/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 809 - (hide annotations) (download)
Tue Nov 22 11:26:55 2005 UTC (18 years, 4 months ago) by schoenebeck
File size: 134254 byte(s)
* src/gig.cpp, src/gig.h:
  - added write support (highly experimental)
  - removed unnecessary definitions from header file
* src/DLS.cpp:
  - try to load instruments/samples before adding a new instrument/sample

1 schoenebeck 2 /***************************************************************************
2     * *
3     * libgig - C++ cross-platform Gigasampler format file loader library *
4     * *
5 schoenebeck 384 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6     * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 809 // *************** dimension_def_t ***************
55     // *
56    
57     dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {
58     dimension = arg.dimension;
59     bits = arg.bits;
60     zones = arg.zones;
61     split_type = arg.split_type;
62     ranges = arg.ranges;
63     zone_size = arg.zone_size;
64     if (ranges) {
65     ranges = new range_t[zones];
66     for (int i = 0; i < zones; i++)
67     ranges[i] = arg.ranges[i];
68     }
69     return *this;
70     }
71    
72    
73    
74 schoenebeck 515 // *************** progress_t ***************
75     // *
76    
77     progress_t::progress_t() {
78     callback = NULL;
79 schoenebeck 516 custom = NULL;
80 schoenebeck 515 __range_min = 0.0f;
81     __range_max = 1.0f;
82     }
83    
84     // private helper function to convert progress of a subprocess into the global progress
85     static void __notify_progress(progress_t* pProgress, float subprogress) {
86     if (pProgress && pProgress->callback) {
87     const float totalrange = pProgress->__range_max - pProgress->__range_min;
88     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
89 schoenebeck 516 pProgress->factor = totalprogress;
90     pProgress->callback(pProgress); // now actually notify about the progress
91 schoenebeck 515 }
92     }
93    
94     // private helper function to divide a progress into subprogresses
95     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
96     if (pParentProgress && pParentProgress->callback) {
97     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
98     pSubProgress->callback = pParentProgress->callback;
99 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
100 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
101     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
102     }
103     }
104    
105    
106 schoenebeck 809 // *************** Internal functions for sample decompression ***************
107 persson 365 // *
108    
109 schoenebeck 515 namespace {
110    
111 persson 365 inline int get12lo(const unsigned char* pSrc)
112     {
113     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
114     return x & 0x800 ? x - 0x1000 : x;
115     }
116    
117     inline int get12hi(const unsigned char* pSrc)
118     {
119     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
120     return x & 0x800 ? x - 0x1000 : x;
121     }
122    
123     inline int16_t get16(const unsigned char* pSrc)
124     {
125     return int16_t(pSrc[0] | pSrc[1] << 8);
126     }
127    
128     inline int get24(const unsigned char* pSrc)
129     {
130     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
131     return x & 0x800000 ? x - 0x1000000 : x;
132     }
133    
134     void Decompress16(int compressionmode, const unsigned char* params,
135 persson 372 int srcStep, int dstStep,
136     const unsigned char* pSrc, int16_t* pDst,
137 persson 365 unsigned long currentframeoffset,
138     unsigned long copysamples)
139     {
140     switch (compressionmode) {
141     case 0: // 16 bit uncompressed
142     pSrc += currentframeoffset * srcStep;
143     while (copysamples) {
144     *pDst = get16(pSrc);
145 persson 372 pDst += dstStep;
146 persson 365 pSrc += srcStep;
147     copysamples--;
148     }
149     break;
150    
151     case 1: // 16 bit compressed to 8 bit
152     int y = get16(params);
153     int dy = get16(params + 2);
154     while (currentframeoffset) {
155     dy -= int8_t(*pSrc);
156     y -= dy;
157     pSrc += srcStep;
158     currentframeoffset--;
159     }
160     while (copysamples) {
161     dy -= int8_t(*pSrc);
162     y -= dy;
163     *pDst = y;
164 persson 372 pDst += dstStep;
165 persson 365 pSrc += srcStep;
166     copysamples--;
167     }
168     break;
169     }
170     }
171    
172     void Decompress24(int compressionmode, const unsigned char* params,
173 persson 372 int dstStep, const unsigned char* pSrc, int16_t* pDst,
174 persson 365 unsigned long currentframeoffset,
175 persson 437 unsigned long copysamples, int truncatedBits)
176 persson 365 {
177     // Note: The 24 bits are truncated to 16 bits for now.
178    
179 persson 695 int y, dy, ddy, dddy;
180 persson 437 const int shift = 8 - truncatedBits;
181    
182 persson 695 #define GET_PARAMS(params) \
183     y = get24(params); \
184     dy = y - get24((params) + 3); \
185     ddy = get24((params) + 6); \
186     dddy = get24((params) + 9)
187 persson 365
188     #define SKIP_ONE(x) \
189 persson 695 dddy -= (x); \
190     ddy -= dddy; \
191     dy = -dy - ddy; \
192     y += dy
193 persson 365
194     #define COPY_ONE(x) \
195     SKIP_ONE(x); \
196 persson 695 *pDst = y >> shift; \
197 persson 372 pDst += dstStep
198 persson 365
199     switch (compressionmode) {
200     case 2: // 24 bit uncompressed
201     pSrc += currentframeoffset * 3;
202     while (copysamples) {
203 persson 437 *pDst = get24(pSrc) >> shift;
204 persson 372 pDst += dstStep;
205 persson 365 pSrc += 3;
206     copysamples--;
207     }
208     break;
209    
210     case 3: // 24 bit compressed to 16 bit
211     GET_PARAMS(params);
212     while (currentframeoffset) {
213     SKIP_ONE(get16(pSrc));
214     pSrc += 2;
215     currentframeoffset--;
216     }
217     while (copysamples) {
218     COPY_ONE(get16(pSrc));
219     pSrc += 2;
220     copysamples--;
221     }
222     break;
223    
224     case 4: // 24 bit compressed to 12 bit
225     GET_PARAMS(params);
226     while (currentframeoffset > 1) {
227     SKIP_ONE(get12lo(pSrc));
228     SKIP_ONE(get12hi(pSrc));
229     pSrc += 3;
230     currentframeoffset -= 2;
231     }
232     if (currentframeoffset) {
233     SKIP_ONE(get12lo(pSrc));
234     currentframeoffset--;
235     if (copysamples) {
236     COPY_ONE(get12hi(pSrc));
237     pSrc += 3;
238     copysamples--;
239     }
240     }
241     while (copysamples > 1) {
242     COPY_ONE(get12lo(pSrc));
243     COPY_ONE(get12hi(pSrc));
244     pSrc += 3;
245     copysamples -= 2;
246     }
247     if (copysamples) {
248     COPY_ONE(get12lo(pSrc));
249     }
250     break;
251    
252     case 5: // 24 bit compressed to 8 bit
253     GET_PARAMS(params);
254     while (currentframeoffset) {
255     SKIP_ONE(int8_t(*pSrc++));
256     currentframeoffset--;
257     }
258     while (copysamples) {
259     COPY_ONE(int8_t(*pSrc++));
260     copysamples--;
261     }
262     break;
263     }
264     }
265    
266     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
267     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
268     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
269     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
270     }
271    
272    
273 schoenebeck 2 // *************** Sample ***************
274     // *
275    
276 schoenebeck 384 unsigned int Sample::Instances = 0;
277     buffer_t Sample::InternalDecompressionBuffer;
278 schoenebeck 2
279 schoenebeck 809 /** @brief Constructor.
280     *
281     * Load an existing sample or create a new one. A 'wave' list chunk must
282     * be given to this constructor. In case the given 'wave' list chunk
283     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
284     * format and sample data will be loaded from there, otherwise default
285     * values will be used and those chunks will be created when
286     * File::Save() will be called later on.
287     *
288     * @param pFile - pointer to gig::File where this sample is
289     * located (or will be located)
290     * @param waveList - pointer to 'wave' list chunk which is (or
291     * will be) associated with this sample
292     * @param WavePoolOffset - offset of this sample data from wave pool
293     * ('wvpl') list chunk
294     * @param fileNo - number of an extension file where this sample
295     * is located, 0 otherwise
296     */
297 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
298 schoenebeck 2 Instances++;
299 persson 666 FileNo = fileNo;
300 schoenebeck 2
301 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
302     if (pCk3gix) {
303     SampleGroup = pCk3gix->ReadInt16();
304     } else { // '3gix' chunk missing
305     // use default value(s)
306     SampleGroup = 0;
307     }
308 schoenebeck 2
309 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
310     if (pCkSmpl) {
311     Manufacturer = pCkSmpl->ReadInt32();
312     Product = pCkSmpl->ReadInt32();
313     SamplePeriod = pCkSmpl->ReadInt32();
314     MIDIUnityNote = pCkSmpl->ReadInt32();
315     FineTune = pCkSmpl->ReadInt32();
316     pCkSmpl->Read(&SMPTEFormat, 1, 4);
317     SMPTEOffset = pCkSmpl->ReadInt32();
318     Loops = pCkSmpl->ReadInt32();
319     pCkSmpl->ReadInt32(); // manufByt
320     LoopID = pCkSmpl->ReadInt32();
321     pCkSmpl->Read(&LoopType, 1, 4);
322     LoopStart = pCkSmpl->ReadInt32();
323     LoopEnd = pCkSmpl->ReadInt32();
324     LoopFraction = pCkSmpl->ReadInt32();
325     LoopPlayCount = pCkSmpl->ReadInt32();
326     } else { // 'smpl' chunk missing
327     // use default values
328     Manufacturer = 0;
329     Product = 0;
330     SamplePeriod = 1 / SamplesPerSecond;
331     MIDIUnityNote = 64;
332     FineTune = 0;
333     SMPTEOffset = 0;
334     Loops = 0;
335     LoopID = 0;
336     LoopStart = 0;
337     LoopEnd = 0;
338     LoopFraction = 0;
339     LoopPlayCount = 0;
340     }
341 schoenebeck 2
342     FrameTable = NULL;
343     SamplePos = 0;
344     RAMCache.Size = 0;
345     RAMCache.pStart = NULL;
346     RAMCache.NullExtensionSize = 0;
347    
348 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
349    
350 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
351     Compressed = ewav;
352     Dithered = false;
353     TruncatedBits = 0;
354 schoenebeck 2 if (Compressed) {
355 persson 437 uint32_t version = ewav->ReadInt32();
356     if (version == 3 && BitDepth == 24) {
357     Dithered = ewav->ReadInt32();
358     ewav->SetPos(Channels == 2 ? 84 : 64);
359     TruncatedBits = ewav->ReadInt32();
360     }
361 schoenebeck 2 ScanCompressedSample();
362     }
363 schoenebeck 317
364     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
365 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
366     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
367     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
368 schoenebeck 317 }
369 persson 437 FrameOffset = 0; // just for streaming compressed samples
370 schoenebeck 21
371 schoenebeck 27 LoopSize = LoopEnd - LoopStart;
372 schoenebeck 2 }
373    
374 schoenebeck 809 /**
375     * Apply sample and its settings to the respective RIFF chunks. You have
376     * to call File::Save() to make changes persistent.
377     *
378     * Usually there is absolutely no need to call this method explicitly.
379     * It will be called automatically when File::Save() was called.
