/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 918 - (hide annotations) (download)
Sat Sep 2 08:45:37 2006 UTC (13 years, 2 months ago) by persson
File size: 133746 byte(s)
* several fixes for the write support

1 schoenebeck 2 /***************************************************************************
2     * *
3     * libgig - C++ cross-platform Gigasampler format file loader library *
4     * *
5 schoenebeck 384 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6     * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27    
28     #include <math.h>
29 schoenebeck 384 #include <iostream>
30    
31 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
32     /// compressed sample wave streams - this value should always be bigger than
33     /// the biggest sample piece expected to be read by the sampler engine,
34     /// otherwise the buffer size will be raised at runtime and thus the buffer
35     /// reallocated which is time consuming and unefficient.
36     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37    
38     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51    
52 schoenebeck 515 namespace gig {
53 schoenebeck 2
54 schoenebeck 515 // *************** progress_t ***************
55     // *
56    
57     progress_t::progress_t() {
58     callback = NULL;
59 schoenebeck 516 custom = NULL;
60 schoenebeck 515 __range_min = 0.0f;
61     __range_max = 1.0f;
62     }
63    
64     // private helper function to convert progress of a subprocess into the global progress
65     static void __notify_progress(progress_t* pProgress, float subprogress) {
66     if (pProgress && pProgress->callback) {
67     const float totalrange = pProgress->__range_max - pProgress->__range_min;
68     const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 schoenebeck 516 pProgress->factor = totalprogress;
70     pProgress->callback(pProgress); // now actually notify about the progress
71 schoenebeck 515 }
72     }
73    
74     // private helper function to divide a progress into subprogresses
75     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76     if (pParentProgress && pParentProgress->callback) {
77     const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78     pSubProgress->callback = pParentProgress->callback;
79 schoenebeck 516 pSubProgress->custom = pParentProgress->custom;
80 schoenebeck 515 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81     pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82     }
83     }
84    
85    
86 schoenebeck 809 // *************** Internal functions for sample decompression ***************
87 persson 365 // *
88    
89 schoenebeck 515 namespace {
90    
91 persson 365 inline int get12lo(const unsigned char* pSrc)
92     {
93     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94     return x & 0x800 ? x - 0x1000 : x;
95     }
96    
97     inline int get12hi(const unsigned char* pSrc)
98     {
99     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100     return x & 0x800 ? x - 0x1000 : x;
101     }
102    
103     inline int16_t get16(const unsigned char* pSrc)
104     {
105     return int16_t(pSrc[0] | pSrc[1] << 8);
106     }
107    
108     inline int get24(const unsigned char* pSrc)
109     {
110     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111     return x & 0x800000 ? x - 0x1000000 : x;
112     }
113    
114 persson 902 inline void store24(unsigned char* pDst, int x)
115     {
116     pDst[0] = x;
117     pDst[1] = x >> 8;
118     pDst[2] = x >> 16;
119     }
120    
121 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
122 persson 372 int srcStep, int dstStep,
123     const unsigned char* pSrc, int16_t* pDst,
124 persson 365 unsigned long currentframeoffset,
125     unsigned long copysamples)
126     {
127     switch (compressionmode) {
128     case 0: // 16 bit uncompressed
129     pSrc += currentframeoffset * srcStep;
130     while (copysamples) {
131     *pDst = get16(pSrc);
132 persson 372 pDst += dstStep;
133 persson 365 pSrc += srcStep;
134     copysamples--;
135     }
136     break;
137    
138     case 1: // 16 bit compressed to 8 bit
139     int y = get16(params);
140     int dy = get16(params + 2);
141     while (currentframeoffset) {
142     dy -= int8_t(*pSrc);
143     y -= dy;
144     pSrc += srcStep;
145     currentframeoffset--;
146     }
147     while (copysamples) {
148     dy -= int8_t(*pSrc);
149     y -= dy;
150     *pDst = y;
151 persson 372 pDst += dstStep;
152 persson 365 pSrc += srcStep;
153     copysamples--;
154     }
155     break;
156     }
157     }
158    
159     void Decompress24(int compressionmode, const unsigned char* params,
160 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 persson 365 unsigned long currentframeoffset,
162 persson 437 unsigned long copysamples, int truncatedBits)
163 persson 365 {
164 persson 695 int y, dy, ddy, dddy;
165 persson 437
166 persson 695 #define GET_PARAMS(params) \
167     y = get24(params); \
168     dy = y - get24((params) + 3); \
169     ddy = get24((params) + 6); \
170     dddy = get24((params) + 9)
171 persson 365
172     #define SKIP_ONE(x) \
173 persson 695 dddy -= (x); \
174     ddy -= dddy; \
175     dy = -dy - ddy; \
176     y += dy
177 persson 365
178     #define COPY_ONE(x) \
179     SKIP_ONE(x); \
180 persson 902 store24(pDst, y << truncatedBits); \
181 persson 372 pDst += dstStep
182 persson 365
183     switch (compressionmode) {
184     case 2: // 24 bit uncompressed
185     pSrc += currentframeoffset * 3;
186     while (copysamples) {
187 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
188 persson 372 pDst += dstStep;
189 persson 365 pSrc += 3;
190     copysamples--;
191     }
192     break;
193    
194     case 3: // 24 bit compressed to 16 bit
195     GET_PARAMS(params);
196     while (currentframeoffset) {
197     SKIP_ONE(get16(pSrc));
198     pSrc += 2;
199     currentframeoffset--;
200     }
201     while (copysamples) {
202     COPY_ONE(get16(pSrc));
203     pSrc += 2;
204     copysamples--;
205     }
206     break;
207    
208     case 4: // 24 bit compressed to 12 bit
209     GET_PARAMS(params);
210     while (currentframeoffset > 1) {
211     SKIP_ONE(get12lo(pSrc));
212     SKIP_ONE(get12hi(pSrc));
213     pSrc += 3;
214     currentframeoffset -= 2;
215     }
216     if (currentframeoffset) {
217     SKIP_ONE(get12lo(pSrc));
218     currentframeoffset--;
219     if (copysamples) {
220     COPY_ONE(get12hi(pSrc));
221     pSrc += 3;
222     copysamples--;
223     }
224     }
225     while (copysamples > 1) {
226     COPY_ONE(get12lo(pSrc));
227     COPY_ONE(get12hi(pSrc));
228     pSrc += 3;
229     copysamples -= 2;
230     }
231     if (copysamples) {
232     COPY_ONE(get12lo(pSrc));
233     }
234     break;
235    
236     case 5: // 24 bit compressed to 8 bit
237     GET_PARAMS(params);
238     while (currentframeoffset) {
239     SKIP_ONE(int8_t(*pSrc++));
240     currentframeoffset--;
241     }
242     while (copysamples) {
243     COPY_ONE(int8_t(*pSrc++));
244     copysamples--;
245     }
246     break;
247     }
248     }
249    
250     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254     }
255    
256    
257 schoenebeck 2 // *************** Sample ***************
258     // *
259    
260 schoenebeck 384 unsigned int Sample::Instances = 0;
261     buffer_t Sample::InternalDecompressionBuffer;
262 schoenebeck 2
263 schoenebeck 809 /** @brief Constructor.
264     *
265     * Load an existing sample or create a new one. A 'wave' list chunk must
266     * be given to this constructor. In case the given 'wave' list chunk
267     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268     * format and sample data will be loaded from there, otherwise default
269     * values will be used and those chunks will be created when
270     * File::Save() will be called later on.
271     *
272     * @param pFile - pointer to gig::File where this sample is
273     * located (or will be located)
274     * @param waveList - pointer to 'wave' list chunk which is (or
275     * will be) associated with this sample
276     * @param WavePoolOffset - offset of this sample data from wave pool
277     * ('wvpl') list chunk
278     * @param fileNo - number of an extension file where this sample
279     * is located, 0 otherwise
280     */
281 persson 666 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 persson 918 pInfo->UseFixedLengthStrings = true;
283 schoenebeck 2 Instances++;
284 persson 666 FileNo = fileNo;
285 schoenebeck 2
286 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287     if (pCk3gix) {
288     SampleGroup = pCk3gix->ReadInt16();
289     } else { // '3gix' chunk missing
290     // use default value(s)
291     SampleGroup = 0;
292     }
293 schoenebeck 2
294 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
295     if (pCkSmpl) {
296     Manufacturer = pCkSmpl->ReadInt32();
297     Product = pCkSmpl->ReadInt32();
298     SamplePeriod = pCkSmpl->ReadInt32();
299     MIDIUnityNote = pCkSmpl->ReadInt32();
300     FineTune = pCkSmpl->ReadInt32();
301     pCkSmpl->Read(&SMPTEFormat, 1, 4);
302     SMPTEOffset = pCkSmpl->ReadInt32();
303     Loops = pCkSmpl->ReadInt32();
304     pCkSmpl->ReadInt32(); // manufByt
305     LoopID = pCkSmpl->ReadInt32();
306     pCkSmpl->Read(&LoopType, 1, 4);
307     LoopStart = pCkSmpl->ReadInt32();
308     LoopEnd = pCkSmpl->ReadInt32();
309     LoopFraction = pCkSmpl->ReadInt32();
310     LoopPlayCount = pCkSmpl->ReadInt32();
311     } else { // 'smpl' chunk missing
312     // use default values
313     Manufacturer = 0;
314     Product = 0;
315     SamplePeriod = 1 / SamplesPerSecond;
316     MIDIUnityNote = 64;
317     FineTune = 0;
318     SMPTEOffset = 0;
319     Loops = 0;
320     LoopID = 0;
321     LoopStart = 0;
322     LoopEnd = 0;
323     LoopFraction = 0;
324     LoopPlayCount = 0;
325     }
326 schoenebeck 2
327     FrameTable = NULL;
328     SamplePos = 0;
329     RAMCache.Size = 0;
330     RAMCache.pStart = NULL;
331     RAMCache.NullExtensionSize = 0;
332    
333 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
334    
335 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
336     Compressed = ewav;
337     Dithered = false;
338     TruncatedBits = 0;
339 schoenebeck 2 if (Compressed) {
340 persson 437 uint32_t version = ewav->ReadInt32();
341     if (version == 3 && BitDepth == 24) {
342     Dithered = ewav->ReadInt32();
343     ewav->SetPos(Channels == 2 ? 84 : 64);
344     TruncatedBits = ewav->ReadInt32();
345     }
346 schoenebeck 2 ScanCompressedSample();
347     }
348 schoenebeck 317
349     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
350 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
351     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
352     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
353 schoenebeck 317 }
354 persson 437 FrameOffset = 0; // just for streaming compressed samples
355 schoenebeck 21
356 persson 864 LoopSize = LoopEnd - LoopStart + 1;
357 schoenebeck 2 }
358    
359 schoenebeck 809 /**
360     * Apply sample and its settings to the respective RIFF chunks. You have
361     * to call File::Save() to make changes persistent.
362     *
363     * Usually there is absolutely no need to call this method explicitly.
364     * It will be called automatically when File::Save() was called.
365     *
366     * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
367     * was provided yet
368     * @throws gig::Exception if there is any invalid sample setting
369     */
370     void Sample::UpdateChunks() {
371     // first update base class's chunks
372     DLS::Sample::UpdateChunks();
373    
374     // make sure 'smpl' chunk exists
375     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
376     if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
377     // update 'smpl' chunk
378     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
379 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
380 schoenebeck 809 memcpy(&pData[0], &Manufacturer, 4);
381     memcpy(&pData[4], &Product, 4);
382     memcpy(&pData[8], &SamplePeriod, 4);
383     memcpy(&pData[12], &MIDIUnityNote, 4);
384     memcpy(&pData[16], &FineTune, 4);
385     memcpy(&pData[20], &SMPTEFormat, 4);
386     memcpy(&pData[24], &SMPTEOffset, 4);
387     memcpy(&pData[28], &Loops, 4);
388    
389     // we skip 'manufByt' for now (4 bytes)
390    
391     memcpy(&pData[36], &LoopID, 4);
392     memcpy(&pData[40], &LoopType, 4);
393     memcpy(&pData[44], &LoopStart, 4);
394     memcpy(&pData[48], &LoopEnd, 4);
395     memcpy(&pData[52], &LoopFraction, 4);
396     memcpy(&pData[56], &LoopPlayCount, 4);
397    
398     // make sure '3gix' chunk exists
399     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
400     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
401     // update '3gix' chunk
402     pData = (uint8_t*) pCk3gix->LoadChunkData();
403     memcpy(&pData[0], &SampleGroup, 2);
404     }
405    
406 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
407     void Sample::ScanCompressedSample() {
408     //TODO: we have to add some more scans here (e.g. determine compression rate)
409     this->SamplesTotal = 0;
410     std::list<unsigned long> frameOffsets;
411    
412 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
413 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
414 persson 365
415 schoenebeck 2 // Scanning
416     pCkData->SetPos(0);
417 persson 365 if (Channels == 2) { // Stereo
418     for (int i = 0 ; ; i++) {
419     // for 24 bit samples every 8:th frame offset is
420     // stored, to save some memory
421     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
422    
423     const int mode_l = pCkData->ReadUint8();
424     const int mode_r = pCkData->ReadUint8();
425     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
426     const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
427    
428     if (pCkData->RemainingBytes() <= frameSize) {
429     SamplesInLastFrame =
430     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
431     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
432     SamplesTotal += SamplesInLastFrame;
433 schoenebeck 2 break;
434 persson 365 }
435     SamplesTotal += SamplesPerFrame;
436     pCkData->SetPos(frameSize, RIFF::stream_curpos);
437     }
438     }
439     else { // Mono
440     for (int i = 0 ; ; i++) {
441     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
442    
443     const int mode = pCkData->ReadUint8();
444     if (mode > 5) throw gig::Exception("Unknown compression mode");
445     const unsigned long frameSize = bytesPerFrame[mode];
446    
447     if (pCkData->RemainingBytes() <= frameSize) {
448     SamplesInLastFrame =
449     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
450     SamplesTotal += SamplesInLastFrame;
451 schoenebeck 2 break;
452 persson 365 }
453     SamplesTotal += SamplesPerFrame;
454     pCkData->SetPos(frameSize, RIFF::stream_curpos);
455 schoenebeck 2 }
456     }
457     pCkData->SetPos(0);
458    
459     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
460     if (FrameTable) delete[] FrameTable;
461     FrameTable = new unsigned long[frameOffsets.size()];
462     std::list<unsigned long>::iterator end = frameOffsets.end();
463     std::list<unsigned long>::iterator iter = frameOffsets.begin();
464     for (int i = 0; iter != end; i++, iter++) {
465     FrameTable[i] = *iter;
466     }
467     }
468    
469     /**
470     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
471     * ReleaseSampleData() to free the memory if you don't need the cached
472     * sample data anymore.
473     *
474     * @returns buffer_t structure with start address and size of the buffer
475     * in bytes
476     * @see ReleaseSampleData(), Read(), SetPos()
477     */
478     buffer_t Sample::LoadSampleData() {
479     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
480     }
481    
482     /**
483     * Reads (uncompresses if needed) and caches the first \a SampleCount
484     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
485     * memory space if you don't need the cached samples anymore. There is no
486     * guarantee that exactly \a SampleCount samples will be cached; this is
487     * not an error. The size will be eventually truncated e.g. to the
488     * beginning of a frame of a compressed sample. This is done for
489     * efficiency reasons while streaming the wave by your sampler engine
490     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
491     * that will be returned to determine the actual cached samples, but note
492     * that the size is given in bytes! You get the number of actually cached
493     * samples by dividing it by the frame size of the sample:
494 schoenebeck 384 * @code
495 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
496     * long cachedsamples = buf.Size / pSample->FrameSize;
497 schoenebeck 384 * @endcode
498 schoenebeck 2 *
499     * @param SampleCount - number of sample points to load into RAM
500     * @returns buffer_t structure with start address and size of
501     * the cached sample data in bytes
502     * @see ReleaseSampleData(), Read(), SetPos()
503     */
504     buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
505     return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
506     }
507    
508     /**
509     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
510     * ReleaseSampleData() to free the memory if you don't need the cached
511     * sample data anymore.
512     * The method will add \a NullSamplesCount silence samples past the
513     * official buffer end (this won't affect the 'Size' member of the
514     * buffer_t structure, that means 'Size' always reflects the size of the
515     * actual sample data, the buffer might be bigger though). Silence
516     * samples past the official buffer are needed for differential
517     * algorithms that always have to take subsequent samples into account
518     * (resampling/interpolation would be an important example) and avoids
519     * memory access faults in such cases.
520     *
521     * @param NullSamplesCount - number of silence samples the buffer should
522     * be extended past it's data end
523     * @returns buffer_t structure with start address and
524     * size of the buffer in bytes
525     * @see ReleaseSampleData(), Read(), SetPos()
526     */
527     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
528     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
529     }
530    
531     /**
532     * Reads (uncompresses if needed) and caches the first \a SampleCount
533     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
534     * memory space if you don't need the cached samples anymore. There is no
535     * guarantee that exactly \a SampleCount samples will be cached; this is
536     * not an error. The size will be eventually truncated e.g. to the
537     * beginning of a frame of a compressed sample. This is done for
538     * efficiency reasons while streaming the wave by your sampler engine
539     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
540     * that will be returned to determine the actual cached samples, but note
541     * that the size is given in bytes! You get the number of actually cached
542     * samples by dividing it by the frame size of the sample:
543 schoenebeck 384 * @code
544 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
545     * long cachedsamples = buf.Size / pSample->FrameSize;
546 schoenebeck 384 * @endcode
547 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
548     * official buffer end (this won't affect the 'Size' member of the
549     * buffer_t structure, that means 'Size' always reflects the size of the
550     * actual sample data, the buffer might be bigger though). Silence
551     * samples past the official buffer are needed for differential
552     * algorithms that always have to take subsequent samples into account
553     * (resampling/interpolation would be an important example) and avoids
554     * memory access faults in such cases.
555     *
556     * @param SampleCount - number of sample points to load into RAM
557     * @param NullSamplesCount - number of silence samples the buffer should
558     * be extended past it's data end
559     * @returns buffer_t structure with start address and
560     * size of the cached sample data in bytes
561     * @see ReleaseSampleData(), Read(), SetPos()
562     */
563     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
564     if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
565     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
566     unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
567     RAMCache.pStart = new int8_t[allocationsize];
568     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
569     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
570     // fill the remaining buffer space with silence samples
571     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
572     return GetCache();
573     }
574    
575     /**
576     * Returns current cached sample points. A buffer_t structure will be
577     * returned which contains address pointer to the begin of the cache and
578     * the size of the cached sample data in bytes. Use
579     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
580     * RAM.
581     *
582     * @returns buffer_t structure with current cached sample points
583     * @see LoadSampleData();
584     */
585     buffer_t Sample::GetCache() {
586     // return a copy of the buffer_t structure
587     buffer_t result;
588     result.Size = this->RAMCache.Size;
589     result.pStart = this->RAMCache.pStart;
590     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
591     return result;
592     }
593    
594     /**
595     * Frees the cached sample from RAM if loaded with
596     * <i>LoadSampleData()</i> previously.
597     *
598     * @see LoadSampleData();
599     */
600     void Sample::ReleaseSampleData() {
601     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
602     RAMCache.pStart = NULL;
603     RAMCache.Size = 0;
604     }
605    
606 schoenebeck 809 /** @brief Resize sample.
607     *
608     * Resizes the sample's wave form data, that is the actual size of
609     * sample wave data possible to be written for this sample. This call
610     * will return immediately and just schedule the resize operation. You
611     * should call File::Save() to actually perform the resize operation(s)
612     * "physically" to the file. As this can take a while on large files, it
613     * is recommended to call Resize() first on all samples which have to be
614     * resized and finally to call File::Save() to perform all those resize
615     * operations in one rush.
616     *
617     * The actual size (in bytes) is dependant to the current FrameSize
618     * value. You may want to set FrameSize before calling Resize().
619     *
620     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
621     * enlarged samples before calling File::Save() as this might exceed the
622     * current sample's boundary!
623     *
624     * Also note: only WAVE_FORMAT_PCM is currently supported, that is
625     * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
626     * other formats will fail!
627     *
628     * @param iNewSize - new sample wave data size in sample points (must be
629     * greater than zero)
630     * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
631     * or if \a iNewSize is less than 1
632     * @throws gig::Exception if existing sample is compressed
633     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
634     * DLS::Sample::FormatTag, File::Save()
635     */
636     void Sample::Resize(int iNewSize) {
637     if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
638     DLS::Sample::Resize(iNewSize);
639     }
640    
641 schoenebeck 2 /**
642     * Sets the position within the sample (in sample points, not in
643     * bytes). Use this method and <i>Read()</i> if you don't want to load
644     * the sample into RAM, thus for disk streaming.
645     *
646     * Although the original Gigasampler engine doesn't allow positioning
647     * within compressed samples, I decided to implement it. Even though
648     * the Gigasampler format doesn't allow to define loops for compressed
649     * samples at the moment, positioning within compressed samples might be
650     * interesting for some sampler engines though. The only drawback about
651     * my decision is that it takes longer to load compressed gig Files on
652     * startup, because it's neccessary to scan the samples for some
653     * mandatory informations. But I think as it doesn't affect the runtime
654     * efficiency, nobody will have a problem with that.
655     *
656     * @param SampleCount number of sample points to jump
657     * @param Whence optional: to which relation \a SampleCount refers
658     * to, if omited <i>RIFF::stream_start</i> is assumed
659     * @returns the new sample position
660     * @see Read()
661     */
662     unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
663     if (Compressed) {
664     switch (Whence) {
665     case RIFF::stream_curpos:
666     this->SamplePos += SampleCount;
667     break;
668     case RIFF::stream_end:
669     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
670     break;
671     case RIFF::stream_backward:
672     this->SamplePos -= SampleCount;
673     break;
674     case RIFF::stream_start: default:
675     this->SamplePos = SampleCount;
676     break;
677     }
678     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
679    
680     unsigned long frame = this->SamplePos / 2048; // to which frame to jump
681     this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
682     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
683     return this->SamplePos;
684     }
685     else { // not compressed
686     unsigned long orderedBytes = SampleCount * this->FrameSize;
687     unsigned long result = pCkData->SetPos(orderedBytes, Whence);
688     return (result == orderedBytes) ? SampleCount
689     : result / this->FrameSize;
690     }
691     }
692    
693     /**
694     * Returns the current position in the sample (in sample points).
695     */
696     unsigned long Sample::GetPos() {
697     if (Compressed) return SamplePos;
698     else return pCkData->GetPos() / FrameSize;
699     }
700    
701     /**
702 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
703     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
704     * the position within the sample respectively, this method honors the
705     * looping informations of the sample (if any). The sample wave stream
706     * will be decompressed on the fly if using a compressed sample. Use this
707     * method if you don't want to load the sample into RAM, thus for disk
708     * streaming. All this methods needs to know to proceed with streaming
709     * for the next time you call this method is stored in \a pPlaybackState.
710     * You have to allocate and initialize the playback_state_t structure by
711     * yourself before you use it to stream a sample:
712 schoenebeck 384 * @code
713     * gig::playback_state_t playbackstate;
714     * playbackstate.position = 0;
715     * playbackstate.reverse = false;
716     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
717     * @endcode
718 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
719     * defined or if the current read position is located within a loop area.
720     * The method already handles such cases by itself.
721     *
722 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
723     * have to use an external decompression buffer for <b>EACH</b>
724     * streaming thread to avoid race conditions and crashes!
725     *
726 schoenebeck 24 * @param pBuffer destination buffer
727     * @param SampleCount number of sample points to read
728     * @param pPlaybackState will be used to store and reload the playback
729     * state for the next ReadAndLoop() call
730 persson 864 * @param pDimRgn dimension region with looping information
731 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
732 schoenebeck 24 * @returns number of successfully read sample points
733 schoenebeck 384 * @see CreateDecompressionBuffer()
734 schoenebeck 24 */
735 persson 864 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
736     DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
737 schoenebeck 24 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
738     uint8_t* pDst = (uint8_t*) pBuffer;
739    
740     SetPos(pPlaybackState->position); // recover position from the last time
741    
742 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
743 schoenebeck 24
744 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
745     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
746 schoenebeck 24
747 persson 864 if (GetPos() <= loopEnd) {
748     switch (loop.LoopType) {
749 schoenebeck 24
750 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
751     do {
752     // if not endless loop check if max. number of loop cycles have been passed
753     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
754 schoenebeck 24
755 persson 864 if (!pPlaybackState->reverse) { // forward playback
756     do {
757     samplestoloopend = loopEnd - GetPos();
758     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
759     samplestoread -= readsamples;
760     totalreadsamples += readsamples;
761     if (readsamples == samplestoloopend) {
762     pPlaybackState->reverse = true;
763     break;
764     }
765     } while (samplestoread && readsamples);
766     }
767     else { // backward playback
768 schoenebeck 24
769 persson 864 // as we can only read forward from disk, we have to
770     // determine the end position within the loop first,
771     // read forward from that 'end' and finally after
772     // reading, swap all sample frames so it reflects
773     // backward playback
774 schoenebeck 24
775 persson 864 unsigned long swapareastart = totalreadsamples;
776     unsigned long loopoffset = GetPos() - loop.LoopStart;
777     unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
778     unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
779 schoenebeck 24
780 persson 864 SetPos(reverseplaybackend);
781 schoenebeck 24
782 persson 864 // read samples for backward playback
783     do {
784     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
785     samplestoreadinloop -= readsamples;
786     samplestoread -= readsamples;
787     totalreadsamples += readsamples;
788     } while (samplestoreadinloop && readsamples);
789 schoenebeck 24
790 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
791    
792     if (reverseplaybackend == loop.LoopStart) {
793     pPlaybackState->loop_cycles_left--;
794     pPlaybackState->reverse = false;
795     }
796    
797     // reverse the sample frames for backward playback
798     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
799 schoenebeck 24 }
800 persson 864 } while (samplestoread && readsamples);
801     break;
802     }
803 schoenebeck 24
804 persson 864 case loop_type_backward: { // TODO: not tested yet!
805     // forward playback (not entered the loop yet)
806     if (!pPlaybackState->reverse) do {
807     samplestoloopend = loopEnd - GetPos();
808     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
809     samplestoread -= readsamples;
810     totalreadsamples += readsamples;
811     if (readsamples == samplestoloopend) {
812     pPlaybackState->reverse = true;
813     break;
814     }
815     } while (samplestoread && readsamples);
816 schoenebeck 24
817 persson 864 if (!samplestoread) break;
818 schoenebeck 24
819 persson 864 // as we can only read forward from disk, we have to
820     // determine the end position within the loop first,
821     // read forward from that 'end' and finally after
822     // reading, swap all sample frames so it reflects
823     // backward playback
824 schoenebeck 24
825 persson 864 unsigned long swapareastart = totalreadsamples;
826     unsigned long loopoffset = GetPos() - loop.LoopStart;
827     unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
828     : samplestoread;
829     unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
830 schoenebeck 24
831 persson 864 SetPos(reverseplaybackend);
832 schoenebeck 24
833 persson 864 // read samples for backward playback
834     do {
835     // if not endless loop check if max. number of loop cycles have been passed
836     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
837     samplestoloopend = loopEnd - GetPos();
838     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
839     samplestoreadinloop -= readsamples;
840     samplestoread -= readsamples;
841     totalreadsamples += readsamples;
842     if (readsamples == samplestoloopend) {
843     pPlaybackState->loop_cycles_left--;
844     SetPos(loop.LoopStart);
845     }
846     } while (samplestoreadinloop && readsamples);
847 schoenebeck 24
848 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
849 schoenebeck 24
850 persson 864 // reverse the sample frames for backward playback
851     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
852     break;
853     }
854 schoenebeck 24
855 persson 864 default: case loop_type_normal: {
856     do {
857     // if not endless loop check if max. number of loop cycles have been passed
858     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
859     samplestoloopend = loopEnd - GetPos();
860     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
861     samplestoread -= readsamples;
862     totalreadsamples += readsamples;
863     if (readsamples == samplestoloopend) {
864     pPlaybackState->loop_cycles_left--;
865     SetPos(loop.LoopStart);
866     }
867     } while (samplestoread && readsamples);
868     break;
869     }
870 schoenebeck 24 }
871     }
872     }
873    
874     // read on without looping
875     if (samplestoread) do {
876 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
877 schoenebeck 24 samplestoread -= readsamples;
878     totalreadsamples += readsamples;
879     } while (readsamples && samplestoread);
880    
881     // store current position
882     pPlaybackState->position = GetPos();
883    
884     return totalreadsamples;
885     }
886    
887     /**
888 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
889     * position into the buffer pointed by \a pBuffer and increments the
890     * position within the sample. The sample wave stream will be
891     * decompressed on the fly if using a compressed sample. Use this method
892     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
893     * thus for disk streaming.
894     *
895 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
896     * have to use an external decompression buffer for <b>EACH</b>
897     * streaming thread to avoid race conditions and crashes!
898     *
899 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
900     * (using native endianness). For 24 bit, the buffer will
901     * contain three bytes per sample, little-endian.
902     *
903 schoenebeck 2 * @param pBuffer destination buffer
904     * @param SampleCount number of sample points to read
905 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
906 schoenebeck 2 * @returns number of successfully read sample points
907 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
908 schoenebeck 2 */
909 schoenebeck 384 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
910 schoenebeck 21 if (SampleCount == 0) return 0;
911 schoenebeck 317 if (!Compressed) {
912     if (BitDepth == 24) {
913 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
914 schoenebeck 317 }
915 persson 365 else { // 16 bit
916     // (pCkData->Read does endian correction)
917     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
918     : pCkData->Read(pBuffer, SampleCount, 2);
919     }
920 schoenebeck 317 }
921 persson 365 else {
922 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
923 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
924     unsigned long assumedsize = GuessSize(SampleCount),
925 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
926     remainingsamples = SampleCount,
927 persson 365 copysamples, skipsamples,
928     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
929 schoenebeck 2 this->FrameOffset = 0;
930    
931 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
932    
933     // if decompression buffer too small, then reduce amount of samples to read
934     if (pDecompressionBuffer->Size < assumedsize) {
935     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
936     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
937     remainingsamples = SampleCount;
938     assumedsize = GuessSize(SampleCount);
939 schoenebeck 2 }
940    
941 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
942 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
943 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
944 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
945    
946 persson 365 while (remainingsamples && remainingbytes) {
947     unsigned long framesamples = SamplesPerFrame;
948     unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
949 schoenebeck 2
950 persson 365 int mode_l = *pSrc++, mode_r = 0;
951    
952     if (Channels == 2) {
953     mode_r = *pSrc++;
954     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
955     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
956     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
957     if (remainingbytes < framebytes) { // last frame in sample
958     framesamples = SamplesInLastFrame;
959     if (mode_l == 4 && (framesamples & 1)) {
960     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
961     }
962     else {
963     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
964     }
965 schoenebeck 2 }
966     }
967 persson 365 else {
968     framebytes = bytesPerFrame[mode_l] + 1;
969     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
970     if (remainingbytes < framebytes) {
971     framesamples = SamplesInLastFrame;
972     }
973     }
974 schoenebeck 2
975     // determine how many samples in this frame to skip and read
976 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
977     if (currentframeoffset <= framesamples) {
978     copysamples = framesamples - currentframeoffset;
979     skipsamples = currentframeoffset;
980     }
981     else {
982     copysamples = 0;
983     skipsamples = framesamples;
984     }
985 schoenebeck 2 }
986     else {
987 persson 365 // This frame has enough data for pBuffer, but not
988     // all of the frame is needed. Set file position
989     // to start of this frame for next call to Read.
990 schoenebeck 2 copysamples = remainingsamples;
991 persson 365 skipsamples = currentframeoffset;
992     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
993     this->FrameOffset = currentframeoffset + copysamples;
994     }
995     remainingsamples -= copysamples;
996    
997     if (remainingbytes > framebytes) {
998     remainingbytes -= framebytes;
999     if (remainingsamples == 0 &&
1000     currentframeoffset + copysamples == framesamples) {
1001     // This frame has enough data for pBuffer, and
1002     // all of the frame is needed. Set file
1003     // position to start of next frame for next
1004     // call to Read. FrameOffset is 0.
1005 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1006     }
1007     }
1008 persson 365 else remainingbytes = 0;
1009 schoenebeck 2
1010 persson 365 currentframeoffset -= skipsamples;
1011 schoenebeck 2
1012 persson 365 if (copysamples == 0) {
1013     // skip this frame
1014     pSrc += framebytes - Channels;
1015     }
1016     else {
1017     const unsigned char* const param_l = pSrc;
1018     if (BitDepth == 24) {
1019     if (mode_l != 2) pSrc += 12;
1020 schoenebeck 2
1021 persson 365 if (Channels == 2) { // Stereo
1022     const unsigned char* const param_r = pSrc;
1023     if (mode_r != 2) pSrc += 12;
1024    
1025 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1026 persson 437 skipsamples, copysamples, TruncatedBits);
1027 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1028 persson 437 skipsamples, copysamples, TruncatedBits);
1029 persson 902 pDst24 += copysamples * 6;
1030 schoenebeck 2 }
1031 persson 365 else { // Mono
1032 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1033 persson 437 skipsamples, copysamples, TruncatedBits);
1034 persson 902 pDst24 += copysamples * 3;
1035 schoenebeck 2 }
1036 persson 365 }
1037     else { // 16 bit
1038     if (mode_l) pSrc += 4;
1039 schoenebeck 2
1040 persson 365 int step;
1041     if (Channels == 2) { // Stereo
1042     const unsigned char* const param_r = pSrc;
1043     if (mode_r) pSrc += 4;
1044    
1045     step = (2 - mode_l) + (2 - mode_r);
1046 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1047     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1048 persson 365 skipsamples, copysamples);
1049     pDst += copysamples << 1;
1050 schoenebeck 2 }
1051 persson 365 else { // Mono
1052     step = 2 - mode_l;
1053 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1054 persson 365 pDst += copysamples;
1055 schoenebeck 2 }
1056 persson 365 }
1057     pSrc += nextFrameOffset;
1058     }
1059 schoenebeck 2
1060 persson 365 // reload from disk to local buffer if needed
1061     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1062     assumedsize = GuessSize(remainingsamples);
1063     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1064     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1065 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1066     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1067 schoenebeck 2 }
1068 persson 365 } // while
1069    
1070 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1071 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1072 schoenebeck 2 return (SampleCount - remainingsamples);
1073     }
1074     }
1075    
1076 schoenebeck 809 /** @brief Write sample wave data.
1077     *
1078     * Writes \a SampleCount number of sample points from the buffer pointed
1079     * by \a pBuffer and increments the position within the sample. Use this
1080     * method to directly write the sample data to disk, i.e. if you don't
1081     * want or cannot load the whole sample data into RAM.
1082     *
1083     * You have to Resize() the sample to the desired size and call
1084     * File::Save() <b>before</b> using Write().
1085     *
1086     * Note: there is currently no support for writing compressed samples.
1087     *
1088     * @param pBuffer - source buffer
1089     * @param SampleCount - number of sample points to write
1090     * @throws DLS::Exception if current sample size is too small
1091     * @throws gig::Exception if sample is compressed
1092     * @see DLS::LoadSampleData()
1093     */
1094     unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1095     if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1096     return DLS::Sample::Write(pBuffer, SampleCount);
1097     }
1098    
1099 schoenebeck 384 /**
1100     * Allocates a decompression buffer for streaming (compressed) samples
1101     * with Sample::Read(). If you are using more than one streaming thread
1102     * in your application you <b>HAVE</b> to create a decompression buffer
1103     * for <b>EACH</b> of your streaming threads and provide it with the
1104     * Sample::Read() call in order to avoid race conditions and crashes.
1105     *
1106     * You should free the memory occupied by the allocated buffer(s) once
1107     * you don't need one of your streaming threads anymore by calling
1108     * DestroyDecompressionBuffer().
1109     *
1110     * @param MaxReadSize - the maximum size (in sample points) you ever
1111     * expect to read with one Read() call
1112     * @returns allocated decompression buffer
1113     * @see DestroyDecompressionBuffer()
1114     */
1115     buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1116     buffer_t result;
1117     const double worstCaseHeaderOverhead =
1118     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1119     result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1120     result.pStart = new int8_t[result.Size];
1121     result.NullExtensionSize = 0;
1122     return result;
1123     }
1124    
1125     /**
1126     * Free decompression buffer, previously created with
1127     * CreateDecompressionBuffer().
1128     *
1129     * @param DecompressionBuffer - previously allocated decompression
1130     * buffer to free
1131     */
1132     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1133     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1134     delete[] (int8_t*) DecompressionBuffer.pStart;
1135     DecompressionBuffer.pStart = NULL;
1136     DecompressionBuffer.Size = 0;
1137     DecompressionBuffer.NullExtensionSize = 0;
1138     }
1139     }
1140    
1141 schoenebeck 2 Sample::~Sample() {
1142     Instances--;
1143 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1144     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1145     InternalDecompressionBuffer.pStart = NULL;
1146     InternalDecompressionBuffer.Size = 0;
1147 schoenebeck 355 }
1148 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1149     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1150     }
1151    
1152    
1153    
1154     // *************** DimensionRegion ***************
1155     // *
1156    
1157 schoenebeck 16 uint DimensionRegion::Instances = 0;
1158     DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1159    
1160 schoenebeck 2 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1161 schoenebeck 16 Instances++;
1162    
1163 schoenebeck 823 pSample = NULL;
1164    
1165 schoenebeck 2 memcpy(&Crossfade, &SamplerOptions, 4);
1166 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1167 schoenebeck 2
1168     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1169 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1170 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1171 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1172     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1173     _3ewa->ReadInt16(); // unknown
1174     LFO1InternalDepth = _3ewa->ReadUint16();
1175     _3ewa->ReadInt16(); // unknown
1176     LFO3InternalDepth = _3ewa->ReadInt16();
1177     _3ewa->ReadInt16(); // unknown
1178     LFO1ControlDepth = _3ewa->ReadUint16();
1179     _3ewa->ReadInt16(); // unknown
1180     LFO3ControlDepth = _3ewa->ReadInt16();
1181     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1182     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1183     _3ewa->ReadInt16(); // unknown
1184     EG1Sustain = _3ewa->ReadUint16();
1185     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1186     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1187     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1188     EG1ControllerInvert = eg1ctrloptions & 0x01;
1189     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1190     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1191     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1192     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1193     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1194     EG2ControllerInvert = eg2ctrloptions & 0x01;
1195     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1196     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1197     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1198     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1200     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1201     _3ewa->ReadInt16(); // unknown
1202     EG2Sustain = _3ewa->ReadUint16();
1203     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204     _3ewa->ReadInt16(); // unknown
1205     LFO2ControlDepth = _3ewa->ReadUint16();
1206     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207     _3ewa->ReadInt16(); // unknown
1208     LFO2InternalDepth = _3ewa->ReadUint16();
1209     int32_t eg1decay2 = _3ewa->ReadInt32();
1210     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1211     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1212     _3ewa->ReadInt16(); // unknown
1213     EG1PreAttack = _3ewa->ReadUint16();
1214     int32_t eg2decay2 = _3ewa->ReadInt32();
1215     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1216     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1217     _3ewa->ReadInt16(); // unknown
1218     EG2PreAttack = _3ewa->ReadUint16();
1219     uint8_t velocityresponse = _3ewa->ReadUint8();
1220     if (velocityresponse < 5) {
1221     VelocityResponseCurve = curve_type_nonlinear;
1222     VelocityResponseDepth = velocityresponse;
1223     } else if (velocityresponse < 10) {
1224     VelocityResponseCurve = curve_type_linear;
1225     VelocityResponseDepth = velocityresponse - 5;
1226     } else if (velocityresponse < 15) {
1227     VelocityResponseCurve = curve_type_special;
1228     VelocityResponseDepth = velocityresponse - 10;
1229     } else {
1230     VelocityResponseCurve = curve_type_unknown;
1231     VelocityResponseDepth = 0;
1232     }
1233     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1234     if (releasevelocityresponse < 5) {
1235     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1236     ReleaseVelocityResponseDepth = releasevelocityresponse;
1237     } else if (releasevelocityresponse < 10) {
1238     ReleaseVelocityResponseCurve = curve_type_linear;
1239     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1240     } else if (releasevelocityresponse < 15) {
1241     ReleaseVelocityResponseCurve = curve_type_special;
1242     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1243     } else {
1244     ReleaseVelocityResponseCurve = curve_type_unknown;
1245     ReleaseVelocityResponseDepth = 0;
1246     }
1247     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1248     AttenuationControllerThreshold = _3ewa->ReadInt8();
1249     _3ewa->ReadInt32(); // unknown
1250     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1251     _3ewa->ReadInt16(); // unknown
1252     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1253     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1254     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1255     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1256     else DimensionBypass = dim_bypass_ctrl_none;
1257     uint8_t pan = _3ewa->ReadUint8();
1258     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1259     SelfMask = _3ewa->ReadInt8() & 0x01;
1260     _3ewa->ReadInt8(); // unknown
1261     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1262     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1263     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1264     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1265     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1266     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1267     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1268     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1269     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1270     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1271     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1272     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1273     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1274     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1275     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1276     : vcf_res_ctrl_none;
1277     uint16_t eg3depth = _3ewa->ReadUint16();
1278     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1279     : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1280     _3ewa->ReadInt16(); // unknown
1281     ChannelOffset = _3ewa->ReadUint8() / 4;
1282     uint8_t regoptions = _3ewa->ReadUint8();
1283     MSDecode = regoptions & 0x01; // bit 0
1284     SustainDefeat = regoptions & 0x02; // bit 1
1285     _3ewa->ReadInt16(); // unknown
1286     VelocityUpperLimit = _3ewa->ReadInt8();
1287     _3ewa->ReadInt8(); // unknown
1288     _3ewa->ReadInt16(); // unknown
1289     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1290     _3ewa->ReadInt8(); // unknown
1291     _3ewa->ReadInt8(); // unknown
1292     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1293     uint8_t vcfcutoff = _3ewa->ReadUint8();
1294     VCFEnabled = vcfcutoff & 0x80; // bit 7
1295     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1296     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1297     uint8_t vcfvelscale = _3ewa->ReadUint8();
1298     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1299     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1300     _3ewa->ReadInt8(); // unknown
1301     uint8_t vcfresonance = _3ewa->ReadUint8();
1302     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1303     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1304     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1305     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1306     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1307     uint8_t vcfvelocity = _3ewa->ReadUint8();
1308     VCFVelocityDynamicRange = vcfvelocity % 5;
1309     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1310     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1311     if (VCFType == vcf_type_lowpass) {
1312     if (lfo3ctrl & 0x40) // bit 6
1313     VCFType = vcf_type_lowpassturbo;
1314     }
1315     } else { // '3ewa' chunk does not exist yet
1316     // use default values
1317     LFO3Frequency = 1.0;
1318     EG3Attack = 0.0;
1319     LFO1InternalDepth = 0;
1320     LFO3InternalDepth = 0;
1321     LFO1ControlDepth = 0;
1322     LFO3ControlDepth = 0;
1323     EG1Attack = 0.0;
1324     EG1Decay1 = 0.0;
1325     EG1Sustain = 0;
1326     EG1Release = 0.0;
1327     EG1Controller.type = eg1_ctrl_t::type_none;
1328     EG1Controller.controller_number = 0;
1329     EG1ControllerInvert = false;
1330     EG1ControllerAttackInfluence = 0;
1331     EG1ControllerDecayInfluence = 0;
1332     EG1ControllerReleaseInfluence = 0;
1333     EG2Controller.type = eg2_ctrl_t::type_none;
1334     EG2Controller.controller_number = 0;
1335     EG2ControllerInvert = false;
1336     EG2ControllerAttackInfluence = 0;
1337     EG2ControllerDecayInfluence = 0;
1338     EG2ControllerReleaseInfluence = 0;
1339     LFO1Frequency = 1.0;
1340     EG2Attack = 0.0;
1341     EG2Decay1 = 0.0;
1342     EG2Sustain = 0;
1343     EG2Release = 0.0;
1344     LFO2ControlDepth = 0;
1345     LFO2Frequency = 1.0;
1346     LFO2InternalDepth = 0;
1347     EG1Decay2 = 0.0;
1348     EG1InfiniteSustain = false;
1349     EG1PreAttack = 1000;
1350     EG2Decay2 = 0.0;
1351     EG2InfiniteSustain = false;
1352     EG2PreAttack = 1000;
1353     VelocityResponseCurve = curve_type_nonlinear;
1354     VelocityResponseDepth = 3;
1355     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1356     ReleaseVelocityResponseDepth = 3;
1357     VelocityResponseCurveScaling = 32;
1358     AttenuationControllerThreshold = 0;
1359     SampleStartOffset = 0;
1360     PitchTrack = true;
1361     DimensionBypass = dim_bypass_ctrl_none;
1362     Pan = 0;
1363     SelfMask = true;
1364     LFO3Controller = lfo3_ctrl_modwheel;
1365     LFO3Sync = false;
1366     InvertAttenuationController = false;
1367     AttenuationController.type = attenuation_ctrl_t::type_none;
1368     AttenuationController.controller_number = 0;
1369     LFO2Controller = lfo2_ctrl_internal;
1370     LFO2FlipPhase = false;
1371     LFO2Sync = false;
1372     LFO1Controller = lfo1_ctrl_internal;
1373     LFO1FlipPhase = false;
1374     LFO1Sync = false;
1375     VCFResonanceController = vcf_res_ctrl_none;
1376     EG3Depth = 0;
1377     ChannelOffset = 0;
1378     MSDecode = false;
1379     SustainDefeat = false;
1380     VelocityUpperLimit = 0;
1381     ReleaseTriggerDecay = 0;
1382     EG1Hold = false;
1383     VCFEnabled = false;
1384     VCFCutoff = 0;
1385     VCFCutoffController = vcf_cutoff_ctrl_none;
1386     VCFCutoffControllerInvert = false;
1387     VCFVelocityScale = 0;
1388     VCFResonance = 0;
1389     VCFResonanceDynamic = false;
1390     VCFKeyboardTracking = false;
1391     VCFKeyboardTrackingBreakpoint = 0;
1392     VCFVelocityDynamicRange = 0x04;
1393     VCFVelocityCurve = curve_type_linear;
1394     VCFType = vcf_type_lowpass;
1395 schoenebeck 2 }
1396 schoenebeck 16
1397 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1398     VelocityResponseDepth,
1399     VelocityResponseCurveScaling);
1400    
1401     curve_type_t curveType = ReleaseVelocityResponseCurve;
1402     uint8_t depth = ReleaseVelocityResponseDepth;
1403    
1404     // this models a strange behaviour or bug in GSt: two of the
1405     // velocity response curves for release time are not used even
1406     // if specified, instead another curve is chosen.
1407     if ((curveType == curve_type_nonlinear && depth == 0) ||
1408     (curveType == curve_type_special && depth == 4)) {
1409     curveType = curve_type_nonlinear;
1410     depth = 3;
1411     }
1412     pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1413    
1414 persson 728 curveType = VCFVelocityCurve;
1415     depth = VCFVelocityDynamicRange;
1416    
1417     // even stranger GSt: two of the velocity response curves for
1418     // filter cutoff are not used, instead another special curve
1419     // is chosen. This curve is not used anywhere else.
1420     if ((curveType == curve_type_nonlinear && depth == 0) ||
1421     (curveType == curve_type_special && depth == 4)) {
1422     curveType = curve_type_special;
1423     depth = 5;
1424     }
1425     pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1426 persson 773 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1427 persson 728
1428 persson 613 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1429 persson 858 VelocityTable = 0;
1430 persson 613 }
1431    
1432 schoenebeck 809 /**
1433     * Apply dimension region settings to the respective RIFF chunks. You
1434     * have to call File::Save() to make changes persistent.
1435     *
1436     * Usually there is absolutely no need to call this method explicitly.
1437     * It will be called automatically when File::Save() was called.
1438     */
1439     void DimensionRegion::UpdateChunks() {
1440     // first update base class's chunk
1441     DLS::Sampler::UpdateChunks();
1442    
1443     // make sure '3ewa' chunk exists
1444     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1445     if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1446     uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1447    
1448     // update '3ewa' chunk with DimensionRegion's current settings
1449    
1450 persson 918 const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?
1451 schoenebeck 809 memcpy(&pData[0], &unknown, 4);
1452    
1453     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1454     memcpy(&pData[4], &lfo3freq, 4);
1455    
1456     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1457 persson 918 memcpy(&pData[8], &eg3attack, 4);
1458 schoenebeck 809
1459     // next 2 bytes unknown
1460    
1461 persson 918 memcpy(&pData[14], &LFO1InternalDepth, 2);
1462 schoenebeck 809
1463     // next 2 bytes unknown
1464    
1465 persson 918 memcpy(&pData[18], &LFO3InternalDepth, 2);
1466 schoenebeck 809
1467     // next 2 bytes unknown
1468    
1469 persson 918 memcpy(&pData[22], &LFO1ControlDepth, 2);
1470 schoenebeck 809
1471     // next 2 bytes unknown
1472    
1473 persson 918 memcpy(&pData[26], &LFO3ControlDepth, 2);
1474 schoenebeck 809
1475     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1476 persson 918 memcpy(&pData[28], &eg1attack, 4);
1477 schoenebeck 809
1478     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1479 persson 918 memcpy(&pData[32], &eg1decay1, 4);
1480 schoenebeck 809
1481     // next 2 bytes unknown
1482    
1483 persson 918 memcpy(&pData[38], &EG1Sustain, 2);
1484 schoenebeck 809
1485     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1486 persson 918 memcpy(&pData[40], &eg1release, 4);
1487 schoenebeck 809
1488     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1489 persson 918 memcpy(&pData[44], &eg1ctl, 1);
1490 schoenebeck 809
1491     const uint8_t eg1ctrloptions =
1492     (EG1ControllerInvert) ? 0x01 : 0x00 |
1493     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1494     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1495     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1496 persson 918 memcpy(&pData[45], &eg1ctrloptions, 1);
1497 schoenebeck 809
1498     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1499 persson 918 memcpy(&pData[46], &eg2ctl, 1);
1500 schoenebeck 809
1501     const uint8_t eg2ctrloptions =
1502     (EG2ControllerInvert) ? 0x01 : 0x00 |
1503     GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1504     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1505     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1506 persson 918 memcpy(&pData[47], &eg2ctrloptions, 1);
1507 schoenebeck 809
1508     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1509 persson 918 memcpy(&pData[48], &lfo1freq, 4);
1510 schoenebeck 809
1511     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1512 persson 918 memcpy(&pData[52], &eg2attack, 4);
1513 schoenebeck 809
1514     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1515 persson 918 memcpy(&pData[56], &eg2decay1, 4);
1516 schoenebeck 809
1517     // next 2 bytes unknown
1518    
1519 persson 918 memcpy(&pData[62], &EG2Sustain, 2);
1520 schoenebeck 809
1521     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1522 persson 918 memcpy(&pData[64], &eg2release, 4);
1523 schoenebeck 809
1524     // next 2 bytes unknown
1525    
1526 persson 918 memcpy(&pData[70], &LFO2ControlDepth, 2);
1527 schoenebeck 809
1528     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1529 persson 918 memcpy(&pData[72], &lfo2freq, 4);
1530 schoenebeck 809
1531     // next 2 bytes unknown
1532    
1533 persson 918 memcpy(&pData[78], &LFO2InternalDepth, 2);
1534 schoenebeck 809
1535     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1536 persson 918 memcpy(&pData[80], &eg1decay2, 4);
1537 schoenebeck 809
1538     // next 2 bytes unknown
1539    
1540 persson 918 memcpy(&pData[86], &EG1PreAttack, 2);
1541 schoenebeck 809
1542     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1543 persson 918 memcpy(&pData[88], &eg2decay2, 4);
1544 schoenebeck 809
1545     // next 2 bytes unknown
1546    
1547 persson 918 memcpy(&pData[94], &EG2PreAttack, 2);
1548 schoenebeck 809
1549     {
1550     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1551     uint8_t velocityresponse = VelocityResponseDepth;
1552     switch (VelocityResponseCurve) {
1553     case curve_type_nonlinear:
1554     break;
1555     case curve_type_linear:
1556     velocityresponse += 5;
1557     break;
1558     case curve_type_special:
1559     velocityresponse += 10;
1560     break;
1561     case curve_type_unknown:
1562     default:
1563     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1564     }
1565 persson 918 memcpy(&pData[96], &velocityresponse, 1);
1566 schoenebeck 809 }
1567    
1568     {
1569     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1570     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1571     switch (ReleaseVelocityResponseCurve) {
1572     case curve_type_nonlinear:
1573     break;
1574     case curve_type_linear:
1575     releasevelocityresponse += 5;
1576     break;
1577     case curve_type_special:
1578     releasevelocityresponse += 10;
1579     break;
1580     case curve_type_unknown:
1581     default:
1582     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1583     }
1584 persson 918 memcpy(&pData[97], &releasevelocityresponse, 1);
1585 schoenebeck 809 }
1586    
1587 persson 918 memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1588 schoenebeck 809
1589 persson 918 memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1590 schoenebeck 809
1591     // next 4 bytes unknown
1592    
1593 persson 918 memcpy(&pData[104], &SampleStartOffset, 2);
1594 schoenebeck 809
1595     // next 2 bytes unknown
1596    
1597     {
1598     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1599     switch (DimensionBypass) {
1600     case dim_bypass_ctrl_94:
1601     pitchTrackDimensionBypass |= 0x10;
1602     break;
1603     case dim_bypass_ctrl_95:
1604     pitchTrackDimensionBypass |= 0x20;
1605     break;
1606     case dim_bypass_ctrl_none:
1607     //FIXME: should we set anything here?
1608     break;
1609     default:
1610     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1611     }
1612 persson 918 memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1613 schoenebeck 809 }
1614    
1615     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1616 persson 918 memcpy(&pData[109], &pan, 1);
1617 schoenebeck 809
1618     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1619 persson 918 memcpy(&pData[110], &selfmask, 1);
1620 schoenebeck 809
1621     // next byte unknown
1622    
1623     {
1624     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1625     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1626     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1627     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1628 persson 918 memcpy(&pData[112], &lfo3ctrl, 1);
1629 schoenebeck 809 }
1630    
1631     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1632 persson 918 memcpy(&pData[113], &attenctl, 1);
1633 schoenebeck 809
1634     {
1635     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1636     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1637     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1638     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1639 persson 918 memcpy(&pData[114], &lfo2ctrl, 1);
1640 schoenebeck 809 }
1641    
1642     {
1643     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1644     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1645     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1646     if (VCFResonanceController != vcf_res_ctrl_none)
1647     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1648 persson 918 memcpy(&pData[115], &lfo1ctrl, 1);
1649 schoenebeck 809 }
1650    
1651     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1652     : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1653 persson 918 memcpy(&pData[116], &eg3depth, 1);
1654 schoenebeck 809
1655     // next 2 bytes unknown
1656    
1657     const uint8_t channeloffset = ChannelOffset * 4;
1658 persson 918 memcpy(&pData[120], &channeloffset, 1);
1659 schoenebeck 809
1660     {
1661     uint8_t regoptions = 0;
1662     if (MSDecode) regoptions |= 0x01; // bit 0
1663     if (SustainDefeat) regoptions |= 0x02; // bit 1
1664 persson 918 memcpy(&pData[121], &regoptions, 1);
1665 schoenebeck 809 }
1666    
1667     // next 2 bytes unknown
1668    
1669 persson 918 memcpy(&pData[124], &VelocityUpperLimit, 1);
1670 schoenebeck 809
1671     // next 3 bytes unknown
1672    
1673 persson 918 memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1674 schoenebeck 809
1675     // next 2 bytes unknown
1676    
1677     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1678 persson 918 memcpy(&pData[131], &eg1hold, 1);
1679 schoenebeck 809
1680     const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1681 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
1682     memcpy(&pData[132], &vcfcutoff, 1);
1683 schoenebeck 809
1684 persson 918 memcpy(&pData[133], &VCFCutoffController, 1);
1685 schoenebeck 809
1686     const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1687 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1688     memcpy(&pData[134], &vcfvelscale, 1);
1689 schoenebeck 809
1690     // next byte unknown
1691    
1692     const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1693 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
1694     memcpy(&pData[136], &vcfresonance, 1);
1695 schoenebeck 809
1696     const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1697 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1698     memcpy(&pData[137], &vcfbreakpoint, 1);
1699 schoenebeck 809
1700     const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1701     VCFVelocityCurve * 5;
1702 persson 918 memcpy(&pData[138], &vcfvelocity, 1);
1703 schoenebeck 809
1704     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1705 persson 918 memcpy(&pData[139], &vcftype, 1);
1706 schoenebeck 809 }
1707    
1708 persson 613 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1709     double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1710     {
1711     double* table;
1712     uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1713 schoenebeck 16 if (pVelocityTables->count(tableKey)) { // if key exists
1714 persson 613 table = (*pVelocityTables)[tableKey];
1715 schoenebeck 16 }
1716     else {
1717 persson 613 table = CreateVelocityTable(curveType, depth, scaling);
1718     (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1719 schoenebeck 16 }
1720 persson 613 return table;
1721 schoenebeck 2 }
1722 schoenebeck 55
1723 schoenebeck 36 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1724     leverage_ctrl_t decodedcontroller;
1725     switch (EncodedController) {
1726     // special controller
1727     case _lev_ctrl_none:
1728     decodedcontroller.type = leverage_ctrl_t::type_none;
1729     decodedcontroller.controller_number = 0;
1730     break;
1731     case _lev_ctrl_velocity:
1732     decodedcontroller.type = leverage_ctrl_t::type_velocity;
1733     decodedcontroller.controller_number = 0;
1734     break;
1735     case _lev_ctrl_channelaftertouch:
1736     decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1737     decodedcontroller.controller_number = 0;
1738     break;
1739 schoenebeck 55
1740 schoenebeck 36 // ordinary MIDI control change controller
1741     case _lev_ctrl_modwheel:
1742     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1743     decodedcontroller.controller_number = 1;
1744     break;
1745     case _lev_ctrl_breath:
1746     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1747     decodedcontroller.controller_number = 2;
1748     break;
1749     case _lev_ctrl_foot:
1750     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1751     decodedcontroller.controller_number = 4;
1752     break;
1753     case _lev_ctrl_effect1:
1754     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1755     decodedcontroller.controller_number = 12;
1756     break;
1757     case _lev_ctrl_effect2:
1758     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1759     decodedcontroller.controller_number = 13;
1760     break;
1761     case _lev_ctrl_genpurpose1:
1762     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1763     decodedcontroller.controller_number = 16;
1764     break;
1765     case _lev_ctrl_genpurpose2:
1766     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1767     decodedcontroller.controller_number = 17;
1768     break;
1769     case _lev_ctrl_genpurpose3:
1770     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1771     decodedcontroller.controller_number = 18;
1772     break;
1773     case _lev_ctrl_genpurpose4:
1774     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1775     decodedcontroller.controller_number = 19;
1776     break;
1777     case _lev_ctrl_portamentotime:
1778     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779     decodedcontroller.controller_number = 5;
1780     break;
1781     case _lev_ctrl_sustainpedal:
1782     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783     decodedcontroller.controller_number = 64;
1784     break;
1785     case _lev_ctrl_portamento:
1786     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787     decodedcontroller.controller_number = 65;
1788     break;
1789     case _lev_ctrl_sostenutopedal:
1790     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791     decodedcontroller.controller_number = 66;
1792     break;
1793     case _lev_ctrl_softpedal:
1794     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795     decodedcontroller.controller_number = 67;
1796     break;
1797     case _lev_ctrl_genpurpose5:
1798     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799     decodedcontroller.controller_number = 80;
1800     break;
1801     case _lev_ctrl_genpurpose6:
1802     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803     decodedcontroller.controller_number = 81;
1804     break;
1805     case _lev_ctrl_genpurpose7:
1806     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807     decodedcontroller.controller_number = 82;
1808     break;
1809     case _lev_ctrl_genpurpose8:
1810     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811     decodedcontroller.controller_number = 83;
1812     break;
1813     case _lev_ctrl_effect1depth:
1814     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815     decodedcontroller.controller_number = 91;
1816     break;
1817     case _lev_ctrl_effect2depth:
1818     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819     decodedcontroller.controller_number = 92;
1820     break;
1821     case _lev_ctrl_effect3depth:
1822     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823     decodedcontroller.controller_number = 93;
1824     break;
1825     case _lev_ctrl_effect4depth:
1826     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827     decodedcontroller.controller_number = 94;
1828     break;
1829     case _lev_ctrl_effect5depth:
1830     decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831     decodedcontroller.controller_number = 95;
1832     break;
1833 schoenebeck 55
1834 schoenebeck 36 // unknown controller type
1835     default:
1836     throw gig::Exception("Unknown leverage controller type.");
1837     }
1838     return decodedcontroller;
1839     }
1840 schoenebeck 2
1841 schoenebeck 809 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1842     _lev_ctrl_t encodedcontroller;
1843     switch (DecodedController.type) {
1844     // special controller
1845     case leverage_ctrl_t::type_none:
1846     encodedcontroller = _lev_ctrl_none;
1847     break;
1848     case leverage_ctrl_t::type_velocity:
1849     encodedcontroller = _lev_ctrl_velocity;
1850     break;
1851     case leverage_ctrl_t::type_channelaftertouch:
1852     encodedcontroller = _lev_ctrl_channelaftertouch;
1853     break;
1854    
1855     // ordinary MIDI control change controller
1856     case leverage_ctrl_t::type_controlchange:
1857     switch (DecodedController.controller_number) {
1858     case 1:
1859     encodedcontroller = _lev_ctrl_modwheel;
1860     break;
1861     case 2:
1862     encodedcontroller = _lev_ctrl_breath;
1863     break;
1864     case 4:
1865     encodedcontroller = _lev_ctrl_foot;
1866     break;
1867     case 12:
1868     encodedcontroller = _lev_ctrl_effect1;
1869     break;
1870     case 13:
1871     encodedcontroller = _lev_ctrl_effect2;
1872     break;
1873     case 16:
1874     encodedcontroller = _lev_ctrl_genpurpose1;
1875     break;
1876     case 17:
1877     encodedcontroller = _lev_ctrl_genpurpose2;
1878     break;
1879     case 18:
1880     encodedcontroller = _lev_ctrl_genpurpose3;
1881     break;
1882     case 19:
1883     encodedcontroller = _lev_ctrl_genpurpose4;
1884     break;
1885     case 5:
1886     encodedcontroller = _lev_ctrl_portamentotime;
1887     break;
1888     case 64:
1889     encodedcontroller = _lev_ctrl_sustainpedal;
1890     break;
1891     case 65:
1892     encodedcontroller = _lev_ctrl_portamento;
1893     break;
1894     case 66:
1895     encodedcontroller = _lev_ctrl_sostenutopedal;
1896     break;
1897     case 67:
1898     encodedcontroller = _lev_ctrl_softpedal;
1899     break;
1900     case 80:
1901     encodedcontroller = _lev_ctrl_genpurpose5;
1902     break;
1903     case 81:
1904     encodedcontroller = _lev_ctrl_genpurpose6;
1905     break;
1906     case 82:
1907     encodedcontroller = _lev_ctrl_genpurpose7;
1908     break;
1909     case 83:
1910     encodedcontroller = _lev_ctrl_genpurpose8;
1911     break;
1912     case 91:
1913     encodedcontroller = _lev_ctrl_effect1depth;
1914     break;
1915     case 92:
1916     encodedcontroller = _lev_ctrl_effect2depth;
1917     break;
1918     case 93:
1919     encodedcontroller = _lev_ctrl_effect3depth;
1920     break;
1921     case 94:
1922     encodedcontroller = _lev_ctrl_effect4depth;
1923     break;
1924     case 95:
1925     encodedcontroller = _lev_ctrl_effect5depth;
1926     break;
1927     default:
1928     throw gig::Exception("leverage controller number is not supported by the gig format");
1929     }
1930     default:
1931     throw gig::Exception("Unknown leverage controller type.");
1932     }
1933     return encodedcontroller;
1934     }
1935    
1936 schoenebeck 16 DimensionRegion::~DimensionRegion() {
1937     Instances--;
1938     if (!Instances) {
1939     // delete the velocity->volume tables
1940     VelocityTableMap::iterator iter;
1941     for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1942     double* pTable = iter->second;
1943     if (pTable) delete[] pTable;
1944     }
1945     pVelocityTables->clear();
1946     delete pVelocityTables;
1947     pVelocityTables = NULL;
1948     }
1949 persson 858 if (VelocityTable) delete[] VelocityTable;
1950 schoenebeck 16 }
1951 schoenebeck 2
1952 schoenebeck 16 /**
1953     * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1954     * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1955     * and VelocityResponseCurveScaling) involved are taken into account to
1956     * calculate the amplitude factor. Use this method when a key was
1957     * triggered to get the volume with which the sample should be played
1958     * back.
1959     *
1960 schoenebeck 36 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1961     * @returns amplitude factor (between 0.0 and 1.0)
1962 schoenebeck 16 */
1963     double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1964     return pVelocityAttenuationTable[MIDIKeyVelocity];
1965     }
1966 schoenebeck 2
1967 persson 613 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1968     return pVelocityReleaseTable[MIDIKeyVelocity];
1969     }
1970    
1971 persson 728 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1972     return pVelocityCutoffTable[MIDIKeyVelocity];
1973     }
1974    
1975 schoenebeck 308 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1976 schoenebeck 317
1977 schoenebeck 308 // line-segment approximations of the 15 velocity curves
1978 schoenebeck 16
1979 schoenebeck 308 // linear
1980     const int lin0[] = { 1, 1, 127, 127 };
1981     const int lin1[] = { 1, 21, 127, 127 };
1982     const int lin2[] = { 1, 45, 127, 127 };
1983     const int lin3[] = { 1, 74, 127, 127 };
1984     const int lin4[] = { 1, 127, 127, 127 };
1985 schoenebeck 16
1986 schoenebeck 308 // non-linear
1987     const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1988 schoenebeck 317 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1989 schoenebeck 308 127, 127 };
1990     const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1991     127, 127 };
1992     const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1993     127, 127 };
1994     const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1995 schoenebeck 317
1996 schoenebeck 308 // special
1997 schoenebeck 317 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1998 schoenebeck 308 113, 127, 127, 127 };
1999     const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2000     118, 127, 127, 127 };
2001 schoenebeck 317 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2002 schoenebeck 308 85, 90, 91, 127, 127, 127 };
2003 schoenebeck 317 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2004 schoenebeck 308 117, 127, 127, 127 };
2005 schoenebeck 317 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2006 schoenebeck 308 127, 127 };
2007 schoenebeck 317
2008 persson 728 // this is only used by the VCF velocity curve
2009     const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2010     91, 127, 127, 127 };
2011    
2012 schoenebeck 308 const int* const curves[] = { non0, non1, non2, non3, non4,
2013 schoenebeck 317 lin0, lin1, lin2, lin3, lin4,
2014 persson 728 spe0, spe1, spe2, spe3, spe4, spe5 };
2015 schoenebeck 317
2016 schoenebeck 308 double* const table = new double[128];
2017    
2018     const int* curve = curves[curveType * 5 + depth];
2019     const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2020 schoenebeck 317
2021 schoenebeck 308 table[0] = 0;
2022     for (int x = 1 ; x < 128 ; x++) {
2023    
2024     if (x > curve[2]) curve += 2;
2025 schoenebeck 317 double y = curve[1] + (x - curve[0]) *
2026 schoenebeck 308 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2027     y = y / 127;
2028    
2029     // Scale up for s > 20, down for s < 20. When
2030     // down-scaling, the curve still ends at 1.0.
2031     if (s < 20 && y >= 0.5)
2032     y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2033     else
2034     y = y * (s / 20.0);
2035     if (y > 1) y = 1;
2036    
2037     table[x] = y;
2038     }
2039     return table;
2040     }
2041    
2042    
2043 schoenebeck 2 // *************** Region ***************
2044     // *
2045    
2046     Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2047 persson 918 pInfo->UseFixedLengthStrings = true;
2048    
2049 schoenebeck 2 // Initialization
2050     Dimensions = 0;
2051 schoenebeck 347 for (int i = 0; i < 256; i++) {
2052 schoenebeck 2 pDimensionRegions[i] = NULL;
2053     }
2054 schoenebeck 282 Layers = 1;
2055 schoenebeck 347 File* file = (File*) GetParent()->GetParent();
2056     int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2057 schoenebeck 2
2058     // Actual Loading
2059    
2060     LoadDimensionRegions(rgnList);
2061    
2062     RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2063     if (_3lnk) {
2064     DimensionRegions = _3lnk->ReadUint32();
2065 schoenebeck 347 for (int i = 0; i < dimensionBits; i++) {
2066 schoenebeck 2 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2067     uint8_t bits = _3lnk->ReadUint8();
2068 persson 774 _3lnk->ReadUint8(); // probably the position of the dimension
2069     _3lnk->ReadUint8(); // unknown
2070     uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2071 schoenebeck 2 if (dimension == dimension_none) { // inactive dimension
2072     pDimensionDefinitions[i].dimension = dimension_none;
2073     pDimensionDefinitions[i].bits = 0;
2074     pDimensionDefinitions[i].zones = 0;
2075     pDimensionDefinitions[i].split_type = split_type_bit;
2076     pDimensionDefinitions[i].zone_size = 0;
2077     }
2078     else { // active dimension
2079     pDimensionDefinitions[i].dimension = dimension;
2080     pDimensionDefinitions[i].bits = bits;
2081 persson 774 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2082 schoenebeck 2 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2083 schoenebeck 241 dimension == dimension_samplechannel ||
2084 persson 437 dimension == dimension_releasetrigger ||
2085 persson 864 dimension == dimension_keyboard ||
2086 persson 437 dimension == dimension_roundrobin ||
2087     dimension == dimension_random) ? split_type_bit
2088     : split_type_normal;
2089 schoenebeck 2 pDimensionDefinitions[i].zone_size =
2090 persson 774 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2091 schoenebeck 2 : 0;
2092     Dimensions++;
2093 schoenebeck 282
2094     // if this is a layer dimension, remember the amount of layers
2095     if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2096 schoenebeck 2 }
2097 persson 774 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2098 schoenebeck 2 }
2099 persson 834 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2100 schoenebeck 2
2101 persson 858 // if there's a velocity dimension and custom velocity zone splits are used,
2102     // update the VelocityTables in the dimension regions
2103     UpdateVelocityTable();
2104 schoenebeck 2
2105 schoenebeck 317 // jump to start of the wave pool indices (if not already there)
2106     if (file->pVersion && file->pVersion->major == 3)
2107     _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2108     else
2109     _3lnk->SetPos(44);
2110    
2111 schoenebeck 2 // load sample references
2112     for (uint i = 0; i < DimensionRegions; i++) {
2113     uint32_t wavepoolindex = _3lnk->ReadUint32();
2114 persson 902 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2115 schoenebeck 2 }
2116 persson 918 GetSample(); // load global region sample reference
2117 schoenebeck 2 }
2118 schoenebeck 823
2119     // make sure there is at least one dimension region
2120     if (!DimensionRegions) {
2121     RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2122     if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2123     RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2124     pDimensionRegions[0] = new DimensionRegion(_3ewl);
2125     DimensionRegions = 1;
2126     }
2127 schoenebeck 2 }
2128    
2129 schoenebeck 809 /**
2130     * Apply Region settings and all its DimensionRegions to the respective
2131     * RIFF chunks. You have to call File::Save() to make changes persistent.
2132     *
2133     * Usually there is absolutely no need to call this method explicitly.
2134     * It will be called automatically when File::Save() was called.
2135     *
2136     * @throws gig::Exception if samples cannot be dereferenced
2137     */
2138     void Region::UpdateChunks() {
2139     // first update base class's chunks
2140     DLS::Region::UpdateChunks();
2141    
2142     // update dimension region's chunks
2143 schoenebeck 823 for (int i = 0; i < DimensionRegions; i++) {
2144 schoenebeck 809 pDimensionRegions[i]->UpdateChunks();
2145 schoenebeck 823 }
2146 schoenebeck 809
2147     File* pFile = (File*) GetParent()->GetParent();
2148     const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2149     const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2150    
2151     // make sure '3lnk' chunk exists
2152     RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2153     if (!_3lnk) {
2154     const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2155     _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2156     }
2157    
2158     // update dimension definitions in '3lnk' chunk
2159     uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2160 persson 918 memcpy(&pData[0], &DimensionRegions, 4);
2161 schoenebeck 809 for (int i = 0; i < iMaxDimensions; i++) {
2162 persson 918 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2163     pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2164 schoenebeck 809 // next 2 bytes unknown
2165 persson 918 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2166 schoenebeck 809 // next 3 bytes unknown
2167     }
2168    
2169     // update wave pool table in '3lnk' chunk
2170     const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2171     for (uint i = 0; i < iMaxDimensionRegions; i++) {
2172     int iWaveIndex = -1;
2173     if (i < DimensionRegions) {
2174 schoenebeck 823 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2175     File::SampleList::iterator iter = pFile->pSamples->begin();
2176     File::SampleList::iterator end = pFile->pSamples->end();
2177 schoenebeck 809 for (int index = 0; iter != end; ++iter, ++index) {
2178 schoenebeck 823 if (*iter == pDimensionRegions[i]->pSample) {
2179     iWaveIndex = index;
2180     break;
2181     }
2182 schoenebeck 809 }
2183     if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2184     }
2185     memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2186     }
2187     }
2188    
2189 schoenebeck 2 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2190     RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2191     if (_3prg) {
2192     int dimensionRegionNr = 0;
2193     RIFF::List* _3ewl = _3prg->GetFirstSubList();
2194     while (_3ewl) {
2195     if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2196     pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2197     dimensionRegionNr++;
2198     }
2199     _3ewl = _3prg->GetNextSubList();
2200     }
2201     if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2202     }
2203     }
2204    
2205 persson 858 void Region::UpdateVelocityTable() {
2206     // get velocity dimension's index
2207     int veldim = -1;
2208     for (int i = 0 ; i < Dimensions ; i++) {
2209     if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2210     veldim = i;
2211 schoenebeck 809 break;
2212     }
2213     }
2214 persson 858 if (veldim == -1) return;
2215 schoenebeck 809
2216 persson 858 int step = 1;
2217     for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2218     int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2219     int end = step * pDimensionDefinitions[veldim].zones;
2220 schoenebeck 809
2221 persson 858 // loop through all dimension regions for all dimensions except the velocity dimension
2222     int dim[8] = { 0 };
2223     for (int i = 0 ; i < DimensionRegions ; i++) {
2224    
2225     if (pDimensionRegions[i]->VelocityUpperLimit) {
2226     // create the velocity table
2227     uint8_t* table = pDimensionRegions[i]->VelocityTable;
2228     if (!table) {
2229     table = new uint8_t[128];
2230     pDimensionRegions[i]->VelocityTable = table;
2231     }
2232     int tableidx = 0;
2233     int velocityZone = 0;
2234     for (int k = i ; k < end ; k += step) {
2235     DimensionRegion *d = pDimensionRegions[k];
2236     for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2237     velocityZone++;
2238     }
2239     } else {
2240     if (pDimensionRegions[i]->VelocityTable) {
2241     delete[] pDimensionRegions[i]->VelocityTable;
2242     pDimensionRegions[i]->VelocityTable = 0;
2243     }
2244 schoenebeck 809 }
2245 persson 858
2246     int j;
2247     int shift = 0;
2248     for (j = 0 ; j < Dimensions ; j++) {
2249     if (j == veldim) i += skipveldim; // skip velocity dimension
2250     else {
2251     dim[j]++;
2252     if (dim[j] < pDimensionDefinitions[j].zones) break;
2253     else {
2254     // skip unused dimension regions
2255     dim[j] = 0;
2256     i += ((1 << pDimensionDefinitions[j].bits) -
2257     pDimensionDefinitions[j].zones) << shift;
2258     }
2259     }
2260     shift += pDimensionDefinitions[j].bits;
2261     }
2262     if (j == Dimensions) break;
2263 schoenebeck 809 }
2264     }
2265    
2266     /** @brief Einstein would have dreamed of it - create a new dimension.
2267     *
2268     * Creates a new dimension with the dimension definition given by
2269     * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2270     * There is a hard limit of dimensions and total amount of "bits" all
2271     * dimensions can have. This limit is dependant to what gig file format
2272     * version this file refers to. The gig v2 (and lower) format has a
2273     * dimension limit and total amount of bits limit of 5, whereas the gig v3
2274     * format has a limit of 8.
2275     *
2276     * @param pDimDef - defintion of the new dimension
2277     * @throws gig::Exception if dimension of the same type exists already
2278     * @throws gig::Exception if amount of dimensions or total amount of
2279     * dimension bits limit is violated
2280     */
2281     void Region::AddDimension(dimension_def_t* pDimDef) {
2282     // check if max. amount of dimensions reached
2283     File* file = (File*) GetParent()->GetParent();
2284     const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2285     if (Dimensions >= iMaxDimensions)
2286     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2287     // check if max. amount of dimension bits reached
2288     int iCurrentBits = 0;
2289     for (int i = 0; i < Dimensions; i++)
2290     iCurrentBits += pDimensionDefinitions[i].bits;
2291     if (iCurrentBits >= iMaxDimensions)
2292     throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2293     const int iNewBits = iCurrentBits + pDimDef->bits;
2294     if (iNewBits > iMaxDimensions)
2295     throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2296     // check if there's already a dimensions of the same type
2297     for (int i = 0; i < Dimensions; i++)
2298     if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2299     throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2300    
2301     // assign definition of new dimension
2302     pDimensionDefinitions[Dimensions] = *pDimDef;
2303    
2304     // create new dimension region(s) for this new dimension
2305     for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2306     //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2307     RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2308