/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 858 - (hide annotations) (download)
Sat May 6 11:29:29 2006 UTC (17 years, 10 months ago) by persson
File size: 133269 byte(s)
* added support for more than one custom velocity split inside a
  region

1 schoenebeck 2 /***************************************************************************
2     * *
3     * libgig - C++ cross-platform Gigasampler format file loader library *
4     * *
5 schoenebeck 384 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6     * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114     void Decompress16(int compressionmode, const unsigned char* params,
115 persson 372 int srcStep, int dstStep,
116     const unsigned char* pSrc, int16_t* pDst,
117 persson 365 unsigned long currentframeoffset,
118     unsigned long copysamples)
119     {
120     switch (compressionmode) {
121     case 0: // 16 bit uncompressed
122     pSrc += currentframeoffset * srcStep;
123     while (copysamples) {
124     *pDst = get16(pSrc);
125 persson 372 pDst += dstStep;
126 persson 365 pSrc += srcStep;
127     copysamples--;
128     }
129     break;
130    
131     case 1: // 16 bit compressed to 8 bit
132     int y = get16(params);
133     int dy = get16(params + 2);
134     while (currentframeoffset) {
135     dy -= int8_t(*pSrc);
136     y -= dy;
137     pSrc += srcStep;
138     currentframeoffset--;
139     }
140     while (copysamples) {
141     dy -= int8_t(*pSrc);
142     y -= dy;
143     *pDst = y;
144 persson 372 pDst += dstStep;
145 persson 365 pSrc += srcStep;
146     copysamples--;
147     }
148     break;
149     }
150     }
151    
152     void Decompress24(int compressionmode, const unsigned char* params,
153 persson 372 int dstStep, const unsigned char* pSrc, int16_t* pDst,
154 persson 365 unsigned long currentframeoffset,
155 persson 437 unsigned long copysamples, int truncatedBits)
156 persson 365 {
157     // Note: The 24 bits are truncated to 16 bits for now.
158    
159 persson 695 int y, dy, ddy, dddy;
160 persson 437 const int shift = 8 - truncatedBits;
161    
162 persson 695 #define GET_PARAMS(params) \
163     y = get24(params); \
164     dy = y - get24((params) + 3); \
165     ddy = get24((params) + 6); \
166     dddy = get24((params) + 9)
167 persson 365
168     #define SKIP_ONE(x) \
169 persson 695 dddy -= (x); \
170     ddy -= dddy; \
171     dy = -dy - ddy; \
172     y += dy
173 persson 365
174     #define COPY_ONE(x) \
175     SKIP_ONE(x); \
176 persson 695 *pDst = y >> shift; \
177 persson 372 pDst += dstStep
178 persson 365
179     switch (compressionmode) {
180     case 2: // 24 bit uncompressed
181     pSrc += currentframeoffset * 3;
182     while (copysamples) {
183 persson 437 *pDst = get24(pSrc) >> shift;
184 persson 372 pDst += dstStep;
185 persson 365 pSrc += 3;
186     copysamples--;
187     }
188     break;
189    
190     case 3: // 24 bit compressed to 16 bit
191     GET_PARAMS(params);
192     while (currentframeoffset) {
193     SKIP_ONE(get16(pSrc));
194     pSrc += 2;
195     currentframeoffset--;
196     }
197     while (copysamples) {
198     COPY_ONE(get16(pSrc));
199     pSrc += 2;
200     copysamples--;
201     }
202     break;
203    
204     case 4: // 24 bit compressed to 12 bit
205     GET_PARAMS(params);
206     while (currentframeoffset > 1) {
207     SKIP_ONE(get12lo(pSrc));
208     SKIP_ONE(get12hi(pSrc));
209     pSrc += 3;
210     currentframeoffset -= 2;
211     }
212     if (currentframeoffset) {
213     SKIP_ONE(get12lo(pSrc));
214     currentframeoffset--;
215     if (copysamples) {
216     COPY_ONE(get12hi(pSrc));
217     pSrc += 3;
218     copysamples--;
219     }
220     }
221     while (copysamples > 1) {
222     COPY_ONE(get12lo(pSrc));
223     COPY_ONE(get12hi(pSrc));
224     pSrc += 3;
225     copysamples -= 2;
226     }
227     if (copysamples) {
228     COPY_ONE(get12lo(pSrc));
229     }
230     break;
231    
232     case 5: // 24 bit compressed to 8 bit
233     GET_PARAMS(params);
234     while (currentframeoffset) {
235     SKIP_ONE(int8_t(*pSrc++));
236     currentframeoffset--;
237     }
238     while (copysamples) {
239     COPY_ONE(int8_t(*pSrc++));
240     copysamples--;
241     }
242     break;
243     }
244     }
245    
246     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
247     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
248     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
249     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
250     }
251    
252    
253 schoenebeck 2 // *************** Sample ***************
254     // *
255    
256 schoenebeck 384 unsigned int Sample::Instances = 0;
257     buffer_t Sample::InternalDecompressionBuffer;
258 schoenebeck 2
259 schoenebeck 809 /** @brief Constructor.
260     *
261     * Load an existing sample or create a new one. A 'wave' list chunk must
262     * be given to this constructor. In case the given 'wave' list chunk
263     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
264     * format and sample data will be loaded from there, otherwise default
265     * values will be used and those chunks will be created when
266     * File::Save() will be called later on.
267     *
268     * @param pFile - pointer to gig::File where this sample is
269     * located (or will be located)
270     * @param waveList - pointer to 'wave' list chunk which is (or
271     * will be) associated with this sample
272     * @param WavePoolOffset - offset of this sample data from wave pool
273     * ('wvpl') list chunk
274     * @param fileNo - number of an extension file where this sample
275     * is located, 0 otherwise
276     */
277 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
278 schoenebeck 2 Instances++;
279 persson 666 FileNo = fileNo;
280 schoenebeck 2
281 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
282     if (pCk3gix) {
283     SampleGroup = pCk3gix->ReadInt16();
284     } else { // '3gix' chunk missing
285     // use default value(s)
286     SampleGroup = 0;
287     }
288 schoenebeck 2
289 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
290     if (pCkSmpl) {
291     Manufacturer = pCkSmpl->ReadInt32();
292     Product = pCkSmpl->ReadInt32();
293     SamplePeriod = pCkSmpl->ReadInt32();
294     MIDIUnityNote = pCkSmpl->ReadInt32();
295     FineTune = pCkSmpl->ReadInt32();
296     pCkSmpl->Read(&SMPTEFormat, 1, 4);
297     SMPTEOffset = pCkSmpl->ReadInt32();
298     Loops = pCkSmpl->ReadInt32();
299     pCkSmpl->ReadInt32(); // manufByt
300     LoopID = pCkSmpl->ReadInt32();
301     pCkSmpl->Read(&LoopType, 1, 4);
302     LoopStart = pCkSmpl->ReadInt32();
303     LoopEnd = pCkSmpl->ReadInt32();
304     LoopFraction = pCkSmpl->ReadInt32();
305     LoopPlayCount = pCkSmpl->ReadInt32();
306     } else { // 'smpl' chunk missing
307     // use default values
308     Manufacturer = 0;
309     Product = 0;
310     SamplePeriod = 1 / SamplesPerSecond;
311     MIDIUnityNote = 64;
312     FineTune = 0;
313     SMPTEOffset = 0;
314     Loops = 0;
315     LoopID = 0;
316     LoopStart = 0;
317     LoopEnd = 0;
318     LoopFraction = 0;
319     LoopPlayCount = 0;
320     }
321 schoenebeck 2
322     FrameTable = NULL;
323     SamplePos = 0;
324     RAMCache.Size = 0;
325     RAMCache.pStart = NULL;
326     RAMCache.NullExtensionSize = 0;
327    
328 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
329    
330 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
331     Compressed = ewav;
332     Dithered = false;
333     TruncatedBits = 0;
334 schoenebeck 2 if (Compressed) {
335 persson 437 uint32_t version = ewav->ReadInt32();
336     if (version == 3 && BitDepth == 24) {
337     Dithered = ewav->ReadInt32();
338     ewav->SetPos(Channels == 2 ? 84 : 64);
339     TruncatedBits = ewav->ReadInt32();
340     }
341 schoenebeck 2 ScanCompressedSample();
342     }
343 schoenebeck 317
344     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
345 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
346     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
347     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
348 schoenebeck 317 }
349 persson 437 FrameOffset = 0; // just for streaming compressed samples
350 schoenebeck 21
351 schoenebeck 27 LoopSize = LoopEnd - LoopStart;
352 schoenebeck 2 }
353    
354 schoenebeck 809 /**
355     * Apply sample and its settings to the respective RIFF chunks. You have
356     * to call File::Save() to make changes persistent.
357     *
358     * Usually there is absolutely no need to call this method explicitly.
359     * It will be called automatically when File::Save() was called.
360     *
361     * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
362     * was provided yet
363     * @throws gig::Exception if there is any invalid sample setting
364     */
365     void Sample::UpdateChunks() {
366     // first update base class's chunks
367     DLS::Sample::UpdateChunks();
368    
369     // make sure 'smpl' chunk exists
370     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
371     if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
372     // update 'smpl' chunk
373     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
374     SamplePeriod = 1 / SamplesPerSecond;
375     memcpy(&pData[0], &Manufacturer, 4);
376     memcpy(&pData[4], &Product, 4);
377     memcpy(&pData[8], &SamplePeriod, 4);
378     memcpy(&pData[12], &MIDIUnityNote, 4);
379     memcpy(&pData[16], &FineTune, 4);
380     memcpy(&pData[20], &SMPTEFormat, 4);
381     memcpy(&pData[24], &SMPTEOffset, 4);
382     memcpy(&pData[28], &Loops, 4);
383    
384     // we skip 'manufByt' for now (4 bytes)
385    
386     memcpy(&pData[36], &LoopID, 4);
387     memcpy(&pData[40], &LoopType, 4);
388     memcpy(&pData[44], &LoopStart, 4);
389     memcpy(&pData[48], &LoopEnd, 4);
390     memcpy(&pData[52], &LoopFraction, 4);
391     memcpy(&pData[56], &LoopPlayCount, 4);
392    
393     // make sure '3gix' chunk exists
394     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
395     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
396     // update '3gix' chunk
397     pData = (uint8_t*) pCk3gix->LoadChunkData();
398     memcpy(&pData[0], &SampleGroup, 2);
399     }
400    
401 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
402     void Sample::ScanCompressedSample() {
403     //TODO: we have to add some more scans here (e.g. determine compression rate)
404     this->SamplesTotal = 0;
405     std::list<unsigned long> frameOffsets;
406    
407 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
408 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
409 persson 365
410 schoenebeck 2 // Scanning
411     pCkData->SetPos(0);
412 persson 365 if (Channels == 2) { // Stereo
413     for (int i = 0 ; ; i++) {
414     // for 24 bit samples every 8:th frame offset is
415     // stored, to save some memory
416     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
417    
418     const int mode_l = pCkData->ReadUint8();
419     const int mode_r = pCkData->ReadUint8();
420     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
421     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
422    
423     if (pCkData->RemainingBytes() <= frameSize) {
424     SamplesInLastFrame =
425     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
426     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
427     SamplesTotal += SamplesInLastFrame;
428 schoenebeck 2 break;
429 persson 365 }
430     SamplesTotal += SamplesPerFrame;
431     pCkData->SetPos(frameSize, RIFF::stream_curpos);
432     }
433     }
434     else { // Mono
435     for (int i = 0 ; ; i++) {
436     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
437    
438     const int mode = pCkData->ReadUint8();
439     if (mode > 5) throw gig::Exception("Unknown compression mode");
440     const unsigned long frameSize = bytesPerFrame[mode];
441    
442     if (pCkData->RemainingBytes() <= frameSize) {
443     SamplesInLastFrame =
444     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
445     SamplesTotal += SamplesInLastFrame;
446 schoenebeck 2 break;
447 persson 365 }
448     SamplesTotal += SamplesPerFrame;
449     pCkData->SetPos(frameSize, RIFF::stream_curpos);
450 schoenebeck 2 }
451     }
452     pCkData->SetPos(0);
453    
454     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
455     if (FrameTable) delete[] FrameTable;
456     FrameTable = new unsigned long[frameOffsets.size()];
457     std::list<unsigned long>::iterator end = frameOffsets.end();
458     std::list<unsigned long>::iterator iter = frameOffsets.begin();
459     for (int i = 0; iter != end; i++, iter++) {
460     FrameTable[i] = *iter;
461     }
462     }
463    
464     /**
465     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
466     * ReleaseSampleData() to free the memory if you don't need the cached
467     * sample data anymore.
468     *
469     * @returns buffer_t structure with start address and size of the buffer
470     * in bytes
471     * @see ReleaseSampleData(), Read(), SetPos()
472     */
473     buffer_t Sample::LoadSampleData() {
474     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
475     }
476    
477     /**
478     * Reads (uncompresses if needed) and caches the first \a SampleCount
479     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
480     * memory space if you don't need the cached samples anymore. There is no
481     * guarantee that exactly \a SampleCount samples will be cached; this is
482     * not an error. The size will be eventually truncated e.g. to the
483     * beginning of a frame of a compressed sample. This is done for
484     * efficiency reasons while streaming the wave by your sampler engine
485     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
486     * that will be returned to determine the actual cached samples, but note
487     * that the size is given in bytes! You get the number of actually cached
488     * samples by dividing it by the frame size of the sample:
489 schoenebeck 384 * @code
490 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
491     * long cachedsamples = buf.Size / pSample->FrameSize;
492 schoenebeck 384 * @endcode
493 schoenebeck 2 *
494     * @param SampleCount - number of sample points to load into RAM
495     * @returns buffer_t structure with start address and size of
496     * the cached sample data in bytes
497     * @see ReleaseSampleData(), Read(), SetPos()
498     */
499     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
500     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
501     }
502    
503     /**
504     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
505     * ReleaseSampleData() to free the memory if you don't need the cached
506     * sample data anymore.
507     * The method will add \a NullSamplesCount silence samples past the
508     * official buffer end (this won't affect the 'Size' member of the
509     * buffer_t structure, that means 'Size' always reflects the size of the
510     * actual sample data, the buffer might be bigger though). Silence
511     * samples past the official buffer are needed for differential
512     * algorithms that always have to take subsequent samples into account
513     * (resampling/interpolation would be an important example) and avoids
514     * memory access faults in such cases.
515     *
516     * @param NullSamplesCount - number of silence samples the buffer should
517     * be extended past it's data end
518     * @returns buffer_t structure with start address and
519     * size of the buffer in bytes
520     * @see ReleaseSampleData(), Read(), SetPos()
521     */
522     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
523     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
524     }
525    
526     /**
527     * Reads (uncompresses if needed) and caches the first \a SampleCount
528     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
529     * memory space if you don't need the cached samples anymore. There is no
530     * guarantee that exactly \a SampleCount samples will be cached; this is
531     * not an error. The size will be eventually truncated e.g. to the
532     * beginning of a frame of a compressed sample. This is done for
533     * efficiency reasons while streaming the wave by your sampler engine
534     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
535     * that will be returned to determine the actual cached samples, but note
536     * that the size is given in bytes! You get the number of actually cached
537     * samples by dividing it by the frame size of the sample:
538 schoenebeck 384 * @code
539 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
540     * long cachedsamples = buf.Size / pSample->FrameSize;
541 schoenebeck 384 * @endcode
542 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
543     * official buffer end (this won't affect the 'Size' member of the
544     * buffer_t structure, that means 'Size' always reflects the size of the
545     * actual sample data, the buffer might be bigger though). Silence
546     * samples past the official buffer are needed for differential
547     * algorithms that always have to take subsequent samples into account
548     * (resampling/interpolation would be an important example) and avoids
549     * memory access faults in such cases.
550     *
551     * @param SampleCount - number of sample points to load into RAM
552     * @param NullSamplesCount - number of silence samples the buffer should
553     * be extended past it's data end
554     * @returns buffer_t structure with start address and
555     * size of the cached sample data in bytes
556     * @see ReleaseSampleData(), Read(), SetPos()
557     */
558     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
559     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
560     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
561     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
562     RAMCache.pStart = new int8_t[allocationsize];
563     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
564     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
565     // fill the remaining buffer space with silence samples
566     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
567     return GetCache();
568     }
569    
570     /**
571     * Returns current cached sample points. A buffer_t structure will be
572     * returned which contains address pointer to the begin of the cache and
573     * the size of the cached sample data in bytes. Use
574     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
575     * RAM.
576     *
577     * @returns buffer_t structure with current cached sample points
578     * @see LoadSampleData();
579     */
580     buffer_t Sample::GetCache() {
581     // return a copy of the buffer_t structure
582     buffer_t result;
583     result.Size = this->RAMCache.Size;
584     result.pStart = this->RAMCache.pStart;
585     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
586     return result;
587     }
588    
589     /**
590     * Frees the cached sample from RAM if loaded with
591     * <i>LoadSampleData()</i> previously.
592     *
593     * @see LoadSampleData();
594     */
595     void Sample::ReleaseSampleData() {
596     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
597     RAMCache.pStart = NULL;
598     RAMCache.Size = 0;
599     }
600    
601 schoenebeck 809 /** @brief Resize sample.
602     *
603     * Resizes the sample's wave form data, that is the actual size of
604     * sample wave data possible to be written for this sample. This call
605     * will return immediately and just schedule the resize operation. You
606     * should call File::Save() to actually perform the resize operation(s)
607     * "physically" to the file. As this can take a while on large files, it
608     * is recommended to call Resize() first on all samples which have to be
609     * resized and finally to call File::Save() to perform all those resize
610     * operations in one rush.
611     *
612     * The actual size (in bytes) is dependant to the current FrameSize
613     * value. You may want to set FrameSize before calling Resize().
614     *
615     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
616     * enlarged samples before calling File::Save() as this might exceed the
617     * current sample's boundary!
618     *
619     * Also note: only WAVE_FORMAT_PCM is currently supported, that is
620     * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
621     * other formats will fail!
622     *
623     * @param iNewSize - new sample wave data size in sample points (must be
624     * greater than zero)
625     * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
626     * or if \a iNewSize is less than 1
627     * @throws gig::Exception if existing sample is compressed
628     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
629     * DLS::Sample::FormatTag, File::Save()
630     */
631     void Sample::Resize(int iNewSize) {
632     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
633     DLS::Sample::Resize(iNewSize);
634     }
635    
636 schoenebeck 2 /**
637     * Sets the position within the sample (in sample points, not in
638     * bytes). Use this method and <i>Read()</i> if you don't want to load
639     * the sample into RAM, thus for disk streaming.
640     *
641     * Although the original Gigasampler engine doesn't allow positioning
642     * within compressed samples, I decided to implement it. Even though
643     * the Gigasampler format doesn't allow to define loops for compressed
644     * samples at the moment, positioning within compressed samples might be
645     * interesting for some sampler engines though. The only drawback about
646     * my decision is that it takes longer to load compressed gig Files on
647     * startup, because it's neccessary to scan the samples for some
648     * mandatory informations. But I think as it doesn't affect the runtime
649     * efficiency, nobody will have a problem with that.
650     *
651     * @param SampleCount number of sample points to jump
652     * @param Whence optional: to which relation \a SampleCount refers
653     * to, if omited <i>RIFF::stream_start</i> is assumed
654     * @returns the new sample position
655     * @see Read()
656     */
657     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
658     if (Compressed) {
659     switch (Whence) {
660     case RIFF::stream_curpos:
661     this->SamplePos += SampleCount;
662     break;
663     case RIFF::stream_end:
664     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
665     break;
666     case RIFF::stream_backward:
667     this->SamplePos -= SampleCount;
668     break;
669     case RIFF::stream_start: default:
670     this->SamplePos = SampleCount;
671     break;
672     }
673     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
674    
675     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
676     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
677     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
678     return this->SamplePos;
679     }
680     else { // not compressed
681     unsigned long orderedBytes = SampleCount * this->FrameSize;
682     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
683     return (result == orderedBytes) ? SampleCount
684     : result / this->FrameSize;
685     }
686     }
687    
688     /**
689     * Returns the current position in the sample (in sample points).
690     */
691     unsigned long Sample::GetPos() {
692     if (Compressed) return SamplePos;
693     else return pCkData->GetPos() / FrameSize;
694     }
695    
696     /**
697 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
698     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
699     * the position within the sample respectively, this method honors the
700     * looping informations of the sample (if any). The sample wave stream
701     * will be decompressed on the fly if using a compressed sample. Use this
702     * method if you don't want to load the sample into RAM, thus for disk
703     * streaming. All this methods needs to know to proceed with streaming
704     * for the next time you call this method is stored in \a pPlaybackState.
705     * You have to allocate and initialize the playback_state_t structure by
706     * yourself before you use it to stream a sample:
707 schoenebeck 384 * @code
708     * gig::playback_state_t playbackstate;
709     * playbackstate.position = 0;
710     * playbackstate.reverse = false;
711     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
712     * @endcode
713 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
714     * defined or if the current read position is located within a loop area.
715     * The method already handles such cases by itself.
716     *
717 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
718     * have to use an external decompression buffer for <b>EACH</b>
719     * streaming thread to avoid race conditions and crashes!
720     *
721 schoenebeck 24 * @param pBuffer destination buffer
722     * @param SampleCount number of sample points to read
723     * @param pPlaybackState will be used to store and reload the playback
724     * state for the next ReadAndLoop() call
725 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
726 schoenebeck 24 * @returns number of successfully read sample points
727 schoenebeck 384 * @see CreateDecompressionBuffer()
728 schoenebeck 24 */
729 schoenebeck 384 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
730 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
731     uint8_t* pDst = (uint8_t*) pBuffer;
732    
733     SetPos(pPlaybackState->position); // recover position from the last time
734    
735     if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
736    
737     switch (this->LoopType) {
738    
739     case loop_type_bidirectional: { //TODO: not tested yet!
740     do {
741     // if not endless loop check if max. number of loop cycles have been passed
742     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
743    
744     if (!pPlaybackState->reverse) { // forward playback
745     do {
746     samplestoloopend = this->LoopEnd - GetPos();
747 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
748 schoenebeck 24 samplestoread -= readsamples;
749     totalreadsamples += readsamples;
750     if (readsamples == samplestoloopend) {
751     pPlaybackState->reverse = true;
752     break;
753     }
754     } while (samplestoread && readsamples);
755     }
756     else { // backward playback
757    
758     // as we can only read forward from disk, we have to
759     // determine the end position within the loop first,
760     // read forward from that 'end' and finally after
761     // reading, swap all sample frames so it reflects
762     // backward playback
763    
764     unsigned long swapareastart = totalreadsamples;
765     unsigned long loopoffset = GetPos() - this->LoopStart;
766     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
767     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
768    
769     SetPos(reverseplaybackend);
770    
771     // read samples for backward playback
772     do {
773 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
774 schoenebeck 24 samplestoreadinloop -= readsamples;
775     samplestoread -= readsamples;
776     totalreadsamples += readsamples;
777     } while (samplestoreadinloop && readsamples);
778    
779     SetPos(reverseplaybackend); // pretend we really read backwards
780    
781     if (reverseplaybackend == this->LoopStart) {
782     pPlaybackState->loop_cycles_left--;
783     pPlaybackState->reverse = false;
784     }
785    
786     // reverse the sample frames for backward playback
787     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
788     }
789     } while (samplestoread && readsamples);
790     break;
791     }
792    
793     case loop_type_backward: { // TODO: not tested yet!
794     // forward playback (not entered the loop yet)
795     if (!pPlaybackState->reverse) do {
796     samplestoloopend = this->LoopEnd - GetPos();
797 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
798 schoenebeck 24 samplestoread -= readsamples;
799     totalreadsamples += readsamples;
800     if (readsamples == samplestoloopend) {
801     pPlaybackState->reverse = true;
802     break;
803     }
804     } while (samplestoread && readsamples);
805    
806     if (!samplestoread) break;
807    
808     // as we can only read forward from disk, we have to
809     // determine the end position within the loop first,
810     // read forward from that 'end' and finally after
811     // reading, swap all sample frames so it reflects
812     // backward playback
813    
814     unsigned long swapareastart = totalreadsamples;
815     unsigned long loopoffset = GetPos() - this->LoopStart;
816     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
817     : samplestoread;
818     unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
819    
820     SetPos(reverseplaybackend);
821    
822     // read samples for backward playback
823     do {
824     // if not endless loop check if max. number of loop cycles have been passed
825     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
826     samplestoloopend = this->LoopEnd - GetPos();
827 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
828 schoenebeck 24 samplestoreadinloop -= readsamples;
829     samplestoread -= readsamples;
830     totalreadsamples += readsamples;
831     if (readsamples == samplestoloopend) {
832     pPlaybackState->loop_cycles_left--;
833     SetPos(this->LoopStart);
834     }
835     } while (samplestoreadinloop && readsamples);
836    
837     SetPos(reverseplaybackend); // pretend we really read backwards
838    
839     // reverse the sample frames for backward playback
840     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
841     break;
842     }
843    
844     default: case loop_type_normal: {
845     do {
846     // if not endless loop check if max. number of loop cycles have been passed
847     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
848     samplestoloopend = this->LoopEnd - GetPos();
849 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
850 schoenebeck 24 samplestoread -= readsamples;
851     totalreadsamples += readsamples;
852     if (readsamples == samplestoloopend) {
853     pPlaybackState->loop_cycles_left--;
854     SetPos(this->LoopStart);
855     }
856     } while (samplestoread && readsamples);
857     break;
858     }
859     }
860     }
861    
862     // read on without looping
863     if (samplestoread) do {
864 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
865 schoenebeck 24 samplestoread -= readsamples;
866     totalreadsamples += readsamples;
867     } while (readsamples && samplestoread);
868    
869     // store current position
870     pPlaybackState->position = GetPos();
871    
872     return totalreadsamples;
873     }
874    
875     /**
876 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
877     * position into the buffer pointed by \a pBuffer and increments the
878     * position within the sample. The sample wave stream will be
879     * decompressed on the fly if using a compressed sample. Use this method
880     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
881     * thus for disk streaming.
882     *
883 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
884     * have to use an external decompression buffer for <b>EACH</b>
885     * streaming thread to avoid race conditions and crashes!
886     *
887 schoenebeck 2 * @param pBuffer destination buffer
888     * @param SampleCount number of sample points to read
889 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
890 schoenebeck 2 * @returns number of successfully read sample points
891 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
892 schoenebeck 2 */
893 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
894 schoenebeck 21 if (SampleCount == 0) return 0;
895 schoenebeck 317 if (!Compressed) {
896     if (BitDepth == 24) {
897     // 24 bit sample. For now just truncate to 16 bit.
898 schoenebeck 384 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
899 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
900     if (Channels == 2) { // Stereo
901     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
902 schoenebeck 317 pSrc++;
903 persson 365 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
904     *pDst++ = get16(pSrc);
905     pSrc += 3;
906     }
907     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
908 schoenebeck 317 }
909 persson 365 else { // Mono
910     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
911     pSrc++;
912     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
913     *pDst++ = get16(pSrc);
914     pSrc += 3;
915     }
916     return pDst - static_cast<int16_t*>(pBuffer);
917     }
918 schoenebeck 317 }
919 persson 365 else { // 16 bit
920     // (pCkData->Read does endian correction)
921     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
922     : pCkData->Read(pBuffer, SampleCount, 2);
923     }
924 schoenebeck 317 }
925 persson 365 else {
926 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
927 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
928     unsigned long assumedsize = GuessSize(SampleCount),
929 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
930     remainingsamples = SampleCount,
931 persson 365 copysamples, skipsamples,
932     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
933 schoenebeck 2 this->FrameOffset = 0;
934    
935 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
936    
937     // if decompression buffer too small, then reduce amount of samples to read
938     if (pDecompressionBuffer->Size < assumedsize) {
939     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
940     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
941     remainingsamples = SampleCount;
942     assumedsize = GuessSize(SampleCount);
943 schoenebeck 2 }
944    
945 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
946 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
947 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
948    
949 persson 365 while (remainingsamples && remainingbytes) {
950     unsigned long framesamples = SamplesPerFrame;
951     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
952 schoenebeck 2
953 persson 365 int mode_l = *pSrc++, mode_r = 0;
954    
955     if (Channels == 2) {
956     mode_r = *pSrc++;
957     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
958     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
959     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
960     if (remainingbytes < framebytes) { // last frame in sample
961     framesamples = SamplesInLastFrame;
962     if (mode_l == 4 && (framesamples & 1)) {
963     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
964     }
965     else {
966     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
967     }
968 schoenebeck 2 }
969     }
970 persson 365 else {
971     framebytes = bytesPerFrame[mode_l] + 1;
972     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
973     if (remainingbytes < framebytes) {
974     framesamples = SamplesInLastFrame;
975     }
976     }
977 schoenebeck 2
978     // determine how many samples in this frame to skip and read
979 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
980     if (currentframeoffset <= framesamples) {
981     copysamples = framesamples - currentframeoffset;
982     skipsamples = currentframeoffset;
983     }
984     else {
985     copysamples = 0;
986     skipsamples = framesamples;
987     }
988 schoenebeck 2 }
989     else {
990 persson 365 // This frame has enough data for pBuffer, but not
991     // all of the frame is needed. Set file position
992     // to start of this frame for next call to Read.
993 schoenebeck 2 copysamples = remainingsamples;
994 persson 365 skipsamples = currentframeoffset;
995     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
996     this->FrameOffset = currentframeoffset + copysamples;
997     }
998     remainingsamples -= copysamples;
999    
1000     if (remainingbytes > framebytes) {
1001     remainingbytes -= framebytes;
1002     if (remainingsamples == 0 &&
1003     currentframeoffset + copysamples == framesamples) {
1004     // This frame has enough data for pBuffer, and
1005     // all of the frame is needed. Set file
1006     // position to start of next frame for next
1007     // call to Read. FrameOffset is 0.
1008 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1009     }
1010     }
1011 persson 365 else remainingbytes = 0;
1012 schoenebeck 2
1013 persson 365 currentframeoffset -= skipsamples;
1014 schoenebeck 2
1015 persson 365 if (copysamples == 0) {
1016     // skip this frame
1017     pSrc += framebytes - Channels;
1018     }
1019     else {
1020     const unsigned char* const param_l = pSrc;
1021     if (BitDepth == 24) {
1022     if (mode_l != 2) pSrc += 12;
1023 schoenebeck 2
1024 persson 365 if (Channels == 2) { // Stereo
1025     const unsigned char* const param_r = pSrc;
1026     if (mode_r != 2) pSrc += 12;
1027    
1028 persson 437 Decompress24(mode_l, param_l, 2, pSrc, pDst,
1029     skipsamples, copysamples, TruncatedBits);
1030 persson 372 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
1031 persson 437 skipsamples, copysamples, TruncatedBits);
1032 persson 365 pDst += copysamples << 1;
1033 schoenebeck 2 }
1034 persson 365 else { // Mono
1035 persson 437 Decompress24(mode_l, param_l, 1, pSrc, pDst,
1036     skipsamples, copysamples, TruncatedBits);
1037 persson 365 pDst += copysamples;
1038 schoenebeck 2 }
1039 persson 365 }
1040     else { // 16 bit
1041     if (mode_l) pSrc += 4;
1042 schoenebeck 2
1043 persson 365 int step;
1044     if (Channels == 2) { // Stereo
1045     const unsigned char* const param_r = pSrc;
1046     if (mode_r) pSrc += 4;
1047    
1048     step = (2 - mode_l) + (2 - mode_r);
1049 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1050     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1051 persson 365 skipsamples, copysamples);
1052     pDst += copysamples << 1;
1053 schoenebeck 2 }
1054 persson 365 else { // Mono
1055     step = 2 - mode_l;
1056 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1057 persson 365 pDst += copysamples;
1058 schoenebeck 2 }
1059 persson 365 }
1060     pSrc += nextFrameOffset;
1061     }
1062 schoenebeck 2
1063 persson 365 // reload from disk to local buffer if needed
1064     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1065     assumedsize = GuessSize(remainingsamples);
1066     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1067     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1068 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1069     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1070 schoenebeck 2 }
1071 persson 365 } // while
1072    
1073 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1074 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1075 schoenebeck 2 return (SampleCount - remainingsamples);
1076     }
1077     }
1078    
1079 schoenebeck 809 /** @brief Write sample wave data.
1080     *
1081     * Writes \a SampleCount number of sample points from the buffer pointed
1082     * by \a pBuffer and increments the position within the sample. Use this
1083     * method to directly write the sample data to disk, i.e. if you don't
1084     * want or cannot load the whole sample data into RAM.
1085     *
1086     * You have to Resize() the sample to the desired size and call
1087     * File::Save() <b>before</b> using Write().
1088     *
1089     * Note: there is currently no support for writing compressed samples.
1090     *
1091     * @param pBuffer - source buffer
1092     * @param SampleCount - number of sample points to write
1093     * @throws DLS::Exception if current sample size is too small
1094     * @throws gig::Exception if sample is compressed
1095     * @see DLS::LoadSampleData()
1096     */
1097     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1098     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1099     return DLS::Sample::Write(pBuffer, SampleCount);
1100     }
1101    
1102 schoenebeck 384 /**
1103     * Allocates a decompression buffer for streaming (compressed) samples
1104     * with Sample::Read(). If you are using more than one streaming thread
1105     * in your application you <b>HAVE</b> to create a decompression buffer
1106     * for <b>EACH</b> of your streaming threads and provide it with the
1107     * Sample::Read() call in order to avoid race conditions and crashes.
1108     *
1109     * You should free the memory occupied by the allocated buffer(s) once
1110     * you don't need one of your streaming threads anymore by calling
1111     * DestroyDecompressionBuffer().
1112     *
1113     * @param MaxReadSize - the maximum size (in sample points) you ever
1114     * expect to read with one Read() call
1115     * @returns allocated decompression buffer
1116     * @see DestroyDecompressionBuffer()
1117     */
1118     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1119     buffer_t result;
1120     const double worstCaseHeaderOverhead =
1121     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1122     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1123     result.pStart = new int8_t[result.Size];
1124     result.NullExtensionSize = 0;
1125     return result;
1126     }
1127    
1128     /**
1129     * Free decompression buffer, previously created with
1130     * CreateDecompressionBuffer().
1131     *
1132     * @param DecompressionBuffer - previously allocated decompression
1133     * buffer to free
1134     */
1135     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1136     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1137     delete[] (int8_t*) DecompressionBuffer.pStart;
1138     DecompressionBuffer.pStart = NULL;
1139     DecompressionBuffer.Size = 0;
1140     DecompressionBuffer.NullExtensionSize = 0;
1141     }
1142     }
1143    
1144 schoenebeck 2 Sample::~Sample() {
1145     Instances--;
1146 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1147     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1148     InternalDecompressionBuffer.pStart = NULL;
1149     InternalDecompressionBuffer.Size = 0;
1150 schoenebeck 355 }
1151 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1152     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1153     }
1154    
1155    
1156    
1157     // *************** DimensionRegion ***************
1158     // *
1159    
1160 schoenebeck 16 uint DimensionRegion::Instances = 0;
1161     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1162    
1163 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1164 schoenebeck 16 Instances++;
1165    
1166 schoenebeck 823 pSample = NULL;
1167    
1168 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1169 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1170 schoenebeck 2
1171     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1172 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1173     _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1174     LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1175     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1176     _3ewa->ReadInt16(); // unknown
1177     LFO1InternalDepth = _3ewa->ReadUint16();
1178     _3ewa->ReadInt16(); // unknown
1179     LFO3InternalDepth = _3ewa->ReadInt16();
1180     _3ewa->ReadInt16(); // unknown
1181     LFO1ControlDepth = _3ewa->ReadUint16();
1182     _3ewa->ReadInt16(); // unknown
1183     LFO3ControlDepth = _3ewa->ReadInt16();
1184     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1185     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1186     _3ewa->ReadInt16(); // unknown
1187     EG1Sustain = _3ewa->ReadUint16();
1188     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1189     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1190     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1191     EG1ControllerInvert = eg1ctrloptions & 0x01;
1192     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1193     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1194     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1195     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1196     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1197     EG2ControllerInvert = eg2ctrloptions & 0x01;
1198     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1199     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1200     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1201     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1202     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1203     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204     _3ewa->ReadInt16(); // unknown
1205     EG2Sustain = _3ewa->ReadUint16();
1206     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207     _3ewa->ReadInt16(); // unknown
1208     LFO2ControlDepth = _3ewa->ReadUint16();
1209     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1210     _3ewa->ReadInt16(); // unknown
1211     LFO2InternalDepth = _3ewa->ReadUint16();
1212     int32_t eg1decay2 = _3ewa->ReadInt32();
1213     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1214     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1215     _3ewa->ReadInt16(); // unknown
1216     EG1PreAttack = _3ewa->ReadUint16();
1217     int32_t eg2decay2 = _3ewa->ReadInt32();
1218     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1219     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1220     _3ewa->ReadInt16(); // unknown
1221     EG2PreAttack = _3ewa->ReadUint16();
1222     uint8_t velocityresponse = _3ewa->ReadUint8();
1223     if (velocityresponse < 5) {
1224     VelocityResponseCurve = curve_type_nonlinear;
1225     VelocityResponseDepth = velocityresponse;
1226     } else if (velocityresponse < 10) {
1227     VelocityResponseCurve = curve_type_linear;
1228     VelocityResponseDepth = velocityresponse - 5;
1229     } else if (velocityresponse < 15) {
1230     VelocityResponseCurve = curve_type_special;
1231     VelocityResponseDepth = velocityresponse - 10;
1232     } else {
1233     VelocityResponseCurve = curve_type_unknown;
1234     VelocityResponseDepth = 0;
1235     }
1236     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1237     if (releasevelocityresponse < 5) {
1238     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1239     ReleaseVelocityResponseDepth = releasevelocityresponse;
1240     } else if (releasevelocityresponse < 10) {
1241     ReleaseVelocityResponseCurve = curve_type_linear;
1242     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1243     } else if (releasevelocityresponse < 15) {
1244     ReleaseVelocityResponseCurve = curve_type_special;
1245     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1246     } else {
1247     ReleaseVelocityResponseCurve = curve_type_unknown;
1248     ReleaseVelocityResponseDepth = 0;
1249     }
1250     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1251     AttenuationControllerThreshold = _3ewa->ReadInt8();
1252     _3ewa->ReadInt32(); // unknown
1253     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1254     _3ewa->ReadInt16(); // unknown
1255     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1256     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1257     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1258     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1259     else DimensionBypass = dim_bypass_ctrl_none;
1260     uint8_t pan = _3ewa->ReadUint8();
1261     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1262     SelfMask = _3ewa->ReadInt8() & 0x01;
1263     _3ewa->ReadInt8(); // unknown
1264     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1265     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1266     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1267     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1268     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1269     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1270     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1271     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1272     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1273     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1274     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1275     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1276     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1277     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1278     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1279     : vcf_res_ctrl_none;
1280     uint16_t eg3depth = _3ewa->ReadUint16();
1281     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1282     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1283     _3ewa->ReadInt16(); // unknown
1284     ChannelOffset = _3ewa->ReadUint8() / 4;
1285     uint8_t regoptions = _3ewa->ReadUint8();
1286     MSDecode = regoptions & 0x01; // bit 0
1287     SustainDefeat = regoptions & 0x02; // bit 1
1288     _3ewa->ReadInt16(); // unknown
1289     VelocityUpperLimit = _3ewa->ReadInt8();
1290     _3ewa->ReadInt8(); // unknown
1291     _3ewa->ReadInt16(); // unknown
1292     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1293     _3ewa->ReadInt8(); // unknown
1294     _3ewa->ReadInt8(); // unknown
1295     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1296     uint8_t vcfcutoff = _3ewa->ReadUint8();
1297     VCFEnabled = vcfcutoff & 0x80; // bit 7
1298     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1299     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1300     uint8_t vcfvelscale = _3ewa->ReadUint8();
1301     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1302     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1303     _3ewa->ReadInt8(); // unknown
1304     uint8_t vcfresonance = _3ewa->ReadUint8();
1305     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1306     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1307     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1308     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1309     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1310     uint8_t vcfvelocity = _3ewa->ReadUint8();
1311     VCFVelocityDynamicRange = vcfvelocity % 5;
1312     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1313     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1314     if (VCFType == vcf_type_lowpass) {
1315     if (lfo3ctrl & 0x40) // bit 6
1316     VCFType = vcf_type_lowpassturbo;
1317     }
1318     } else { // '3ewa' chunk does not exist yet
1319     // use default values
1320     LFO3Frequency = 1.0;
1321     EG3Attack = 0.0;
1322     LFO1InternalDepth = 0;
1323     LFO3InternalDepth = 0;
1324     LFO1ControlDepth = 0;
1325     LFO3ControlDepth = 0;
1326     EG1Attack = 0.0;
1327     EG1Decay1 = 0.0;
1328     EG1Sustain = 0;
1329     EG1Release = 0.0;
1330     EG1Controller.type = eg1_ctrl_t::type_none;
1331     EG1Controller.controller_number = 0;
1332     EG1ControllerInvert = false;
1333     EG1ControllerAttackInfluence = 0;
1334     EG1ControllerDecayInfluence = 0;
1335     EG1ControllerReleaseInfluence = 0;
1336     EG2Controller.type = eg2_ctrl_t::type_none;
1337     EG2Controller.controller_number = 0;
1338     EG2ControllerInvert = false;
1339     EG2ControllerAttackInfluence = 0;
1340     EG2ControllerDecayInfluence = 0;
1341     EG2ControllerReleaseInfluence = 0;
1342     LFO1Frequency = 1.0;
1343     EG2Attack = 0.0;
1344     EG2Decay1 = 0.0;
1345     EG2Sustain = 0;
1346     EG2Release = 0.0;
1347     LFO2ControlDepth = 0;
1348     LFO2Frequency = 1.0;
1349     LFO2InternalDepth = 0;
1350     EG1Decay2 = 0.0;
1351     EG1InfiniteSustain = false;
1352     EG1PreAttack = 1000;
1353     EG2Decay2 = 0.0;
1354     EG2InfiniteSustain = false;
1355     EG2PreAttack = 1000;
1356     VelocityResponseCurve = curve_type_nonlinear;
1357     VelocityResponseDepth = 3;
1358     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1359     ReleaseVelocityResponseDepth = 3;
1360     VelocityResponseCurveScaling = 32;
1361     AttenuationControllerThreshold = 0;
1362     SampleStartOffset = 0;
1363     PitchTrack = true;
1364     DimensionBypass = dim_bypass_ctrl_none;
1365     Pan = 0;
1366     SelfMask = true;
1367     LFO3Controller = lfo3_ctrl_modwheel;
1368     LFO3Sync = false;
1369     InvertAttenuationController = false;
1370     AttenuationController.type = attenuation_ctrl_t::type_none;
1371     AttenuationController.controller_number = 0;
1372     LFO2Controller = lfo2_ctrl_internal;
1373     LFO2FlipPhase = false;
1374     LFO2Sync = false;
1375     LFO1Controller = lfo1_ctrl_internal;
1376     LFO1FlipPhase = false;
1377     LFO1Sync = false;
1378     VCFResonanceController = vcf_res_ctrl_none;
1379     EG3Depth = 0;
1380     ChannelOffset = 0;
1381     MSDecode = false;
1382     SustainDefeat = false;
1383     VelocityUpperLimit = 0;
1384     ReleaseTriggerDecay = 0;
1385     EG1Hold = false;
1386     VCFEnabled = false;
1387     VCFCutoff = 0;
1388     VCFCutoffController = vcf_cutoff_ctrl_none;
1389     VCFCutoffControllerInvert = false;
1390     VCFVelocityScale = 0;
1391     VCFResonance = 0;
1392     VCFResonanceDynamic = false;
1393     VCFKeyboardTracking = false;
1394     VCFKeyboardTrackingBreakpoint = 0;
1395     VCFVelocityDynamicRange = 0x04;
1396     VCFVelocityCurve = curve_type_linear;
1397     VCFType = vcf_type_lowpass;
1398 schoenebeck 2 }
1399 schoenebeck 16
1400 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1401     VelocityResponseDepth,
1402     VelocityResponseCurveScaling);
1403    
1404     curve_type_t curveType = ReleaseVelocityResponseCurve;
1405     uint8_t depth = ReleaseVelocityResponseDepth;
1406    
1407     // this models a strange behaviour or bug in GSt: two of the
1408     // velocity response curves for release time are not used even
1409     // if specified, instead another curve is chosen.
1410     if ((curveType == curve_type_nonlinear && depth == 0) ||
1411     (curveType == curve_type_special && depth == 4)) {
1412     curveType = curve_type_nonlinear;
1413     depth = 3;
1414     }
1415     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1416    
1417 persson 728 curveType = VCFVelocityCurve;
1418     depth = VCFVelocityDynamicRange;
1419    
1420     // even stranger GSt: two of the velocity response curves for
1421     // filter cutoff are not used, instead another special curve
1422     // is chosen. This curve is not used anywhere else.
1423     if ((curveType == curve_type_nonlinear && depth == 0) ||
1424     (curveType == curve_type_special && depth == 4)) {
1425     curveType = curve_type_special;
1426     depth = 5;
1427     }
1428     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1429 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1430 persson 728
1431 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1432 persson 858 VelocityTable = 0;
1433 persson 613 }
1434    
1435 schoenebeck 809 /**
1436     * Apply dimension region settings to the respective RIFF chunks. You
1437     * have to call File::Save() to make changes persistent.
1438     *
1439     * Usually there is absolutely no need to call this method explicitly.
1440     * It will be called automatically when File::Save() was called.
1441     */
1442     void DimensionRegion::UpdateChunks() {
1443     // first update base class's chunk
1444     DLS::Sampler::UpdateChunks();
1445    
1446     // make sure '3ewa' chunk exists
1447     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1448     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1449     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1450    
1451     // update '3ewa' chunk with DimensionRegion's current settings
1452    
1453     const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1454     memcpy(&pData[0], &unknown, 4);
1455    
1456     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1457     memcpy(&pData[4], &lfo3freq, 4);
1458    
1459     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1460     memcpy(&pData[4], &eg3attack, 4);
1461    
1462     // next 2 bytes unknown
1463    
1464     memcpy(&pData[10], &LFO1InternalDepth, 2);
1465    
1466     // next 2 bytes unknown
1467    
1468     memcpy(&pData[14], &LFO3InternalDepth, 2);
1469    
1470     // next 2 bytes unknown
1471    
1472     memcpy(&pData[18], &LFO1ControlDepth, 2);
1473    
1474     // next 2 bytes unknown
1475    
1476     memcpy(&pData[22], &LFO3ControlDepth, 2);
1477    
1478     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1479     memcpy(&pData[24], &eg1attack, 4);
1480    
1481     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1482     memcpy(&pData[28], &eg1decay1, 4);
1483    
1484     // next 2 bytes unknown
1485    
1486     memcpy(&pData[34], &EG1Sustain, 2);
1487    
1488     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1489     memcpy(&pData[36], &eg1release, 4);
1490    
1491     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1492     memcpy(&pData[40], &eg1ctl, 1);
1493    
1494     const uint8_t eg1ctrloptions =
1495     (EG1ControllerInvert) ? 0x01 : 0x00 |
1496     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1497     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1498     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1499     memcpy(&pData[41], &eg1ctrloptions, 1);
1500    
1501     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1502     memcpy(&pData[42], &eg2ctl, 1);
1503    
1504     const uint8_t eg2ctrloptions =
1505     (EG2ControllerInvert) ? 0x01 : 0x00 |
1506     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1507     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1508     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1509     memcpy(&pData[43], &eg2ctrloptions, 1);
1510    
1511     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1512     memcpy(&pData[44], &lfo1freq, 4);
1513    
1514     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1515     memcpy(&pData[48], &eg2attack, 4);
1516    
1517     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1518     memcpy(&pData[52], &eg2decay1, 4);
1519    
1520     // next 2 bytes unknown
1521    
1522     memcpy(&pData[58], &EG2Sustain, 2);
1523    
1524     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1525     memcpy(&pData[60], &eg2release, 4);
1526    
1527     // next 2 bytes unknown
1528    
1529     memcpy(&pData[66], &LFO2ControlDepth, 2);
1530    
1531     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1532     memcpy(&pData[68], &lfo2freq, 4);
1533    
1534     // next 2 bytes unknown
1535    
1536     memcpy(&pData[72], &LFO2InternalDepth, 2);
1537    
1538     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1539     memcpy(&pData[74], &eg1decay2, 4);
1540    
1541     // next 2 bytes unknown
1542    
1543     memcpy(&pData[80], &EG1PreAttack, 2);
1544    
1545     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1546     memcpy(&pData[82], &eg2decay2, 4);
1547    
1548     // next 2 bytes unknown
1549    
1550     memcpy(&pData[88], &EG2PreAttack, 2);
1551    
1552     {
1553     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1554     uint8_t velocityresponse = VelocityResponseDepth;
1555     switch (VelocityResponseCurve) {
1556     case curve_type_nonlinear:
1557     break;
1558     case curve_type_linear:
1559     velocityresponse += 5;
1560     break;
1561     case curve_type_special:
1562     velocityresponse += 10;
1563     break;
1564     case curve_type_unknown:
1565     default:
1566     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1567     }
1568     memcpy(&pData[90], &velocityresponse, 1);
1569     }
1570    
1571     {
1572     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1573     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1574     switch (ReleaseVelocityResponseCurve) {
1575     case curve_type_nonlinear:
1576     break;
1577     case curve_type_linear:
1578     releasevelocityresponse += 5;
1579     break;
1580     case curve_type_special:
1581     releasevelocityresponse += 10;
1582     break;
1583     case curve_type_unknown:
1584     default:
1585     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1586     }
1587     memcpy(&pData[91], &releasevelocityresponse, 1);
1588     }
1589    
1590     memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1591    
1592     memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1593    
1594     // next 4 bytes unknown
1595    
1596     memcpy(&pData[98], &SampleStartOffset, 2);
1597    
1598     // next 2 bytes unknown
1599    
1600     {
1601     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1602     switch (DimensionBypass) {
1603     case dim_bypass_ctrl_94:
1604     pitchTrackDimensionBypass |= 0x10;
1605     break;
1606     case dim_bypass_ctrl_95:
1607     pitchTrackDimensionBypass |= 0x20;
1608     break;
1609     case dim_bypass_ctrl_none:
1610     //FIXME: should we set anything here?
1611     break;
1612     default:
1613     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1614     }
1615     memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1616     }
1617    
1618     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1619     memcpy(&pData[103], &pan, 1);
1620    
1621     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1622     memcpy(&pData[104], &selfmask, 1);
1623    
1624     // next byte unknown
1625    
1626     {
1627     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1628     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1629     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1630     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1631     memcpy(&pData[106], &lfo3ctrl, 1);
1632     }
1633    
1634     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1635     memcpy(&pData[107], &attenctl, 1);
1636    
1637     {
1638     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1639     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1640     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1641     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1642     memcpy(&pData[108], &lfo2ctrl, 1);
1643     }
1644    
1645     {
1646     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1647     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1648     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1649     if (VCFResonanceController != vcf_res_ctrl_none)
1650     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1651     memcpy(&pData[109], &lfo1ctrl, 1);
1652     }
1653    
1654     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1655     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1656     memcpy(&pData[110], &eg3depth, 1);
1657    
1658     // next 2 bytes unknown
1659    
1660     const uint8_t channeloffset = ChannelOffset * 4;
1661     memcpy(&pData[113], &channeloffset, 1);
1662    
1663     {
1664     uint8_t regoptions = 0;
1665     if (MSDecode) regoptions |= 0x01; // bit 0
1666     if (SustainDefeat) regoptions |= 0x02; // bit 1
1667     memcpy(&pData[114], &regoptions, 1);
1668     }
1669    
1670     // next 2 bytes unknown
1671    
1672     memcpy(&pData[117], &VelocityUpperLimit, 1);
1673    
1674     // next 3 bytes unknown
1675    
1676     memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1677    
1678     // next 2 bytes unknown
1679    
1680     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1681     memcpy(&pData[124], &eg1hold, 1);
1682    
1683     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1684     (VCFCutoff) ? 0x7f : 0x00; /* lower 7 bits */
1685     memcpy(&pData[125], &vcfcutoff, 1);
1686    
1687     memcpy(&pData[126], &VCFCutoffController, 1);
1688    
1689     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1690     (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1691     memcpy(&pData[127], &vcfvelscale, 1);
1692    
1693     // next byte unknown
1694    
1695     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1696     (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1697     memcpy(&pData[129], &vcfresonance, 1);
1698    
1699     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1700     (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1701     memcpy(&pData[130], &vcfbreakpoint, 1);
1702    
1703     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1704     VCFVelocityCurve * 5;
1705     memcpy(&pData[131], &vcfvelocity, 1);
1706    
1707     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1708     memcpy(&pData[132], &vcftype, 1);
1709     }
1710    
1711 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1712     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1713     {
1714     double* table;
1715     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1716 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1717 persson 613 table = (*pVelocityTables)[tableKey];
1718 schoenebeck 16 }
1719     else {
1720 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1721     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1722 schoenebeck 16 }
1723 persson 613 return table;
1724 schoenebeck 2 }
1725 schoenebeck 55
1726 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1727     leverage_ctrl_t decodedcontroller;
1728     switch (EncodedController) {
1729     // special controller
1730     case _lev_ctrl_none:
1731     decodedcontroller.type = leverage_ctrl_t::type_none;
1732     decodedcontroller.controller_number = 0;
1733     break;
1734     case _lev_ctrl_velocity:
1735     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1736     decodedcontroller.controller_number = 0;
1737     break;
1738     case _lev_ctrl_channelaftertouch:
1739     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1740     decodedcontroller.controller_number = 0;
1741     break;
1742 schoenebeck 55
1743 schoenebeck 36 // ordinary MIDI control change controller
1744     case _lev_ctrl_modwheel:
1745     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1746     decodedcontroller.controller_number = 1;
1747     break;
1748     case _lev_ctrl_breath:
1749     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1750     decodedcontroller.controller_number = 2;
1751     break;
1752     case _lev_ctrl_foot:
1753     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1754     decodedcontroller.controller_number = 4;
1755     break;
1756     case _lev_ctrl_effect1:
1757     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1758     decodedcontroller.controller_number = 12;
1759     break;
1760     case _lev_ctrl_effect2:
1761     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1762     decodedcontroller.controller_number = 13;
1763     break;
1764     case _lev_ctrl_genpurpose1:
1765     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1766     decodedcontroller.controller_number = 16;
1767     break;
1768     case _lev_ctrl_genpurpose2:
1769     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1770     decodedcontroller.controller_number = 17;
1771     break;
1772     case _lev_ctrl_genpurpose3:
1773     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1774     decodedcontroller.controller_number = 18;
1775     break;
1776     case _lev_ctrl_genpurpose4:
1777     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1778     decodedcontroller.controller_number = 19;
1779     break;
1780     case _lev_ctrl_portamentotime:
1781     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1782     decodedcontroller.controller_number = 5;
1783     break;
1784     case _lev_ctrl_sustainpedal:
1785     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1786     decodedcontroller.controller_number = 64;
1787     break;
1788     case _lev_ctrl_portamento:
1789     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1790     decodedcontroller.controller_number = 65;
1791     break;
1792     case _lev_ctrl_sostenutopedal:
1793     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1794     decodedcontroller.controller_number = 66;
1795     break;
1796     case _lev_ctrl_softpedal:
1797     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1798     decodedcontroller.controller_number = 67;
1799     break;
1800     case _lev_ctrl_genpurpose5:
1801     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1802     decodedcontroller.controller_number = 80;
1803     break;
1804     case _lev_ctrl_genpurpose6:
1805     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1806     decodedcontroller.controller_number = 81;
1807     break;
1808     case _lev_ctrl_genpurpose7:
1809     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1810     decodedcontroller.controller_number = 82;
1811     break;
1812     case _lev_ctrl_genpurpose8:
1813     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1814     decodedcontroller.controller_number = 83;
1815     break;
1816     case _lev_ctrl_effect1depth:
1817     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1818     decodedcontroller.controller_number = 91;
1819     break;
1820     case _lev_ctrl_effect2depth:
1821     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1822     decodedcontroller.controller_number = 92;
1823     break;
1824     case _lev_ctrl_effect3depth:
1825     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1826     decodedcontroller.controller_number = 93;
1827     break;
1828     case _lev_ctrl_effect4depth:
1829     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1830     decodedcontroller.controller_number = 94;
1831     break;
1832     case _lev_ctrl_effect5depth:
1833     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1834     decodedcontroller.controller_number = 95;
1835     break;
1836 schoenebeck 55
1837 schoenebeck 36 // unknown controller type
1838     default:
1839     throw gig::Exception("Unknown leverage controller type.");
1840     }
1841     return decodedcontroller;
1842     }
1843 schoenebeck 2
1844 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1845     _lev_ctrl_t encodedcontroller;
1846     switch (DecodedController.type) {
1847     // special controller
1848     case leverage_ctrl_t::type_none:
1849     encodedcontroller = _lev_ctrl_none;
1850     break;
1851     case leverage_ctrl_t::type_velocity:
1852     encodedcontroller = _lev_ctrl_velocity;
1853     break;
1854     case leverage_ctrl_t::type_channelaftertouch:
1855     encodedcontroller = _lev_ctrl_channelaftertouch;
1856     break;
1857    
1858     // ordinary MIDI control change controller
1859     case leverage_ctrl_t::type_controlchange:
1860     switch (DecodedController.controller_number) {
1861     case 1:
1862     encodedcontroller = _lev_ctrl_modwheel;
1863     break;
1864     case 2:
1865     encodedcontroller = _lev_ctrl_breath;
1866     break;
1867     case 4:
1868     encodedcontroller = _lev_ctrl_foot;
1869     break;
1870     case 12:
1871     encodedcontroller = _lev_ctrl_effect1;
1872     break;
1873     case 13:
1874     encodedcontroller = _lev_ctrl_effect2;
1875     break;
1876     case 16:
1877     encodedcontroller = _lev_ctrl_genpurpose1;
1878     break;
1879     case 17:
1880     encodedcontroller = _lev_ctrl_genpurpose2;
1881     break;
1882     case 18:
1883     encodedcontroller = _lev_ctrl_genpurpose3;
1884     break;
1885     case 19:
1886     encodedcontroller = _lev_ctrl_genpurpose4;
1887     break;
1888     case 5:
1889     encodedcontroller = _lev_ctrl_portamentotime;
1890     break;
1891     case 64:
1892     encodedcontroller = _lev_ctrl_sustainpedal;
1893     break;
1894     case 65:
1895     encodedcontroller = _lev_ctrl_portamento;
1896     break;
1897     case 66:
1898     encodedcontroller = _lev_ctrl_sostenutopedal;
1899     break;
1900     case 67:
1901     encodedcontroller = _lev_ctrl_softpedal;
1902     break;
1903     case 80:
1904     encodedcontroller = _lev_ctrl_genpurpose5;
1905     break;
1906     case 81:
1907     encodedcontroller = _lev_ctrl_genpurpose6;
1908     break;
1909     case 82:
1910     encodedcontroller = _lev_ctrl_genpurpose7;
1911     break;
1912     case 83:
1913     encodedcontroller = _lev_ctrl_genpurpose8;
1914     break;
1915     case 91:
1916     encodedcontroller = _lev_ctrl_effect1depth;
1917     break;
1918     case 92:
1919     encodedcontroller = _lev_ctrl_effect2depth;
1920     break;
1921     case 93:
1922     encodedcontroller = _lev_ctrl_effect3depth;
1923     break;
1924     case 94:
1925     encodedcontroller = _lev_ctrl_effect4depth;
1926     break;
1927     case 95:
1928     encodedcontroller = _lev_ctrl_effect5depth;
1929     break;
1930     default:
1931     throw gig::Exception("leverage controller number is not supported by the gig format");
1932     }
1933     default:
1934     throw gig::Exception("Unknown leverage controller type.");
1935     }
1936     return encodedcontroller;
1937     }
1938    
1939 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1940     Instances--;
1941     if (!Instances) {
1942     // delete the velocity->volume tables
1943     VelocityTableMap::iterator iter;
1944     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1945     double* pTable = iter->second;
1946     if (pTable) delete[] pTable;
1947     }
1948     pVelocityTables->clear();
1949     delete pVelocityTables;
1950     pVelocityTables = NULL;
1951     }
1952 persson 858 if (VelocityTable) delete[] VelocityTable;
1953 schoenebeck 16 }
1954 schoenebeck 2
1955 schoenebeck 16 /**
1956     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1957     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1958     * and VelocityResponseCurveScaling) involved are taken into account to
1959     * calculate the amplitude factor. Use this method when a key was
1960     * triggered to get the volume with which the sample should be played
1961     * back.
1962     *
1963 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1964     * @returns amplitude factor (between 0.0 and 1.0)
1965 schoenebeck 16 */
1966     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1967     return pVelocityAttenuationTable[MIDIKeyVelocity];
1968     }
1969 schoenebeck 2
1970 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1971     return pVelocityReleaseTable[MIDIKeyVelocity];
1972     }
1973    
1974 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1975     return pVelocityCutoffTable[MIDIKeyVelocity];
1976     }
1977    
1978 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1979 schoenebeck 317
1980 schoenebeck 308 // line-segment approximations of the 15 velocity curves
1981 schoenebeck 16
1982 schoenebeck 308 // linear
1983     const int lin0[] = { 1, 1, 127, 127 };
1984     const int lin1[] = { 1, 21, 127, 127 };
1985     const int lin2[] = { 1, 45, 127, 127 };
1986     const int lin3[] = { 1, 74, 127, 127 };
1987     const int lin4[] = { 1, 127, 127, 127 };
1988 schoenebeck 16
1989 schoenebeck 308 // non-linear
1990     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1991 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1992 schoenebeck 308 127, 127 };
1993     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1994     127, 127 };
1995     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1996     127, 127 };
1997     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1998 schoenebeck 317
1999 schoenebeck 308 // special
2000 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2001 schoenebeck 308 113, 127, 127, 127 };
2002     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2003     118, 127, 127, 127 };
2004 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2005 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2006 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2007 schoenebeck 308 117, 127, 127, 127 };
2008 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2009 schoenebeck 308 127, 127 };
2010 schoenebeck 317
2011 persson 728 // this is only used by the VCF velocity curve
2012     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2013     91, 127, 127, 127 };
2014    
2015 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2016 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2017 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2018 schoenebeck 317
2019 schoenebeck 308 double* const table = new double[128];
2020    
2021     const int* curve = curves[curveType * 5 + depth];
2022     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2023 schoenebeck 317
2024 schoenebeck 308 table[0] = 0;
2025     for (int x = 1 ; x < 128 ; x++) {
2026    
2027     if (x > curve[2]) curve += 2;
2028 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2029 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2030     y = y / 127;
2031    
2032     // Scale up for s > 20, down for s < 20. When
2033     // down-scaling, the curve still ends at 1.0.
2034     if (s < 20 && y >= 0.5)
2035     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2036     else
2037     y = y * (s / 20.0);
2038     if (y > 1) y = 1;
2039    
2040     table[x] = y;
2041     }
2042     return table;
2043     }
2044    
2045    
2046 schoenebeck 2 // *************** Region ***************
2047     // *
2048    
2049     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2050     // Initialization
2051     Dimensions = 0;
2052 schoenebeck 347 for (int i = 0; i < 256; i++) {
2053 schoenebeck 2 pDimensionRegions[i] = NULL;
2054     }
2055 schoenebeck 282 Layers = 1;
2056 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2057     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2058 schoenebeck 2
2059     // Actual Loading
2060    
2061     LoadDimensionRegions(rgnList);
2062    
2063     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2064     if (_3lnk) {
2065     DimensionRegions = _3lnk->ReadUint32();
2066 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2067 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2068     uint8_t bits = _3lnk->ReadUint8();
2069 persson 774 _3lnk->ReadUint8(); // probably the position of the dimension
2070     _3lnk->ReadUint8(); // unknown
2071     uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2072 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2073     pDimensionDefinitions[i].dimension = dimension_none;
2074     pDimensionDefinitions[i].bits = 0;
2075     pDimensionDefinitions[i].zones = 0;
2076     pDimensionDefinitions[i].split_type = split_type_bit;
2077     pDimensionDefinitions[i].zone_size = 0;
2078     }
2079     else { // active dimension
2080     pDimensionDefinitions[i].dimension = dimension;
2081     pDimensionDefinitions[i].bits = bits;
2082 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2083 schoenebeck 2 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2084 schoenebeck 241 dimension == dimension_samplechannel ||
2085 persson 437 dimension == dimension_releasetrigger ||
2086     dimension == dimension_roundrobin ||
2087     dimension == dimension_random) ? split_type_bit
2088     : split_type_normal;
2089 schoenebeck 2 pDimensionDefinitions[i].zone_size =
2090 persson 774 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2091 schoenebeck 2 : 0;
2092     Dimensions++;
2093 schoenebeck 282
2094     // if this is a layer dimension, remember the amount of layers
2095     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2096 schoenebeck 2 }
2097 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2098 schoenebeck 2 }
2099 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2100 schoenebeck 2
2101 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2102     // update the VelocityTables in the dimension regions
2103     UpdateVelocityTable();
2104 schoenebeck 2
2105 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2106     if (file->pVersion && file->pVersion->major == 3)
2107     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2108     else
2109     _3lnk->SetPos(44);
2110    
2111 schoenebeck 2 // load sample references
2112     for (uint i = 0; i < DimensionRegions; i++) {
2113     uint32_t wavepoolindex = _3lnk->ReadUint32();
2114     pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2115     }
2116     }
2117 schoenebeck 823
2118     // make sure there is at least one dimension region
2119     if (!DimensionRegions) {
2120     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2121     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2122     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2123     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2124     DimensionRegions = 1;
2125     }
2126 schoenebeck 2 }
2127    
2128 schoenebeck 809 /**
2129     * Apply Region settings and all its DimensionRegions to the respective
2130     * RIFF chunks. You have to call File::Save() to make changes persistent.
2131     *
2132     * Usually there is absolutely no need to call this method explicitly.
2133     * It will be called automatically when File::Save() was called.
2134     *
2135     * @throws gig::Exception if samples cannot be dereferenced
2136     */
2137     void Region::UpdateChunks() {
2138     // first update base class's chunks
2139     DLS::Region::UpdateChunks();
2140    
2141     // update dimension region's chunks
2142 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2143 schoenebeck 809 pDimensionRegions[i]->UpdateChunks();
2144 schoenebeck 823 }
2145 schoenebeck 809
2146     File* pFile = (File*) GetParent()->GetParent();
2147     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2148     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2149    
2150     // make sure '3lnk' chunk exists
2151     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2152     if (!_3lnk) {
2153     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2154     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2155     }
2156    
2157     // update dimension definitions in '3lnk' chunk
2158     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2159     for (int i = 0; i < iMaxDimensions; i++) {
2160     pData[i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2161     pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2162     // next 2 bytes unknown
2163     pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2164     // next 3 bytes unknown
2165     }
2166    
2167     // update wave pool table in '3lnk' chunk
2168     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2169     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2170     int iWaveIndex = -1;
2171     if (i < DimensionRegions) {
2172 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2173     File::SampleList::iterator iter = pFile->pSamples->begin();
2174     File::SampleList::iterator end = pFile->pSamples->end();
2175 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2176 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2177     iWaveIndex = index;
2178     break;
2179     }
2180 schoenebeck 809 }
2181     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2182     }
2183     memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2184     }
2185     }
2186    
2187 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2188     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2189     if (_3prg) {
2190     int dimensionRegionNr = 0;
2191     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2192     while (_3ewl) {
2193     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2194     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2195     dimensionRegionNr++;
2196     }
2197     _3ewl = _3prg->GetNextSubList();
2198     }
2199     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2200     }
2201     }
2202    
2203 persson 858 void Region::UpdateVelocityTable() {
2204     // get velocity dimension's index
2205     int veldim = -1;
2206     for (int i = 0 ; i < Dimensions ; i++) {
2207     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2208     veldim = i;
2209 schoenebeck 809 break;
2210     }
2211     }
2212 persson 858 if (veldim == -1) return;
2213 schoenebeck 809
2214 persson 858 int step = 1;
2215     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2216     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2217     int end = step * pDimensionDefinitions[veldim].zones;
2218 schoenebeck 809
2219 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2220     int dim[8] = { 0 };
2221     for (int i = 0 ; i < DimensionRegions ; i++) {
2222    
2223     if (pDimensionRegions[i]->VelocityUpperLimit) {
2224     // create the velocity table
2225     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2226     if (!table) {
2227     table = new uint8_t[128];
2228     pDimensionRegions[i]->VelocityTable = table;
2229     }
2230     int tableidx = 0;
2231     int velocityZone = 0;
2232     for (int k = i ; k < end ; k += step) {
2233     DimensionRegion *d = pDimensionRegions[k];
2234     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2235     velocityZone++;
2236     }
2237     } else {
2238     if (pDimensionRegions[i]->VelocityTable) {
2239     delete[] pDimensionRegions[i]->VelocityTable;
2240     pDimensionRegions[i]->VelocityTable = 0;
2241     }
2242 schoenebeck 809 }
2243 persson 858
2244     int j;
2245     int shift = 0;
2246     for (j = 0 ; j < Dimensions ; j++) {
2247     if (j == veldim) i += skipveldim; // skip velocity dimension
2248     else {
2249     dim[j]++;
2250     if (dim[j] < pDimensionDefinitions[j].zones) break;
2251     else {
2252     // skip unused dimension regions
2253     dim[j] = 0;
2254     i += ((1 << pDimensionDefinitions[j].bits) -
2255     pDimensionDefinitions[j].zones) << shift;
2256     }
2257     }
2258     shift += pDimensionDefinitions[j].bits;
2259     }
2260     if (j == Dimensions) break;
2261 schoenebeck 809 }
2262     }
2263    
2264     /** @brief Einstein would have dreamed of it - create a new dimension.
2265     *
2266     * Creates a new dimension with the dimension definition given by
2267     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2268     * There is a hard limit of dimensions and total amount of "bits" all
2269     * dimensions can have. This limit is dependant to what gig file format
2270     * version this file refers to. The gig v2 (and lower) format has a
2271     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2272     * format has a limit of 8.
2273     *
2274     * @param pDimDef - defintion of the new dimension
2275     * @throws gig::Exception if dimension of the same type exists already
2276     * @throws gig::Exception if amount of dimensions or total amount of
2277     * dimension bits limit is violated
2278     */
2279     void Region::AddDimension(dimension_def_t* pDimDef) {
2280     // check if max. amount of dimensions reached
2281     File* file = (File*) GetParent()->GetParent();
2282     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2283     if (Dimensions >= iMaxDimensions)
2284     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2285     // check if max. amount of dimension bits reached
2286     int iCurrentBits = 0;
2287     for (int i = 0; i < Dimensions; i++)
2288     iCurrentBits += pDimensionDefinitions[i].bits;
2289     if (iCurrentBits >= iMaxDimensions)
2290     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2291     const int iNewBits = iCurrentBits + pDimDef->bits;
2292     if (iNewBits > iMaxDimensions)
2293     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2294     // check if there's already a dimensions of the same type
2295     for (int i = 0; i < Dimensions; i++)
2296     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2297     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2298    
2299     // assign definition of new dimension
2300     pDimensionDefinitions[Dimensions] = *pDimDef;
2301    
2302     // create new dimension region(s) for this new dimension
2303     for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2304     //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2305     RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2306     pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2307     DimensionRegions++;
2308     }
2309    
2310     Dimensions++;
2311    
2312     // if this is a layer dimension, update 'Layers' attribute
2313     if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2314    
2315 persson 858 UpdateVelocityTable();
2316 schoenebeck 809 }
2317    
2318     /** @brief Delete an existing dimension.
2319     *
2320     * Deletes the dimension given by \a pDimDef and deletes all respective
2321     * dimension regions, that is all dimension regions where the dimension's
2322     * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2323     * for example this would delete all dimension regions for the case(s)
2324     * where the sustain pedal is pressed down.
2325     *
2326     * @param pDimDef - dimension to delete
2327     * @throws gig::Exception if given dimension cannot be found
2328     */
2329     void Region::DeleteDimension(dimension_def_t* pDimDef) {
2330     // get dimension's index
2331     int iDimensionNr = -1;
2332     for (int i = 0; i < Dimensions; i++) {
2333     if (&pDimensionDefinitions[i] == pDimDef) {
2334     iDimensionNr = i;
2335     break;
2336     }
2337     }
2338     if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2339    
2340     // get amount of bits below the dimension to delete
2341     int iLowerBits = 0;
2342     for (int i = 0; i < iDimensionNr; i++)
2343     iLowerBits += pDimensionDefinitions[i].bits;
2344    
2345     // get amount ot bits above the dimension to delete
2346     int iUpperBits = 0;
2347     for (int i = iDimensionNr + 1; i < Dimensions; i++)
2348     iUpperBits += pDimensionDefinitions[i].bits;
2349    
2350     // delete dimension regions which belong to the given dimension
2351     // (that is where the dimension's bit > 0)
2352     for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2353     for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2354     for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2355     int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2356     iObsoleteBit << iLowerBits |
2357     iLowerBit;
2358     delete pDimensionRegions[iToDelete];
2359     pDimensionRegions[iToDelete] = NULL;
2360     DimensionRegions--;
2361     }
2362     }
2363     }
2364    
2365     // defrag pDimensionRegions array
2366     // (that is remove the NULL spaces within the pDimensionRegions array)
2367     for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2368     if (!pDimensionRegions[iTo]) {
2369     if (iFrom <= iTo) iFrom = iTo + 1;
2370     while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2371     if (iFrom < 256 && pDimensionRegions[iFrom]) {
2372     pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2373     pDimensionRegions[iFrom] = NULL;
2374     }
2375     }
2376     }
2377    
2378     // 'remove' dimension definition
2379     for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2380     pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2381     }
2382     pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2383     pDimensionDefinitions[Dimensions - 1].bits = 0;
2384     pDimensionDefinitions[Dimensions - 1].zones = 0;
2385    
2386     Dimensions--;
2387    
2388     // if this was a layer dimension, update 'Layers' attribute
2389     if (pDimDef->dimension == dimension_layer) Layers = 1;
2390     }
2391    
2392 schoenebeck 2 Region::~Region() {
2393 schoenebeck 350 for (int i = 0; i < 256; i++) {
2394 schoenebeck 2 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2395     }
2396     }
2397    
2398     /**
2399     * Use this method in your audio engine to get the appropriate dimension
2400     * region with it's articulation data for the current situation. Just
2401     * call the method with the current MIDI controller values and you'll get
2402     * the DimensionRegion with the appropriate articulation data for the
2403     * current situation (for this Region of course only). To do that you'll
2404     * first have to look which dimensions with which controllers and in
2405     * which order are defined for this Region when you load the .gig file.
2406     * Special cases are e.g. layer or channel dimensions where you just put
2407     * in the index numbers instead of a MIDI controller value (means 0 for
2408     * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2409     * etc.).
2410     *
2411 schoenebeck 347 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2412 schoenebeck 2 * @returns adress to the DimensionRegion for the given situation
2413     * @see pDimensionDefinitions
2414     * @see Dimensions
2415     */
2416 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2417 persson 858 uint8_t bits;
2418     int veldim = -1;
2419     int velbitpos;
2420     int bitpos = 0;
2421     int dimregidx = 0;
2422 schoenebeck 2 for (uint i = 0; i < Dimensions; i++) {
2423 persson 858 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2424     // the velocity dimension must be handled after the other dimensions
2425     veldim = i;
2426     velbitpos = bitpos;
2427     } else {
2428     switch (pDimensionDefinitions[i].split_type) {
2429     case split_type_normal:
2430     bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2431     break;
2432     case split_type_bit: // the value is already the sought dimension bit number
2433     const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2434     bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2435     break;
2436     }
2437     dimregidx |= bits << bitpos;
2438 schoenebeck 2 }
2439 persson 858 bitpos += pDimensionDefinitions[i].bits;
2440 schoenebeck 2 }
2441 persson 858 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2442     if (veldim != -1) {
2443     // (dimreg is now the dimension region for the lowest velocity)
2444     if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2445     bits = dimreg->VelocityTable[DimValues[veldim]];
2446     else // normal split type
2447     bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2448    
2449     dimregidx |= bits << velbitpos;
2450     dimreg = pDimensionRegions[dimregidx];
2451     }
2452     return dimreg;
2453 schoenebeck 2 }
2454    
2455     /**
2456     * Returns the appropriate DimensionRegion for the given dimension bit
2457     * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2458     * instead of calling this method directly!
2459     *
2460 schoenebeck 347 * @param DimBits Bit numbers for dimension 0 to 7
2461 schoenebeck 2 * @returns adress to the DimensionRegion for the given dimension
2462     * bit numbers
2463     * @see GetDimensionRegionByValue()
2464     */
2465 schoenebeck 347 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2466     return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2467     << pDimensionDefinitions[5].bits | DimBits[5])
2468     << pDimensionDefinitions[4].bits | DimBits[4])
2469     << pDimensionDefinitions[3].bits | DimBits[3])
2470     << pDimensionDefinitions[2].bits | DimBits[2])
2471     << pDimensionDefinitions[1].bits | DimBits[1])
2472     << pDimensionDefinitions[0].bits | DimBits[0]];
2473 schoenebeck 2 }
2474    
2475     /**
2476     * Returns pointer address to the Sample referenced with this region.
2477     * This is the global Sample for the entire Region (not sure if this is
2478     * actually used by the Gigasampler engine - I would only use the Sample
2479     * referenced by the appropriate DimensionRegion instead of this sample).
2480     *
2481     * @returns address to Sample or NULL if there is no reference to a
2482     * sample saved in the .gig file
2483     */
2484     Sample* Region::GetSample() {
2485     if (pSample) return static_cast<gig::Sample*>(pSample);
2486     else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2487     }
2488    
2489 schoenebeck 515 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2490 schoenebeck 352 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2491 schoenebeck 2 File* file = (File*) GetParent()->GetParent();
2492     unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2493 persson 666 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2494 schoenebeck 515 Sample* sample = file->GetFirstSample(pProgress);
2495 schoenebeck 2 while (sample) {
2496 persson 666 if (sample->ulWavePoolOffset == soughtoffset &&
2497     sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2498 schoenebeck 2 sample = file->GetNextSample();
2499     }
2500     return NULL;
2501     }
2502    
2503    
2504    
2505     // *************** Instrument ***************
2506     // *
2507    
2508 schoenebeck 515 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2509 schoenebeck 2 // Initialization
2510     for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2511    
2512     // Loading
2513     RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2514     if (lart) {
2515     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2516     if (_3ewg) {
2517     EffectSend = _3ewg->ReadUint16();
2518     Attenuation = _3ewg->ReadInt32();
2519     FineTune = _3ewg->ReadInt16();
2520     PitchbendRange = _3ewg->ReadInt16();
2521     uint8_t dimkeystart = _3ewg->ReadUint8();
2522     PianoReleaseMode = dimkeystart & 0x01;
2523     DimensionKeyRange.low = dimkeystart >> 1;
2524     DimensionKeyRange.high = _3ewg->ReadUint8();
2525     }
2526     }
2527    
2528 schoenebeck 823 if (!pRegions) pRegions = new RegionList;
2529 schoenebeck 2 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2530 schoenebeck 809 if (lrgn) {
2531     RIFF::List* rgn = lrgn->GetFirstSubList();
2532     while (rgn) {
2533     if (rgn->GetListType() == LIST_TYPE_RGN) {
2534 schoenebeck 823 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2535     pRegions->push_back(new Region(this, rgn));
2536 schoenebeck 809 }
2537     rgn = lrgn->GetNextSubList();
2538 schoenebeck 2 }
2539 schoenebeck 809 // Creating Region Key Table for fast lookup
2540     UpdateRegionKeyTable();
2541 schoenebeck 2 }
2542    
2543 schoenebeck 809 __notify_progress(pProgress, 1.0f); // notify done
2544     }
2545    
2546     void Instrument::UpdateRegionKeyTable() {
2547 schoenebeck 823 RegionList::iterator iter = pRegions->begin();
2548     RegionList::iterator end = pRegions->end();
2549     for (; iter != end; ++iter) {
2550     gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2551     for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2552     RegionKeyTable[iKey] = pRegion;
2553 schoenebeck 2 }
2554     }
2555     }
2556    
2557     Instrument::~Instrument() {
2558     }
2559    
2560     /**
2561 schoenebeck 809 * Apply Instrument with all its Regions to the respective RIFF chunks.
2562     * You have to call File::Save() to make changes persistent.
2563     *
2564     * Usually there is absolutely no need to call this method explicitly.
2565     * It will be called automatically when File::Save() was called.
2566     *
2567     * @throws gig::Exception if samples cannot be dereferenced
2568     */
2569     void Instrument::UpdateChunks() {
2570     // first update base classes' chunks
2571     DLS::Instrument::UpdateChunks();
2572    
2573     // update Regions' chunks
2574 schoenebeck 823 {
2575     RegionList::iterator iter = pRegions->begin();
2576     RegionList::iterator end = pRegions->end();
2577     for (; iter != end; ++iter)
2578     (*iter)->UpdateChunks();
2579     }
2580 schoenebeck 809
2581     // make sure 'lart' RIFF list chunk exists
2582     RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2583     if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2584     // make sure '3ewg' RIFF chunk exists
2585     RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2586     if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2587     // update '3ewg' RIFF chunk
2588     uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2589     memcpy(&pData[0], &EffectSend, 2);
2590     memcpy(&pData[2], &Attenuation, 4);
2591     memcpy(&pData[6], &FineTune, 2);
2592     memcpy(&pData[8], &PitchbendRange, 2);
2593     const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2594     DimensionKeyRange.low << 1;
2595     memcpy(&pData[10], &dimkeystart, 1);
2596     memcpy(&pData[11], &DimensionKeyRange.high, 1);
2597     }
2598    
2599     /**
2600 schoenebeck 2 * Returns the appropriate Region for a triggered note.
2601     *
2602     * @param Key MIDI Key number of triggered note / key (0 - 127)
2603     * @returns pointer adress to the appropriate Region or NULL if there
2604     * there is no Region defined for the given \a Key
2605     */
2606     Region* Instrument::GetRegion(unsigned int Key) {
2607 schoenebeck 823 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2608 schoenebeck 2 return RegionKeyTable[Key];
2609 schoenebeck 823
2610 schoenebeck 2 /*for (int i = 0; i < Regions; i++) {
2611     if (Key <= pRegions[i]->KeyRange.high &&
2612     Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2613     }
2614     return NULL;*/
2615     }
2616    
2617     /**
2618     * Returns the first Region of the instrument. You have to call this
2619     * method once before you use GetNextRegion().
2620     *
2621     * @returns pointer address to first region or NULL if there is none
2622     * @see GetNextRegion()
2623     */
2624     Region* Instrument::GetFirstRegion() {
2625 schoenebeck 823 if (!pRegions) return NULL;
2626     RegionsIterator = pRegions->begin();
2627     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2628 schoenebeck 2 }
2629    
2630     /**
2631     * Returns the next Region of the instrument. You have to call
2632     * GetFirstRegion() once before you can use this method. By calling this
2633     * method multiple times it iterates through the available Regions.
2634     *
2635     * @returns pointer address to the next region or NULL if end reached
2636     * @see GetFirstRegion()
2637     */
2638     Region* Instrument::GetNextRegion() {
2639 schoenebeck 823 if (!pRegions) return NULL;
2640     RegionsIterator++;
2641     return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2642 schoenebeck 2 }
2643    
2644 schoenebeck 809 Region* Instrument::AddRegion() {
2645     // create new Region object (and its RIFF chunks)
2646     RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2647     if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2648     RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2649     Region* pNewRegion = new Region(this, rgn);
2650 schoenebeck 823 pRegions->push_back(pNewRegion);
2651     Regions = pRegions->size();
2652 schoenebeck 809 // update Region key table for fast lookup
2653     UpdateRegionKeyTable();
2654     // done
2655     return pNewRegion;
2656     }
2657 schoenebeck 2
2658 schoenebeck 809 void Instrument::DeleteRegion(Region* pRegion) {
2659     if (!pRegions) return;
2660 schoenebeck 823 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2661 schoenebeck 809 // update Region key table for fast lookup
2662     UpdateRegionKeyTable();
2663     }
2664 schoenebeck 2
2665 schoenebeck 809
2666    
2667 schoenebeck 2 // *************** File ***************
2668     // *
2669    
2670 schoenebeck 809 File::File() : DLS::File() {
2671     }
2672    
2673 schoenebeck 2 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2674     }
2675    
2676 schoenebeck 515 Sample* File::GetFirstSample(progress_t* pProgress) {
2677     if (!pSamples) LoadSamples(pProgress);
2678 schoenebeck 2 if (!pSamples) return NULL;
2679     SamplesIterator = pSamples->begin();
2680     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2681     }
2682    
2683     Sample* File::GetNextSample() {
2684     if (!pSamples) return NULL;
2685     SamplesIterator++;
2686     return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2687     }
2688    
2689 schoenebeck 809 /** @brief Add a new sample.
2690     *
2691     * This will create a new Sample object for the gig file. You have to
2692     * call Save() to make this persistent to the file.
2693     *
2694     * @returns pointer to new Sample object
2695     */
2696     Sample* File::AddSample() {
2697     if (!pSamples) LoadSamples();
2698     __ensureMandatoryChunksExist();
2699     RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2700     // create new Sample object and its respective 'wave' list chunk
2701     RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2702     Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2703     pSamples->push_back(pSample);
2704     return pSample;
2705     }
2706    
2707     /** @brief Delete a sample.
2708     *
2709     * This will delete the given Sample object from the gig file. You have
2710     * to call Save() to make this persistent to the file.
2711     *
2712     * @param pSample - sample to delete
2713     * @throws gig::Exception if given sample could not be found
2714     */
2715     void File::DeleteSample(Sample* pSample) {
2716 schoenebeck 823 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2717     SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2718 schoenebeck 809 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2719     pSamples->erase(iter);
2720     delete pSample;
2721     }
2722    
2723 schoenebeck 823 void File::LoadSamples() {
2724     LoadSamples(NULL);
2725     }
2726    
2727 schoenebeck 515 void File::LoadSamples(progress_t* pProgress) {
2728 schoenebeck 823 if (!pSamples) pSamples = new SampleList;
2729    
2730 persson 666 RIFF::File* file = pRIFF;
2731 schoenebeck 515
2732 persson 666 // just for progress calculation
2733     int iSampleIndex = 0;
2734     int iTotalSamples = WavePoolCount;
2735 schoenebeck 515
2736 persson 666 // check if samples should be loaded from extension files
2737     int lastFileNo = 0;
2738     for (int i = 0 ; i < WavePoolCount ; i++) {
2739     if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2740     }
2741 schoenebeck 780 String name(pRIFF->GetFileName());
2742     int nameLen = name.length();
2743 persson 666 char suffix[6];
2744 schoenebeck 780 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2745 schoenebeck 515
2746 persson 666 for (int fileNo = 0 ; ; ) {
2747     RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2748     if (wvpl) {
2749     unsigned long wvplFileOffset = wvpl->GetFilePos();
2750     RIFF::List* wave = wvpl->GetFirstSubList();
2751     while (wave) {
2752     if (wave->GetListType() == LIST_TYPE_WAVE) {
2753     // notify current progress
2754     const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2755     __notify_progress(pProgress, subprogress);
2756    
2757     unsigned long waveFileOffset = wave->GetFilePos();
2758     pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2759    
2760     iSampleIndex++;
2761     }
2762     wave = wvpl->GetNextSubList();
2763 schoenebeck 2 }
2764 persson 666
2765     if (fileNo == lastFileNo) break;
2766    
2767     // open extension file (*.gx01, *.gx02, ...)
2768     fileNo++;
2769     sprintf(suffix, ".gx%02d", fileNo);
2770     name.replace(nameLen, 5, suffix);
2771     file = new RIFF::File(name);
2772     ExtensionFiles.push_back(file);
2773 schoenebeck 823 } else break;
2774 schoenebeck 2 }
2775 persson 666
2776     __notify_progress(pProgress, 1.0); // notify done
2777 schoenebeck 2 }
2778    
2779     Instrument* File::GetFirstInstrument() {
2780     if (!pInstruments) LoadInstruments();
2781     if (!pInstruments) return NULL;
2782     InstrumentsIterator = pInstruments->begin();
2783 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2784 schoenebeck 2 }
2785    
2786     Instrument* File::GetNextInstrument() {
2787     if (!pInstruments) return NULL;
2788     InstrumentsIterator++;
2789 schoenebeck 823 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2790 schoenebeck 2 }
2791    
2792 schoenebeck 21 /**
2793     * Returns the instrument with the given index.
2794     *
2795 schoenebeck 515 * @param index - number of the sought instrument (0..n)
2796     * @param pProgress - optional: callback function for progress notification
2797 schoenebeck 21 * @returns sought instrument or NULL if there's no such instrument
2798     */
2799 schoenebeck 515 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2800     if (!pInstruments) {
2801     // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2802    
2803     // sample loading subtask
2804     progress_t subprogress;
2805     __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2806     __notify_progress(&subprogress, 0.0f);
2807     GetFirstSample(&subprogress); // now force all samples to be loaded
2808     __notify_progress(&subprogress, 1.0f);
2809    
2810     // instrument loading subtask
2811     if (pProgress && pProgress->callback) {
2812     subprogress.__range_min = subprogress.__range_max;
2813     subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2814     }
2815     __notify_progress(&subprogress, 0.0f);
2816     LoadInstruments(&subprogress);
2817     __notify_progress(&subprogress, 1.0f);
2818     }
2819 schoenebeck 21 if (!pInstruments) return NULL;
2820     InstrumentsIterator = pInstruments->begin();
2821     for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2822 schoenebeck 823 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2823 schoenebeck 21 InstrumentsIterator++;
2824     }
2825     return NULL;
2826     }
2827    
2828 schoenebeck 809 /** @brief Add a new instrument definition.
2829     *
2830     * This will create a new Instrument object for the gig file. You have
2831     * to call Save() to make this persistent to the file.
2832     *
2833     * @returns pointer to new Instrument object
2834     */
2835     Instrument* File::AddInstrument() {
2836     if (!pInstruments) LoadInstruments();
2837     __ensureMandatoryChunksExist();
2838     RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2839     RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2840     Instrument* pInstrument = new Instrument(this, lstInstr);
2841     pInstruments->push_back(pInstrument);
2842     return pInstrument;
2843     }
2844    
2845     /** @brief Delete an instrument.
2846     *
2847     * This will delete the given Instrument object from the gig file. You
2848     * have to call Save() to make this persistent to the file.
2849     *
2850     * @param pInstrument - instrument to delete
2851     * @throws gig::Excption if given instrument could not be found
2852     */
2853     void File::DeleteInstrument(Instrument* pInstrument) {
2854     if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2855 schoenebeck 823 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2856 schoenebeck 809 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2857     pInstruments->erase(iter);
2858     delete pInstrument;
2859     }
2860    
2861 schoenebeck 823 void File::LoadInstruments() {
2862     LoadInstruments(NULL);
2863     }
2864    
2865 schoenebeck 515 void File::LoadInstruments(progress_t* pProgress) {
2866 schoenebeck 823 if (!pInstruments) pInstruments = new InstrumentList;
2867 schoenebeck 2 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2868     if (lstInstruments) {
2869 schoenebeck 515 int iInstrumentIndex = 0;
2870 schoenebeck 2 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2871     while (lstInstr) {
2872     if (lstInstr->GetListType() == LIST_TYPE_INS) {
2873 schoenebeck 515 // notify current progress
2874     const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2875     __notify_progress(pProgress, localProgress);
2876    
2877     // divide local progress into subprogress for loading current Instrument
2878     progress_t subprogress;
2879     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2880    
2881     pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2882    
2883     iInstrumentIndex++;
2884 schoenebeck 2 }
2885     lstInstr = lstInstruments->GetNextSubList();
2886     }
2887 schoenebeck 515 __notify_progress(pProgress, 1.0); // notify done
2888 schoenebeck 2 }
2889     }
2890    
2891    
2892    
2893     // *************** Exception ***************
2894     // *
2895    
2896     Exception::Exception(String Message) : DLS::Exception(Message) {
2897     }
2898    
2899     void Exception::PrintMessage() {
2900     std::cout << "gig::Exception: " << Message << std::endl;
2901     }
2902    
2903 schoenebeck 518
2904     // *************** functions ***************
2905     // *
2906    
2907     /**
2908     * Returns the name of this C++ library. This is usually "libgig" of
2909     * course. This call is equivalent to RIFF::libraryName() and
2910     * DLS::libraryName().
2911     */
2912     String libraryName() {
2913     return PACKAGE;
2914     }
2915    
2916     /**
2917     * Returns version of this C++ library. This call is equivalent to
2918     * RIFF::libraryVersion() and DLS::libraryVersion().
2919     */
2920     String libraryVersion() {
2921     return VERSION;
2922     }
2923    
2924 schoenebeck 2 } // namespace gig

  ViewVC Help
Powered by ViewVC