380     *
381     * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
382     * was provided yet
383     * @throws gig::Exception if there is any invalid sample setting
384     */
385     void Sample::UpdateChunks() {
386     // first update base class's chunks
387     DLS::Sample::UpdateChunks();
388    
389     // make sure 'smpl' chunk exists
390     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
391     if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
392     // update 'smpl' chunk
393     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
394     SamplePeriod = 1 / SamplesPerSecond;
395     memcpy(&pData[0], &Manufacturer, 4);
396     memcpy(&pData[4], &Product, 4);
397     memcpy(&pData[8], &SamplePeriod, 4);
398     memcpy(&pData[12], &MIDIUnityNote, 4);
399     memcpy(&pData[16], &FineTune, 4);
400     memcpy(&pData[20], &SMPTEFormat, 4);
401     memcpy(&pData[24], &SMPTEOffset, 4);
402     memcpy(&pData[28], &Loops, 4);
403    
404     // we skip 'manufByt' for now (4 bytes)
405    
406     memcpy(&pData[36], &LoopID, 4);
407     memcpy(&pData[40], &LoopType, 4);
408     memcpy(&pData[44], &LoopStart, 4);
409     memcpy(&pData[48], &LoopEnd, 4);
410     memcpy(&pData[52], &LoopFraction, 4);
411     memcpy(&pData[56], &LoopPlayCount, 4);
412    
413     // make sure '3gix' chunk exists
414     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
415     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
416     // update '3gix' chunk
417     pData = (uint8_t*) pCk3gix->LoadChunkData();
418     memcpy(&pData[0], &SampleGroup, 2);
419     }
420    
421 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
422     void Sample::ScanCompressedSample() {
423     //TODO: we have to add some more scans here (e.g. determine compression rate)
424     this->SamplesTotal = 0;
425     std::list<unsigned long> frameOffsets;
426    
427 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
428 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
429 persson 365
430 schoenebeck 2 // Scanning
431     pCkData->SetPos(0);
432 persson 365 if (Channels == 2) { // Stereo
433     for (int i = 0 ; ; i++) {
434     // for 24 bit samples every 8:th frame offset is
435     // stored, to save some memory
436     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
437    
438     const int mode_l = pCkData->ReadUint8();
439     const int mode_r = pCkData->ReadUint8();
440     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
441     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
442    
443     if (pCkData->RemainingBytes() <= frameSize) {
444     SamplesInLastFrame =
445     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
446     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
447     SamplesTotal += SamplesInLastFrame;
448 schoenebeck 2 break;
449 persson 365 }
450     SamplesTotal += SamplesPerFrame;
451     pCkData->SetPos(frameSize, RIFF::stream_curpos);
452     }
453     }
454     else { // Mono
455     for (int i = 0 ; ; i++) {
456     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
457    
458     const int mode = pCkData->ReadUint8();
459     if (mode > 5) throw gig::Exception("Unknown compression mode");
460     const unsigned long frameSize = bytesPerFrame[mode];
461    
462     if (pCkData->RemainingBytes() <= frameSize) {
463     SamplesInLastFrame =
464     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
465     SamplesTotal += SamplesInLastFrame;
466 schoenebeck 2 break;
467 persson 365 }
468     SamplesTotal += SamplesPerFrame;
469     pCkData->SetPos(frameSize, RIFF::stream_curpos);
470 schoenebeck 2 }
471     }
472     pCkData->SetPos(0);
473    
474     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
475     if (FrameTable) delete[] FrameTable;
476     FrameTable = new unsigned long[frameOffsets.size()];
477     std::list<unsigned long>::iterator end = frameOffsets.end();
478     std::list<unsigned long>::iterator iter = frameOffsets.begin();
479     for (int i = 0; iter != end; i++, iter++) {
480     FrameTable[i] = *iter;
481     }
482     }
483    
484     /**
485     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
486     * ReleaseSampleData() to free the memory if you don't need the cached
487     * sample data anymore.
488     *
489     * @returns buffer_t structure with start address and size of the buffer
490     * in bytes
491     * @see ReleaseSampleData(), Read(), SetPos()
492     */
493     buffer_t Sample::LoadSampleData() {
494     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
495     }
496    
497     /**
498     * Reads (uncompresses if needed) and caches the first \a SampleCount
499     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
500     * memory space if you don't need the cached samples anymore. There is no
501     * guarantee that exactly \a SampleCount samples will be cached; this is
502     * not an error. The size will be eventually truncated e.g. to the
503     * beginning of a frame of a compressed sample. This is done for
504     * efficiency reasons while streaming the wave by your sampler engine
505     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
506     * that will be returned to determine the actual cached samples, but note
507     * that the size is given in bytes! You get the number of actually cached
508     * samples by dividing it by the frame size of the sample:
509 schoenebeck 384 * @code
510 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
511     * long cachedsamples = buf.Size / pSample->FrameSize;
512 schoenebeck 384 * @endcode
513 schoenebeck 2 *
514     * @param SampleCount - number of sample points to load into RAM
515     * @returns buffer_t structure with start address and size of
516     * the cached sample data in bytes
517     * @see ReleaseSampleData(), Read(), SetPos()
518     */
519     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
520     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
521     }
522    
523     /**
524     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
525     * ReleaseSampleData() to free the memory if you don't need the cached
526     * sample data anymore.
527     * The method will add \a NullSamplesCount silence samples past the
528     * official buffer end (this won't affect the 'Size' member of the
529     * buffer_t structure, that means 'Size' always reflects the size of the
530     * actual sample data, the buffer might be bigger though). Silence
531     * samples past the official buffer are needed for differential
532     * algorithms that always have to take subsequent samples into account
533     * (resampling/interpolation would be an important example) and avoids
534     * memory access faults in such cases.
535     *
536     * @param NullSamplesCount - number of silence samples the buffer should
537     * be extended past it's data end
538     * @returns buffer_t structure with start address and
539     * size of the buffer in bytes
540     * @see ReleaseSampleData(), Read(), SetPos()
541     */
542     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
543     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
544     }
545    
546     /**
547     * Reads (uncompresses if needed) and caches the first \a SampleCount
548     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
549     * memory space if you don't need the cached samples anymore. There is no
550     * guarantee that exactly \a SampleCount samples will be cached; this is
551     * not an error. The size will be eventually truncated e.g. to the
552     * beginning of a frame of a compressed sample. This is done for
553     * efficiency reasons while streaming the wave by your sampler engine
554     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
555     * that will be returned to determine the actual cached samples, but note
556     * that the size is given in bytes! You get the number of actually cached
557     * samples by dividing it by the frame size of the sample:
558 schoenebeck 384 * @code
559 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
560     * long cachedsamples = buf.Size / pSample->FrameSize;
561 schoenebeck 384 * @endcode
562 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
563     * official buffer end (this won't affect the 'Size' member of the
564     * buffer_t structure, that means 'Size' always reflects the size of the
565     * actual sample data, the buffer might be bigger though). Silence
566     * samples past the official buffer are needed for differential
567     * algorithms that always have to take subsequent samples into account
568     * (resampling/interpolation would be an important example) and avoids
569     * memory access faults in such cases.
570     *
571     * @param SampleCount - number of sample points to load into RAM
572     * @param NullSamplesCount - number of silence samples the buffer should
573     * be extended past it's data end
574     * @returns buffer_t structure with start address and
575     * size of the cached sample data in bytes
576     * @see ReleaseSampleData(), Read(), SetPos()
577     */
578     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
579     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
580     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
581     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
582     RAMCache.pStart = new int8_t[allocationsize];
583     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
584     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
585     // fill the remaining buffer space with silence samples
586     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
587     return GetCache();
588     }
589    
590     /**
591     * Returns current cached sample points. A buffer_t structure will be
592     * returned which contains address pointer to the begin of the cache and
593     * the size of the cached sample data in bytes. Use
594     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
595     * RAM.
596     *
597     * @returns buffer_t structure with current cached sample points
598     * @see LoadSampleData();
599     */
600     buffer_t Sample::GetCache() {
601     // return a copy of the buffer_t structure
602     buffer_t result;
603     result.Size = this->RAMCache.Size;
604     result.pStart = this->RAMCache.pStart;
605     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
606     return result;
607     }
608    
609     /**
610     * Frees the cached sample from RAM if loaded with
611     * <i>LoadSampleData()</i> previously.
612     *
613     * @see LoadSampleData();
614     */
615     void Sample::ReleaseSampleData() {
616     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
617     RAMCache.pStart = NULL;
618     RAMCache.Size = 0;
619     }
620    
621 schoenebeck 809 /** @brief Resize sample.
622     *
623     * Resizes the sample's wave form data, that is the actual size of
624     * sample wave data possible to be written for this sample. This call
625     * will return immediately and just schedule the resize operation. You
626     * should call File::Save() to actually perform the resize operation(s)
627     * "physically" to the file. As this can take a while on large files, it
628     * is recommended to call Resize() first on all samples which have to be
629     * resized and finally to call File::Save() to perform all those resize
630     * operations in one rush.
631     *
632     * The actual size (in bytes) is dependant to the current FrameSize
633     * value. You may want to set FrameSize before calling Resize().
634     *
635     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
636     * enlarged samples before calling File::Save() as this might exceed the
637     * current sample's boundary!
638     *
639     * Also note: only WAVE_FORMAT_PCM is currently supported, that is
640     * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
641     * other formats will fail!
642     *
643     * @param iNewSize - new sample wave data size in sample points (must be
644     * greater than zero)
645     * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
646     * or if \a iNewSize is less than 1
647     * @throws gig::Exception if existing sample is compressed
648     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
649     * DLS::Sample::FormatTag, File::Save()
650     */
651     void Sample::Resize(int iNewSize) {
652     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
653     DLS::Sample::Resize(iNewSize);
654     }
655    
656 schoenebeck 2 /**
657     * Sets the position within the sample (in sample points, not in
658     * bytes). Use this method and <i>Read()</i> if you don't want to load
659     * the sample into RAM, thus for disk streaming.
660     *
661     * Although the original Gigasampler engine doesn't allow positioning
662     * within compressed samples, I decided to implement it. Even though
663     * the Gigasampler format doesn't allow to define loops for compressed
664     * samples at the moment, positioning within compressed samples might be
665     * interesting for some sampler engines though. The only drawback about
666     * my decision is that it takes longer to load compressed gig Files on
667     * startup, because it's neccessary to scan the samples for some
668     * mandatory informations. But I think as it doesn't affect the runtime
669     * efficiency, nobody will have a problem with that.
670     *
671     * @param SampleCount number of sample points to jump
672     * @param Whence optional: to which relation \a SampleCount refers
673     * to, if omited <i>RIFF::stream_start</i> is assumed
674     * @returns the new sample position
675     * @see Read()
676     */
677     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
678     if (Compressed) {
679     switch (Whence) {
680     case RIFF::stream_curpos:
681     this->SamplePos += SampleCount;
682     break;
683     case RIFF::stream_end:
684     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
685     break;
686     case RIFF::stream_backward:
687     this->SamplePos -= SampleCount;
688     break;
689     case RIFF::stream_start: default:
690     this->SamplePos = SampleCount;
691     break;
692     }
693     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
694    
695     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
696     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
697     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
698     return this->SamplePos;
699     }
700     else { // not compressed
701     unsigned long orderedBytes = SampleCount * this->FrameSize;
702     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
703     return (result == orderedBytes) ? SampleCount
704     : result / this->FrameSize;
705     }
706     }
707    
708     /**
709     * Returns the current position in the sample (in sample points).
710     */
711     unsigned long Sample::GetPos() {
712     if (Compressed) return SamplePos;
713     else return pCkData->GetPos() / FrameSize;
714     }
715    
716     /**
717 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
718     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
719     * the position within the sample respectively, this method honors the
720     * looping informations of the sample (if any). The sample wave stream
721     * will be decompressed on the fly if using a compressed sample. Use this
722     * method if you don't want to load the sample into RAM, thus for disk
723     * streaming. All this methods needs to know to proceed with streaming
724     * for the next time you call this method is stored in \a pPlaybackState.
725     * You have to allocate and initialize the playback_state_t structure by
726     * yourself before you use it to stream a sample:
727 schoenebeck 384 * @code
728     * gig::playback_state_t playbackstate;
729     * playbackstate.position = 0;
730     * playbackstate.reverse = false;
731     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
732     * @endcode
733 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
734     * defined or if the current read position is located within a loop area.
735     * The method already handles such cases by itself.
736     *
737 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
738     * have to use an external decompression buffer for <b>EACH</b>
739     * streaming thread to avoid race conditions and crashes!
740     *
741 schoenebeck 24 * @param pBuffer destination buffer
742     * @param SampleCount number of sample points to read
743     * @param pPlaybackState will be used to store and reload the playback
744     * state for the next ReadAndLoop() call
745 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
746 schoenebeck 24 * @returns number of successfully read sample points
747 schoenebeck 384 * @see CreateDecompressionBuffer()
748 schoenebeck 24 */
749 schoenebeck 384 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
750 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
751     uint8_t* pDst = (uint8_t*) pBuffer;
752    
753     SetPos(pPlaybackState->position); // recover position from the last time
754    
755     if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
756    
757     switch (this->LoopType) {
758    
759     case loop_type_bidirectional: { //TODO: not tested yet!
760     do {
761     // if not endless loop check if max. number of loop cycles have been passed
762     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
763    
764     if (!pPlaybackState->reverse) { // forward playback
765     do {
766     samplestoloopend = this->LoopEnd - GetPos();
767 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
768 schoenebeck 24 samplestoread -= readsamples;
769     totalreadsamples += readsamples;
770     if (readsamples == samplestoloopend) {
771     pPlaybackState->reverse = true;
772     break;
773     }
774     } while (samplestoread && readsamples);
775     }
776     else { // backward playback
777    
778     // as we can only read forward from disk, we have to
779     // determine the end position within the loop first,
780     // read forward from that 'end' and finally after
781     // reading, swap all sample frames so it reflects
782     // backward playback
783    
784     unsigned long swapareastart = totalreadsamples;
785     unsigned long loopoffset = GetPos() - this->LoopStart;
786     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
787     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
788    
789     SetPos(reverseplaybackend);
790    
791     // read samples for backward playback
792     do {
793 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
794 schoenebeck 24 samplestoreadinloop -= readsamples;
795     samplestoread -= readsamples;
796     totalreadsamples += readsamples;
797     } while (samplestoreadinloop && readsamples);
798    
799     SetPos(reverseplaybackend); // pretend we really read backwards
800    
801     if (reverseplaybackend == this->LoopStart) {
802     pPlaybackState->loop_cycles_left--;
803     pPlaybackState->reverse = false;
804     }
805    
806     // reverse the sample frames for backward playback
807     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
808     }
809     } while (samplestoread && readsamples);
810     break;
811     }
812    
813     case loop_type_backward: { // TODO: not tested yet!
814     // forward playback (not entered the loop yet)
815     if (!pPlaybackState->reverse) do {
816     samplestoloopend = this->LoopEnd - GetPos();
817 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
818 schoenebeck 24 samplestoread -= readsamples;
819     totalreadsamples += readsamples;
820     if (readsamples == samplestoloopend) {
821     pPlaybackState->reverse = true;
822     break;
823     }
824     } while (samplestoread && readsamples);
825    
826     if (!samplestoread) break;
827    
828     // as we can only read forward from disk, we have to
829     // determine the end position within the loop first,
830     // read forward from that 'end' and finally after
831     // reading, swap all sample frames so it reflects
832     // backward playback
833    
834     unsigned long swapareastart = totalreadsamples;
835     unsigned long loopoffset = GetPos() - this->LoopStart;
836     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
837     : samplestoread;
838     unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
839    
840     SetPos(reverseplaybackend);
841    
842     // read samples for backward playback
843     do {
844     // if not endless loop check if max. number of loop cycles have been passed
845     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
846     samplestoloopend = this->LoopEnd - GetPos();
847 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
848 schoenebeck 24 samplestoreadinloop -= readsamples;
849     samplestoread -= readsamples;
850     totalreadsamples += readsamples;
851     if (readsamples == samplestoloopend) {
852     pPlaybackState->loop_cycles_left--;
853     SetPos(this->LoopStart);
854     }
855     } while (samplestoreadinloop && readsamples);
856    
857     SetPos(reverseplaybackend); // pretend we really read backwards
858    
859     // reverse the sample frames for backward playback
860     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
861     break;
862     }
863    
864     default: case loop_type_normal: {
865     do {
866     // if not endless loop check if max. number of loop cycles have been passed
867     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
868     samplestoloopend = this->LoopEnd - GetPos();
869 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
870 schoenebeck 24 samplestoread -= readsamples;
871     totalreadsamples += readsamples;
872     if (readsamples == samplestoloopend) {
873     pPlaybackState->loop_cycles_left--;
874     SetPos(this->LoopStart);
875     }
876     } while (samplestoread && readsamples);
877     break;
878     }
879     }
880     }
881    
882     // read on without looping
883     if (samplestoread) do {
884 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
885 schoenebeck 24 samplestoread -= readsamples;
886     totalreadsamples += readsamples;
887     } while (readsamples && samplestoread);
888    
889     // store current position
890     pPlaybackState->position = GetPos();
891    
892     return totalreadsamples;
893     }
894    
895     /**
896 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
897     * position into the buffer pointed by \a pBuffer and increments the
898     * position within the sample. The sample wave stream will be
899     * decompressed on the fly if using a compressed sample. Use this method
900     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
901     * thus for disk streaming.
902     *
903 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
904     * have to use an external decompression buffer for <b>EACH</b>
905     * streaming thread to avoid race conditions and crashes!
906     *
907 schoenebeck 2 * @param pBuffer destination buffer
908     * @param SampleCount number of sample points to read
909 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
910 schoenebeck 2 * @returns number of successfully read sample points
911 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
912 schoenebeck 2 */
913 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
914 schoenebeck 21 if (SampleCount == 0) return 0;
915 schoenebeck 317 if (!Compressed) {
916     if (BitDepth == 24) {
917     // 24 bit sample. For now just truncate to 16 bit.
918 schoenebeck 384 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
919 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
920     if (Channels == 2) { // Stereo
921     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
922 schoenebeck 317 pSrc++;
923 persson 365 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
924     *pDst++ = get16(pSrc);
925     pSrc += 3;
926     }
927     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
928 schoenebeck 317 }
929 persson 365 else { // Mono
930     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
931     pSrc++;
932     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
933     *pDst++ = get16(pSrc);
934     pSrc += 3;
935     }
936     return pDst - static_cast<int16_t*>(pBuffer);
937     }
938 schoenebeck 317 }
939 persson 365 else { // 16 bit
940     // (pCkData->Read does endian correction)
941     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
942     : pCkData->Read(pBuffer, SampleCount, 2);
943     }
944 schoenebeck 317 }
945 persson 365 else {
946 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
947 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
948     unsigned long assumedsize = GuessSize(SampleCount),
949 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
950     remainingsamples = SampleCount,
951 persson 365 copysamples, skipsamples,
952     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
953 schoenebeck 2 this->FrameOffset = 0;
954    
955 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
956    
957     // if decompression buffer too small, then reduce amount of samples to read
958     if (pDecompressionBuffer->Size < assumedsize) {
959     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
960     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
961     remainingsamples = SampleCount;
962     assumedsize = GuessSize(SampleCount);
963 schoenebeck 2 }
964    
965 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
966 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
967 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
968    
969 persson 365 while (remainingsamples && remainingbytes) {
970     unsigned long framesamples = SamplesPerFrame;
971     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
972 schoenebeck 2
973 persson 365 int mode_l = *pSrc++, mode_r = 0;
974    
975     if (Channels == 2) {
976     mode_r = *pSrc++;
977     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
978     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
979     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
980     if (remainingbytes < framebytes) { // last frame in sample
981     framesamples = SamplesInLastFrame;
982     if (mode_l == 4 && (framesamples & 1)) {
983     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
984     }
985     else {
986     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
987     }
988 schoenebeck 2 }
989     }
990 persson 365 else {
991     framebytes = bytesPerFrame[mode_l] + 1;
992     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
993     if (remainingbytes < framebytes) {
994     framesamples = SamplesInLastFrame;
995     }
996     }
997 schoenebeck 2
998     // determine how many samples in this frame to skip and read
999 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1000     if (currentframeoffset <= framesamples) {
1001     copysamples = framesamples - currentframeoffset;
1002     skipsamples = currentframeoffset;
1003     }
1004     else {
1005     copysamples = 0;
1006     skipsamples = framesamples;
1007     }
1008 schoenebeck 2 }
1009     else {
1010 persson 365 // This frame has enough data for pBuffer, but not
1011     // all of the frame is needed. Set file position
1012     // to start of this frame for next call to Read.
1013 schoenebeck 2 copysamples = remainingsamples;
1014 persson 365 skipsamples = currentframeoffset;
1015     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1016     this->FrameOffset = currentframeoffset + copysamples;
1017     }
1018     remainingsamples -= copysamples;
1019    
1020     if (remainingbytes > framebytes) {
1021     remainingbytes -= framebytes;
1022     if (remainingsamples == 0 &&
1023     currentframeoffset + copysamples == framesamples) {
1024     // This frame has enough data for pBuffer, and
1025     // all of the frame is needed. Set file
1026     // position to start of next frame for next
1027     // call to Read. FrameOffset is 0.
1028 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1029     }
1030     }
1031 persson 365 else remainingbytes = 0;
1032 schoenebeck 2
1033 persson 365 currentframeoffset -= skipsamples;
1034 schoenebeck 2
1035 persson 365 if (copysamples == 0) {
1036     // skip this frame
1037     pSrc += framebytes - Channels;
1038     }
1039     else {
1040     const unsigned char* const param_l = pSrc;
1041     if (BitDepth == 24) {
1042     if (mode_l != 2) pSrc += 12;
1043 schoenebeck 2
1044 persson 365 if (Channels == 2) { // Stereo
1045     const unsigned char* const param_r = pSrc;
1046     if (mode_r != 2) pSrc += 12;
1047    
1048 persson 437 Decompress24(mode_l, param_l, 2, pSrc, pDst,
1049     skipsamples, copysamples, TruncatedBits);
1050 persson 372 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
1051 persson 437 skipsamples, copysamples, TruncatedBits);
1052 persson 365 pDst += copysamples << 1;
1053 schoenebeck 2 }
1054 persson 365 else { // Mono
1055 persson 437 Decompress24(mode_l, param_l, 1, pSrc, pDst,
1056     skipsamples, copysamples, TruncatedBits);
1057 persson 365 pDst += copysamples;
1058 schoenebeck 2 }
1059 persson 365 }
1060     else { // 16 bit
1061     if (mode_l) pSrc += 4;
1062 schoenebeck 2
1063 persson 365 int step;
1064     if (Channels == 2) { // Stereo
1065     const unsigned char* const param_r = pSrc;
1066     if (mode_r) pSrc += 4;
1067    
1068     step = (2 - mode_l) + (2 - mode_r);
1069 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1070     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1071 persson 365 skipsamples, copysamples);
1072     pDst += copysamples << 1;
1073 schoenebeck 2 }
1074 persson 365 else { // Mono
1075     step = 2 - mode_l;
1076 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1077 persson 365 pDst += copysamples;
1078 schoenebeck 2 }
1079 persson 365 }
1080     pSrc += nextFrameOffset;
1081     }
1082 schoenebeck 2
1083 persson 365 // reload from disk to local buffer if needed
1084     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1085     assumedsize = GuessSize(remainingsamples);
1086     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1087     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1088 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1089     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1090 schoenebeck 2 }
1091 persson 365 } // while
1092    
1093 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1094 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1095 schoenebeck 2 return (SampleCount - remainingsamples);
1096     }
1097     }
1098    
1099 schoenebeck 809 /** @brief Write sample wave data.
1100     *
1101     * Writes \a SampleCount number of sample points from the buffer pointed
1102     * by \a pBuffer and increments the position within the sample. Use this
1103     * method to directly write the sample data to disk, i.e. if you don't
1104     * want or cannot load the whole sample data into RAM.
1105     *
1106     * You have to Resize() the sample to the desired size and call
1107     * File::Save() <b>before</b> using Write().
1108     *
1109     * Note: there is currently no support for writing compressed samples.
1110     *
1111     * @param pBuffer - source buffer
1112     * @param SampleCount - number of sample points to write
1113     * @throws DLS::Exception if current sample size is too small
1114     * @throws gig::Exception if sample is compressed
1115     * @see DLS::LoadSampleData()
1116     */
1117     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1118     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1119     return DLS::Sample::Write(pBuffer, SampleCount);
1120     }
1121    
1122 schoenebeck 384 /**
1123     * Allocates a decompression buffer for streaming (compressed) samples
1124     * with Sample::Read(). If you are using more than one streaming thread
1125     * in your application you <b>HAVE</b> to create a decompression buffer
1126     * for <b>EACH</b> of your streaming threads and provide it with the
1127     * Sample::Read() call in order to avoid race conditions and crashes.
1128     *
1129     * You should free the memory occupied by the allocated buffer(s) once
1130     * you don't need one of your streaming threads anymore by calling
1131     * DestroyDecompressionBuffer().
1132     *
1133     * @param MaxReadSize - the maximum size (in sample points) you ever
1134     * expect to read with one Read() call
1135     * @returns allocated decompression buffer
1136     * @see DestroyDecompressionBuffer()
1137     */
1138     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1139     buffer_t result;
1140     const double worstCaseHeaderOverhead =
1141     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1142     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1143     result.pStart = new int8_t[result.Size];
1144     result.NullExtensionSize = 0;
1145     return result;
1146     }
1147    
1148     /**
1149     * Free decompression buffer, previously created with
1150     * CreateDecompressionBuffer().
1151     *
1152     * @param DecompressionBuffer - previously allocated decompression
1153     * buffer to free
1154     */
1155     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1156     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1157     delete[] (int8_t*) DecompressionBuffer.pStart;
1158     DecompressionBuffer.pStart = NULL;
1159     DecompressionBuffer.Size = 0;
1160     DecompressionBuffer.NullExtensionSize = 0;
1161     }
1162     }
1163    
1164 schoenebeck 2 Sample::~Sample() {
1165     Instances--;
1166 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1167     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1168     InternalDecompressionBuffer.pStart = NULL;
1169     InternalDecompressionBuffer.Size = 0;
1170 schoenebeck 355 }
1171 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1172     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1173     }
1174    
1175    
1176    
1177     // *************** DimensionRegion ***************
1178     // *
1179    
1180 schoenebeck 16 uint DimensionRegion::Instances = 0;
1181     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1182    
1183 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1184 schoenebeck 16 Instances++;
1185    
1186 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1187 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1188 schoenebeck 2
1189     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1190 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1191     _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1192     LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1193     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1194     _3ewa->ReadInt16(); // unknown
1195     LFO1InternalDepth = _3ewa->ReadUint16();
1196     _3ewa->ReadInt16(); // unknown
1197     LFO3InternalDepth = _3ewa->ReadInt16();
1198     _3ewa->ReadInt16(); // unknown
1199     LFO1ControlDepth = _3ewa->ReadUint16();
1200     _3ewa->ReadInt16(); // unknown
1201     LFO3ControlDepth = _3ewa->ReadInt16();
1202     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1203     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204     _3ewa->ReadInt16(); // unknown
1205     EG1Sustain = _3ewa->ReadUint16();
1206     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1208     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1209     EG1ControllerInvert = eg1ctrloptions & 0x01;
1210     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1211     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1212     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1213     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1214     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1215     EG2ControllerInvert = eg2ctrloptions & 0x01;
1216     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1217     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1218     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1219     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1220     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1221     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222     _3ewa->ReadInt16(); // unknown
1223     EG2Sustain = _3ewa->ReadUint16();
1224     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1225     _3ewa->ReadInt16(); // unknown
1226     LFO2ControlDepth = _3ewa->ReadUint16();
1227     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1228     _3ewa->ReadInt16(); // unknown
1229     LFO2InternalDepth = _3ewa->ReadUint16();
1230     int32_t eg1decay2 = _3ewa->ReadInt32();
1231     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1232     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1233     _3ewa->ReadInt16(); // unknown
1234     EG1PreAttack = _3ewa->ReadUint16();
1235     int32_t eg2decay2 = _3ewa->ReadInt32();
1236     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1237     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1238     _3ewa->ReadInt16(); // unknown
1239     EG2PreAttack = _3ewa->ReadUint16();
1240     uint8_t velocityresponse = _3ewa->ReadUint8();
1241     if (velocityresponse < 5) {
1242     VelocityResponseCurve = curve_type_nonlinear;
1243     VelocityResponseDepth = velocityresponse;
1244     } else if (velocityresponse < 10) {
1245     VelocityResponseCurve = curve_type_linear;
1246     VelocityResponseDepth = velocityresponse - 5;
1247     } else if (velocityresponse < 15) {
1248     VelocityResponseCurve = curve_type_special;
1249     VelocityResponseDepth = velocityresponse - 10;
1250     } else {
1251     VelocityResponseCurve = curve_type_unknown;
1252     VelocityResponseDepth = 0;
1253     }
1254     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1255     if (releasevelocityresponse < 5) {
1256     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1257     ReleaseVelocityResponseDepth = releasevelocityresponse;
1258     } else if (releasevelocityresponse < 10) {
1259     ReleaseVelocityResponseCurve = curve_type_linear;
1260     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1261     } else if (releasevelocityresponse < 15) {
1262     ReleaseVelocityResponseCurve = curve_type_special;
1263     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1264     } else {
1265     ReleaseVelocityResponseCurve = curve_type_unknown;
1266     ReleaseVelocityResponseDepth = 0;
1267     }
1268     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1269     AttenuationControllerThreshold = _3ewa->ReadInt8();
1270     _3ewa->ReadInt32(); // unknown
1271     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1272     _3ewa->ReadInt16(); // unknown
1273     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1274     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1275     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1276     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1277     else DimensionBypass = dim_bypass_ctrl_none;
1278     uint8_t pan = _3ewa->ReadUint8();
1279     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1280     SelfMask = _3ewa->ReadInt8() & 0x01;
1281     _3ewa->ReadInt8(); // unknown
1282     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1283     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1284     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1285     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1286     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1287     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1288     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1289     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1290     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1291     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1292     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1293     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1294     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1295     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1296     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1297     : vcf_res_ctrl_none;
1298     uint16_t eg3depth = _3ewa->ReadUint16();
1299     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1300     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1301     _3ewa->ReadInt16(); // unknown
1302     ChannelOffset = _3ewa->ReadUint8() / 4;
1303     uint8_t regoptions = _3ewa->ReadUint8();
1304     MSDecode = regoptions & 0x01; // bit 0
1305     SustainDefeat = regoptions & 0x02; // bit 1
1306     _3ewa->ReadInt16(); // unknown
1307     VelocityUpperLimit = _3ewa->ReadInt8();
1308     _3ewa->ReadInt8(); // unknown
1309     _3ewa->ReadInt16(); // unknown
1310     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1311     _3ewa->ReadInt8(); // unknown
1312     _3ewa->ReadInt8(); // unknown
1313     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1314     uint8_t vcfcutoff = _3ewa->ReadUint8();
1315     VCFEnabled = vcfcutoff & 0x80; // bit 7
1316     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1317     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1318     uint8_t vcfvelscale = _3ewa->ReadUint8();
1319     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1320     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1321     _3ewa->ReadInt8(); // unknown
1322     uint8_t vcfresonance = _3ewa->ReadUint8();
1323     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1324     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1325     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1326     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1327     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1328     uint8_t vcfvelocity = _3ewa->ReadUint8();
1329     VCFVelocityDynamicRange = vcfvelocity % 5;
1330     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1331     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1332     if (VCFType == vcf_type_lowpass) {
1333     if (lfo3ctrl & 0x40) // bit 6
1334     VCFType = vcf_type_lowpassturbo;
1335     }
1336     } else { // '3ewa' chunk does not exist yet
1337     // use default values
1338     LFO3Frequency = 1.0;
1339     EG3Attack = 0.0;
1340     LFO1InternalDepth = 0;
1341     LFO3InternalDepth = 0;
1342     LFO1ControlDepth = 0;
1343     LFO3ControlDepth = 0;
1344     EG1Attack = 0.0;
1345     EG1Decay1 = 0.0;
1346     EG1Sustain = 0;
1347     EG1Release = 0.0;
1348     EG1Controller.type = eg1_ctrl_t::type_none;
1349     EG1Controller.controller_number = 0;
1350     EG1ControllerInvert = false;
1351     EG1ControllerAttackInfluence = 0;
1352     EG1ControllerDecayInfluence = 0;
1353     EG1ControllerReleaseInfluence = 0;
1354     EG2Controller.type = eg2_ctrl_t::type_none;
1355     EG2Controller.controller_number = 0;
1356     EG2ControllerInvert = false;
1357     EG2ControllerAttackInfluence = 0;
1358     EG2ControllerDecayInfluence = 0;
1359     EG2ControllerReleaseInfluence = 0;
1360     LFO1Frequency = 1.0;
1361     EG2Attack = 0.0;
1362     EG2Decay1 = 0.0;
1363     EG2Sustain = 0;
1364     EG2Release = 0.0;
1365     LFO2ControlDepth = 0;
1366     LFO2Frequency = 1.0;
1367     LFO2InternalDepth = 0;
1368     EG1Decay2 = 0.0;
1369     EG1InfiniteSustain = false;
1370     EG1PreAttack = 1000;
1371     EG2Decay2 = 0.0;
1372     EG2InfiniteSustain = false;
1373     EG2PreAttack = 1000;
1374     VelocityResponseCurve = curve_type_nonlinear;
1375     VelocityResponseDepth = 3;
1376     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1377     ReleaseVelocityResponseDepth = 3;
1378     VelocityResponseCurveScaling = 32;
1379     AttenuationControllerThreshold = 0;
1380     SampleStartOffset = 0;
1381     PitchTrack = true;
1382     DimensionBypass = dim_bypass_ctrl_none;
1383     Pan = 0;
1384     SelfMask = true;
1385     LFO3Controller = lfo3_ctrl_modwheel;
1386     LFO3Sync = false;
1387     InvertAttenuationController = false;
1388     AttenuationController.type = attenuation_ctrl_t::type_none;
1389     AttenuationController.controller_number = 0;
1390     LFO2Controller = lfo2_ctrl_internal;
1391     LFO2FlipPhase = false;
1392     LFO2Sync = false;
1393     LFO1Controller = lfo1_ctrl_internal;
1394     LFO1FlipPhase = false;
1395     LFO1Sync = false;
1396     VCFResonanceController = vcf_res_ctrl_none;
1397     EG3Depth = 0;
1398     ChannelOffset = 0;
1399     MSDecode = false;
1400     SustainDefeat = false;
1401     VelocityUpperLimit = 0;
1402     ReleaseTriggerDecay = 0;
1403     EG1Hold = false;
1404     VCFEnabled = false;
1405     VCFCutoff = 0;
1406     VCFCutoffController = vcf_cutoff_ctrl_none;
1407     VCFCutoffControllerInvert = false;
1408     VCFVelocityScale = 0;
1409     VCFResonance = 0;
1410     VCFResonanceDynamic = false;
1411     VCFKeyboardTracking = false;
1412     VCFKeyboardTrackingBreakpoint = 0;
1413     VCFVelocityDynamicRange = 0x04;
1414     VCFVelocityCurve = curve_type_linear;
1415     VCFType = vcf_type_lowpass;
1416 schoenebeck 2 }
1417 schoenebeck 16
1418 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1419     VelocityResponseDepth,
1420     VelocityResponseCurveScaling);
1421    
1422     curve_type_t curveType = ReleaseVelocityResponseCurve;
1423     uint8_t depth = ReleaseVelocityResponseDepth;
1424    
1425     // this models a strange behaviour or bug in GSt: two of the
1426     // velocity response curves for release time are not used even
1427     // if specified, instead another curve is chosen.
1428     if ((curveType == curve_type_nonlinear && depth == 0) ||
1429     (curveType == curve_type_special && depth == 4)) {
1430     curveType = curve_type_nonlinear;
1431     depth = 3;
1432     }
1433     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1434    
1435 persson 728 curveType = VCFVelocityCurve;
1436     depth = VCFVelocityDynamicRange;
1437    
1438     // even stranger GSt: two of the velocity response curves for
1439     // filter cutoff are not used, instead another special curve
1440     // is chosen. This curve is not used anywhere else.
1441     if ((curveType == curve_type_nonlinear && depth == 0) ||
1442     (curveType == curve_type_special && depth == 4)) {
1443     curveType = curve_type_special;
1444     depth = 5;
1445     }
1446     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1447 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1448 persson 728
1449 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1450     }
1451    
1452 schoenebeck 809 /**
1453     * Apply dimension region settings to the respective RIFF chunks. You
1454     * have to call File::Save() to make changes persistent.
1455     *
1456     * Usually there is absolutely no need to call this method explicitly.
1457     * It will be called automatically when File::Save() was called.
1458     */
1459     void DimensionRegion::UpdateChunks() {
1460     // first update base class's chunk
1461     DLS::Sampler::UpdateChunks();
1462    
1463     // make sure '3ewa' chunk exists
1464     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1465     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1466     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1467    
1468     // update '3ewa' chunk with DimensionRegion's current settings
1469    
1470     const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1471     memcpy(&pData[0], &unknown, 4);
1472    
1473     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1474     memcpy(&pData[4], &lfo3freq, 4);
1475    
1476     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1477     memcpy(&pData[4], &eg3attack, 4);
1478    
1479     // next 2 bytes unknown
1480    
1481     memcpy(&pData[10], &LFO1InternalDepth, 2);
1482    
1483     // next 2 bytes unknown
1484    
1485     memcpy(&pData[14], &LFO3InternalDepth, 2);
1486    
1487     // next 2 bytes unknown
1488    
1489     memcpy(&pData[18], &LFO1ControlDepth, 2);
1490    
1491     // next 2 bytes unknown
1492    
1493     memcpy(&pData[22], &LFO3ControlDepth, 2);
1494    
1495     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1496     memcpy(&pData[24], &eg1attack, 4);
1497    
1498     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1499     memcpy(&pData[28], &eg1decay1, 4);
1500    
1501     // next 2 bytes unknown
1502    
1503     memcpy(&pData[34], &EG1Sustain, 2);
1504    
1505     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1506     memcpy(&pData[36], &eg1release, 4);
1507    
1508     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1509     memcpy(&pData[40], &eg1ctl, 1);
1510    
1511     const uint8_t eg1ctrloptions =
1512     (EG1ControllerInvert) ? 0x01 : 0x00 |
1513     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1514     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1515     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1516     memcpy(&pData[41], &eg1ctrloptions, 1);
1517    
1518     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1519     memcpy(&pData[42], &eg2ctl, 1);
1520    
1521     const uint8_t eg2ctrloptions =
1522     (EG2ControllerInvert) ? 0x01 : 0x00 |
1523     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1524     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1525     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1526     memcpy(&pData[43], &eg2ctrloptions, 1);
1527    
1528     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1529     memcpy(&pData[44], &lfo1freq, 4);
1530    
1531     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1532     memcpy(&pData[48], &eg2attack, 4);
1533    
1534     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1535     memcpy(&pData[52], &eg2decay1, 4);
1536    
1537     // next 2 bytes unknown
1538    
1539     memcpy(&pData[58], &EG2Sustain, 2);
1540    
1541     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1542     memcpy(&pData[60], &eg2release, 4);
1543    
1544     // next 2 bytes unknown
1545    
1546     memcpy(&pData[66], &LFO2ControlDepth, 2);
1547    
1548     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1549     memcpy(&pData[68], &lfo2freq, 4);
1550    
1551     // next 2 bytes unknown
1552    
1553     memcpy(&pData[72], &LFO2InternalDepth, 2);
1554    
1555     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1556     memcpy(&pData[74], &eg1decay2, 4);
1557    
1558     // next 2 bytes unknown
1559    
1560     memcpy(&pData[80], &EG1PreAttack, 2);
1561    
1562     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1563     memcpy(&pData[82], &eg2decay2, 4);
1564    
1565     // next 2 bytes unknown
1566    
1567     memcpy(&pData[88], &EG2PreAttack, 2);
1568    
1569     {
1570     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1571     uint8_t velocityresponse = VelocityResponseDepth;
1572     switch (VelocityResponseCurve) {
1573     case curve_type_nonlinear:
1574     break;
1575     case curve_type_linear:
1576     velocityresponse += 5;
1577     break;
1578     case curve_type_special:
1579     velocityresponse += 10;
1580     break;
1581     case curve_type_unknown:
1582     default:
1583     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1584     }
1585     memcpy(&pData[90], &velocityresponse, 1);
1586     }
1587    
1588     {
1589     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1590     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1591     switch (ReleaseVelocityResponseCurve) {
1592     case curve_type_nonlinear:
1593     break;
1594     case curve_type_linear:
1595     releasevelocityresponse += 5;
1596     break;
1597     case curve_type_special:
1598     releasevelocityresponse += 10;
1599     break;
1600     case curve_type_unknown:
1601     default:
1602     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1603     }
1604     memcpy(&pData[91], &releasevelocityresponse, 1);
1605     }
1606    
1607     memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1608    
1609     memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1610    
1611     // next 4 bytes unknown
1612    
1613     memcpy(&pData[98], &SampleStartOffset, 2);
1614    
1615     // next 2 bytes unknown
1616    
1617     {
1618     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1619     switch (DimensionBypass) {
1620     case dim_bypass_ctrl_94:
1621     pitchTrackDimensionBypass |= 0x10;
1622     break;
1623     case dim_bypass_ctrl_95:
1624     pitchTrackDimensionBypass |= 0x20;
1625     break;
1626     case dim_bypass_ctrl_none:
1627     //FIXME: should we set anything here?
1628     break;
1629     default:
1630     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1631     }
1632     memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1633     }
1634    
1635     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1636     memcpy(&pData[103], &pan, 1);
1637    
1638     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1639     memcpy(&pData[104], &selfmask, 1);
1640    
1641     // next byte unknown
1642    
1643     {
1644     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1645     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1646     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1647     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1648     memcpy(&pData[106], &lfo3ctrl, 1);
1649     }
1650    
1651     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1652     memcpy(&pData[107], &attenctl, 1);
1653    
1654     {
1655     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1656     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1657     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1658     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1659     memcpy(&pData[108], &lfo2ctrl, 1);
1660     }
1661    
1662     {
1663     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1664     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1665     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1666     if (VCFResonanceController != vcf_res_ctrl_none)
1667     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1668     memcpy(&pData[109], &lfo1ctrl, 1);
1669     }
1670    
1671     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1672     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1673     memcpy(&pData[110], &eg3depth, 1);
1674    
1675     // next 2 bytes unknown
1676    
1677     const uint8_t channeloffset = ChannelOffset * 4;
1678     memcpy(&pData[113], &channeloffset, 1);
1679    
1680     {
1681     uint8_t regoptions = 0;
1682     if (MSDecode) regoptions |= 0x01; // bit 0
1683     if (SustainDefeat) regoptions |= 0x02; // bit 1
1684     memcpy(&pData[114], &regoptions, 1);
1685     }
1686    
1687     // next 2 bytes unknown
1688    
1689     memcpy(&pData[117], &VelocityUpperLimit, 1);
1690    
1691     // next 3 bytes unknown
1692    
1693     memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1694    
1695     // next 2 bytes unknown
1696    
1697     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1698     memcpy(&pData[124], &eg1hold, 1);
1699    
1700     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1701     (VCFCutoff) ? 0x7f : 0x00; /* lower 7 bits */
1702     memcpy(&pData[125], &vcfcutoff, 1);
1703    
1704     memcpy(&pData[126], &VCFCutoffController, 1);
1705    
1706     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1707     (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1708     memcpy(&pData[127], &vcfvelscale, 1);
1709    
1710     // next byte unknown
1711    
1712     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1713     (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1714     memcpy(&pData[129], &vcfresonance, 1);
1715    
1716     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1717     (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1718     memcpy(&pData[130], &vcfbreakpoint, 1);
1719    
1720     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1721     VCFVelocityCurve * 5;
1722     memcpy(&pData[131], &vcfvelocity, 1);
1723    
1724     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1725     memcpy(&pData[132], &vcftype, 1);
1726     }
1727    
1728 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1729     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1730     {
1731     double* table;
1732     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1733 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1734 persson 613 table = (*pVelocityTables)[tableKey];
1735 schoenebeck 16 }
1736     else {
1737 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1738     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1739 schoenebeck 16 }
1740 persson 613 return table;
1741 schoenebeck 2 }
1742 schoenebeck 55
1743 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1744     leverage_ctrl_t decodedcontroller;
1745     switch (EncodedController) {
1746     // special controller
1747     case _lev_ctrl_none:
1748     decodedcontroller.type = leverage_ctrl_t::type_none;
1749     decodedcontroller.controller_number = 0;
1750     break;
1751     case _lev_ctrl_velocity:
1752     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1753     decodedcontroller.controller_number = 0;
1754     break;
1755     case _lev_ctrl_channelaftertouch:
1756     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1757     decodedcontroller.controller_number = 0;
1758     break;
1759 schoenebeck 55
1760 schoenebeck 36 // ordinary MIDI control change controller
1761     case _lev_ctrl_modwheel:
1762     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1763     decodedcontroller.controller_number = 1;
1764     break;
1765     case _lev_ctrl_breath:
1766     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1767     decodedcontroller.controller_number = 2;
1768     break;
1769     case _lev_ctrl_foot:
1770     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1771     decodedcontroller.controller_number = 4;
1772     break;
1773     case _lev_ctrl_effect1:
1774     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1775     decodedcontroller.controller_number = 12;
1776     break;
1777     case _lev_ctrl_effect2:
1778     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779     decodedcontroller.controller_number = 13;
1780     break;
1781     case _lev_ctrl_genpurpose1:
1782     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783     decodedcontroller.controller_number = 16;
1784     break;
1785     case _lev_ctrl_genpurpose2:
1786     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787     decodedcontroller.controller_number = 17;
1788     break;
1789     case _lev_ctrl_genpurpose3:
1790     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791     decodedcontroller.controller_number = 18;
1792     break;
1793     case _lev_ctrl_genpurpose4:
1794     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795     decodedcontroller.controller_number = 19;
1796     break;
1797     case _lev_ctrl_portamentotime:
1798     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799     decodedcontroller.controller_number = 5;
1800     break;
1801     case _lev_ctrl_sustainpedal:
1802     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803     decodedcontroller.controller_number = 64;
1804     break;
1805     case _lev_ctrl_portamento:
1806     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807     decodedcontroller.controller_number = 65;
1808     break;
1809     case _lev_ctrl_sostenutopedal:
1810     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811     decodedcontroller.controller_number = 66;
1812     break;
1813     case _lev_ctrl_softpedal:
1814     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815     decodedcontroller.controller_number = 67;
1816     break;
1817     case _lev_ctrl_genpurpose5:
1818     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819     decodedcontroller.controller_number = 80;
1820     break;
1821     case _lev_ctrl_genpurpose6:
1822     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823     decodedcontroller.controller_number = 81;
1824     break;
1825     case _lev_ctrl_genpurpose7:
1826     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827     decodedcontroller.controller_number = 82;
1828     break;
1829     case _lev_ctrl_genpurpose8:
1830     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831     decodedcontroller.controller_number = 83;
1832     break;
1833     case _lev_ctrl_effect1depth:
1834     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835     decodedcontroller.controller_number = 91;
1836     break;
1837     case _lev_ctrl_effect2depth:
1838     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839     decodedcontroller.controller_number = 92;
1840     break;
1841     case _lev_ctrl_effect3depth:
1842     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843     decodedcontroller.controller_number = 93;
1844     break;
1845     case _lev_ctrl_effect4depth:
1846     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847     decodedcontroller.controller_number = 94;
1848     break;
1849     case _lev_ctrl_effect5depth:
1850     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851     decodedcontroller.controller_number = 95;
1852     break;
1853 schoenebeck 55
1854 schoenebeck 36 // unknown controller type
1855     default:
1856     throw gig::Exception("Unknown leverage controller type.");
1857     }
1858     return decodedcontroller;
1859     }
1860 schoenebeck 2
1861 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1862     _lev_ctrl_t encodedcontroller;
1863     switch (DecodedController.type) {
1864     // special controller
1865     case leverage_ctrl_t::type_none:
1866     encodedcontroller = _lev_ctrl_none;
1867     break;
1868     case leverage_ctrl_t::type_velocity:
1869     encodedcontroller = _lev_ctrl_velocity;
1870     break;
1871     case leverage_ctrl_t::type_channelaftertouch:
1872     encodedcontroller = _lev_ctrl_channelaftertouch;
1873     break;
1874    
1875     // ordinary MIDI control change controller
1876     case leverage_ctrl_t::type_controlchange:
1877     switch (DecodedController.controller_number) {
1878     case 1:
1879     encodedcontroller = _lev_ctrl_modwheel;
1880     break;
1881     case 2:
1882     encodedcontroller = _lev_ctrl_breath;
1883     break;
1884     case 4:
1885     encodedcontroller = _lev_ctrl_foot;
1886     break;
1887     case 12:
1888     encodedcontroller = _lev_ctrl_effect1;
1889     break;
1890     case 13:
1891     encodedcontroller = _lev_ctrl_effect2;
1892     break;
1893     case 16:
1894     encodedcontroller = _lev_ctrl_genpurpose1;
1895     break;
1896     case 17:
1897     encodedcontroller = _lev_ctrl_genpurpose2;
1898     break;
1899     case 18:
1900     encodedcontroller = _lev_ctrl_genpurpose3;
1901     break;
1902     case 19:
1903     encodedcontroller = _lev_ctrl_genpurpose4;
1904     break;
1905     case 5:
1906     encodedcontroller = _lev_ctrl_portamentotime;
1907     break;
1908     case 64:
1909     encodedcontroller = _lev_ctrl_sustainpedal;
1910     break;
1911     case 65:
1912     encodedcontroller = _lev_ctrl_portamento;
1913     break;
1914     case 66:
1915     encodedcontroller = _lev_ctrl_sostenutopedal;
1916     break;
1917     case 67:
1918     encodedcontroller = _lev_ctrl_softpedal;
1919     break;
1920     case 80:
1921     encodedcontroller = _lev_ctrl_genpurpose5;
1922     break;
1923     case 81:
1924     encodedcontroller = _lev_ctrl_genpurpose6;
1925     break;
1926     case 82:
1927     encodedcontroller = _lev_ctrl_genpurpose7;
1928     break;
1929     case 83:
1930     encodedcontroller = _lev_ctrl_genpurpose8;
1931     break;
1932     case 91:
1933     encodedcontroller = _lev_ctrl_effect1depth;
1934     break;
1935     case 92:
1936     encodedcontroller = _lev_ctrl_effect2depth;
1937     break;
1938     case 93:
1939     encodedcontroller = _lev_ctrl_effect3depth;
1940     break;
1941     case 94:
1942     encodedcontroller = _lev_ctrl_effect4depth;
1943     break;
1944     case 95:
1945     encodedcontroller = _lev_ctrl_effect5depth;
1946     break;
1947     default:
1948     throw gig::Exception("leverage controller number is not supported by the gig format");
1949     }
1950     default:
1951     throw gig::Exception("Unknown leverage controller type.");
1952     }
1953     return encodedcontroller;
1954     }
1955    
1956 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1957     Instances--;
1958     if (!Instances) {
1959     // delete the velocity->volume tables
1960     VelocityTableMap::iterator iter;
1961     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1962     double* pTable = iter->second;
1963     if (pTable) delete[] pTable;
1964     }
1965     pVelocityTables->clear();
1966     delete pVelocityTables;
1967     pVelocityTables = NULL;
1968     }
1969     }
1970 schoenebeck 2
1971 schoenebeck 16 /**
1972     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1973     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1974     * and VelocityResponseCurveScaling) involved are taken into account to
1975     * calculate the amplitude factor. Use this method when a key was
1976     * triggered to get the volume with which the sample should be played
1977     * back.
1978     *
1979 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1980     * @returns amplitude factor (between 0.0 and 1.0)
1981 schoenebeck 16 */
1982     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1983     return pVelocityAttenuationTable[MIDIKeyVelocity];
1984     }
1985 schoenebeck 2
1986 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1987     return pVelocityReleaseTable[MIDIKeyVelocity];
1988     }
1989    
1990 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1991     return pVelocityCutoffTable[MIDIKeyVelocity];
1992     }
1993    
1994 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1995 schoenebeck 317
1996 schoenebeck 308 // line-segment approximations of the 15 velocity curves
1997 schoenebeck 16
1998 schoenebeck 308 // linear
1999     const int lin0[] = { 1, 1, 127, 127 };
2000     const int lin1[] = { 1, 21, 127, 127 };
2001     const int lin2[] = { 1, 45, 127, 127 };
2002     const int lin3[] = { 1, 74, 127, 127 };
2003     const int lin4[] = { 1, 127, 127, 127 };
2004 schoenebeck 16
2005 schoenebeck 308 // non-linear
2006     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2007 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2008 schoenebeck 308 127, 127 };
2009     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2010     127, 127 };
2011     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2012     127, 127 };
2013     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2014 schoenebeck 317
2015 schoenebeck 308 // special
2016 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2017 schoenebeck 308 113, 127, 127, 127 };
2018     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2019     118, 127, 127, 127 };
2020 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2021 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2022 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2023 schoenebeck 308 117, 127, 127, 127 };
2024 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2025 schoenebeck 308 127, 127 };
2026 schoenebeck 317
2027 persson 728 // this is only used by the VCF velocity curve
2028     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2029     91, 127, 127, 127 };
2030    
2031 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2032 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2033 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2034 schoenebeck 317
2035 schoenebeck 308 double* const table = new double[128];
2036    
2037     const int* curve = curves[curveType * 5 + depth];
2038     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2039 schoenebeck 317
2040 schoenebeck 308 table[0] = 0;
2041     for (int x = 1 ; x < 128 ; x++) {
2042    
2043     if (x > curve[2]) curve += 2;
2044 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2045 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2046     y = y / 127;
2047    
2048     // Scale up for s > 20, down for s < 20. When
2049     // down-scaling, the curve still ends at 1.0.
2050     if (s < 20 && y >= 0.5)
2051     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2052     else
2053     y = y * (s / 20.0);
2054     if (y > 1) y = 1;
2055    
2056     table[x] = y;
2057     }
2058     return table;
2059     }
2060    
2061    
2062 schoenebeck 2 // *************** Region ***************
2063     // *
2064    
2065     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2066     // Initialization
2067     Dimensions = 0;
2068 schoenebeck 347 for (int i = 0; i < 256; i++) {
2069 schoenebeck 2 pDimensionRegions[i] = NULL;
2070     }
2071 schoenebeck 282 Layers = 1;
2072 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2073     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2074 schoenebeck 2
2075     // Actual Loading
2076    
2077     LoadDimensionRegions(rgnList);
2078    
2079     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2080     if (_3lnk) {
2081     DimensionRegions = _3lnk->ReadUint32();
2082 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2083 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2084     uint8_t bits = _3lnk->ReadUint8();
2085 persson 774 _3lnk->ReadUint8(); // probably the position of the dimension
2086     _3lnk->ReadUint8(); // unknown
2087     uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2088 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2089     pDimensionDefinitions[i].dimension = dimension_none;
2090     pDimensionDefinitions[i].bits = 0;
2091     pDimensionDefinitions[i].zones = 0;
2092     pDimensionDefinitions[i].split_type = split_type_bit;
2093     pDimensionDefinitions[i].ranges = NULL;
2094     pDimensionDefinitions[i].zone_size = 0;
2095     }
2096     else { // active dimension
2097     pDimensionDefinitions[i].dimension = dimension;
2098     pDimensionDefinitions[i].bits = bits;
2099 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2100 schoenebeck 2 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2101 schoenebeck 241 dimension == dimension_samplechannel ||
2102 persson 437 dimension == dimension_releasetrigger ||
2103     dimension == dimension_roundrobin ||
2104     dimension == dimension_random) ? split_type_bit
2105     : split_type_normal;
2106 schoenebeck 2 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
2107     pDimensionDefinitions[i].zone_size =
2108 persson 774 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2109 schoenebeck 2 : 0;
2110     Dimensions++;
2111 schoenebeck 282
2112     // if this is a layer dimension, remember the amount of layers
2113     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2114 schoenebeck 2 }
2115 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2116 schoenebeck 2 }
2117    
2118     // check velocity dimension (if there is one) for custom defined zone ranges
2119     for (uint i = 0; i < Dimensions; i++) {
2120     dimension_def_t* pDimDef = pDimensionDefinitions + i;
2121     if (pDimDef->dimension == dimension_velocity) {
2122     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
2123     // no custom defined ranges
2124     pDimDef->split_type = split_type_normal;
2125     pDimDef->ranges = NULL;
2126     }
2127     else { // custom defined ranges
2128     pDimDef->split_type = split_type_customvelocity;
2129     pDimDef->ranges = new range_t[pDimDef->zones];
2130 schoenebeck 809 UpdateVelocityTable(pDimDef);
2131 schoenebeck 2 }
2132     }
2133     }
2134    
2135 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2136     File* file = (File*) GetParent()->GetParent();
2137     if (file->pVersion && file->pVersion->major == 3)
2138     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2139     else
2140     _3lnk->SetPos(44);
2141    
2142 schoenebeck 2 // load sample references
2143     for (uint i = 0; i < DimensionRegions; i++) {
2144     uint32_t wavepoolindex = _3lnk->ReadUint32();
2145     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2146     }
2147     }
2148     }
2149    
2150 schoenebeck 809 /**
2151     * Apply Region settings and all its DimensionRegions to the respective
2152     * RIFF chunks. You have to call File::Save() to make changes persistent.
2153     *
2154     * Usually there is absolutely no need to call this method explicitly.
2155     * It will be called automatically when File::Save() was called.
2156     *
2157     * @throws gig::Exception if samples cannot be dereferenced
2158     */
2159     void Region::UpdateChunks() {
2160     // first update base class's chunks
2161     DLS::Region::UpdateChunks();
2162    
2163     // update dimension region's chunks
2164     for (int i = 0; i < Dimensions; i++)
2165     pDimensionRegions[i]->UpdateChunks();
2166    
2167     File* pFile = (File*) GetParent()->GetParent();
2168     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2169     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2170    
2171     // make sure '3lnk' chunk exists
2172     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2173     if (!_3lnk) {
2174     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2175     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2176     }
2177    
2178     // update dimension definitions in '3lnk' chunk
2179     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2180     for (int i = 0; i < iMaxDimensions; i++) {
2181     pData[i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2182     pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2183     // next 2 bytes unknown
2184     pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2185     // next 3 bytes unknown
2186     }
2187    
2188     // update wave pool table in '3lnk' chunk
2189     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2190     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2191     int iWaveIndex = -1;
2192     if (i < DimensionRegions) {
2193     if (!pFile->pSamples) throw gig::Exception("Could not update gig::Region, there are no samples");
2194     std::list<Sample*>::iterator iter = pFile->pSamples->begin();
2195     std::list<Sample*>::iterator end = pFile->pSamples->end();
2196     for (int index = 0; iter != end; ++iter, ++index) {
2197     if (*iter == pDimensionRegions[i]->pSample) iWaveIndex = index;
2198     break;
2199     }
2200     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2201     }
2202     memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2203     }
2204     }
2205    
2206 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2207     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2208     if (_3prg) {
2209     int dimensionRegionNr = 0;
2210     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2211     while (_3ewl) {
2212     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2213     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2214     dimensionRegionNr++;
2215     }
2216     _3ewl = _3prg->GetNextSubList();
2217     }
2218     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2219     }
2220     }
2221    
2222 schoenebeck 809 void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {
2223     // get dimension's index
2224     int iDimensionNr = -1;
2225     for (int i = 0; i < Dimensions; i++) {
2226     if (&pDimensionDefinitions[i] == pDimDef) {
2227     iDimensionNr = i;
2228     break;
2229     }
2230     }
2231     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2232    
2233     uint8_t bits[8] = { 0 };
2234     int previousUpperLimit = -1;
2235     for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
2236     bits[iDimensionNr] = velocityZone;
2237     DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
2238    
2239     pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
2240     pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
2241     previousUpperLimit = pDimDef->ranges[velocityZone].high;
2242     // fill velocity table
2243     for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
2244     VelocityTable[i] = velocityZone;
2245     }
2246     }
2247     }
2248    
2249     /** @brief Einstein would have dreamed of it - create a new dimension.
2250     *
2251     * Creates a new dimension with the dimension definition given by
2252     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2253     * There is a hard limit of dimensions and total amount of "bits" all
2254     * dimensions can have. This limit is dependant to what gig file format
2255     * version this file refers to. The gig v2 (and lower) format has a
2256     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2257     * format has a limit of 8.
2258     *
2259     * @param pDimDef - defintion of the new dimension
2260     * @throws gig::Exception if dimension of the same type exists already
2261     * @throws gig::Exception if amount of dimensions or total amount of
2262     * dimension bits limit is violated
2263     */
2264     void Region::AddDimension(dimension_def_t* pDimDef) {
2265     // check if max. amount of dimensions reached
2266     File* file = (File*) GetParent()->GetParent();
2267     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2268     if (Dimensions >= iMaxDimensions)
2269     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2270     // check if max. amount of dimension bits reached
2271     int iCurrentBits = 0;
2272     for (int i = 0; i < Dimensions; i++)
2273     iCurrentBits += pDimensionDefinitions[i].bits;
2274     if (iCurrentBits >= iMaxDimensions)
2275     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2276     const int iNewBits = iCurrentBits + pDimDef->bits;
2277     if (iNewBits > iMaxDimensions)
2278     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2279     // check if there's already a dimensions of the same type
2280     for (int i = 0; i < Dimensions; i++)
2281     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2282     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2283    
2284     // assign definition of new dimension
2285     pDimensionDefinitions[Dimensions] = *pDimDef;
2286    
2287     // create new dimension region(s) for this new dimension
2288     for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2289     //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2290     RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2291     pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2292     DimensionRegions++;
2293     }
2294    
2295     Dimensions++;
2296    
2297     // if this is a layer dimension, update 'Layers' attribute
2298     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2299    
2300     // if this is velocity dimension and got custom defined ranges, update velocity table
2301     if (pDimDef->dimension == dimension_velocity &&
2302     pDimDef->split_type == split_type_customvelocity) {
2303     UpdateVelocityTable(pDimDef);
2304     }
2305     }
2306    
2307     /** @brief Delete an existing dimension.
2308     *
2309     * Deletes the dimension given by \a pDimDef and deletes all respective
2310     * dimension regions, that is all dimension regions where the dimension's
2311     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2312     * for example this would delete all dimension regions for the case(s)
2313     * where the sustain pedal is pressed down.
2314     *
2315     * @param pDimDef - dimension to delete
2316     * @throws gig::Exception if given dimension cannot be found
2317     */
2318     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2319     // get dimension's index
2320     int iDimensionNr = -1;
2321     for (int i = 0; i < Dimensions; i++) {
2322     if (&pDimensionDefinitions[i] == pDimDef) {
2323     iDimensionNr = i;
2324     break;
2325     }
2326     }
2327     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2328    
2329     // get amount of bits below the dimension to delete
2330     int iLowerBits = 0;
2331     for (int i = 0; i < iDimensionNr; i++)
2332     iLowerBits += pDimensionDefinitions[i].bits;
2333    
2334     // get amount ot bits above the dimension to delete
2335     int iUpperBits = 0;
2336     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2337     iUpperBits += pDimensionDefinitions[i].bits;
2338    
2339     // delete dimension regions which belong to the given dimension
2340     // (that is where the dimension's bit > 0)
2341     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2342     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2343     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2344     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2345     iObsoleteBit << iLowerBits |
2346     iLowerBit;
2347     delete pDimensionRegions[iToDelete];
2348     pDimensionRegions[iToDelete] = NULL;
2349     DimensionRegions--;
2350     }
2351     }
2352     }
2353    
2354     // defrag pDimensionRegions array
2355     // (that is remove the NULL spaces within the pDimensionRegions array)
2356     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2357     if (!pDimensionRegions[iTo]) {
2358     if (iFrom <= iTo) iFrom = iTo + 1;
2359     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2360     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2361     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2362     pDimensionRegions[iFrom] = NULL;
2363     }
2364     }
2365     }
2366    
2367     // 'remove' dimension definition
2368     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2369     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2370     }
2371     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2372     pDimensionDefinitions[Dimensions - 1].bits = 0;
2373     pDimensionDefinitions[Dimensions - 1].zones = 0;
2374     if (pDimensionDefinitions[Dimensions - 1].ranges) {
2375     delete[] pDimensionDefinitions[Dimensions - 1].ranges;
2376     pDimensionDefinitions[Dimensions - 1].ranges = NULL;
2377     }
2378    
2379     Dimensions--;
2380    
2381     // if this was a layer dimension, update 'Layers' attribute
2382     if (pDimDef->dimension == dimension_layer) Layers = 1;
2383     }
2384    
2385 schoenebeck 2 Region::~Region() {
2386     for (uint i = 0; i < Dimensions; i++) {
2387     if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
2388     }
2389 schoenebeck 350 for (int i = 0; i < 256; i++) {
2390 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2391     }
2392     }
2393    
2394     /**
2395     * Use this method in your audio engine to get the appropriate dimension
2396     * region with it's articulation data for the current situation. Just
2397     * call the method with the current MIDI controller values and you'll get
2398     * the DimensionRegion with the appropriate articulation data for the
2399     * current situation (for this Region of course only). To do that you'll
2400     * first have to look which dimensions with which controllers and in
2401     * which order are defined for this Region when you load the .gig file.
2402     * Special cases are e.g. layer or channel dimensions where you just put
2403     * in the index numbers instead of a MIDI controller value (means 0 for
2404     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2405     * etc.).
2406     *
2407 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2408 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2409     * @see pDimensionDefinitions
2410     * @see Dimensions
2411     */
2412 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2413     uint8_t bits[8] = { 0 };
2414 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2415 schoenebeck 347 bits[i] = DimValues[i];
2416 schoenebeck 2 switch (pDimensionDefinitions[i].split_type) {
2417     case split_type_normal:
2418 persson 774 bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);
2419 schoenebeck 2 break;
2420     case split_type_customvelocity:
2421     bits[i] = VelocityTable[bits[i]];
2422     break;
2423 schoenebeck 241 case split_type_bit: // the value is already the sought dimension bit number
2424     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2425     bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
2426     break;
2427 schoenebeck 2 }
2428     }
2429 schoenebeck 347 return GetDimensionRegionByBit(bits);
2430 schoenebeck 2 }
2431    
2432     /**
2433     * Returns the appropriate DimensionRegion for the given dimension bit
2434     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2435     * instead of calling this method directly!
2436     *
2437 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2438 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2439     * bit numbers
2440     * @see GetDimensionRegionByValue()
2441     */
2442 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2443     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2444     << pDimensionDefinitions[5].bits | DimBits[5])
2445     << pDimensionDefinitions[4].bits | DimBits[4])
2446     << pDimensionDefinitions[3].bits | DimBits[3])
2447     << pDimensionDefinitions[2].bits | DimBits[2])
2448     << pDimensionDefinitions[1].bits | DimBits[1])
2449     << pDimensionDefinitions[0].bits | DimBits[0]];
2450 schoenebeck 2 }
2451    
2452     /**
2453     * Returns pointer address to the Sample referenced with this region.
2454     * This is the global Sample for the entire Region (not sure if this is
2455     * actually used by the Gigasampler engine - I would only use the Sample
2456     * referenced by the appropriate DimensionRegion instead of this sample).
2457     *
2458     * @returns address to Sample or NULL if there is no reference to a
2459     * sample saved in the .gig file
2460     */
2461     Sample* Region::GetSample() {
2462     if (pSample) return static_cast<gig::Sample*>(pSample);
2463     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2464     }
2465    
2466 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2467 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2468 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2469     unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2470 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2471 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2472 schoenebeck 2 while (sample) {
2473 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2474     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2475 schoenebeck 2 sample = file->GetNextSample();
2476     }
2477     return NULL;
2478     }
2479    
2480    
2481    
2482     // *************** Instrument ***************
2483     // *
2484    
2485 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2486 schoenebeck 2 // Initialization
2487     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2488     RegionIndex = -1;
2489    
2490     // Loading
2491     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2492     if (lart) {
2493     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2494     if (_3ewg) {
2495     EffectSend = _3ewg->ReadUint16();
2496     Attenuation = _3ewg->ReadInt32();
2497     FineTune = _3ewg->ReadInt16();
2498     PitchbendRange = _3ewg->ReadInt16();
2499     uint8_t dimkeystart = _3ewg->ReadUint8();
2500     PianoReleaseMode = dimkeystart & 0x01;
2501     DimensionKeyRange.low = dimkeystart >> 1;
2502     DimensionKeyRange.high = _3ewg->ReadUint8();
2503     }
2504     }
2505    
2506 schoenebeck 809 pRegions = new Region*[Regions];
2507 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2508 schoenebeck 809 if (lrgn) {
2509     for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
2510     RIFF::List* rgn = lrgn->GetFirstSubList();
2511     unsigned int iRegion = 0;
2512     while (rgn) {
2513     if (rgn->GetListType() == LIST_TYPE_RGN) {
2514     __notify_progress(pProgress, (float) iRegion / (float) Regions);
2515     pRegions[iRegion] = new Region(this, rgn);
2516     iRegion++;
2517     }
2518     rgn = lrgn->GetNextSubList();
2519 schoenebeck 2 }
2520 schoenebeck 809 // Creating Region Key Table for fast lookup
2521     UpdateRegionKeyTable();
2522 schoenebeck 2 }
2523    
2524 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2525     }
2526    
2527     void Instrument::UpdateRegionKeyTable() {
2528 schoenebeck 2 for (uint iReg = 0; iReg < Regions; iReg++) {
2529     for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
2530     RegionKeyTable[iKey] = pRegions[iReg];
2531     }
2532     }
2533     }
2534    
2535     Instrument::~Instrument() {
2536     for (uint i = 0; i < Regions; i++) {
2537     if (pRegions) {
2538     if (pRegions[i]) delete (pRegions[i]);
2539     }
2540     }
2541 schoenebeck 350 if (pRegions) delete[] pRegions;
2542 schoenebeck 2 }
2543    
2544     /**
2545 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2546     * You have to call File::Save() to make changes persistent.
2547     *
2548     * Usually there is absolutely no need to call this method explicitly.
2549     * It will be called automatically when File::Save() was called.
2550     *
2551     * @throws gig::Exception if samples cannot be dereferenced
2552     */
2553     void Instrument::UpdateChunks() {
2554     // first update base classes' chunks
2555     DLS::Instrument::UpdateChunks();
2556    
2557     // update Regions' chunks
2558     for (int i = 0; i < Regions; i++)
2559     pRegions[i]->UpdateChunks();
2560    
2561     // make sure 'lart' RIFF list chunk exists
2562     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2563     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2564     // make sure '3ewg' RIFF chunk exists
2565     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2566     if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2567     // update '3ewg' RIFF chunk
2568     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2569     memcpy(&pData[0], &EffectSend, 2);
2570     memcpy(&pData[2], &Attenuation, 4);
2571     memcpy(&pData[6], &FineTune, 2);
2572     memcpy(&pData[8], &PitchbendRange, 2);
2573     const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2574     DimensionKeyRange.low << 1;
2575     memcpy(&pData[10], &dimkeystart, 1);
2576     memcpy(&pData[11], &DimensionKeyRange.high, 1);
2577     }
2578    
2579     /**
2580 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2581     *
2582     * @param Key MIDI Key number of triggered note / key (0 - 127)
2583     * @returns pointer adress to the appropriate Region or NULL if there
2584     * there is no Region defined for the given \a Key
2585     */
2586     Region* Instrument::GetRegion(unsigned int Key) {
2587     if (!pRegions || Key > 127) return NULL;
2588     return RegionKeyTable[Key];
2589     /*for (int i = 0; i < Regions; i++) {
2590     if (Key <= pRegions[i]->KeyRange.high &&
2591     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2592     }
2593     return NULL;*/
2594     }
2595    
2596     /**
2597     * Returns the first Region of the instrument. You have to call this
2598     * method once before you use GetNextRegion().
2599     *
2600     * @returns pointer address to first region or NULL if there is none
2601     * @see GetNextRegion()
2602     */
2603     Region* Instrument::GetFirstRegion() {
2604     if (!Regions) return NULL;
2605     RegionIndex = 1;
2606     return pRegions[0];
2607     }
2608    
2609     /**
2610     * Returns the next Region of the instrument. You have to call
2611     * GetFirstRegion() once before you can use this method. By calling this
2612     * method multiple times it iterates through the available Regions.
2613     *
2614     * @returns pointer address to the next region or NULL if end reached
2615     * @see GetFirstRegion()
2616     */
2617     Region* Instrument::GetNextRegion() {
2618 persson 365 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
2619 schoenebeck 2 return pRegions[RegionIndex++];
2620     }
2621    
2622 schoenebeck 809 Region* Instrument::AddRegion() {
2623     // create new Region object (and its RIFF chunks)
2624     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2625     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2626     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2627     Region* pNewRegion = new Region(this, rgn);
2628     // resize 'pRegions' array (increase by one)
2629     Region** pNewRegions = new Region*[Regions + 1];
2630     memcpy(pNewRegions, pRegions, Regions * sizeof(Region*));
2631     // add new Region object
2632     pNewRegions[Regions] = pNewRegion;
2633     // replace old 'pRegions' array by the new increased array
2634     if (pRegions) delete[] pRegions;
2635     pRegions = pNewRegions;
2636     Regions++;
2637     // update Region key table for fast lookup
2638     UpdateRegionKeyTable();
2639     // done
2640     return pNewRegion;
2641     }
2642 schoenebeck 2
2643 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2644     if (!pRegions) return;
2645     int iOffset = 0;
2646     // resize 'pRegions' array (decrease by one)
2647     Region** pNewRegions = new Region*[Regions - 1];
2648     for (int i = 0; i < Regions; i++) {
2649     if (pRegions[i] == pRegion) { // found Region to delete
2650     iOffset = 1;
2651     delete pRegion;
2652     }
2653     if (i < Regions - 1) pNewRegions[i] = pRegions[i + iOffset];
2654     }
2655     if (!iOffset) throw gig::Exception("There is no such gig::Region to delete");
2656     // replace old 'pRegions' array by the new decreased array
2657     if (pRegions) delete[] pRegions;
2658     pRegions = pNewRegions;
2659     Regions--;
2660     // update Region key table for fast lookup
2661     UpdateRegionKeyTable();
2662     }
2663 schoenebeck 2
2664 schoenebeck 809
2665    
2666 schoenebeck 2 // *************** File ***************
2667     // *
2668    
2669 schoenebeck 809 File::File() : DLS::File() {
2670     pSamples = NULL;
2671     pInstruments = NULL;
2672     }
2673    
2674 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2675     pSamples = NULL;
2676     pInstruments = NULL;
2677     }
2678    
2679 schoenebeck 350 File::~File() {
2680     // free samples
2681     if (pSamples) {
2682     SamplesIterator = pSamples->begin();
2683     while (SamplesIterator != pSamples->end() ) {
2684     delete (*SamplesIterator);
2685     SamplesIterator++;
2686     }
2687     pSamples->clear();
2688 schoenebeck 355 delete pSamples;
2689 schoenebeck 350
2690     }
2691     // free instruments
2692     if (pInstruments) {
2693     InstrumentsIterator = pInstruments->begin();
2694     while (InstrumentsIterator != pInstruments->end() ) {
2695     delete (*InstrumentsIterator);
2696     InstrumentsIterator++;
2697     }
2698     pInstruments->clear();
2699 schoenebeck 355 delete pInstruments;
2700 schoenebeck 350 }
2701 persson 666 // free extension files
2702     for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
2703     delete *i;
2704 schoenebeck 350 }
2705    
2706 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
2707     if (!pSamples) LoadSamples(pProgress);
2708 schoenebeck 2 if (!pSamples) return NULL;
2709     SamplesIterator = pSamples->begin();
2710     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2711     }
2712    
2713     Sample* File::GetNextSample() {
2714     if (!pSamples) return NULL;
2715     SamplesIterator++;
2716     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2717     }
2718    
2719 schoenebeck 809 /** @brief Add a new sample.
2720     *
2721     * This will create a new Sample object for the gig file. You have to
2722     * call Save() to make this persistent to the file.
2723     *
2724     * @returns pointer to new Sample object
2725     */
2726     Sample* File::AddSample() {
2727     if (!pSamples) LoadSamples();
2728     __ensureMandatoryChunksExist();
2729     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2730     // create new Sample object and its respective 'wave' list chunk
2731     if (!pSamples) pSamples = new SampleList;
2732     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2733     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2734     pSamples->push_back(pSample);
2735     return pSample;
2736     }
2737    
2738     /** @brief Delete a sample.
2739     *
2740     * This will delete the given Sample object from the gig file. You have
2741     * to call Save() to make this persistent to the file.
2742     *
2743     * @param pSample - sample to delete
2744     * @throws gig::Exception if given sample could not be found
2745     */
2746     void File::DeleteSample(Sample* pSample) {
2747     if (!pSamples) throw gig::Exception("Could not delete sample as there are no samples");
2748     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), pSample);
2749     if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2750     pSamples->erase(iter);
2751     delete pSample;
2752     }
2753    
2754 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
2755 persson 666 RIFF::File* file = pRIFF;
2756 schoenebeck 515
2757 persson 666 // just for progress calculation
2758     int iSampleIndex = 0;
2759     int iTotalSamples = WavePoolCount;
2760 schoenebeck 515
2761 persson 666 // check if samples should be loaded from extension files
2762     int lastFileNo = 0;
2763     for (int i = 0 ; i < WavePoolCount ; i++) {
2764     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2765     }
2766 schoenebeck 780 String name(pRIFF->GetFileName());
2767     int nameLen = name.length();
2768 persson 666 char suffix[6];
2769 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2770 schoenebeck 515
2771 persson 666 for (int fileNo = 0 ; ; ) {
2772     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2773     if (wvpl) {
2774     unsigned long wvplFileOffset = wvpl->GetFilePos();
2775     RIFF::List* wave = wvpl->GetFirstSubList();
2776     while (wave) {
2777     if (wave->GetListType() == LIST_TYPE_WAVE) {
2778     // notify current progress
2779     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2780     __notify_progress(pProgress, subprogress);
2781    
2782     if (!pSamples) pSamples = new SampleList;
2783     unsigned long waveFileOffset = wave->GetFilePos();
2784     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2785    
2786     iSampleIndex++;
2787     }
2788     wave = wvpl->GetNextSubList();
2789 schoenebeck 2 }
2790 persson 666
2791     if (fileNo == lastFileNo) break;
2792    
2793     // open extension file (*.gx01, *.gx02, ...)
2794     fileNo++;
2795     sprintf(suffix, ".gx%02d", fileNo);
2796     name.replace(nameLen, 5, suffix);
2797     file = new RIFF::File(name);
2798     ExtensionFiles.push_back(file);
2799 schoenebeck 2 }
2800 persson 666 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
2801 schoenebeck 2 }
2802 persson 666
2803     __notify_progress(pProgress, 1.0); // notify done
2804 schoenebeck 2 }
2805    
2806     Instrument* File::GetFirstInstrument() {
2807     if (!pInstruments) LoadInstruments();
2808     if (!pInstruments) return NULL;
2809     InstrumentsIterator = pInstruments->begin();
2810     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
2811     }
2812    
2813     Instrument* File::GetNextInstrument() {
2814     if (!pInstruments) return NULL;
2815     InstrumentsIterator++;
2816     return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
2817     }
2818    
2819 schoenebeck 21 /**
2820     * Returns the instrument with the given index.
2821     *
2822 schoenebeck 515 * @param index - number of the sought instrument (0..n)
2823     * @param pProgress - optional: callback function for progress notification
2824 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
2825     */
2826 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2827     if (!pInstruments) {
2828     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2829    
2830     // sample loading subtask
2831     progress_t subprogress;
2832     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2833     __notify_progress(&subprogress, 0.0f);
2834     GetFirstSample(&subprogress); // now force all samples to be loaded
2835     __notify_progress(&subprogress, 1.0f);
2836    
2837     // instrument loading subtask
2838     if (pProgress && pProgress->callback) {
2839     subprogress.__range_min = subprogress.__range_max;
2840     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2841     }
2842     __notify_progress(&subprogress, 0.0f);
2843     LoadInstruments(&subprogress);
2844     __notify_progress(&subprogress, 1.0f);
2845     }
2846 schoenebeck 21 if (!pInstruments) return NULL;
2847     InstrumentsIterator = pInstruments->begin();
2848     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2849     if (i == index) return *InstrumentsIterator;
2850     InstrumentsIterator++;
2851     }
2852     return NULL;
2853     }
2854    
2855 schoenebeck 809 /** @brief Add a new instrument definition.
2856     *
2857     * This will create a new Instrument object for the gig file. You have
2858     * to call Save() to make this persistent to the file.
2859     *
2860     * @returns pointer to new Instrument object
2861     */
2862     Instrument* File::AddInstrument() {
2863     if (!pInstruments) LoadInstruments();
2864     __ensureMandatoryChunksExist();
2865     if (!pInstruments) pInstruments = new InstrumentList;
2866     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2867     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2868     Instrument* pInstrument = new Instrument(this, lstInstr);
2869     pInstruments->push_back(pInstrument);
2870     return pInstrument;
2871     }
2872    
2873     /** @brief Delete an instrument.
2874     *
2875     * This will delete the given Instrument object from the gig file. You
2876     * have to call Save() to make this persistent to the file.
2877     *
2878     * @param pInstrument - instrument to delete
2879     * @throws gig::Excption if given instrument could not be found
2880     */
2881     void File::DeleteInstrument(Instrument* pInstrument) {
2882     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2883     InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), pInstrument);
2884     if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2885     pInstruments->erase(iter);
2886     delete pInstrument;
2887     }
2888    
2889 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
2890 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2891     if (lstInstruments) {
2892 schoenebeck 515 int iInstrumentIndex = 0;
2893 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2894     while (lstInstr) {
2895     if (lstInstr->GetListType() == LIST_TYPE_INS) {
2896 schoenebeck 515 // notify current progress
2897     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2898     __notify_progress(pProgress, localProgress);
2899    
2900     // divide local progress into subprogress for loading current Instrument
2901     progress_t subprogress;
2902     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2903    
2904 schoenebeck 2 if (!pInstruments) pInstruments = new InstrumentList;
2905 schoenebeck 515 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2906    
2907     iInstrumentIndex++;
2908 schoenebeck 2 }
2909     lstInstr = lstInstruments->GetNextSubList();
2910     }
2911 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
2912 schoenebeck 2 }
2913     else throw gig::Exception("Mandatory <lins> list chunk not found.");
2914     }
2915    
2916    
2917    
2918     // *************** Exception ***************
2919     // *
2920    
2921     Exception::Exception(String Message) : DLS::Exception(Message) {
2922     }
2923    
2924     void Exception::PrintMessage() {
2925     std::cout << "gig::Exception: " << Message << std::endl;
2926     }
2927    
2928 schoenebeck 518
2929     // *************** functions ***************
2930     // *
2931    
2932     /**
2933     * Returns the name of this C++ library. This is usually "libgig" of
2934     * course. This call is equivalent to RIFF::libraryName() and
2935     * DLS::libraryName().
2936     */
2937     String libraryName() {
2938     return PACKAGE;
2939     }
2940    
2941     /**
2942     * Returns version of this C++ library. This call is equivalent to
2943     * RIFF::libraryVersion() and DLS::libraryVersion().
2944     */
2945     String libraryVersion() {
2946     return VERSION;
2947     }
2948    
2949 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC