/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 666 - (hide annotations) (download)
Sun Jun 19 15:18:59 2005 UTC (18 years, 9 months ago) by persson
File size: 90221 byte(s)
* added support for gig v3 multi-file format

1 schoenebeck 2 /***************************************************************************
2     * *
3     * libgig - C++ cross-platform Gigasampler format file loader library *
4     * *
5 schoenebeck 384 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6     * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 384 #include <iostream>
27    
28 schoenebeck 515 namespace gig {
29 schoenebeck 2
30 schoenebeck 515 // *************** progress_t ***************
31     // *
32    
33     progress_t::progress_t() {
34     callback = NULL;
35 schoenebeck 516 custom = NULL;
36 schoenebeck 515 __range_min = 0.0f;
37     __range_max = 1.0f;
38     }
39    
40     // private helper function to convert progress of a subprocess into the global progress
41     static void __notify_progress(progress_t* pProgress, float subprogress) {
42     if (pProgress && pProgress->callback) {
43     const float totalrange = pProgress->__range_max - pProgress->__range_min;
44     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
45 schoenebeck 516 pProgress->factor = totalprogress;
46     pProgress->callback(pProgress); // now actually notify about the progress
47 schoenebeck 515 }
48     }
49    
50     // private helper function to divide a progress into subprogresses
51     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
52     if (pParentProgress && pParentProgress->callback) {
53     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
54     pSubProgress->callback = pParentProgress->callback;
55 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
56 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
57     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
58     }
59     }
60    
61    
62 persson 365 // *************** Internal functions for sample decopmression ***************
63     // *
64    
65 schoenebeck 515 namespace {
66    
67 persson 365 inline int get12lo(const unsigned char* pSrc)
68     {
69     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
70     return x & 0x800 ? x - 0x1000 : x;
71     }
72    
73     inline int get12hi(const unsigned char* pSrc)
74     {
75     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
76     return x & 0x800 ? x - 0x1000 : x;
77     }
78    
79     inline int16_t get16(const unsigned char* pSrc)
80     {
81     return int16_t(pSrc[0] | pSrc[1] << 8);
82     }
83    
84     inline int get24(const unsigned char* pSrc)
85     {
86     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
87     return x & 0x800000 ? x - 0x1000000 : x;
88     }
89    
90     void Decompress16(int compressionmode, const unsigned char* params,
91 persson 372 int srcStep, int dstStep,
92     const unsigned char* pSrc, int16_t* pDst,
93 persson 365 unsigned long currentframeoffset,
94     unsigned long copysamples)
95     {
96     switch (compressionmode) {
97     case 0: // 16 bit uncompressed
98     pSrc += currentframeoffset * srcStep;
99     while (copysamples) {
100     *pDst = get16(pSrc);
101 persson 372 pDst += dstStep;
102 persson 365 pSrc += srcStep;
103     copysamples--;
104     }
105     break;
106    
107     case 1: // 16 bit compressed to 8 bit
108     int y = get16(params);
109     int dy = get16(params + 2);
110     while (currentframeoffset) {
111     dy -= int8_t(*pSrc);
112     y -= dy;
113     pSrc += srcStep;
114     currentframeoffset--;
115     }
116     while (copysamples) {
117     dy -= int8_t(*pSrc);
118     y -= dy;
119     *pDst = y;
120 persson 372 pDst += dstStep;
121 persson 365 pSrc += srcStep;
122     copysamples--;
123     }
124     break;
125     }
126     }
127    
128     void Decompress24(int compressionmode, const unsigned char* params,
129 persson 372 int dstStep, const unsigned char* pSrc, int16_t* pDst,
130 persson 365 unsigned long currentframeoffset,
131 persson 437 unsigned long copysamples, int truncatedBits)
132 persson 365 {
133     // Note: The 24 bits are truncated to 16 bits for now.
134    
135     // Note: The calculation of the initial value of y is strange
136     // and not 100% correct. What should the first two parameters
137     // really be used for? Why are they two? The correct value for
138     // y seems to lie somewhere between the values of the first
139     // two parameters.
140     //
141     // Strange thing #2: The formula in SKIP_ONE gives values for
142     // y that are twice as high as they should be. That's why
143 persson 437 // COPY_ONE shifts an extra step, and also why y is
144 persson 365 // initialized with a sum instead of a mean value.
145    
146     int y, dy, ddy;
147    
148 persson 437 const int shift = 8 - truncatedBits;
149     const int shift1 = shift + 1;
150    
151 persson 365 #define GET_PARAMS(params) \
152     y = (get24(params) + get24((params) + 3)); \
153     dy = get24((params) + 6); \
154     ddy = get24((params) + 9)
155    
156     #define SKIP_ONE(x) \
157     ddy -= (x); \
158     dy -= ddy; \
159     y -= dy
160    
161     #define COPY_ONE(x) \
162     SKIP_ONE(x); \
163 persson 437 *pDst = y >> shift1; \
164 persson 372 pDst += dstStep
165 persson 365
166     switch (compressionmode) {
167     case 2: // 24 bit uncompressed
168     pSrc += currentframeoffset * 3;
169     while (copysamples) {
170 persson 437 *pDst = get24(pSrc) >> shift;
171 persson 372 pDst += dstStep;
172 persson 365 pSrc += 3;
173     copysamples--;
174     }
175     break;
176    
177     case 3: // 24 bit compressed to 16 bit
178     GET_PARAMS(params);
179     while (currentframeoffset) {
180     SKIP_ONE(get16(pSrc));
181     pSrc += 2;
182     currentframeoffset--;
183     }
184     while (copysamples) {
185     COPY_ONE(get16(pSrc));
186     pSrc += 2;
187     copysamples--;
188     }
189     break;
190    
191     case 4: // 24 bit compressed to 12 bit
192     GET_PARAMS(params);
193     while (currentframeoffset > 1) {
194     SKIP_ONE(get12lo(pSrc));
195     SKIP_ONE(get12hi(pSrc));
196     pSrc += 3;
197     currentframeoffset -= 2;
198     }
199     if (currentframeoffset) {
200     SKIP_ONE(get12lo(pSrc));
201     currentframeoffset--;
202     if (copysamples) {
203     COPY_ONE(get12hi(pSrc));
204     pSrc += 3;
205     copysamples--;
206     }
207     }
208     while (copysamples > 1) {
209     COPY_ONE(get12lo(pSrc));
210     COPY_ONE(get12hi(pSrc));
211     pSrc += 3;
212     copysamples -= 2;
213     }
214     if (copysamples) {
215     COPY_ONE(get12lo(pSrc));
216     }
217     break;
218    
219     case 5: // 24 bit compressed to 8 bit
220     GET_PARAMS(params);
221     while (currentframeoffset) {
222     SKIP_ONE(int8_t(*pSrc++));
223     currentframeoffset--;
224     }
225     while (copysamples) {
226     COPY_ONE(int8_t(*pSrc++));
227     copysamples--;
228     }
229     break;
230     }
231     }
232    
233     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
234     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
235     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
236     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
237     }
238    
239    
240 schoenebeck 2 // *************** Sample ***************
241     // *
242    
243 schoenebeck 384 unsigned int Sample::Instances = 0;
244     buffer_t Sample::InternalDecompressionBuffer;
245 schoenebeck 2
246 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
247 schoenebeck 2 Instances++;
248 persson 666 FileNo = fileNo;
249 schoenebeck 2
250     RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
251     if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
252     SampleGroup = _3gix->ReadInt16();
253    
254     RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
255     if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
256     Manufacturer = smpl->ReadInt32();
257     Product = smpl->ReadInt32();
258     SamplePeriod = smpl->ReadInt32();
259     MIDIUnityNote = smpl->ReadInt32();
260 schoenebeck 21 FineTune = smpl->ReadInt32();
261 schoenebeck 2 smpl->Read(&SMPTEFormat, 1, 4);
262     SMPTEOffset = smpl->ReadInt32();
263     Loops = smpl->ReadInt32();
264 persson 365 smpl->ReadInt32(); // manufByt
265 schoenebeck 2 LoopID = smpl->ReadInt32();
266     smpl->Read(&LoopType, 1, 4);
267     LoopStart = smpl->ReadInt32();
268     LoopEnd = smpl->ReadInt32();
269     LoopFraction = smpl->ReadInt32();
270     LoopPlayCount = smpl->ReadInt32();
271    
272     FrameTable = NULL;
273     SamplePos = 0;
274     RAMCache.Size = 0;
275     RAMCache.pStart = NULL;
276     RAMCache.NullExtensionSize = 0;
277    
278 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
279    
280 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
281     Compressed = ewav;
282     Dithered = false;
283     TruncatedBits = 0;
284 schoenebeck 2 if (Compressed) {
285 persson 437 uint32_t version = ewav->ReadInt32();
286     if (version == 3 && BitDepth == 24) {
287     Dithered = ewav->ReadInt32();
288     ewav->SetPos(Channels == 2 ? 84 : 64);
289     TruncatedBits = ewav->ReadInt32();
290     }
291 schoenebeck 2 ScanCompressedSample();
292     }
293 schoenebeck 317
294     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
295 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
296     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
297     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
298 schoenebeck 317 }
299 persson 437 FrameOffset = 0; // just for streaming compressed samples
300 schoenebeck 21
301 schoenebeck 27 LoopSize = LoopEnd - LoopStart;
302 schoenebeck 2 }
303    
304     /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
305     void Sample::ScanCompressedSample() {
306     //TODO: we have to add some more scans here (e.g. determine compression rate)
307     this->SamplesTotal = 0;
308     std::list<unsigned long> frameOffsets;
309    
310 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
311 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
312 persson 365
313 schoenebeck 2 // Scanning
314     pCkData->SetPos(0);
315 persson 365 if (Channels == 2) { // Stereo
316     for (int i = 0 ; ; i++) {
317     // for 24 bit samples every 8:th frame offset is
318     // stored, to save some memory
319     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
320    
321     const int mode_l = pCkData->ReadUint8();
322     const int mode_r = pCkData->ReadUint8();
323     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
324     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
325    
326     if (pCkData->RemainingBytes() <= frameSize) {
327     SamplesInLastFrame =
328     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
329     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
330     SamplesTotal += SamplesInLastFrame;
331 schoenebeck 2 break;
332 persson 365 }
333     SamplesTotal += SamplesPerFrame;
334     pCkData->SetPos(frameSize, RIFF::stream_curpos);
335     }
336     }
337     else { // Mono
338     for (int i = 0 ; ; i++) {
339     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
340    
341     const int mode = pCkData->ReadUint8();
342     if (mode > 5) throw gig::Exception("Unknown compression mode");
343     const unsigned long frameSize = bytesPerFrame[mode];
344    
345     if (pCkData->RemainingBytes() <= frameSize) {
346     SamplesInLastFrame =
347     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
348     SamplesTotal += SamplesInLastFrame;
349 schoenebeck 2 break;
350 persson 365 }
351     SamplesTotal += SamplesPerFrame;
352     pCkData->SetPos(frameSize, RIFF::stream_curpos);
353 schoenebeck 2 }
354     }
355     pCkData->SetPos(0);
356    
357     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
358     if (FrameTable) delete[] FrameTable;
359     FrameTable = new unsigned long[frameOffsets.size()];
360     std::list<unsigned long>::iterator end = frameOffsets.end();
361     std::list<unsigned long>::iterator iter = frameOffsets.begin();
362     for (int i = 0; iter != end; i++, iter++) {
363     FrameTable[i] = *iter;
364     }
365     }
366    
367     /**
368     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
369     * ReleaseSampleData() to free the memory if you don't need the cached
370     * sample data anymore.
371     *
372     * @returns buffer_t structure with start address and size of the buffer
373     * in bytes
374     * @see ReleaseSampleData(), Read(), SetPos()
375     */
376     buffer_t Sample::LoadSampleData() {
377     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
378     }
379    
380     /**
381     * Reads (uncompresses if needed) and caches the first \a SampleCount
382     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
383     * memory space if you don't need the cached samples anymore. There is no
384     * guarantee that exactly \a SampleCount samples will be cached; this is
385     * not an error. The size will be eventually truncated e.g. to the
386     * beginning of a frame of a compressed sample. This is done for
387     * efficiency reasons while streaming the wave by your sampler engine
388     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
389     * that will be returned to determine the actual cached samples, but note
390     * that the size is given in bytes! You get the number of actually cached
391     * samples by dividing it by the frame size of the sample:
392 schoenebeck 384 * @code
393 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
394     * long cachedsamples = buf.Size / pSample->FrameSize;
395 schoenebeck 384 * @endcode
396 schoenebeck 2 *
397     * @param SampleCount - number of sample points to load into RAM
398     * @returns buffer_t structure with start address and size of
399     * the cached sample data in bytes
400     * @see ReleaseSampleData(), Read(), SetPos()
401     */
402     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
403     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
404     }
405    
406     /**
407     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
408     * ReleaseSampleData() to free the memory if you don't need the cached
409     * sample data anymore.
410     * The method will add \a NullSamplesCount silence samples past the
411     * official buffer end (this won't affect the 'Size' member of the
412     * buffer_t structure, that means 'Size' always reflects the size of the
413     * actual sample data, the buffer might be bigger though). Silence
414     * samples past the official buffer are needed for differential
415     * algorithms that always have to take subsequent samples into account
416     * (resampling/interpolation would be an important example) and avoids
417     * memory access faults in such cases.
418     *
419     * @param NullSamplesCount - number of silence samples the buffer should
420     * be extended past it's data end
421     * @returns buffer_t structure with start address and
422     * size of the buffer in bytes
423     * @see ReleaseSampleData(), Read(), SetPos()
424     */
425     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
426     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
427     }
428    
429     /**
430     * Reads (uncompresses if needed) and caches the first \a SampleCount
431     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
432     * memory space if you don't need the cached samples anymore. There is no
433     * guarantee that exactly \a SampleCount samples will be cached; this is
434     * not an error. The size will be eventually truncated e.g. to the
435     * beginning of a frame of a compressed sample. This is done for
436     * efficiency reasons while streaming the wave by your sampler engine
437     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
438     * that will be returned to determine the actual cached samples, but note
439     * that the size is given in bytes! You get the number of actually cached
440     * samples by dividing it by the frame size of the sample:
441 schoenebeck 384 * @code
442 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
443     * long cachedsamples = buf.Size / pSample->FrameSize;
444 schoenebeck 384 * @endcode
445 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
446     * official buffer end (this won't affect the 'Size' member of the
447     * buffer_t structure, that means 'Size' always reflects the size of the
448     * actual sample data, the buffer might be bigger though). Silence
449     * samples past the official buffer are needed for differential
450     * algorithms that always have to take subsequent samples into account
451     * (resampling/interpolation would be an important example) and avoids
452     * memory access faults in such cases.
453     *
454     * @param SampleCount - number of sample points to load into RAM
455     * @param NullSamplesCount - number of silence samples the buffer should
456     * be extended past it's data end
457     * @returns buffer_t structure with start address and
458     * size of the cached sample data in bytes
459     * @see ReleaseSampleData(), Read(), SetPos()
460     */
461     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
462     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
463     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
464     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
465     RAMCache.pStart = new int8_t[allocationsize];
466     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
467     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
468     // fill the remaining buffer space with silence samples
469     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
470     return GetCache();
471     }
472    
473     /**
474     * Returns current cached sample points. A buffer_t structure will be
475     * returned which contains address pointer to the begin of the cache and
476     * the size of the cached sample data in bytes. Use
477     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
478     * RAM.
479     *
480     * @returns buffer_t structure with current cached sample points
481     * @see LoadSampleData();
482     */
483     buffer_t Sample::GetCache() {
484     // return a copy of the buffer_t structure
485     buffer_t result;
486     result.Size = this->RAMCache.Size;
487     result.pStart = this->RAMCache.pStart;
488     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
489     return result;
490     }
491    
492     /**
493     * Frees the cached sample from RAM if loaded with
494     * <i>LoadSampleData()</i> previously.
495     *
496     * @see LoadSampleData();
497     */
498     void Sample::ReleaseSampleData() {
499     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
500     RAMCache.pStart = NULL;
501     RAMCache.Size = 0;
502     }
503    
504     /**
505     * Sets the position within the sample (in sample points, not in
506     * bytes). Use this method and <i>Read()</i> if you don't want to load
507     * the sample into RAM, thus for disk streaming.
508     *
509     * Although the original Gigasampler engine doesn't allow positioning
510     * within compressed samples, I decided to implement it. Even though
511     * the Gigasampler format doesn't allow to define loops for compressed
512     * samples at the moment, positioning within compressed samples might be
513     * interesting for some sampler engines though. The only drawback about
514     * my decision is that it takes longer to load compressed gig Files on
515     * startup, because it's neccessary to scan the samples for some
516     * mandatory informations. But I think as it doesn't affect the runtime
517     * efficiency, nobody will have a problem with that.
518     *
519     * @param SampleCount number of sample points to jump
520     * @param Whence optional: to which relation \a SampleCount refers
521     * to, if omited <i>RIFF::stream_start</i> is assumed
522     * @returns the new sample position
523     * @see Read()
524     */
525     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
526     if (Compressed) {
527     switch (Whence) {
528     case RIFF::stream_curpos:
529     this->SamplePos += SampleCount;
530     break;
531     case RIFF::stream_end:
532     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
533     break;
534     case RIFF::stream_backward:
535     this->SamplePos -= SampleCount;
536     break;
537     case RIFF::stream_start: default:
538     this->SamplePos = SampleCount;
539     break;
540     }
541     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
542    
543     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
544     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
545     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
546     return this->SamplePos;
547     }
548     else { // not compressed
549     unsigned long orderedBytes = SampleCount * this->FrameSize;
550     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
551     return (result == orderedBytes) ? SampleCount
552     : result / this->FrameSize;
553     }
554     }
555    
556     /**
557     * Returns the current position in the sample (in sample points).
558     */
559     unsigned long Sample::GetPos() {
560     if (Compressed) return SamplePos;
561     else return pCkData->GetPos() / FrameSize;
562     }
563    
564     /**
565 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
566     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
567     * the position within the sample respectively, this method honors the
568     * looping informations of the sample (if any). The sample wave stream
569     * will be decompressed on the fly if using a compressed sample. Use this
570     * method if you don't want to load the sample into RAM, thus for disk
571     * streaming. All this methods needs to know to proceed with streaming
572     * for the next time you call this method is stored in \a pPlaybackState.
573     * You have to allocate and initialize the playback_state_t structure by
574     * yourself before you use it to stream a sample:
575 schoenebeck 384 * @code
576     * gig::playback_state_t playbackstate;
577     * playbackstate.position = 0;
578     * playbackstate.reverse = false;
579     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
580     * @endcode
581 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
582     * defined or if the current read position is located within a loop area.
583     * The method already handles such cases by itself.
584     *
585 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
586     * have to use an external decompression buffer for <b>EACH</b>
587     * streaming thread to avoid race conditions and crashes!
588     *
589 schoenebeck 24 * @param pBuffer destination buffer
590     * @param SampleCount number of sample points to read
591     * @param pPlaybackState will be used to store and reload the playback
592     * state for the next ReadAndLoop() call
593 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
594 schoenebeck 24 * @returns number of successfully read sample points
595 schoenebeck 384 * @see CreateDecompressionBuffer()
596 schoenebeck 24 */
597 schoenebeck 384 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
598 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
599     uint8_t* pDst = (uint8_t*) pBuffer;
600    
601     SetPos(pPlaybackState->position); // recover position from the last time
602    
603     if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
604    
605     switch (this->LoopType) {
606    
607     case loop_type_bidirectional: { //TODO: not tested yet!
608     do {
609     // if not endless loop check if max. number of loop cycles have been passed
610     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
611    
612     if (!pPlaybackState->reverse) { // forward playback
613     do {
614     samplestoloopend = this->LoopEnd - GetPos();
615 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
616 schoenebeck 24 samplestoread -= readsamples;
617     totalreadsamples += readsamples;
618     if (readsamples == samplestoloopend) {
619     pPlaybackState->reverse = true;
620     break;
621     }
622     } while (samplestoread && readsamples);
623     }
624     else { // backward playback
625    
626     // as we can only read forward from disk, we have to
627     // determine the end position within the loop first,
628     // read forward from that 'end' and finally after
629     // reading, swap all sample frames so it reflects
630     // backward playback
631    
632     unsigned long swapareastart = totalreadsamples;
633     unsigned long loopoffset = GetPos() - this->LoopStart;
634     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
635     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
636    
637     SetPos(reverseplaybackend);
638    
639     // read samples for backward playback
640     do {
641 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
642 schoenebeck 24 samplestoreadinloop -= readsamples;
643     samplestoread -= readsamples;
644     totalreadsamples += readsamples;
645     } while (samplestoreadinloop && readsamples);
646    
647     SetPos(reverseplaybackend); // pretend we really read backwards
648    
649     if (reverseplaybackend == this->LoopStart) {
650     pPlaybackState->loop_cycles_left--;
651     pPlaybackState->reverse = false;
652     }
653    
654     // reverse the sample frames for backward playback
655     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
656     }
657     } while (samplestoread && readsamples);
658     break;
659     }
660    
661     case loop_type_backward: { // TODO: not tested yet!
662     // forward playback (not entered the loop yet)
663     if (!pPlaybackState->reverse) do {
664     samplestoloopend = this->LoopEnd - GetPos();
665 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
666 schoenebeck 24 samplestoread -= readsamples;
667     totalreadsamples += readsamples;
668     if (readsamples == samplestoloopend) {
669     pPlaybackState->reverse = true;
670     break;
671     }
672     } while (samplestoread && readsamples);
673    
674     if (!samplestoread) break;
675    
676     // as we can only read forward from disk, we have to
677     // determine the end position within the loop first,
678     // read forward from that 'end' and finally after
679     // reading, swap all sample frames so it reflects
680     // backward playback
681    
682     unsigned long swapareastart = totalreadsamples;
683     unsigned long loopoffset = GetPos() - this->LoopStart;
684     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
685     : samplestoread;
686     unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
687    
688     SetPos(reverseplaybackend);
689    
690     // read samples for backward playback
691     do {
692     // if not endless loop check if max. number of loop cycles have been passed
693     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
694     samplestoloopend = this->LoopEnd - GetPos();
695 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
696 schoenebeck 24 samplestoreadinloop -= readsamples;
697     samplestoread -= readsamples;
698     totalreadsamples += readsamples;
699     if (readsamples == samplestoloopend) {
700     pPlaybackState->loop_cycles_left--;
701     SetPos(this->LoopStart);
702     }
703     } while (samplestoreadinloop && readsamples);
704    
705     SetPos(reverseplaybackend); // pretend we really read backwards
706    
707     // reverse the sample frames for backward playback
708     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
709     break;
710     }
711    
712     default: case loop_type_normal: {
713     do {
714     // if not endless loop check if max. number of loop cycles have been passed
715     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
716     samplestoloopend = this->LoopEnd - GetPos();
717 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
718 schoenebeck 24 samplestoread -= readsamples;
719     totalreadsamples += readsamples;
720     if (readsamples == samplestoloopend) {
721     pPlaybackState->loop_cycles_left--;
722     SetPos(this->LoopStart);
723     }
724     } while (samplestoread && readsamples);
725     break;
726     }
727     }
728     }
729    
730     // read on without looping
731     if (samplestoread) do {
732 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
733 schoenebeck 24 samplestoread -= readsamples;
734     totalreadsamples += readsamples;
735     } while (readsamples && samplestoread);
736    
737     // store current position
738     pPlaybackState->position = GetPos();
739    
740     return totalreadsamples;
741     }
742    
743     /**
744 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
745     * position into the buffer pointed by \a pBuffer and increments the
746     * position within the sample. The sample wave stream will be
747     * decompressed on the fly if using a compressed sample. Use this method
748     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
749     * thus for disk streaming.
750     *
751 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
752     * have to use an external decompression buffer for <b>EACH</b>
753     * streaming thread to avoid race conditions and crashes!
754     *
755 schoenebeck 2 * @param pBuffer destination buffer
756     * @param SampleCount number of sample points to read
757 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
758 schoenebeck 2 * @returns number of successfully read sample points
759 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
760 schoenebeck 2 */
761 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
762 schoenebeck 21 if (SampleCount == 0) return 0;
763 schoenebeck 317 if (!Compressed) {
764     if (BitDepth == 24) {
765     // 24 bit sample. For now just truncate to 16 bit.
766 schoenebeck 384 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
767 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
768     if (Channels == 2) { // Stereo
769     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
770 schoenebeck 317 pSrc++;
771 persson 365 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
772     *pDst++ = get16(pSrc);
773     pSrc += 3;
774     }
775     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
776 schoenebeck 317 }
777 persson 365 else { // Mono
778     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
779     pSrc++;
780     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
781     *pDst++ = get16(pSrc);
782     pSrc += 3;
783     }
784     return pDst - static_cast<int16_t*>(pBuffer);
785     }
786 schoenebeck 317 }
787 persson 365 else { // 16 bit
788     // (pCkData->Read does endian correction)
789     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
790     : pCkData->Read(pBuffer, SampleCount, 2);
791     }
792 schoenebeck 317 }
793 persson 365 else {
794 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
795 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
796     unsigned long assumedsize = GuessSize(SampleCount),
797 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
798     remainingsamples = SampleCount,
799 persson 365 copysamples, skipsamples,
800     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
801 schoenebeck 2 this->FrameOffset = 0;
802    
803 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
804    
805     // if decompression buffer too small, then reduce amount of samples to read
806     if (pDecompressionBuffer->Size < assumedsize) {
807     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
808     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
809     remainingsamples = SampleCount;
810     assumedsize = GuessSize(SampleCount);
811 schoenebeck 2 }
812    
813 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
814 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
815 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
816    
817 persson 365 while (remainingsamples && remainingbytes) {
818     unsigned long framesamples = SamplesPerFrame;
819     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
820 schoenebeck 2
821 persson 365 int mode_l = *pSrc++, mode_r = 0;
822    
823     if (Channels == 2) {
824     mode_r = *pSrc++;
825     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
826     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
827     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
828     if (remainingbytes < framebytes) { // last frame in sample
829     framesamples = SamplesInLastFrame;
830     if (mode_l == 4 && (framesamples & 1)) {
831     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
832     }
833     else {
834     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
835     }
836 schoenebeck 2 }
837     }
838 persson 365 else {
839     framebytes = bytesPerFrame[mode_l] + 1;
840     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
841     if (remainingbytes < framebytes) {
842     framesamples = SamplesInLastFrame;
843     }
844     }
845 schoenebeck 2
846     // determine how many samples in this frame to skip and read
847 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
848     if (currentframeoffset <= framesamples) {
849     copysamples = framesamples - currentframeoffset;
850     skipsamples = currentframeoffset;
851     }
852     else {
853     copysamples = 0;
854     skipsamples = framesamples;
855     }
856 schoenebeck 2 }
857     else {
858 persson 365 // This frame has enough data for pBuffer, but not
859     // all of the frame is needed. Set file position
860     // to start of this frame for next call to Read.
861 schoenebeck 2 copysamples = remainingsamples;
862 persson 365 skipsamples = currentframeoffset;
863     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
864     this->FrameOffset = currentframeoffset + copysamples;
865     }
866     remainingsamples -= copysamples;
867    
868     if (remainingbytes > framebytes) {
869     remainingbytes -= framebytes;
870     if (remainingsamples == 0 &&
871     currentframeoffset + copysamples == framesamples) {
872     // This frame has enough data for pBuffer, and
873     // all of the frame is needed. Set file
874     // position to start of next frame for next
875     // call to Read. FrameOffset is 0.
876 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
877     }
878     }
879 persson 365 else remainingbytes = 0;
880 schoenebeck 2
881 persson 365 currentframeoffset -= skipsamples;
882 schoenebeck 2
883 persson 365 if (copysamples == 0) {
884     // skip this frame
885     pSrc += framebytes - Channels;
886     }
887     else {
888     const unsigned char* const param_l = pSrc;
889     if (BitDepth == 24) {
890     if (mode_l != 2) pSrc += 12;
891 schoenebeck 2
892 persson 365 if (Channels == 2) { // Stereo
893     const unsigned char* const param_r = pSrc;
894     if (mode_r != 2) pSrc += 12;
895    
896 persson 437 Decompress24(mode_l, param_l, 2, pSrc, pDst,
897     skipsamples, copysamples, TruncatedBits);
898 persson 372 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
899 persson 437 skipsamples, copysamples, TruncatedBits);
900 persson 365 pDst += copysamples << 1;
901 schoenebeck 2 }
902 persson 365 else { // Mono
903 persson 437 Decompress24(mode_l, param_l, 1, pSrc, pDst,
904     skipsamples, copysamples, TruncatedBits);
905 persson 365 pDst += copysamples;
906 schoenebeck 2 }
907 persson 365 }
908     else { // 16 bit
909     if (mode_l) pSrc += 4;
910 schoenebeck 2
911 persson 365 int step;
912     if (Channels == 2) { // Stereo
913     const unsigned char* const param_r = pSrc;
914     if (mode_r) pSrc += 4;
915    
916     step = (2 - mode_l) + (2 - mode_r);
917 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
918     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
919 persson 365 skipsamples, copysamples);
920     pDst += copysamples << 1;
921 schoenebeck 2 }
922 persson 365 else { // Mono
923     step = 2 - mode_l;
924 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
925 persson 365 pDst += copysamples;
926 schoenebeck 2 }
927 persson 365 }
928     pSrc += nextFrameOffset;
929     }
930 schoenebeck 2
931 persson 365 // reload from disk to local buffer if needed
932     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
933     assumedsize = GuessSize(remainingsamples);
934     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
935     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
936 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
937     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
938 schoenebeck 2 }
939 persson 365 } // while
940    
941 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
942 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
943 schoenebeck 2 return (SampleCount - remainingsamples);
944     }
945     }
946    
947 schoenebeck 384 /**
948     * Allocates a decompression buffer for streaming (compressed) samples
949     * with Sample::Read(). If you are using more than one streaming thread
950     * in your application you <b>HAVE</b> to create a decompression buffer
951     * for <b>EACH</b> of your streaming threads and provide it with the
952     * Sample::Read() call in order to avoid race conditions and crashes.
953     *
954     * You should free the memory occupied by the allocated buffer(s) once
955     * you don't need one of your streaming threads anymore by calling
956     * DestroyDecompressionBuffer().
957     *
958     * @param MaxReadSize - the maximum size (in sample points) you ever
959     * expect to read with one Read() call
960     * @returns allocated decompression buffer
961     * @see DestroyDecompressionBuffer()
962     */
963     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
964     buffer_t result;
965     const double worstCaseHeaderOverhead =
966     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
967     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
968     result.pStart = new int8_t[result.Size];
969     result.NullExtensionSize = 0;
970     return result;
971     }
972    
973     /**
974     * Free decompression buffer, previously created with
975     * CreateDecompressionBuffer().
976     *
977     * @param DecompressionBuffer - previously allocated decompression
978     * buffer to free
979     */
980     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
981     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
982     delete[] (int8_t*) DecompressionBuffer.pStart;
983     DecompressionBuffer.pStart = NULL;
984     DecompressionBuffer.Size = 0;
985     DecompressionBuffer.NullExtensionSize = 0;
986     }
987     }
988    
989 schoenebeck 2 Sample::~Sample() {
990     Instances--;
991 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
992     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
993     InternalDecompressionBuffer.pStart = NULL;
994     InternalDecompressionBuffer.Size = 0;
995 schoenebeck 355 }
996 schoenebeck 2 if (FrameTable) delete[] FrameTable;
997     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
998     }
999    
1000    
1001    
1002     // *************** DimensionRegion ***************
1003     // *
1004    
1005 schoenebeck 16 uint DimensionRegion::Instances = 0;
1006     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1007    
1008 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1009 schoenebeck 16 Instances++;
1010    
1011 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1012 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1013 schoenebeck 2
1014     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1015 schoenebeck 241 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1016 schoenebeck 2 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1017     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1018     _3ewa->ReadInt16(); // unknown
1019     LFO1InternalDepth = _3ewa->ReadUint16();
1020     _3ewa->ReadInt16(); // unknown
1021     LFO3InternalDepth = _3ewa->ReadInt16();
1022     _3ewa->ReadInt16(); // unknown
1023     LFO1ControlDepth = _3ewa->ReadUint16();
1024     _3ewa->ReadInt16(); // unknown
1025     LFO3ControlDepth = _3ewa->ReadInt16();
1026     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1027     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1028     _3ewa->ReadInt16(); // unknown
1029     EG1Sustain = _3ewa->ReadUint16();
1030     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1031 schoenebeck 36 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1032 schoenebeck 2 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1033     EG1ControllerInvert = eg1ctrloptions & 0x01;
1034     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1035     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1036     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1037 schoenebeck 36 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1038 schoenebeck 2 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1039     EG2ControllerInvert = eg2ctrloptions & 0x01;
1040     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1041     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1042     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1043     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1044     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1045     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1046     _3ewa->ReadInt16(); // unknown
1047     EG2Sustain = _3ewa->ReadUint16();
1048     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1049     _3ewa->ReadInt16(); // unknown
1050     LFO2ControlDepth = _3ewa->ReadUint16();
1051     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1052     _3ewa->ReadInt16(); // unknown
1053     LFO2InternalDepth = _3ewa->ReadUint16();
1054     int32_t eg1decay2 = _3ewa->ReadInt32();
1055     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1056     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1057     _3ewa->ReadInt16(); // unknown
1058     EG1PreAttack = _3ewa->ReadUint16();
1059     int32_t eg2decay2 = _3ewa->ReadInt32();
1060     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1061     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1062     _3ewa->ReadInt16(); // unknown
1063     EG2PreAttack = _3ewa->ReadUint16();
1064     uint8_t velocityresponse = _3ewa->ReadUint8();
1065     if (velocityresponse < 5) {
1066     VelocityResponseCurve = curve_type_nonlinear;
1067     VelocityResponseDepth = velocityresponse;
1068     }
1069     else if (velocityresponse < 10) {
1070     VelocityResponseCurve = curve_type_linear;
1071     VelocityResponseDepth = velocityresponse - 5;
1072     }
1073     else if (velocityresponse < 15) {
1074     VelocityResponseCurve = curve_type_special;
1075     VelocityResponseDepth = velocityresponse - 10;
1076     }
1077     else {
1078     VelocityResponseCurve = curve_type_unknown;
1079     VelocityResponseDepth = 0;
1080     }
1081     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1082     if (releasevelocityresponse < 5) {
1083     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1084     ReleaseVelocityResponseDepth = releasevelocityresponse;
1085     }
1086     else if (releasevelocityresponse < 10) {
1087     ReleaseVelocityResponseCurve = curve_type_linear;
1088     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1089     }
1090     else if (releasevelocityresponse < 15) {
1091     ReleaseVelocityResponseCurve = curve_type_special;
1092     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1093     }
1094     else {
1095     ReleaseVelocityResponseCurve = curve_type_unknown;
1096     ReleaseVelocityResponseDepth = 0;
1097     }
1098     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1099 schoenebeck 36 AttenuationControllerThreshold = _3ewa->ReadInt8();
1100 schoenebeck 2 _3ewa->ReadInt32(); // unknown
1101     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1102     _3ewa->ReadInt16(); // unknown
1103     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1104     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1105     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1106     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1107     else DimensionBypass = dim_bypass_ctrl_none;
1108     uint8_t pan = _3ewa->ReadUint8();
1109 schoenebeck 269 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1110 schoenebeck 2 SelfMask = _3ewa->ReadInt8() & 0x01;
1111     _3ewa->ReadInt8(); // unknown
1112     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1113     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1114     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1115 schoenebeck 36 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1116     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1117 schoenebeck 2 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1118     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1119     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1120     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1121     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1122     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1123     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1124     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1125     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1126     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1127     : vcf_res_ctrl_none;
1128     uint16_t eg3depth = _3ewa->ReadUint16();
1129     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1130     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1131     _3ewa->ReadInt16(); // unknown
1132     ChannelOffset = _3ewa->ReadUint8() / 4;
1133     uint8_t regoptions = _3ewa->ReadUint8();
1134     MSDecode = regoptions & 0x01; // bit 0
1135     SustainDefeat = regoptions & 0x02; // bit 1
1136     _3ewa->ReadInt16(); // unknown
1137     VelocityUpperLimit = _3ewa->ReadInt8();
1138     _3ewa->ReadInt8(); // unknown
1139     _3ewa->ReadInt16(); // unknown
1140     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1141     _3ewa->ReadInt8(); // unknown
1142     _3ewa->ReadInt8(); // unknown
1143     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1144     uint8_t vcfcutoff = _3ewa->ReadUint8();
1145     VCFEnabled = vcfcutoff & 0x80; // bit 7
1146     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1147     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1148     VCFVelocityScale = _3ewa->ReadUint8();
1149     _3ewa->ReadInt8(); // unknown
1150     uint8_t vcfresonance = _3ewa->ReadUint8();
1151     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1152     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1153     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1154     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1155     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1156     uint8_t vcfvelocity = _3ewa->ReadUint8();
1157     VCFVelocityDynamicRange = vcfvelocity % 5;
1158     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1159     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1160 schoenebeck 345 if (VCFType == vcf_type_lowpass) {
1161     if (lfo3ctrl & 0x40) // bit 6
1162     VCFType = vcf_type_lowpassturbo;
1163     }
1164 schoenebeck 16
1165 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1166     VelocityResponseDepth,
1167     VelocityResponseCurveScaling);
1168    
1169     curve_type_t curveType = ReleaseVelocityResponseCurve;
1170     uint8_t depth = ReleaseVelocityResponseDepth;
1171    
1172     // this models a strange behaviour or bug in GSt: two of the
1173     // velocity response curves for release time are not used even
1174     // if specified, instead another curve is chosen.
1175    
1176     if ((curveType == curve_type_nonlinear && depth == 0) ||
1177     (curveType == curve_type_special && depth == 4)) {
1178     curveType = curve_type_nonlinear;
1179     depth = 3;
1180     }
1181     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1182    
1183     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1184     }
1185    
1186     // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1187     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1188     {
1189     double* table;
1190     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1191 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1192 persson 613 table = (*pVelocityTables)[tableKey];
1193 schoenebeck 16 }
1194     else {
1195 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1196     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1197 schoenebeck 16 }
1198 persson 613 return table;
1199 schoenebeck 2 }
1200 schoenebeck 55
1201 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1202     leverage_ctrl_t decodedcontroller;
1203     switch (EncodedController) {
1204     // special controller
1205     case _lev_ctrl_none:
1206     decodedcontroller.type = leverage_ctrl_t::type_none;
1207     decodedcontroller.controller_number = 0;
1208     break;
1209     case _lev_ctrl_velocity:
1210     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1211     decodedcontroller.controller_number = 0;
1212     break;
1213     case _lev_ctrl_channelaftertouch:
1214     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1215     decodedcontroller.controller_number = 0;
1216     break;
1217 schoenebeck 55
1218 schoenebeck 36 // ordinary MIDI control change controller
1219     case _lev_ctrl_modwheel:
1220     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1221     decodedcontroller.controller_number = 1;
1222     break;
1223     case _lev_ctrl_breath:
1224     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1225     decodedcontroller.controller_number = 2;
1226     break;
1227     case _lev_ctrl_foot:
1228     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1229     decodedcontroller.controller_number = 4;
1230     break;
1231     case _lev_ctrl_effect1:
1232     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1233     decodedcontroller.controller_number = 12;
1234     break;
1235     case _lev_ctrl_effect2:
1236     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1237     decodedcontroller.controller_number = 13;
1238     break;
1239     case _lev_ctrl_genpurpose1:
1240     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1241     decodedcontroller.controller_number = 16;
1242     break;
1243     case _lev_ctrl_genpurpose2:
1244     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1245     decodedcontroller.controller_number = 17;
1246     break;
1247     case _lev_ctrl_genpurpose3:
1248     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1249     decodedcontroller.controller_number = 18;
1250     break;
1251     case _lev_ctrl_genpurpose4:
1252     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1253     decodedcontroller.controller_number = 19;
1254     break;
1255     case _lev_ctrl_portamentotime:
1256     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1257     decodedcontroller.controller_number = 5;
1258     break;
1259     case _lev_ctrl_sustainpedal:
1260     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1261     decodedcontroller.controller_number = 64;
1262     break;
1263     case _lev_ctrl_portamento:
1264     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1265     decodedcontroller.controller_number = 65;
1266     break;
1267     case _lev_ctrl_sostenutopedal:
1268     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1269     decodedcontroller.controller_number = 66;
1270     break;
1271     case _lev_ctrl_softpedal:
1272     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1273     decodedcontroller.controller_number = 67;
1274     break;
1275     case _lev_ctrl_genpurpose5:
1276     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1277     decodedcontroller.controller_number = 80;
1278     break;
1279     case _lev_ctrl_genpurpose6:
1280     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1281     decodedcontroller.controller_number = 81;
1282     break;
1283     case _lev_ctrl_genpurpose7:
1284     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1285     decodedcontroller.controller_number = 82;
1286     break;
1287     case _lev_ctrl_genpurpose8:
1288     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1289     decodedcontroller.controller_number = 83;
1290     break;
1291     case _lev_ctrl_effect1depth:
1292     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1293     decodedcontroller.controller_number = 91;
1294     break;
1295     case _lev_ctrl_effect2depth:
1296     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1297     decodedcontroller.controller_number = 92;
1298     break;
1299     case _lev_ctrl_effect3depth:
1300     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1301     decodedcontroller.controller_number = 93;
1302     break;
1303     case _lev_ctrl_effect4depth:
1304     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1305     decodedcontroller.controller_number = 94;
1306     break;
1307     case _lev_ctrl_effect5depth:
1308     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1309     decodedcontroller.controller_number = 95;
1310     break;
1311 schoenebeck 55
1312 schoenebeck 36 // unknown controller type
1313     default:
1314     throw gig::Exception("Unknown leverage controller type.");
1315     }
1316     return decodedcontroller;
1317     }
1318 schoenebeck 2
1319 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1320     Instances--;
1321     if (!Instances) {
1322     // delete the velocity->volume tables
1323     VelocityTableMap::iterator iter;
1324     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1325     double* pTable = iter->second;
1326     if (pTable) delete[] pTable;
1327     }
1328     pVelocityTables->clear();
1329     delete pVelocityTables;
1330     pVelocityTables = NULL;
1331     }
1332     }
1333 schoenebeck 2
1334 schoenebeck 16 /**
1335     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1336     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1337     * and VelocityResponseCurveScaling) involved are taken into account to
1338     * calculate the amplitude factor. Use this method when a key was
1339     * triggered to get the volume with which the sample should be played
1340     * back.
1341     *
1342 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1343     * @returns amplitude factor (between 0.0 and 1.0)
1344 schoenebeck 16 */
1345     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1346     return pVelocityAttenuationTable[MIDIKeyVelocity];
1347     }
1348 schoenebeck 2
1349 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1350     return pVelocityReleaseTable[MIDIKeyVelocity];
1351     }
1352    
1353 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1354 schoenebeck 317
1355 schoenebeck 308 // line-segment approximations of the 15 velocity curves
1356 schoenebeck 16
1357 schoenebeck 308 // linear
1358     const int lin0[] = { 1, 1, 127, 127 };
1359     const int lin1[] = { 1, 21, 127, 127 };
1360     const int lin2[] = { 1, 45, 127, 127 };
1361     const int lin3[] = { 1, 74, 127, 127 };
1362     const int lin4[] = { 1, 127, 127, 127 };
1363 schoenebeck 16
1364 schoenebeck 308 // non-linear
1365     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1366 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1367 schoenebeck 308 127, 127 };
1368     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1369     127, 127 };
1370     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1371     127, 127 };
1372     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1373 schoenebeck 317
1374 schoenebeck 308 // special
1375 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1376 schoenebeck 308 113, 127, 127, 127 };
1377     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1378     118, 127, 127, 127 };
1379 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
1380 schoenebeck 308 85, 90, 91, 127, 127, 127 };
1381 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
1382 schoenebeck 308 117, 127, 127, 127 };
1383 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
1384 schoenebeck 308 127, 127 };
1385 schoenebeck 317
1386 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
1387 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
1388 schoenebeck 308 spe0, spe1, spe2, spe3, spe4 };
1389 schoenebeck 317
1390 schoenebeck 308 double* const table = new double[128];
1391    
1392     const int* curve = curves[curveType * 5 + depth];
1393     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
1394 schoenebeck 317
1395 schoenebeck 308 table[0] = 0;
1396     for (int x = 1 ; x < 128 ; x++) {
1397    
1398     if (x > curve[2]) curve += 2;
1399 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
1400 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
1401     y = y / 127;
1402    
1403     // Scale up for s > 20, down for s < 20. When
1404     // down-scaling, the curve still ends at 1.0.
1405     if (s < 20 && y >= 0.5)
1406     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
1407     else
1408     y = y * (s / 20.0);
1409     if (y > 1) y = 1;
1410    
1411     table[x] = y;
1412     }
1413     return table;
1414     }
1415    
1416    
1417 schoenebeck 2 // *************** Region ***************
1418     // *
1419    
1420     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
1421     // Initialization
1422     Dimensions = 0;
1423 schoenebeck 347 for (int i = 0; i < 256; i++) {
1424 schoenebeck 2 pDimensionRegions[i] = NULL;
1425     }
1426 schoenebeck 282 Layers = 1;
1427 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
1428     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
1429 schoenebeck 2
1430     // Actual Loading
1431    
1432     LoadDimensionRegions(rgnList);
1433    
1434     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
1435     if (_3lnk) {
1436     DimensionRegions = _3lnk->ReadUint32();
1437 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
1438 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
1439     uint8_t bits = _3lnk->ReadUint8();
1440     if (dimension == dimension_none) { // inactive dimension
1441     pDimensionDefinitions[i].dimension = dimension_none;
1442     pDimensionDefinitions[i].bits = 0;
1443     pDimensionDefinitions[i].zones = 0;
1444     pDimensionDefinitions[i].split_type = split_type_bit;
1445     pDimensionDefinitions[i].ranges = NULL;
1446     pDimensionDefinitions[i].zone_size = 0;
1447     }
1448     else { // active dimension
1449     pDimensionDefinitions[i].dimension = dimension;
1450     pDimensionDefinitions[i].bits = bits;
1451     pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
1452     pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
1453 schoenebeck 241 dimension == dimension_samplechannel ||
1454 persson 437 dimension == dimension_releasetrigger ||
1455     dimension == dimension_roundrobin ||
1456     dimension == dimension_random) ? split_type_bit
1457     : split_type_normal;
1458 schoenebeck 2 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
1459     pDimensionDefinitions[i].zone_size =
1460     (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
1461     : 0;
1462     Dimensions++;
1463 schoenebeck 282
1464     // if this is a layer dimension, remember the amount of layers
1465     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
1466 schoenebeck 2 }
1467     _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
1468     }
1469    
1470     // check velocity dimension (if there is one) for custom defined zone ranges
1471     for (uint i = 0; i < Dimensions; i++) {
1472     dimension_def_t* pDimDef = pDimensionDefinitions + i;
1473     if (pDimDef->dimension == dimension_velocity) {
1474     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
1475     // no custom defined ranges
1476     pDimDef->split_type = split_type_normal;
1477     pDimDef->ranges = NULL;
1478     }
1479     else { // custom defined ranges
1480     pDimDef->split_type = split_type_customvelocity;
1481     pDimDef->ranges = new range_t[pDimDef->zones];
1482 schoenebeck 347 uint8_t bits[8] = { 0 };
1483 schoenebeck 2 int previousUpperLimit = -1;
1484     for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
1485     bits[i] = velocityZone;
1486 schoenebeck 347 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
1487 schoenebeck 2
1488     pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
1489     pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
1490     previousUpperLimit = pDimDef->ranges[velocityZone].high;
1491     // fill velocity table
1492     for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
1493     VelocityTable[i] = velocityZone;
1494     }
1495     }
1496     }
1497     }
1498     }
1499    
1500 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
1501     File* file = (File*) GetParent()->GetParent();
1502     if (file->pVersion && file->pVersion->major == 3)
1503     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
1504     else
1505     _3lnk->SetPos(44);
1506    
1507 schoenebeck 2 // load sample references
1508     for (uint i = 0; i < DimensionRegions; i++) {
1509     uint32_t wavepoolindex = _3lnk->ReadUint32();
1510     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
1511     }
1512     }
1513     else throw gig::Exception("Mandatory <3lnk> chunk not found.");
1514     }
1515    
1516     void Region::LoadDimensionRegions(RIFF::List* rgn) {
1517     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
1518     if (_3prg) {
1519     int dimensionRegionNr = 0;
1520     RIFF::List* _3ewl = _3prg->GetFirstSubList();
1521     while (_3ewl) {
1522     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
1523     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
1524     dimensionRegionNr++;
1525     }
1526     _3ewl = _3prg->GetNextSubList();
1527     }
1528     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1529     }
1530     }
1531    
1532     Region::~Region() {
1533     for (uint i = 0; i < Dimensions; i++) {
1534     if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1535     }
1536 schoenebeck 350 for (int i = 0; i < 256; i++) {
1537 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1538     }
1539     }
1540    
1541     /**
1542     * Use this method in your audio engine to get the appropriate dimension
1543     * region with it's articulation data for the current situation. Just
1544     * call the method with the current MIDI controller values and you'll get
1545     * the DimensionRegion with the appropriate articulation data for the
1546     * current situation (for this Region of course only). To do that you'll
1547     * first have to look which dimensions with which controllers and in
1548     * which order are defined for this Region when you load the .gig file.
1549     * Special cases are e.g. layer or channel dimensions where you just put
1550     * in the index numbers instead of a MIDI controller value (means 0 for
1551     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1552     * etc.).
1553     *
1554 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
1555 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
1556     * @see pDimensionDefinitions
1557     * @see Dimensions
1558     */
1559 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
1560     uint8_t bits[8] = { 0 };
1561 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
1562 schoenebeck 347 bits[i] = DimValues[i];
1563 schoenebeck 2 switch (pDimensionDefinitions[i].split_type) {
1564     case split_type_normal:
1565     bits[i] /= pDimensionDefinitions[i].zone_size;
1566     break;
1567     case split_type_customvelocity:
1568     bits[i] = VelocityTable[bits[i]];
1569     break;
1570 schoenebeck 241 case split_type_bit: // the value is already the sought dimension bit number
1571     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
1572     bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
1573     break;
1574 schoenebeck 2 }
1575     }
1576 schoenebeck 347 return GetDimensionRegionByBit(bits);
1577 schoenebeck 2 }
1578    
1579     /**
1580     * Returns the appropriate DimensionRegion for the given dimension bit
1581     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1582     * instead of calling this method directly!
1583     *
1584 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
1585 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
1586     * bit numbers
1587     * @see GetDimensionRegionByValue()
1588     */
1589 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
1590     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
1591     << pDimensionDefinitions[5].bits | DimBits[5])
1592     << pDimensionDefinitions[4].bits | DimBits[4])
1593     << pDimensionDefinitions[3].bits | DimBits[3])
1594     << pDimensionDefinitions[2].bits | DimBits[2])
1595     << pDimensionDefinitions[1].bits | DimBits[1])
1596     << pDimensionDefinitions[0].bits | DimBits[0]];
1597 schoenebeck 2 }
1598    
1599     /**
1600     * Returns pointer address to the Sample referenced with this region.
1601     * This is the global Sample for the entire Region (not sure if this is
1602     * actually used by the Gigasampler engine - I would only use the Sample
1603     * referenced by the appropriate DimensionRegion instead of this sample).
1604     *
1605     * @returns address to Sample or NULL if there is no reference to a
1606     * sample saved in the .gig file
1607     */
1608     Sample* Region::GetSample() {
1609     if (pSample) return static_cast<gig::Sample*>(pSample);
1610     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1611     }
1612    
1613 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
1614 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
1615 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
1616     unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1617 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
1618 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
1619 schoenebeck 2 while (sample) {
1620 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
1621     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
1622 schoenebeck 2 sample = file->GetNextSample();
1623     }
1624     return NULL;
1625     }
1626    
1627    
1628    
1629     // *************** Instrument ***************
1630     // *
1631    
1632 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
1633 schoenebeck 2 // Initialization
1634     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1635     RegionIndex = -1;
1636    
1637     // Loading
1638     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1639     if (lart) {
1640     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1641     if (_3ewg) {
1642     EffectSend = _3ewg->ReadUint16();
1643     Attenuation = _3ewg->ReadInt32();
1644     FineTune = _3ewg->ReadInt16();
1645     PitchbendRange = _3ewg->ReadInt16();
1646     uint8_t dimkeystart = _3ewg->ReadUint8();
1647     PianoReleaseMode = dimkeystart & 0x01;
1648     DimensionKeyRange.low = dimkeystart >> 1;
1649     DimensionKeyRange.high = _3ewg->ReadUint8();
1650     }
1651     else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1652     }
1653     else throw gig::Exception("Mandatory <lart> list chunk not found.");
1654    
1655     RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1656     if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1657     pRegions = new Region*[Regions];
1658 schoenebeck 350 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
1659 schoenebeck 2 RIFF::List* rgn = lrgn->GetFirstSubList();
1660     unsigned int iRegion = 0;
1661     while (rgn) {
1662     if (rgn->GetListType() == LIST_TYPE_RGN) {
1663 schoenebeck 515 __notify_progress(pProgress, (float) iRegion / (float) Regions);
1664 schoenebeck 2 pRegions[iRegion] = new Region(this, rgn);
1665     iRegion++;
1666     }
1667     rgn = lrgn->GetNextSubList();
1668     }
1669    
1670     // Creating Region Key Table for fast lookup
1671     for (uint iReg = 0; iReg < Regions; iReg++) {
1672     for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1673     RegionKeyTable[iKey] = pRegions[iReg];
1674     }
1675     }
1676 schoenebeck 515
1677     __notify_progress(pProgress, 1.0f); // notify done
1678 schoenebeck 2 }
1679    
1680     Instrument::~Instrument() {
1681     for (uint i = 0; i < Regions; i++) {
1682     if (pRegions) {
1683     if (pRegions[i]) delete (pRegions[i]);
1684     }
1685     }
1686 schoenebeck 350 if (pRegions) delete[] pRegions;
1687 schoenebeck 2 }
1688    
1689     /**
1690     * Returns the appropriate Region for a triggered note.
1691     *
1692     * @param Key MIDI Key number of triggered note / key (0 - 127)
1693     * @returns pointer adress to the appropriate Region or NULL if there
1694     * there is no Region defined for the given \a Key
1695     */
1696     Region* Instrument::GetRegion(unsigned int Key) {
1697     if (!pRegions || Key > 127) return NULL;
1698     return RegionKeyTable[Key];
1699     /*for (int i = 0; i < Regions; i++) {
1700     if (Key <= pRegions[i]->KeyRange.high &&
1701     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1702     }
1703     return NULL;*/
1704     }
1705    
1706     /**
1707     * Returns the first Region of the instrument. You have to call this
1708     * method once before you use GetNextRegion().
1709     *
1710     * @returns pointer address to first region or NULL if there is none
1711     * @see GetNextRegion()
1712     */
1713     Region* Instrument::GetFirstRegion() {
1714     if (!Regions) return NULL;
1715     RegionIndex = 1;
1716     return pRegions[0];
1717     }
1718    
1719     /**
1720     * Returns the next Region of the instrument. You have to call
1721     * GetFirstRegion() once before you can use this method. By calling this
1722     * method multiple times it iterates through the available Regions.
1723     *
1724     * @returns pointer address to the next region or NULL if end reached
1725     * @see GetFirstRegion()
1726     */
1727     Region* Instrument::GetNextRegion() {
1728 persson 365 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
1729 schoenebeck 2 return pRegions[RegionIndex++];
1730     }
1731    
1732    
1733    
1734     // *************** File ***************
1735     // *
1736    
1737     File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1738     pSamples = NULL;
1739     pInstruments = NULL;
1740     }
1741    
1742 schoenebeck 350 File::~File() {
1743     // free samples
1744     if (pSamples) {
1745     SamplesIterator = pSamples->begin();
1746     while (SamplesIterator != pSamples->end() ) {
1747     delete (*SamplesIterator);
1748     SamplesIterator++;
1749     }
1750     pSamples->clear();
1751 schoenebeck 355 delete pSamples;
1752 schoenebeck 350
1753     }
1754     // free instruments
1755     if (pInstruments) {
1756     InstrumentsIterator = pInstruments->begin();
1757     while (InstrumentsIterator != pInstruments->end() ) {
1758     delete (*InstrumentsIterator);
1759     InstrumentsIterator++;
1760     }
1761     pInstruments->clear();
1762 schoenebeck 355 delete pInstruments;
1763 schoenebeck 350 }
1764 persson 666 // free extension files
1765     for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
1766     delete *i;
1767 schoenebeck 350 }
1768    
1769 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
1770     if (!pSamples) LoadSamples(pProgress);
1771 schoenebeck 2 if (!pSamples) return NULL;
1772     SamplesIterator = pSamples->begin();
1773     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1774     }
1775    
1776     Sample* File::GetNextSample() {
1777     if (!pSamples) return NULL;
1778     SamplesIterator++;
1779     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1780     }
1781    
1782 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
1783 persson 666 RIFF::File* file = pRIFF;
1784 schoenebeck 515
1785 persson 666 // just for progress calculation
1786     int iSampleIndex = 0;
1787     int iTotalSamples = WavePoolCount;
1788 schoenebeck 515
1789 persson 666 // check if samples should be loaded from extension files
1790     int lastFileNo = 0;
1791     for (int i = 0 ; i < WavePoolCount ; i++) {
1792     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
1793     }
1794     String name(pRIFF->Filename);
1795     int nameLen = pRIFF->Filename.length();
1796     char suffix[6];
1797     if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;
1798 schoenebeck 515
1799 persson 666 for (int fileNo = 0 ; ; ) {
1800     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
1801     if (wvpl) {
1802     unsigned long wvplFileOffset = wvpl->GetFilePos();
1803     RIFF::List* wave = wvpl->GetFirstSubList();
1804     while (wave) {
1805     if (wave->GetListType() == LIST_TYPE_WAVE) {
1806     // notify current progress
1807     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
1808     __notify_progress(pProgress, subprogress);
1809    
1810     if (!pSamples) pSamples = new SampleList;
1811     unsigned long waveFileOffset = wave->GetFilePos();
1812     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
1813    
1814     iSampleIndex++;
1815     }
1816     wave = wvpl->GetNextSubList();
1817 schoenebeck 2 }
1818 persson 666
1819     if (fileNo == lastFileNo) break;
1820    
1821     // open extension file (*.gx01, *.gx02, ...)
1822     fileNo++;
1823     sprintf(suffix, ".gx%02d", fileNo);
1824     name.replace(nameLen, 5, suffix);
1825     file = new RIFF::File(name);
1826     ExtensionFiles.push_back(file);
1827 schoenebeck 2 }
1828 persson 666 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1829 schoenebeck 2 }
1830 persson 666
1831     __notify_progress(pProgress, 1.0); // notify done
1832 schoenebeck 2 }
1833    
1834     Instrument* File::GetFirstInstrument() {
1835     if (!pInstruments) LoadInstruments();
1836     if (!pInstruments) return NULL;
1837     InstrumentsIterator = pInstruments->begin();
1838     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1839     }
1840    
1841     Instrument* File::GetNextInstrument() {
1842     if (!pInstruments) return NULL;
1843     InstrumentsIterator++;
1844     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1845     }
1846    
1847 schoenebeck 21 /**
1848     * Returns the instrument with the given index.
1849     *
1850 schoenebeck 515 * @param index - number of the sought instrument (0..n)
1851     * @param pProgress - optional: callback function for progress notification
1852 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
1853     */
1854 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
1855     if (!pInstruments) {
1856     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
1857    
1858     // sample loading subtask
1859     progress_t subprogress;
1860     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
1861     __notify_progress(&subprogress, 0.0f);
1862     GetFirstSample(&subprogress); // now force all samples to be loaded
1863     __notify_progress(&subprogress, 1.0f);
1864    
1865     // instrument loading subtask
1866     if (pProgress && pProgress->callback) {
1867     subprogress.__range_min = subprogress.__range_max;
1868     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
1869     }
1870     __notify_progress(&subprogress, 0.0f);
1871     LoadInstruments(&subprogress);
1872     __notify_progress(&subprogress, 1.0f);
1873     }
1874 schoenebeck 21 if (!pInstruments) return NULL;
1875     InstrumentsIterator = pInstruments->begin();
1876     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1877     if (i == index) return *InstrumentsIterator;
1878     InstrumentsIterator++;
1879     }
1880     return NULL;
1881     }
1882    
1883 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
1884 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1885     if (lstInstruments) {
1886 schoenebeck 515 int iInstrumentIndex = 0;
1887 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1888     while (lstInstr) {
1889     if (lstInstr->GetListType() == LIST_TYPE_INS) {
1890 schoenebeck 515 // notify current progress
1891     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
1892     __notify_progress(pProgress, localProgress);
1893    
1894     // divide local progress into subprogress for loading current Instrument
1895     progress_t subprogress;
1896     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
1897    
1898 schoenebeck 2 if (!pInstruments) pInstruments = new InstrumentList;
1899 schoenebeck 515 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
1900    
1901     iInstrumentIndex++;
1902 schoenebeck 2 }
1903     lstInstr = lstInstruments->GetNextSubList();
1904     }
1905 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
1906 schoenebeck 2 }
1907     else throw gig::Exception("Mandatory <lins> list chunk not found.");
1908     }
1909    
1910    
1911    
1912     // *************** Exception ***************
1913     // *
1914    
1915     Exception::Exception(String Message) : DLS::Exception(Message) {
1916     }
1917    
1918     void Exception::PrintMessage() {
1919     std::cout << "gig::Exception: " << Message << std::endl;
1920     }
1921    
1922 schoenebeck 518
1923     // *************** functions ***************
1924     // *
1925    
1926     /**
1927     * Returns the name of this C++ library. This is usually "libgig" of
1928     * course. This call is equivalent to RIFF::libraryName() and
1929     * DLS::libraryName().
1930     */
1931     String libraryName() {
1932     return PACKAGE;
1933     }
1934    
1935     /**
1936     * Returns version of this C++ library. This call is equivalent to
1937     * RIFF::libraryVersion() and DLS::libraryVersion().
1938     */
1939     String libraryVersion() {
1940     return VERSION;
1941     }
1942    
1943 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC