/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1050 by schoenebeck, Fri Mar 2 01:04:45 2007 UTC revision 1179 by persson, Sat May 12 11:25:04 2007 UTC
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281  // *************** Sample ***************  // *************** Sample ***************
282  // *  // *
283    
# Line 378  namespace { Line 402  namespace {
402          // update 'smpl' chunk          // update 'smpl' chunk
403          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
404          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
405          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
406          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
407          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
408          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
409          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
410          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
411          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
412          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
413    
414          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
415    
416          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
417          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
418          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
419          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
420          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
421          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
422    
423          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
424          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 438  namespace {
438          }          }
439          // update '3gix' chunk          // update '3gix' chunk
440          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
441          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
442      }      }
443    
444      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 1338  namespace { Line 1362  namespace {
1362                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1363                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1364              }              }
1365                if (_3ewa->RemainingBytes() >= 8) {
1366                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1367                } else {
1368                    memset(DimensionUpperLimits, 0, 8);
1369                }
1370          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1371              // use default values              // use default values
1372              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1418  namespace { Line 1447  namespace {
1447              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1448              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1449              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1450                memset(DimensionUpperLimits, 0, 8);
1451          }          }
1452    
1453          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1473  namespace { Line 1503  namespace {
1503    
1504          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1505    
1506          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = _3ewa->GetSize();
1507          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1508    
1509          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1510          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1511    
1512          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1513          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1514    
1515          // next 2 bytes unknown          // next 2 bytes unknown
1516    
1517          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1518    
1519          // next 2 bytes unknown          // next 2 bytes unknown
1520    
1521          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1522    
1523          // next 2 bytes unknown          // next 2 bytes unknown
1524    
1525          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1526    
1527          // next 2 bytes unknown          // next 2 bytes unknown
1528    
1529          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1530    
1531          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1532          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1533    
1534          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1535          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1536    
1537          // next 2 bytes unknown          // next 2 bytes unknown
1538    
1539          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1540    
1541          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1542          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1543    
1544          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1545          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1546    
1547          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1548              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1549              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1550              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1551              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1552          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1553    
1554          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1555          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1556    
1557          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1558              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1559              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1560              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1561              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1562          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1563    
1564          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1565          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1566    
1567          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1568          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1569    
1570          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1571          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1572    
1573          // next 2 bytes unknown          // next 2 bytes unknown
1574    
1575          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1576    
1577          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1578          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1579    
1580          // next 2 bytes unknown          // next 2 bytes unknown
1581    
1582          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1583    
1584          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1585          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1586    
1587          // next 2 bytes unknown          // next 2 bytes unknown
1588    
1589          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1590    
1591          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1592          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1593    
1594          // next 2 bytes unknown          // next 2 bytes unknown
1595    
1596          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1597    
1598          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1599          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1600    
1601          // next 2 bytes unknown          // next 2 bytes unknown
1602    
1603          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1604    
1605          {          {
1606              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 1618  namespace {
1618                  default:                  default:
1619                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1620              }              }
1621              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1622          }          }
1623    
1624          {          {
# Line 1607  namespace { Line 1637  namespace {
1637                  default:                  default:
1638                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1639              }              }
1640              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1641          }          }
1642    
1643          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1644    
1645          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1646    
1647          // next 4 bytes unknown          // next 4 bytes unknown
1648    
1649          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1650    
1651          // next 2 bytes unknown          // next 2 bytes unknown
1652    
# Line 1635  namespace { Line 1665  namespace {
1665                  default:                  default:
1666                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1667              }              }
1668              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1669          }          }
1670    
1671          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1672          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1673    
1674          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1675          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1676    
1677          // next byte unknown          // next byte unknown
1678    
# Line 1651  namespace { Line 1681  namespace {
1681              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1682              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1683              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1684              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1685          }          }
1686    
1687          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1688          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1689    
1690          {          {
1691              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1692              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1693              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1694              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1695              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1696          }          }
1697    
1698          {          {
# Line 1671  namespace { Line 1701  namespace {
1701              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1702              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1703                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1704              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1705          }          }
1706    
1707          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1708                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1709          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1710    
1711          // next 2 bytes unknown          // next 2 bytes unknown
1712    
1713          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1714          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1715    
1716          {          {
1717              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1718              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1719              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1720              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1721          }          }
1722    
1723          // next 2 bytes unknown          // next 2 bytes unknown
1724    
1725          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1726    
1727          // next 3 bytes unknown          // next 3 bytes unknown
1728    
1729          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1730    
1731          // next 2 bytes unknown          // next 2 bytes unknown
1732    
1733          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1734          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1735    
1736          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1737                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1738          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1739    
1740          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1741    
1742          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1743                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1744          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1745    
1746          // next byte unknown          // next byte unknown
1747    
1748          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1749                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1750          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1751    
1752          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1753                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1754          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1755    
1756          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1757                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1758          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1759    
1760          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1761          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1762    
1763            if (chunksize >= 148) {
1764                memcpy(&pData[140], DimensionUpperLimits, 8);
1765            }
1766      }      }
1767    
1768      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 2105  namespace { Line 2139  namespace {
2139                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2140                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2141                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2142                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2143                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2144                      Dimensions++;                      Dimensions++;
2145    
2146                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2140  namespace { Line 2166  namespace {
2166                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2167              }              }
2168              GetSample(); // load global region sample reference              GetSample(); // load global region sample reference
2169            } else {
2170                DimensionRegions = 0;
2171          }          }
2172    
2173          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2162  namespace { Line 2190  namespace {
2190       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2191       */       */
2192      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2193            // in the gig format we don't care about the Region's sample reference
2194            // but we still have to provide some existing one to not corrupt the
2195            // file, so to avoid the latter we simply always assign the sample of
2196            // the first dimension region of this region
2197            pSample = pDimensionRegions[0]->pSample;
2198    
2199          // first update base class's chunks          // first update base class's chunks
2200          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2201    
# Line 2183  namespace { Line 2217  namespace {
2217    
2218          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2219          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2220          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2221          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2222              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2223              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
# Line 2208  namespace { Line 2242  namespace {
2242                  }                  }
2243                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2244              }              }
2245              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2246          }          }
2247      }      }
2248    
# Line 2248  namespace { Line 2282  namespace {
2282          int dim[8] = { 0 };          int dim[8] = { 0 };
2283          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2284    
2285              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2286                    pDimensionRegions[i]->VelocityUpperLimit) {
2287                  // create the velocity table                  // create the velocity table
2288                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2289                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 2292  namespace {
2292                  }                  }
2293                  int tableidx = 0;                  int tableidx = 0;
2294                  int velocityZone = 0;                  int velocityZone = 0;
2295                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2296                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2297                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2298                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2299                            velocityZone++;
2300                        }
2301                    } else { // gig2
2302                        for (int k = i ; k < end ; k += step) {
2303                            DimensionRegion *d = pDimensionRegions[k];
2304                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2305                            velocityZone++;
2306                        }
2307                  }                  }
2308              } else {              } else {
2309                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2327  namespace { Line 2370  namespace {
2370          // assign definition of new dimension          // assign definition of new dimension
2371          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2372    
2373            // auto correct certain dimension definition fields (where possible)
2374            pDimensionDefinitions[Dimensions].split_type  =
2375                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2376            pDimensionDefinitions[Dimensions].zone_size =
2377                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2378    
2379          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2380          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2381              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
# Line 2455  namespace { Line 2504  namespace {
2504              } else {              } else {
2505                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2506                      case split_type_normal:                      case split_type_normal:
2507                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2508                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2509                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2510                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2511                                }
2512                            } else {
2513                                // gig2: evenly sized zones
2514                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2515                            }
2516                          break;                          break;
2517                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2518                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2469  namespace { Line 2526  namespace {
2526          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2527          if (veldim != -1) {          if (veldim != -1) {
2528              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2529              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2530                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2531              else // normal split type              else // normal split type
2532                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2617  namespace { Line 2674  namespace {
2674          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2675          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2676          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2677          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2678          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2679          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2680          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2681          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2682                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2683          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2684          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2685      }      }
2686    
2687      /**      /**
# Line 2711  namespace { Line 2768  namespace {
2768      }      }
2769    
2770      Group::~Group() {      Group::~Group() {
2771            // remove the chunk associated with this group (if any)
2772            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2773      }      }
2774    
2775      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
2776       *       *
2777       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
2778       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
2779         *
2780         * Usually there is absolutely no need to call this method explicitly.
2781         * It will be called automatically when File::Save() was called.
2782       */       */
2783      void Group::UpdateChunks() {      void Group::UpdateChunks() {
2784          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
# Line 2864  namespace { Line 2926  namespace {
2926          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2927          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2928          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2929            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2930          pSamples->erase(iter);          pSamples->erase(iter);
2931          delete pSample;          delete pSample;
2932      }      }
# Line 2875  namespace { Line 2938  namespace {
2938      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
2939          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
2940          // to resolve the group they belong to          // to resolve the group they belong to
2941          LoadGroups();          if (!pGroups) LoadGroups();
2942    
2943          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
2944    
# Line 3000  namespace { Line 3063  namespace {
3063       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3064       *       *
3065       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3066       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3067       */       */
3068      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3069          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3078  namespace { Line 3141  namespace {
3141          return pGroup;          return pGroup;
3142      }      }
3143    
3144        /** @brief Delete a group and its samples.
3145         *
3146         * This will delete the given Group object and all the samples that
3147         * belong to this group from the gig file. You have to call Save() to
3148         * make this persistent to the file.
3149         *
3150         * @param pGroup - group to delete
3151         * @throws gig::Exception if given group could not be found
3152         */
3153      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
3154          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3155          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3156          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3157          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3158            // delete all members of this group
3159            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3160                DeleteSample(pSample);
3161            }
3162            // now delete this group object
3163            pGroups->erase(iter);
3164            delete pGroup;
3165        }
3166    
3167        /** @brief Delete a group.
3168         *
3169         * This will delete the given Group object from the gig file. All the
3170         * samples that belong to this group will not be deleted, but instead
3171         * be moved to another group. You have to call Save() to make this
3172         * persistent to the file.
3173         *
3174         * @param pGroup - group to delete
3175         * @throws gig::Exception if given group could not be found
3176         */
3177        void File::DeleteGroupOnly(Group* pGroup) {
3178            if (!pGroups) LoadGroups();
3179            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3180            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3181            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3182          // move all members of this group to another group          // move all members of this group to another group
3183          pGroup->MoveAll();          pGroup->MoveAll();
3184          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3113  namespace { Line 3209  namespace {
3209          }          }
3210      }      }
3211    
3212        /**
3213         * Apply all the gig file's current instruments, samples, groups and settings
3214         * to the respective RIFF chunks. You have to call Save() to make changes
3215         * persistent.
3216         *
3217         * Usually there is absolutely no need to call this method explicitly.
3218         * It will be called automatically when File::Save() was called.
3219         *
3220         * @throws Exception - on errors
3221         */
3222        void File::UpdateChunks() {
3223            // first update base class's chunks
3224            DLS::File::UpdateChunks();
3225    
3226            // update group's chunks
3227            if (pGroups) {
3228                std::list<Group*>::iterator iter = pGroups->begin();
3229                std::list<Group*>::iterator end  = pGroups->end();
3230                for (; iter != end; ++iter) {
3231                    (*iter)->UpdateChunks();
3232                }
3233            }
3234        }
3235    
3236    
3237    
3238  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.1050  
changed lines
  Added in v.1179

  ViewVC Help
Powered by ViewVC