/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 613 - (hide annotations) (download)
Mon Jun 6 16:50:58 2005 UTC (14 years, 4 months ago) by persson
File size: 88985 byte(s)
* added DimensionRegion::GetVelocityRelease function

1 schoenebeck 2 /***************************************************************************
2     * *
3     * libgig - C++ cross-platform Gigasampler format file loader library *
4     * *
5 schoenebeck 384 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6     * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 384 #include <iostream>
27    
28 schoenebeck 515 namespace gig {
29 schoenebeck 2
30 schoenebeck 515 // *************** progress_t ***************
31     // *
32    
33     progress_t::progress_t() {
34     callback = NULL;
35 schoenebeck 516 custom = NULL;
36 schoenebeck 515 __range_min = 0.0f;
37     __range_max = 1.0f;
38     }
39    
40     // private helper function to convert progress of a subprocess into the global progress
41     static void __notify_progress(progress_t* pProgress, float subprogress) {
42     if (pProgress && pProgress->callback) {
43     const float totalrange = pProgress->__range_max - pProgress->__range_min;
44     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
45 schoenebeck 516 pProgress->factor = totalprogress;
46     pProgress->callback(pProgress); // now actually notify about the progress
47 schoenebeck 515 }
48     }
49    
50     // private helper function to divide a progress into subprogresses
51     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
52     if (pParentProgress && pParentProgress->callback) {
53     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
54     pSubProgress->callback = pParentProgress->callback;
55 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
56 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
57     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
58     }
59     }
60    
61    
62 persson 365 // *************** Internal functions for sample decopmression ***************
63     // *
64    
65 schoenebeck 515 namespace {
66    
67 persson 365 inline int get12lo(const unsigned char* pSrc)
68     {
69     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
70     return x & 0x800 ? x - 0x1000 : x;
71     }
72    
73     inline int get12hi(const unsigned char* pSrc)
74     {
75     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
76     return x & 0x800 ? x - 0x1000 : x;
77     }
78    
79     inline int16_t get16(const unsigned char* pSrc)
80     {
81     return int16_t(pSrc[0] | pSrc[1] << 8);
82     }
83    
84     inline int get24(const unsigned char* pSrc)
85     {
86     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
87     return x & 0x800000 ? x - 0x1000000 : x;
88     }
89    
90     void Decompress16(int compressionmode, const unsigned char* params,
91 persson 372 int srcStep, int dstStep,
92     const unsigned char* pSrc, int16_t* pDst,
93 persson 365 unsigned long currentframeoffset,
94     unsigned long copysamples)
95     {
96     switch (compressionmode) {
97     case 0: // 16 bit uncompressed
98     pSrc += currentframeoffset * srcStep;
99     while (copysamples) {
100     *pDst = get16(pSrc);
101 persson 372 pDst += dstStep;
102 persson 365 pSrc += srcStep;
103     copysamples--;
104     }
105     break;
106    
107     case 1: // 16 bit compressed to 8 bit
108     int y = get16(params);
109     int dy = get16(params + 2);
110     while (currentframeoffset) {
111     dy -= int8_t(*pSrc);
112     y -= dy;
113     pSrc += srcStep;
114     currentframeoffset--;
115     }
116     while (copysamples) {
117     dy -= int8_t(*pSrc);
118     y -= dy;
119     *pDst = y;
120 persson 372 pDst += dstStep;
121 persson 365 pSrc += srcStep;
122     copysamples--;
123     }
124     break;
125     }
126     }
127    
128     void Decompress24(int compressionmode, const unsigned char* params,
129 persson 372 int dstStep, const unsigned char* pSrc, int16_t* pDst,
130 persson 365 unsigned long currentframeoffset,
131 persson 437 unsigned long copysamples, int truncatedBits)
132 persson 365 {
133     // Note: The 24 bits are truncated to 16 bits for now.
134    
135     // Note: The calculation of the initial value of y is strange
136     // and not 100% correct. What should the first two parameters
137     // really be used for? Why are they two? The correct value for
138     // y seems to lie somewhere between the values of the first
139     // two parameters.
140     //
141     // Strange thing #2: The formula in SKIP_ONE gives values for
142     // y that are twice as high as they should be. That's why
143 persson 437 // COPY_ONE shifts an extra step, and also why y is
144 persson 365 // initialized with a sum instead of a mean value.
145    
146     int y, dy, ddy;
147    
148 persson 437 const int shift = 8 - truncatedBits;
149     const int shift1 = shift + 1;
150    
151 persson 365 #define GET_PARAMS(params) \
152     y = (get24(params) + get24((params) + 3)); \
153     dy = get24((params) + 6); \
154     ddy = get24((params) + 9)
155    
156     #define SKIP_ONE(x) \
157     ddy -= (x); \
158     dy -= ddy; \
159     y -= dy
160    
161     #define COPY_ONE(x) \
162     SKIP_ONE(x); \
163 persson 437 *pDst = y >> shift1; \
164 persson 372 pDst += dstStep
165 persson 365
166     switch (compressionmode) {
167     case 2: // 24 bit uncompressed
168     pSrc += currentframeoffset * 3;
169     while (copysamples) {
170 persson 437 *pDst = get24(pSrc) >> shift;
171 persson 372 pDst += dstStep;
172 persson 365 pSrc += 3;
173     copysamples--;
174     }
175     break;
176    
177     case 3: // 24 bit compressed to 16 bit
178     GET_PARAMS(params);
179     while (currentframeoffset) {
180     SKIP_ONE(get16(pSrc));
181     pSrc += 2;
182     currentframeoffset--;
183     }
184     while (copysamples) {
185     COPY_ONE(get16(pSrc));
186     pSrc += 2;
187     copysamples--;
188     }
189     break;
190    
191     case 4: // 24 bit compressed to 12 bit
192     GET_PARAMS(params);
193     while (currentframeoffset > 1) {
194     SKIP_ONE(get12lo(pSrc));
195     SKIP_ONE(get12hi(pSrc));
196     pSrc += 3;
197     currentframeoffset -= 2;
198     }
199     if (currentframeoffset) {
200     SKIP_ONE(get12lo(pSrc));
201     currentframeoffset--;
202     if (copysamples) {
203     COPY_ONE(get12hi(pSrc));
204     pSrc += 3;
205     copysamples--;
206     }
207     }
208     while (copysamples > 1) {
209     COPY_ONE(get12lo(pSrc));
210     COPY_ONE(get12hi(pSrc));
211     pSrc += 3;
212     copysamples -= 2;
213     }
214     if (copysamples) {
215     COPY_ONE(get12lo(pSrc));
216     }
217     break;
218    
219     case 5: // 24 bit compressed to 8 bit
220     GET_PARAMS(params);
221     while (currentframeoffset) {
222     SKIP_ONE(int8_t(*pSrc++));
223     currentframeoffset--;
224     }
225     while (copysamples) {
226     COPY_ONE(int8_t(*pSrc++));
227     copysamples--;
228     }
229     break;
230     }
231     }
232    
233     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
234     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
235     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
236     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
237     }
238    
239    
240 schoenebeck 2 // *************** Sample ***************
241     // *
242    
243 schoenebeck 384 unsigned int Sample::Instances = 0;
244     buffer_t Sample::InternalDecompressionBuffer;
245 schoenebeck 2
246     Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
247     Instances++;
248    
249     RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
250     if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
251     SampleGroup = _3gix->ReadInt16();
252    
253     RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
254     if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
255     Manufacturer = smpl->ReadInt32();
256     Product = smpl->ReadInt32();
257     SamplePeriod = smpl->ReadInt32();
258     MIDIUnityNote = smpl->ReadInt32();
259 schoenebeck 21 FineTune = smpl->ReadInt32();
260 schoenebeck 2 smpl->Read(&SMPTEFormat, 1, 4);
261     SMPTEOffset = smpl->ReadInt32();
262     Loops = smpl->ReadInt32();
263 persson 365 smpl->ReadInt32(); // manufByt
264 schoenebeck 2 LoopID = smpl->ReadInt32();
265     smpl->Read(&LoopType, 1, 4);
266     LoopStart = smpl->ReadInt32();
267     LoopEnd = smpl->ReadInt32();
268     LoopFraction = smpl->ReadInt32();
269     LoopPlayCount = smpl->ReadInt32();
270    
271     FrameTable = NULL;
272     SamplePos = 0;
273     RAMCache.Size = 0;
274     RAMCache.pStart = NULL;
275     RAMCache.NullExtensionSize = 0;
276    
277 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
278    
279 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
280     Compressed = ewav;
281     Dithered = false;
282     TruncatedBits = 0;
283 schoenebeck 2 if (Compressed) {
284 persson 437 uint32_t version = ewav->ReadInt32();
285     if (version == 3 && BitDepth == 24) {
286     Dithered = ewav->ReadInt32();
287     ewav->SetPos(Channels == 2 ? 84 : 64);
288     TruncatedBits = ewav->ReadInt32();
289     }
290 schoenebeck 2 ScanCompressedSample();
291     }
292 schoenebeck 317
293     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
294 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
295     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
296     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
297 schoenebeck 317 }
298 persson 437 FrameOffset = 0; // just for streaming compressed samples
299 schoenebeck 21
300 schoenebeck 27 LoopSize = LoopEnd - LoopStart;
301 schoenebeck 2 }
302    
303     /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
304     void Sample::ScanCompressedSample() {
305     //TODO: we have to add some more scans here (e.g. determine compression rate)
306     this->SamplesTotal = 0;
307     std::list<unsigned long> frameOffsets;
308    
309 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
310 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
311 persson 365
312 schoenebeck 2 // Scanning
313     pCkData->SetPos(0);
314 persson 365 if (Channels == 2) { // Stereo
315     for (int i = 0 ; ; i++) {
316     // for 24 bit samples every 8:th frame offset is
317     // stored, to save some memory
318     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
319    
320     const int mode_l = pCkData->ReadUint8();
321     const int mode_r = pCkData->ReadUint8();
322     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
323     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
324    
325     if (pCkData->RemainingBytes() <= frameSize) {
326     SamplesInLastFrame =
327     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
328     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
329     SamplesTotal += SamplesInLastFrame;
330 schoenebeck 2 break;
331 persson 365 }
332     SamplesTotal += SamplesPerFrame;
333     pCkData->SetPos(frameSize, RIFF::stream_curpos);
334     }
335     }
336     else { // Mono
337     for (int i = 0 ; ; i++) {
338     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
339    
340     const int mode = pCkData->ReadUint8();
341     if (mode > 5) throw gig::Exception("Unknown compression mode");
342     const unsigned long frameSize = bytesPerFrame[mode];
343    
344     if (pCkData->RemainingBytes() <= frameSize) {
345     SamplesInLastFrame =
346     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
347     SamplesTotal += SamplesInLastFrame;
348 schoenebeck 2 break;
349 persson 365 }
350     SamplesTotal += SamplesPerFrame;
351     pCkData->SetPos(frameSize, RIFF::stream_curpos);
352 schoenebeck 2 }
353     }
354     pCkData->SetPos(0);
355    
356     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
357     if (FrameTable) delete[] FrameTable;
358     FrameTable = new unsigned long[frameOffsets.size()];
359     std::list<unsigned long>::iterator end = frameOffsets.end();
360     std::list<unsigned long>::iterator iter = frameOffsets.begin();
361     for (int i = 0; iter != end; i++, iter++) {
362     FrameTable[i] = *iter;
363     }
364     }
365    
366     /**
367     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
368     * ReleaseSampleData() to free the memory if you don't need the cached
369     * sample data anymore.
370     *
371     * @returns buffer_t structure with start address and size of the buffer
372     * in bytes
373     * @see ReleaseSampleData(), Read(), SetPos()
374     */
375     buffer_t Sample::LoadSampleData() {
376     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
377     }
378    
379     /**
380     * Reads (uncompresses if needed) and caches the first \a SampleCount
381     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
382     * memory space if you don't need the cached samples anymore. There is no
383     * guarantee that exactly \a SampleCount samples will be cached; this is
384     * not an error. The size will be eventually truncated e.g. to the
385     * beginning of a frame of a compressed sample. This is done for
386     * efficiency reasons while streaming the wave by your sampler engine
387     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
388     * that will be returned to determine the actual cached samples, but note
389     * that the size is given in bytes! You get the number of actually cached
390     * samples by dividing it by the frame size of the sample:
391 schoenebeck 384 * @code
392 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
393     * long cachedsamples = buf.Size / pSample->FrameSize;
394 schoenebeck 384 * @endcode
395 schoenebeck 2 *
396     * @param SampleCount - number of sample points to load into RAM
397     * @returns buffer_t structure with start address and size of
398     * the cached sample data in bytes
399     * @see ReleaseSampleData(), Read(), SetPos()
400     */
401     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
402     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
403     }
404    
405     /**
406     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
407     * ReleaseSampleData() to free the memory if you don't need the cached
408     * sample data anymore.
409     * The method will add \a NullSamplesCount silence samples past the
410     * official buffer end (this won't affect the 'Size' member of the
411     * buffer_t structure, that means 'Size' always reflects the size of the
412     * actual sample data, the buffer might be bigger though). Silence
413     * samples past the official buffer are needed for differential
414     * algorithms that always have to take subsequent samples into account
415     * (resampling/interpolation would be an important example) and avoids
416     * memory access faults in such cases.
417     *
418     * @param NullSamplesCount - number of silence samples the buffer should
419     * be extended past it's data end
420     * @returns buffer_t structure with start address and
421     * size of the buffer in bytes
422     * @see ReleaseSampleData(), Read(), SetPos()
423     */
424     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
425     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
426     }
427    
428     /**
429     * Reads (uncompresses if needed) and caches the first \a SampleCount
430     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
431     * memory space if you don't need the cached samples anymore. There is no
432     * guarantee that exactly \a SampleCount samples will be cached; this is
433     * not an error. The size will be eventually truncated e.g. to the
434     * beginning of a frame of a compressed sample. This is done for
435     * efficiency reasons while streaming the wave by your sampler engine
436     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
437     * that will be returned to determine the actual cached samples, but note
438     * that the size is given in bytes! You get the number of actually cached
439     * samples by dividing it by the frame size of the sample:
440 schoenebeck 384 * @code
441 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
442     * long cachedsamples = buf.Size / pSample->FrameSize;
443 schoenebeck 384 * @endcode
444 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
445     * official buffer end (this won't affect the 'Size' member of the
446     * buffer_t structure, that means 'Size' always reflects the size of the
447     * actual sample data, the buffer might be bigger though). Silence
448     * samples past the official buffer are needed for differential
449     * algorithms that always have to take subsequent samples into account
450     * (resampling/interpolation would be an important example) and avoids
451     * memory access faults in such cases.
452     *
453     * @param SampleCount - number of sample points to load into RAM
454     * @param NullSamplesCount - number of silence samples the buffer should
455     * be extended past it's data end
456     * @returns buffer_t structure with start address and
457     * size of the cached sample data in bytes
458     * @see ReleaseSampleData(), Read(), SetPos()
459     */
460     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
461     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
462     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
463     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
464     RAMCache.pStart = new int8_t[allocationsize];
465     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
466     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
467     // fill the remaining buffer space with silence samples
468     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
469     return GetCache();
470     }
471    
472     /**
473     * Returns current cached sample points. A buffer_t structure will be
474     * returned which contains address pointer to the begin of the cache and
475     * the size of the cached sample data in bytes. Use
476     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
477     * RAM.
478     *
479     * @returns buffer_t structure with current cached sample points
480     * @see LoadSampleData();
481     */
482     buffer_t Sample::GetCache() {
483     // return a copy of the buffer_t structure
484     buffer_t result;
485     result.Size = this->RAMCache.Size;
486     result.pStart = this->RAMCache.pStart;
487     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
488     return result;
489     }
490    
491     /**
492     * Frees the cached sample from RAM if loaded with
493     * <i>LoadSampleData()</i> previously.
494     *
495     * @see LoadSampleData();
496     */
497     void Sample::ReleaseSampleData() {
498     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
499     RAMCache.pStart = NULL;
500     RAMCache.Size = 0;
501     }
502    
503     /**
504     * Sets the position within the sample (in sample points, not in
505     * bytes). Use this method and <i>Read()</i> if you don't want to load
506     * the sample into RAM, thus for disk streaming.
507     *
508     * Although the original Gigasampler engine doesn't allow positioning
509     * within compressed samples, I decided to implement it. Even though
510     * the Gigasampler format doesn't allow to define loops for compressed
511     * samples at the moment, positioning within compressed samples might be
512     * interesting for some sampler engines though. The only drawback about
513     * my decision is that it takes longer to load compressed gig Files on
514     * startup, because it's neccessary to scan the samples for some
515     * mandatory informations. But I think as it doesn't affect the runtime
516     * efficiency, nobody will have a problem with that.
517     *
518     * @param SampleCount number of sample points to jump
519     * @param Whence optional: to which relation \a SampleCount refers
520     * to, if omited <i>RIFF::stream_start</i> is assumed
521     * @returns the new sample position
522     * @see Read()
523     */
524     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
525     if (Compressed) {
526     switch (Whence) {
527     case RIFF::stream_curpos:
528     this->SamplePos += SampleCount;
529     break;
530     case RIFF::stream_end:
531     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
532     break;
533     case RIFF::stream_backward:
534     this->SamplePos -= SampleCount;
535     break;
536     case RIFF::stream_start: default:
537     this->SamplePos = SampleCount;
538     break;
539     }
540     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
541    
542     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
543     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
544     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
545     return this->SamplePos;
546     }
547     else { // not compressed
548     unsigned long orderedBytes = SampleCount * this->FrameSize;
549     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
550     return (result == orderedBytes) ? SampleCount
551     : result / this->FrameSize;
552     }
553     }
554    
555     /**
556     * Returns the current position in the sample (in sample points).
557     */
558     unsigned long Sample::GetPos() {
559     if (Compressed) return SamplePos;
560     else return pCkData->GetPos() / FrameSize;
561     }
562    
563     /**
564 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
565     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
566     * the position within the sample respectively, this method honors the
567     * looping informations of the sample (if any). The sample wave stream
568     * will be decompressed on the fly if using a compressed sample. Use this
569     * method if you don't want to load the sample into RAM, thus for disk
570     * streaming. All this methods needs to know to proceed with streaming
571     * for the next time you call this method is stored in \a pPlaybackState.
572     * You have to allocate and initialize the playback_state_t structure by
573     * yourself before you use it to stream a sample:
574 schoenebeck 384 * @code
575     * gig::playback_state_t playbackstate;
576     * playbackstate.position = 0;
577     * playbackstate.reverse = false;
578     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
579     * @endcode
580 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
581     * defined or if the current read position is located within a loop area.
582     * The method already handles such cases by itself.
583     *
584 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
585     * have to use an external decompression buffer for <b>EACH</b>
586     * streaming thread to avoid race conditions and crashes!
587     *
588 schoenebeck 24 * @param pBuffer destination buffer
589     * @param SampleCount number of sample points to read
590     * @param pPlaybackState will be used to store and reload the playback
591     * state for the next ReadAndLoop() call
592 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
593 schoenebeck 24 * @returns number of successfully read sample points
594 schoenebeck 384 * @see CreateDecompressionBuffer()
595 schoenebeck 24 */
596 schoenebeck 384 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
597 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
598     uint8_t* pDst = (uint8_t*) pBuffer;
599    
600     SetPos(pPlaybackState->position); // recover position from the last time
601    
602     if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
603    
604     switch (this->LoopType) {
605    
606     case loop_type_bidirectional: { //TODO: not tested yet!
607     do {
608     // if not endless loop check if max. number of loop cycles have been passed
609     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
610    
611     if (!pPlaybackState->reverse) { // forward playback
612     do {
613     samplestoloopend = this->LoopEnd - GetPos();
614 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
615 schoenebeck 24 samplestoread -= readsamples;
616     totalreadsamples += readsamples;
617     if (readsamples == samplestoloopend) {
618     pPlaybackState->reverse = true;
619     break;
620     }
621     } while (samplestoread && readsamples);
622     }
623     else { // backward playback
624    
625     // as we can only read forward from disk, we have to
626     // determine the end position within the loop first,
627     // read forward from that 'end' and finally after
628     // reading, swap all sample frames so it reflects
629     // backward playback
630    
631     unsigned long swapareastart = totalreadsamples;
632     unsigned long loopoffset = GetPos() - this->LoopStart;
633     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
634     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
635    
636     SetPos(reverseplaybackend);
637    
638     // read samples for backward playback
639     do {
640 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
641 schoenebeck 24 samplestoreadinloop -= readsamples;
642     samplestoread -= readsamples;
643     totalreadsamples += readsamples;
644     } while (samplestoreadinloop && readsamples);
645    
646     SetPos(reverseplaybackend); // pretend we really read backwards
647    
648     if (reverseplaybackend == this->LoopStart) {
649     pPlaybackState->loop_cycles_left--;
650     pPlaybackState->reverse = false;
651     }
652    
653     // reverse the sample frames for backward playback
654     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
655     }
656     } while (samplestoread && readsamples);
657     break;
658     }
659    
660     case loop_type_backward: { // TODO: not tested yet!
661     // forward playback (not entered the loop yet)
662     if (!pPlaybackState->reverse) do {
663     samplestoloopend = this->LoopEnd - GetPos();
664 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
665 schoenebeck 24 samplestoread -= readsamples;
666     totalreadsamples += readsamples;
667     if (readsamples == samplestoloopend) {
668     pPlaybackState->reverse = true;
669     break;
670     }
671     } while (samplestoread && readsamples);
672    
673     if (!samplestoread) break;
674    
675     // as we can only read forward from disk, we have to
676     // determine the end position within the loop first,
677     // read forward from that 'end' and finally after
678     // reading, swap all sample frames so it reflects
679     // backward playback
680    
681     unsigned long swapareastart = totalreadsamples;
682     unsigned long loopoffset = GetPos() - this->LoopStart;
683     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
684     : samplestoread;
685     unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
686    
687     SetPos(reverseplaybackend);
688    
689     // read samples for backward playback
690     do {
691     // if not endless loop check if max. number of loop cycles have been passed
692     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
693     samplestoloopend = this->LoopEnd - GetPos();
694 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
695 schoenebeck 24 samplestoreadinloop -= readsamples;
696     samplestoread -= readsamples;
697     totalreadsamples += readsamples;
698     if (readsamples == samplestoloopend) {
699     pPlaybackState->loop_cycles_left--;
700     SetPos(this->LoopStart);
701     }
702     } while (samplestoreadinloop && readsamples);
703    
704     SetPos(reverseplaybackend); // pretend we really read backwards
705    
706     // reverse the sample frames for backward playback
707     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
708     break;
709     }
710    
711     default: case loop_type_normal: {
712     do {
713     // if not endless loop check if max. number of loop cycles have been passed
714     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
715     samplestoloopend = this->LoopEnd - GetPos();
716 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
717 schoenebeck 24 samplestoread -= readsamples;
718     totalreadsamples += readsamples;
719     if (readsamples == samplestoloopend) {
720     pPlaybackState->loop_cycles_left--;
721     SetPos(this->LoopStart);
722     }
723     } while (samplestoread && readsamples);
724     break;
725     }
726     }
727     }
728    
729     // read on without looping
730     if (samplestoread) do {
731 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
732 schoenebeck 24 samplestoread -= readsamples;
733     totalreadsamples += readsamples;
734     } while (readsamples && samplestoread);
735    
736     // store current position
737     pPlaybackState->position = GetPos();
738    
739     return totalreadsamples;
740     }
741    
742     /**
743 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
744     * position into the buffer pointed by \a pBuffer and increments the
745     * position within the sample. The sample wave stream will be
746     * decompressed on the fly if using a compressed sample. Use this method
747     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
748     * thus for disk streaming.
749     *
750 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
751     * have to use an external decompression buffer for <b>EACH</b>
752     * streaming thread to avoid race conditions and crashes!
753     *
754 schoenebeck 2 * @param pBuffer destination buffer
755     * @param SampleCount number of sample points to read
756 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
757 schoenebeck 2 * @returns number of successfully read sample points
758 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
759 schoenebeck 2 */
760 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
761 schoenebeck 21 if (SampleCount == 0) return 0;
762 schoenebeck 317 if (!Compressed) {
763     if (BitDepth == 24) {
764     // 24 bit sample. For now just truncate to 16 bit.
765 schoenebeck 384 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
766 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
767     if (Channels == 2) { // Stereo
768     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
769 schoenebeck 317 pSrc++;
770 persson 365 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
771     *pDst++ = get16(pSrc);
772     pSrc += 3;
773     }
774     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
775 schoenebeck 317 }
776 persson 365 else { // Mono
777     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
778     pSrc++;
779     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
780     *pDst++ = get16(pSrc);
781     pSrc += 3;
782     }
783     return pDst - static_cast<int16_t*>(pBuffer);
784     }
785 schoenebeck 317 }
786 persson 365 else { // 16 bit
787     // (pCkData->Read does endian correction)
788     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
789     : pCkData->Read(pBuffer, SampleCount, 2);
790     }
791 schoenebeck 317 }
792 persson 365 else {
793 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
794 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
795     unsigned long assumedsize = GuessSize(SampleCount),
796 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
797     remainingsamples = SampleCount,
798 persson 365 copysamples, skipsamples,
799     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
800 schoenebeck 2 this->FrameOffset = 0;
801    
802 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
803    
804     // if decompression buffer too small, then reduce amount of samples to read
805     if (pDecompressionBuffer->Size < assumedsize) {
806     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
807     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
808     remainingsamples = SampleCount;
809     assumedsize = GuessSize(SampleCount);
810 schoenebeck 2 }
811    
812 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
813 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
814 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
815    
816 persson 365 while (remainingsamples && remainingbytes) {
817     unsigned long framesamples = SamplesPerFrame;
818     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
819 schoenebeck 2
820 persson 365 int mode_l = *pSrc++, mode_r = 0;
821    
822     if (Channels == 2) {
823     mode_r = *pSrc++;
824     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
825     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
826     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
827     if (remainingbytes < framebytes) { // last frame in sample
828     framesamples = SamplesInLastFrame;
829     if (mode_l == 4 && (framesamples & 1)) {
830     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
831     }
832     else {
833     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
834     }
835 schoenebeck 2 }
836     }
837 persson 365 else {
838     framebytes = bytesPerFrame[mode_l] + 1;
839     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
840     if (remainingbytes < framebytes) {
841     framesamples = SamplesInLastFrame;
842     }
843     }
844 schoenebeck 2
845     // determine how many samples in this frame to skip and read
846 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
847     if (currentframeoffset <= framesamples) {
848     copysamples = framesamples - currentframeoffset;
849     skipsamples = currentframeoffset;
850     }
851     else {
852     copysamples = 0;
853     skipsamples = framesamples;
854     }
855 schoenebeck 2 }
856     else {
857 persson 365 // This frame has enough data for pBuffer, but not
858     // all of the frame is needed. Set file position
859     // to start of this frame for next call to Read.
860 schoenebeck 2 copysamples = remainingsamples;
861 persson 365 skipsamples = currentframeoffset;
862     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
863     this->FrameOffset = currentframeoffset + copysamples;
864     }
865     remainingsamples -= copysamples;
866    
867     if (remainingbytes > framebytes) {
868     remainingbytes -= framebytes;
869     if (remainingsamples == 0 &&
870     currentframeoffset + copysamples == framesamples) {
871     // This frame has enough data for pBuffer, and
872     // all of the frame is needed. Set file
873     // position to start of next frame for next
874     // call to Read. FrameOffset is 0.
875 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
876     }
877     }
878 persson 365 else remainingbytes = 0;
879 schoenebeck 2
880 persson 365 currentframeoffset -= skipsamples;
881 schoenebeck 2
882 persson 365 if (copysamples == 0) {
883     // skip this frame
884     pSrc += framebytes - Channels;
885     }
886     else {
887     const unsigned char* const param_l = pSrc;
888     if (BitDepth == 24) {
889     if (mode_l != 2) pSrc += 12;
890 schoenebeck 2
891 persson 365 if (Channels == 2) { // Stereo
892     const unsigned char* const param_r = pSrc;
893     if (mode_r != 2) pSrc += 12;
894    
895 persson 437 Decompress24(mode_l, param_l, 2, pSrc, pDst,
896     skipsamples, copysamples, TruncatedBits);
897 persson 372 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
898 persson 437 skipsamples, copysamples, TruncatedBits);
899 persson 365 pDst += copysamples << 1;
900 schoenebeck 2 }
901 persson 365 else { // Mono
902 persson 437 Decompress24(mode_l, param_l, 1, pSrc, pDst,
903     skipsamples, copysamples, TruncatedBits);
904 persson 365 pDst += copysamples;
905 schoenebeck 2 }
906 persson 365 }
907     else { // 16 bit
908     if (mode_l) pSrc += 4;
909 schoenebeck 2
910 persson 365 int step;
911     if (Channels == 2) { // Stereo
912     const unsigned char* const param_r = pSrc;
913     if (mode_r) pSrc += 4;
914    
915     step = (2 - mode_l) + (2 - mode_r);
916 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
917     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
918 persson 365 skipsamples, copysamples);
919     pDst += copysamples << 1;
920 schoenebeck 2 }
921 persson 365 else { // Mono
922     step = 2 - mode_l;
923 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
924 persson 365 pDst += copysamples;
925 schoenebeck 2 }
926 persson 365 }
927     pSrc += nextFrameOffset;
928     }
929 schoenebeck 2
930 persson 365 // reload from disk to local buffer if needed
931     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
932     assumedsize = GuessSize(remainingsamples);
933     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
934     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
935 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
936     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
937 schoenebeck 2 }
938 persson 365 } // while
939    
940 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
941 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
942 schoenebeck 2 return (SampleCount - remainingsamples);
943     }
944     }
945    
946 schoenebeck 384 /**
947     * Allocates a decompression buffer for streaming (compressed) samples
948     * with Sample::Read(). If you are using more than one streaming thread
949     * in your application you <b>HAVE</b> to create a decompression buffer
950     * for <b>EACH</b> of your streaming threads and provide it with the
951     * Sample::Read() call in order to avoid race conditions and crashes.
952     *
953     * You should free the memory occupied by the allocated buffer(s) once
954     * you don't need one of your streaming threads anymore by calling
955     * DestroyDecompressionBuffer().
956     *
957     * @param MaxReadSize - the maximum size (in sample points) you ever
958     * expect to read with one Read() call
959     * @returns allocated decompression buffer
960     * @see DestroyDecompressionBuffer()
961     */
962     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
963     buffer_t result;
964     const double worstCaseHeaderOverhead =
965     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
966     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
967     result.pStart = new int8_t[result.Size];
968     result.NullExtensionSize = 0;
969     return result;
970     }
971    
972     /**
973     * Free decompression buffer, previously created with
974     * CreateDecompressionBuffer().
975     *
976     * @param DecompressionBuffer - previously allocated decompression
977     * buffer to free
978     */
979     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
980     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
981     delete[] (int8_t*) DecompressionBuffer.pStart;
982     DecompressionBuffer.pStart = NULL;
983     DecompressionBuffer.Size = 0;
984     DecompressionBuffer.NullExtensionSize = 0;
985     }
986     }
987    
988 schoenebeck 2 Sample::~Sample() {
989     Instances--;
990 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
991     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
992     InternalDecompressionBuffer.pStart = NULL;
993     InternalDecompressionBuffer.Size = 0;
994 schoenebeck 355 }
995 schoenebeck 2 if (FrameTable) delete[] FrameTable;
996     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
997     }
998    
999    
1000    
1001     // *************** DimensionRegion ***************
1002     // *
1003    
1004 schoenebeck 16 uint DimensionRegion::Instances = 0;
1005     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1006    
1007 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1008 schoenebeck 16 Instances++;
1009    
1010 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1011 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1012 schoenebeck 2
1013     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1014 schoenebeck 241 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1015 schoenebeck 2 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1016     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1017     _3ewa->ReadInt16(); // unknown
1018     LFO1InternalDepth = _3ewa->ReadUint16();
1019     _3ewa->ReadInt16(); // unknown
1020     LFO3InternalDepth = _3ewa->ReadInt16();
1021     _3ewa->ReadInt16(); // unknown
1022     LFO1ControlDepth = _3ewa->ReadUint16();
1023     _3ewa->ReadInt16(); // unknown
1024     LFO3ControlDepth = _3ewa->ReadInt16();
1025     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1026     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1027     _3ewa->ReadInt16(); // unknown
1028     EG1Sustain = _3ewa->ReadUint16();
1029     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1030 schoenebeck 36 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1031 schoenebeck 2 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1032     EG1ControllerInvert = eg1ctrloptions & 0x01;
1033     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1034     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1035     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1036 schoenebeck 36 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1037 schoenebeck 2 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1038     EG2ControllerInvert = eg2ctrloptions & 0x01;
1039     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1040     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1041     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1042     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1043     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1044     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1045     _3ewa->ReadInt16(); // unknown
1046     EG2Sustain = _3ewa->ReadUint16();
1047     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1048     _3ewa->ReadInt16(); // unknown
1049     LFO2ControlDepth = _3ewa->ReadUint16();
1050     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1051     _3ewa->ReadInt16(); // unknown
1052     LFO2InternalDepth = _3ewa->ReadUint16();
1053     int32_t eg1decay2 = _3ewa->ReadInt32();
1054     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1055     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1056     _3ewa->ReadInt16(); // unknown
1057     EG1PreAttack = _3ewa->ReadUint16();
1058     int32_t eg2decay2 = _3ewa->ReadInt32();
1059     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1060     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1061     _3ewa->ReadInt16(); // unknown
1062     EG2PreAttack = _3ewa->ReadUint16();
1063     uint8_t velocityresponse = _3ewa->ReadUint8();
1064     if (velocityresponse < 5) {
1065     VelocityResponseCurve = curve_type_nonlinear;
1066     VelocityResponseDepth = velocityresponse;
1067     }
1068     else if (velocityresponse < 10) {
1069     VelocityResponseCurve = curve_type_linear;
1070     VelocityResponseDepth = velocityresponse - 5;
1071     }
1072     else if (velocityresponse < 15) {
1073     VelocityResponseCurve = curve_type_special;
1074     VelocityResponseDepth = velocityresponse - 10;
1075     }
1076     else {
1077     VelocityResponseCurve = curve_type_unknown;
1078     VelocityResponseDepth = 0;
1079     }
1080     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1081     if (releasevelocityresponse < 5) {
1082     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1083     ReleaseVelocityResponseDepth = releasevelocityresponse;
1084     }
1085     else if (releasevelocityresponse < 10) {
1086     ReleaseVelocityResponseCurve = curve_type_linear;
1087     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1088     }
1089     else if (releasevelocityresponse < 15) {
1090     ReleaseVelocityResponseCurve = curve_type_special;
1091     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1092     }
1093     else {
1094     ReleaseVelocityResponseCurve = curve_type_unknown;
1095     ReleaseVelocityResponseDepth = 0;
1096     }
1097     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1098 schoenebeck 36 AttenuationControllerThreshold = _3ewa->ReadInt8();
1099 schoenebeck 2 _3ewa->ReadInt32(); // unknown
1100     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1101     _3ewa->ReadInt16(); // unknown
1102     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1103     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1104     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1105     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1106     else DimensionBypass = dim_bypass_ctrl_none;
1107     uint8_t pan = _3ewa->ReadUint8();
1108 schoenebeck 269 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1109 schoenebeck 2 SelfMask = _3ewa->ReadInt8() & 0x01;
1110     _3ewa->ReadInt8(); // unknown
1111     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1112     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1113     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1114 schoenebeck 36 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1115     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1116 schoenebeck 2 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1117     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1118     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1119     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1120     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1121     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1122     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1123     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1124     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1125     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1126     : vcf_res_ctrl_none;
1127     uint16_t eg3depth = _3ewa->ReadUint16();
1128     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1129     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1130     _3ewa->ReadInt16(); // unknown
1131     ChannelOffset = _3ewa->ReadUint8() / 4;
1132     uint8_t regoptions = _3ewa->ReadUint8();
1133     MSDecode = regoptions & 0x01; // bit 0
1134     SustainDefeat = regoptions & 0x02; // bit 1
1135     _3ewa->ReadInt16(); // unknown
1136     VelocityUpperLimit = _3ewa->ReadInt8();
1137     _3ewa->ReadInt8(); // unknown
1138     _3ewa->ReadInt16(); // unknown
1139     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1140     _3ewa->ReadInt8(); // unknown
1141     _3ewa->ReadInt8(); // unknown
1142     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1143     uint8_t vcfcutoff = _3ewa->ReadUint8();
1144     VCFEnabled = vcfcutoff & 0x80; // bit 7
1145     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1146     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1147     VCFVelocityScale = _3ewa->ReadUint8();
1148     _3ewa->ReadInt8(); // unknown
1149     uint8_t vcfresonance = _3ewa->ReadUint8();
1150     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1151     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1152     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1153     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1154     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1155     uint8_t vcfvelocity = _3ewa->ReadUint8();
1156     VCFVelocityDynamicRange = vcfvelocity % 5;
1157     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1158     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1159 schoenebeck 345 if (VCFType == vcf_type_lowpass) {
1160     if (lfo3ctrl & 0x40) // bit 6
1161     VCFType = vcf_type_lowpassturbo;
1162     }
1163 schoenebeck 16
1164 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1165     VelocityResponseDepth,
1166     VelocityResponseCurveScaling);
1167    
1168     curve_type_t curveType = ReleaseVelocityResponseCurve;
1169     uint8_t depth = ReleaseVelocityResponseDepth;
1170    
1171     // this models a strange behaviour or bug in GSt: two of the
1172     // velocity response curves for release time are not used even
1173     // if specified, instead another curve is chosen.
1174    
1175     if ((curveType == curve_type_nonlinear && depth == 0) ||
1176     (curveType == curve_type_special && depth == 4)) {
1177     curveType = curve_type_nonlinear;
1178     depth = 3;
1179     }
1180     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1181    
1182     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1183     }
1184    
1185     // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1186     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1187     {
1188     double* table;
1189     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1190 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1191 persson 613 table = (*pVelocityTables)[tableKey];
1192 schoenebeck 16 }
1193     else {
1194 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1195     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1196 schoenebeck 16 }
1197 persson 613 return table;
1198 schoenebeck 2 }
1199 schoenebeck 55
1200 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1201     leverage_ctrl_t decodedcontroller;
1202     switch (EncodedController) {
1203     // special controller
1204     case _lev_ctrl_none:
1205     decodedcontroller.type = leverage_ctrl_t::type_none;
1206     decodedcontroller.controller_number = 0;
1207     break;
1208     case _lev_ctrl_velocity:
1209     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1210     decodedcontroller.controller_number = 0;
1211     break;
1212     case _lev_ctrl_channelaftertouch:
1213     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1214     decodedcontroller.controller_number = 0;
1215     break;
1216 schoenebeck 55
1217 schoenebeck 36 // ordinary MIDI control change controller
1218     case _lev_ctrl_modwheel:
1219     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1220     decodedcontroller.controller_number = 1;
1221     break;
1222     case _lev_ctrl_breath:
1223     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1224     decodedcontroller.controller_number = 2;
1225     break;
1226     case _lev_ctrl_foot:
1227     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1228     decodedcontroller.controller_number = 4;
1229     break;
1230     case _lev_ctrl_effect1:
1231     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1232     decodedcontroller.controller_number = 12;
1233     break;
1234     case _lev_ctrl_effect2:
1235     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1236     decodedcontroller.controller_number = 13;
1237     break;
1238     case _lev_ctrl_genpurpose1:
1239     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1240     decodedcontroller.controller_number = 16;
1241     break;
1242     case _lev_ctrl_genpurpose2:
1243     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1244     decodedcontroller.controller_number = 17;
1245     break;
1246     case _lev_ctrl_genpurpose3:
1247     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1248     decodedcontroller.controller_number = 18;
1249     break;
1250     case _lev_ctrl_genpurpose4:
1251     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1252     decodedcontroller.controller_number = 19;
1253     break;
1254     case _lev_ctrl_portamentotime:
1255     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1256     decodedcontroller.controller_number = 5;
1257     break;
1258     case _lev_ctrl_sustainpedal:
1259     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1260     decodedcontroller.controller_number = 64;
1261     break;
1262     case _lev_ctrl_portamento:
1263     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1264     decodedcontroller.controller_number = 65;
1265     break;
1266     case _lev_ctrl_sostenutopedal:
1267     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1268     decodedcontroller.controller_number = 66;
1269     break;
1270     case _lev_ctrl_softpedal:
1271     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1272     decodedcontroller.controller_number = 67;
1273     break;
1274     case _lev_ctrl_genpurpose5:
1275     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1276     decodedcontroller.controller_number = 80;
1277     break;
1278     case _lev_ctrl_genpurpose6:
1279     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1280     decodedcontroller.controller_number = 81;
1281     break;
1282     case _lev_ctrl_genpurpose7:
1283     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1284     decodedcontroller.controller_number = 82;
1285     break;
1286     case _lev_ctrl_genpurpose8:
1287     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1288     decodedcontroller.controller_number = 83;
1289     break;
1290     case _lev_ctrl_effect1depth:
1291     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1292     decodedcontroller.controller_number = 91;
1293     break;
1294     case _lev_ctrl_effect2depth:
1295     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1296     decodedcontroller.controller_number = 92;
1297     break;
1298     case _lev_ctrl_effect3depth:
1299     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1300     decodedcontroller.controller_number = 93;
1301     break;
1302     case _lev_ctrl_effect4depth:
1303     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1304     decodedcontroller.controller_number = 94;
1305     break;
1306     case _lev_ctrl_effect5depth:
1307     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1308     decodedcontroller.controller_number = 95;
1309     break;
1310 schoenebeck 55
1311 schoenebeck 36 // unknown controller type
1312     default:
1313     throw gig::Exception("Unknown leverage controller type.");
1314     }
1315     return decodedcontroller;
1316     }
1317 schoenebeck 2
1318 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1319     Instances--;
1320     if (!Instances) {
1321     // delete the velocity->volume tables
1322     VelocityTableMap::iterator iter;
1323     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1324     double* pTable = iter->second;
1325     if (pTable) delete[] pTable;
1326     }
1327     pVelocityTables->clear();
1328     delete pVelocityTables;
1329     pVelocityTables = NULL;
1330     }
1331     }
1332 schoenebeck 2
1333 schoenebeck 16 /**
1334     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1335     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1336     * and VelocityResponseCurveScaling) involved are taken into account to
1337     * calculate the amplitude factor. Use this method when a key was
1338     * triggered to get the volume with which the sample should be played
1339     * back.
1340     *
1341 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1342     * @returns amplitude factor (between 0.0 and 1.0)
1343 schoenebeck 16 */
1344     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1345     return pVelocityAttenuationTable[MIDIKeyVelocity];
1346     }
1347 schoenebeck 2
1348 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1349     return pVelocityReleaseTable[MIDIKeyVelocity];
1350     }
1351    
1352 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1353 schoenebeck 317
1354 schoenebeck 308 // line-segment approximations of the 15 velocity curves
1355 schoenebeck 16
1356 schoenebeck 308 // linear
1357     const int lin0[] = { 1, 1, 127, 127 };
1358     const int lin1[] = { 1, 21, 127, 127 };
1359     const int lin2[] = { 1, 45, 127, 127 };
1360     const int lin3[] = { 1, 74, 127, 127 };
1361     const int lin4[] = { 1, 127, 127, 127 };
1362 schoenebeck 16
1363 schoenebeck 308 // non-linear
1364     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1365 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1366 schoenebeck 308 127, 127 };
1367     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1368     127, 127 };
1369     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1370     127, 127 };
1371     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1372 schoenebeck 317
1373 schoenebeck 308 // special
1374 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1375 schoenebeck 308 113, 127, 127, 127 };
1376     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1377     118, 127, 127, 127 };
1378 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
1379 schoenebeck 308 85, 90, 91, 127, 127, 127 };
1380 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
1381 schoenebeck 308 117, 127, 127, 127 };
1382 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
1383 schoenebeck 308 127, 127 };
1384 schoenebeck 317
1385 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
1386 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
1387 schoenebeck 308 spe0, spe1, spe2, spe3, spe4 };
1388 schoenebeck 317
1389 schoenebeck 308 double* const table = new double[128];
1390    
1391     const int* curve = curves[curveType * 5 + depth];
1392     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
1393 schoenebeck 317
1394 schoenebeck 308 table[0] = 0;
1395     for (int x = 1 ; x < 128 ; x++) {
1396    
1397     if (x > curve[2]) curve += 2;
1398 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
1399 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
1400     y = y / 127;
1401    
1402     // Scale up for s > 20, down for s < 20. When
1403     // down-scaling, the curve still ends at 1.0.
1404     if (s < 20 && y >= 0.5)
1405     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
1406     else
1407     y = y * (s / 20.0);
1408     if (y > 1) y = 1;
1409    
1410     table[x] = y;
1411     }
1412     return table;
1413     }
1414    
1415    
1416 schoenebeck 2 // *************** Region ***************
1417     // *
1418    
1419     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
1420     // Initialization
1421     Dimensions = 0;
1422 schoenebeck 347 for (int i = 0; i < 256; i++) {
1423 schoenebeck 2 pDimensionRegions[i] = NULL;
1424     }
1425 schoenebeck 282 Layers = 1;
1426 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
1427     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
1428 schoenebeck 2
1429     // Actual Loading
1430    
1431     LoadDimensionRegions(rgnList);
1432    
1433     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
1434     if (_3lnk) {
1435     DimensionRegions = _3lnk->ReadUint32();
1436 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
1437 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
1438     uint8_t bits = _3lnk->ReadUint8();
1439     if (dimension == dimension_none) { // inactive dimension
1440     pDimensionDefinitions[i].dimension = dimension_none;
1441     pDimensionDefinitions[i].bits = 0;
1442     pDimensionDefinitions[i].zones = 0;
1443     pDimensionDefinitions[i].split_type = split_type_bit;
1444     pDimensionDefinitions[i].ranges = NULL;
1445     pDimensionDefinitions[i].zone_size = 0;
1446     }
1447     else { // active dimension
1448     pDimensionDefinitions[i].dimension = dimension;
1449     pDimensionDefinitions[i].bits = bits;
1450     pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
1451     pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
1452 schoenebeck 241 dimension == dimension_samplechannel ||
1453 persson 437 dimension == dimension_releasetrigger ||
1454     dimension == dimension_roundrobin ||
1455     dimension == dimension_random) ? split_type_bit
1456     : split_type_normal;
1457 schoenebeck 2 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
1458     pDimensionDefinitions[i].zone_size =
1459     (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
1460     : 0;
1461     Dimensions++;
1462 schoenebeck 282
1463     // if this is a layer dimension, remember the amount of layers
1464     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
1465 schoenebeck 2 }
1466     _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
1467     }
1468    
1469     // check velocity dimension (if there is one) for custom defined zone ranges
1470     for (uint i = 0; i < Dimensions; i++) {
1471     dimension_def_t* pDimDef = pDimensionDefinitions + i;
1472     if (pDimDef->dimension == dimension_velocity) {
1473     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
1474     // no custom defined ranges
1475     pDimDef->split_type = split_type_normal;
1476     pDimDef->ranges = NULL;
1477     }
1478     else { // custom defined ranges
1479     pDimDef->split_type = split_type_customvelocity;
1480     pDimDef->ranges = new range_t[pDimDef->zones];
1481 schoenebeck 347 uint8_t bits[8] = { 0 };
1482 schoenebeck 2 int previousUpperLimit = -1;
1483     for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
1484     bits[i] = velocityZone;
1485 schoenebeck 347 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
1486 schoenebeck 2
1487     pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
1488     pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
1489     previousUpperLimit = pDimDef->ranges[velocityZone].high;
1490     // fill velocity table
1491     for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
1492     VelocityTable[i] = velocityZone;
1493     }
1494     }
1495     }
1496     }
1497     }
1498    
1499 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
1500     File* file = (File*) GetParent()->GetParent();
1501     if (file->pVersion && file->pVersion->major == 3)
1502     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
1503     else
1504     _3lnk->SetPos(44);
1505    
1506 schoenebeck 2 // load sample references
1507     for (uint i = 0; i < DimensionRegions; i++) {
1508     uint32_t wavepoolindex = _3lnk->ReadUint32();
1509     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
1510     }
1511     }
1512     else throw gig::Exception("Mandatory <3lnk> chunk not found.");
1513     }
1514    
1515     void Region::LoadDimensionRegions(RIFF::List* rgn) {
1516     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
1517     if (_3prg) {
1518     int dimensionRegionNr = 0;
1519     RIFF::List* _3ewl = _3prg->GetFirstSubList();
1520     while (_3ewl) {
1521     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
1522     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
1523     dimensionRegionNr++;
1524     }
1525     _3ewl = _3prg->GetNextSubList();
1526     }
1527     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1528     }
1529     }
1530    
1531     Region::~Region() {
1532     for (uint i = 0; i < Dimensions; i++) {
1533     if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1534     }
1535 schoenebeck 350 for (int i = 0; i < 256; i++) {
1536 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1537     }
1538     }
1539    
1540     /**
1541     * Use this method in your audio engine to get the appropriate dimension
1542     * region with it's articulation data for the current situation. Just
1543     * call the method with the current MIDI controller values and you'll get
1544     * the DimensionRegion with the appropriate articulation data for the
1545     * current situation (for this Region of course only). To do that you'll
1546     * first have to look which dimensions with which controllers and in
1547     * which order are defined for this Region when you load the .gig file.
1548     * Special cases are e.g. layer or channel dimensions where you just put
1549     * in the index numbers instead of a MIDI controller value (means 0 for
1550     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1551     * etc.).
1552     *
1553 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
1554 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
1555     * @see pDimensionDefinitions
1556     * @see Dimensions
1557     */
1558 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
1559     uint8_t bits[8] = { 0 };
1560 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
1561 schoenebeck 347 bits[i] = DimValues[i];
1562 schoenebeck 2 switch (pDimensionDefinitions[i].split_type) {
1563     case split_type_normal:
1564     bits[i] /= pDimensionDefinitions[i].zone_size;
1565     break;
1566     case split_type_customvelocity:
1567     bits[i] = VelocityTable[bits[i]];
1568     break;
1569 schoenebeck 241 case split_type_bit: // the value is already the sought dimension bit number
1570     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
1571     bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
1572     break;
1573 schoenebeck 2 }
1574     }
1575 schoenebeck 347 return GetDimensionRegionByBit(bits);
1576 schoenebeck 2 }
1577    
1578     /**
1579     * Returns the appropriate DimensionRegion for the given dimension bit
1580     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1581     * instead of calling this method directly!
1582     *
1583 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
1584 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
1585     * bit numbers
1586     * @see GetDimensionRegionByValue()
1587     */
1588 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
1589     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
1590     << pDimensionDefinitions[5].bits | DimBits[5])
1591     << pDimensionDefinitions[4].bits | DimBits[4])
1592     << pDimensionDefinitions[3].bits | DimBits[3])
1593     << pDimensionDefinitions[2].bits | DimBits[2])
1594     << pDimensionDefinitions[1].bits | DimBits[1])
1595     << pDimensionDefinitions[0].bits | DimBits[0]];
1596 schoenebeck 2 }
1597    
1598     /**
1599     * Returns pointer address to the Sample referenced with this region.
1600     * This is the global Sample for the entire Region (not sure if this is
1601     * actually used by the Gigasampler engine - I would only use the Sample
1602     * referenced by the appropriate DimensionRegion instead of this sample).
1603     *
1604     * @returns address to Sample or NULL if there is no reference to a
1605     * sample saved in the .gig file
1606     */
1607     Sample* Region::GetSample() {
1608     if (pSample) return static_cast<gig::Sample*>(pSample);
1609     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1610     }
1611    
1612 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
1613 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
1614 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
1615     unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1616 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
1617 schoenebeck 2 while (sample) {
1618     if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);
1619     sample = file->GetNextSample();
1620     }
1621     return NULL;
1622     }
1623    
1624    
1625    
1626     // *************** Instrument ***************
1627     // *
1628    
1629 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
1630 schoenebeck 2 // Initialization
1631     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1632     RegionIndex = -1;
1633    
1634     // Loading
1635     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1636     if (lart) {
1637     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1638     if (_3ewg) {
1639     EffectSend = _3ewg->ReadUint16();
1640     Attenuation = _3ewg->ReadInt32();
1641     FineTune = _3ewg->ReadInt16();
1642     PitchbendRange = _3ewg->ReadInt16();
1643     uint8_t dimkeystart = _3ewg->ReadUint8();
1644     PianoReleaseMode = dimkeystart & 0x01;
1645     DimensionKeyRange.low = dimkeystart >> 1;
1646     DimensionKeyRange.high = _3ewg->ReadUint8();
1647     }
1648     else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1649     }
1650     else throw gig::Exception("Mandatory <lart> list chunk not found.");
1651    
1652     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1653     if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1654     pRegions = new Region*[Regions];
1655 schoenebeck 350 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
1656 schoenebeck 2 RIFF::List* rgn = lrgn->GetFirstSubList();
1657     unsigned int iRegion = 0;
1658     while (rgn) {
1659     if (rgn->GetListType() == LIST_TYPE_RGN) {
1660 schoenebeck 515 __notify_progress(pProgress, (float) iRegion / (float) Regions);
1661 schoenebeck 2 pRegions[iRegion] = new Region(this, rgn);
1662     iRegion++;
1663     }
1664     rgn = lrgn->GetNextSubList();
1665     }
1666    
1667     // Creating Region Key Table for fast lookup
1668     for (uint iReg = 0; iReg < Regions; iReg++) {
1669     for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1670     RegionKeyTable[iKey] = pRegions[iReg];
1671     }
1672     }
1673 schoenebeck 515
1674     __notify_progress(pProgress, 1.0f); // notify done
1675 schoenebeck 2 }
1676    
1677     Instrument::~Instrument() {
1678     for (uint i = 0; i < Regions; i++) {
1679     if (pRegions) {
1680     if (pRegions[i]) delete (pRegions[i]);
1681     }
1682     }
1683 schoenebeck 350 if (pRegions) delete[] pRegions;
1684 schoenebeck 2 }
1685    
1686     /**
1687     * Returns the appropriate Region for a triggered note.
1688     *
1689     * @param Key MIDI Key number of triggered note / key (0 - 127)
1690     * @returns pointer adress to the appropriate Region or NULL if there
1691     * there is no Region defined for the given \a Key
1692     */
1693     Region* Instrument::GetRegion(unsigned int Key) {
1694     if (!pRegions || Key > 127) return NULL;
1695     return RegionKeyTable[Key];
1696     /*for (int i = 0; i < Regions; i++) {
1697     if (Key <= pRegions[i]->KeyRange.high &&
1698     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1699     }
1700     return NULL;*/
1701     }
1702    
1703     /**
1704     * Returns the first Region of the instrument. You have to call this
1705     * method once before you use GetNextRegion().
1706     *
1707     * @returns pointer address to first region or NULL if there is none
1708     * @see GetNextRegion()
1709     */
1710     Region* Instrument::GetFirstRegion() {
1711     if (!Regions) return NULL;
1712     RegionIndex = 1;
1713     return pRegions[0];
1714     }
1715    
1716     /**
1717     * Returns the next Region of the instrument. You have to call
1718     * GetFirstRegion() once before you can use this method. By calling this
1719     * method multiple times it iterates through the available Regions.
1720     *
1721     * @returns pointer address to the next region or NULL if end reached
1722     * @see GetFirstRegion()
1723     */
1724     Region* Instrument::GetNextRegion() {
1725 persson 365 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
1726 schoenebeck 2 return pRegions[RegionIndex++];
1727     }
1728    
1729    
1730    
1731     // *************** File ***************
1732     // *
1733    
1734     File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1735     pSamples = NULL;
1736     pInstruments = NULL;
1737     }
1738    
1739 schoenebeck 350 File::~File() {
1740     // free samples
1741     if (pSamples) {
1742     SamplesIterator = pSamples->begin();
1743     while (SamplesIterator != pSamples->end() ) {
1744     delete (*SamplesIterator);
1745     SamplesIterator++;
1746     }
1747     pSamples->clear();
1748 schoenebeck 355 delete pSamples;
1749 schoenebeck 350
1750     }
1751     // free instruments
1752     if (pInstruments) {
1753     InstrumentsIterator = pInstruments->begin();
1754     while (InstrumentsIterator != pInstruments->end() ) {
1755     delete (*InstrumentsIterator);
1756     InstrumentsIterator++;
1757     }
1758     pInstruments->clear();
1759 schoenebeck 355 delete pInstruments;
1760 schoenebeck 350 }
1761     }
1762    
1763 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
1764     if (!pSamples) LoadSamples(pProgress);
1765 schoenebeck 2 if (!pSamples) return NULL;
1766     SamplesIterator = pSamples->begin();
1767     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1768     }
1769    
1770     Sample* File::GetNextSample() {
1771     if (!pSamples) return NULL;
1772     SamplesIterator++;
1773     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1774     }
1775    
1776 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
1777 schoenebeck 2 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
1778     if (wvpl) {
1779 schoenebeck 515 // just for progress calculation
1780     int iSampleIndex = 0;
1781     int iTotalSamples = wvpl->CountSubLists(LIST_TYPE_WAVE);
1782    
1783 schoenebeck 2 unsigned long wvplFileOffset = wvpl->GetFilePos();
1784     RIFF::List* wave = wvpl->GetFirstSubList();
1785     while (wave) {
1786     if (wave->GetListType() == LIST_TYPE_WAVE) {
1787 schoenebeck 515 // notify current progress
1788     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
1789     __notify_progress(pProgress, subprogress);
1790    
1791 schoenebeck 2 if (!pSamples) pSamples = new SampleList;
1792     unsigned long waveFileOffset = wave->GetFilePos();
1793     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));
1794 schoenebeck 515
1795     iSampleIndex++;
1796 schoenebeck 2 }
1797     wave = wvpl->GetNextSubList();
1798     }
1799 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
1800 schoenebeck 2 }
1801     else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1802     }
1803    
1804     Instrument* File::GetFirstInstrument() {
1805     if (!pInstruments) LoadInstruments();
1806     if (!pInstruments) return NULL;
1807     InstrumentsIterator = pInstruments->begin();
1808     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1809     }
1810    
1811     Instrument* File::GetNextInstrument() {
1812     if (!pInstruments) return NULL;
1813     InstrumentsIterator++;
1814     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1815     }
1816    
1817 schoenebeck 21 /**
1818     * Returns the instrument with the given index.
1819     *
1820 schoenebeck 515 * @param index - number of the sought instrument (0..n)
1821     * @param pProgress - optional: callback function for progress notification
1822 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
1823     */
1824 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
1825     if (!pInstruments) {
1826     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
1827    
1828     // sample loading subtask
1829     progress_t subprogress;
1830     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
1831     __notify_progress(&subprogress, 0.0f);
1832     GetFirstSample(&subprogress); // now force all samples to be loaded
1833     __notify_progress(&subprogress, 1.0f);
1834    
1835     // instrument loading subtask
1836     if (pProgress && pProgress->callback) {
1837     subprogress.__range_min = subprogress.__range_max;
1838     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
1839     }
1840     __notify_progress(&subprogress, 0.0f);
1841     LoadInstruments(&subprogress);
1842     __notify_progress(&subprogress, 1.0f);
1843     }
1844 schoenebeck 21 if (!pInstruments) return NULL;
1845     InstrumentsIterator = pInstruments->begin();
1846     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1847     if (i == index) return *InstrumentsIterator;
1848     InstrumentsIterator++;
1849     }
1850     return NULL;
1851     }
1852    
1853 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
1854 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1855     if (lstInstruments) {
1856 schoenebeck 515 int iInstrumentIndex = 0;
1857 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1858     while (lstInstr) {
1859     if (lstInstr->GetListType() == LIST_TYPE_INS) {
1860 schoenebeck 515 // notify current progress
1861     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
1862     __notify_progress(pProgress, localProgress);
1863    
1864     // divide local progress into subprogress for loading current Instrument
1865     progress_t subprogress;
1866     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
1867    
1868 schoenebeck 2 if (!pInstruments) pInstruments = new InstrumentList;
1869 schoenebeck 515 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
1870    
1871     iInstrumentIndex++;
1872 schoenebeck 2 }
1873     lstInstr = lstInstruments->GetNextSubList();
1874     }
1875 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
1876 schoenebeck 2 }
1877     else throw gig::Exception("Mandatory <lins> list chunk not found.");
1878     }
1879    
1880    
1881    
1882     // *************** Exception ***************
1883     // *
1884    
1885     Exception::Exception(String Message) : DLS::Exception(Message) {
1886     }
1887    
1888     void Exception::PrintMessage() {
1889     std::cout << "gig::Exception: " << Message << std::endl;
1890     }
1891    
1892 schoenebeck 518
1893     // *************** functions ***************
1894     // *
1895    
1896     /**
1897     * Returns the name of this C++ library. This is usually "libgig" of
1898     * course. This call is equivalent to RIFF::libraryName() and
1899     * DLS::libraryName().
1900     */
1901     String libraryName() {
1902     return PACKAGE;
1903     }
1904    
1905     /**
1906     * Returns version of this C++ library. This call is equivalent to
1907     * RIFF::libraryVersion() and DLS::libraryVersion().
1908     */
1909     String libraryVersion() {
1910     return VERSION;
1911     }
1912    
1913 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC