/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3203 - (hide annotations) (download)
Tue May 23 14:51:01 2017 UTC (6 years, 10 months ago) by schoenebeck
File size: 282166 byte(s)
* gig.cpp: Ignore invalid leverage controller types and just show
  a warning on the console instead of throwing an exception.
* Bumped version (4.0.0.svn26).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 2 // *************** Sample ***************
345     // *
346    
347 schoenebeck 2922 size_t Sample::Instances = 0;
348 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
349 schoenebeck 2
350 schoenebeck 809 /** @brief Constructor.
351     *
352     * Load an existing sample or create a new one. A 'wave' list chunk must
353     * be given to this constructor. In case the given 'wave' list chunk
354     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355     * format and sample data will be loaded from there, otherwise default
356     * values will be used and those chunks will be created when
357     * File::Save() will be called later on.
358     *
359     * @param pFile - pointer to gig::File where this sample is
360     * located (or will be located)
361     * @param waveList - pointer to 'wave' list chunk which is (or
362     * will be) associated with this sample
363     * @param WavePoolOffset - offset of this sample data from wave pool
364     * ('wvpl') list chunk
365     * @param fileNo - number of an extension file where this sample
366     * is located, 0 otherwise
367 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
368 schoenebeck 809 */
369 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
370     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
371     {
372 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
373 persson 1180 { CHUNK_ID_INAM, 64 },
374     { 0, 0 }
375     };
376 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
377 schoenebeck 2 Instances++;
378 persson 666 FileNo = fileNo;
379 schoenebeck 2
380 schoenebeck 1381 __resetCRC(crc);
381 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
382     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
383     // checksum of the time when the sample was consciously modified by the
384     // user for the last time (by calling Sample::Write() that is).
385     if (index >= 0) { // not a new file ...
386     try {
387     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
388     this->crc = crc;
389     } catch (...) {}
390     }
391 schoenebeck 1381
392 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
393     if (pCk3gix) {
394 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
395 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
396 schoenebeck 809 } else { // '3gix' chunk missing
397 schoenebeck 930 // by default assigned to that mandatory "Default Group"
398     pGroup = pFile->GetGroup(0);
399 schoenebeck 809 }
400 schoenebeck 2
401 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
402     if (pCkSmpl) {
403     Manufacturer = pCkSmpl->ReadInt32();
404     Product = pCkSmpl->ReadInt32();
405     SamplePeriod = pCkSmpl->ReadInt32();
406     MIDIUnityNote = pCkSmpl->ReadInt32();
407     FineTune = pCkSmpl->ReadInt32();
408     pCkSmpl->Read(&SMPTEFormat, 1, 4);
409     SMPTEOffset = pCkSmpl->ReadInt32();
410     Loops = pCkSmpl->ReadInt32();
411     pCkSmpl->ReadInt32(); // manufByt
412     LoopID = pCkSmpl->ReadInt32();
413     pCkSmpl->Read(&LoopType, 1, 4);
414     LoopStart = pCkSmpl->ReadInt32();
415     LoopEnd = pCkSmpl->ReadInt32();
416     LoopFraction = pCkSmpl->ReadInt32();
417     LoopPlayCount = pCkSmpl->ReadInt32();
418     } else { // 'smpl' chunk missing
419     // use default values
420     Manufacturer = 0;
421     Product = 0;
422 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
423 persson 1218 MIDIUnityNote = 60;
424 schoenebeck 809 FineTune = 0;
425 persson 1182 SMPTEFormat = smpte_format_no_offset;
426 schoenebeck 809 SMPTEOffset = 0;
427     Loops = 0;
428     LoopID = 0;
429 persson 1182 LoopType = loop_type_normal;
430 schoenebeck 809 LoopStart = 0;
431     LoopEnd = 0;
432     LoopFraction = 0;
433     LoopPlayCount = 0;
434     }
435 schoenebeck 2
436     FrameTable = NULL;
437     SamplePos = 0;
438     RAMCache.Size = 0;
439     RAMCache.pStart = NULL;
440     RAMCache.NullExtensionSize = 0;
441    
442 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
443    
444 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
445     Compressed = ewav;
446     Dithered = false;
447     TruncatedBits = 0;
448 schoenebeck 2 if (Compressed) {
449 persson 437 uint32_t version = ewav->ReadInt32();
450     if (version == 3 && BitDepth == 24) {
451     Dithered = ewav->ReadInt32();
452     ewav->SetPos(Channels == 2 ? 84 : 64);
453     TruncatedBits = ewav->ReadInt32();
454     }
455 schoenebeck 2 ScanCompressedSample();
456     }
457 schoenebeck 317
458     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
459 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
460     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
461     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
462 schoenebeck 317 }
463 persson 437 FrameOffset = 0; // just for streaming compressed samples
464 schoenebeck 21
465 persson 864 LoopSize = LoopEnd - LoopStart + 1;
466 schoenebeck 2 }
467    
468 schoenebeck 809 /**
469 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
470     * the actual waveform data) and assign it to this object.
471     *
472     * Discussion: copying .gig samples is a bit tricky. It requires three
473     * steps:
474     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
475     * its new sample waveform data size.
476     * 2. Saving the file (done by File::Save()) so that it gains correct size
477     * and layout for writing the actual wave form data directly to disc
478     * in next step.
479     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
480     *
481     * @param orig - original Sample object to be copied from
482     */
483     void Sample::CopyAssignMeta(const Sample* orig) {
484     // handle base classes
485     DLS::Sample::CopyAssignCore(orig);
486    
487     // handle actual own attributes of this class
488     Manufacturer = orig->Manufacturer;
489     Product = orig->Product;
490     SamplePeriod = orig->SamplePeriod;
491     MIDIUnityNote = orig->MIDIUnityNote;
492     FineTune = orig->FineTune;
493     SMPTEFormat = orig->SMPTEFormat;
494     SMPTEOffset = orig->SMPTEOffset;
495     Loops = orig->Loops;
496     LoopID = orig->LoopID;
497     LoopType = orig->LoopType;
498     LoopStart = orig->LoopStart;
499     LoopEnd = orig->LoopEnd;
500     LoopSize = orig->LoopSize;
501     LoopFraction = orig->LoopFraction;
502     LoopPlayCount = orig->LoopPlayCount;
503    
504     // schedule resizing this sample to the given sample's size
505     Resize(orig->GetSize());
506     }
507    
508     /**
509     * Should be called after CopyAssignMeta() and File::Save() sequence.
510     * Read more about it in the discussion of CopyAssignMeta(). This method
511     * copies the actual waveform data by disk streaming.
512     *
513     * @e CAUTION: this method is currently not thread safe! During this
514     * operation the sample must not be used for other purposes by other
515     * threads!
516     *
517     * @param orig - original Sample object to be copied from
518     */
519     void Sample::CopyAssignWave(const Sample* orig) {
520     const int iReadAtOnce = 32*1024;
521     char* buf = new char[iReadAtOnce * orig->FrameSize];
522     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
523 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
524 schoenebeck 2482 pOrig->SetPos(0);
525     SetPos(0);
526 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
527 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
528     {
529     Write(buf, n);
530     }
531     pOrig->SetPos(restorePos);
532     delete [] buf;
533     }
534    
535     /**
536 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
537     * to call File::Save() to make changes persistent.
538     *
539     * Usually there is absolutely no need to call this method explicitly.
540     * It will be called automatically when File::Save() was called.
541     *
542 schoenebeck 2682 * @param pProgress - callback function for progress notification
543 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
544 schoenebeck 809 * was provided yet
545     * @throws gig::Exception if there is any invalid sample setting
546     */
547 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
548 schoenebeck 809 // first update base class's chunks
549 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
550 schoenebeck 809
551     // make sure 'smpl' chunk exists
552     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
553 persson 1182 if (!pCkSmpl) {
554     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
555     memset(pCkSmpl->LoadChunkData(), 0, 60);
556     }
557 schoenebeck 809 // update 'smpl' chunk
558     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
559 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
560 persson 1179 store32(&pData[0], Manufacturer);
561     store32(&pData[4], Product);
562     store32(&pData[8], SamplePeriod);
563     store32(&pData[12], MIDIUnityNote);
564     store32(&pData[16], FineTune);
565     store32(&pData[20], SMPTEFormat);
566     store32(&pData[24], SMPTEOffset);
567     store32(&pData[28], Loops);
568 schoenebeck 809
569     // we skip 'manufByt' for now (4 bytes)
570    
571 persson 1179 store32(&pData[36], LoopID);
572     store32(&pData[40], LoopType);
573     store32(&pData[44], LoopStart);
574     store32(&pData[48], LoopEnd);
575     store32(&pData[52], LoopFraction);
576     store32(&pData[56], LoopPlayCount);
577 schoenebeck 809
578     // make sure '3gix' chunk exists
579     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
580     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
581 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
582 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
583 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
584     if (pFile->pGroups) {
585     std::list<Group*>::iterator iter = pFile->pGroups->begin();
586     std::list<Group*>::iterator end = pFile->pGroups->end();
587 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
588 schoenebeck 929 if (*iter == pGroup) {
589     iSampleGroup = i;
590     break; // found
591     }
592     }
593     }
594 schoenebeck 809 // update '3gix' chunk
595     pData = (uint8_t*) pCk3gix->LoadChunkData();
596 persson 1179 store16(&pData[0], iSampleGroup);
597 schoenebeck 2484
598     // if the library user toggled the "Compressed" attribute from true to
599     // false, then the EWAV chunk associated with compressed samples needs
600     // to be deleted
601     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
602     if (ewav && !Compressed) {
603     pWaveList->DeleteSubChunk(ewav);
604     }
605 schoenebeck 809 }
606    
607 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
608     void Sample::ScanCompressedSample() {
609     //TODO: we have to add some more scans here (e.g. determine compression rate)
610     this->SamplesTotal = 0;
611 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
612 schoenebeck 2
613 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
614 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
615 persson 365
616 schoenebeck 2 // Scanning
617     pCkData->SetPos(0);
618 persson 365 if (Channels == 2) { // Stereo
619     for (int i = 0 ; ; i++) {
620     // for 24 bit samples every 8:th frame offset is
621     // stored, to save some memory
622     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
623    
624     const int mode_l = pCkData->ReadUint8();
625     const int mode_r = pCkData->ReadUint8();
626     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
627 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
628 persson 365
629     if (pCkData->RemainingBytes() <= frameSize) {
630     SamplesInLastFrame =
631     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
632     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
633     SamplesTotal += SamplesInLastFrame;
634 schoenebeck 2 break;
635 persson 365 }
636     SamplesTotal += SamplesPerFrame;
637     pCkData->SetPos(frameSize, RIFF::stream_curpos);
638     }
639     }
640     else { // Mono
641     for (int i = 0 ; ; i++) {
642     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
643    
644     const int mode = pCkData->ReadUint8();
645     if (mode > 5) throw gig::Exception("Unknown compression mode");
646 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
647 persson 365
648     if (pCkData->RemainingBytes() <= frameSize) {
649     SamplesInLastFrame =
650     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
651     SamplesTotal += SamplesInLastFrame;
652 schoenebeck 2 break;
653 persson 365 }
654     SamplesTotal += SamplesPerFrame;
655     pCkData->SetPos(frameSize, RIFF::stream_curpos);
656 schoenebeck 2 }
657     }
658     pCkData->SetPos(0);
659    
660     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
661     if (FrameTable) delete[] FrameTable;
662 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
663     std::list<file_offset_t>::iterator end = frameOffsets.end();
664     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
665 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
666     FrameTable[i] = *iter;
667     }
668     }
669    
670     /**
671     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672     * ReleaseSampleData() to free the memory if you don't need the cached
673     * sample data anymore.
674     *
675     * @returns buffer_t structure with start address and size of the buffer
676     * in bytes
677     * @see ReleaseSampleData(), Read(), SetPos()
678     */
679     buffer_t Sample::LoadSampleData() {
680     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
681     }
682    
683     /**
684     * Reads (uncompresses if needed) and caches the first \a SampleCount
685     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
686     * memory space if you don't need the cached samples anymore. There is no
687     * guarantee that exactly \a SampleCount samples will be cached; this is
688     * not an error. The size will be eventually truncated e.g. to the
689     * beginning of a frame of a compressed sample. This is done for
690     * efficiency reasons while streaming the wave by your sampler engine
691     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
692     * that will be returned to determine the actual cached samples, but note
693     * that the size is given in bytes! You get the number of actually cached
694     * samples by dividing it by the frame size of the sample:
695 schoenebeck 384 * @code
696 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
697     * long cachedsamples = buf.Size / pSample->FrameSize;
698 schoenebeck 384 * @endcode
699 schoenebeck 2 *
700     * @param SampleCount - number of sample points to load into RAM
701     * @returns buffer_t structure with start address and size of
702     * the cached sample data in bytes
703     * @see ReleaseSampleData(), Read(), SetPos()
704     */
705 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
706 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
707     }
708    
709     /**
710     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
711     * ReleaseSampleData() to free the memory if you don't need the cached
712     * sample data anymore.
713     * The method will add \a NullSamplesCount silence samples past the
714     * official buffer end (this won't affect the 'Size' member of the
715     * buffer_t structure, that means 'Size' always reflects the size of the
716     * actual sample data, the buffer might be bigger though). Silence
717     * samples past the official buffer are needed for differential
718     * algorithms that always have to take subsequent samples into account
719     * (resampling/interpolation would be an important example) and avoids
720     * memory access faults in such cases.
721     *
722     * @param NullSamplesCount - number of silence samples the buffer should
723     * be extended past it's data end
724     * @returns buffer_t structure with start address and
725     * size of the buffer in bytes
726     * @see ReleaseSampleData(), Read(), SetPos()
727     */
728     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
729     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
730     }
731    
732     /**
733     * Reads (uncompresses if needed) and caches the first \a SampleCount
734     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
735     * memory space if you don't need the cached samples anymore. There is no
736     * guarantee that exactly \a SampleCount samples will be cached; this is
737     * not an error. The size will be eventually truncated e.g. to the
738     * beginning of a frame of a compressed sample. This is done for
739     * efficiency reasons while streaming the wave by your sampler engine
740     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
741     * that will be returned to determine the actual cached samples, but note
742     * that the size is given in bytes! You get the number of actually cached
743     * samples by dividing it by the frame size of the sample:
744 schoenebeck 384 * @code
745 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
746     * long cachedsamples = buf.Size / pSample->FrameSize;
747 schoenebeck 384 * @endcode
748 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
749     * official buffer end (this won't affect the 'Size' member of the
750     * buffer_t structure, that means 'Size' always reflects the size of the
751     * actual sample data, the buffer might be bigger though). Silence
752     * samples past the official buffer are needed for differential
753     * algorithms that always have to take subsequent samples into account
754     * (resampling/interpolation would be an important example) and avoids
755     * memory access faults in such cases.
756     *
757     * @param SampleCount - number of sample points to load into RAM
758     * @param NullSamplesCount - number of silence samples the buffer should
759     * be extended past it's data end
760     * @returns buffer_t structure with start address and
761     * size of the cached sample data in bytes
762     * @see ReleaseSampleData(), Read(), SetPos()
763     */
764 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
765 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
766     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
767 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
768 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
769 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
770     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
771     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
772     // fill the remaining buffer space with silence samples
773     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
774     return GetCache();
775     }
776    
777     /**
778     * Returns current cached sample points. A buffer_t structure will be
779     * returned which contains address pointer to the begin of the cache and
780     * the size of the cached sample data in bytes. Use
781     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
782     * RAM.
783     *
784     * @returns buffer_t structure with current cached sample points
785     * @see LoadSampleData();
786     */
787     buffer_t Sample::GetCache() {
788     // return a copy of the buffer_t structure
789     buffer_t result;
790     result.Size = this->RAMCache.Size;
791     result.pStart = this->RAMCache.pStart;
792     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
793     return result;
794     }
795    
796     /**
797     * Frees the cached sample from RAM if loaded with
798     * <i>LoadSampleData()</i> previously.
799     *
800     * @see LoadSampleData();
801     */
802     void Sample::ReleaseSampleData() {
803     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
804     RAMCache.pStart = NULL;
805     RAMCache.Size = 0;
806 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
807 schoenebeck 2 }
808    
809 schoenebeck 809 /** @brief Resize sample.
810     *
811     * Resizes the sample's wave form data, that is the actual size of
812     * sample wave data possible to be written for this sample. This call
813     * will return immediately and just schedule the resize operation. You
814     * should call File::Save() to actually perform the resize operation(s)
815     * "physically" to the file. As this can take a while on large files, it
816     * is recommended to call Resize() first on all samples which have to be
817     * resized and finally to call File::Save() to perform all those resize
818     * operations in one rush.
819     *
820     * The actual size (in bytes) is dependant to the current FrameSize
821     * value. You may want to set FrameSize before calling Resize().
822     *
823     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
824     * enlarged samples before calling File::Save() as this might exceed the
825     * current sample's boundary!
826     *
827 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
828     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
829 schoenebeck 809 * other formats will fail!
830     *
831 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
832     * greater than zero)
833 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
834 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
835 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
836     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
837     * DLS::Sample::FormatTag, File::Save()
838     */
839 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
840 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
841 schoenebeck 2922 DLS::Sample::Resize(NewSize);
842 schoenebeck 809 }
843    
844 schoenebeck 2 /**
845     * Sets the position within the sample (in sample points, not in
846     * bytes). Use this method and <i>Read()</i> if you don't want to load
847     * the sample into RAM, thus for disk streaming.
848     *
849     * Although the original Gigasampler engine doesn't allow positioning
850     * within compressed samples, I decided to implement it. Even though
851     * the Gigasampler format doesn't allow to define loops for compressed
852     * samples at the moment, positioning within compressed samples might be
853     * interesting for some sampler engines though. The only drawback about
854     * my decision is that it takes longer to load compressed gig Files on
855     * startup, because it's neccessary to scan the samples for some
856     * mandatory informations. But I think as it doesn't affect the runtime
857     * efficiency, nobody will have a problem with that.
858     *
859     * @param SampleCount number of sample points to jump
860     * @param Whence optional: to which relation \a SampleCount refers
861     * to, if omited <i>RIFF::stream_start</i> is assumed
862     * @returns the new sample position
863     * @see Read()
864     */
865 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
866 schoenebeck 2 if (Compressed) {
867     switch (Whence) {
868     case RIFF::stream_curpos:
869     this->SamplePos += SampleCount;
870     break;
871     case RIFF::stream_end:
872     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
873     break;
874     case RIFF::stream_backward:
875     this->SamplePos -= SampleCount;
876     break;
877     case RIFF::stream_start: default:
878     this->SamplePos = SampleCount;
879     break;
880     }
881     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
882    
883 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
884 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
885     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
886     return this->SamplePos;
887     }
888     else { // not compressed
889 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
890     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
891 schoenebeck 2 return (result == orderedBytes) ? SampleCount
892     : result / this->FrameSize;
893     }
894     }
895    
896     /**
897     * Returns the current position in the sample (in sample points).
898     */
899 schoenebeck 2912 file_offset_t Sample::GetPos() const {
900 schoenebeck 2 if (Compressed) return SamplePos;
901     else return pCkData->GetPos() / FrameSize;
902     }
903    
904     /**
905 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
906     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
907     * the position within the sample respectively, this method honors the
908     * looping informations of the sample (if any). The sample wave stream
909     * will be decompressed on the fly if using a compressed sample. Use this
910     * method if you don't want to load the sample into RAM, thus for disk
911     * streaming. All this methods needs to know to proceed with streaming
912     * for the next time you call this method is stored in \a pPlaybackState.
913     * You have to allocate and initialize the playback_state_t structure by
914     * yourself before you use it to stream a sample:
915 schoenebeck 384 * @code
916     * gig::playback_state_t playbackstate;
917     * playbackstate.position = 0;
918     * playbackstate.reverse = false;
919     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
920     * @endcode
921 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
922     * defined or if the current read position is located within a loop area.
923     * The method already handles such cases by itself.
924     *
925 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
926     * have to use an external decompression buffer for <b>EACH</b>
927     * streaming thread to avoid race conditions and crashes!
928     *
929 schoenebeck 24 * @param pBuffer destination buffer
930     * @param SampleCount number of sample points to read
931     * @param pPlaybackState will be used to store and reload the playback
932     * state for the next ReadAndLoop() call
933 persson 864 * @param pDimRgn dimension region with looping information
934 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
935 schoenebeck 24 * @returns number of successfully read sample points
936 schoenebeck 384 * @see CreateDecompressionBuffer()
937 schoenebeck 24 */
938 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
939 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
940 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
941 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
942    
943     SetPos(pPlaybackState->position); // recover position from the last time
944    
945 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
946 schoenebeck 24
947 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
948     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
949 schoenebeck 24
950 persson 864 if (GetPos() <= loopEnd) {
951     switch (loop.LoopType) {
952 schoenebeck 24
953 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
954     do {
955     // if not endless loop check if max. number of loop cycles have been passed
956     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
957 schoenebeck 24
958 persson 864 if (!pPlaybackState->reverse) { // forward playback
959     do {
960     samplestoloopend = loopEnd - GetPos();
961     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
962     samplestoread -= readsamples;
963     totalreadsamples += readsamples;
964     if (readsamples == samplestoloopend) {
965     pPlaybackState->reverse = true;
966     break;
967     }
968     } while (samplestoread && readsamples);
969     }
970     else { // backward playback
971 schoenebeck 24
972 persson 864 // as we can only read forward from disk, we have to
973     // determine the end position within the loop first,
974     // read forward from that 'end' and finally after
975     // reading, swap all sample frames so it reflects
976     // backward playback
977 schoenebeck 24
978 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
979     file_offset_t loopoffset = GetPos() - loop.LoopStart;
980     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
981     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
982 schoenebeck 24
983 persson 864 SetPos(reverseplaybackend);
984 schoenebeck 24
985 persson 864 // read samples for backward playback
986     do {
987     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
988     samplestoreadinloop -= readsamples;
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     } while (samplestoreadinloop && readsamples);
992 schoenebeck 24
993 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
994    
995     if (reverseplaybackend == loop.LoopStart) {
996     pPlaybackState->loop_cycles_left--;
997     pPlaybackState->reverse = false;
998     }
999    
1000     // reverse the sample frames for backward playback
1001 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1002     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1003 schoenebeck 24 }
1004 persson 864 } while (samplestoread && readsamples);
1005     break;
1006     }
1007 schoenebeck 24
1008 persson 864 case loop_type_backward: { // TODO: not tested yet!
1009     // forward playback (not entered the loop yet)
1010     if (!pPlaybackState->reverse) do {
1011     samplestoloopend = loopEnd - GetPos();
1012     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1013     samplestoread -= readsamples;
1014     totalreadsamples += readsamples;
1015     if (readsamples == samplestoloopend) {
1016     pPlaybackState->reverse = true;
1017     break;
1018     }
1019     } while (samplestoread && readsamples);
1020 schoenebeck 24
1021 persson 864 if (!samplestoread) break;
1022 schoenebeck 24
1023 persson 864 // as we can only read forward from disk, we have to
1024     // determine the end position within the loop first,
1025     // read forward from that 'end' and finally after
1026     // reading, swap all sample frames so it reflects
1027     // backward playback
1028 schoenebeck 24
1029 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1030     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1031     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1032 persson 864 : samplestoread;
1033 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1034 schoenebeck 24
1035 persson 864 SetPos(reverseplaybackend);
1036 schoenebeck 24
1037 persson 864 // read samples for backward playback
1038     do {
1039     // if not endless loop check if max. number of loop cycles have been passed
1040     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1041     samplestoloopend = loopEnd - GetPos();
1042     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1043     samplestoreadinloop -= readsamples;
1044     samplestoread -= readsamples;
1045     totalreadsamples += readsamples;
1046     if (readsamples == samplestoloopend) {
1047     pPlaybackState->loop_cycles_left--;
1048     SetPos(loop.LoopStart);
1049     }
1050     } while (samplestoreadinloop && readsamples);
1051 schoenebeck 24
1052 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1053 schoenebeck 24
1054 persson 864 // reverse the sample frames for backward playback
1055     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1056     break;
1057     }
1058 schoenebeck 24
1059 persson 864 default: case loop_type_normal: {
1060     do {
1061     // if not endless loop check if max. number of loop cycles have been passed
1062     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1063     samplestoloopend = loopEnd - GetPos();
1064     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1065     samplestoread -= readsamples;
1066     totalreadsamples += readsamples;
1067     if (readsamples == samplestoloopend) {
1068     pPlaybackState->loop_cycles_left--;
1069     SetPos(loop.LoopStart);
1070     }
1071     } while (samplestoread && readsamples);
1072     break;
1073     }
1074 schoenebeck 24 }
1075     }
1076     }
1077    
1078     // read on without looping
1079     if (samplestoread) do {
1080 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1081 schoenebeck 24 samplestoread -= readsamples;
1082     totalreadsamples += readsamples;
1083     } while (readsamples && samplestoread);
1084    
1085     // store current position
1086     pPlaybackState->position = GetPos();
1087    
1088     return totalreadsamples;
1089     }
1090    
1091     /**
1092 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1093     * position into the buffer pointed by \a pBuffer and increments the
1094     * position within the sample. The sample wave stream will be
1095     * decompressed on the fly if using a compressed sample. Use this method
1096     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1097     * thus for disk streaming.
1098     *
1099 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1100     * have to use an external decompression buffer for <b>EACH</b>
1101     * streaming thread to avoid race conditions and crashes!
1102     *
1103 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1104     * (using native endianness). For 24 bit, the buffer will
1105     * contain three bytes per sample, little-endian.
1106     *
1107 schoenebeck 2 * @param pBuffer destination buffer
1108     * @param SampleCount number of sample points to read
1109 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1110 schoenebeck 2 * @returns number of successfully read sample points
1111 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1112 schoenebeck 2 */
1113 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1114 schoenebeck 21 if (SampleCount == 0) return 0;
1115 schoenebeck 317 if (!Compressed) {
1116     if (BitDepth == 24) {
1117 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1118 schoenebeck 317 }
1119 persson 365 else { // 16 bit
1120     // (pCkData->Read does endian correction)
1121     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1122     : pCkData->Read(pBuffer, SampleCount, 2);
1123     }
1124 schoenebeck 317 }
1125 persson 365 else {
1126 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1127 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1128 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1129 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1130     remainingsamples = SampleCount,
1131 persson 365 copysamples, skipsamples,
1132     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1133 schoenebeck 2 this->FrameOffset = 0;
1134    
1135 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1136    
1137     // if decompression buffer too small, then reduce amount of samples to read
1138     if (pDecompressionBuffer->Size < assumedsize) {
1139     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1140     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1141     remainingsamples = SampleCount;
1142     assumedsize = GuessSize(SampleCount);
1143 schoenebeck 2 }
1144    
1145 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1146 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1147 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1148 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1149    
1150 persson 365 while (remainingsamples && remainingbytes) {
1151 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1152     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1153 schoenebeck 2
1154 persson 365 int mode_l = *pSrc++, mode_r = 0;
1155    
1156     if (Channels == 2) {
1157     mode_r = *pSrc++;
1158     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1159     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1160     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1161     if (remainingbytes < framebytes) { // last frame in sample
1162     framesamples = SamplesInLastFrame;
1163     if (mode_l == 4 && (framesamples & 1)) {
1164     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1165     }
1166     else {
1167     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1168     }
1169 schoenebeck 2 }
1170     }
1171 persson 365 else {
1172     framebytes = bytesPerFrame[mode_l] + 1;
1173     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1174     if (remainingbytes < framebytes) {
1175     framesamples = SamplesInLastFrame;
1176     }
1177     }
1178 schoenebeck 2
1179     // determine how many samples in this frame to skip and read
1180 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1181     if (currentframeoffset <= framesamples) {
1182     copysamples = framesamples - currentframeoffset;
1183     skipsamples = currentframeoffset;
1184     }
1185     else {
1186     copysamples = 0;
1187     skipsamples = framesamples;
1188     }
1189 schoenebeck 2 }
1190     else {
1191 persson 365 // This frame has enough data for pBuffer, but not
1192     // all of the frame is needed. Set file position
1193     // to start of this frame for next call to Read.
1194 schoenebeck 2 copysamples = remainingsamples;
1195 persson 365 skipsamples = currentframeoffset;
1196     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197     this->FrameOffset = currentframeoffset + copysamples;
1198     }
1199     remainingsamples -= copysamples;
1200    
1201     if (remainingbytes > framebytes) {
1202     remainingbytes -= framebytes;
1203     if (remainingsamples == 0 &&
1204     currentframeoffset + copysamples == framesamples) {
1205     // This frame has enough data for pBuffer, and
1206     // all of the frame is needed. Set file
1207     // position to start of next frame for next
1208     // call to Read. FrameOffset is 0.
1209 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1210     }
1211     }
1212 persson 365 else remainingbytes = 0;
1213 schoenebeck 2
1214 persson 365 currentframeoffset -= skipsamples;
1215 schoenebeck 2
1216 persson 365 if (copysamples == 0) {
1217     // skip this frame
1218     pSrc += framebytes - Channels;
1219     }
1220     else {
1221     const unsigned char* const param_l = pSrc;
1222     if (BitDepth == 24) {
1223     if (mode_l != 2) pSrc += 12;
1224 schoenebeck 2
1225 persson 365 if (Channels == 2) { // Stereo
1226     const unsigned char* const param_r = pSrc;
1227     if (mode_r != 2) pSrc += 12;
1228    
1229 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1230 persson 437 skipsamples, copysamples, TruncatedBits);
1231 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1232 persson 437 skipsamples, copysamples, TruncatedBits);
1233 persson 902 pDst24 += copysamples * 6;
1234 schoenebeck 2 }
1235 persson 365 else { // Mono
1236 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1237 persson 437 skipsamples, copysamples, TruncatedBits);
1238 persson 902 pDst24 += copysamples * 3;
1239 schoenebeck 2 }
1240 persson 365 }
1241     else { // 16 bit
1242     if (mode_l) pSrc += 4;
1243 schoenebeck 2
1244 persson 365 int step;
1245     if (Channels == 2) { // Stereo
1246     const unsigned char* const param_r = pSrc;
1247     if (mode_r) pSrc += 4;
1248    
1249     step = (2 - mode_l) + (2 - mode_r);
1250 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1251     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1252 persson 365 skipsamples, copysamples);
1253     pDst += copysamples << 1;
1254 schoenebeck 2 }
1255 persson 365 else { // Mono
1256     step = 2 - mode_l;
1257 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1258 persson 365 pDst += copysamples;
1259 schoenebeck 2 }
1260 persson 365 }
1261     pSrc += nextFrameOffset;
1262     }
1263 schoenebeck 2
1264 persson 365 // reload from disk to local buffer if needed
1265     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1266     assumedsize = GuessSize(remainingsamples);
1267     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1268     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1269 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1270     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1271 schoenebeck 2 }
1272 persson 365 } // while
1273    
1274 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1275 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1276 schoenebeck 2 return (SampleCount - remainingsamples);
1277     }
1278     }
1279    
1280 schoenebeck 809 /** @brief Write sample wave data.
1281     *
1282     * Writes \a SampleCount number of sample points from the buffer pointed
1283     * by \a pBuffer and increments the position within the sample. Use this
1284     * method to directly write the sample data to disk, i.e. if you don't
1285     * want or cannot load the whole sample data into RAM.
1286     *
1287     * You have to Resize() the sample to the desired size and call
1288     * File::Save() <b>before</b> using Write().
1289     *
1290     * Note: there is currently no support for writing compressed samples.
1291     *
1292 persson 1264 * For 16 bit samples, the data in the source buffer should be
1293     * int16_t (using native endianness). For 24 bit, the buffer
1294     * should contain three bytes per sample, little-endian.
1295     *
1296 schoenebeck 809 * @param pBuffer - source buffer
1297     * @param SampleCount - number of sample points to write
1298     * @throws DLS::Exception if current sample size is too small
1299     * @throws gig::Exception if sample is compressed
1300     * @see DLS::LoadSampleData()
1301     */
1302 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1303 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1304 persson 1207
1305     // if this is the first write in this sample, reset the
1306     // checksum calculator
1307 persson 1199 if (pCkData->GetPos() == 0) {
1308 schoenebeck 1381 __resetCRC(crc);
1309 persson 1199 }
1310 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1311 schoenebeck 2912 file_offset_t res;
1312 persson 1264 if (BitDepth == 24) {
1313     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1314     } else { // 16 bit
1315     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1316     : pCkData->Write(pBuffer, SampleCount, 2);
1317     }
1318 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1319 persson 1199
1320 persson 1207 // if this is the last write, update the checksum chunk in the
1321     // file
1322 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1323 schoenebeck 3115 __finalizeCRC(crc);
1324 persson 1199 File* pFile = static_cast<File*>(GetParent());
1325 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1326 persson 1199 }
1327     return res;
1328 schoenebeck 809 }
1329    
1330 schoenebeck 384 /**
1331     * Allocates a decompression buffer for streaming (compressed) samples
1332     * with Sample::Read(). If you are using more than one streaming thread
1333     * in your application you <b>HAVE</b> to create a decompression buffer
1334     * for <b>EACH</b> of your streaming threads and provide it with the
1335     * Sample::Read() call in order to avoid race conditions and crashes.
1336     *
1337     * You should free the memory occupied by the allocated buffer(s) once
1338     * you don't need one of your streaming threads anymore by calling
1339     * DestroyDecompressionBuffer().
1340     *
1341     * @param MaxReadSize - the maximum size (in sample points) you ever
1342     * expect to read with one Read() call
1343     * @returns allocated decompression buffer
1344     * @see DestroyDecompressionBuffer()
1345     */
1346 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1347 schoenebeck 384 buffer_t result;
1348     const double worstCaseHeaderOverhead =
1349     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1350 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1351 schoenebeck 384 result.pStart = new int8_t[result.Size];
1352     result.NullExtensionSize = 0;
1353     return result;
1354     }
1355    
1356     /**
1357     * Free decompression buffer, previously created with
1358     * CreateDecompressionBuffer().
1359     *
1360     * @param DecompressionBuffer - previously allocated decompression
1361     * buffer to free
1362     */
1363     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1364     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1365     delete[] (int8_t*) DecompressionBuffer.pStart;
1366     DecompressionBuffer.pStart = NULL;
1367     DecompressionBuffer.Size = 0;
1368     DecompressionBuffer.NullExtensionSize = 0;
1369     }
1370     }
1371    
1372 schoenebeck 930 /**
1373     * Returns pointer to the Group this Sample belongs to. In the .gig
1374     * format a sample always belongs to one group. If it wasn't explicitly
1375     * assigned to a certain group, it will be automatically assigned to a
1376     * default group.
1377     *
1378     * @returns Sample's Group (never NULL)
1379     */
1380     Group* Sample::GetGroup() const {
1381     return pGroup;
1382     }
1383    
1384 schoenebeck 2985 /**
1385 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1386     * time when this sample's wave form data was modified for the last time
1387     * by calling Write(). This checksum only covers the raw wave form data,
1388     * not any meta informations like i.e. bit depth or loop points. Since
1389     * this method just returns the checksum stored for this sample i.e. when
1390     * the gig file was loaded, this method returns immediately. So it does no
1391     * recalcuation of the checksum with the currently available sample wave
1392     * form data.
1393     *
1394     * @see VerifyWaveData()
1395     */
1396     uint32_t Sample::GetWaveDataCRC32Checksum() {
1397     return crc;
1398     }
1399    
1400     /**
1401 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1402     * Sample's raw wave data is intentionally modified (i.e. by calling
1403     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1404     * is calculated and stored/updated for this sample, along to the sample's
1405     * meta informations.
1406     *
1407     * Now by calling this method the current raw audio wave data is checked
1408     * against the already stored CRC32 check sum in order to check whether the
1409     * sample data had been damaged unintentionally for some reason. Since by
1410     * calling this method always the entire raw audio wave data has to be
1411     * read, verifying all samples this way may take a long time accordingly.
1412     * And that's also the reason why the sample integrity is not checked by
1413     * default whenever a gig file is loaded. So this method must be called
1414     * explicitly to fulfill this task.
1415     *
1416 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1417     * calculated checksum of the current raw wave form data,
1418     * you can get the expected checksum instead by calling
1419     * GetWaveDataCRC32Checksum()
1420 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1421     * @throws Exception if no checksum had been stored to disk for this
1422     * sample yet, or on I/O issues
1423 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1424 schoenebeck 2985 */
1425 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1426 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1427 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1428 schoenebeck 2989 if (pActually) *pActually = crc;
1429     return crc == this->crc;
1430 schoenebeck 2985 }
1431    
1432     uint32_t Sample::CalculateWaveDataChecksum() {
1433     const size_t sz = 20*1024; // 20kB buffer size
1434     std::vector<uint8_t> buffer(sz);
1435     buffer.resize(sz);
1436    
1437     const size_t n = sz / FrameSize;
1438     SetPos(0);
1439     uint32_t crc = 0;
1440     __resetCRC(crc);
1441     while (true) {
1442     file_offset_t nRead = Read(&buffer[0], n);
1443     if (nRead <= 0) break;
1444     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1445     }
1446 schoenebeck 3115 __finalizeCRC(crc);
1447 schoenebeck 2985 return crc;
1448     }
1449    
1450 schoenebeck 2 Sample::~Sample() {
1451     Instances--;
1452 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1453     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1454     InternalDecompressionBuffer.pStart = NULL;
1455     InternalDecompressionBuffer.Size = 0;
1456 schoenebeck 355 }
1457 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1458     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1459     }
1460    
1461    
1462    
1463     // *************** DimensionRegion ***************
1464     // *
1465    
1466 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1467 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1468    
1469 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1470 schoenebeck 16 Instances++;
1471    
1472 schoenebeck 823 pSample = NULL;
1473 schoenebeck 1316 pRegion = pParent;
1474 schoenebeck 823
1475 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1476     else memset(&Crossfade, 0, 4);
1477    
1478 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1479 schoenebeck 2
1480     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1481 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1482 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1483 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485     _3ewa->ReadInt16(); // unknown
1486     LFO1InternalDepth = _3ewa->ReadUint16();
1487     _3ewa->ReadInt16(); // unknown
1488     LFO3InternalDepth = _3ewa->ReadInt16();
1489     _3ewa->ReadInt16(); // unknown
1490     LFO1ControlDepth = _3ewa->ReadUint16();
1491     _3ewa->ReadInt16(); // unknown
1492     LFO3ControlDepth = _3ewa->ReadInt16();
1493     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1495     _3ewa->ReadInt16(); // unknown
1496     EG1Sustain = _3ewa->ReadUint16();
1497     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1498     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1500     EG1ControllerInvert = eg1ctrloptions & 0x01;
1501     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1502     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1503     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1504     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1505     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1506     EG2ControllerInvert = eg2ctrloptions & 0x01;
1507     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1508     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1509     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1510     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     _3ewa->ReadInt16(); // unknown
1514     EG2Sustain = _3ewa->ReadUint16();
1515     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516     _3ewa->ReadInt16(); // unknown
1517     LFO2ControlDepth = _3ewa->ReadUint16();
1518     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519     _3ewa->ReadInt16(); // unknown
1520     LFO2InternalDepth = _3ewa->ReadUint16();
1521     int32_t eg1decay2 = _3ewa->ReadInt32();
1522     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1523     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1524     _3ewa->ReadInt16(); // unknown
1525     EG1PreAttack = _3ewa->ReadUint16();
1526     int32_t eg2decay2 = _3ewa->ReadInt32();
1527     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1528     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1529     _3ewa->ReadInt16(); // unknown
1530     EG2PreAttack = _3ewa->ReadUint16();
1531     uint8_t velocityresponse = _3ewa->ReadUint8();
1532     if (velocityresponse < 5) {
1533     VelocityResponseCurve = curve_type_nonlinear;
1534     VelocityResponseDepth = velocityresponse;
1535     } else if (velocityresponse < 10) {
1536     VelocityResponseCurve = curve_type_linear;
1537     VelocityResponseDepth = velocityresponse - 5;
1538     } else if (velocityresponse < 15) {
1539     VelocityResponseCurve = curve_type_special;
1540     VelocityResponseDepth = velocityresponse - 10;
1541     } else {
1542     VelocityResponseCurve = curve_type_unknown;
1543     VelocityResponseDepth = 0;
1544     }
1545     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1546     if (releasevelocityresponse < 5) {
1547     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1548     ReleaseVelocityResponseDepth = releasevelocityresponse;
1549     } else if (releasevelocityresponse < 10) {
1550     ReleaseVelocityResponseCurve = curve_type_linear;
1551     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1552     } else if (releasevelocityresponse < 15) {
1553     ReleaseVelocityResponseCurve = curve_type_special;
1554     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1555     } else {
1556     ReleaseVelocityResponseCurve = curve_type_unknown;
1557     ReleaseVelocityResponseDepth = 0;
1558     }
1559     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1560     AttenuationControllerThreshold = _3ewa->ReadInt8();
1561     _3ewa->ReadInt32(); // unknown
1562     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1563     _3ewa->ReadInt16(); // unknown
1564     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1565     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1566     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1567     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1568     else DimensionBypass = dim_bypass_ctrl_none;
1569     uint8_t pan = _3ewa->ReadUint8();
1570     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1571     SelfMask = _3ewa->ReadInt8() & 0x01;
1572     _3ewa->ReadInt8(); // unknown
1573     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1574     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1575     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1576     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1577     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1578     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1579     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1580     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1581     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1582     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1583     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1584     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1585     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1586     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1587     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1588     : vcf_res_ctrl_none;
1589     uint16_t eg3depth = _3ewa->ReadUint16();
1590     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1591 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1592 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1593     ChannelOffset = _3ewa->ReadUint8() / 4;
1594     uint8_t regoptions = _3ewa->ReadUint8();
1595     MSDecode = regoptions & 0x01; // bit 0
1596     SustainDefeat = regoptions & 0x02; // bit 1
1597     _3ewa->ReadInt16(); // unknown
1598     VelocityUpperLimit = _3ewa->ReadInt8();
1599     _3ewa->ReadInt8(); // unknown
1600     _3ewa->ReadInt16(); // unknown
1601     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1602     _3ewa->ReadInt8(); // unknown
1603     _3ewa->ReadInt8(); // unknown
1604     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1605     uint8_t vcfcutoff = _3ewa->ReadUint8();
1606     VCFEnabled = vcfcutoff & 0x80; // bit 7
1607     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1608     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1609     uint8_t vcfvelscale = _3ewa->ReadUint8();
1610     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1611     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1612     _3ewa->ReadInt8(); // unknown
1613     uint8_t vcfresonance = _3ewa->ReadUint8();
1614     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1615     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1616     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1617     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1618     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1619     uint8_t vcfvelocity = _3ewa->ReadUint8();
1620     VCFVelocityDynamicRange = vcfvelocity % 5;
1621     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1622     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1623     if (VCFType == vcf_type_lowpass) {
1624     if (lfo3ctrl & 0x40) // bit 6
1625     VCFType = vcf_type_lowpassturbo;
1626     }
1627 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1628     _3ewa->Read(DimensionUpperLimits, 1, 8);
1629     } else {
1630     memset(DimensionUpperLimits, 0, 8);
1631     }
1632 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1633     // use default values
1634     LFO3Frequency = 1.0;
1635     EG3Attack = 0.0;
1636     LFO1InternalDepth = 0;
1637     LFO3InternalDepth = 0;
1638     LFO1ControlDepth = 0;
1639     LFO3ControlDepth = 0;
1640     EG1Attack = 0.0;
1641 persson 1218 EG1Decay1 = 0.005;
1642     EG1Sustain = 1000;
1643     EG1Release = 0.3;
1644 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1645     EG1Controller.controller_number = 0;
1646     EG1ControllerInvert = false;
1647     EG1ControllerAttackInfluence = 0;
1648     EG1ControllerDecayInfluence = 0;
1649     EG1ControllerReleaseInfluence = 0;
1650     EG2Controller.type = eg2_ctrl_t::type_none;
1651     EG2Controller.controller_number = 0;
1652     EG2ControllerInvert = false;
1653     EG2ControllerAttackInfluence = 0;
1654     EG2ControllerDecayInfluence = 0;
1655     EG2ControllerReleaseInfluence = 0;
1656     LFO1Frequency = 1.0;
1657     EG2Attack = 0.0;
1658 persson 1218 EG2Decay1 = 0.005;
1659     EG2Sustain = 1000;
1660 schoenebeck 2990 EG2Release = 60;
1661 schoenebeck 809 LFO2ControlDepth = 0;
1662     LFO2Frequency = 1.0;
1663     LFO2InternalDepth = 0;
1664     EG1Decay2 = 0.0;
1665 persson 1218 EG1InfiniteSustain = true;
1666     EG1PreAttack = 0;
1667 schoenebeck 809 EG2Decay2 = 0.0;
1668 persson 1218 EG2InfiniteSustain = true;
1669     EG2PreAttack = 0;
1670 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1671     VelocityResponseDepth = 3;
1672     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1673     ReleaseVelocityResponseDepth = 3;
1674     VelocityResponseCurveScaling = 32;
1675     AttenuationControllerThreshold = 0;
1676     SampleStartOffset = 0;
1677     PitchTrack = true;
1678     DimensionBypass = dim_bypass_ctrl_none;
1679     Pan = 0;
1680     SelfMask = true;
1681     LFO3Controller = lfo3_ctrl_modwheel;
1682     LFO3Sync = false;
1683     InvertAttenuationController = false;
1684     AttenuationController.type = attenuation_ctrl_t::type_none;
1685     AttenuationController.controller_number = 0;
1686     LFO2Controller = lfo2_ctrl_internal;
1687     LFO2FlipPhase = false;
1688     LFO2Sync = false;
1689     LFO1Controller = lfo1_ctrl_internal;
1690     LFO1FlipPhase = false;
1691     LFO1Sync = false;
1692     VCFResonanceController = vcf_res_ctrl_none;
1693     EG3Depth = 0;
1694     ChannelOffset = 0;
1695     MSDecode = false;
1696     SustainDefeat = false;
1697     VelocityUpperLimit = 0;
1698     ReleaseTriggerDecay = 0;
1699     EG1Hold = false;
1700     VCFEnabled = false;
1701     VCFCutoff = 0;
1702     VCFCutoffController = vcf_cutoff_ctrl_none;
1703     VCFCutoffControllerInvert = false;
1704     VCFVelocityScale = 0;
1705     VCFResonance = 0;
1706     VCFResonanceDynamic = false;
1707     VCFKeyboardTracking = false;
1708     VCFKeyboardTrackingBreakpoint = 0;
1709     VCFVelocityDynamicRange = 0x04;
1710     VCFVelocityCurve = curve_type_linear;
1711     VCFType = vcf_type_lowpass;
1712 persson 1247 memset(DimensionUpperLimits, 127, 8);
1713 schoenebeck 2 }
1714 schoenebeck 16
1715 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1716     VelocityResponseDepth,
1717     VelocityResponseCurveScaling);
1718    
1719 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1720     ReleaseVelocityResponseCurve,
1721     ReleaseVelocityResponseDepth
1722     );
1723 persson 613
1724 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1725     VCFVelocityDynamicRange,
1726     VCFVelocityScale,
1727     VCFCutoffController);
1728 persson 613
1729     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1730 persson 858 VelocityTable = 0;
1731 persson 613 }
1732    
1733 persson 1301 /*
1734     * Constructs a DimensionRegion by copying all parameters from
1735     * another DimensionRegion
1736     */
1737     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1738     Instances++;
1739 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1740 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1741     pParentList = _3ewl; // restore the chunk pointer
1742    
1743     // deep copy of owned structures
1744     if (src.VelocityTable) {
1745     VelocityTable = new uint8_t[128];
1746     for (int k = 0 ; k < 128 ; k++)
1747     VelocityTable[k] = src.VelocityTable[k];
1748     }
1749     if (src.pSampleLoops) {
1750     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1751     for (int k = 0 ; k < src.SampleLoops ; k++)
1752     pSampleLoops[k] = src.pSampleLoops[k];
1753     }
1754     }
1755 schoenebeck 2394
1756     /**
1757     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1758     * and assign it to this object.
1759     *
1760     * Note that all sample pointers referenced by @a orig are simply copied as
1761     * memory address. Thus the respective samples are shared, not duplicated!
1762     *
1763     * @param orig - original DimensionRegion object to be copied from
1764     */
1765     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1766 schoenebeck 2482 CopyAssign(orig, NULL);
1767     }
1768    
1769     /**
1770     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1771     * and assign it to this object.
1772     *
1773     * @param orig - original DimensionRegion object to be copied from
1774     * @param mSamples - crosslink map between the foreign file's samples and
1775     * this file's samples
1776     */
1777     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1778 schoenebeck 2394 // delete all allocated data first
1779     if (VelocityTable) delete [] VelocityTable;
1780     if (pSampleLoops) delete [] pSampleLoops;
1781    
1782     // backup parent list pointer
1783     RIFF::List* p = pParentList;
1784    
1785 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1786     gig::Region* pOriginalRegion = pRegion;
1787    
1788 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1789    
1790     *this = *orig; // default memberwise shallow copy of all parameters
1791 schoenebeck 2547
1792     // restore members that shall not be altered
1793 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1794 schoenebeck 2547 pRegion = pOriginalRegion;
1795 schoenebeck 2482
1796 schoenebeck 2547 // only take the raw sample reference reference if the
1797 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1798     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1799     pSample = pOriginalSample;
1800     }
1801    
1802     if (mSamples && mSamples->count(orig->pSample)) {
1803     pSample = mSamples->find(orig->pSample)->second;
1804     }
1805 persson 1301
1806 schoenebeck 2394 // deep copy of owned structures
1807     if (orig->VelocityTable) {
1808     VelocityTable = new uint8_t[128];
1809     for (int k = 0 ; k < 128 ; k++)
1810     VelocityTable[k] = orig->VelocityTable[k];
1811     }
1812     if (orig->pSampleLoops) {
1813     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1814     for (int k = 0 ; k < orig->SampleLoops ; k++)
1815     pSampleLoops[k] = orig->pSampleLoops[k];
1816     }
1817     }
1818    
1819 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1820 schoenebeck 3182 // in case this class will become backward incompatible one day,
1821     // then set a version and minimum version for this class like:
1822     //archive->setVersion(*this, 2);
1823     //archive->setMinVersion(*this, 1);
1824    
1825 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1826     SRLZ(EG1PreAttack);
1827     SRLZ(EG1Attack);
1828     SRLZ(EG1Decay1);
1829     SRLZ(EG1Decay2);
1830     SRLZ(EG1InfiniteSustain);
1831     SRLZ(EG1Sustain);
1832     SRLZ(EG1Release);
1833     SRLZ(EG1Hold);
1834     SRLZ(EG1Controller);
1835     SRLZ(EG1ControllerInvert);
1836     SRLZ(EG1ControllerAttackInfluence);
1837     SRLZ(EG1ControllerDecayInfluence);
1838     SRLZ(EG1ControllerReleaseInfluence);
1839     SRLZ(LFO1Frequency);
1840     SRLZ(LFO1InternalDepth);
1841     SRLZ(LFO1ControlDepth);
1842     SRLZ(LFO1Controller);
1843     SRLZ(LFO1FlipPhase);
1844     SRLZ(LFO1Sync);
1845     SRLZ(EG2PreAttack);
1846     SRLZ(EG2Attack);
1847     SRLZ(EG2Decay1);
1848     SRLZ(EG2Decay2);
1849     SRLZ(EG2InfiniteSustain);
1850     SRLZ(EG2Sustain);
1851     SRLZ(EG2Release);
1852     SRLZ(EG2Controller);
1853     SRLZ(EG2ControllerInvert);
1854     SRLZ(EG2ControllerAttackInfluence);
1855     SRLZ(EG2ControllerDecayInfluence);
1856     SRLZ(EG2ControllerReleaseInfluence);
1857     SRLZ(LFO2Frequency);
1858     SRLZ(LFO2InternalDepth);
1859     SRLZ(LFO2ControlDepth);
1860     SRLZ(LFO2Controller);
1861     SRLZ(LFO2FlipPhase);
1862     SRLZ(LFO2Sync);
1863     SRLZ(EG3Attack);
1864     SRLZ(EG3Depth);
1865     SRLZ(LFO3Frequency);
1866     SRLZ(LFO3InternalDepth);
1867     SRLZ(LFO3ControlDepth);
1868     SRLZ(LFO3Controller);
1869     SRLZ(LFO3Sync);
1870     SRLZ(VCFEnabled);
1871     SRLZ(VCFType);
1872     SRLZ(VCFCutoffController);
1873     SRLZ(VCFCutoffControllerInvert);
1874     SRLZ(VCFCutoff);
1875     SRLZ(VCFVelocityCurve);
1876     SRLZ(VCFVelocityScale);
1877     SRLZ(VCFVelocityDynamicRange);
1878     SRLZ(VCFResonance);
1879     SRLZ(VCFResonanceDynamic);
1880     SRLZ(VCFResonanceController);
1881     SRLZ(VCFKeyboardTracking);
1882     SRLZ(VCFKeyboardTrackingBreakpoint);
1883     SRLZ(VelocityResponseCurve);
1884     SRLZ(VelocityResponseDepth);
1885     SRLZ(VelocityResponseCurveScaling);
1886     SRLZ(ReleaseVelocityResponseCurve);
1887     SRLZ(ReleaseVelocityResponseDepth);
1888     SRLZ(ReleaseTriggerDecay);
1889     SRLZ(Crossfade);
1890     SRLZ(PitchTrack);
1891     SRLZ(DimensionBypass);
1892     SRLZ(Pan);
1893     SRLZ(SelfMask);
1894     SRLZ(AttenuationController);
1895     SRLZ(InvertAttenuationController);
1896     SRLZ(AttenuationControllerThreshold);
1897     SRLZ(ChannelOffset);
1898     SRLZ(SustainDefeat);
1899     SRLZ(MSDecode);
1900     //SRLZ(SampleStartOffset);
1901     SRLZ(SampleAttenuation);
1902    
1903     // derived attributes from DLS::Sampler
1904     SRLZ(FineTune);
1905     SRLZ(Gain);
1906     }
1907    
1908 schoenebeck 809 /**
1909 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1910     * which depends on this value.
1911     */
1912     void DimensionRegion::SetGain(int32_t gain) {
1913     DLS::Sampler::SetGain(gain);
1914     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1915     }
1916    
1917     /**
1918 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
1919     * have to call File::Save() to make changes persistent.
1920     *
1921     * Usually there is absolutely no need to call this method explicitly.
1922     * It will be called automatically when File::Save() was called.
1923 schoenebeck 2682 *
1924     * @param pProgress - callback function for progress notification
1925 schoenebeck 809 */
1926 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1927 schoenebeck 809 // first update base class's chunk
1928 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
1929 schoenebeck 809
1930 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1931     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1932     pData[12] = Crossfade.in_start;
1933     pData[13] = Crossfade.in_end;
1934     pData[14] = Crossfade.out_start;
1935     pData[15] = Crossfade.out_end;
1936    
1937 schoenebeck 809 // make sure '3ewa' chunk exists
1938     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1939 persson 1317 if (!_3ewa) {
1940     File* pFile = (File*) GetParent()->GetParent()->GetParent();
1941     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1942     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1943 persson 1264 }
1944 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
1945 schoenebeck 809
1946     // update '3ewa' chunk with DimensionRegion's current settings
1947    
1948 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1949 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
1950 schoenebeck 809
1951     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1952 persson 1179 store32(&pData[4], lfo3freq);
1953 schoenebeck 809
1954     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1955 persson 1179 store32(&pData[8], eg3attack);
1956 schoenebeck 809
1957     // next 2 bytes unknown
1958    
1959 persson 1179 store16(&pData[14], LFO1InternalDepth);
1960 schoenebeck 809
1961     // next 2 bytes unknown
1962    
1963 persson 1179 store16(&pData[18], LFO3InternalDepth);
1964 schoenebeck 809
1965     // next 2 bytes unknown
1966    
1967 persson 1179 store16(&pData[22], LFO1ControlDepth);
1968 schoenebeck 809
1969     // next 2 bytes unknown
1970    
1971 persson 1179 store16(&pData[26], LFO3ControlDepth);
1972 schoenebeck 809
1973     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1974 persson 1179 store32(&pData[28], eg1attack);
1975 schoenebeck 809
1976     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1977 persson 1179 store32(&pData[32], eg1decay1);
1978 schoenebeck 809
1979     // next 2 bytes unknown
1980    
1981 persson 1179 store16(&pData[38], EG1Sustain);
1982 schoenebeck 809
1983     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1984 persson 1179 store32(&pData[40], eg1release);
1985 schoenebeck 809
1986     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1987 persson 1179 pData[44] = eg1ctl;
1988 schoenebeck 809
1989     const uint8_t eg1ctrloptions =
1990 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
1991 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1992     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1993     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1994 persson 1179 pData[45] = eg1ctrloptions;
1995 schoenebeck 809
1996     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1997 persson 1179 pData[46] = eg2ctl;
1998 schoenebeck 809
1999     const uint8_t eg2ctrloptions =
2000 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2001 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2002     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2003     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2004 persson 1179 pData[47] = eg2ctrloptions;
2005 schoenebeck 809
2006     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2007 persson 1179 store32(&pData[48], lfo1freq);
2008 schoenebeck 809
2009     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2010 persson 1179 store32(&pData[52], eg2attack);
2011 schoenebeck 809
2012     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2013 persson 1179 store32(&pData[56], eg2decay1);
2014 schoenebeck 809
2015     // next 2 bytes unknown
2016    
2017 persson 1179 store16(&pData[62], EG2Sustain);
2018 schoenebeck 809
2019     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2020 persson 1179 store32(&pData[64], eg2release);
2021 schoenebeck 809
2022     // next 2 bytes unknown
2023    
2024 persson 1179 store16(&pData[70], LFO2ControlDepth);
2025 schoenebeck 809
2026     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2027 persson 1179 store32(&pData[72], lfo2freq);
2028 schoenebeck 809
2029     // next 2 bytes unknown
2030    
2031 persson 1179 store16(&pData[78], LFO2InternalDepth);
2032 schoenebeck 809
2033     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2034 persson 1179 store32(&pData[80], eg1decay2);
2035 schoenebeck 809
2036     // next 2 bytes unknown
2037    
2038 persson 1179 store16(&pData[86], EG1PreAttack);
2039 schoenebeck 809
2040     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2041 persson 1179 store32(&pData[88], eg2decay2);
2042 schoenebeck 809
2043     // next 2 bytes unknown
2044    
2045 persson 1179 store16(&pData[94], EG2PreAttack);
2046 schoenebeck 809
2047     {
2048     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2049     uint8_t velocityresponse = VelocityResponseDepth;
2050     switch (VelocityResponseCurve) {
2051     case curve_type_nonlinear:
2052     break;
2053     case curve_type_linear:
2054     velocityresponse += 5;
2055     break;
2056     case curve_type_special:
2057     velocityresponse += 10;
2058     break;
2059     case curve_type_unknown:
2060     default:
2061     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2062     }
2063 persson 1179 pData[96] = velocityresponse;
2064 schoenebeck 809 }
2065    
2066     {
2067     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2068     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2069     switch (ReleaseVelocityResponseCurve) {
2070     case curve_type_nonlinear:
2071     break;
2072     case curve_type_linear:
2073     releasevelocityresponse += 5;
2074     break;
2075     case curve_type_special:
2076     releasevelocityresponse += 10;
2077     break;
2078     case curve_type_unknown:
2079     default:
2080     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2081     }
2082 persson 1179 pData[97] = releasevelocityresponse;
2083 schoenebeck 809 }
2084    
2085 persson 1179 pData[98] = VelocityResponseCurveScaling;
2086 schoenebeck 809
2087 persson 1179 pData[99] = AttenuationControllerThreshold;
2088 schoenebeck 809
2089     // next 4 bytes unknown
2090    
2091 persson 1179 store16(&pData[104], SampleStartOffset);
2092 schoenebeck 809
2093     // next 2 bytes unknown
2094    
2095     {
2096     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2097     switch (DimensionBypass) {
2098     case dim_bypass_ctrl_94:
2099     pitchTrackDimensionBypass |= 0x10;
2100     break;
2101     case dim_bypass_ctrl_95:
2102     pitchTrackDimensionBypass |= 0x20;
2103     break;
2104     case dim_bypass_ctrl_none:
2105     //FIXME: should we set anything here?
2106     break;
2107     default:
2108     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2109     }
2110 persson 1179 pData[108] = pitchTrackDimensionBypass;
2111 schoenebeck 809 }
2112    
2113     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2114 persson 1179 pData[109] = pan;
2115 schoenebeck 809
2116     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2117 persson 1179 pData[110] = selfmask;
2118 schoenebeck 809
2119     // next byte unknown
2120    
2121     {
2122     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2123     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2124     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2125     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2126 persson 1179 pData[112] = lfo3ctrl;
2127 schoenebeck 809 }
2128    
2129     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2130 persson 1179 pData[113] = attenctl;
2131 schoenebeck 809
2132     {
2133     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2134     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2135     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2136     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2137 persson 1179 pData[114] = lfo2ctrl;
2138 schoenebeck 809 }
2139    
2140     {
2141     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2142     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2143     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2144     if (VCFResonanceController != vcf_res_ctrl_none)
2145     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2146 persson 1179 pData[115] = lfo1ctrl;
2147 schoenebeck 809 }
2148    
2149     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2150 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2151 persson 1869 store16(&pData[116], eg3depth);
2152 schoenebeck 809
2153     // next 2 bytes unknown
2154    
2155     const uint8_t channeloffset = ChannelOffset * 4;
2156 persson 1179 pData[120] = channeloffset;
2157 schoenebeck 809
2158     {
2159     uint8_t regoptions = 0;
2160     if (MSDecode) regoptions |= 0x01; // bit 0
2161     if (SustainDefeat) regoptions |= 0x02; // bit 1
2162 persson 1179 pData[121] = regoptions;
2163 schoenebeck 809 }
2164    
2165     // next 2 bytes unknown
2166    
2167 persson 1179 pData[124] = VelocityUpperLimit;
2168 schoenebeck 809
2169     // next 3 bytes unknown
2170    
2171 persson 1179 pData[128] = ReleaseTriggerDecay;
2172 schoenebeck 809
2173     // next 2 bytes unknown
2174    
2175     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2176 persson 1179 pData[131] = eg1hold;
2177 schoenebeck 809
2178 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2179 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2180 persson 1179 pData[132] = vcfcutoff;
2181 schoenebeck 809
2182 persson 1179 pData[133] = VCFCutoffController;
2183 schoenebeck 809
2184 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2185 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2186 persson 1179 pData[134] = vcfvelscale;
2187 schoenebeck 809
2188     // next byte unknown
2189    
2190 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2191 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2192 persson 1179 pData[136] = vcfresonance;
2193 schoenebeck 809
2194 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2195 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2196 persson 1179 pData[137] = vcfbreakpoint;
2197 schoenebeck 809
2198 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2199 schoenebeck 809 VCFVelocityCurve * 5;
2200 persson 1179 pData[138] = vcfvelocity;
2201 schoenebeck 809
2202     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2203 persson 1179 pData[139] = vcftype;
2204 persson 1070
2205     if (chunksize >= 148) {
2206     memcpy(&pData[140], DimensionUpperLimits, 8);
2207     }
2208 schoenebeck 809 }
2209    
2210 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2211     curve_type_t curveType = releaseVelocityResponseCurve;
2212     uint8_t depth = releaseVelocityResponseDepth;
2213     // this models a strange behaviour or bug in GSt: two of the
2214     // velocity response curves for release time are not used even
2215     // if specified, instead another curve is chosen.
2216     if ((curveType == curve_type_nonlinear && depth == 0) ||
2217     (curveType == curve_type_special && depth == 4)) {
2218     curveType = curve_type_nonlinear;
2219     depth = 3;
2220     }
2221     return GetVelocityTable(curveType, depth, 0);
2222     }
2223    
2224     double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2225     uint8_t vcfVelocityDynamicRange,
2226     uint8_t vcfVelocityScale,
2227     vcf_cutoff_ctrl_t vcfCutoffController)
2228     {
2229     curve_type_t curveType = vcfVelocityCurve;
2230     uint8_t depth = vcfVelocityDynamicRange;
2231     // even stranger GSt: two of the velocity response curves for
2232     // filter cutoff are not used, instead another special curve
2233     // is chosen. This curve is not used anywhere else.
2234     if ((curveType == curve_type_nonlinear && depth == 0) ||
2235     (curveType == curve_type_special && depth == 4)) {
2236     curveType = curve_type_special;
2237     depth = 5;
2238     }
2239     return GetVelocityTable(curveType, depth,
2240     (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2241     ? vcfVelocityScale : 0);
2242     }
2243    
2244 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2245     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2246     {
2247     double* table;
2248     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2249 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
2250 persson 613 table = (*pVelocityTables)[tableKey];
2251 schoenebeck 16 }
2252     else {
2253 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
2254     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2255 schoenebeck 16 }
2256 persson 613 return table;
2257 schoenebeck 2 }
2258 schoenebeck 55
2259 schoenebeck 1316 Region* DimensionRegion::GetParent() const {
2260     return pRegion;
2261     }
2262    
2263 schoenebeck 2540 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2264     // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2265     // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2266     //#pragma GCC diagnostic push
2267     //#pragma GCC diagnostic error "-Wswitch"
2268    
2269 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2270     leverage_ctrl_t decodedcontroller;
2271     switch (EncodedController) {
2272     // special controller
2273     case _lev_ctrl_none:
2274     decodedcontroller.type = leverage_ctrl_t::type_none;
2275     decodedcontroller.controller_number = 0;
2276     break;
2277     case _lev_ctrl_velocity:
2278     decodedcontroller.type = leverage_ctrl_t::type_velocity;
2279     decodedcontroller.controller_number = 0;
2280     break;
2281     case _lev_ctrl_channelaftertouch:
2282     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2283     decodedcontroller.controller_number = 0;
2284     break;
2285 schoenebeck 55
2286 schoenebeck 36 // ordinary MIDI control change controller
2287     case _lev_ctrl_modwheel:
2288     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2289     decodedcontroller.controller_number = 1;
2290     break;
2291     case _lev_ctrl_breath:
2292     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2293     decodedcontroller.controller_number = 2;
2294     break;
2295     case _lev_ctrl_foot:
2296     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2297     decodedcontroller.controller_number = 4;
2298     break;
2299     case _lev_ctrl_effect1:
2300     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2301     decodedcontroller.controller_number = 12;
2302     break;
2303     case _lev_ctrl_effect2:
2304     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2305     decodedcontroller.controller_number = 13;
2306     break;
2307     case _lev_ctrl_genpurpose1:
2308     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2309     decodedcontroller.controller_number = 16;
2310     break;
2311     case _lev_ctrl_genpurpose2:
2312     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2313     decodedcontroller.controller_number = 17;
2314     break;
2315     case _lev_ctrl_genpurpose3:
2316     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2317     decodedcontroller.controller_number = 18;
2318     break;
2319     case _lev_ctrl_genpurpose4:
2320     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2321     decodedcontroller.controller_number = 19;
2322     break;
2323     case _lev_ctrl_portamentotime:
2324     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2325     decodedcontroller.controller_number = 5;
2326     break;
2327     case _lev_ctrl_sustainpedal:
2328     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2329     decodedcontroller.controller_number = 64;
2330     break;
2331     case _lev_ctrl_portamento:
2332     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2333     decodedcontroller.controller_number = 65;
2334     break;
2335     case _lev_ctrl_sostenutopedal:
2336     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2337     decodedcontroller.controller_number = 66;
2338     break;
2339     case _lev_ctrl_softpedal:
2340     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341     decodedcontroller.controller_number = 67;
2342     break;
2343     case _lev_ctrl_genpurpose5:
2344     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345     decodedcontroller.controller_number = 80;
2346     break;
2347     case _lev_ctrl_genpurpose6:
2348     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349     decodedcontroller.controller_number = 81;
2350     break;
2351     case _lev_ctrl_genpurpose7:
2352     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353     decodedcontroller.controller_number = 82;
2354     break;
2355     case _lev_ctrl_genpurpose8:
2356     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357     decodedcontroller.controller_number = 83;
2358     break;
2359     case _lev_ctrl_effect1depth:
2360     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361     decodedcontroller.controller_number = 91;
2362     break;
2363     case _lev_ctrl_effect2depth:
2364     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365     decodedcontroller.controller_number = 92;
2366     break;
2367     case _lev_ctrl_effect3depth:
2368     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369     decodedcontroller.controller_number = 93;
2370     break;
2371     case _lev_ctrl_effect4depth:
2372     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373     decodedcontroller.controller_number = 94;
2374     break;
2375     case _lev_ctrl_effect5depth:
2376     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377     decodedcontroller.controller_number = 95;
2378     break;
2379 schoenebeck 55
2380 schoenebeck 2540 // format extension (these controllers are so far only supported by
2381     // LinuxSampler & gigedit) they will *NOT* work with
2382     // Gigasampler/GigaStudio !
2383     case _lev_ctrl_CC3_EXT:
2384     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385     decodedcontroller.controller_number = 3;
2386     break;
2387     case _lev_ctrl_CC6_EXT:
2388     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389     decodedcontroller.controller_number = 6;
2390     break;
2391     case _lev_ctrl_CC7_EXT:
2392     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393     decodedcontroller.controller_number = 7;
2394     break;
2395     case _lev_ctrl_CC8_EXT:
2396     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397     decodedcontroller.controller_number = 8;
2398     break;
2399     case _lev_ctrl_CC9_EXT:
2400     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401     decodedcontroller.controller_number = 9;
2402     break;
2403     case _lev_ctrl_CC10_EXT:
2404     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405     decodedcontroller.controller_number = 10;
2406     break;
2407     case _lev_ctrl_CC11_EXT:
2408     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409     decodedcontroller.controller_number = 11;
2410     break;
2411     case _lev_ctrl_CC14_EXT:
2412     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413     decodedcontroller.controller_number = 14;
2414     break;
2415     case _lev_ctrl_CC15_EXT:
2416     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417     decodedcontroller.controller_number = 15;
2418     break;
2419     case _lev_ctrl_CC20_EXT:
2420     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421     decodedcontroller.controller_number = 20;
2422     break;
2423     case _lev_ctrl_CC21_EXT:
2424     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425     decodedcontroller.controller_number = 21;
2426     break;
2427     case _lev_ctrl_CC22_EXT:
2428     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429     decodedcontroller.controller_number = 22;
2430     break;
2431     case _lev_ctrl_CC23_EXT:
2432     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433     decodedcontroller.controller_number = 23;
2434     break;
2435     case _lev_ctrl_CC24_EXT:
2436     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437     decodedcontroller.controller_number = 24;
2438     break;
2439     case _lev_ctrl_CC25_EXT:
2440     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441     decodedcontroller.controller_number = 25;
2442     break;
2443     case _lev_ctrl_CC26_EXT:
2444     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445     decodedcontroller.controller_number = 26;
2446     break;
2447     case _lev_ctrl_CC27_EXT:
2448     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449     decodedcontroller.controller_number = 27;
2450     break;
2451     case _lev_ctrl_CC28_EXT:
2452     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453     decodedcontroller.controller_number = 28;
2454     break;
2455     case _lev_ctrl_CC29_EXT:
2456     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457     decodedcontroller.controller_number = 29;
2458     break;
2459     case _lev_ctrl_CC30_EXT:
2460     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461     decodedcontroller.controller_number = 30;
2462     break;
2463     case _lev_ctrl_CC31_EXT:
2464     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465     decodedcontroller.controller_number = 31;
2466     break;
2467     case _lev_ctrl_CC68_EXT:
2468     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469     decodedcontroller.controller_number = 68;
2470     break;
2471     case _lev_ctrl_CC69_EXT:
2472     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473     decodedcontroller.controller_number = 69;
2474     break;
2475     case _lev_ctrl_CC70_EXT:
2476     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477     decodedcontroller.controller_number = 70;
2478     break;
2479     case _lev_ctrl_CC71_EXT:
2480     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481     decodedcontroller.controller_number = 71;
2482     break;
2483     case _lev_ctrl_CC72_EXT:
2484     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485     decodedcontroller.controller_number = 72;
2486     break;
2487     case _lev_ctrl_CC73_EXT:
2488     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489     decodedcontroller.controller_number = 73;
2490     break;
2491     case _lev_ctrl_CC74_EXT:
2492     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493     decodedcontroller.controller_number = 74;
2494     break;
2495     case _lev_ctrl_CC75_EXT:
2496     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497     decodedcontroller.controller_number = 75;
2498     break;
2499     case _lev_ctrl_CC76_EXT:
2500     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501     decodedcontroller.controller_number = 76;
2502     break;
2503     case _lev_ctrl_CC77_EXT:
2504     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505     decodedcontroller.controller_number = 77;
2506     break;
2507     case _lev_ctrl_CC78_EXT:
2508     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509     decodedcontroller.controller_number = 78;
2510     break;
2511     case _lev_ctrl_CC79_EXT:
2512     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513     decodedcontroller.controller_number = 79;
2514     break;
2515     case _lev_ctrl_CC84_EXT:
2516     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517     decodedcontroller.controller_number = 84;
2518     break;
2519     case _lev_ctrl_CC85_EXT:
2520     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521     decodedcontroller.controller_number = 85;
2522     break;
2523     case _lev_ctrl_CC86_EXT:
2524     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525     decodedcontroller.controller_number = 86;
2526     break;
2527     case _lev_ctrl_CC87_EXT:
2528     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529     decodedcontroller.controller_number = 87;
2530     break;
2531     case _lev_ctrl_CC89_EXT:
2532     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533     decodedcontroller.controller_number = 89;
2534     break;
2535     case _lev_ctrl_CC90_EXT:
2536     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537     decodedcontroller.controller_number = 90;
2538     break;
2539     case _lev_ctrl_CC96_EXT:
2540     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541     decodedcontroller.controller_number = 96;
2542     break;
2543     case _lev_ctrl_CC97_EXT:
2544     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545     decodedcontroller.controller_number = 97;
2546     break;
2547     case _lev_ctrl_CC102_EXT:
2548     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549     decodedcontroller.controller_number = 102;
2550     break;
2551     case _lev_ctrl_CC103_EXT:
2552     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553     decodedcontroller.controller_number = 103;
2554     break;
2555     case _lev_ctrl_CC104_EXT:
2556     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557     decodedcontroller.controller_number = 104;
2558     break;
2559     case _lev_ctrl_CC105_EXT:
2560     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561     decodedcontroller.controller_number = 105;
2562     break;
2563     case _lev_ctrl_CC106_EXT:
2564     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565     decodedcontroller.controller_number = 106;
2566     break;
2567     case _lev_ctrl_CC107_EXT:
2568     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569     decodedcontroller.controller_number = 107;
2570     break;
2571     case _lev_ctrl_CC108_EXT:
2572     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573     decodedcontroller.controller_number = 108;
2574     break;
2575     case _lev_ctrl_CC109_EXT:
2576     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577     decodedcontroller.controller_number = 109;
2578     break;
2579     case _lev_ctrl_CC110_EXT:
2580     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581     decodedcontroller.controller_number = 110;
2582     break;
2583     case _lev_ctrl_CC111_EXT:
2584     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585     decodedcontroller.controller_number = 111;
2586     break;
2587     case _lev_ctrl_CC112_EXT:
2588     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589     decodedcontroller.controller_number = 112;
2590     break;
2591     case _lev_ctrl_CC113_EXT:
2592     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593     decodedcontroller.controller_number = 113;
2594     break;
2595     case _lev_ctrl_CC114_EXT:
2596     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597     decodedcontroller.controller_number = 114;
2598     break;
2599     case _lev_ctrl_CC115_EXT:
2600     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601     decodedcontroller.controller_number = 115;
2602     break;
2603     case _lev_ctrl_CC116_EXT:
2604     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605     decodedcontroller.controller_number = 116;
2606     break;
2607     case _lev_ctrl_CC117_EXT:
2608     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609     decodedcontroller.controller_number = 117;
2610     break;
2611     case _lev_ctrl_CC118_EXT:
2612     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613     decodedcontroller.controller_number = 118;
2614     break;
2615     case _lev_ctrl_CC119_EXT:
2616     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617     decodedcontroller.controller_number = 119;
2618     break;
2619    
2620 schoenebeck 36 // unknown controller type
2621     default:
2622 schoenebeck 3203 decodedcontroller.type = leverage_ctrl_t::type_none;
2623     decodedcontroller.controller_number = 0;
2624     printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2625     break;
2626 schoenebeck 36 }
2627     return decodedcontroller;
2628     }
2629 schoenebeck 2540
2630     // see above (diagnostic push not supported prior GCC 4.6)
2631     //#pragma GCC diagnostic pop
2632 schoenebeck 2
2633 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2634     _lev_ctrl_t encodedcontroller;
2635     switch (DecodedController.type) {
2636     // special controller
2637     case leverage_ctrl_t::type_none:
2638     encodedcontroller = _lev_ctrl_none;
2639     break;
2640     case leverage_ctrl_t::type_velocity:
2641     encodedcontroller = _lev_ctrl_velocity;
2642     break;
2643     case leverage_ctrl_t::type_channelaftertouch:
2644     encodedcontroller = _lev_ctrl_channelaftertouch;
2645     break;
2646    
2647     // ordinary MIDI control change controller
2648     case leverage_ctrl_t::type_controlchange:
2649     switch (DecodedController.controller_number) {
2650     case 1:
2651     encodedcontroller = _lev_ctrl_modwheel;
2652     break;
2653     case 2:
2654     encodedcontroller = _lev_ctrl_breath;
2655     break;
2656     case 4:
2657     encodedcontroller = _lev_ctrl_foot;
2658     break;
2659     case 12:
2660     encodedcontroller = _lev_ctrl_effect1;
2661     break;
2662     case 13:
2663     encodedcontroller = _lev_ctrl_effect2;
2664     break;
2665     case 16:
2666     encodedcontroller = _lev_ctrl_genpurpose1;
2667     break;
2668     case 17:
2669     encodedcontroller = _lev_ctrl_genpurpose2;
2670     break;
2671     case 18:
2672     encodedcontroller = _lev_ctrl_genpurpose3;
2673     break;
2674     case 19:
2675     encodedcontroller = _lev_ctrl_genpurpose4;
2676     break;
2677     case 5:
2678     encodedcontroller = _lev_ctrl_portamentotime;
2679     break;
2680     case 64:
2681     encodedcontroller = _lev_ctrl_sustainpedal;
2682     break;
2683     case 65:
2684     encodedcontroller = _lev_ctrl_portamento;
2685     break;
2686     case 66:
2687     encodedcontroller = _lev_ctrl_sostenutopedal;
2688     break;
2689     case 67:
2690     encodedcontroller = _lev_ctrl_softpedal;
2691     break;
2692     case 80:
2693     encodedcontroller = _lev_ctrl_genpurpose5;
2694     break;
2695     case 81:
2696     encodedcontroller = _lev_ctrl_genpurpose6;
2697     break;
2698     case 82:
2699     encodedcontroller = _lev_ctrl_genpurpose7;
2700     break;
2701     case 83:
2702     encodedcontroller = _lev_ctrl_genpurpose8;
2703     break;
2704     case 91:
2705     encodedcontroller = _lev_ctrl_effect1depth;
2706     break;
2707     case 92:
2708     encodedcontroller = _lev_ctrl_effect2depth;
2709     break;
2710     case 93:
2711     encodedcontroller = _lev_ctrl_effect3depth;
2712     break;
2713     case 94:
2714     encodedcontroller = _lev_ctrl_effect4depth;
2715     break;
2716     case 95:
2717     encodedcontroller = _lev_ctrl_effect5depth;
2718     break;
2719 schoenebeck 2540
2720     // format extension (these controllers are so far only
2721     // supported by LinuxSampler & gigedit) they will *NOT*
2722     // work with Gigasampler/GigaStudio !
2723     case 3:
2724     encodedcontroller = _lev_ctrl_CC3_EXT;
2725     break;
2726     case 6:
2727     encodedcontroller = _lev_ctrl_CC6_EXT;
2728     break;
2729     case 7:
2730     encodedcontroller = _lev_ctrl_CC7_EXT;
2731     break;
2732     case 8:
2733     encodedcontroller = _lev_ctrl_CC8_EXT;
2734     break;
2735     case 9:
2736     encodedcontroller = _lev_ctrl_CC9_EXT;
2737     break;
2738     case 10:
2739     encodedcontroller = _lev_ctrl_CC10_EXT;
2740     break;
2741     case 11:
2742     encodedcontroller = _lev_ctrl_CC11_EXT;
2743     break;
2744     case 14:
2745     encodedcontroller = _lev_ctrl_CC14_EXT;
2746     break;
2747     case 15:
2748     encodedcontroller = _lev_ctrl_CC15_EXT;
2749     break;
2750     case 20:
2751     encodedcontroller = _lev_ctrl_CC20_EXT;
2752     break;
2753     case 21:
2754     encodedcontroller = _lev_ctrl_CC21_EXT;
2755     break;
2756     case 22:
2757     encodedcontroller = _lev_ctrl_CC22_EXT;
2758     break;
2759     case 23:
2760     encodedcontroller = _lev_ctrl_CC23_EXT;
2761     break;
2762     case 24:
2763     encodedcontroller = _lev_ctrl_CC24_EXT;
2764     break;
2765     case 25:
2766     encodedcontroller = _lev_ctrl_CC25_EXT;
2767     break;
2768     case 26:
2769     encodedcontroller = _lev_ctrl_CC26_EXT;
2770     break;
2771     case 27:
2772     encodedcontroller = _lev_ctrl_CC27_EXT;
2773     break;
2774     case 28:
2775     encodedcontroller = _lev_ctrl_CC28_EXT;
2776     break;
2777     case 29:
2778     encodedcontroller = _lev_ctrl_CC29_EXT;
2779     break;
2780     case 30:
2781     encodedcontroller = _lev_ctrl_CC30_EXT;
2782     break;
2783     case 31:
2784     encodedcontroller = _lev_ctrl_CC31_EXT;
2785     break;
2786     case 68:
2787     encodedcontroller = _lev_ctrl_CC68_EXT;
2788     break;
2789     case 69:
2790     encodedcontroller = _lev_ctrl_CC69_EXT;
2791     break;
2792     case 70:
2793     encodedcontroller = _lev_ctrl_CC70_EXT;
2794     break;
2795     case 71:
2796     encodedcontroller = _lev_ctrl_CC71_EXT;
2797     break;
2798     case 72:
2799     encodedcontroller = _lev_ctrl_CC72_EXT;
2800     break;
2801     case 73:
2802     encodedcontroller = _lev_ctrl_CC73_EXT;
2803     break;
2804     case 74:
2805     encodedcontroller = _lev_ctrl_CC74_EXT;
2806     break;
2807     case 75:
2808     encodedcontroller = _lev_ctrl_CC75_EXT;
2809     break;
2810     case 76:
2811     encodedcontroller = _lev_ctrl_CC76_EXT;
2812     break;
2813     case 77:
2814     encodedcontroller = _lev_ctrl_CC77_EXT;
2815     break;
2816     case 78:
2817     encodedcontroller = _lev_ctrl_CC78_EXT;
2818     break;
2819     case 79:
2820     encodedcontroller = _lev_ctrl_CC79_EXT;
2821     break;
2822     case 84:
2823     encodedcontroller = _lev_ctrl_CC84_EXT;
2824     break;
2825     case 85:
2826     encodedcontroller = _lev_ctrl_CC85_EXT;
2827     break;
2828     case 86:
2829     encodedcontroller = _lev_ctrl_CC86_EXT;
2830     break;
2831     case 87:
2832     encodedcontroller = _lev_ctrl_CC87_EXT;
2833     break;
2834     case 89:
2835     encodedcontroller = _lev_ctrl_CC89_EXT;
2836     break;
2837     case 90:
2838     encodedcontroller = _lev_ctrl_CC90_EXT;
2839     break;
2840     case 96:
2841     encodedcontroller = _lev_ctrl_CC96_EXT;
2842     break;
2843     case 97:
2844     encodedcontroller = _lev_ctrl_CC97_EXT;
2845     break;
2846     case 102:
2847     encodedcontroller = _lev_ctrl_CC102_EXT;
2848     break;
2849     case 103:
2850     encodedcontroller = _lev_ctrl_CC103_EXT;
2851     break;
2852     case 104:
2853     encodedcontroller = _lev_ctrl_CC104_EXT;
2854     break;
2855     case 105:
2856     encodedcontroller = _lev_ctrl_CC105_EXT;
2857     break;
2858     case 106:
2859     encodedcontroller = _lev_ctrl_CC106_EXT;
2860     break;
2861     case 107:
2862     encodedcontroller = _lev_ctrl_CC107_EXT;
2863     break;
2864     case 108:
2865     encodedcontroller = _lev_ctrl_CC108_EXT;
2866     break;
2867     case 109:
2868     encodedcontroller = _lev_ctrl_CC109_EXT;
2869     break;
2870     case 110:
2871     encodedcontroller = _lev_ctrl_CC110_EXT;
2872     break;
2873     case 111:
2874     encodedcontroller = _lev_ctrl_CC111_EXT;
2875     break;
2876     case 112:
2877     encodedcontroller = _lev_ctrl_CC112_EXT;
2878     break;
2879     case 113:
2880     encodedcontroller = _lev_ctrl_CC113_EXT;
2881     break;
2882     case 114:
2883     encodedcontroller = _lev_ctrl_CC114_EXT;
2884     break;
2885     case 115:
2886     encodedcontroller = _lev_ctrl_CC115_EXT;
2887     break;
2888     case 116:
2889     encodedcontroller = _lev_ctrl_CC116_EXT;
2890     break;
2891     case 117:
2892     encodedcontroller = _lev_ctrl_CC117_EXT;
2893     break;
2894     case 118:
2895     encodedcontroller = _lev_ctrl_CC118_EXT;
2896     break;
2897     case 119:
2898     encodedcontroller = _lev_ctrl_CC119_EXT;
2899     break;
2900    
2901 schoenebeck 809 default:
2902     throw gig::Exception("leverage controller number is not supported by the gig format");
2903     }
2904 persson 1182 break;
2905 schoenebeck 809 default:
2906     throw gig::Exception("Unknown leverage controller type.");
2907     }
2908     return encodedcontroller;
2909     }
2910    
2911 schoenebeck 16 DimensionRegion::~DimensionRegion() {
2912     Instances--;
2913     if (!Instances) {
2914     // delete the velocity->volume tables
2915     VelocityTableMap::iterator iter;
2916     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2917     double* pTable = iter->second;
2918     if (pTable) delete[] pTable;
2919     }
2920     pVelocityTables->clear();
2921     delete pVelocityTables;
2922     pVelocityTables = NULL;
2923     }
2924 persson 858 if (VelocityTable) delete[] VelocityTable;
2925 schoenebeck 16 }
2926 schoenebeck 2
2927 schoenebeck 16 /**
2928     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2929     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2930     * and VelocityResponseCurveScaling) involved are taken into account to
2931     * calculate the amplitude factor. Use this method when a key was
2932     * triggered to get the volume with which the sample should be played
2933     * back.
2934     *
2935 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2936     * @returns amplitude factor (between 0.0 and 1.0)
2937 schoenebeck 16 */
2938     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2939     return pVelocityAttenuationTable[MIDIKeyVelocity];
2940     }
2941 schoenebeck 2
2942 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2943     return pVelocityReleaseTable[MIDIKeyVelocity];
2944     }
2945    
2946 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2947     return pVelocityCutoffTable[MIDIKeyVelocity];
2948     }
2949    
2950 schoenebeck 1358 /**
2951     * Updates the respective member variable and the lookup table / cache
2952     * that depends on this value.
2953     */
2954     void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2955     pVelocityAttenuationTable =
2956     GetVelocityTable(
2957     curve, VelocityResponseDepth, VelocityResponseCurveScaling
2958     );
2959     VelocityResponseCurve = curve;
2960     }
2961    
2962     /**
2963     * Updates the respective member variable and the lookup table / cache
2964     * that depends on this value.
2965     */
2966     void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2967     pVelocityAttenuationTable =
2968     GetVelocityTable(
2969     VelocityResponseCurve, depth, VelocityResponseCurveScaling
2970     );
2971     VelocityResponseDepth = depth;
2972     }
2973    
2974     /**
2975     * Updates the respective member variable and the lookup table / cache
2976     * that depends on this value.
2977     */
2978     void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2979     pVelocityAttenuationTable =
2980     GetVelocityTable(
2981     VelocityResponseCurve, VelocityResponseDepth, scaling
2982     );
2983     VelocityResponseCurveScaling = scaling;
2984     }
2985    
2986     /**
2987     * Updates the respective member variable and the lookup table / cache
2988     * that depends on this value.
2989     */
2990     void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2991     pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2992     ReleaseVelocityResponseCurve = curve;
2993     }
2994    
2995     /**
2996     * Updates the respective member variable and the lookup table / cache
2997     * that depends on this value.
2998     */
2999     void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3000     pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3001     ReleaseVelocityResponseDepth = depth;
3002     }
3003    
3004     /**
3005     * Updates the respective member variable and the lookup table / cache
3006     * that depends on this value.
3007     */
3008     void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3009     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3010     VCFCutoffController = controller;
3011     }
3012    
3013     /**
3014     * Updates the respective member variable and the lookup table / cache
3015     * that depends on this value.
3016     */
3017     void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3018     pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3019     VCFVelocityCurve = curve;
3020     }
3021    
3022     /**
3023     * Updates the respective member variable and the lookup table / cache
3024     * that depends on this value.
3025     */
3026     void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3027     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3028     VCFVelocityDynamicRange = range;
3029     }
3030    
3031     /**
3032     * Updates the respective member variable and the lookup table / cache
3033     * that depends on this value.
3034     */
3035     void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3036     pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3037     VCFVelocityScale = scaling;
3038     }
3039    
3040 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3041 schoenebeck 317
3042 schoenebeck 308 // line-segment approximations of the 15 velocity curves
3043 schoenebeck 16
3044 schoenebeck 308 // linear
3045     const int lin0[] = { 1, 1, 127, 127 };
3046     const int lin1[] = { 1, 21, 127, 127 };
3047     const int lin2[] = { 1, 45, 127, 127 };
3048     const int lin3[] = { 1, 74, 127, 127 };
3049     const int lin4[] = { 1, 127, 127, 127 };
3050 schoenebeck 16
3051 schoenebeck 308 // non-linear
3052     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3053 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3054 schoenebeck 308 127, 127 };
3055     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3056     127, 127 };
3057     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3058     127, 127 };
3059     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3060 schoenebeck 317
3061 schoenebeck 308 // special
3062 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3063 schoenebeck 308 113, 127, 127, 127 };
3064     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3065     118, 127, 127, 127 };
3066 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3067 schoenebeck 308 85, 90, 91, 127, 127, 127 };
3068 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3069 schoenebeck 308 117, 127, 127, 127 };
3070 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3071 schoenebeck 308 127, 127 };
3072 schoenebeck 317
3073 persson 728 // this is only used by the VCF velocity curve
3074     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3075     91, 127, 127, 127 };
3076    
3077 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
3078 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
3079 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
3080 schoenebeck 317
3081 schoenebeck 308 double* const table = new double[128];
3082    
3083     const int* curve = curves[curveType * 5 + depth];
3084     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3085 schoenebeck 317
3086 schoenebeck 308 table[0] = 0;
3087     for (int x = 1 ; x < 128 ; x++) {
3088    
3089     if (x > curve[2]) curve += 2;
3090 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
3091 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3092     y = y / 127;
3093    
3094     // Scale up for s > 20, down for s < 20. When
3095     // down-scaling, the curve still ends at 1.0.
3096     if (s < 20 && y >= 0.5)
3097     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3098     else
3099     y = y * (s / 20.0);
3100     if (y > 1) y = 1;
3101    
3102     table[x] = y;
3103     }
3104     return table;
3105     }
3106    
3107    
3108 schoenebeck 2 // *************** Region ***************
3109     // *
3110    
3111     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3112     // Initialization
3113     Dimensions = 0;
3114 schoenebeck 347 for (int i = 0; i < 256; i++) {
3115 schoenebeck 2 pDimensionRegions[i] = NULL;
3116     }
3117 schoenebeck 282 Layers = 1;
3118 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
3119     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3120 schoenebeck 2
3121     // Actual Loading
3122    
3123 schoenebeck 1524 if (!file->GetAutoLoad()) return;
3124    
3125 schoenebeck 2 LoadDimensionRegions(rgnList);
3126    
3127     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3128     if (_3lnk) {
3129     DimensionRegions = _3lnk->ReadUint32();
3130 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
3131 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3132     uint8_t bits = _3lnk->ReadUint8();
3133 persson 1199 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3134     _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3135 persson 774 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3136 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
3137     pDimensionDefinitions[i].dimension = dimension_none;
3138     pDimensionDefinitions[i].bits = 0;
3139     pDimensionDefinitions[i].zones = 0;
3140     pDimensionDefinitions[i].split_type = split_type_bit;
3141     pDimensionDefinitions[i].zone_size = 0;
3142     }
3143     else { // active dimension
3144     pDimensionDefinitions[i].dimension = dimension;
3145     pDimensionDefinitions[i].bits = bits;
3146 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3147 schoenebeck 1113 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3148     pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3149 schoenebeck 2 Dimensions++;
3150 schoenebeck 282
3151     // if this is a layer dimension, remember the amount of layers
3152     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3153 schoenebeck 2 }
3154 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3155 schoenebeck 2 }
3156 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3157 schoenebeck 2
3158 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
3159     // update the VelocityTables in the dimension regions
3160     UpdateVelocityTable();
3161 schoenebeck 2
3162 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
3163     if (file->pVersion && file->pVersion->major == 3)
3164     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3165     else
3166     _3lnk->SetPos(44);
3167    
3168 schoenebeck 1524 // load sample references (if auto loading is enabled)
3169     if (file->GetAutoLoad()) {
3170     for (uint i = 0; i < DimensionRegions; i++) {
3171     uint32_t wavepoolindex = _3lnk->ReadUint32();
3172     if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3173     }
3174     GetSample(); // load global region sample reference
3175 schoenebeck 2 }
3176 persson 1102 } else {
3177     DimensionRegions = 0;
3178 persson 1182 for (int i = 0 ; i < 8 ; i++) {
3179     pDimensionDefinitions[i].dimension = dimension_none;
3180     pDimensionDefinitions[i].bits = 0;
3181     pDimensionDefinitions[i].zones = 0;
3182     }
3183 schoenebeck 2 }
3184 schoenebeck 823
3185     // make sure there is at least one dimension region
3186     if (!DimensionRegions) {
3187     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3188     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3189     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3190 schoenebeck 1316 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3191 schoenebeck 823 DimensionRegions = 1;
3192     }
3193 schoenebeck 2 }
3194    
3195 schoenebeck 809 /**
3196     * Apply Region settings and all its DimensionRegions to the respective
3197     * RIFF chunks. You have to call File::Save() to make changes persistent.
3198     *
3199     * Usually there is absolutely no need to call this method explicitly.
3200     * It will be called automatically when File::Save() was called.
3201     *
3202 schoenebeck 2682 * @param pProgress - callback function for progress notification
3203 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
3204     */
3205 schoenebeck 2682 void Region::UpdateChunks(progress_t* pProgress) {
3206 schoenebeck 1106 // in the gig format we don't care about the Region's sample reference
3207     // but we still have to provide some existing one to not corrupt the
3208     // file, so to avoid the latter we simply always assign the sample of
3209     // the first dimension region of this region
3210     pSample = pDimensionRegions[0]->pSample;
3211    
3212 schoenebeck 809 // first update base class's chunks
3213 schoenebeck 2682 DLS::Region::UpdateChunks(pProgress);
3214 schoenebeck 809
3215     // update dimension region's chunks
3216 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
3217 schoenebeck 2682 pDimensionRegions[i]->UpdateChunks(pProgress);
3218 schoenebeck 823 }
3219 schoenebeck 809
3220 persson 1317 File* pFile = (File*) GetParent()->GetParent();
3221     bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3222 persson 1247 const int iMaxDimensions = version3 ? 8 : 5;
3223     const int iMaxDimensionRegions = version3 ? 256 : 32;
3224 schoenebeck 809
3225     // make sure '3lnk' chunk exists
3226     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3227     if (!_3lnk) {
3228 persson 1247 const int _3lnkChunkSize = version3 ? 1092 : 172;
3229 schoenebeck 809 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3230 persson 1182 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3231 persson 1192
3232     // move 3prg to last position
3233 schoenebeck 2584 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3234 schoenebeck 809 }
3235    
3236     // update dimension definitions in '3lnk' chunk
3237     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3238 persson 1179 store32(&pData[0], DimensionRegions);
3239 persson 1199 int shift = 0;
3240 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
3241 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3242     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3243 persson 1266 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3244 persson 1199 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3245 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3246 persson 1199 // next 3 bytes unknown, always zero?
3247    
3248     shift += pDimensionDefinitions[i].bits;
3249 schoenebeck 809 }
3250    
3251     // update wave pool table in '3lnk' chunk
3252 persson 1247 const int iWavePoolOffset = version3 ? 68 : 44;
3253 schoenebeck 809 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3254     int iWaveIndex = -1;
3255     if (i < DimensionRegions) {
3256 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3257     File::SampleList::iterator iter = pFile->pSamples->begin();
3258     File::SampleList::iterator end = pFile->pSamples->end();
3259 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
3260 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
3261     iWaveIndex = index;
3262     break;
3263     }
3264 schoenebeck 809 }
3265     }
3266 persson 1179 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3267 schoenebeck 809 }
3268     }
3269    
3270 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3271     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3272     if (_3prg) {
3273     int dimensionRegionNr = 0;
3274     RIFF::List* _3ewl = _3prg->GetFirstSubList();
3275     while (_3ewl) {
3276     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3277 schoenebeck 1316 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3278 schoenebeck 2 dimensionRegionNr++;
3279     }
3280     _3ewl = _3prg->GetNextSubList();
3281     }
3282     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3283     }
3284     }
3285    
3286 schoenebeck 1335 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3287     // update KeyRange struct and make sure regions are in correct order
3288     DLS::Region::SetKeyRange(Low, High);
3289     // update Region key table for fast lookup
3290     ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3291     }
3292    
3293 persson 858 void Region::UpdateVelocityTable() {
3294     // get velocity dimension's index
3295     int veldim = -1;
3296     for (int i = 0 ; i < Dimensions ; i++) {
3297     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3298     veldim = i;
3299 schoenebeck 809 break;
3300     }
3301     }
3302 persson 858 if (veldim == -1) return;
3303 schoenebeck 809
3304 persson 858 int step = 1;
3305     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3306     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3307 schoenebeck 809
3308 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
3309     int dim[8] = { 0 };
3310     for (int i = 0 ; i < DimensionRegions ; i++) {
3311 schoenebeck 2923 const int end = i + step * pDimensionDefinitions[veldim].zones;
3312 persson 858
3313 schoenebeck 2923 // create a velocity table for all cases where the velocity zone is zero
3314 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3315     pDimensionRegions[i]->VelocityUpperLimit) {
3316 persson 858 // create the velocity table
3317     uint8_t* table = pDimensionRegions[i]->VelocityTable;
3318     if (!table) {
3319     table = new uint8_t[128];
3320     pDimensionRegions[i]->VelocityTable = table;
3321     }
3322     int tableidx = 0;
3323     int velocityZone = 0;
3324 persson 1070 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3325     for (int k = i ; k < end ; k += step) {
3326     DimensionRegion *d = pDimensionRegions[k];
3327     for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3328     velocityZone++;
3329     }
3330     } else { // gig2
3331     for (int k = i ; k < end ; k += step) {
3332     DimensionRegion *d = pDimensionRegions[k];
3333     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3334     velocityZone++;
3335     }
3336 persson 858 }
3337     } else {
3338     if (pDimensionRegions[i]->VelocityTable) {
3339     delete[] pDimensionRegions[i]->VelocityTable;
3340     pDimensionRegions[i]->VelocityTable = 0;
3341     }
3342 schoenebeck 809 }
3343 persson 858
3344 schoenebeck 2923 // jump to the next case where the velocity zone is zero
3345 persson 858 int j;
3346     int shift = 0;
3347     for (j = 0 ; j < Dimensions ; j++) {
3348     if (j == veldim) i += skipveldim; // skip velocity dimension
3349     else {
3350     dim[j]++;
3351     if (dim[j] < pDimensionDefinitions[j].zones) break;
3352     else {
3353     // skip unused dimension regions
3354     dim[j] = 0;
3355     i += ((1 << pDimensionDefinitions[j].bits) -
3356     pDimensionDefinitions[j].zones) << shift;
3357     }
3358     }
3359     shift += pDimensionDefinitions[j].bits;
3360     }
3361     if (j == Dimensions) break;
3362 schoenebeck 809 }
3363     }
3364    
3365     /** @brief Einstein would have dreamed of it - create a new dimension.
3366     *
3367     * Creates a new dimension with the dimension definition given by
3368     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3369     * There is a hard limit of dimensions and total amount of "bits" all
3370     * dimensions can have. This limit is dependant to what gig file format
3371     * version this file refers to. The gig v2 (and lower) format has a
3372     * dimension limit and total amount of bits limit of 5, whereas the gig v3
3373     * format has a limit of 8.
3374     *
3375     * @param pDimDef - defintion of the new dimension
3376     * @throws gig::Exception if dimension of the same type exists already
3377     * @throws gig::Exception if amount of dimensions or total amount of
3378     * dimension bits limit is violated
3379     */
3380     void Region::AddDimension(dimension_def_t* pDimDef) {
3381 schoenebeck 2547 // some initial sanity checks of the given dimension definition
3382     if (pDimDef->zones < 2)
3383     throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3384     if (pDimDef->bits < 1)
3385     throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3386     if (pDimDef->dimension == dimension_samplechannel) {
3387     if (pDimDef->zones != 2)
3388     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3389     if (pDimDef->bits != 1)
3390     throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3391     }
3392    
3393 schoenebeck 809 // check if max. amount of dimensions reached
3394     File* file = (File*) GetParent()->GetParent();
3395     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3396     if (Dimensions >= iMaxDimensions)
3397     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3398     // check if max. amount of dimension bits reached
3399     int iCurrentBits = 0;
3400     for (int i = 0; i < Dimensions; i++)
3401     iCurrentBits += pDimensionDefinitions[i].bits;
3402     if (iCurrentBits >= iMaxDimensions)
3403     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3404     const int iNewBits = iCurrentBits + pDimDef->bits;
3405     if (iNewBits > iMaxDimensions)
3406     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3407     // check if there's already a dimensions of the same type
3408     for (int i = 0; i < Dimensions; i++)
3409     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3410     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3411    
3412 persson 1301 // pos is where the new dimension should be placed, normally
3413     // last in list, except for the samplechannel dimension which
3414     // has to be first in list
3415     int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3416     int bitpos = 0;
3417     for (int i = 0 ; i < pos ; i++)
3418     bitpos += pDimensionDefinitions[i].bits;
3419    
3420     // make room for the new dimension
3421     for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3422     for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3423     for (int j = Dimensions ; j > pos ; j--) {
3424     pDimensionRegions[i]->DimensionUpperLimits[j] =
3425     pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3426     }
3427     }
3428    
3429 schoenebeck 809 // assign definition of new dimension
3430 persson 1301 pDimensionDefinitions[pos] = *pDimDef;
3431 schoenebeck 809
3432 schoenebeck 1113 // auto correct certain dimension definition fields (where possible)
3433 persson 1301 pDimensionDefinitions[pos].split_type =
3434     __resolveSplitType(pDimensionDefinitions[pos].dimension);
3435     pDimensionDefinitions[pos].zone_size =
3436     __resolveZoneSize(pDimensionDefinitions[pos]);
3437 schoenebeck 1113
3438 persson 1301 // create new dimension region(s) for this new dimension, and make
3439     // sure that the dimension regions are placed correctly in both the
3440     // RIFF list and the pDimensionRegions array
3441     RIFF::Chunk* moveTo = NULL;
3442     RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3443     for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3444     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3445     pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3446     }
3447     for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3448     for (int k = 0 ; k < (1 << bitpos) ; k++) {
3449     RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3450     if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3451     // create a new dimension region and copy all parameter values from
3452     // an existing dimension region
3453     pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3454     new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3455 persson 1247
3456 persson 1301 DimensionRegions++;
3457     }
3458     }
3459     moveTo = pDimensionRegions[i]->pParentList;
3460 schoenebeck 809 }
3461    
3462 persson 1247 // initialize the upper limits for this dimension
3463 persson 1301 int mask = (1 << bitpos) - 1;
3464     for (int z = 0 ; z < pDimDef->zones ; z++) {
3465 persson 1264 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3466 persson 1247 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3467 persson 1301 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3468     (z << bitpos) |
3469     (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3470 persson 1247 }
3471     }
3472    
3473 schoenebeck 809 Dimensions++;
3474    
3475     // if this is a layer dimension, update 'Layers' attribute
3476     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3477    
3478 persson 858 UpdateVelocityTable();
3479 schoenebeck 809 }
3480    
3481     /** @brief Delete an existing dimension.
3482     *
3483     * Deletes the dimension given by \a pDimDef and deletes all respective
3484     * dimension regions, that is all dimension regions where the dimension's
3485     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3486     * for example this would delete all dimension regions for the case(s)
3487     * where the sustain pedal is pressed down.
3488     *
3489     * @param pDimDef - dimension to delete
3490     * @throws gig::Exception if given dimension cannot be found
3491     */
3492     void Region::DeleteDimension(dimension_def_t* pDimDef) {
3493     // get dimension's index
3494     int iDimensionNr = -1;
3495     for (int i = 0; i < Dimensions; i++) {
3496     if (&pDimensionDefinitions[i] == pDimDef) {
3497     iDimensionNr = i;
3498     break;
3499     }
3500     }
3501     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3502    
3503     // get amount of bits below the dimension to delete
3504     int iLowerBits = 0;
3505     for (int i = 0; i < iDimensionNr; i++)
3506     iLowerBits += pDimensionDefinitions[i].bits;
3507    
3508     // get amount ot bits above the dimension to delete
3509     int iUpperBits = 0;
3510     for (int i = iDimensionNr + 1; i < Dimensions; i++)
3511     iUpperBits += pDimensionDefinitions[i].bits;
3512    
3513 persson 1247 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3514    
3515 schoenebeck 809 // delete dimension regions which belong to the given dimension
3516     // (that is where the dimension's bit > 0)
3517     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3518     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3519     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3520     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3521     iObsoleteBit << iLowerBits |
3522     iLowerBit;
3523 persson 1247
3524     _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3525 schoenebeck 809 delete pDimensionRegions[iToDelete];
3526     pDimensionRegions[iToDelete] = NULL;
3527     DimensionRegions--;
3528     }
3529     }
3530     }
3531    
3532     // defrag pDimensionRegions array
3533     // (that is remove the NULL spaces within the pDimensionRegions array)
3534     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3535     if (!pDimensionRegions[iTo]) {
3536     if (iFrom <= iTo) iFrom = iTo + 1;
3537     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3538     if (iFrom < 256 && pDimensionRegions[iFrom]) {
3539     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3540     pDimensionRegions[iFrom] = NULL;
3541     }
3542     }
3543     }
3544    
3545 persson 1247 // remove the this dimension from the upper limits arrays
3546     for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3547     DimensionRegion* d = pDimensionRegions[j];
3548     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3549     d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3550     }
3551     d->DimensionUpperLimits[Dimensions - 1] = 127;
3552     }
3553    
3554 schoenebeck 809 // 'remove' dimension definition
3555     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3556     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3557     }
3558     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3559     pDimensionDefinitions[Dimensions - 1].bits = 0;
3560     pDimensionDefinitions[Dimensions - 1].zones = 0;
3561    
3562     Dimensions--;
3563    
3564     // if this was a layer dimension, update 'Layers' attribute
3565     if (pDimDef->dimension == dimension_layer) Layers = 1;
3566     }
3567    
3568 schoenebeck 2555 /** @brief Delete one split zone of a dimension (decrement zone amount).
3569     *
3570     * Instead of deleting an entire dimensions, this method will only delete
3571     * one particular split zone given by @a zone of the Region's dimension
3572     * given by @a type. So this method will simply decrement the amount of
3573     * zones by one of the dimension in question. To be able to do that, the
3574     * respective dimension must exist on this Region and it must have at least
3575     * 3 zones. All DimensionRegion objects associated with the zone will be
3576     * deleted.
3577     *
3578     * @param type - identifies the dimension where a zone shall be deleted
3579     * @param zone - index of the dimension split zone that shall be deleted
3580     * @throws gig::Exception if requested zone could not be deleted
3581     */
3582     void Region::DeleteDimensionZone(dimension_t type, int zone) {
3583     dimension_def_t* oldDef = GetDimensionDefinition(type);
3584     if (!oldDef)
3585     throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3586     if (oldDef->zones <= 2)
3587     throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3588     if (zone < 0 || zone >= oldDef->zones)
3589     throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3590    
3591     const int newZoneSize = oldDef->zones - 1;
3592    
3593     // create a temporary Region which just acts as a temporary copy
3594     // container and will be deleted at the end of this function and will
3595     // also not be visible through the API during this process
3596     gig::Region* tempRgn = NULL;
3597     {
3598     // adding these temporary chunks is probably not even necessary
3599     Instrument* instr = static_cast<Instrument*>(GetParent());
3600     RIFF::List* pCkInstrument = instr->pCkInstrument;
3601     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3602     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3603     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3604     tempRgn = new Region(instr, rgn);
3605     }
3606    
3607     // copy this region's dimensions (with already the dimension split size
3608     // requested by the arguments of this method call) to the temporary
3609     // region, and don't use Region::CopyAssign() here for this task, since
3610     // it would also alter fast lookup helper variables here and there
3611     dimension_def_t newDef;
3612     for (int i = 0; i < Dimensions; ++i) {
3613     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3614     // is this the dimension requested by the method arguments? ...
3615     if (def.dimension == type) { // ... if yes, decrement zone amount by one
3616     def.zones = newZoneSize;
3617     if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3618     newDef = def;
3619     }
3620     tempRgn->AddDimension(&def);
3621     }
3622    
3623     // find the dimension index in the tempRegion which is the dimension
3624     // type passed to this method (paranoidly expecting different order)
3625     int tempReducedDimensionIndex = -1;
3626     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3627     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3628     tempReducedDimensionIndex = d;
3629     break;
3630     }
3631     }
3632    
3633     // copy dimension regions from this region to the temporary region
3634     for (int iDst = 0; iDst < 256; ++iDst) {
3635     DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3636     if (!dstDimRgn) continue;
3637     std::map<dimension_t,int> dimCase;
3638     bool isValidZone = true;
3639     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3640     const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3641     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3642     (iDst >> baseBits) & ((1 << dstBits) - 1);
3643     baseBits += dstBits;
3644     // there are also DimensionRegion objects of unused zones, skip them
3645     if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3646     isValidZone = false;
3647     break;
3648     }
3649     }
3650     if (!isValidZone) continue;
3651     // a bit paranoid: cope with the chance that the dimensions would
3652     // have different order in source and destination regions
3653     const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3654     if (dimCase[type] >= zone) dimCase[type]++;
3655     DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3656     dstDimRgn->CopyAssign(srcDimRgn);
3657     // if this is the upper most zone of the dimension passed to this
3658     // method, then correct (raise) its upper limit to 127
3659     if (newDef.split_type == split_type_normal && isLastZone)
3660     dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3661     }
3662    
3663     // now tempRegion's dimensions and DimensionRegions basically reflect
3664     // what we wanted to get for this actual Region here, so we now just
3665     // delete and recreate the dimension in question with the new amount
3666     // zones and then copy back from tempRegion
3667     DeleteDimension(oldDef);
3668     AddDimension(&newDef);
3669     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3670     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3671     if (!srcDimRgn) continue;
3672     std::map<dimension_t,int> dimCase;
3673     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3674     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3675     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3676     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3677     baseBits += srcBits;
3678     }
3679     // a bit paranoid: cope with the chance that the dimensions would
3680     // have different order in source and destination regions
3681     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3682     if (!dstDimRgn) continue;
3683     dstDimRgn->CopyAssign(srcDimRgn);
3684     }
3685    
3686     // delete temporary region
3687     delete tempRgn;
3688 schoenebeck 2557
3689     UpdateVelocityTable();
3690 schoenebeck 2555 }
3691    
3692     /** @brief Divide split zone of a dimension in two (increment zone amount).
3693     *
3694     * This will increment the amount of zones for the dimension (given by
3695     * @a type) by one. It will do so by dividing the zone (given by @a zone)
3696     * in the middle of its zone range in two. So the two zones resulting from
3697     * the zone being splitted, will be an equivalent copy regarding all their
3698     * articulation informations and sample reference. The two zones will only
3699     * differ in their zone's upper limit
3700     * (DimensionRegion::DimensionUpperLimits).
3701     *
3702     * @param type - identifies the dimension where a zone shall be splitted
3703     * @param zone - index of the dimension split zone that shall be splitted
3704     * @throws gig::Exception if requested zone could not be splitted
3705     */
3706     void Region::SplitDimensionZone(dimension_t type, int zone) {
3707     dimension_def_t* oldDef = GetDimensionDefinition(type);
3708     if (!oldDef)
3709     throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3710     if (zone < 0 || zone >= oldDef->zones)
3711     throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3712    
3713     const int newZoneSize = oldDef->zones + 1;
3714    
3715     // create a temporary Region which just acts as a temporary copy
3716     // container and will be deleted at the end of this function and will
3717     // also not be visible through the API during this process
3718     gig::Region* tempRgn = NULL;
3719     {
3720     // adding these temporary chunks is probably not even necessary
3721     Instrument* instr = static_cast<Instrument*>(GetParent());
3722     RIFF::List* pCkInstrument = instr->pCkInstrument;
3723     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3724     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3725     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3726     tempRgn = new Region(instr, rgn);
3727     }
3728    
3729     // copy this region's dimensions (with already the dimension split size
3730     // requested by the arguments of this method call) to the temporary
3731     // region, and don't use Region::CopyAssign() here for this task, since
3732     // it would also alter fast lookup helper variables here and there
3733     dimension_def_t newDef;
3734     for (int i = 0; i < Dimensions; ++i) {
3735     dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3736     // is this the dimension requested by the method arguments? ...
3737     if (def.dimension == type) { // ... if yes, increment zone amount by one
3738     def.zones = newZoneSize;
3739     if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3740     newDef = def;
3741     }
3742     tempRgn->AddDimension(&def);
3743     }
3744    
3745     // find the dimension index in the tempRegion which is the dimension
3746     // type passed to this method (paranoidly expecting different order)
3747     int tempIncreasedDimensionIndex = -1;
3748     for (int d = 0; d < tempRgn->Dimensions; ++d) {
3749     if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3750     tempIncreasedDimensionIndex = d;
3751     break;
3752     }
3753     }
3754    
3755     // copy dimension regions from this region to the temporary region
3756     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3757     DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3758     if (!srcDimRgn) continue;
3759     std::map<dimension_t,int> dimCase;
3760     bool isValidZone = true;
3761     for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3762     const int srcBits = pDimensionDefinitions[d].bits;
3763     dimCase[pDimensionDefinitions[d].dimension] =
3764     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3765     // there are also DimensionRegion objects for unused zones, skip them
3766     if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3767     isValidZone = false;
3768     break;
3769     }
3770     baseBits += srcBits;
3771     }
3772     if (!isValidZone) continue;
3773     // a bit paranoid: cope with the chance that the dimensions would
3774     // have different order in source and destination regions
3775     if (dimCase[type] > zone) dimCase[type]++;
3776     DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3777     dstDimRgn->CopyAssign(srcDimRgn);
3778     // if this is the requested zone to be splitted, then also copy
3779     // the source DimensionRegion to the newly created target zone
3780     // and set the old zones upper limit lower
3781     if (dimCase[type] == zone) {
3782     // lower old zones upper limit
3783     if (newDef.split_type == split_type_normal) {
3784     const int high =
3785     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3786     int low = 0;
3787     if (zone > 0) {
3788     std::map<dimension_t,int> lowerCase = dimCase;
3789     lowerCase[type]--;
3790     DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3791     low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3792     }
3793     dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3794     }
3795     // fill the newly created zone of the divided zone as well
3796     dimCase[type]++;
3797     dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3798     dstDimRgn->CopyAssign(srcDimRgn);
3799     }
3800     }
3801    
3802     // now tempRegion's dimensions and DimensionRegions basically reflect
3803     // what we wanted to get for this actual Region here, so we now just
3804     // delete and recreate the dimension in question with the new amount
3805     // zones and then copy back from tempRegion
3806     DeleteDimension(oldDef);
3807     AddDimension(&newDef);
3808     for (int iSrc = 0; iSrc < 256; ++iSrc) {
3809     DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3810     if (!srcDimRgn) continue;
3811     std::map<dimension_t,int> dimCase;
3812     for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3813     const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3814     dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3815     (iSrc >> baseBits) & ((1 << srcBits) - 1);
3816     baseBits += srcBits;
3817     }
3818     // a bit paranoid: cope with the chance that the dimensions would
3819     // have different order in source and destination regions
3820     DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3821     if (!dstDimRgn) continue;
3822     dstDimRgn->CopyAssign(srcDimRgn);
3823     }
3824    
3825     // delete temporary region
3826     delete tempRgn;
3827 schoenebeck 2557
3828     UpdateVelocityTable();
3829 schoenebeck 2555 }
3830    
3831 schoenebeck 2639 /** @brief Change type of an existing dimension.
3832     *
3833     * Alters the dimension type of a dimension already existing on this
3834     * region. If there is currently no dimension on this Region with type
3835     * @a oldType, then this call with throw an Exception. Likewise there are
3836     * cases where the requested dimension type cannot be performed. For example
3837     * if the new dimension type shall be gig::dimension_samplechannel, and the
3838     * current dimension has more than 2 zones. In such cases an Exception is
3839     * thrown as well.
3840     *
3841     * @param oldType - identifies the existing dimension to be changed
3842     * @param newType - to which dimension type it should be changed to
3843     * @throws gig::Exception if requested change cannot be performed
3844     */
3845     void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3846     if (oldType == newType) return;
3847     dimension_def_t* def = GetDimensionDefinition(oldType);
3848     if (!def)
3849     throw gig::Exception("No dimension with provided old dimension type exists on this region");
3850     if (newType == dimension_samplechannel && def->zones != 2)
3851     throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3852 schoenebeck 2640 if (GetDimensionDefinition(newType))
3853     throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3854     def->dimension = newType;
3855 schoenebeck 2639 def->split_type = __resolveSplitType(newType);
3856     }
3857    
3858 schoenebeck 2555 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3859     uint8_t bits[8] = {};
3860     for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3861     it != DimCase.end(); ++it)
3862     {
3863     for (int d = 0; d < Dimensions; ++d) {
3864     if (pDimensionDefinitions[d].dimension == it->first) {
3865     bits[d] = it->second;
3866     goto nextDimCaseSlice;
3867     }
3868     }
3869     assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3870     nextDimCaseSlice:
3871     ; // noop
3872     }
3873     return GetDimensionRegionByBit(bits);
3874     }
3875    
3876 schoenebeck 2547 /**
3877     * Searches in the current Region for a dimension of the given dimension
3878     * type and returns the precise configuration of that dimension in this
3879     * Region.
3880     *
3881     * @param type - dimension type of the sought dimension
3882     * @returns dimension definition or NULL if there is no dimension with
3883     * sought type in this Region.
3884     */
3885     dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3886     for (int i = 0; i < Dimensions; ++i)
3887     if (pDimensionDefinitions[i].dimension == type)
3888     return &pDimensionDefinitions[i];
3889     return NULL;
3890     }
3891    
3892 schoenebeck 2 Region::~Region() {
3893 schoenebeck 350 for (int i = 0; i < 256; i++) {
3894 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3895     }
3896     }
3897    
3898     /**
3899     * Use this method in your audio engine to get the appropriate dimension
3900     * region with it's articulation data for the current situation. Just
3901     * call the method with the current MIDI controller values and you'll get
3902     * the DimensionRegion with the appropriate articulation data for the
3903     * current situation (for this Region of course only). To do that you'll
3904     * first have to look which dimensions with which controllers and in
3905     * which order are defined for this Region when you load the .gig file.
3906     * Special cases are e.g. layer or channel dimensions where you just put
3907     * in the index numbers instead of a MIDI controller value (means 0 for
3908     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3909     * etc.).
3910     *
3911 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3912 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
3913     * @see pDimensionDefinitions
3914     * @see Dimensions
3915     */
3916 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3917 persson 858 uint8_t bits;
3918     int veldim = -1;
3919 schoenebeck 3053 int velbitpos = 0;
3920 persson 858 int bitpos = 0;
3921     int dimregidx = 0;
3922 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
3923 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3924     // the velocity dimension must be handled after the other dimensions
3925     veldim = i;
3926     velbitpos = bitpos;
3927     } else {
3928     switch (pDimensionDefinitions[i].split_type) {
3929     case split_type_normal:
3930 persson 1070 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3931     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3932     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3933     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3934     }
3935     } else {
3936     // gig2: evenly sized zones
3937     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3938     }
3939 persson 858 break;
3940     case split_type_bit: // the value is already the sought dimension bit number
3941     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3942     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3943     break;
3944     }
3945     dimregidx |= bits << bitpos;
3946 schoenebeck 2 }
3947 persson 858 bitpos += pDimensionDefinitions[i].bits;
3948 schoenebeck 2 }
3949 schoenebeck 2564 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3950     if (!dimreg) return NULL;
3951 persson 858 if (veldim != -1) {
3952     // (dimreg is now the dimension region for the lowest velocity)
3953 persson 1070 if (dimreg->VelocityTable) // custom defined zone ranges
3954 schoenebeck 2564 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3955 persson 858 else // normal split type
3956 schoenebeck 2564 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3957 persson 858
3958 schoenebeck 2564 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3959     dimregidx |= (bits & limiter_mask) << velbitpos;
3960     dimreg = pDimensionRegions[dimregidx & 255];
3961 persson 858 }
3962     return dimreg;
3963 schoenebeck 2 }
3964    
3965 schoenebeck 2599 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3966     uint8_t bits;
3967     int veldim = -1;
3968 schoenebeck 3053 int velbitpos = 0;
3969 schoenebeck 2599 int bitpos = 0;
3970     int dimregidx = 0;
3971     for (uint i = 0; i < Dimensions; i++) {
3972     if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3973     // the velocity dimension must be handled after the other dimensions
3974     veldim = i;
3975     velbitpos = bitpos;
3976     } else {
3977     switch (pDimensionDefinitions[i].split_type) {
3978     case split_type_normal:
3979     if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3980     // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3981     for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3982     if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3983     }
3984     } else {
3985     // gig2: evenly sized zones
3986     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3987     }
3988     break;
3989     case split_type_bit: // the value is already the sought dimension bit number
3990     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3991     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3992     break;
3993     }
3994     dimregidx |= bits << bitpos;
3995     }
3996     bitpos += pDimensionDefinitions[i].bits;
3997     }
3998     dimregidx &= 255;
3999     DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4000     if (!dimreg) return -1;
4001     if (veldim != -1) {
4002     // (dimreg is now the dimension region for the lowest velocity)
4003     if (dimreg->VelocityTable) // custom defined zone ranges
4004     bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4005     else // normal split type
4006     bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4007    
4008     const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4009     dimregidx |= (bits & limiter_mask) << velbitpos;
4010     dimregidx &= 255;
4011     }
4012     return dimregidx;
4013     }
4014    
4015 schoenebeck 2 /**
4016     * Returns the appropriate DimensionRegion for the given dimension bit
4017     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4018     * instead of calling this method directly!
4019     *
4020 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
4021 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
4022     * bit numbers
4023     * @see GetDimensionRegionByValue()
4024     */
4025 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4026     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4027     << pDimensionDefinitions[5].bits | DimBits[5])
4028     << pDimensionDefinitions[4].bits | DimBits[4])
4029     << pDimensionDefinitions[3].bits | DimBits[3])
4030     << pDimensionDefinitions[2].bits | DimBits[2])
4031     << pDimensionDefinitions[1].bits | DimBits[1])
4032     << pDimensionDefinitions[0].bits | DimBits[0]];
4033 schoenebeck 2 }
4034    
4035     /**
4036     * Returns pointer address to the Sample referenced with this region.
4037     * This is the global Sample for the entire Region (not sure if this is
4038     * actually used by the Gigasampler engine - I would only use the Sample
4039     * referenced by the appropriate DimensionRegion instead of this sample).
4040     *
4041     * @returns address to Sample or NULL if there is no reference to a
4042     * sample saved in the .gig file
4043     */
4044     Sample* Region::GetSample() {
4045     if (pSample) return static_cast<gig::Sample*>(pSample);
4046     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4047     }
4048    
4049 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4050 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4051 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
4052 persson 902 if (!file->pWavePoolTable) return NULL;
4053 schoenebeck 2913 // for new files or files >= 2 GB use 64 bit wave pool offsets
4054     if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4055     // use 64 bit wave pool offsets (treating this as large file)
4056 schoenebeck 2912 uint64_t soughtoffset =
4057     uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4058     uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4059     Sample* sample = file->GetFirstSample(pProgress);
4060     while (sample) {
4061     if (sample->ullWavePoolOffset == soughtoffset)
4062     return static_cast<gig::Sample*>(sample);
4063     sample = file->GetNextSample();
4064     }
4065     } else {
4066 schoenebeck 2913 // use extension files and 32 bit wave pool offsets
4067 schoenebeck 2912 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4068     file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4069     Sample* sample = file->GetFirstSample(pProgress);
4070     while (sample) {
4071     if (sample->ullWavePoolOffset == soughtoffset &&
4072     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4073     sample = file->GetNextSample();
4074     }
4075 schoenebeck 2 }
4076     return NULL;
4077     }
4078 schoenebeck 2394
4079     /**
4080     * Make a (semi) deep copy of the Region object given by @a orig
4081     * and assign it to this object.
4082     *
4083     * Note that all sample pointers referenced by @a orig are simply copied as
4084     * memory address. Thus the respective samples are shared, not duplicated!
4085     *
4086     * @param orig - original Region object to be copied from
4087     */
4088     void Region::CopyAssign(const Region* orig) {
4089 schoenebeck 2482 CopyAssign(orig, NULL);
4090     }
4091    
4092     /**
4093     * Make a (semi) deep copy of the Region object given by @a orig and
4094     * assign it to this object
4095     *
4096     * @param mSamples - crosslink map between the foreign file's samples and
4097     * this file's samples
4098     */
4099     void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4100 schoenebeck 2394 // handle base classes
4101     DLS::Region::CopyAssign(orig);
4102    
4103 schoenebeck 2482 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4104     pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4105     }
4106    
4107 schoenebeck 2394 // handle own member variables
4108     for (int i = Dimensions - 1; i >= 0; --i) {
4109     DeleteDimension(&pDimensionDefinitions[i]);
4110     }
4111     Layers = 0; // just to be sure
4112     for (int i = 0; i < orig->Dimensions; i++) {
4113     // we need to copy the dim definition here, to avoid the compiler
4114     // complaining about const-ness issue
4115     dimension_def_t def = orig->pDimensionDefinitions[i];
4116     AddDimension(&def);
4117     }
4118     for (int i = 0; i < 256; i++) {
4119     if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4120     pDimensionRegions[i]->CopyAssign(
4121 schoenebeck 2482 orig->pDimensionRegions[i],
4122     mSamples
4123 schoenebeck 2394 );
4124     }
4125     }
4126     Layers = orig->Layers;
4127     }
4128 schoenebeck 2
4129    
4130 persson 1627 // *************** MidiRule ***************
4131     // *
4132 schoenebeck 2
4133 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4134     _3ewg->SetPos(36);
4135     Triggers = _3ewg->ReadUint8();
4136     _3ewg->SetPos(40);
4137     ControllerNumber = _3ewg->ReadUint8();
4138     _3ewg->SetPos(46);
4139     for (int i = 0 ; i < Triggers ; i++) {
4140     pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4141     pTriggers[i].Descending = _3ewg->ReadUint8();
4142     pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4143     pTriggers[i].Key = _3ewg->ReadUint8();
4144     pTriggers[i].NoteOff = _3ewg->ReadUint8();
4145     pTriggers[i].Velocity = _3ewg->ReadUint8();
4146     pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4147     _3ewg->ReadUint8();
4148     }
4149 persson 1627 }
4150    
4151 persson 2450 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4152     ControllerNumber(0),
4153     Triggers(0) {
4154     }
4155 persson 1627
4156 persson 2450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4157     pData[32] = 4;
4158     pData[33] = 16;
4159     pData[36] = Triggers;
4160     pData[40] = ControllerNumber;
4161     for (int i = 0 ; i < Triggers ; i++) {
4162     pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4163     pData[47 + i * 8] = pTriggers[i].Descending;
4164     pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4165     pData[49 + i * 8] = pTriggers[i].Key;
4166     pData[50 + i * 8] = pTriggers[i].NoteOff;
4167     pData[51 + i * 8] = pTriggers[i].Velocity;
4168     pData[52 + i * 8] = pTriggers[i].OverridePedal;
4169     }
4170     }
4171    
4172     MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4173     _3ewg->SetPos(36);
4174     LegatoSamples = _3ewg->ReadUint8(); // always 12
4175     _3ewg->SetPos(40);
4176     BypassUseController = _3ewg->ReadUint8();
4177     BypassKey = _3ewg->ReadUint8();
4178     BypassController = _3ewg->ReadUint8();
4179     ThresholdTime = _3ewg->ReadUint16();
4180     _3ewg->ReadInt16();
4181     ReleaseTime = _3ewg->ReadUint16();
4182     _3ewg->ReadInt16();
4183     KeyRange.low = _3ewg->ReadUint8();
4184     KeyRange.high = _3ewg->ReadUint8();
4185     _3ewg->SetPos(64);
4186     ReleaseTriggerKey = _3ewg->ReadUint8();
4187     AltSustain1Key = _3ewg->ReadUint8();
4188     AltSustain2Key = _3ewg->ReadUint8();
4189     }
4190    
4191     MidiRuleLegato::MidiRuleLegato() :
4192     LegatoSamples(12),
4193     BypassUseController(false),
4194     BypassKey(0),
4195     BypassController(1),
4196     ThresholdTime(20),
4197     ReleaseTime(20),
4198     ReleaseTriggerKey(0),
4199     AltSustain1Key(0),
4200     AltSustain2Key(0)
4201     {
4202     KeyRange.low = KeyRange.high = 0;
4203     }
4204    
4205     void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4206     pData[32] = 0;
4207     pData[33] = 16;
4208     pData[36] = LegatoSamples;
4209     pData[40] = BypassUseController;
4210     pData[41] = BypassKey;
4211     pData[42] = BypassController;
4212     store16(&pData[43], ThresholdTime);
4213     store16(&pData[47], ReleaseTime);
4214     pData[51] = KeyRange.low;
4215     pData[52] = KeyRange.high;
4216     pData[64] = ReleaseTriggerKey;
4217     pData[65] = AltSustain1Key;
4218     pData[66] = AltSustain2Key;
4219     }
4220    
4221     MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4222     _3ewg->SetPos(36);
4223     Articulations = _3ewg->ReadUint8();
4224     int flags = _3ewg->ReadUint8();
4225     Polyphonic = flags & 8;
4226     Chained = flags & 4;
4227     Selector = (flags & 2) ? selector_controller :
4228     (flags & 1) ? selector_key_switch : selector_none;
4229     Patterns = _3ewg->ReadUint8();
4230     _3ewg->ReadUint8(); // chosen row
4231     _3ewg->ReadUint8(); // unknown
4232     _3ewg->ReadUint8(); // unknown
4233     _3ewg->ReadUint8(); // unknown
4234     KeySwitchRange.low = _3ewg->ReadUint8();
4235     KeySwitchRange.high = _3ewg->ReadUint8();
4236     Controller = _3ewg->ReadUint8();
4237     PlayRange.low = _3ewg->ReadUint8();
4238     PlayRange.high = _3ewg->ReadUint8();
4239    
4240     int n = std::min(int(Articulations), 32);
4241     for (int i = 0 ; i < n ; i++) {
4242     _3ewg->ReadString(pArticulations[i], 32);
4243     }
4244     _3ewg->SetPos(1072);
4245     n = std::min(int(Patterns), 32);
4246     for (int i = 0 ; i < n ; i++) {
4247     _3ewg->ReadString(pPatterns[i].Name, 16);
4248     pPatterns[i].Size = _3ewg->ReadUint8();
4249     _3ewg->Read(&pPatterns[i][0], 1, 32);
4250     }
4251     }
4252    
4253     MidiRuleAlternator::MidiRuleAlternator() :
4254     Articulations(0),
4255     Patterns(0),
4256     Selector(selector_none),
4257     Controller(0),
4258     Polyphonic(false),
4259     Chained(false)
4260     {
4261     PlayRange.low = PlayRange.high = 0;
4262     KeySwitchRange.low = KeySwitchRange.high = 0;
4263     }
4264    
4265     void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4266     pData[32] = 3;
4267     pData[33] = 16;
4268     pData[36] = Articulations;
4269     pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4270     (Selector == selector_controller ? 2 :
4271     (Selector == selector_key_switch ? 1 : 0));
4272     pData[38] = Patterns;
4273    
4274     pData[43] = KeySwitchRange.low;
4275     pData[44] = KeySwitchRange.high;
4276     pData[45] = Controller;
4277     pData[46] = PlayRange.low;
4278     pData[47] = PlayRange.high;
4279    
4280     char* str = reinterpret_cast<char*>(pData);
4281     int pos = 48;
4282     int n = std::min(int(Articulations), 32);
4283     for (int i = 0 ; i < n ; i++, pos += 32) {
4284     strncpy(&str[pos], pArticulations[i].c_str(), 32);
4285     }
4286    
4287     pos = 1072;
4288     n = std::min(int(Patterns), 32);
4289     for (int i = 0 ; i < n ; i++, pos += 49) {
4290     strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4291     pData[pos + 16] = pPatterns[i].Size;
4292     memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4293     }
4294     }
4295    
4296 schoenebeck 2584 // *************** Script ***************
4297     // *
4298    
4299     Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4300     pGroup = group;
4301     pChunk = ckScri;
4302     if (ckScri) { // object is loaded from file ...
4303     // read header
4304     uint32_t headerSize = ckScri->ReadUint32();
4305     Compression = (Compression_t) ckScri->ReadUint32();
4306     Encoding = (Encoding_t) ckScri->ReadUint32();
4307     Language = (Language_t) ckScri->ReadUint32();
4308     Bypass = (Language_t) ckScri->ReadUint32() & 1;
4309     crc = ckScri->ReadUint32();
4310     uint32_t nameSize = ckScri->ReadUint32();
4311     Name.resize(nameSize, ' ');
4312     for (int i = 0; i < nameSize; ++i)
4313     Name[i] = ckScri->ReadUint8();
4314     // to handle potential future extensions of the header
4315 schoenebeck 2602 ckScri->SetPos(sizeof(int32_t) + headerSize);
4316 schoenebeck 2584 // read actual script data
4317 schoenebeck 3053 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4318 schoenebeck 2584 data.resize(scriptSize);
4319     for (int i = 0; i < scriptSize; ++i)
4320     data[i] = ckScri->ReadUint8();
4321     } else { // this is a new script object, so just initialize it as such ...
4322     Compression = COMPRESSION_NONE;
4323     Encoding = ENCODING_ASCII;
4324     Language = LANGUAGE_NKSP;
4325     Bypass = false;
4326     crc = 0;
4327     Name = "Unnamed Script";
4328     }
4329     }
4330    
4331     Script::~Script() {
4332     }
4333    
4334     /**
4335     * Returns the current script (i.e. as source code) in text format.
4336     */
4337     String Script::GetScriptAsText() {
4338     String s;
4339     s.resize(data.size(), ' ');
4340     memcpy(&s[0], &data[0], data.size());
4341     return s;
4342     }
4343    
4344     /**
4345     * Replaces the current script with the new script source code text given
4346     * by @a text.
4347     *
4348     * @param text - new script source code
4349     */
4350     void Script::SetScriptAsText(const String& text) {
4351     data.resize(text.size());
4352     memcpy(&data[0], &text[0], text.size());
4353     }
4354    
4355 schoenebeck 2682 /**
4356     * Apply this script to the respective RIFF chunks. You have to call
4357     * File::Save() to make changes persistent.
4358     *
4359     * Usually there is absolutely no need to call this method explicitly.
4360     * It will be called automatically when File::Save() was called.
4361     *
4362     * @param pProgress - callback function for progress notification
4363     */
4364     void Script::UpdateChunks(progress_t* pProgress) {
4365 schoenebeck 2584 // recalculate CRC32 check sum
4366     __resetCRC(crc);
4367     __calculateCRC(&data[0], data.size(), crc);
4368 schoenebeck 3115 __finalizeCRC(crc);
4369 schoenebeck 2584 // make sure chunk exists and has the required size
4370 schoenebeck 3053 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4371 schoenebeck 2584 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4372     else pChunk->Resize(chunkSize);
4373     // fill the chunk data to be written to disk
4374     uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4375     int pos = 0;
4376 schoenebeck 3053 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4377 schoenebeck 2584 pos += sizeof(int32_t);
4378     store32(&pData[pos], Compression);
4379     pos += sizeof(int32_t);
4380     store32(&pData[pos], Encoding);
4381     pos += sizeof(int32_t);
4382     store32(&pData[pos], Language);
4383     pos += sizeof(int32_t);
4384     store32(&pData[pos], Bypass ? 1 : 0);
4385     pos += sizeof(int32_t);
4386     store32(&pData[pos], crc);
4387     pos += sizeof(int32_t);
4388 schoenebeck 3053 store32(&pData[pos], (uint32_t) Name.size());
4389 schoenebeck 2584 pos += sizeof(int32_t);
4390     for (int i = 0; i < Name.size(); ++i, ++pos)
4391     pData[pos] = Name[i];
4392     for (int i = 0; i < data.size(); ++i, ++pos)
4393     pData[pos] = data[i];
4394     }
4395    
4396     /**
4397     * Move this script from its current ScriptGroup to another ScriptGroup
4398     * given by @a pGroup.
4399     *
4400     * @param pGroup - script's new group
4401     */
4402     void Script::SetGroup(ScriptGroup* pGroup) {
4403 persson 2836 if (this->pGroup == pGroup) return;
4404 schoenebeck 2584 if (pChunk)
4405     pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4406     this->pGroup = pGroup;
4407     }
4408    
4409 schoenebeck 2601 /**
4410     * Returns the script group this script currently belongs to. Each script
4411     * is a member of exactly one ScriptGroup.
4412     *
4413     * @returns current script group
4414     */
4415     ScriptGroup* Script::GetGroup() const {
4416     return pGroup;
4417     }
4418    
4419 schoenebeck 3117 /**
4420     * Make a (semi) deep copy of the Script object given by @a orig
4421     * and assign it to this object. Note: the ScriptGroup this Script
4422     * object belongs to remains untouched by this call.
4423     *
4424     * @param orig - original Script object to be copied from
4425     */
4426     void Script::CopyAssign(const Script* orig) {
4427     Name = orig->Name;
4428     Compression = orig->Compression;
4429     Encoding = orig->Encoding;
4430     Language = orig->Language;
4431     Bypass = orig->Bypass;
4432     data = orig->data;
4433     }
4434    
4435 schoenebeck 2584 void Script::RemoveAllScriptReferences() {
4436     File* pFile = pGroup->pFile;
4437     for (int i = 0; pFile->GetInstrument(i); ++i) {
4438     Instrument* instr = pFile->GetInstrument(i);
4439     instr->RemoveScript(this);
4440     }
4441     }
4442    
4443     // *************** ScriptGroup ***************
4444     // *
4445    
4446     ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4447     pFile = file;
4448     pList = lstRTIS;
4449     pScripts = NULL;
4450     if (lstRTIS) {
4451     RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4452     ::LoadString(ckName, Name);
4453     } else {
4454     Name = "Default Group";
4455     }
4456     }
4457    
4458     ScriptGroup::~ScriptGroup() {
4459     if (pScripts) {
4460     std::list<Script*>::iterator iter = pScripts->begin();
4461     std::list<Script*>::iterator end = pScripts->end();
4462     while (iter != end) {
4463     delete *iter;
4464     ++iter;
4465     }
4466     delete pScripts;
4467     }
4468     }
4469    
4470 schoenebeck 2682 /**
4471     * Apply this script group to the respective RIFF chunks. You have to call
4472     * File::Save() to make changes persistent.
4473     *
4474     * Usually there is absolutely no need to call this method explicitly.
4475     * It will be called automatically when File::Save() was called.
4476     *
4477     * @param pProgress - callback function for progress notification
4478     */
4479     void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4480 schoenebeck 2584 if (pScripts) {
4481     if (!pList)
4482     pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4483    
4484     // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4485     ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4486    
4487     for (std::list<Script*>::iterator it = pScripts->begin();
4488     it != pScripts->end(); ++it)
4489     {
4490 schoenebeck 2682 (*it)->UpdateChunks(pProgress);
4491 schoenebeck 2584 }
4492     }
4493     }
4494    
4495     /** @brief Get instrument script.
4496     *
4497     * Returns the real-time instrument script with the given index.
4498     *
4499     * @param index - number of the sought script (0..n)
4500     * @returns sought script or NULL if there's no such script
4501     */
4502     Script* ScriptGroup::GetScript(uint index) {
4503     if (!pScripts) LoadScripts();
4504     std::list<Script*>::iterator it = pScripts->begin();
4505     for (uint i = 0; it != pScripts->end(); ++i, ++it)
4506     if (i == index) return *it;
4507     return NULL;
4508     }
4509    
4510     /** @brief Add new instrument script.
4511     *
4512     * Adds a new real-time instrument script to the file. The script is not
4513     * actually used / executed unless it is referenced by an instrument to be
4514     * used. This is similar to samples, which you can add to a file, without
4515     * an instrument necessarily actually using it.
4516     *
4517     * You have to call Save() to make this persistent to the file.
4518     *
4519     * @return new empty script object
4520     */
4521     Script* ScriptGroup::AddScript() {
4522     if (!pScripts) LoadScripts();
4523     Script* pScript = new Script(this, NULL);
4524     pScripts->push_back(pScript);
4525     return pScript;
4526     }
4527    
4528     /** @brief Delete an instrument script.
4529     *
4530     * This will delete the given real-time instrument script. References of
4531     * instruments that are using that script will be removed accordingly.
4532     *
4533     * You have to call Save() to make this persistent to the file.
4534     *
4535     * @param pScript - script to delete
4536     * @throws gig::Exception if given script could not be found
4537     */
4538     void ScriptGroup::DeleteScript(Script* pScript) {
4539     if (!pScripts) LoadScripts();
4540     std::list<Script*>::iterator iter =
4541     find(pScripts->begin(), pScripts->end(), pScript);
4542     if (iter == pScripts->end())
4543     throw gig::Exception("Could not delete script, could not find given script");
4544     pScripts->erase(iter);
4545     pScript->RemoveAllScriptReferences();
4546     if (pScript->pChunk)
4547     pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4548     delete pScript;
4549     }
4550    
4551     void ScriptGroup::LoadScripts() {
4552     if (pScripts) return;
4553     pScripts = new std::list<Script*>;
4554     if (!pList) return;
4555    
4556     for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4557     ck = pList->GetNextSubChunk())
4558     {
4559     if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4560     pScripts->push_back(new Script(this, ck));
4561     }
4562     }
4563     }
4564    
4565 schoenebeck 2 // *************** Instrument ***************
4566     // *
4567    
4568 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4569 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
4570 persson 1180 { CHUNK_ID_INAM, 64 },
4571     { CHUNK_ID_ISFT, 12 },
4572     { 0, 0 }
4573     };
4574 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
4575 persson 918
4576 schoenebeck 2 // Initialization
4577     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4578 persson 1182 EffectSend = 0;
4579     Attenuation = 0;
4580     FineTune = 0;
4581 schoenebeck 3112 PitchbendRange = 2;
4582 persson 1182 PianoReleaseMode = false;
4583     DimensionKeyRange.low = 0;
4584     DimensionKeyRange.high = 0;
4585 persson 1678 pMidiRules = new MidiRule*[3];
4586     pMidiRules[0] = NULL;
4587 schoenebeck 2584 pScriptRefs = NULL;
4588 schoenebeck 2
4589     // Loading
4590     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4591     if (lart) {
4592     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4593     if (_3ewg) {
4594     EffectSend = _3ewg->ReadUint16();
4595     Attenuation = _3ewg->ReadInt32();
4596     FineTune = _3ewg->ReadInt16();
4597     PitchbendRange = _3ewg->ReadInt16();
4598     uint8_t dimkeystart = _3ewg->ReadUint8();
4599     PianoReleaseMode = dimkeystart & 0x01;
4600     DimensionKeyRange.low = dimkeystart >> 1;
4601     DimensionKeyRange.high = _3ewg->ReadUint8();
4602 persson 1627
4603     if (_3ewg->GetSize() > 32) {
4604     // read MIDI rules
4605 persson 1678 int i = 0;
4606 persson 1627 _3ewg->SetPos(32);
4607     uint8_t id1 = _3ewg->ReadUint8();
4608     uint8_t id2 = _3ewg->ReadUint8();
4609    
4610 persson 2450 if (id2 == 16) {
4611     if (id1 == 4) {
4612     pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4613     } else if (id1 == 0) {
4614     pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4615     } else if (id1 == 3) {
4616     pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4617     } else {
4618     pMidiRules[i++] = new MidiRuleUnknown;
4619     }
4620 persson 1627 }
4621 persson 2450 else if (id1 != 0 || id2 != 0) {
4622     pMidiRules[i++] = new MidiRuleUnknown;
4623     }
4624 persson 1627 //TODO: all the other types of rules
4625 persson 1678
4626     pMidiRules[i] = NULL;
4627 persson 1627 }
4628 schoenebeck 2 }
4629     }
4630    
4631 schoenebeck 1524 if (pFile->GetAutoLoad()) {
4632     if (!pRegions) pRegions = new RegionList;
4633     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4634     if (lrgn) {
4635     RIFF::List* rgn = lrgn->GetFirstSubList();
4636     while (rgn) {
4637     if (rgn->GetListType() == LIST_TYPE_RGN) {
4638     __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4639     pRegions->push_back(new Region(this, rgn));
4640     }
4641     rgn = lrgn->GetNextSubList();
4642 schoenebeck 809 }
4643 schoenebeck 1524 // Creating Region Key Table for fast lookup
4644     UpdateRegionKeyTable();
4645 schoenebeck 2 }
4646     }
4647    
4648 schoenebeck 2584 // own gig format extensions
4649     RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4650     if (lst3LS) {
4651     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4652     if (ckSCSL) {
4653 schoenebeck 2609 int headerSize = ckSCSL->ReadUint32();
4654     int slotCount = ckSCSL->ReadUint32();
4655     if (slotCount) {
4656     int slotSize = ckSCSL->ReadUint32();
4657     ckSCSL->SetPos(headerSize); // in case of future header extensions
4658     int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4659     for (int i = 0; i < slotCount; ++i) {
4660     _ScriptPooolEntry e;
4661     e.fileOffset = ckSCSL->ReadUint32();
4662     e.bypass = ckSCSL->ReadUint32() & 1;
4663     if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4664     scriptPoolFileOffsets.push_back(e);
4665     }
4666 schoenebeck 2584 }
4667     }
4668     }
4669    
4670 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
4671     }
4672    
4673     void Instrument::UpdateRegionKeyTable() {
4674 schoenebeck 1335 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4675 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
4676     RegionList::iterator end = pRegions->end();
4677     for (; iter != end; ++iter) {
4678     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4679     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4680     RegionKeyTable[iKey] = pRegion;
4681 schoenebeck 2 }
4682     }
4683     }
4684    
4685     Instrument::~Instrument() {
4686 persson 1950 for (int i = 0 ; pMidiRules[i] ; i++) {
4687     delete pMidiRules[i];
4688     }
4689 persson 1678 delete[] pMidiRules;
4690 schoenebeck 2584 if (pScriptRefs) delete pScriptRefs;
4691 schoenebeck 2 }
4692    
4693     /**
4694 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
4695     * You have to call File::Save() to make changes persistent.
4696     *
4697     * Usually there is absolutely no need to call this method explicitly.
4698     * It will be called automatically when File::Save() was called.
4699     *
4700 schoenebeck 2682 * @param pProgress - callback function for progress notification
4701 schoenebeck 809 * @throws gig::Exception if samples cannot be dereferenced
4702     */
4703 schoenebeck 2682 void Instrument::UpdateChunks(progress_t* pProgress) {
4704 schoenebeck 809 // first update base classes' chunks
4705 schoenebeck 2682 DLS::Instrument::UpdateChunks(pProgress);
4706 schoenebeck 809
4707     // update Regions' chunks
4708 schoenebeck 823 {
4709     RegionList::iterator iter = pRegions->begin();
4710     RegionList::iterator end = pRegions->end();
4711     for (; iter != end; ++iter)
4712 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
4713 schoenebeck 823 }
4714 schoenebeck 809
4715     // make sure 'lart' RIFF list chunk exists
4716     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4717     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4718     // make sure '3ewg' RIFF chunk exists
4719     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4720 persson 1264 if (!_3ewg) {
4721     File* pFile = (File*) GetParent();
4722    
4723     // 3ewg is bigger in gig3, as it includes the iMIDI rules
4724     int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4725     _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4726     memset(_3ewg->LoadChunkData(), 0, size);
4727     }
4728 schoenebeck 809 // update '3ewg' RIFF chunk
4729     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4730 persson 1179 store16(&pData[0], EffectSend);
4731     store32(&pData[2], Attenuation);
4732     store16(&pData[6], FineTune);
4733     store16(&pData[8], PitchbendRange);
4734 persson 1266 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4735 schoenebeck 809 DimensionKeyRange.low << 1;
4736 persson 1179 pData[10] = dimkeystart;
4737     pData[11] = DimensionKeyRange.high;
4738 persson 2450
4739     if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4740     pData[32] = 0;
4741     pData[33] = 0;
4742     } else {
4743     for (int i = 0 ; pMidiRules[i] ; i++) {
4744     pMidiRules[i]->UpdateChunks(pData);
4745     }
4746     }
4747 schoenebeck 2584
4748     // own gig format extensions
4749 schoenebeck 2648 if (ScriptSlotCount()) {
4750     // make sure we have converted the original loaded script file
4751     // offsets into valid Script object pointers
4752     LoadScripts();
4753    
4754 schoenebeck 2584 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4755     if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4756 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4757 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4758     const int slotSize = 2 * sizeof(uint32_t);
4759     const int totalChunkSize = headerSize + slotCount * slotSize;
4760 schoenebeck 2584 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4761 schoenebeck 2609 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4762     else ckSCSL->Resize(totalChunkSize);
4763 schoenebeck 2584 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4764 schoenebeck 2609 int pos = 0;
4765     store32(&pData[pos], headerSize);
4766     pos += sizeof(uint32_t);
4767     store32(&pData[pos], slotCount);
4768     pos += sizeof(uint32_t);
4769     store32(&pData[pos], slotSize);
4770     pos += sizeof(uint32_t);
4771     for (int i = 0; i < slotCount; ++i) {
4772     // arbitrary value, the actual file offset will be updated in
4773     // UpdateScriptFileOffsets() after the file has been resized
4774     int bogusFileOffset = 0;
4775     store32(&pData[pos], bogusFileOffset);
4776 schoenebeck 2584 pos += sizeof(uint32_t);
4777     store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4778     pos += sizeof(uint32_t);
4779     }
4780 schoenebeck 2648 } else {
4781     // no script slots, so get rid of any LS custom RIFF chunks (if any)
4782     RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4783     if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4784 schoenebeck 2584 }
4785 schoenebeck 809 }
4786    
4787 schoenebeck 2609 void Instrument::UpdateScriptFileOffsets() {
4788     // own gig format extensions
4789 schoenebeck 2667 if (pScriptRefs && pScriptRefs->size() > 0) {
4790 schoenebeck 2609 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4791     RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4792 schoenebeck 3053 const int slotCount = (int) pScriptRefs->size();
4793 schoenebeck 2609 const int headerSize = 3 * sizeof(uint32_t);
4794     ckSCSL->SetPos(headerSize);
4795     for (int i = 0; i < slotCount; ++i) {
4796 schoenebeck 3053 uint32_t fileOffset = uint32_t(
4797 schoenebeck 2609 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4798     (*pScriptRefs)[i].script->pChunk->GetPos() -
4799 schoenebeck 3053 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4800     );
4801 schoenebeck 2609 ckSCSL->WriteUint32(&fileOffset);
4802     // jump over flags entry (containing the bypass flag)
4803     ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4804     }
4805     }
4806     }
4807    
4808 schoenebeck 809 /**
4809 schoenebeck 2 * Returns the appropriate Region for a triggered note.
4810     *
4811     * @param Key MIDI Key number of triggered note / key (0 - 127)
4812     * @returns pointer adress to the appropriate Region or NULL if there
4813     * there is no Region defined for the given \a Key
4814     */
4815     Region* Instrument::GetRegion(unsigned int Key) {
4816 schoenebeck 1335 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4817 schoenebeck 2 return RegionKeyTable[Key];
4818 schoenebeck 823
4819 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
4820     if (Key <= pRegions[i]->KeyRange.high &&
4821     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4822     }
4823     return NULL;*/
4824     }
4825    
4826     /**
4827     * Returns the first Region of the instrument. You have to call this
4828     * method once before you use GetNextRegion().
4829     *
4830     * @returns pointer address to first region or NULL if there is none
4831     * @see GetNextRegion()
4832     */
4833     Region* Instrument::GetFirstRegion() {
4834 schoenebeck 823 if (!pRegions) return NULL;
4835     RegionsIterator = pRegions->begin();
4836     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4837 schoenebeck 2 }
4838    
4839     /**
4840     * Returns the next Region of the instrument. You have to call
4841     * GetFirstRegion() once before you can use this method. By calling this
4842     * method multiple times it iterates through the available Regions.
4843     *
4844     * @returns pointer address to the next region or NULL if end reached
4845     * @see GetFirstRegion()
4846     */
4847     Region* Instrument::GetNextRegion() {
4848 schoenebeck 823 if (!pRegions) return NULL;
4849     RegionsIterator++;
4850     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4851 schoenebeck 2 }
4852    
4853 schoenebeck 809 Region* Instrument::AddRegion() {
4854     // create new Region object (and its RIFF chunks)
4855     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4856     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4857     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4858     Region* pNewRegion = new Region(this, rgn);
4859 schoenebeck 823 pRegions->push_back(pNewRegion);
4860 schoenebeck 3053 Regions = (uint32_t) pRegions->size();
4861 schoenebeck 809 // update Region key table for fast lookup
4862     UpdateRegionKeyTable();
4863     // done
4864     return pNewRegion;
4865     }
4866 schoenebeck 2
4867 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
4868     if (!pRegions) return;
4869 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4870 schoenebeck 809 // update Region key table for fast lookup
4871     UpdateRegionKeyTable();
4872     }
4873 schoenebeck 2
4874 persson 1627 /**
4875 schoenebeck 2700 * Move this instrument at the position before @arg dst.
4876     *
4877     * This method can be used to reorder the sequence of instruments in a
4878     * .gig file. This might be helpful especially on large .gig files which
4879     * contain a large number of instruments within the same .gig file. So
4880     * grouping such instruments to similar ones, can help to keep track of them
4881     * when working with such complex .gig files.
4882     *
4883     * When calling this method, this instrument will be removed from in its
4884     * current position in the instruments list and moved to the requested
4885     * target position provided by @param dst. You may also pass NULL as
4886     * argument to this method, in that case this intrument will be moved to the
4887     * very end of the .gig file's instrument list.
4888     *
4889     * You have to call Save() to make the order change persistent to the .gig
4890     * file.
4891     *
4892     * Currently this method is limited to moving the instrument within the same
4893     * .gig file. Trying to move it to another .gig file by calling this method
4894     * will throw an exception.
4895     *
4896     * @param dst - destination instrument at which this instrument will be
4897     * moved to, or pass NULL for moving to end of list
4898     * @throw gig::Exception if this instrument and target instrument are not
4899     * part of the same file
4900     */
4901     void Instrument::MoveTo(Instrument* dst) {
4902     if (dst && GetParent() != dst->GetParent())
4903     throw Exception(
4904     "gig::Instrument::MoveTo() can only be used for moving within "
4905     "the same gig file."
4906     );
4907    
4908     File* pFile = (File*) GetParent();
4909    
4910     // move this instrument within the instrument list
4911     {
4912 persson 2836 File::InstrumentList& list = *pFile->pInstruments;
4913 schoenebeck 2700
4914 persson 2836 File::InstrumentList::iterator itFrom =
4915 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4916    
4917 persson 2836 File::InstrumentList::iterator itTo =
4918 schoenebeck 2700 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4919    
4920     list.splice(itTo, list, itFrom);
4921     }
4922    
4923     // move the instrument's actual list RIFF chunk appropriately
4924     RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4925     lstCkInstruments->MoveSubChunk(
4926     this->pCkInstrument,
4927 schoenebeck 2702 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4928 schoenebeck 2700 );
4929     }
4930    
4931     /**
4932 persson 1678 * Returns a MIDI rule of the instrument.
4933 persson 1627 *
4934     * The list of MIDI rules, at least in gig v3, always contains at
4935     * most two rules. The second rule can only be the DEF filter
4936     * (which currently isn't supported by libgig).
4937     *
4938 persson 1678 * @param i - MIDI rule number
4939     * @returns pointer address to MIDI rule number i or NULL if there is none
4940 persson 1627 */
4941 persson 1678 MidiRule* Instrument::GetMidiRule(int i) {
4942     return pMidiRules[i];
4943 persson 1627 }
4944 persson 2450
4945 schoenebeck 2394 /**
4946 persson 2450 * Adds the "controller trigger" MIDI rule to the instrument.
4947     *
4948     * @returns the new MIDI rule
4949     */
4950     MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4951     delete pMidiRules[0];
4952     MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4953     pMidiRules[0] = r;
4954     pMidiRules[1] = 0;
4955     return r;
4956     }
4957    
4958     /**
4959     * Adds the legato MIDI rule to the instrument.
4960     *
4961     * @returns the new MIDI rule
4962     */
4963     MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4964     delete pMidiRules[0];
4965     MidiRuleLegato* r = new MidiRuleLegato;
4966     pMidiRules[0] = r;
4967     pMidiRules[1] = 0;
4968     return r;
4969     }
4970    
4971     /**
4972     * Adds the alternator MIDI rule to the instrument.
4973     *
4974     * @returns the new MIDI rule
4975     */
4976     MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4977     delete pMidiRules[0];
4978     MidiRuleAlternator* r = new MidiRuleAlternator;
4979     pMidiRules[0] = r;
4980     pMidiRules[1] = 0;
4981     return r;
4982     }
4983    
4984     /**
4985     * Deletes a MIDI rule from the instrument.
4986     *
4987     * @param i - MIDI rule number
4988     */
4989     void Instrument::DeleteMidiRule(int i) {
4990     delete pMidiRules[i];
4991     pMidiRules[i] = 0;
4992     }
4993    
4994 schoenebeck 2584 void Instrument::LoadScripts() {
4995     if (pScriptRefs) return;
4996     pScriptRefs = new std::vector<_ScriptPooolRef>;
4997     if (scriptPoolFileOffsets.empty()) return;
4998     File* pFile = (File*) GetParent();
4999     for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5000 schoenebeck 2609 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5001 schoenebeck 2584 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5002     ScriptGroup* group = pFile->GetScriptGroup(i);
5003     for (uint s = 0; group->GetScript(s); ++s) {
5004     Script* script = group->GetScript(s);
5005     if (script->pChunk) {
5006 schoenebeck 3053 uint32_t offset = uint32_t(
5007     script->pChunk->GetFilePos() -
5008     script->pChunk->GetPos() -
5009     CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5010     );
5011 schoenebeck 2609 if (offset == soughtOffset)
5012 schoenebeck 2584 {
5013     _ScriptPooolRef ref;
5014     ref.script = script;
5015     ref.bypass = scriptPoolFileOffsets[k].bypass;
5016     pScriptRefs->push_back(ref);
5017     break;
5018     }
5019     }
5020     }
5021     }
5022     }
5023     // we don't need that anymore
5024     scriptPoolFileOffsets.clear();
5025     }
5026    
5027 schoenebeck 2593 /** @brief Get instrument script (gig format extension).
5028 schoenebeck 2584 *
5029 schoenebeck 2593 * Returns the real-time instrument script of instrument script slot
5030     * @a index.
5031     *
5032     * @note This is an own format extension which did not exist i.e. in the
5033     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5034     * gigedit.
5035     *
5036     * @param index - instrument script slot index
5037     * @returns script or NULL if index is out of bounds
5038     */
5039     Script* Instrument::GetScriptOfSlot(uint index) {
5040     LoadScripts();
5041     if (index >= pScriptRefs->size()) return NULL;
5042     return pScriptRefs->at(index).script;
5043     }
5044    
5045     /** @brief Add new instrument script slot (gig format extension).
5046     *
5047 schoenebeck 2584 * Add the given real-time instrument script reference to this instrument,
5048     * which shall be executed by the sampler for for this instrument. The
5049     * script will be added to the end of the script list of this instrument.
5050     * The positions of the scripts in the Instrument's Script list are
5051     * relevant, because they define in which order they shall be executed by
5052     * the sampler. For this reason it is also legal to add the same script
5053     * twice to an instrument, for example you might have a script called
5054     * "MyFilter" which performs an event filter task, and you might have
5055     * another script called "MyNoteTrigger" which triggers new notes, then you
5056     * might for example have the following list of scripts on the instrument:
5057     *
5058     * 1. Script "MyFilter"
5059     * 2. Script "MyNoteTrigger"
5060     * 3. Script "MyFilter"
5061     *
5062     * Which would make sense, because the 2nd script launched new events, which
5063     * you might need to filter as well.
5064     *
5065     * There are two ways to disable / "bypass" scripts. You can either disable
5066     * a script locally for the respective script slot on an instrument (i.e. by
5067     * passing @c false to the 2nd argument of this method, or by calling
5068     * SetScriptBypassed()). Or you can disable a script globally for all slots
5069     * and all instruments by setting Script::Bypass.
5070     *
5071     * @note This is an own format extension which did not exist i.e. in the
5072     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5073     * gigedit.
5074     *
5075     * @param pScript - script that shall be executed for this instrument
5076     * @param bypass - if enabled, the sampler shall skip executing this
5077     * script (in the respective list position)
5078     * @see SetScriptBypassed()
5079     */
5080     void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5081     LoadScripts();
5082     _ScriptPooolRef ref = { pScript, bypass };
5083     pScriptRefs->push_back(ref);
5084     }
5085    
5086     /** @brief Flip two script slots with each other (gig format extension).
5087     *
5088     * Swaps the position of the two given scripts in the Instrument's Script
5089     * list. The positions of the scripts in the Instrument's Script list are
5090     * relevant, because they define in which order they shall be executed by
5091     * the sampler.
5092     *
5093     * @note This is an own format extension which did not exist i.e. in the
5094     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5095     * gigedit.
5096     *
5097     * @param index1 - index of the first script slot to swap
5098     * @param index2 - index of the second script slot to swap
5099     */
5100     void Instrument::SwapScriptSlots(uint index1, uint index2) {
5101     LoadScripts();
5102     if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5103     return;
5104     _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5105     (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5106     (*pScriptRefs)[index2] = tmp;
5107     }
5108    
5109     /** @brief Remove script slot.
5110     *
5111     * Removes the script slot with the given slot index.
5112     *
5113     * @param index - index of script slot to remove
5114     */
5115     void Instrument::RemoveScriptSlot(uint index) {
5116     LoadScripts();
5117     if (index >= pScriptRefs->size()) return;
5118     pScriptRefs->erase( pScriptRefs->begin() + index );
5119     }
5120    
5121     /** @brief Remove reference to given Script (gig format extension).
5122     *
5123     * This will remove all script slots on the instrument which are referencing
5124     * the given script.
5125     *
5126     * @note This is an own format extension which did not exist i.e. in the
5127     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5128     * gigedit.
5129     *
5130     * @param pScript - script reference to remove from this instrument
5131     * @see RemoveScriptSlot()
5132     */
5133     void Instrument::RemoveScript(Script* pScript) {
5134     LoadScripts();
5135 schoenebeck 3053 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5136 schoenebeck 2584 if ((*pScriptRefs)[i].script == pScript) {
5137     pScriptRefs->erase( pScriptRefs->begin() + i );
5138     }
5139     }
5140     }
5141    
5142     /** @brief Instrument's amount of script slots.
5143     *
5144     * This method returns the amount of script slots this instrument currently
5145     * uses.
5146     *
5147     * A script slot is a reference of a real-time instrument script to be
5148     * executed by the sampler. The scripts will be executed by the sampler in
5149     * sequence of the slots. One (same) script may be referenced multiple
5150     * times in different slots.
5151     *
5152     * @note This is an own format extension which did not exist i.e. in the
5153     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5154     * gigedit.
5155     */
5156     uint Instrument::ScriptSlotCount() const {
5157 schoenebeck 3053 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5158 schoenebeck 2584 }
5159    
5160     /** @brief Whether script execution shall be skipped.
5161     *
5162     * Defines locally for the Script reference slot in the Instrument's Script
5163     * list, whether the script shall be skipped by the sampler regarding
5164     * execution.
5165     *
5166     * It is also possible to ignore exeuction of the script globally, for all
5167     * slots and for all instruments by setting Script::Bypass.
5168     *
5169     * @note This is an own format extension which did not exist i.e. in the
5170     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5171     * gigedit.
5172     *
5173     * @param index - index of the script slot on this instrument
5174     * @see Script::Bypass
5175     */
5176     bool Instrument::IsScriptSlotBypassed(uint index) {
5177     if (index >= ScriptSlotCount()) return false;
5178     return pScriptRefs ? pScriptRefs->at(index).bypass
5179     : scriptPoolFileOffsets.at(index).bypass;
5180    
5181     }
5182    
5183     /** @brief Defines whether execution shall be skipped.
5184     *
5185     * You can call this method to define locally whether or whether not the
5186     * given script slot shall be executed by the sampler.
5187     *
5188     * @note This is an own format extension which did not exist i.e. in the
5189     * GigaStudio 4 software. It will currently only work with LinuxSampler and
5190     * gigedit.
5191     *
5192     * @param index - script slot index on this instrument
5193     * @param bBypass - if true, the script slot will be skipped by the sampler
5194     * @see Script::Bypass
5195     */
5196     void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5197     if (index >= ScriptSlotCount()) return;
5198     if (pScriptRefs)
5199     pScriptRefs->at(index).bypass = bBypass;
5200     else
5201     scriptPoolFileOffsets.at(index).bypass = bBypass;
5202     }
5203    
5204 persson 2450 /**
5205 schoenebeck 2394 * Make a (semi) deep copy of the Instrument object given by @a orig
5206     * and assign it to this object.
5207     *
5208     * Note that all sample pointers referenced by @a orig are simply copied as
5209     * memory address. Thus the respective samples are shared, not duplicated!
5210     *
5211     * @param orig - original Instrument object to be copied from
5212     */
5213     void Instrument::CopyAssign(const Instrument* orig) {
5214 schoenebeck 2482 CopyAssign(orig, NULL);
5215     }
5216    
5217     /**
5218     * Make a (semi) deep copy of the Instrument object given by @a orig
5219     * and assign it to this object.
5220     *
5221     * @param orig - original Instrument object to be copied from
5222     * @param mSamples - crosslink map between the foreign file's samples and
5223     * this file's samples
5224     */
5225     void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5226 schoenebeck 2394 // handle base class
5227     // (without copying DLS region stuff)
5228     DLS::Instrument::CopyAssignCore(orig);
5229    
5230     // handle own member variables
5231     Attenuation = orig->Attenuation;
5232     EffectSend = orig->EffectSend;
5233     FineTune = orig->FineTune;
5234     PitchbendRange = orig->PitchbendRange;
5235     PianoReleaseMode = orig->PianoReleaseMode;
5236     DimensionKeyRange = orig->DimensionKeyRange;
5237 schoenebeck 2584 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5238     pScriptRefs = orig->pScriptRefs;
5239 schoenebeck 2394
5240     // free old midi rules
5241     for (int i = 0 ; pMidiRules[i] ; i++) {
5242     delete pMidiRules[i];
5243     }
5244     //TODO: MIDI rule copying
5245     pMidiRules[0] = NULL;
5246    
5247     // delete all old regions
5248     while (Regions) DeleteRegion(GetFirstRegion());
5249     // create new regions and copy them from original
5250     {
5251     RegionList::const_iterator it = orig->pRegions->begin();
5252     for (int i = 0; i < orig->Regions; ++i, ++it) {
5253     Region* dstRgn = AddRegion();
5254     //NOTE: Region does semi-deep copy !
5255     dstRgn->CopyAssign(
5256 schoenebeck 2482 static_cast<gig::Region*>(*it),
5257     mSamples
5258 schoenebeck 2394 );
5259     }
5260     }
5261 schoenebeck 809
5262 schoenebeck 2394 UpdateRegionKeyTable();
5263     }
5264 schoenebeck 809
5265 schoenebeck 2394
5266 schoenebeck 929 // *************** Group ***************
5267     // *
5268    
5269     /** @brief Constructor.
5270     *
5271 schoenebeck 930 * @param file - pointer to the gig::File object
5272     * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5273     * NULL if this is a new Group
5274 schoenebeck 929 */
5275 schoenebeck 930 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5276 schoenebeck 929 pFile = file;
5277     pNameChunk = ck3gnm;
5278     ::LoadString(pNameChunk, Name);
5279     }
5280    
5281     Group::~Group() {
5282 schoenebeck 1099 // remove the chunk associated with this group (if any)
5283     if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5284 schoenebeck 929 }
5285    
5286     /** @brief Update chunks with current group settings.
5287     *
5288 schoenebeck 1098 * Apply current Group field values to the respective chunks. You have
5289     * to call File::Save() to make changes persistent.
5290     *
5291     * Usually there is absolutely no need to call this method explicitly.
5292     * It will be called automatically when File::Save() was called.
5293 schoenebeck 2682 *
5294     * @param pProgress - callback function for progress notification
5295 schoenebeck 929 */
5296 schoenebeck 2682 void Group::UpdateChunks(progress_t* pProgress) {
5297 schoenebeck 929 // make sure <3gri> and <3gnl> list chunks exist
5298 schoenebeck 930 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5299 persson 1192 if (!_3gri) {
5300     _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5301     pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5302     }
5303 schoenebeck 929 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5304 persson 1182 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5305 persson 1266
5306     if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5307     // v3 has a fixed list of 128 strings, find a free one
5308     for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5309     if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5310     pNameChunk = ck;
5311     break;
5312     }
5313     }
5314     }
5315    
5316 schoenebeck 929 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5317     ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5318     }
5319    
5320 schoenebeck 930 /**
5321     * Returns the first Sample of this Group. You have to call this method
5322     * once before you use GetNextSample().
5323     *
5324     * <b>Notice:</b> this method might block for a long time, in case the
5325     * samples of this .gig file were not scanned yet
5326     *
5327     * @returns pointer address to first Sample or NULL if there is none
5328     * applied to this Group
5329     * @see GetNextSample()
5330     */
5331     Sample* Group::GetFirstSample() {
5332     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5333     for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5334     if (pSample->GetGroup() == this) return pSample;
5335     }
5336     return NULL;
5337     }
5338 schoenebeck 929
5339 schoenebeck 930 /**
5340     * Returns the next Sample of the Group. You have to call
5341     * GetFirstSample() once before you can use this method. By calling this
5342     * method multiple times it iterates through the Samples assigned to
5343     * this Group.
5344     *
5345     * @returns pointer address to the next Sample of this Group or NULL if
5346     * end reached
5347     * @see GetFirstSample()
5348     */
5349     Sample* Group::GetNextSample() {
5350     // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5351     for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5352     if (pSample->GetGroup() == this) return pSample;
5353     }
5354     return NULL;
5355     }
5356 schoenebeck 929
5357 schoenebeck 930 /**
5358     * Move Sample given by \a pSample from another Group to this Group.
5359     */
5360     void Group::AddSample(Sample* pSample) {
5361     pSample->pGroup = this;
5362     }
5363    
5364     /**
5365     * Move all members of this group to another group (preferably the 1st
5366     * one except this). This method is called explicitly by
5367     * File::DeleteGroup() thus when a Group was deleted. This code was
5368     * intentionally not placed in the destructor!
5369     */
5370     void Group::MoveAll() {
5371     // get "that" other group first
5372     Group* pOtherGroup = NULL;
5373     for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5374     if (pOtherGroup != this) break;
5375     }
5376     if (!pOtherGroup) throw Exception(
5377     "Could not move samples to another group, since there is no "
5378     "other Group. This is a bug, report it!"
5379     );
5380     // now move all samples of this group to the other group
5381     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5382     pOtherGroup->AddSample(pSample);
5383     }
5384     }
5385    
5386    
5387    
5388 schoenebeck 2 // *************** File ***************
5389     // *
5390    
5391 schoenebeck 1384 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5392 persson 1199 const DLS::version_t File::VERSION_2 = {
5393     0, 2, 19980628 & 0xffff, 19980628 >> 16
5394     };
5395    
5396 schoenebeck 1384 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5397 persson 1199 const DLS::version_t File::VERSION_3 = {
5398     0, 3, 20030331 & 0xffff, 20030331 >> 16
5399     };
5400    
5401 schoenebeck 1416 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5402 persson 1180 { CHUNK_ID_IARL, 256 },
5403     { CHUNK_ID_IART, 128 },
5404     { CHUNK_ID_ICMS, 128 },
5405     { CHUNK_ID_ICMT, 1024 },
5406     { CHUNK_ID_ICOP, 128 },
5407     { CHUNK_ID_ICRD, 128 },
5408     { CHUNK_ID_IENG, 128 },
5409     { CHUNK_ID_IGNR, 128 },
5410     { CHUNK_ID_IKEY, 128 },
5411     { CHUNK_ID_IMED, 128 },
5412     { CHUNK_ID_INAM, 128 },
5413     { CHUNK_ID_IPRD, 128 },
5414     { CHUNK_ID_ISBJ, 128 },
5415     { CHUNK_ID_ISFT, 128 },
5416     { CHUNK_ID_ISRC, 128 },
5417     { CHUNK_ID_ISRF, 128 },
5418     { CHUNK_ID_ITCH, 128 },
5419     { 0, 0 }
5420     };
5421    
5422 schoenebeck 809 File::File() : DLS::File() {
5423 schoenebeck 1524 bAutoLoad = true;
5424 persson 1264 *pVersion = VERSION_3;
5425 schoenebeck 929 pGroups = NULL;
5426 schoenebeck 2584 pScriptGroups = NULL;
5427 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5428 persson 1182 pInfo->ArchivalLocation = String(256, ' ');
5429 persson 1192
5430     // add some mandatory chunks to get the file chunks in right
5431     // order (INFO chunk will be moved to first position later)
5432     pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5433     pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5434 persson 1209 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5435    
5436     GenerateDLSID();
5437 schoenebeck 809 }
5438    
5439 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5440 schoenebeck 1524 bAutoLoad = true;
5441 schoenebeck 929 pGroups = NULL;
5442 schoenebeck 2584 pScriptGroups = NULL;
5443 schoenebeck 1416 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5444 schoenebeck 2 }
5445    
5446 schoenebeck 929 File::~File() {
5447     if (pGroups) {
5448     std::list<Group*>::iterator iter = pGroups->begin();
5449     std::list<Group*>::iterator end = pGroups->end();
5450     while (iter != end) {
5451     delete *iter;
5452     ++iter;
5453     }
5454     delete pGroups;
5455     }
5456 schoenebeck 2584 if (pScriptGroups) {
5457     std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5458     std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5459     while (iter != end) {
5460     delete *iter;
5461     ++iter;
5462     }
5463     delete pScriptGroups;
5464     }
5465 schoenebeck 929 }
5466    
5467 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
5468     if (!pSamples) LoadSamples(pProgress);
5469 schoenebeck 2 if (!pSamples) return NULL;
5470     SamplesIterator = pSamples->begin();
5471     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5472     }
5473    
5474     Sample* File::GetNextSample() {
5475     if (!pSamples) return NULL;
5476     SamplesIterator++;
5477     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5478     }
5479 schoenebeck 2482
5480     /**
5481     * Returns Sample object of @a index.
5482     *
5483     * @returns sample object or NULL if index is out of bounds
5484     */
5485     Sample* File::GetSample(uint index) {
5486     if (!pSamples) LoadSamples();
5487     if (!pSamples) return NULL;
5488     DLS::File::SampleList::iterator it = pSamples->begin();
5489     for (int i = 0; i < index; ++i) {
5490     ++it;
5491     if (it == pSamples->end()) return NULL;
5492     }
5493     if (it == pSamples->end()) return NULL;
5494     return static_cast<gig::Sample*>( *it );
5495     }
5496 schoenebeck 2
5497 schoenebeck 809 /** @brief Add a new sample.
5498     *
5499     * This will create a new Sample object for the gig file. You have to
5500     * call Save() to make this persistent to the file.
5501     *
5502     * @returns pointer to new Sample object
5503     */
5504     Sample* File::AddSample() {
5505     if (!pSamples) LoadSamples();
5506     __ensureMandatoryChunksExist();
5507     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5508     // create new Sample object and its respective 'wave' list chunk
5509     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5510     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5511 persson 1192
5512     // add mandatory chunks to get the chunks in right order
5513     wave->AddSubChunk(CHUNK_ID_FMT, 16);
5514     wave->AddSubList(LIST_TYPE_INFO);
5515    
5516 schoenebeck 809 pSamples->push_back(pSample);
5517     return pSample;
5518     }
5519    
5520     /** @brief Delete a sample.
5521     *
5522 schoenebeck 1292 * This will delete the given Sample object from the gig file. Any
5523     * references to this sample from Regions and DimensionRegions will be
5524     * removed. You have to call Save() to make this persistent to the file.
5525 schoenebeck 809 *
5526     * @param pSample - sample to delete
5527     * @throws gig::Exception if given sample could not be found
5528     */
5529     void File::DeleteSample(Sample* pSample) {
5530 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5531     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5532 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5533 schoenebeck 1083 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5534 schoenebeck 809 pSamples->erase(iter);
5535     delete pSample;
5536 persson 1266
5537 persson 1678 SampleList::iterator tmp = SamplesIterator;
5538 persson 1266 // remove all references to the sample
5539     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5540     instrument = GetNextInstrument()) {
5541     for (Region* region = instrument->GetFirstRegion() ; region ;
5542     region = instrument->GetNextRegion()) {
5543    
5544     if (region->GetSample() == pSample) region->SetSample(NULL);
5545    
5546     for (int i = 0 ; i < region->DimensionRegions ; i++) {
5547     gig::DimensionRegion *d = region->pDimensionRegions[i];
5548     if (d->pSample == pSample) d->pSample = NULL;
5549     }
5550     }
5551     }
5552 persson 1678 SamplesIterator = tmp; // restore iterator
5553 schoenebeck 809 }
5554    
5555 schoenebeck 823 void File::LoadSamples() {
5556     LoadSamples(NULL);
5557     }
5558    
5559 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
5560 schoenebeck 930 // Groups must be loaded before samples, because samples will try
5561     // to resolve the group they belong to
5562 schoenebeck 1158 if (!pGroups) LoadGroups();
5563 schoenebeck 930
5564 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
5565    
5566 persson 666 RIFF::File* file = pRIFF;
5567 schoenebeck 515
5568 persson 666 // just for progress calculation
5569     int iSampleIndex = 0;
5570     int iTotalSamples = WavePoolCount;
5571 schoenebeck 515
5572 persson 666 // check if samples should be loaded from extension files
5573 schoenebeck 2913 // (only for old gig files < 2 GB)
5574 persson 666 int lastFileNo = 0;
5575 schoenebeck 2913 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5576 schoenebeck 2912 for (int i = 0 ; i < WavePoolCount ; i++) {
5577     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5578     }
5579 persson 666 }
5580 schoenebeck 780 String name(pRIFF->GetFileName());
5581 schoenebeck 3053 int nameLen = (int) name.length();
5582 persson 666 char suffix[6];
5583 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5584 schoenebeck 515
5585 persson 666 for (int fileNo = 0 ; ; ) {
5586     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5587     if (wvpl) {
5588 schoenebeck 2912 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5589 persson 666 RIFF::List* wave = wvpl->GetFirstSubList();
5590     while (wave) {
5591     if (wave->GetListType() == LIST_TYPE_WAVE) {
5592     // notify current progress
5593     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5594     __notify_progress(pProgress, subprogress);
5595    
5596 schoenebeck 2912 file_offset_t waveFileOffset = wave->GetFilePos();
5597 schoenebeck 2989 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5598 persson 666
5599     iSampleIndex++;
5600     }
5601     wave = wvpl->GetNextSubList();
5602 schoenebeck 2 }
5603 persson 666
5604     if (fileNo == lastFileNo) break;
5605    
5606     // open extension file (*.gx01, *.gx02, ...)
5607     fileNo++;
5608     sprintf(suffix, ".gx%02d", fileNo);
5609     name.replace(nameLen, 5, suffix);
5610     file = new RIFF::File(name);
5611     ExtensionFiles.push_back(file);
5612 schoenebeck 823 } else break;
5613 schoenebeck 2 }
5614 persson 666
5615     __notify_progress(pProgress, 1.0); // notify done
5616 schoenebeck 2 }
5617    
5618     Instrument* File::GetFirstInstrument() {
5619     if (!pInstruments) LoadInstruments();
5620     if (!pInstruments) return NULL;
5621     InstrumentsIterator = pInstruments->begin();
5622 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5623 schoenebeck 2 }
5624    
5625     Instrument* File::GetNextInstrument() {
5626     if (!pInstruments) return NULL;
5627     InstrumentsIterator++;
5628 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5629 schoenebeck 2 }
5630    
5631 schoenebeck 21 /**
5632     * Returns the instrument with the given index.
5633     *
5634 schoenebeck 515 * @param index - number of the sought instrument (0..n)
5635     * @param pProgress - optional: callback function for progress notification
5636 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
5637     */
5638 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5639     if (!pInstruments) {
5640     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5641    
5642     // sample loading subtask
5643     progress_t subprogress;
5644     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5645     __notify_progress(&subprogress, 0.0f);
5646 schoenebeck 1524 if (GetAutoLoad())
5647     GetFirstSample(&subprogress); // now force all samples to be loaded
5648 schoenebeck 515 __notify_progress(&subprogress, 1.0f);
5649    
5650     // instrument loading subtask
5651     if (pProgress && pProgress->callback) {
5652     subprogress.__range_min = subprogress.__range_max;
5653     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5654     }
5655     __notify_progress(&subprogress, 0.0f);
5656     LoadInstruments(&subprogress);
5657     __notify_progress(&subprogress, 1.0f);
5658     }
5659 schoenebeck 21 if (!pInstruments) return NULL;
5660     InstrumentsIterator = pInstruments->begin();
5661     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5662 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5663 schoenebeck 21 InstrumentsIterator++;
5664     }
5665     return NULL;
5666     }
5667    
5668 schoenebeck 809 /** @brief Add a new instrument definition.
5669     *
5670     * This will create a new Instrument object for the gig file. You have
5671     * to call Save() to make this persistent to the file.
5672     *
5673     * @returns pointer to new Instrument object
5674     */
5675     Instrument* File::AddInstrument() {
5676     if (!pInstruments) LoadInstruments();
5677     __ensureMandatoryChunksExist();
5678     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5679     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5680 persson 1192
5681     // add mandatory chunks to get the chunks in right order
5682     lstInstr->AddSubList(LIST_TYPE_INFO);
5683 persson 1209 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5684 persson 1192
5685 schoenebeck 809 Instrument* pInstrument = new Instrument(this, lstInstr);
5686 persson 1209 pInstrument->GenerateDLSID();
5687 persson 1182
5688 persson 1192 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5689    
5690 persson 1182 // this string is needed for the gig to be loadable in GSt:
5691     pInstrument->pInfo->Software = "Endless Wave";
5692    
5693 schoenebeck 809 pInstruments->push_back(pInstrument);
5694     return pInstrument;
5695     }
5696 schoenebeck 2394
5697     /** @brief Add a duplicate of an existing instrument.
5698     *
5699     * Duplicates the instrument definition given by @a orig and adds it
5700     * to this file. This allows in an instrument editor application to
5701     * easily create variations of an instrument, which will be stored in
5702     * the same .gig file, sharing i.e. the same samples.
5703     *
5704     * Note that all sample pointers referenced by @a orig are simply copied as
5705     * memory address. Thus the respective samples are shared, not duplicated!
5706     *
5707     * You have to call Save() to make this persistent to the file.
5708     *
5709     * @param orig - original instrument to be copied
5710     * @returns duplicated copy of the given instrument
5711     */
5712     Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5713     Instrument* instr = AddInstrument();
5714     instr->CopyAssign(orig);
5715     return instr;
5716     }
5717 schoenebeck 2482
5718     /** @brief Add content of another existing file.
5719     *
5720     * Duplicates the samples, groups and instruments of the original file
5721     * given by @a pFile and adds them to @c this File. In case @c this File is
5722     * a new one that you haven't saved before, then you have to call
5723     * SetFileName() before calling AddContentOf(), because this method will
5724     * automatically save this file during operation, which is required for
5725     * writing the sample waveform data by disk streaming.
5726     *
5727     * @param pFile - original file whose's content shall be copied from
5728     */
5729     void File::AddContentOf(File* pFile) {
5730     static int iCallCount = -1;
5731     iCallCount++;
5732     std::map<Group*,Group*> mGroups;
5733     std::map<Sample*,Sample*> mSamples;
5734    
5735     // clone sample groups
5736     for (int i = 0; pFile->GetGroup(i); ++i) {
5737     Group* g = AddGroup();
5738     g->Name =
5739     "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5740     mGroups[pFile->GetGroup(i)] = g;
5741     }
5742    
5743     // clone samples (not waveform data here yet)
5744     for (int i = 0; pFile->GetSample(i); ++i) {
5745     Sample* s = AddSample();
5746     s->CopyAssignMeta(pFile->GetSample(i));
5747     mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5748     mSamples[pFile->GetSample(i)] = s;
5749     }
5750 schoenebeck 3117
5751     // clone script groups and their scripts
5752     for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5753     ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5754     ScriptGroup* dg = AddScriptGroup();
5755     dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5756     for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5757     Script* ss = sg->GetScript(iScript);
5758     Script* ds = dg->AddScript();
5759     ds->CopyAssign(ss);
5760     }
5761     }
5762    
5763 schoenebeck 2482 //BUG: For some reason this method only works with this additional
5764     // Save() call in between here.
5765     //
5766     // Important: The correct one of the 2 Save() methods has to be called
5767     // here, depending on whether the file is completely new or has been
5768     // saved to disk already, otherwise it will result in data corruption.
5769     if (pRIFF->IsNew())
5770     Save(GetFileName());
5771     else
5772     Save();
5773    
5774     // clone instruments
5775     // (passing the crosslink table here for the cloned samples)
5776     for (int i = 0; pFile->GetInstrument(i); ++i) {
5777     Instrument* instr = AddInstrument();
5778     instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5779     }
5780    
5781     // Mandatory: file needs to be saved to disk at this point, so this
5782     // file has the correct size and data layout for writing the samples'
5783     // waveform data to disk.
5784     Save();
5785    
5786     // clone samples' waveform data
5787     // (using direct read & write disk streaming)
5788     for (int i = 0; pFile->GetSample(i); ++i) {
5789     mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5790     }
5791     }
5792 schoenebeck 809
5793     /** @brief Delete an instrument.
5794     *
5795     * This will delete the given Instrument object from the gig file. You
5796     * have to call Save() to make this persistent to the file.
5797     *
5798     * @param pInstrument - instrument to delete
5799 schoenebeck 1081 * @throws gig::Exception if given instrument could not be found
5800 schoenebeck 809 */
5801     void File::DeleteInstrument(Instrument* pInstrument) {
5802     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5803 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5804 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5805     pInstruments->erase(iter);
5806     delete pInstrument;
5807     }
5808    
5809 schoenebeck 823 void File::LoadInstruments() {
5810     LoadInstruments(NULL);
5811     }
5812    
5813 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
5814 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
5815 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5816     if (lstInstruments) {
5817 schoenebeck 515 int iInstrumentIndex = 0;
5818 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5819     while (lstInstr) {
5820     if (lstInstr->GetListType() == LIST_TYPE_INS) {
5821 schoenebeck 515 // notify current progress
5822     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5823     __notify_progress(pProgress, localProgress);
5824    
5825     // divide local progress into subprogress for loading current Instrument
5826     progress_t subprogress;
5827     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5828    
5829     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5830    
5831     iInstrumentIndex++;
5832 schoenebeck 2 }
5833     lstInstr = lstInstruments->GetNextSubList();
5834     }
5835 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
5836 schoenebeck 2 }
5837     }
5838    
5839 persson 1207 /// Updates the 3crc chunk with the checksum of a sample. The
5840     /// update is done directly to disk, as this method is called
5841     /// after File::Save()
5842 persson 1199 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5843     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5844     if (!_3crc) return;
5845 persson 1207
5846     // get the index of the sample
5847 schoenebeck 2985 int iWaveIndex = GetWaveTableIndexOf(pSample);
5848 persson 1199 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5849    
5850 persson 1207 // write the CRC-32 checksum to disk
5851 persson 1199 _3crc->SetPos(iWaveIndex * 8);
5852 schoenebeck 2985 uint32_t one = 1;
5853     _3crc->WriteUint32(&one); // always 1
5854 persson 1199 _3crc->WriteUint32(&crc);
5855 schoenebeck 2989 }
5856 schoenebeck 2985
5857 schoenebeck 2989 uint32_t File::GetSampleChecksum(Sample* pSample) {
5858     // get the index of the sample
5859     int iWaveIndex = GetWaveTableIndexOf(pSample);
5860     if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5861    
5862     return GetSampleChecksumByIndex(iWaveIndex);
5863 persson 1199 }
5864    
5865 schoenebeck 2989 uint32_t File::GetSampleChecksumByIndex(int index) {
5866     if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5867    
5868 schoenebeck 2985 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5869     if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5870     uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5871     if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5872    
5873     // read the CRC-32 checksum directly from disk
5874 schoenebeck 2989 size_t pos = index * 8;
5875 schoenebeck 2985 if (pos + 8 > _3crc->GetNewSize())
5876     throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5877    
5878     uint32_t one = load32(&pData[pos]); // always 1
5879     if (one != 1)
5880 schoenebeck 2989 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5881 schoenebeck 2985
5882     return load32(&pData[pos+4]);
5883     }
5884 schoenebeck 2989
5885 schoenebeck 2985 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5886     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5887     File::SampleList::iterator iter = pSamples->begin();
5888     File::SampleList::iterator end = pSamples->end();
5889     for (int index = 0; iter != end; ++iter, ++index)
5890     if (*iter == pSample)
5891     return index;
5892     return -1;
5893     }
5894    
5895     /**
5896     * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5897     * the CRC32 check sums of all samples' raw wave data.
5898     *
5899     * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5900     */
5901     bool File::VerifySampleChecksumTable() {
5902     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5903     if (!_3crc) return false;
5904     if (_3crc->GetNewSize() <= 0) return false;
5905     if (_3crc->GetNewSize() % 8) return false;
5906     if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5907     if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5908    
5909 schoenebeck 3053 const file_offset_t n = _3crc->GetNewSize() / 8;
5910 schoenebeck 2985
5911     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5912     if (!pData) return false;
5913    
5914 schoenebeck 3053 for (file_offset_t i = 0; i < n; ++i) {
5915 schoenebeck 2985 uint32_t one = pData[i*2];
5916     if (one != 1) return false;
5917     }
5918    
5919     return true;
5920     }
5921    
5922     /**
5923     * Recalculates CRC32 checksums for all samples and rebuilds this gig
5924     * file's checksum table with those new checksums. This might usually
5925     * just be necessary if the checksum table was damaged.
5926     *
5927     * @e IMPORTANT: The current implementation of this method only works
5928     * with files that have not been modified since it was loaded, because
5929     * it expects that no externally caused file structure changes are
5930     * required!
5931     *
5932     * Due to the expectation above, this method is currently protected
5933     * and actually only used by the command line tool "gigdump" yet.
5934     *
5935     * @returns true if Save() is required to be called after this call,
5936     * false if no further action is required
5937     */
5938     bool File::RebuildSampleChecksumTable() {
5939     // make sure sample chunks were scanned
5940     if (!pSamples) GetFirstSample();
5941    
5942     bool bRequiresSave = false;
5943    
5944     // make sure "3CRC" chunk exists with required size
5945     RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5946     if (!_3crc) {
5947     _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5948 schoenebeck 2989 // the order of einf and 3crc is not the same in v2 and v3
5949     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5950     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5951 schoenebeck 2985 bRequiresSave = true;
5952     } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5953     _3crc->Resize(pSamples->size() * 8);
5954     bRequiresSave = true;
5955     }
5956    
5957     if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5958     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5959     {
5960     File::SampleList::iterator iter = pSamples->begin();
5961     File::SampleList::iterator end = pSamples->end();
5962     for (; iter != end; ++iter) {
5963     gig::Sample* pSample = (gig::Sample*) *iter;
5964     int index = GetWaveTableIndexOf(pSample);
5965     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5966     pData[index*2] = 1; // always 1
5967     pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5968     }
5969     }
5970     } else { // no file structure changes necessary, so directly write to disk and we are done ...
5971     // make sure file is in write mode
5972     pRIFF->SetMode(RIFF::stream_mode_read_write);
5973     {
5974     File::SampleList::iterator iter = pSamples->begin();
5975     File::SampleList::iterator end = pSamples->end();
5976     for (; iter != end; ++iter) {
5977     gig::Sample* pSample = (gig::Sample*) *iter;
5978     int index = GetWaveTableIndexOf(pSample);
5979     if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5980 schoenebeck 2989 pSample->crc = pSample->CalculateWaveDataChecksum();
5981     SetSampleChecksum(pSample, pSample->crc);
5982 schoenebeck 2985 }
5983     }
5984     }
5985    
5986     return bRequiresSave;
5987     }
5988    
5989 schoenebeck 929 Group* File::GetFirstGroup() {
5990     if (!pGroups) LoadGroups();
5991 schoenebeck 930 // there must always be at least one group
5992 schoenebeck 929 GroupsIterator = pGroups->begin();
5993 schoenebeck 930 return *GroupsIterator;
5994 schoenebeck 929 }
5995 schoenebeck 2
5996 schoenebeck 929 Group* File::GetNextGroup() {
5997     if (!pGroups) return NULL;
5998     ++GroupsIterator;
5999     return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6000     }
6001 schoenebeck 2
6002 schoenebeck 929 /**
6003     * Returns the group with the given index.
6004     *
6005     * @param index - number of the sought group (0..n)
6006     * @returns sought group or NULL if there's no such group
6007     */
6008     Group* File::GetGroup(uint index) {
6009     if (!pGroups) LoadGroups();
6010     GroupsIterator = pGroups->begin();
6011     for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6012     if (i == index) return *GroupsIterator;
6013     ++GroupsIterator;
6014     }
6015     return NULL;
6016     }
6017    
6018 schoenebeck 2543 /**
6019     * Returns the group with the given group name.
6020     *
6021     * Note: group names don't have to be unique in the gig format! So there
6022     * can be multiple groups with the same name. This method will simply
6023     * return the first group found with the given name.
6024     *
6025     * @param name - name of the sought group
6026     * @returns sought group or NULL if there's no group with that name
6027     */
6028     Group* File::GetGroup(String name) {
6029     if (!pGroups) LoadGroups();
6030     GroupsIterator = pGroups->begin();
6031     for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6032     if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6033     return NULL;
6034     }
6035    
6036 schoenebeck 929 Group* File::AddGroup() {
6037     if (!pGroups) LoadGroups();
6038 schoenebeck 930 // there must always be at least one group
6039 schoenebeck 929 __ensureMandatoryChunksExist();
6040 schoenebeck 930 Group* pGroup = new Group(this, NULL);
6041 schoenebeck 929 pGroups->push_back(pGroup);
6042     return pGroup;
6043     }
6044    
6045 schoenebeck 1081 /** @brief Delete a group and its samples.
6046     *
6047     * This will delete the given Group object and all the samples that
6048     * belong to this group from the gig file. You have to call Save() to
6049     * make this persistent to the file.
6050     *
6051     * @param pGroup - group to delete
6052     * @throws gig::Exception if given group could not be found
6053     */
6054 schoenebeck 929 void File::DeleteGroup(Group* pGroup) {
6055 schoenebeck 930 if (!pGroups) LoadGroups();
6056 schoenebeck 929 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6057     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6058 schoenebeck 930 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6059 schoenebeck 1081 // delete all members of this group
6060     for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6061     DeleteSample(pSample);
6062     }
6063     // now delete this group object
6064     pGroups->erase(iter);
6065     delete pGroup;
6066     }
6067    
6068     /** @brief Delete a group.
6069     *
6070     * This will delete the given Group object from the gig file. All the
6071     * samples that belong to this group will not be deleted, but instead
6072     * be moved to another group. You have to call Save() to make this
6073     * persistent to the file.
6074     *
6075     * @param pGroup - group to delete
6076     * @throws gig::Exception if given group could not be found
6077     */
6078     void File::DeleteGroupOnly(Group* pGroup) {
6079     if (!pGroups) LoadGroups();
6080     std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6081     if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6082     if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6083 schoenebeck 930 // move all members of this group to another group
6084     pGroup->MoveAll();
6085 schoenebeck 929 pGroups->erase(iter);
6086     delete pGroup;
6087     }
6088    
6089     void File::LoadGroups() {
6090     if (!pGroups) pGroups = new std::list<Group*>;
6091 schoenebeck 930 // try to read defined groups from file
6092 schoenebeck 929 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6093 schoenebeck 930 if (lst3gri) {
6094     RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6095     if (lst3gnl) {
6096     RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6097     while (ck) {
6098     if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6099 persson 1266 if (pVersion && pVersion->major == 3 &&
6100     strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6101    
6102 schoenebeck 930 pGroups->push_back(new Group(this, ck));
6103     }
6104     ck = lst3gnl->GetNextSubChunk();
6105 schoenebeck 929 }
6106     }
6107     }
6108 schoenebeck 930 // if there were no group(s), create at least the mandatory default group
6109     if (!pGroups->size()) {
6110     Group* pGroup = new Group(this, NULL);
6111     pGroup->Name = "Default Group";
6112     pGroups->push_back(pGroup);
6113     }
6114 schoenebeck 929 }
6115    
6116 schoenebeck 2584 /** @brief Get instrument script group (by index).
6117     *
6118     * Returns the real-time instrument script group with the given index.
6119     *
6120     * @param index - number of the sought group (0..n)
6121     * @returns sought script group or NULL if there's no such group
6122     */
6123     ScriptGroup* File::GetScriptGroup(uint index) {
6124     if (!pScriptGroups) LoadScriptGroups();
6125     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6126     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6127     if (i == index) return *it;
6128     return NULL;
6129     }
6130    
6131     /** @brief Get instrument script group (by name).
6132     *
6133     * Returns the first real-time instrument script group found with the given
6134     * group name. Note that group names may not necessarily be unique.
6135     *
6136     * @param name - name of the sought script group
6137     * @returns sought script group or NULL if there's no such group
6138     */
6139     ScriptGroup* File::GetScriptGroup(const String& name) {
6140     if (!pScriptGroups) LoadScriptGroups();
6141     std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6142     for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6143     if ((*it)->Name == name) return *it;
6144     return NULL;
6145     }
6146    
6147     /** @brief Add new instrument script group.
6148     *
6149     * Adds a new, empty real-time instrument script group to the file.
6150     *
6151     * You have to call Save() to make this persistent to the file.
6152     *
6153     * @return new empty script group
6154     */
6155     ScriptGroup* File::AddScriptGroup() {
6156     if (!pScriptGroups) LoadScriptGroups();
6157     ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6158     pScriptGroups->push_back(pScriptGroup);
6159     return pScriptGroup;
6160     }
6161    
6162     /** @brief Delete an instrument script group.
6163     *
6164     * This will delete the given real-time instrument script group and all its
6165     * instrument scripts it contains. References inside instruments that are
6166     * using the deleted scripts will be removed from the respective instruments
6167     * accordingly.
6168     *
6169     * You have to call Save() to make this persistent to the file.
6170     *
6171     * @param pScriptGroup - script group to delete
6172     * @throws gig::Exception if given script group could not be found
6173     */
6174     void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6175     if (!pScriptGroups) LoadScriptGroups();
6176     std::list<ScriptGroup*>::iterator iter =
6177     find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6178     if (iter == pScriptGroups->end())
6179     throw gig::Exception("Could not delete script group, could not find given script group");
6180     pScriptGroups->erase(iter);
6181     for (int i = 0; pScriptGroup->GetScript(i); ++i)
6182     pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6183     if (pScriptGroup->pList)
6184     pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6185     delete pScriptGroup;
6186     }
6187    
6188     void File::LoadScriptGroups() {
6189     if (pScriptGroups) return;
6190     pScriptGroups = new std::list<ScriptGroup*>;
6191     RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6192     if (lstLS) {
6193     for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6194     lst = lstLS->GetNextSubList())
6195     {
6196     if (lst->GetListType() == LIST_TYPE_RTIS) {
6197     pScriptGroups->push_back(new ScriptGroup(this, lst));
6198     }
6199     }
6200     }
6201     }
6202    
6203 schoenebeck 1098 /**
6204     * Apply all the gig file's current instruments, samples, groups and settings
6205     * to the respective RIFF chunks. You have to call Save() to make changes
6206     * persistent.
6207     *
6208     * Usually there is absolutely no need to call this method explicitly.
6209     * It will be called automatically when File::Save() was called.
6210     *
6211 schoenebeck 2682 * @param pProgress - callback function for progress notification
6212 schoenebeck 1098 * @throws Exception - on errors
6213     */
6214 schoenebeck 2682 void File::UpdateChunks(progress_t* pProgress) {
6215 persson 1199 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6216 persson 1192
6217 schoenebeck 2584 // update own gig format extension chunks
6218     // (not part of the GigaStudio 4 format)
6219 schoenebeck 2912 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6220     if (!lst3LS) {
6221     lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6222     }
6223     // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6224 schoenebeck 2913 // location of <3LS > is irrelevant, however it should be located
6225     // before the actual wave data
6226 schoenebeck 2912 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6227     pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6228    
6229 schoenebeck 2584 // This must be performed before writing the chunks for instruments,
6230     // because the instruments' script slots will write the file offsets
6231     // of the respective instrument script chunk as reference.
6232     if (pScriptGroups) {
6233 schoenebeck 2912 // Update instrument script (group) chunks.
6234     for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6235     it != pScriptGroups->end(); ++it)
6236     {
6237     (*it)->UpdateChunks(pProgress);
6238 schoenebeck 2584 }
6239     }
6240    
6241 schoenebeck 2913 // in case no libgig custom format data was added, then remove the
6242     // custom "3LS " chunk again
6243     if (!lst3LS->CountSubChunks()) {
6244     pRIFF->DeleteSubChunk(lst3LS);
6245     lst3LS = NULL;
6246     }
6247    
6248 schoenebeck 1098 // first update base class's chunks
6249 schoenebeck 2682 DLS::File::UpdateChunks(pProgress);
6250 schoenebeck 929
6251 persson 1199 if (newFile) {
6252 persson 1192 // INFO was added by Resource::UpdateChunks - make sure it
6253     // is placed first in file
6254 persson 1199 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6255 persson 1192 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6256     if (first != info) {
6257     pRIFF->MoveSubChunk(info, first);
6258     }
6259     }
6260    
6261 schoenebeck 1098 // update group's chunks
6262     if (pGroups) {
6263 schoenebeck 2467 // make sure '3gri' and '3gnl' list chunks exist
6264     // (before updating the Group chunks)
6265     RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6266     if (!_3gri) {
6267     _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6268     pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6269 schoenebeck 1098 }
6270 schoenebeck 2467 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6271     if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6272 persson 1266
6273     // v3: make sure the file has 128 3gnm chunks
6274 schoenebeck 2467 // (before updating the Group chunks)
6275 persson 1266 if (pVersion && pVersion->major == 3) {
6276     RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6277     for (int i = 0 ; i < 128 ; i++) {
6278     if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6279     if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6280     }
6281     }
6282 schoenebeck 2467
6283     std::list<Group*>::iterator iter = pGroups->begin();
6284     std::list<Group*>::iterator end = pGroups->end();
6285     for (; iter != end; ++iter) {
6286 schoenebeck 2682 (*iter)->UpdateChunks(pProgress);
6287 schoenebeck 2467 }
6288 schoenebeck 1098 }
6289 persson 1199
6290     // update einf chunk
6291    
6292     // The einf chunk contains statistics about the gig file, such
6293     // as the number of regions and samples used by each
6294     // instrument. It is divided in equally sized parts, where the
6295     // first part contains information about the whole gig file,
6296     // and the rest of the parts map to each instrument in the
6297     // file.
6298     //
6299     // At the end of each part there is a bit map of each sample
6300     // in the file, where a set bit means that the sample is used
6301     // by the file/instrument.
6302     //
6303     // Note that there are several fields with unknown use. These
6304     // are set to zero.
6305    
6306 schoenebeck 3053 int sublen = int(pSamples->size() / 8 + 49);
6307 persson 1199 int einfSize = (Instruments + 1) * sublen;
6308    
6309     RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6310     if (einf) {
6311     if (einf->GetSize() != einfSize) {
6312     einf->Resize(einfSize);
6313     memset(einf->LoadChunkData(), 0, einfSize);
6314     }
6315     } else if (newFile) {
6316     einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6317     }
6318     if (einf) {
6319     uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6320    
6321     std::map<gig::Sample*,int> sampleMap;
6322     int sampleIdx = 0;
6323     for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6324     sampleMap[pSample] = sampleIdx++;
6325     }
6326    
6327     int totnbusedsamples = 0;
6328     int totnbusedchannels = 0;
6329     int totnbregions = 0;
6330     int totnbdimregions = 0;
6331 persson 1264 int totnbloops = 0;
6332 persson 1199 int instrumentIdx = 0;
6333    
6334     memset(&pData[48], 0, sublen - 48);
6335    
6336     for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6337     instrument = GetNextInstrument()) {
6338     int nbusedsamples = 0;
6339     int nbusedchannels = 0;
6340     int nbdimregions = 0;
6341 persson 1264 int nbloops = 0;
6342 persson 1199
6343     memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6344    
6345     for (Region* region = instrument->GetFirstRegion() ; region ;
6346     region = instrument->GetNextRegion()) {
6347     for (int i = 0 ; i < region->DimensionRegions ; i++) {
6348     gig::DimensionRegion *d = region->pDimensionRegions[i];
6349     if (d->pSample) {
6350     int sampleIdx = sampleMap[d->pSample];
6351     int byte = 48 + sampleIdx / 8;
6352     int bit = 1 << (sampleIdx & 7);
6353     if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6354     pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6355     nbusedsamples++;
6356     nbusedchannels += d->pSample->Channels;
6357    
6358     if ((pData[byte] & bit) == 0) {
6359     pData[byte] |= bit;
6360     totnbusedsamples++;
6361     totnbusedchannels += d->pSample->Channels;
6362     }
6363     }
6364     }
6365 persson 1264 if (d->SampleLoops) nbloops++;
6366 persson 1199 }
6367     nbdimregions += region->DimensionRegions;
6368     }
6369     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6370     // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6371     store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6372     store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6373     store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6374     store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6375     store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6376 persson 1264 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6377     // next 8 bytes unknown
6378 persson 1199 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6379 schoenebeck 3053 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6380 persson 1199 // next 4 bytes unknown
6381    
6382     totnbregions += instrument->Regions;
6383     totnbdimregions += nbdimregions;
6384 persson 1264 totnbloops += nbloops;
6385 persson 1199 instrumentIdx++;
6386     }
6387     // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6388     // store32(&pData[0], sublen);
6389     store32(&pData[4], totnbusedchannels);
6390     store32(&pData[8], totnbusedsamples);
6391     store32(&pData[12], Instruments);
6392     store32(&pData[16], totnbregions);
6393     store32(&pData[20], totnbdimregions);
6394 persson 1264 store32(&pData[24], totnbloops);
6395     // next 8 bytes unknown
6396     // next 4 bytes unknown, not always 0
6397 schoenebeck 3053 store32(&pData[40], (uint32_t) pSamples->size());
6398 persson 1199 // next 4 bytes unknown
6399     }
6400    
6401     // update 3crc chunk
6402    
6403     // The 3crc chunk contains CRC-32 checksums for the
6404 schoenebeck 2989 // samples. When saving a gig file to disk, we first update the 3CRC
6405     // chunk here (in RAM) with the old crc values which we read from the
6406     // 3CRC chunk when we opened the file (available with gig::Sample::crc
6407     // member variable). This step is required, because samples might have
6408     // been deleted by the user since the file was opened, which in turn
6409     // changes the order of the (i.e. old) checksums within the 3crc chunk.
6410     // If a sample was conciously modified by the user (that is if
6411     // Sample::Write() was called later on) then Sample::Write() will just
6412     // update the respective individual checksum(s) directly on disk and
6413     // leaves all other sample checksums untouched.
6414 persson 1199
6415 schoenebeck 2989 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6416 persson 1199 if (_3crc) {
6417     _3crc->Resize(pSamples->size() * 8);
6418 schoenebeck 2989 } else /*if (newFile)*/ {
6419 persson 1199 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6420 persson 1264 // the order of einf and 3crc is not the same in v2 and v3
6421     if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6422 persson 1199 }
6423 schoenebeck 2989 { // must be performed in RAM here ...
6424     uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6425     if (pData) {
6426     File::SampleList::iterator iter = pSamples->begin();
6427     File::SampleList::iterator end = pSamples->end();
6428     for (int index = 0; iter != end; ++iter, ++index) {
6429     gig::Sample* pSample = (gig::Sample*) *iter;
6430     pData[index*2] = 1; // always 1
6431     pData[index*2+1] = pSample->crc;
6432     }
6433     }
6434     }
6435 schoenebeck 1098 }
6436 schoenebeck 2609
6437     void File::UpdateFileOffsets() {
6438     DLS::File::UpdateFileOffsets();
6439 schoenebeck 929
6440 schoenebeck 2609 for (Instrument* instrument = GetFirstInstrument(); instrument;
6441     instrument = GetNextInstrument())
6442     {
6443     instrument->UpdateScriptFileOffsets();
6444     }
6445     }
6446    
6447 schoenebeck 1524 /**
6448     * Enable / disable automatic loading. By default this properyt is
6449     * enabled and all informations are loaded automatically. However
6450     * loading all Regions, DimensionRegions and especially samples might
6451     * take a long time for large .gig files, and sometimes one might only
6452     * be interested in retrieving very superficial informations like the
6453     * amount of instruments and their names. In this case one might disable
6454     * automatic loading to avoid very slow response times.
6455     *
6456     * @e CAUTION: by disabling this property many pointers (i.e. sample
6457     * references) and informations will have invalid or even undefined
6458     * data! This feature is currently only intended for retrieving very
6459     * superficial informations in a very fast way. Don't use it to retrieve
6460     * details like synthesis informations or even to modify .gig files!
6461     */
6462     void File::SetAutoLoad(bool b) {
6463     bAutoLoad = b;
6464     }
6465 schoenebeck 1098
6466 schoenebeck 1524 /**
6467     * Returns whether automatic loading is enabled.
6468     * @see SetAutoLoad()
6469     */
6470     bool File::GetAutoLoad() {
6471     return bAutoLoad;
6472     }
6473 schoenebeck 1098
6474 schoenebeck 1524
6475    
6476 schoenebeck 2 // *************** Exception ***************
6477     // *
6478    
6479 schoenebeck 3198 Exception::Exception() : DLS::Exception() {
6480 schoenebeck 2 }
6481    
6482 schoenebeck 3198 Exception::Exception(String format, ...) : DLS::Exception() {
6483     va_list arg;
6484     va_start(arg, format);
6485     Message = assemble(format, arg);
6486     va_end(arg);
6487     }
6488    
6489     Exception::Exception(String format, va_list arg) : DLS::Exception() {
6490     Message = assemble(format, arg);
6491     }
6492    
6493 schoenebeck 2 void Exception::PrintMessage() {
6494     std::cout << "gig::Exception: " << Message << std::endl;
6495     }
6496    
6497 schoenebeck 518
6498     // *************** functions ***************
6499     // *
6500    
6501     /**
6502     * Returns the name of this C++ library. This is usually "libgig" of
6503     * course. This call is equivalent to RIFF::libraryName() and
6504     * DLS::libraryName().
6505     */
6506     String libraryName() {
6507     return PACKAGE;
6508     }
6509    
6510     /**
6511     * Returns version of this C++ library. This call is equivalent to
6512     * RIFF::libraryVersion() and DLS::libraryVersion().
6513     */
6514     String libraryVersion() {
6515     return VERSION;
6516     }
6517    
6518 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC