/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1050 by schoenebeck, Fri Mar 2 01:04:45 2007 UTC revision 1209 by persson, Sun May 27 13:54:24 2007 UTC
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
# Line 279  namespace { Line 323  namespace {
323       *                         is located, 0 otherwise       *                         is located, 0 otherwise
324       */       */
325      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332          FileNo = fileNo;          FileNo = fileNo;
333    
# Line 316  namespace { Line 364  namespace {
364              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365              MIDIUnityNote = 64;              MIDIUnityNote = 64;
366              FineTune      = 0;              FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368              SMPTEOffset   = 0;              SMPTEOffset   = 0;
369              Loops         = 0;              Loops         = 0;
370              LoopID        = 0;              LoopID        = 0;
371                LoopType      = loop_type_normal;
372              LoopStart     = 0;              LoopStart     = 0;
373              LoopEnd       = 0;              LoopEnd       = 0;
374              LoopFraction  = 0;              LoopFraction  = 0;
# Line 374  namespace { Line 424  namespace {
424    
425          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
426          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431          // update 'smpl' chunk          // update 'smpl' chunk
432          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
435          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
436          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
437          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
438          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
439          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
440          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
441          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
442    
443          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
444    
445          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
446          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
447          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
448          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
449          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
450          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
451    
452          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
453          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 467  namespace {
467          }          }
468          // update '3gix' chunk          // update '3gix' chunk
469          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
470          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 1107  namespace { Line 1160  namespace {
1160       */       */
1161      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163          return DLS::Sample::Write(pBuffer, SampleCount);  
1164            // if this is the first write in this sample, reset the
1165            // checksum calculator
1166            if (pCkData->GetPos() == 0) {
1167                crc.reset();
1168            }
1169            unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171    
1172            // if this is the last write, update the checksum chunk in the
1173            // file
1174            if (pCkData->GetPos() == pCkData->GetSize()) {
1175                File* pFile = static_cast<File*>(GetParent());
1176                pFile->SetSampleChecksum(this, crc.getValue());
1177            }
1178            return res;
1179      }      }
1180    
1181      /**      /**
# Line 1338  namespace { Line 1406  namespace {
1406                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1407                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1408              }              }
1409                if (_3ewa->RemainingBytes() >= 8) {
1410                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1411                } else {
1412                    memset(DimensionUpperLimits, 0, 8);
1413                }
1414          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1415              // use default values              // use default values
1416              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1418  namespace { Line 1491  namespace {
1491              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1492              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1493              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1494                memset(DimensionUpperLimits, 0, 8);
1495          }          }
1496    
1497          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1473  namespace { Line 1547  namespace {
1547    
1548          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1549    
1550          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = _3ewa->GetNewSize();
1551          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1552    
1553          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1554          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1555    
1556          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1557          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1558    
1559          // next 2 bytes unknown          // next 2 bytes unknown
1560    
1561          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1562    
1563          // next 2 bytes unknown          // next 2 bytes unknown
1564    
1565          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1566    
1567          // next 2 bytes unknown          // next 2 bytes unknown
1568    
1569          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1570    
1571          // next 2 bytes unknown          // next 2 bytes unknown
1572    
1573          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1574    
1575          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1576          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1577    
1578          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1579          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1580    
1581          // next 2 bytes unknown          // next 2 bytes unknown
1582    
1583          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1584    
1585          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1586          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1587    
1588          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1589          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1590    
1591          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1592              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1593              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1594              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1595              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1596          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1597    
1598          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1599          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1600    
1601          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1602              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1603              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1604              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1605              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1606          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1607    
1608          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1609          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1610    
1611          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1612          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1613    
1614          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1615          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1616    
1617          // next 2 bytes unknown          // next 2 bytes unknown
1618    
1619          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1620    
1621          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1622          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1623    
1624          // next 2 bytes unknown          // next 2 bytes unknown
1625    
1626          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1627    
1628          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1629          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1630    
1631          // next 2 bytes unknown          // next 2 bytes unknown
1632    
1633          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1634    
1635          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1636          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1637    
1638          // next 2 bytes unknown          // next 2 bytes unknown
1639    
1640          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1641    
1642          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1643          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1644    
1645          // next 2 bytes unknown          // next 2 bytes unknown
1646    
1647          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1648    
1649          {          {
1650              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 1662  namespace {
1662                  default:                  default:
1663                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1664              }              }
1665              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1666          }          }
1667    
1668          {          {
# Line 1607  namespace { Line 1681  namespace {
1681                  default:                  default:
1682                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1683              }              }
1684              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1685          }          }
1686    
1687          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1688    
1689          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1690    
1691          // next 4 bytes unknown          // next 4 bytes unknown
1692    
1693          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1694    
1695          // next 2 bytes unknown          // next 2 bytes unknown
1696    
# Line 1635  namespace { Line 1709  namespace {
1709                  default:                  default:
1710                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1711              }              }
1712              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1713          }          }
1714    
1715          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1716          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1717    
1718          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1719          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1720    
1721          // next byte unknown          // next byte unknown
1722    
# Line 1651  namespace { Line 1725  namespace {
1725              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1726              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1727              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1728              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1729          }          }
1730    
1731          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1732          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1733    
1734          {          {
1735              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1736              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1737              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1738              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1739              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1740          }          }
1741    
1742          {          {
# Line 1671  namespace { Line 1745  namespace {
1745              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1746              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1747                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1748              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1749          }          }
1750    
1751          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1752                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1753          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1754    
1755          // next 2 bytes unknown          // next 2 bytes unknown
1756    
1757          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1758          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1759    
1760          {          {
1761              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1762              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1763              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1764              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1765          }          }
1766    
1767          // next 2 bytes unknown          // next 2 bytes unknown
1768    
1769          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1770    
1771          // next 3 bytes unknown          // next 3 bytes unknown
1772    
1773          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1774    
1775          // next 2 bytes unknown          // next 2 bytes unknown
1776    
1777          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1778          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1779    
1780          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1781                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1782          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1783    
1784          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1785    
1786          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1787                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1788          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1789    
1790          // next byte unknown          // next byte unknown
1791    
1792          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1793                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1794          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1795    
1796          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1797                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1798          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1799    
1800          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1801                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1802          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1803    
1804          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1805          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1806    
1807            if (chunksize >= 148) {
1808                memcpy(&pData[140], DimensionUpperLimits, 8);
1809            }
1810      }      }
1811    
1812      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1953  namespace { Line 2031  namespace {
2031                      default:                      default:
2032                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2033                  }                  }
2034                    break;
2035              default:              default:
2036                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2037          }          }
# Line 2070  namespace { Line 2149  namespace {
2149  // *  // *
2150    
2151      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2152          // Initialization          // Initialization
2153          Dimensions = 0;          Dimensions = 0;
2154          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2091  namespace { Line 2168  namespace {
2168              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2169                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2170                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2171                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2172                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2173                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2174                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2175                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2105  namespace { Line 2182  namespace {
2182                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2183                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2184                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2185                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2186                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2187                      Dimensions++;                      Dimensions++;
2188    
2189                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2140  namespace { Line 2209  namespace {
2209                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2210              }              }
2211              GetSample(); // load global region sample reference              GetSample(); // load global region sample reference
2212            } else {
2213                DimensionRegions = 0;
2214                for (int i = 0 ; i < 8 ; i++) {
2215                    pDimensionDefinitions[i].dimension  = dimension_none;
2216                    pDimensionDefinitions[i].bits       = 0;
2217                    pDimensionDefinitions[i].zones      = 0;
2218                }
2219          }          }
2220    
2221          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2162  namespace { Line 2238  namespace {
2238       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2239       */       */
2240      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2241            // in the gig format we don't care about the Region's sample reference
2242            // but we still have to provide some existing one to not corrupt the
2243            // file, so to avoid the latter we simply always assign the sample of
2244            // the first dimension region of this region
2245            pSample = pDimensionRegions[0]->pSample;
2246    
2247          // first update base class's chunks          // first update base class's chunks
2248          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2249    
# Line 2179  namespace { Line 2261  namespace {
2261          if (!_3lnk) {          if (!_3lnk) {
2262              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2263              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2264                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2265    
2266                // move 3prg to last position
2267                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2268          }          }
2269    
2270          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2271          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2272          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2273            int shift = 0;
2274          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2275              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2276              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2277              // next 2 bytes unknown              pData[6 + i * 8] = shift;
2278                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2279              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2280              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
2281    
2282                shift += pDimensionDefinitions[i].bits;
2283          }          }
2284    
2285          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
# Line 2208  namespace { Line 2298  namespace {
2298                  }                  }
2299                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2300              }              }
2301              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2302          }          }
2303      }      }
2304    
# Line 2248  namespace { Line 2338  namespace {
2338          int dim[8] = { 0 };          int dim[8] = { 0 };
2339          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2340    
2341              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2342                    pDimensionRegions[i]->VelocityUpperLimit) {
2343                  // create the velocity table                  // create the velocity table
2344                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2345                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 2348  namespace {
2348                  }                  }
2349                  int tableidx = 0;                  int tableidx = 0;
2350                  int velocityZone = 0;                  int velocityZone = 0;
2351                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2352                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2353                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2354                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2355                            velocityZone++;
2356                        }
2357                    } else { // gig2
2358                        for (int k = i ; k < end ; k += step) {
2359                            DimensionRegion *d = pDimensionRegions[k];
2360                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2361                            velocityZone++;
2362                        }
2363                  }                  }
2364              } else {              } else {
2365                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2327  namespace { Line 2426  namespace {
2426          // assign definition of new dimension          // assign definition of new dimension
2427          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2428    
2429            // auto correct certain dimension definition fields (where possible)
2430            pDimensionDefinitions[Dimensions].split_type  =
2431                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2432            pDimensionDefinitions[Dimensions].zone_size =
2433                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2434    
2435          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2436          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2437              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2438              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2439                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2440              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2441              DimensionRegions++;              DimensionRegions++;
2442          }          }
# Line 2455  namespace { Line 2561  namespace {
2561              } else {              } else {
2562                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2563                      case split_type_normal:                      case split_type_normal:
2564                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2565                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2566                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2567                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2568                                }
2569                            } else {
2570                                // gig2: evenly sized zones
2571                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2572                            }
2573                          break;                          break;
2574                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2575                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2469  namespace { Line 2583  namespace {
2583          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2584          if (veldim != -1) {          if (veldim != -1) {
2585              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2586              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2587                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2588              else // normal split type              else // normal split type
2589                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2535  namespace { Line 2649  namespace {
2649  // *  // *
2650    
2651      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2652          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2653                { CHUNK_ID_INAM, 64 },
2654                { CHUNK_ID_ISFT, 12 },
2655                { 0, 0 }
2656            };
2657            pInfo->FixedStringLengths = fixedStringLengths;
2658    
2659          // Initialization          // Initialization
2660          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2661            EffectSend = 0;
2662            Attenuation = 0;
2663            FineTune = 0;
2664            PitchbendRange = 0;
2665            PianoReleaseMode = false;
2666            DimensionKeyRange.low = 0;
2667            DimensionKeyRange.high = 0;
2668    
2669          // Loading          // Loading
2670          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2617  namespace { Line 2743  namespace {
2743          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2744          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2745          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2746          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2747          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2748          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2749          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2750          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2751                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2752          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2753          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2754      }      }
2755    
2756      /**      /**
# Line 2711  namespace { Line 2837  namespace {
2837      }      }
2838    
2839      Group::~Group() {      Group::~Group() {
2840            // remove the chunk associated with this group (if any)
2841            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2842      }      }
2843    
2844      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
2845       *       *
2846       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
2847       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
2848         *
2849         * Usually there is absolutely no need to call this method explicitly.
2850         * It will be called automatically when File::Save() was called.
2851       */       */
2852      void Group::UpdateChunks() {      void Group::UpdateChunks() {
2853          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
2854          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2855          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
2856                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2857                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2858            }
2859          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2860          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2861          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2862          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2863      }      }
# Line 2799  namespace { Line 2933  namespace {
2933  // *************** File ***************  // *************** File ***************
2934  // *  // *
2935    
2936        // File version 2.0, 1998-06-28
2937        const DLS::version_t File::VERSION_2 = {
2938            0, 2, 19980628 & 0xffff, 19980628 >> 16
2939        };
2940    
2941        // File version 3.0, 2003-03-31
2942        const DLS::version_t File::VERSION_3 = {
2943            0, 3, 20030331 & 0xffff, 20030331 >> 16
2944        };
2945    
2946        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2947            { CHUNK_ID_IARL, 256 },
2948            { CHUNK_ID_IART, 128 },
2949            { CHUNK_ID_ICMS, 128 },
2950            { CHUNK_ID_ICMT, 1024 },
2951            { CHUNK_ID_ICOP, 128 },
2952            { CHUNK_ID_ICRD, 128 },
2953            { CHUNK_ID_IENG, 128 },
2954            { CHUNK_ID_IGNR, 128 },
2955            { CHUNK_ID_IKEY, 128 },
2956            { CHUNK_ID_IMED, 128 },
2957            { CHUNK_ID_INAM, 128 },
2958            { CHUNK_ID_IPRD, 128 },
2959            { CHUNK_ID_ISBJ, 128 },
2960            { CHUNK_ID_ISFT, 128 },
2961            { CHUNK_ID_ISRC, 128 },
2962            { CHUNK_ID_ISRF, 128 },
2963            { CHUNK_ID_ITCH, 128 },
2964            { 0, 0 }
2965        };
2966    
2967      File::File() : DLS::File() {      File::File() : DLS::File() {
2968          pGroups = NULL;          pGroups = NULL;
2969          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2970            pInfo->ArchivalLocation = String(256, ' ');
2971    
2972            // add some mandatory chunks to get the file chunks in right
2973            // order (INFO chunk will be moved to first position later)
2974            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2975            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2976            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
2977    
2978            GenerateDLSID();
2979      }      }
2980    
2981      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2982          pGroups = NULL;          pGroups = NULL;
2983          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2984      }      }
2985    
2986      File::~File() {      File::~File() {
# Line 2848  namespace { Line 3022  namespace {
3022         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3023         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3024         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3025    
3026           // add mandatory chunks to get the chunks in right order
3027           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3028           wave->AddSubList(LIST_TYPE_INFO);
3029    
3030         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3031         return pSample;         return pSample;
3032      }      }
# Line 2864  namespace { Line 3043  namespace {
3043          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3044          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3045          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3046            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3047          pSamples->erase(iter);          pSamples->erase(iter);
3048          delete pSample;          delete pSample;
3049      }      }
# Line 2875  namespace { Line 3055  namespace {
3055      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3056          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
3057          // to resolve the group they belong to          // to resolve the group they belong to
3058          LoadGroups();          if (!pGroups) LoadGroups();
3059    
3060          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3061    
# Line 2989  namespace { Line 3169  namespace {
3169         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3170         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3171         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3172    
3173           // add mandatory chunks to get the chunks in right order
3174           lstInstr->AddSubList(LIST_TYPE_INFO);
3175           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3176    
3177         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3178           pInstrument->GenerateDLSID();
3179    
3180           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3181    
3182           // this string is needed for the gig to be loadable in GSt:
3183           pInstrument->pInfo->Software = "Endless Wave";
3184    
3185         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3186         return pInstrument;         return pInstrument;
3187      }      }
# Line 3000  namespace { Line 3192  namespace {
3192       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3193       *       *
3194       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3195       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3196       */       */
3197      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3198          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3040  namespace { Line 3232  namespace {
3232          }          }
3233      }      }
3234    
3235        /// Updates the 3crc chunk with the checksum of a sample. The
3236        /// update is done directly to disk, as this method is called
3237        /// after File::Save()
3238        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3239            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3240            if (!_3crc) return;
3241    
3242            // get the index of the sample
3243            int iWaveIndex = -1;
3244            File::SampleList::iterator iter = pSamples->begin();
3245            File::SampleList::iterator end  = pSamples->end();
3246            for (int index = 0; iter != end; ++iter, ++index) {
3247                if (*iter == pSample) {
3248                    iWaveIndex = index;
3249                    break;
3250                }
3251            }
3252            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3253    
3254            // write the CRC-32 checksum to disk
3255            _3crc->SetPos(iWaveIndex * 8);
3256            uint32_t tmp = 1;
3257            _3crc->WriteUint32(&tmp); // unknown, always 1?
3258            _3crc->WriteUint32(&crc);
3259        }
3260    
3261      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
3262          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3263          // there must always be at least one group          // there must always be at least one group
# Line 3078  namespace { Line 3296  namespace {
3296          return pGroup;          return pGroup;
3297      }      }
3298    
3299        /** @brief Delete a group and its samples.
3300         *
3301         * This will delete the given Group object and all the samples that
3302         * belong to this group from the gig file. You have to call Save() to
3303         * make this persistent to the file.
3304         *
3305         * @param pGroup - group to delete
3306         * @throws gig::Exception if given group could not be found
3307         */
3308      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
3309          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3310          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3311          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3312          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3313            // delete all members of this group
3314            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3315                DeleteSample(pSample);
3316            }
3317            // now delete this group object
3318            pGroups->erase(iter);
3319            delete pGroup;
3320        }
3321    
3322        /** @brief Delete a group.
3323         *
3324         * This will delete the given Group object from the gig file. All the
3325         * samples that belong to this group will not be deleted, but instead
3326         * be moved to another group. You have to call Save() to make this
3327         * persistent to the file.
3328         *
3329         * @param pGroup - group to delete
3330         * @throws gig::Exception if given group could not be found
3331         */
3332        void File::DeleteGroupOnly(Group* pGroup) {
3333            if (!pGroups) LoadGroups();
3334            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3335            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3336            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3337          // move all members of this group to another group          // move all members of this group to another group
3338          pGroup->MoveAll();          pGroup->MoveAll();
3339          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3113  namespace { Line 3364  namespace {
3364          }          }
3365      }      }
3366    
3367        /**
3368         * Apply all the gig file's current instruments, samples, groups and settings
3369         * to the respective RIFF chunks. You have to call Save() to make changes
3370         * persistent.
3371         *
3372         * Usually there is absolutely no need to call this method explicitly.
3373         * It will be called automatically when File::Save() was called.
3374         *
3375         * @throws Exception - on errors
3376         */
3377        void File::UpdateChunks() {
3378            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3379    
3380            // first update base class's chunks
3381            DLS::File::UpdateChunks();
3382    
3383            if (newFile) {
3384                // INFO was added by Resource::UpdateChunks - make sure it
3385                // is placed first in file
3386                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3387                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3388                if (first != info) {
3389                    pRIFF->MoveSubChunk(info, first);
3390                }
3391            }
3392    
3393            // update group's chunks
3394            if (pGroups) {
3395                std::list<Group*>::iterator iter = pGroups->begin();
3396                std::list<Group*>::iterator end  = pGroups->end();
3397                for (; iter != end; ++iter) {
3398                    (*iter)->UpdateChunks();
3399                }
3400            }
3401    
3402            // update einf chunk
3403    
3404            // The einf chunk contains statistics about the gig file, such
3405            // as the number of regions and samples used by each
3406            // instrument. It is divided in equally sized parts, where the
3407            // first part contains information about the whole gig file,
3408            // and the rest of the parts map to each instrument in the
3409            // file.
3410            //
3411            // At the end of each part there is a bit map of each sample
3412            // in the file, where a set bit means that the sample is used
3413            // by the file/instrument.
3414            //
3415            // Note that there are several fields with unknown use. These
3416            // are set to zero.
3417    
3418            int sublen = pSamples->size() / 8 + 49;
3419            int einfSize = (Instruments + 1) * sublen;
3420    
3421            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3422            if (einf) {
3423                if (einf->GetSize() != einfSize) {
3424                    einf->Resize(einfSize);
3425                    memset(einf->LoadChunkData(), 0, einfSize);
3426                }
3427            } else if (newFile) {
3428                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3429            }
3430            if (einf) {
3431                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3432    
3433                std::map<gig::Sample*,int> sampleMap;
3434                int sampleIdx = 0;
3435                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3436                    sampleMap[pSample] = sampleIdx++;
3437                }
3438    
3439                int totnbusedsamples = 0;
3440                int totnbusedchannels = 0;
3441                int totnbregions = 0;
3442                int totnbdimregions = 0;
3443                int instrumentIdx = 0;
3444    
3445                memset(&pData[48], 0, sublen - 48);
3446    
3447                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3448                     instrument = GetNextInstrument()) {
3449                    int nbusedsamples = 0;
3450                    int nbusedchannels = 0;
3451                    int nbdimregions = 0;
3452    
3453                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3454    
3455                    for (Region* region = instrument->GetFirstRegion() ; region ;
3456                         region = instrument->GetNextRegion()) {
3457                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3458                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3459                            if (d->pSample) {
3460                                int sampleIdx = sampleMap[d->pSample];
3461                                int byte = 48 + sampleIdx / 8;
3462                                int bit = 1 << (sampleIdx & 7);
3463                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3464                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3465                                    nbusedsamples++;
3466                                    nbusedchannels += d->pSample->Channels;
3467    
3468                                    if ((pData[byte] & bit) == 0) {
3469                                        pData[byte] |= bit;
3470                                        totnbusedsamples++;
3471                                        totnbusedchannels += d->pSample->Channels;
3472                                    }
3473                                }
3474                            }
3475                        }
3476                        nbdimregions += region->DimensionRegions;
3477                    }
3478                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3479                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3480                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3481                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3482                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3483                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3484                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3485                    // next 12 bytes unknown
3486                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3487                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3488                    // next 4 bytes unknown
3489    
3490                    totnbregions += instrument->Regions;
3491                    totnbdimregions += nbdimregions;
3492                    instrumentIdx++;
3493                }
3494                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3495                // store32(&pData[0], sublen);
3496                store32(&pData[4], totnbusedchannels);
3497                store32(&pData[8], totnbusedsamples);
3498                store32(&pData[12], Instruments);
3499                store32(&pData[16], totnbregions);
3500                store32(&pData[20], totnbdimregions);
3501                // next 12 bytes unknown
3502                // next 4 bytes unknown, always 0?
3503                store32(&pData[40], pSamples->size());
3504                // next 4 bytes unknown
3505            }
3506    
3507            // update 3crc chunk
3508    
3509            // The 3crc chunk contains CRC-32 checksums for the
3510            // samples. The actual checksum values will be filled in
3511            // later, by Sample::Write.
3512    
3513            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3514            if (_3crc) {
3515                _3crc->Resize(pSamples->size() * 8);
3516            } else if (newFile) {
3517                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3518                _3crc->LoadChunkData();
3519            }
3520        }
3521    
3522    
3523    
3524  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.1050  
changed lines
  Added in v.1209

  ViewVC Help
Powered by ViewVC