038     Patterns = _3ewg->ReadUint8();
4039     _3ewg->ReadUint8(); // chosen row
4040     _3ewg->ReadUint8(); // unknown
4041     _3ewg->ReadUint8(); // unknown
4042     _3ewg->ReadUint8(); // unknown
4043     KeySwitchRange.low = _3ewg->ReadUint8();
4044     KeySwitchRange.high = _3ewg->ReadUint8();
4045     Controller = _3ewg->ReadUint8();
4046     PlayRange.low = _3ewg->ReadUint8();
4047     PlayRange.high = _3ewg->ReadUint8();
4048    
4049     int n = std::min(int(Articulations), 32);
4050     for (int i = 0 ; i < n ; i++) {
4051     _3ewg->ReadString(pArticulations[i], 32);
4052     }
4053     _3ewg->SetPos(1072);
4054     n = std::min(int(Patterns), 32);
4055     for (int i = 0 ; i < n ; i++) {
4056     _3ewg->ReadString(pPatterns[i].Name, 16);
4057     pPatterns[i].Size = _3ewg->ReadUint8();
4058     _3ewg->Read(&pPatterns[i][0], 1, 32);
4059     }
4060     }
4061    
4062     MidiRuleAlternator::MidiRuleAlternator() :
4063     Articulations(0),
4064     Patterns(0),
4065     Selector(selector_none),
4066     Controller(0),
4067     Polyphonic(false),
4068     Chained(false)
4069     {
4070     PlayRange.low = PlayRange.high = 0;
4071     KeySwitchRange.low = KeySwitchRange.high = 0;
4072     }
4073    
4074     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4075     pData[32] = 3;
4076     pData[33] = 16;
4077     pData[36] = Articulations;
4078     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4079     (Selector == selector_controller ? 2 :
4080     (Selector == selector_key_switch ? 1 : 0));
4081     pData[38] = Patterns;
4082    
4083     pData[43] = KeySwitchRange.low;
4084     pData[44] = KeySwitchRange.high;
4085     pData[45] = Controller;
4086     pData[46] = PlayRange.low;
4087     pData[47] = PlayRange.high;
4088    
4089     char* str = reinterpret_cast<char*>(pData);
4090     int pos = 48;
4091     int n = std::min(int(Articulations), 32);
4092     for (int i = 0 ; i < n ; i++, pos += 32) {
4093     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4094     }
4095    
4096     pos = 1072;
4097     n = std::min(int(Patterns), 32);
4098     for (int i = 0 ; i < n ; i++, pos += 49) {
4099     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4100     pData[pos + 16] = pPatterns[i].Size;
4101     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4102     }
4103     }
4104    
4105 schoenebeck 2584 // *************** Script ***************
4106     // *
4107    
4108     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4109     pGroup = group;
4110     pChunk = ckScri;
4111     if (ckScri) { // object is loaded from file ...
4112     // read header
4113     uint32_t headerSize = ckScri->ReadUint32();
4114     Compression = (Compression_t) ckScri->ReadUint32();
4115     Encoding = (Encoding_t) ckScri->ReadUint32();
4116     Language = (Language_t) ckScri->ReadUint32();
4117     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4118     crc = ckScri->ReadUint32();
4119     uint32_t nameSize = ckScri->ReadUint32();
4120     Name.resize(nameSize, ' ');
4121     for (int i = 0; i < nameSize; ++i)
4122     Name[i] = ckScri->ReadUint8();
4123     // to handle potential future extensions of the header
4124 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4125 schoenebeck 2584 // read actual script data
4126     uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4127     data.resize(scriptSize);
4128     for (int i = 0; i < scriptSize; ++i)
4129     data[i] = ckScri->ReadUint8();
4130     } else { // this is a new script object, so just initialize it as such ...
4131     Compression = COMPRESSION_NONE;
4132     Encoding = ENCODING_ASCII;
4133     Language = LANGUAGE_NKSP;
4134     Bypass = false;
4135     crc = 0;
4136     Name = "Unnamed Script";
4137     }
4138     }
4139    
4140     Script::~Script() {
4141     }
4142    
4143     /**
4144     * Returns the current script (i.e. as source code) in text format.
4145     */
4146     String Script::GetScriptAsText() {
4147     String s;
4148     s.resize(data.size(), ' ');
4149     memcpy(&s[0], &data[0], data.size());
4150     return s;
4151     }
4152    
4153     /**
4154     * Replaces the current script with the new script source code text given
4155     * by @a text.
4156     *
4157     * @param text - new script source code
4158     */
4159     void Script::SetScriptAsText(const String& text) {
4160     data.resize(text.size());
4161     memcpy(&data[0], &text[0], text.size());
4162     }
4163    
4164     void Script::UpdateChunks() {
4165     // recalculate CRC32 check sum
4166     __resetCRC(crc);
4167     __calculateCRC(&data[0], data.size(), crc);
4168     __encodeCRC(crc);
4169     // make sure chunk exists and has the required size
4170     const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4171     if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4172     else pChunk->Resize(chunkSize);
4173     // fill the chunk data to be written to disk
4174     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4175     int pos = 0;
4176     store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4177     pos += sizeof(int32_t);
4178     store32(&pData[pos], Compression);
4179     pos += sizeof(int32_t);
4180     store32(&pData[pos], Encoding);
4181     pos += sizeof(int32_t);
4182     store32(&pData[pos], Language);
4183     pos += sizeof(int32_t);
4184     store32(&pData[pos], Bypass ? 1 : 0);
4185     pos += sizeof(int32_t);
4186     store32(&pData[pos], crc);
4187     pos += sizeof(int32_t);
4188     store32(&pData[pos], Name.size());
4189     pos += sizeof(int32_t);
4190     for (int i = 0; i < Name.size(); ++i, ++pos)
4191     pData[pos] = Name[i];
4192     for (int i = 0; i < data.size(); ++i, ++pos)
4193     pData[pos] = data[i];
4194     }
4195    
4196     /**
4197     * Move this script from its current ScriptGroup to another ScriptGroup
4198     * given by @a pGroup.
4199     *
4200     * @param pGroup - script's new group
4201     */
4202     void Script::SetGroup(ScriptGroup* pGroup) {
4203     if (this->pGroup = pGroup) return;
4204     if (pChunk)
4205     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4206     this->pGroup = pGroup;
4207     }
4208    
4209 schoenebeck 2601 /**
4210     * Returns the script group this script currently belongs to. Each script
4211     * is a member of exactly one ScriptGroup.
4212     *
4213     * @returns current script group
4214     */
4215     ScriptGroup* Script::GetGroup() const {
4216     return pGroup;
4217     }
4218    
4219 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4220     File* pFile = pGroup->pFile;
4221     for (int i = 0; pFile->GetInstrument(i); ++i) {
4222     Instrument* instr = pFile->GetInstrument(i);
4223     instr->RemoveScript(this);
4224     }
4225     }
4226    
4227     // *************** ScriptGroup ***************
4228     // *
4229    
4230     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4231     pFile = file;
4232     pList = lstRTIS;
4233     pScripts = NULL;
4234     if (lstRTIS) {
4235     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4236     ::LoadString(ckName, Name);
4237     } else {
4238     Name = "Default Group";
4239     }
4240     }
4241    
4242     ScriptGroup::~ScriptGroup() {
4243     if (pScripts) {
4244     std::list<Script*>::iterator iter = pScripts->begin();
4245     std::list<Script*>::iterator end = pScripts->end();
4246     while (iter != end) {
4247     delete *iter;
4248     ++iter;
4249     }
4250     delete pScripts;
4251     }
4252     }
4253    
4254     void ScriptGroup::UpdateChunks() {
4255     if (pScripts) {
4256     if (!pList)
4257     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4258    
4259     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4260     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4261    
4262     for (std::list<Script*>::iterator it = pScripts->begin();
4263     it != pScripts->end(); ++it)
4264     {
4265     (*it)->UpdateChunks();
4266     }
4267     }
4268     }
4269    
4270     /** @brief Get instrument script.
4271     *
4272     * Returns the real-time instrument script with the given index.
4273     *
4274     * @param index - number of the sought script (0..n)
4275     * @returns sought script or NULL if there's no such script
4276     */
4277     Script* ScriptGroup::GetScript(uint index) {
4278     if (!pScripts) LoadScripts();
4279     std::list<Script*>::iterator it = pScripts->begin();
4280     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4281     if (i == index) return *it;
4282     return NULL;
4283     }
4284    
4285     /** @brief Add new instrument script.
4286     *
4287     * Adds a new real-time instrument script to the file. The script is not
4288     * actually used / executed unless it is referenced by an instrument to be
4289     * used. This is similar to samples, which you can add to a file, without
4290     * an instrument necessarily actually using it.
4291     *
4292     * You have to call Save() to make this persistent to the file.
4293     *
4294     * @return new empty script object
4295     */
4296     Script* ScriptGroup::AddScript() {
4297     if (!pScripts) LoadScripts();
4298     Script* pScript = new Script(this, NULL);
4299     pScripts->push_back(pScript);
4300     return pScript;
4301     }
4302    
4303     /** @brief Delete an instrument script.
4304     *
4305     * This will delete the given real-time instrument script. References of
4306     * instruments that are using that script will be removed accordingly.
4307     *
4308     * You have to call Save() to make this persistent to the file.
4309     *
4310     * @param pScript - script to delete
4311     * @throws gig::Exception if given script could not be found
4312     */
4313     void ScriptGroup::DeleteScript(Script* pScript) {
4314     if (!pScripts) LoadScripts();
4315     std::list<Script*>::iterator iter =
4316     find(pScripts->begin(), pScripts->end(), pScript);
4317     if (iter == pScripts->end())
4318     throw gig::Exception("Could not delete script, could not find given script");
4319     pScripts->erase(iter);
4320     pScript->RemoveAllScriptReferences();
4321     if (pScript->pChunk)
4322     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4323     delete pScript;
4324     }
4325    
4326     void ScriptGroup::LoadScripts() {
4327     if (pScripts) return;
4328     pScripts = new std::list<Script*>;
4329     if (!pList) return;
4330    
4331     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4332     ck = pList->GetNextSubChunk())
4333     {
4334     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4335     pScripts->push_back(new Script(this, ck));
4336     }
4337     }
4338     }
4339    
4340 schoenebeck 2 // *************** Instrument ***************
4341     // *
4342    
4343 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4344 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4345 persson 1180 { CHUNK_ID_INAM, 64 },
4346     { CHUNK_ID_ISFT, 12 },
4347     { 0, 0 }
4348     };
4349 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4350 persson 918
4351 schoenebeck 2 // Initialization
4352     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4353 persson 1182 EffectSend = 0;
4354     Attenuation = 0;
4355     FineTune = 0;
4356     PitchbendRange = 0;
4357     PianoReleaseMode = false;
4358     DimensionKeyRange.low = 0;
4359     DimensionKeyRange.high = 0;
4360 persson 1678 pMidiRules = new MidiRule*[3];
4361     pMidiRules[0] = NULL;
4362 schoenebeck 2584 pScriptRefs = NULL;
4363 schoenebeck 2
4364     // Loading
4365     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4366     if (lart) {
4367     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4368     if (_3ewg) {
4369     EffectSend = _3ewg->ReadUint16();
4370     Attenuation = _3ewg->ReadInt32();
4371     FineTune = _3ewg->ReadInt16();
4372     PitchbendRange = _3ewg->ReadInt16();
4373     uint8_t dimkeystart = _3ewg->ReadUint8();
4374     PianoReleaseMode = dimkeystart & 0x01;
4375     DimensionKeyRange.low = dimkeystart >> 1;
4376     DimensionKeyRange.high = _3ewg->ReadUint8();
4377 persson 1627
4378     if (_3ewg->GetSize() > 32) {
4379     // read MIDI rules
4380 persson 1678 int i = 0;
4381 persson 1627 _3ewg->SetPos(32);
4382     uint8_t id1 = _3ewg->ReadUint8();
4383     uint8_t id2 = _3ewg->ReadUint8();
4384    
4385 persson 2450 if (id2 == 16) {
4386     if (id1 == 4) {
4387     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4388     } else if (id1 == 0) {
4389     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4390     } else if (id1 == 3) {
4391     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4392     } else {
4393     pMidiRules[i++] = new MidiRuleUnknown;
4394     }
4395 persson 1627 }
4396 persson 2450 else if (id1 != 0 || id2 != 0) {
4397     pMidiRules[i++] = new MidiRuleUnknown;
4398     }
4399 persson 1627 //TODO: all the other types of rules
4400 persson 1678
4401     pMidiRules[i] = NULL;
4402 persson 1627 }
4403 schoenebeck 2 }
4404     }
4405    
4406 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4407     if (!pRegions) pRegions = new RegionList;
4408     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4409     if (lrgn) {
4410     RIFF::List* rgn = lrgn->GetFirstSubList();
4411     while (rgn) {
4412     if (rgn->GetListType() == LIST_TYPE_RGN) {
4413     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4414     pRegions->push_back(new Region(this, rgn));
4415     }
4416     rgn = lrgn->GetNextSubList();
4417 schoenebeck 809 }
4418 schoenebeck 1524 // Creating Region Key Table for fast lookup
4419     UpdateRegionKeyTable();
4420 schoenebeck 2 }
4421     }
4422    
4423 schoenebeck 2584 // own gig format extensions
4424     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4425     if (lst3LS) {
4426     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4427     if (ckSCSL) {
4428 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4429     int slotCount = ckSCSL->ReadUint32();
4430     if (slotCount) {
4431     int slotSize = ckSCSL->ReadUint32();
4432     ckSCSL->SetPos(headerSize); // in case of future header extensions
4433     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4434     for (int i = 0; i < slotCount; ++i) {
4435     _ScriptPooolEntry e;
4436     e.fileOffset = ckSCSL->ReadUint32();
4437     e.bypass = ckSCSL->ReadUint32() & 1;
4438     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4439     scriptPoolFileOffsets.push_back(e);
4440     }
4441 schoenebeck 2584 }
4442     }
4443     }
4444    
4445 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4446     }
4447    
4448     void Instrument::UpdateRegionKeyTable() {
4449 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4450 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4451     RegionList::iterator end = pRegions->end();
4452     for (; iter != end; ++iter) {
4453     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4454     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4455     RegionKeyTable[iKey] = pRegion;
4456 schoenebeck 2 }
4457     }
4458     }
4459    
4460     Instrument::~Instrument() {
4461 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4462     delete pMidiRules[i];
4463     }
4464 persson 1678 delete[] pMidiRules;
4465 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4466 schoenebeck 2 }
4467    
4468     /**
4469 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4470     * You have to call File::Save() to make changes persistent.
4471     *
4472     * Usually there is absolutely no need to call this method explicitly.
4473     * It will be called automatically when File::Save() was called.
4474     *
4475     * @throws gig::Exception if samples cannot be dereferenced
4476     */
4477     void Instrument::UpdateChunks() {
4478     // first update base classes' chunks
4479     DLS::Instrument::UpdateChunks();
4480    
4481     // update Regions' chunks
4482 schoenebeck 823 {
4483     RegionList::iterator iter = pRegions->begin();
4484     RegionList::iterator end = pRegions->end();
4485     for (; iter != end; ++iter)
4486     (*iter)->UpdateChunks();
4487     }
4488 schoenebeck 809
4489     // make sure 'lart' RIFF list chunk exists
4490     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4491     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4492     // make sure '3ewg' RIFF chunk exists
4493     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4494 persson 1264 if (!_3ewg) {
4495     File* pFile = (File*) GetParent();
4496    
4497     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4498     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4499     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4500     memset(_3ewg->LoadChunkData(), 0, size);
4501     }
4502 schoenebeck 809 // update '3ewg' RIFF chunk
4503     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4504 persson 1179 store16(&pData[0], EffectSend);
4505     store32(&pData[2], Attenuation);
4506     store16(&pData[6], FineTune);
4507     store16(&pData[8], PitchbendRange);
4508 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4509 schoenebeck 809 DimensionKeyRange.low << 1;
4510 persson 1179 pData[10] = dimkeystart;
4511     pData[11] = DimensionKeyRange.high;
4512 persson 2450
4513     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4514     pData[32] = 0;
4515     pData[33] = 0;
4516     } else {
4517     for (int i = 0 ; pMidiRules[i] ; i++) {
4518     pMidiRules[i]->UpdateChunks(pData);
4519     }
4520     }
4521 schoenebeck 2584
4522     // own gig format extensions
4523 schoenebeck 2648 if (ScriptSlotCount()) {
4524     // make sure we have converted the original loaded script file
4525     // offsets into valid Script object pointers
4526     LoadScripts();
4527    
4528 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4529     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4530 schoenebeck 2609 const int slotCount = pScriptRefs->size();
4531     const int headerSize = 3 * sizeof(uint32_t);
4532     const int slotSize = 2 * sizeof(uint32_t);
4533     const int totalChunkSize = headerSize + slotCount * slotSize;
4534 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4535 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4536     else ckSCSL->Resize(totalChunkSize);
4537 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4538 schoenebeck 2609 int pos = 0;
4539     store32(&pData[pos], headerSize);
4540     pos += sizeof(uint32_t);
4541     store32(&pData[pos], slotCount);
4542     pos += sizeof(uint32_t);
4543     store32(&pData[pos], slotSize);
4544     pos += sizeof(uint32_t);
4545     for (int i = 0; i < slotCount; ++i) {
4546     // arbitrary value, the actual file offset will be updated in
4547     // UpdateScriptFileOffsets() after the file has been resized
4548     int bogusFileOffset = 0;
4549     store32(&pData[pos], bogusFileOffset);
4550 schoenebeck 2584 pos += sizeof(uint32_t);
4551     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4552     pos += sizeof(uint32_t);
4553     }
4554 schoenebeck 2648 } else {
4555     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4556     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4557     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4558 schoenebeck 2584 }
4559 schoenebeck 809 }
4560    
4561 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4562     // own gig format extensions
4563     if (pScriptRefs) {
4564     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4565     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4566     const int slotCount = pScriptRefs->size();
4567     const int headerSize = 3 * sizeof(uint32_t);
4568     ckSCSL->SetPos(headerSize);
4569     for (int i = 0; i < slotCount; ++i) {
4570     uint32_t fileOffset =
4571     (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4572     (*pScriptRefs)[i].script->pChunk->GetPos() -
4573     CHUNK_HEADER_SIZE;
4574     ckSCSL->WriteUint32(&fileOffset);
4575     // jump over flags entry (containing the bypass flag)
4576     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4577     }
4578     }
4579     }
4580    
4581 schoenebeck 809 /**
4582 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4583     *
4584     * @param Key MIDI Key number of triggered note / key (0 - 127)
4585     * @returns pointer adress to the appropriate Region or NULL if there
4586     * there is no Region defined for the given \a Key
4587     */
4588     Region* Instrument::GetRegion(unsigned int Key) {
4589 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4590 schoenebeck 2 return RegionKeyTable[Key];
4591 schoenebeck 823
4592 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4593     if (Key <= pRegions[i]->KeyRange.high &&
4594     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4595     }
4596     return NULL;*/
4597     }
4598    
4599     /**
4600     * Returns the first Region of the instrument. You have to call this
4601     * method once before you use GetNextRegion().
4602     *
4603     * @returns pointer address to first region or NULL if there is none
4604     * @see GetNextRegion()
4605     */
4606     Region* Instrument::GetFirstRegion() {
4607 schoenebeck 823 if (!pRegions) return NULL;
4608     RegionsIterator = pRegions->begin();
4609     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4610 schoenebeck 2 }
4611    
4612     /**
4613     * Returns the next Region of the instrument. You have to call
4614     * GetFirstRegion() once before you can use this method. By calling this
4615     * method multiple times it iterates through the available Regions.
4616     *
4617     * @returns pointer address to the next region or NULL if end reached
4618     * @see GetFirstRegion()
4619     */
4620     Region* Instrument::GetNextRegion() {
4621 schoenebeck 823 if (!pRegions) return NULL;
4622     RegionsIterator++;
4623     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4624 schoenebeck 2 }
4625    
4626 schoenebeck 809 Region* Instrument::AddRegion() {
4627     // create new Region object (and its RIFF chunks)
4628     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4629     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4630     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4631     Region* pNewRegion = new Region(this, rgn);
4632 schoenebeck 823 pRegions->push_back(pNewRegion);
4633     Regions = pRegions->size();
4634 schoenebeck 809 // update Region key table for fast lookup
4635     UpdateRegionKeyTable();
4636     // done
4637     return pNewRegion;
4638     }
4639 schoenebeck 2
4640 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4641     if (!pRegions) return;
4642 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4643 schoenebeck 809 // update Region key table for fast lookup
4644     UpdateRegionKeyTable();
4645     }
4646 schoenebeck 2
4647 persson 1627 /**
4648 persson 1678 * Returns a MIDI rule of the instrument.
4649 persson 1627 *
4650     * The list of MIDI rules, at least in gig v3, always contains at
4651     * most two rules. The second rule can only be the DEF filter
4652     * (which currently isn't supported by libgig).
4653     *
4654 persson 1678 * @param i - MIDI rule number
4655     * @returns pointer address to MIDI rule number i or NULL if there is none
4656 persson 1627 */
4657 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4658     return pMidiRules[i];
4659 persson 1627 }
4660 persson 2450
4661 schoenebeck 2394 /**
4662 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4663     *
4664     * @returns the new MIDI rule
4665     */
4666     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4667     delete pMidiRules[0];
4668     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4669     pMidiRules[0] = r;
4670     pMidiRules[1] = 0;
4671     return r;
4672     }
4673    
4674     /**
4675     * Adds the legato MIDI rule to the instrument.
4676     *
4677     * @returns the new MIDI rule
4678     */
4679     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4680     delete pMidiRules[0];
4681     MidiRuleLegato* r = new MidiRuleLegato;
4682     pMidiRules[0] = r;
4683     pMidiRules[1] = 0;
4684     return r;
4685     }
4686    
4687     /**
4688     * Adds the alternator MIDI rule to the instrument.
4689     *
4690     * @returns the new MIDI rule
4691     */
4692     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4693     delete pMidiRules[0];
4694     MidiRuleAlternator* r = new MidiRuleAlternator;
4695     pMidiRules[0] = r;
4696     pMidiRules[1] = 0;
4697     return r;
4698     }
4699    
4700     /**
4701     * Deletes a MIDI rule from the instrument.
4702     *
4703     * @param i - MIDI rule number
4704     */
4705     void Instrument::DeleteMidiRule(int i) {
4706     delete pMidiRules[i];
4707     pMidiRules[i] = 0;
4708     }
4709    
4710 schoenebeck 2584 void Instrument::LoadScripts() {
4711     if (pScriptRefs) return;
4712     pScriptRefs = new std::vector<_ScriptPooolRef>;
4713     if (scriptPoolFileOffsets.empty()) return;
4714     File* pFile = (File*) GetParent();
4715     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4716 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4717 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4718     ScriptGroup* group = pFile->GetScriptGroup(i);
4719     for (uint s = 0; group->GetScript(s); ++s) {
4720     Script* script = group->GetScript(s);
4721     if (script->pChunk) {
4722 schoenebeck 2609 uint32_t offset = script->pChunk->GetFilePos() -
4723     script->pChunk->GetPos() -
4724     CHUNK_HEADER_SIZE;
4725     if (offset == soughtOffset)
4726 schoenebeck 2584 {
4727     _ScriptPooolRef ref;
4728     ref.script = script;
4729     ref.bypass = scriptPoolFileOffsets[k].bypass;
4730     pScriptRefs->push_back(ref);
4731     break;
4732     }
4733     }
4734     }
4735     }
4736     }
4737     // we don't need that anymore
4738     scriptPoolFileOffsets.clear();
4739     }
4740    
4741 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
4742 schoenebeck 2584 *
4743 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
4744     * @a index.
4745     *
4746     * @note This is an own format extension which did not exist i.e. in the
4747     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4748     * gigedit.
4749     *
4750     * @param index - instrument script slot index
4751     * @returns script or NULL if index is out of bounds
4752     */
4753     Script* Instrument::GetScriptOfSlot(uint index) {
4754     LoadScripts();
4755     if (index >= pScriptRefs->size()) return NULL;
4756     return pScriptRefs->at(index).script;
4757     }
4758    
4759     /** @brief Add new instrument script slot (gig format extension).
4760     *
4761 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
4762     * which shall be executed by the sampler for for this instrument. The
4763     * script will be added to the end of the script list of this instrument.
4764     * The positions of the scripts in the Instrument's Script list are
4765     * relevant, because they define in which order they shall be executed by
4766     * the sampler. For this reason it is also legal to add the same script
4767     * twice to an instrument, for example you might have a script called
4768     * "MyFilter" which performs an event filter task, and you might have
4769     * another script called "MyNoteTrigger" which triggers new notes, then you
4770     * might for example have the following list of scripts on the instrument:
4771     *
4772     * 1. Script "MyFilter"
4773     * 2. Script "MyNoteTrigger"
4774     * 3. Script "MyFilter"
4775     *
4776     * Which would make sense, because the 2nd script launched new events, which
4777     * you might need to filter as well.
4778     *
4779     * There are two ways to disable / "bypass" scripts. You can either disable
4780     * a script locally for the respective script slot on an instrument (i.e. by
4781     * passing @c false to the 2nd argument of this method, or by calling
4782     * SetScriptBypassed()). Or you can disable a script globally for all slots
4783     * and all instruments by setting Script::Bypass.
4784     *
4785     * @note This is an own format extension which did not exist i.e. in the
4786     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4787     * gigedit.
4788     *
4789     * @param pScript - script that shall be executed for this instrument
4790     * @param bypass - if enabled, the sampler shall skip executing this
4791     * script (in the respective list position)
4792     * @see SetScriptBypassed()
4793     */
4794     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4795     LoadScripts();
4796     _ScriptPooolRef ref = { pScript, bypass };
4797     pScriptRefs->push_back(ref);
4798     }
4799    
4800     /** @brief Flip two script slots with each other (gig format extension).
4801     *
4802     * Swaps the position of the two given scripts in the Instrument's Script
4803     * list. The positions of the scripts in the Instrument's Script list are
4804     * relevant, because they define in which order they shall be executed by
4805     * the sampler.
4806     *
4807     * @note This is an own format extension which did not exist i.e. in the
4808     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4809     * gigedit.
4810     *
4811     * @param index1 - index of the first script slot to swap
4812     * @param index2 - index of the second script slot to swap
4813     */
4814     void Instrument::SwapScriptSlots(uint index1, uint index2) {
4815     LoadScripts();
4816     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4817     return;
4818     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4819     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4820     (*pScriptRefs)[index2] = tmp;
4821     }
4822    
4823     /** @brief Remove script slot.
4824     *
4825     * Removes the script slot with the given slot index.
4826     *
4827     * @param index - index of script slot to remove
4828     */
4829     void Instrument::RemoveScriptSlot(uint index) {
4830     LoadScripts();
4831     if (index >= pScriptRefs->size()) return;
4832     pScriptRefs->erase( pScriptRefs->begin() + index );
4833     }
4834    
4835     /** @brief Remove reference to given Script (gig format extension).
4836     *
4837     * This will remove all script slots on the instrument which are referencing
4838     * the given script.
4839     *
4840     * @note This is an own format extension which did not exist i.e. in the
4841     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4842     * gigedit.
4843     *
4844     * @param pScript - script reference to remove from this instrument
4845     * @see RemoveScriptSlot()
4846     */
4847     void Instrument::RemoveScript(Script* pScript) {
4848     LoadScripts();
4849     for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4850     if ((*pScriptRefs)[i].script == pScript) {
4851     pScriptRefs->erase( pScriptRefs->begin() + i );
4852     }
4853     }
4854     }
4855    
4856     /** @brief Instrument's amount of script slots.
4857     *
4858     * This method returns the amount of script slots this instrument currently
4859     * uses.
4860     *
4861     * A script slot is a reference of a real-time instrument script to be
4862     * executed by the sampler. The scripts will be executed by the sampler in
4863     * sequence of the slots. One (same) script may be referenced multiple
4864     * times in different slots.
4865     *
4866     * @note This is an own format extension which did not exist i.e. in the
4867     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4868     * gigedit.
4869     */
4870     uint Instrument::ScriptSlotCount() const {
4871     return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4872     }
4873    
4874     /** @brief Whether script execution shall be skipped.
4875     *
4876     * Defines locally for the Script reference slot in the Instrument's Script
4877     * list, whether the script shall be skipped by the sampler regarding
4878     * execution.
4879     *
4880     * It is also possible to ignore exeuction of the script globally, for all
4881     * slots and for all instruments by setting Script::Bypass.
4882     *
4883     * @note This is an own format extension which did not exist i.e. in the
4884     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4885     * gigedit.
4886     *
4887     * @param index - index of the script slot on this instrument
4888     * @see Script::Bypass
4889     */
4890     bool Instrument::IsScriptSlotBypassed(uint index) {
4891     if (index >= ScriptSlotCount()) return false;
4892     return pScriptRefs ? pScriptRefs->at(index).bypass
4893     : scriptPoolFileOffsets.at(index).bypass;
4894    
4895     }
4896    
4897     /** @brief Defines whether execution shall be skipped.
4898     *
4899     * You can call this method to define locally whether or whether not the
4900     * given script slot shall be executed by the sampler.
4901     *
4902     * @note This is an own format extension which did not exist i.e. in the
4903     * GigaStudio 4 software. It will currently only work with LinuxSampler and
4904     * gigedit.
4905     *
4906     * @param index - script slot index on this instrument
4907     * @param bBypass - if true, the script slot will be skipped by the sampler
4908     * @see Script::Bypass
4909     */
4910     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4911     if (index >= ScriptSlotCount()) return;
4912     if (pScriptRefs)
4913     pScriptRefs->at(index).bypass = bBypass;
4914     else
4915     scriptPoolFileOffsets.at(index).bypass = bBypass;
4916     }
4917    
4918 persson 2450 /**
4919 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
4920     * and assign it to this object.
4921     *
4922     * Note that all sample pointers referenced by @a orig are simply copied as
4923     * memory address. Thus the respective samples are shared, not duplicated!
4924     *
4925     * @param orig - original Instrument object to be copied from
4926     */
4927     void Instrument::CopyAssign(const Instrument* orig) {
4928 schoenebeck 2482 CopyAssign(orig, NULL);
4929     }
4930    
4931     /**
4932     * Make a (semi) deep copy of the Instrument object given by @a orig
4933     * and assign it to this object.
4934     *
4935     * @param orig - original Instrument object to be copied from
4936     * @param mSamples - crosslink map between the foreign file's samples and
4937     * this file's samples
4938     */
4939     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4940 schoenebeck 2394 // handle base class
4941     // (without copying DLS region stuff)
4942     DLS::Instrument::CopyAssignCore(orig);
4943    
4944     // handle own member variables
4945     Attenuation = orig->Attenuation;
4946     EffectSend = orig->EffectSend;
4947     FineTune = orig->FineTune;
4948     PitchbendRange = orig->PitchbendRange;
4949     PianoReleaseMode = orig->PianoReleaseMode;
4950     DimensionKeyRange = orig->DimensionKeyRange;
4951 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
4952     pScriptRefs = orig->pScriptRefs;
4953 schoenebeck 2394
4954     // free old midi rules
4955     for (int i = 0 ; pMidiRules[i] ; i++) {
4956     delete pMidiRules[i];
4957     }
4958     //TODO: MIDI rule copying
4959     pMidiRules[0] = NULL;
4960    
4961     // delete all old regions
4962     while (Regions) DeleteRegion(GetFirstRegion());
4963     // create new regions and copy them from original
4964     {
4965     RegionList::const_iterator it = orig->pRegions->begin();
4966     for (int i = 0; i < orig->Regions; ++i, ++it) {
4967     Region* dstRgn = AddRegion();
4968     //NOTE: Region does semi-deep copy !
4969     dstRgn->CopyAssign(
4970 schoenebeck 2482 static_cast<gig::Region*>(*it),
4971     mSamples
4972 schoenebeck 2394 );
4973     }
4974     }
4975 schoenebeck 809
4976 schoenebeck 2394 UpdateRegionKeyTable();
4977     }
4978 schoenebeck 809
4979 schoenebeck 2394
4980 schoenebeck 929 // *************** Group ***************
4981     // *
4982    
4983     /** @brief Constructor.
4984     *
4985 schoenebeck 930 * @param file - pointer to the gig::File object
4986     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4987     * NULL if this is a new Group
4988 schoenebeck 929 */
4989 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4990 schoenebeck 929 pFile = file;
4991     pNameChunk = ck3gnm;
4992     ::LoadString(pNameChunk, Name);
4993     }
4994    
4995     Group::~Group() {
4996 schoenebeck 1099 // remove the chunk associated with this group (if any)
4997     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4998 schoenebeck 929 }
4999    
5000     /** @brief Update chunks with current group settings.
5001     *
5002 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5003     * to call File::Save() to make changes persistent.
5004     *
5005     * Usually there is absolutely no need to call this method explicitly.
5006     * It will be called automatically when File::Save() was called.
5007 schoenebeck 929 */
5008     void Group::UpdateChunks() {
5009     // make sure <3gri> and <3gnl> list chunks exist
5010 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5011 persson 1192 if (!_3gri) {
5012     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5013     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5014     }
5015 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5016 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5017 persson 1266
5018     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5019     // v3 has a fixed list of 128 strings, find a free one
5020     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5021     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5022     pNameChunk = ck;
5023     break;
5024     }
5025     }
5026     }
5027    
5028 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5029     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5030     }
5031    
5032 schoenebeck 930 /**
5033     * Returns the first Sample of this Group. You have to call this method
5034     * once before you use GetNextSample().
5035     *
5036     * <b>Notice:</b> this method might block for a long time, in case the
5037     * samples of this .gig file were not scanned yet
5038     *
5039     * @returns pointer address to first Sample or NULL if there is none
5040     * applied to this Group
5041     * @see GetNextSample()
5042     */
5043     Sample* Group::GetFirstSample() {
5044     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5045     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5046     if (pSample->GetGroup() == this) return pSample;
5047     }
5048     return NULL;
5049     }
5050 schoenebeck 929
5051 schoenebeck 930 /**
5052     * Returns the next Sample of the Group. You have to call
5053     * GetFirstSample() once before you can use this method. By calling this
5054     * method multiple times it iterates through the Samples assigned to
5055     * this Group.
5056     *
5057     * @returns pointer address to the next Sample of this Group or NULL if
5058     * end reached
5059     * @see GetFirstSample()
5060     */
5061     Sample* Group::GetNextSample() {
5062     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5063     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5064     if (pSample->GetGroup() == this) return pSample;
5065     }
5066     return NULL;
5067     }
5068 schoenebeck 929
5069 schoenebeck 930 /**
5070     * Move Sample given by \a pSample from another Group to this Group.
5071     */
5072     void Group::AddSample(Sample* pSample) {
5073     pSample->pGroup = this;
5074     }
5075    
5076     /**
5077     * Move all members of this group to another group (preferably the 1st
5078     * one except this). This method is called explicitly by
5079     * File::DeleteGroup() thus when a Group was deleted. This code was
5080     * intentionally not placed in the destructor!
5081     */
5082     void Group::MoveAll() {
5083     // get "that" other group first
5084     Group* pOtherGroup = NULL;
5085     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5086     if (pOtherGroup != this) break;
5087     }
5088     if (!pOtherGroup) throw Exception(
5089     "Could not move samples to another group, since there is no "
5090     "other Group. This is a bug, report it!"
5091     );
5092     // now move all samples of this group to the other group
5093     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5094     pOtherGroup->AddSample(pSample);
5095     }
5096     }
5097    
5098    
5099    
5100 schoenebeck 2 // *************** File ***************
5101     // *
5102    
5103 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5104 persson 1199 const DLS::version_t File::VERSION_2 = {
5105     0, 2, 19980628 & 0xffff, 19980628 >> 16
5106     };
5107    
5108 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5109 persson 1199 const DLS::version_t File::VERSION_3 = {
5110     0, 3, 20030331 & 0xffff, 20030331 >> 16
5111     };
5112    
5113 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5114 persson 1180 { CHUNK_ID_IARL, 256 },
5115     { CHUNK_ID_IART, 128 },
5116     { CHUNK_ID_ICMS, 128 },
5117     { CHUNK_ID_ICMT, 1024 },
5118     { CHUNK_ID_ICOP, 128 },
5119     { CHUNK_ID_ICRD, 128 },
5120     { CHUNK_ID_IENG, 128 },
5121     { CHUNK_ID_IGNR, 128 },
5122     { CHUNK_ID_IKEY, 128 },
5123     { CHUNK_ID_IMED, 128 },
5124     { CHUNK_ID_INAM, 128 },
5125     { CHUNK_ID_IPRD, 128 },
5126     { CHUNK_ID_ISBJ, 128 },
5127     { CHUNK_ID_ISFT, 128 },
5128     { CHUNK_ID_ISRC, 128 },
5129     { CHUNK_ID_ISRF, 128 },
5130     { CHUNK_ID_ITCH, 128 },
5131     { 0, 0 }
5132     };
5133    
5134 schoenebeck 809 File::File() : DLS::File() {
5135 schoenebeck 1524 bAutoLoad = true;
5136 persson 1264 *pVersion = VERSION_3;
5137 schoenebeck 929 pGroups = NULL;
5138 schoenebeck 2584 pScriptGroups = NULL;
5139 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5140 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5141 persson 1192
5142     // add some mandatory chunks to get the file chunks in right
5143     // order (INFO chunk will be moved to first position later)
5144     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5145     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5146 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5147    
5148     GenerateDLSID();
5149 schoenebeck 809 }
5150    
5151 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5152 schoenebeck 1524 bAutoLoad = true;
5153 schoenebeck 929 pGroups = NULL;
5154 schoenebeck 2584 pScriptGroups = NULL;
5155 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5156 schoenebeck 2 }
5157    
5158 schoenebeck 929 File::~File() {
5159     if (pGroups) {
5160     std::list<Group*>::iterator iter = pGroups->begin();
5161     std::list<Group*>::iterator end = pGroups->end();
5162     while (iter != end) {
5163     delete *iter;
5164     ++iter;
5165     }
5166     delete pGroups;
5167     }
5168 schoenebeck 2584 if (pScriptGroups) {
5169     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5170     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5171     while (iter != end) {
5172     delete *iter;
5173     ++iter;
5174     }
5175     delete pScriptGroups;
5176     }
5177 schoenebeck 929 }
5178    
5179 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5180     if (!pSamples) LoadSamples(pProgress);
5181 schoenebeck 2 if (!pSamples) return NULL;
5182     SamplesIterator = pSamples->begin();
5183     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5184     }
5185    
5186     Sample* File::GetNextSample() {
5187     if (!pSamples) return NULL;
5188     SamplesIterator++;
5189     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5190     }
5191 schoenebeck 2482
5192     /**
5193     * Returns Sample object of @a index.
5194     *
5195     * @returns sample object or NULL if index is out of bounds
5196     */
5197     Sample* File::GetSample(uint index) {
5198     if (!pSamples) LoadSamples();
5199     if (!pSamples) return NULL;
5200     DLS::File::SampleList::iterator it = pSamples->begin();
5201     for (int i = 0; i < index; ++i) {
5202     ++it;
5203     if (it == pSamples->end()) return NULL;
5204     }
5205     if (it == pSamples->end()) return NULL;
5206     return static_cast<gig::Sample*>( *it );
5207     }
5208 schoenebeck 2
5209 schoenebeck 809 /** @brief Add a new sample.
5210     *
5211     * This will create a new Sample object for the gig file. You have to
5212     * call Save() to make this persistent to the file.
5213     *
5214     * @returns pointer to new Sample object
5215     */
5216     Sample* File::AddSample() {
5217     if (!pSamples) LoadSamples();
5218     __ensureMandatoryChunksExist();
5219     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5220     // create new Sample object and its respective 'wave' list chunk
5221     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5222     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5223 persson 1192
5224     // add mandatory chunks to get the chunks in right order
5225     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5226     wave->AddSubList(LIST_TYPE_INFO);
5227    
5228 schoenebeck 809 pSamples->push_back(pSample);
5229     return pSample;
5230     }
5231    
5232     /** @brief Delete a sample.
5233     *
5234 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5235     * references to this sample from Regions and DimensionRegions will be
5236     * removed. You have to call Save() to make this persistent to the file.
5237 schoenebeck 809 *
5238     * @param pSample - sample to delete
5239     * @throws gig::Exception if given sample could not be found
5240     */
5241     void File::DeleteSample(Sample* pSample) {
5242 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5243     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5244 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5245 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5246 schoenebeck 809 pSamples->erase(iter);
5247     delete pSample;
5248 persson 1266
5249 persson 1678 SampleList::iterator tmp = SamplesIterator;
5250 persson 1266 // remove all references to the sample
5251     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5252     instrument = GetNextInstrument()) {
5253     for (Region* region = instrument->GetFirstRegion() ; region ;
5254     region = instrument->GetNextRegion()) {
5255    
5256     if (region->GetSample() == pSample) region->SetSample(NULL);
5257    
5258     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5259     gig::DimensionRegion *d = region->pDimensionRegions[i];
5260     if (d->pSample == pSample) d->pSample = NULL;
5261     }
5262     }
5263     }
5264 persson 1678 SamplesIterator = tmp; // restore iterator
5265 schoenebeck 809 }
5266    
5267 schoenebeck 823 void File::LoadSamples() {
5268     LoadSamples(NULL);
5269     }
5270    
5271 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5272 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5273     // to resolve the group they belong to
5274 schoenebeck 1158 if (!pGroups) LoadGroups();
5275 schoenebeck 930
5276 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5277    
5278 persson 666 RIFF::File* file = pRIFF;
5279 schoenebeck 515
5280 persson 666 // just for progress calculation
5281     int iSampleIndex = 0;
5282     int iTotalSamples = WavePoolCount;
5283 schoenebeck 515
5284 persson 666 // check if samples should be loaded from extension files
5285     int lastFileNo = 0;
5286     for (int i = 0 ; i < WavePoolCount ; i++) {
5287     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5288     }
5289 schoenebeck 780 String name(pRIFF->GetFileName());
5290     int nameLen = name.length();
5291 persson 666 char suffix[6];
5292 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5293 schoenebeck 515
5294 persson 666 for (int fileNo = 0 ; ; ) {
5295     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5296     if (wvpl) {
5297     unsigned long wvplFileOffset = wvpl->GetFilePos();
5298     RIFF::List* wave = wvpl->GetFirstSubList();
5299     while (wave) {
5300     if (wave->GetListType() == LIST_TYPE_WAVE) {
5301     // notify current progress
5302     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5303     __notify_progress(pProgress, subprogress);
5304    
5305     unsigned long waveFileOffset = wave->GetFilePos();
5306     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5307    
5308     iSampleIndex++;
5309     }
5310     wave = wvpl->GetNextSubList();
5311 schoenebeck 2 }
5312 persson 666
5313     if (fileNo == lastFileNo) break;
5314    
5315     // open extension file (*.gx01, *.gx02, ...)
5316     fileNo++;
5317     sprintf(suffix, ".gx%02d", fileNo);
5318     name.replace(nameLen, 5, suffix);
5319     file = new RIFF::File(name);
5320     ExtensionFiles.push_back(file);
5321 schoenebeck 823 } else break;
5322 schoenebeck 2 }
5323 persson 666
5324     __notify_progress(pProgress, 1.0); // notify done
5325 schoenebeck 2 }
5326    
5327     Instrument* File::GetFirstInstrument() {
5328     if (!pInstruments) LoadInstruments();
5329     if (!pInstruments) return NULL;
5330     InstrumentsIterator = pInstruments->begin();
5331 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5332 schoenebeck 2 }
5333    
5334     Instrument* File::GetNextInstrument() {
5335     if (!pInstruments) return NULL;
5336     InstrumentsIterator++;
5337 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5338 schoenebeck 2 }
5339    
5340 schoenebeck 21 /**
5341     * Returns the instrument with the given index.
5342     *
5343 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5344     * @param pProgress - optional: callback function for progress notification
5345 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5346     */
5347 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5348     if (!pInstruments) {
5349     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5350    
5351     // sample loading subtask
5352     progress_t subprogress;
5353     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5354     __notify_progress(&subprogress, 0.0f);
5355 schoenebeck 1524 if (GetAutoLoad())
5356     GetFirstSample(&subprogress); // now force all samples to be loaded
5357 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5358    
5359     // instrument loading subtask
5360     if (pProgress && pProgress->callback) {
5361     subprogress.__range_min = subprogress.__range_max;
5362     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5363     }
5364     __notify_progress(&subprogress, 0.0f);
5365     LoadInstruments(&subprogress);
5366     __notify_progress(&subprogress, 1.0f);
5367     }
5368 schoenebeck 21 if (!pInstruments) return NULL;
5369     InstrumentsIterator = pInstruments->begin();
5370     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5371 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5372 schoenebeck 21 InstrumentsIterator++;
5373     }
5374     return NULL;
5375     }
5376    
5377 schoenebeck 809 /** @brief Add a new instrument definition.
5378     *
5379     * This will create a new Instrument object for the gig file. You have
5380     * to call Save() to make this persistent to the file.
5381     *
5382     * @returns pointer to new Instrument object
5383     */
5384     Instrument* File::AddInstrument() {
5385     if (!pInstruments) LoadInstruments();
5386     __ensureMandatoryChunksExist();
5387     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5388     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5389 persson 1192
5390     // add mandatory chunks to get the chunks in right order
5391     lstInstr->AddSubList(LIST_TYPE_INFO);
5392 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5393 persson 1192
5394 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5395 persson 1209 pInstrument->GenerateDLSID();
5396 persson 1182
5397 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5398    
5399 persson 1182 // this string is needed for the gig to be loadable in GSt:
5400     pInstrument->pInfo->Software = "Endless Wave";
5401    
5402 schoenebeck 809 pInstruments->push_back(pInstrument);
5403     return pInstrument;
5404     }
5405 schoenebeck 2394
5406     /** @brief Add a duplicate of an existing instrument.
5407     *
5408     * Duplicates the instrument definition given by @a orig and adds it
5409     * to this file. This allows in an instrument editor application to
5410     * easily create variations of an instrument, which will be stored in
5411     * the same .gig file, sharing i.e. the same samples.
5412     *
5413     * Note that all sample pointers referenced by @a orig are simply copied as
5414     * memory address. Thus the respective samples are shared, not duplicated!
5415     *
5416     * You have to call Save() to make this persistent to the file.
5417     *
5418     * @param orig - original instrument to be copied
5419     * @returns duplicated copy of the given instrument
5420     */
5421     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5422     Instrument* instr = AddInstrument();
5423     instr->CopyAssign(orig);
5424     return instr;
5425     }
5426 schoenebeck 2482
5427     /** @brief Add content of another existing file.
5428     *
5429     * Duplicates the samples, groups and instruments of the original file
5430     * given by @a pFile and adds them to @c this File. In case @c this File is
5431     * a new one that you haven't saved before, then you have to call
5432     * SetFileName() before calling AddContentOf(), because this method will
5433     * automatically save this file during operation, which is required for
5434     * writing the sample waveform data by disk streaming.
5435     *
5436     * @param pFile - original file whose's content shall be copied from
5437     */
5438     void File::AddContentOf(File* pFile) {
5439     static int iCallCount = -1;
5440     iCallCount++;
5441     std::map<Group*,Group*> mGroups;
5442     std::map<Sample*,Sample*> mSamples;
5443    
5444     // clone sample groups
5445     for (int i = 0; pFile->GetGroup(i); ++i) {
5446     Group* g = AddGroup();
5447     g->Name =
5448     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5449     mGroups[pFile->GetGroup(i)] = g;
5450     }
5451    
5452     // clone samples (not waveform data here yet)
5453     for (int i = 0; pFile->GetSample(i); ++i) {
5454     Sample* s = AddSample();
5455     s->CopyAssignMeta(pFile->GetSample(i));
5456     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5457     mSamples[pFile->GetSample(i)] = s;
5458     }
5459    
5460     //BUG: For some reason this method only works with this additional
5461     // Save() call in between here.
5462     //
5463     // Important: The correct one of the 2 Save() methods has to be called
5464     // here, depending on whether the file is completely new or has been
5465     // saved to disk already, otherwise it will result in data corruption.
5466     if (pRIFF->IsNew())
5467     Save(GetFileName());
5468     else
5469     Save();
5470    
5471     // clone instruments
5472     // (passing the crosslink table here for the cloned samples)
5473     for (int i = 0; pFile->GetInstrument(i); ++i) {
5474     Instrument* instr = AddInstrument();
5475     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5476     }
5477    
5478     // Mandatory: file needs to be saved to disk at this point, so this
5479     // file has the correct size and data layout for writing the samples'
5480     // waveform data to disk.
5481     Save();
5482    
5483     // clone samples' waveform data
5484     // (using direct read & write disk streaming)
5485     for (int i = 0; pFile->GetSample(i); ++i) {
5486     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5487     }
5488     }
5489 schoenebeck 809
5490     /** @brief Delete an instrument.
5491     *
5492     * This will delete the given Instrument object from the gig file. You
5493     * have to call Save() to make this persistent to the file.
5494     *
5495     * @param pInstrument - instrument to delete
5496 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5497 schoenebeck 809 */
5498     void File::DeleteInstrument(Instrument* pInstrument) {
5499     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5500 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5501 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5502     pInstruments->erase(iter);
5503     delete pInstrument;
5504     }
5505    
5506 schoenebeck 823 void File::LoadInstruments() {
5507     LoadInstruments(NULL);
5508     }
5509    
5510 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5511 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5512 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5513     if (lstInstruments) {
5514 schoenebeck 515 int iInstrumentIndex = 0;
5515 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5516     while (lstInstr) {
5517     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5518 schoenebeck 515 // notify current progress
5519     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5520     __notify_progress(pProgress, localProgress);
5521    
5522     // divide local progress into subprogress for loading current Instrument
5523     progress_t subprogress;
5524     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5525    
5526     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5527    
5528     iInstrumentIndex++;
5529 schoenebeck 2 }
5530     lstInstr = lstInstruments->GetNextSubList();
5531     }
5532 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5533 schoenebeck 2 }
5534     }
5535    
5536 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5537     /// update is done directly to disk, as this method is called
5538     /// after File::Save()
5539 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5540     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5541     if (!_3crc) return;
5542 persson 1207
5543     // get the index of the sample
5544 persson 1199 int iWaveIndex = -1;
5545     File::SampleList::iterator iter = pSamples->begin();
5546     File::SampleList::iterator end = pSamples->end();
5547     for (int index = 0; iter != end; ++iter, ++index) {
5548     if (*iter == pSample) {
5549     iWaveIndex = index;
5550     break;
5551     }
5552     }
5553     if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5554    
5555 persson 1207 // write the CRC-32 checksum to disk
5556 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5557     uint32_t tmp = 1;
5558     _3crc->WriteUint32(&tmp); // unknown, always 1?
5559     _3crc->WriteUint32(&crc);
5560     }
5561    
5562 schoenebeck 929 Group* File::GetFirstGroup() {
5563     if (!pGroups) LoadGroups();
5564 schoenebeck 930 // there must always be at least one group
5565 schoenebeck 929 GroupsIterator = pGroups->begin();
5566 schoenebeck 930 return *GroupsIterator;
5567 schoenebeck 929 }
5568 schoenebeck 2
5569 schoenebeck 929 Group* File::GetNextGroup() {
5570     if (!pGroups) return NULL;
5571     ++GroupsIterator;
5572     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5573     }
5574 schoenebeck 2
5575 schoenebeck 929 /**
5576     * Returns the group with the given index.
5577     *
5578     * @param index - number of the sought group (0..n)
5579     * @returns sought group or NULL if there's no such group
5580     */
5581     Group* File::GetGroup(uint index) {
5582     if (!pGroups) LoadGroups();
5583     GroupsIterator = pGroups->begin();
5584     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5585     if (i == index) return *GroupsIterator;
5586     ++GroupsIterator;
5587     }
5588     return NULL;
5589     }
5590    
5591 schoenebeck 2543 /**
5592     * Returns the group with the given group name.
5593     *
5594     * Note: group names don't have to be unique in the gig format! So there
5595     * can be multiple groups with the same name. This method will simply
5596     * return the first group found with the given name.
5597     *
5598     * @param name - name of the sought group
5599     * @returns sought group or NULL if there's no group with that name
5600     */
5601     Group* File::GetGroup(String name) {
5602     if (!pGroups) LoadGroups();
5603     GroupsIterator = pGroups->begin();
5604     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5605     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5606     return NULL;
5607     }
5608    
5609 schoenebeck 929 Group* File::AddGroup() {
5610     if (!pGroups) LoadGroups();
5611 schoenebeck 930 // there must always be at least one group
5612 schoenebeck 929 __ensureMandatoryChunksExist();
5613 schoenebeck 930 Group* pGroup = new Group(this, NULL);
5614 schoenebeck 929 pGroups->push_back(pGroup);
5615     return pGroup;
5616     }
5617    
5618 schoenebeck 1081 /** @brief Delete a group and its samples.
5619     *
5620     * This will delete the given Group object and all the samples that
5621     * belong to this group from the gig file. You have to call Save() to
5622     * make this persistent to the file.
5623     *
5624     * @param pGroup - group to delete
5625     * @throws gig::Exception if given group could not be found
5626     */
5627 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
5628 schoenebeck 930 if (!pGroups) LoadGroups();
5629 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5630     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5631 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5632 schoenebeck 1081 // delete all members of this group
5633     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5634     DeleteSample(pSample);
5635     }
5636     // now delete this group object
5637     pGroups->erase(iter);
5638     delete pGroup;
5639     }
5640    
5641     /** @brief Delete a group.
5642     *
5643     * This will delete the given Group object from the gig file. All the
5644     * samples that belong to this group will not be deleted, but instead
5645     * be moved to another group. You have to call Save() to make this
5646     * persistent to the file.
5647     *
5648     * @param pGroup - group to delete
5649     * @throws gig::Exception if given group could not be found
5650     */
5651     void File::DeleteGroupOnly(Group* pGroup) {
5652     if (!pGroups) LoadGroups();
5653     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5654     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5655     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5656 schoenebeck 930 // move all members of this group to another group
5657     pGroup->MoveAll();
5658 schoenebeck 929 pGroups->erase(iter);
5659     delete pGroup;
5660     }
5661    
5662     void File::LoadGroups() {
5663     if (!pGroups) pGroups = new std::list<Group*>;
5664 schoenebeck 930 // try to read defined groups from file
5665 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5666 schoenebeck 930 if (lst3gri) {
5667     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5668     if (lst3gnl) {
5669     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5670     while (ck) {
5671     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5672 persson 1266 if (pVersion && pVersion->major == 3 &&
5673     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5674    
5675 schoenebeck 930 pGroups->push_back(new Group(this, ck));
5676     }
5677     ck = lst3gnl->GetNextSubChunk();
5678 schoenebeck 929 }
5679     }
5680     }
5681 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
5682     if (!pGroups->size()) {
5683     Group* pGroup = new Group(this, NULL);
5684     pGroup->Name = "Default Group";
5685     pGroups->push_back(pGroup);
5686     }
5687 schoenebeck 929 }
5688    
5689 schoenebeck 2584 /** @brief Get instrument script group (by index).
5690     *
5691     * Returns the real-time instrument script group with the given index.
5692     *
5693     * @param index - number of the sought group (0..n)
5694     * @returns sought script group or NULL if there's no such group
5695     */
5696     ScriptGroup* File::GetScriptGroup(uint index) {
5697     if (!pScriptGroups) LoadScriptGroups();
5698     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5699     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5700     if (i == index) return *it;
5701     return NULL;
5702     }
5703    
5704     /** @brief Get instrument script group (by name).
5705     *
5706     * Returns the first real-time instrument script group found with the given
5707     * group name. Note that group names may not necessarily be unique.
5708     *
5709     * @param name - name of the sought script group
5710     * @returns sought script group or NULL if there's no such group
5711     */
5712     ScriptGroup* File::GetScriptGroup(const String& name) {
5713     if (!pScriptGroups) LoadScriptGroups();
5714     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5715     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5716     if ((*it)->Name == name) return *it;
5717     return NULL;
5718     }
5719    
5720     /** @brief Add new instrument script group.
5721     *
5722     * Adds a new, empty real-time instrument script group to the file.
5723     *
5724     * You have to call Save() to make this persistent to the file.
5725     *
5726     * @return new empty script group
5727     */
5728     ScriptGroup* File::AddScriptGroup() {
5729     if (!pScriptGroups) LoadScriptGroups();
5730     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5731     pScriptGroups->push_back(pScriptGroup);
5732     return pScriptGroup;
5733     }
5734    
5735     /** @brief Delete an instrument script group.
5736     *
5737     * This will delete the given real-time instrument script group and all its
5738     * instrument scripts it contains. References inside instruments that are
5739     * using the deleted scripts will be removed from the respective instruments
5740     * accordingly.
5741     *
5742     * You have to call Save() to make this persistent to the file.
5743     *
5744     * @param pScriptGroup - script group to delete
5745     * @throws gig::Exception if given script group could not be found
5746     */
5747     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5748     if (!pScriptGroups) LoadScriptGroups();
5749     std::list<ScriptGroup*>::iterator iter =
5750     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5751     if (iter == pScriptGroups->end())
5752     throw gig::Exception("Could not delete script group, could not find given script group");
5753     pScriptGroups->erase(iter);
5754     for (int i = 0; pScriptGroup->GetScript(i); ++i)
5755     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5756     if (pScriptGroup->pList)
5757     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5758     delete pScriptGroup;
5759     }
5760    
5761     void File::LoadScriptGroups() {
5762     if (pScriptGroups) return;
5763     pScriptGroups = new std::list<ScriptGroup*>;
5764     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5765     if (lstLS) {
5766     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5767     lst = lstLS->GetNextSubList())
5768     {
5769     if (lst->GetListType() == LIST_TYPE_RTIS) {
5770     pScriptGroups->push_back(new ScriptGroup(this, lst));
5771     }
5772     }
5773     }
5774     }
5775    
5776 schoenebeck 1098 /**
5777     * Apply all the gig file's current instruments, samples, groups and settings
5778     * to the respective RIFF chunks. You have to call Save() to make changes
5779     * persistent.
5780     *
5781     * Usually there is absolutely no need to call this method explicitly.
5782     * It will be called automatically when File::Save() was called.
5783     *
5784     * @throws Exception - on errors
5785     */
5786     void File::UpdateChunks() {
5787 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5788 persson 1192
5789 persson 1247 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
5790    
5791 schoenebeck 2584 // update own gig format extension chunks
5792     // (not part of the GigaStudio 4 format)
5793     //
5794     // This must be performed before writing the chunks for instruments,
5795     // because the instruments' script slots will write the file offsets
5796     // of the respective instrument script chunk as reference.
5797     if (pScriptGroups) {
5798     RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5799     if (pScriptGroups->empty()) {
5800     if (lst3LS) pRIFF->DeleteSubChunk(lst3LS);
5801     } else {
5802     if (!lst3LS) lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5803    
5804     // Update instrument script (group) chunks.
5805    
5806     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5807     it != pScriptGroups->end(); ++it)
5808     {
5809     (*it)->UpdateChunks();
5810     }
5811     }
5812     }
5813    
5814 schoenebeck 1098 // first update base class's chunks
5815     DLS::File::UpdateChunks();
5816 schoenebeck 929
5817 persson 1199 if (newFile) {
5818 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
5819     // is placed first in file
5820 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5821 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5822     if (first != info) {
5823     pRIFF->MoveSubChunk(info, first);
5824     }
5825     }
5826    
5827 schoenebeck 1098 // update group's chunks
5828     if (pGroups) {
5829 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
5830     // (before updating the Group chunks)
5831     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5832     if (!_3gri) {
5833     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5834     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5835 schoenebeck 1098 }
5836 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5837     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5838 persson 1266
5839     // v3: make sure the file has 128 3gnm chunks
5840 schoenebeck 2467 // (before updating the Group chunks)
5841 persson 1266 if (pVersion && pVersion->major == 3) {
5842     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5843     for (int i = 0 ; i < 128 ; i++) {
5844     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5845     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5846     }
5847     }
5848 schoenebeck 2467
5849     std::list<Group*>::iterator iter = pGroups->begin();
5850     std::list<Group*>::iterator end = pGroups->end();
5851     for (; iter != end; ++iter) {
5852     (*iter)->UpdateChunks();
5853     }
5854 schoenebeck 1098 }
5855 persson 1199
5856     // update einf chunk
5857    
5858     // The einf chunk contains statistics about the gig file, such
5859     // as the number of regions and samples used by each
5860     // instrument. It is divided in equally sized parts, where the
5861     // first part contains information about the whole gig file,
5862     // and the rest of the parts map to each instrument in the
5863     // file.
5864     //
5865     // At the end of each part there is a bit map of each sample
5866     // in the file, where a set bit means that the sample is used
5867     // by the file/instrument.
5868     //
5869     // Note that there are several fields with unknown use. These
5870     // are set to zero.
5871    
5872     int sublen = pSamples->size() / 8 + 49;
5873     int einfSize = (Instruments + 1) * sublen;
5874    
5875     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5876     if (einf) {
5877     if (einf->GetSize() != einfSize) {
5878     einf->Resize(einfSize);
5879     memset(einf->LoadChunkData(), 0, einfSize);
5880     }
5881     } else if (newFile) {
5882     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5883     }
5884     if (einf) {
5885     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5886    
5887     std::map<gig::Sample*,int> sampleMap;
5888     int sampleIdx = 0;
5889     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5890     sampleMap[pSample] = sampleIdx++;
5891     }
5892    
5893     int totnbusedsamples = 0;
5894     int totnbusedchannels = 0;
5895     int totnbregions = 0;
5896     int totnbdimregions = 0;
5897 persson 1264 int totnbloops = 0;
5898 persson 1199 int instrumentIdx = 0;
5899    
5900     memset(&pData[48], 0, sublen - 48);
5901    
5902     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5903     instrument = GetNextInstrument()) {
5904     int nbusedsamples = 0;
5905     int nbusedchannels = 0;
5906     int nbdimregions = 0;
5907 persson 1264 int nbloops = 0;
5908 persson 1199
5909     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5910    
5911     for (Region* region = instrument->GetFirstRegion() ; region ;
5912     region = instrument->GetNextRegion()) {
5913     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5914     gig::DimensionRegion *d = region->pDimensionRegions[i];
5915     if (d->pSample) {
5916     int sampleIdx = sampleMap[d->pSample];
5917     int byte = 48 + sampleIdx / 8;
5918     int bit = 1 << (sampleIdx & 7);
5919     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5920     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
5921     nbusedsamples++;
5922     nbusedchannels += d->pSample->Channels;
5923    
5924     if ((pData[byte] & bit) == 0) {
5925     pData[byte] |= bit;
5926     totnbusedsamples++;
5927     totnbusedchannels += d->pSample->Channels;
5928     }
5929     }
5930     }
5931 persson 1264 if (d->SampleLoops) nbloops++;
5932 persson 1199 }
5933     nbdimregions += region->DimensionRegions;
5934     }
5935     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5936     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
5937     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
5938     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
5939     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
5940     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
5941     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
5942 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
5943     // next 8 bytes unknown
5944 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
5945     store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
5946     // next 4 bytes unknown
5947    
5948     totnbregions += instrument->Regions;
5949     totnbdimregions += nbdimregions;
5950 persson 1264 totnbloops += nbloops;
5951 persson 1199 instrumentIdx++;
5952     }
5953     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5954     // store32(&pData[0], sublen);
5955     store32(&pData[4], totnbusedchannels);
5956     store32(&pData[8], totnbusedsamples);
5957     store32(&pData[12], Instruments);
5958     store32(&pData[16], totnbregions);
5959     store32(&pData[20], totnbdimregions);
5960 persson 1264 store32(&pData[24], totnbloops);
5961     // next 8 bytes unknown
5962     // next 4 bytes unknown, not always 0
5963 persson 1199 store32(&pData[40], pSamples->size());
5964     // next 4 bytes unknown
5965     }
5966    
5967     // update 3crc chunk
5968    
5969     // The 3crc chunk contains CRC-32 checksums for the
5970     // samples. The actual checksum values will be filled in
5971     // later, by Sample::Write.
5972    
5973     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5974     if (_3crc) {
5975     _3crc->Resize(pSamples->size() * 8);
5976     } else if (newFile) {
5977     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5978     _3crc->LoadChunkData();
5979 persson 1264
5980     // the order of einf and 3crc is not the same in v2 and v3
5981     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5982 persson 1199 }
5983 schoenebeck 1098 }
5984 schoenebeck 2609
5985     void File::UpdateFileOffsets() {
5986     DLS::File::UpdateFileOffsets();
5987 schoenebeck 929
5988 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
5989     instrument = GetNextInstrument())
5990     {
5991     instrument->UpdateScriptFileOffsets();
5992     }
5993     }
5994    
5995 schoenebeck 1524 /**
5996     * Enable / disable automatic loading. By default this properyt is
5997     * enabled and all informations are loaded automatically. However
5998     * loading all Regions, DimensionRegions and especially samples might
5999     * take a long time for large .gig files, and sometimes one might only
6000     * be interested in retrieving very superficial informations like the
6001     * amount of instruments and their names. In this case one might disable
6002     * automatic loading to avoid very slow response times.
6003     *
6004     * @e CAUTION: by disabling this property many pointers (i.e. sample
6005     * references) and informations will have invalid or even undefined
6006     * data! This feature is currently only intended for retrieving very
6007     * superficial informations in a very fast way. Don't use it to retrieve
6008     * details like synthesis informations or even to modify .gig files!
6009     */
6010     void File::SetAutoLoad(bool b) {
6011     bAutoLoad = b;
6012     }
6013 schoenebeck 1098
6014 schoenebeck 1524 /**
6015     * Returns whether automatic loading is enabled.
6016     * @see SetAutoLoad()
6017     */
6018     bool File::GetAutoLoad() {
6019     return bAutoLoad;
6020     }
6021 schoenebeck 1098
6022 schoenebeck 1524
6023    
6024 schoenebeck 2 // *************** Exception ***************
6025     // *
6026    
6027     Exception::Exception(String Message) : DLS::Exception(Message) {
6028     }
6029    
6030     void Exception::PrintMessage() {
6031     std::cout << "gig::Exception: " << Message << std::endl;
6032     }
6033    
6034 schoenebeck 518
6035     // *************** functions ***************
6036     // *
6037    
6038     /**
6039     * Returns the name of this C++ library. This is usually "libgig" of
6040     * course. This call is equivalent to RIFF::libraryName() and
6041     * DLS::libraryName().
6042     */
6043     String libraryName() {
6044     return PACKAGE;
6045     }
6046    
6047     /**
6048     * Returns version of this C++ library. This call is equivalent to
6049     * RIFF::libraryVersion() and DLS::libraryVersion().
6050     */
6051     String libraryVersion() {
6052     return VERSION;
6053     }
6054    
6055 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC