/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1099 by schoenebeck, Thu Mar 15 13:57:47 2007 UTC revision 3656 by schoenebeck, Sat Dec 14 17:04:28 2019 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file access library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 24  Line 24 
24  #include "gig.h"  #include "gig.h"
25    
26  #include "helper.h"  #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30  #include <math.h>  #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
39  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 49  Line 56 
56  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59  namespace gig {  #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
 // *************** progress_t ***************  
 // *  
   
     progress_t::progress_t() {  
         callback    = NULL;  
         custom      = NULL;  
         __range_min = 0.0f;  
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decompression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
# Line 121  namespace { Line 99  namespace {
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 158  namespace { Line 136  namespace {
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
143    
# Line 254  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      /** @brief Constructor.      /** @brief Constructor.
# Line 277  namespace { Line 385  namespace {
385       *                         ('wvpl') list chunk       *                         ('wvpl') list chunk
386       * @param fileNo         - number of an extension file where this sample       * @param fileNo         - number of an extension file where this sample
387       *                         is located, 0 otherwise       *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389       */       */
390      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391          pInfo->UseFixedLengthStrings = true;          : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (pCk3gix) {          if (pCk3gix) {
415                pCk3gix->SetPos(0);
416    
417              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
418              pGroup = pFile->GetGroup(iSampleGroup);              pGroup = pFile->GetGroup(iSampleGroup);
419          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
# Line 294  namespace { Line 423  namespace {
423    
424          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425          if (pCkSmpl) {          if (pCkSmpl) {
426                pCkSmpl->SetPos(0);
427    
428              Manufacturer  = pCkSmpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
429              Product       = pCkSmpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
430              SamplePeriod  = pCkSmpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
# Line 314  namespace { Line 445  namespace {
445              Manufacturer  = 0;              Manufacturer  = 0;
446              Product       = 0;              Product       = 0;
447              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448              MIDIUnityNote = 64;              MIDIUnityNote = 60;
449              FineTune      = 0;              FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451              SMPTEOffset   = 0;              SMPTEOffset   = 0;
452              Loops         = 0;              Loops         = 0;
453              LoopID        = 0;              LoopID        = 0;
454                LoopType      = loop_type_normal;
455              LoopStart     = 0;              LoopStart     = 0;
456              LoopEnd       = 0;              LoopEnd       = 0;
457              LoopFraction  = 0;              LoopFraction  = 0;
# Line 338  namespace { Line 471  namespace {
471          Dithered          = false;          Dithered          = false;
472          TruncatedBits     = 0;          TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474                ewav->SetPos(0);
475    
476              uint32_t version = ewav->ReadInt32();              uint32_t version = ewav->ReadInt32();
477              if (version == 3 && BitDepth == 24) {              if (version > 2 && BitDepth == 24) {
478                  Dithered = ewav->ReadInt32();                  Dithered = ewav->ReadInt32();
479                  ewav->SetPos(Channels == 2 ? 84 : 64);                  ewav->SetPos(Channels == 2 ? 84 : 64);
480                  TruncatedBits = ewav->ReadInt32();                  TruncatedBits = ewav->ReadInt32();
# Line 358  namespace { Line 493  namespace {
493      }      }
494    
495      /**      /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557            }
558            pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562        /**
563       * Apply sample and its settings to the respective RIFF chunks. You have       * Apply sample and its settings to the respective RIFF chunks. You have
564       * to call File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
565       *       *
566       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
567       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
568       *       *
569         * @param pProgress - callback function for progress notification
570       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571       *                        was provided yet       *                        was provided yet
572       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
573       */       */
574      void Sample::UpdateChunks() {      void Sample::UpdateChunks(progress_t* pProgress) {
575          // first update base class's chunks          // first update base class's chunks
576          DLS::Sample::UpdateChunks();          DLS::Sample::UpdateChunks(pProgress);
577    
578          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
579          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584          // update 'smpl' chunk          // update 'smpl' chunk
585          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
588          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
589          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
590          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
591          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
592          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
593          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
594          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
595    
596          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
597    
598          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
599          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
600          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
601          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
602          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
603          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
604    
605          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
606          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 620  namespace {
620          }          }
621          // update '3gix' chunk          // update '3gix' chunk
622          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
623          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 437  namespace { Line 651  namespace {
651                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
652                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
653                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
657                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 456  namespace { Line 670  namespace {
670    
671                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
672                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
673                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
676                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 472  namespace { Line 686  namespace {
686    
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 515  namespace { Line 729  namespace {
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 574  namespace { Line 788  namespace {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 615  namespace { Line 830  namespace {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834      }      }
835    
836      /** @brief Resize sample.      /** @brief Resize sample.
# Line 639  namespace { Line 855  namespace {
855       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856       * other formats will fail!       * other formats will fail!
857       *       *
858       * @param iNewSize - new sample wave data size in sample points (must be       * @param NewSize - new sample wave data size in sample points (must be
859       *                   greater than zero)       *                  greater than zero)
860       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861       *                         or if \a iNewSize is less than 1       * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
863       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864       *      DLS::Sample::FormatTag, File::Save()       *      DLS::Sample::FormatTag, File::Save()
865       */       */
866      void Sample::Resize(int iNewSize) {      void Sample::Resize(file_offset_t NewSize) {
867          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868          DLS::Sample::Resize(iNewSize);          DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 673  namespace { Line 889  namespace {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 691  namespace { Line 907  namespace {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 707  namespace { Line 923  namespace {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 746  namespace { Line 962  namespace {
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
# Line 786  namespace { Line 1002  namespace {
1002                                  // reading, swap all sample frames so it reflects                                  // reading, swap all sample frames so it reflects
1003                                  // backward playback                                  // backward playback
1004    
1005                                  unsigned long swapareastart       = totalreadsamples;                                  file_offset_t swapareastart       = totalreadsamples;
1006                                  unsigned long loopoffset          = GetPos() - loop.LoopStart;                                  file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                  file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                  unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                  file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                  SetPos(reverseplaybackend);                                  SetPos(reverseplaybackend);
1011    
# Line 809  namespace { Line 1025  namespace {
1025                                  }                                  }
1026    
1027                                  // reverse the sample frames for backward playback                                  // reverse the sample frames for backward playback
1028                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                          } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1032                          break;                          break;
# Line 836  namespace { Line 1053  namespace {
1053                          // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                          // backward playback                          // backward playback
1055    
1056                          unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                          unsigned long loopoffset          = GetPos() - loop.LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                    : samplestoread;                                                                                    : samplestoread;
1060                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                          SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
# Line 920  namespace { Line 1137  namespace {
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) {          if (!Compressed) {
1143              if (BitDepth == 24) {              if (BitDepth == 24) {
# Line 935  namespace { Line 1152  namespace {
1152          else {          else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 958  namespace { Line 1175  namespace {
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1178                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1179                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180    
1181                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1182    
# Line 1099  namespace { Line 1316  namespace {
1316       *       *
1317       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1318       *       *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1324       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1325       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
1326       * @throws gig::Exception if sample is compressed       * @throws gig::Exception if sample is compressed
1327       * @see DLS::LoadSampleData()       * @see DLS::LoadSampleData()
1328       */       */
1329      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331          return DLS::Sample::Write(pBuffer, SampleCount);  
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355      }      }
1356    
1357      /**      /**
# Line 1126  namespace { Line 1370  namespace {
1370       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1371       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1372       */       */
1373      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374          buffer_t result;          buffer_t result;
1375          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1376                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1379          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1380          return result;          return result;
# Line 1164  namespace { Line 1408  namespace {
1408          return pGroup;          return pGroup;
1409      }      }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1180  namespace { Line 1490  namespace {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          pSample = NULL;          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1509                _3ewa->SetPos(0);
1510    
1511              _3ewa->ReadInt32(); // unknown, always == chunk size ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
# Line 1302  namespace { Line 1617  namespace {
1617                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1618              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1619              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1622              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1623              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1352  namespace { Line 1667  namespace {
1667              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1668              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1669              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1670              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1671              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1672              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1673              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1674              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1675              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1369  namespace { Line 1684  namespace {
1684              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1685              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1686              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1687              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1688              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1689              EG2Release                      = 0.0;              EG2Release                      = 60;
1690              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1691              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1692              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1693              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1694              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1695              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1696              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1697              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1698              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1699              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1700              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1701              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1423  namespace { Line 1738  namespace {
1738              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1739              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1740              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1741              memset(DimensionUpperLimits, 0, 8);              memset(DimensionUpperLimits, 127, 8);
1742            }
1743    
1744            // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746            if (lsde) { // format extension for EG behavior options
1747                lsde->SetPos(0);
1748    
1749                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751                    unsigned char byte = lsde->ReadUint8();
1752                    pEGOpts[i]->AttackCancel     = byte & 1;
1753                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1755                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1756                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1757                }
1758            }
1759            // format extension for sustain pedal up effect on release trigger samples
1760            if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761                lsde->SetPos(3);
1762                uint8_t byte = lsde->ReadUint8();
1763                SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1764                NoNoteOffReleaseTrigger = byte >> 7;
1765            } else {
1766                SustainReleaseTrigger   = sust_rel_trg_none;
1767                NoNoteOffReleaseTrigger = false;
1768            }
1769            // format extension for LFOs' wave form, phase displacement and for
1770            // LFO3's flip phase
1771            if (lsde && lsde->GetSize() > 4) {
1772                lsde->SetPos(4);
1773                LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774                LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775                LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776                lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777                LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778                LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779                LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780                const uint32_t flags = lsde->ReadInt32();
1781                LFO3FlipPhase = flags & 1;
1782            } else {
1783                LFO1WaveForm = lfo_wave_sine;
1784                LFO2WaveForm = lfo_wave_sine;
1785                LFO3WaveForm = lfo_wave_sine;
1786                LFO1Phase = 0.0;
1787                LFO2Phase = 0.0;
1788                LFO3Phase = 0.0;
1789                LFO3FlipPhase = false;
1790          }          }
1791    
1792          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1794                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1795    
1796          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1797          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1798                                        ReleaseVelocityResponseDepth
1799          // this models a strange behaviour or bug in GSt: two of the                                  );
1800          // velocity response curves for release time are not used even  
1801          // if specified, instead another curve is chosen.          pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802          if ((curveType == curve_type_nonlinear && depth == 0) ||                                                        VCFVelocityDynamicRange,
1803              (curveType == curve_type_special   && depth == 4)) {                                                        VCFVelocityScale,
1804              curveType = curve_type_nonlinear;                                                        VCFCutoffController);
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1805    
1806          curveType = VCFVelocityCurve;          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807          depth = VCFVelocityDynamicRange;          VelocityTable = 0;
1808        }
1809    
1810          // even stranger GSt: two of the velocity response curves for      /*
1811          // filter cutoff are not used, instead another special curve       * Constructs a DimensionRegion by copying all parameters from
1812          // is chosen. This curve is not used anywhere else.       * another DimensionRegion
1813          if ((curveType == curve_type_nonlinear && depth == 0) ||       */
1814              (curveType == curve_type_special   && depth == 4)) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815              curveType = curve_type_special;          Instances++;
1816              depth = 5;          //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817            *this = src; // default memberwise shallow copy of all parameters
1818            pParentList = _3ewl; // restore the chunk pointer
1819    
1820            // deep copy of owned structures
1821            if (src.VelocityTable) {
1822                VelocityTable = new uint8_t[128];
1823                for (int k = 0 ; k < 128 ; k++)
1824                    VelocityTable[k] = src.VelocityTable[k];
1825            }
1826            if (src.pSampleLoops) {
1827                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828                for (int k = 0 ; k < src.SampleLoops ; k++)
1829                    pSampleLoops[k] = src.pSampleLoops[k];
1830          }          }
1831          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
1832                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);      
1833        /**
1834         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835         * and assign it to this object.
1836         *
1837         * Note that all sample pointers referenced by @a orig are simply copied as
1838         * memory address. Thus the respective samples are shared, not duplicated!
1839         *
1840         * @param orig - original DimensionRegion object to be copied from
1841         */
1842        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843            CopyAssign(orig, NULL);
1844        }
1845    
1846        /**
1847         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848         * and assign it to this object.
1849         *
1850         * @param orig - original DimensionRegion object to be copied from
1851         * @param mSamples - crosslink map between the foreign file's samples and
1852         *                   this file's samples
1853         */
1854        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855            // delete all allocated data first
1856            if (VelocityTable) delete [] VelocityTable;
1857            if (pSampleLoops) delete [] pSampleLoops;
1858            
1859            // backup parent list pointer
1860            RIFF::List* p = pParentList;
1861            
1862            gig::Sample* pOriginalSample = pSample;
1863            gig::Region* pOriginalRegion = pRegion;
1864            
1865            //NOTE: copy code copied from assignment constructor above, see comment there as well
1866            
1867            *this = *orig; // default memberwise shallow copy of all parameters
1868            
1869            // restore members that shall not be altered
1870            pParentList = p; // restore the chunk pointer
1871            pRegion = pOriginalRegion;
1872            
1873            // only take the raw sample reference reference if the
1874            // two DimensionRegion objects are part of the same file
1875            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876                pSample = pOriginalSample;
1877            }
1878            
1879            if (mSamples && mSamples->count(orig->pSample)) {
1880                pSample = mSamples->find(orig->pSample)->second;
1881            }
1882    
1883            // deep copy of owned structures
1884            if (orig->VelocityTable) {
1885                VelocityTable = new uint8_t[128];
1886                for (int k = 0 ; k < 128 ; k++)
1887                    VelocityTable[k] = orig->VelocityTable[k];
1888            }
1889            if (orig->pSampleLoops) {
1890                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891                for (int k = 0 ; k < orig->SampleLoops ; k++)
1892                    pSampleLoops[k] = orig->pSampleLoops[k];
1893            }
1894        }
1895    
1896        void DimensionRegion::serialize(Serialization::Archive* archive) {
1897            // in case this class will become backward incompatible one day,
1898            // then set a version and minimum version for this class like:
1899            //archive->setVersion(*this, 2);
1900            //archive->setMinVersion(*this, 1);
1901    
1902            SRLZ(VelocityUpperLimit);
1903            SRLZ(EG1PreAttack);
1904            SRLZ(EG1Attack);
1905            SRLZ(EG1Decay1);
1906            SRLZ(EG1Decay2);
1907            SRLZ(EG1InfiniteSustain);
1908            SRLZ(EG1Sustain);
1909            SRLZ(EG1Release);
1910            SRLZ(EG1Hold);
1911            SRLZ(EG1Controller);
1912            SRLZ(EG1ControllerInvert);
1913            SRLZ(EG1ControllerAttackInfluence);
1914            SRLZ(EG1ControllerDecayInfluence);
1915            SRLZ(EG1ControllerReleaseInfluence);
1916            SRLZ(LFO1WaveForm);
1917            SRLZ(LFO1Frequency);
1918            SRLZ(LFO1Phase);
1919            SRLZ(LFO1InternalDepth);
1920            SRLZ(LFO1ControlDepth);
1921            SRLZ(LFO1Controller);
1922            SRLZ(LFO1FlipPhase);
1923            SRLZ(LFO1Sync);
1924            SRLZ(EG2PreAttack);
1925            SRLZ(EG2Attack);
1926            SRLZ(EG2Decay1);
1927            SRLZ(EG2Decay2);
1928            SRLZ(EG2InfiniteSustain);
1929            SRLZ(EG2Sustain);
1930            SRLZ(EG2Release);
1931            SRLZ(EG2Controller);
1932            SRLZ(EG2ControllerInvert);
1933            SRLZ(EG2ControllerAttackInfluence);
1934            SRLZ(EG2ControllerDecayInfluence);
1935            SRLZ(EG2ControllerReleaseInfluence);
1936            SRLZ(LFO2WaveForm);
1937            SRLZ(LFO2Frequency);
1938            SRLZ(LFO2Phase);
1939            SRLZ(LFO2InternalDepth);
1940            SRLZ(LFO2ControlDepth);
1941            SRLZ(LFO2Controller);
1942            SRLZ(LFO2FlipPhase);
1943            SRLZ(LFO2Sync);
1944            SRLZ(EG3Attack);
1945            SRLZ(EG3Depth);
1946            SRLZ(LFO3WaveForm);
1947            SRLZ(LFO3Frequency);
1948            SRLZ(LFO3Phase);
1949            SRLZ(LFO3InternalDepth);
1950            SRLZ(LFO3ControlDepth);
1951            SRLZ(LFO3Controller);
1952            SRLZ(LFO3FlipPhase);
1953            SRLZ(LFO3Sync);
1954            SRLZ(VCFEnabled);
1955            SRLZ(VCFType);
1956            SRLZ(VCFCutoffController);
1957            SRLZ(VCFCutoffControllerInvert);
1958            SRLZ(VCFCutoff);
1959            SRLZ(VCFVelocityCurve);
1960            SRLZ(VCFVelocityScale);
1961            SRLZ(VCFVelocityDynamicRange);
1962            SRLZ(VCFResonance);
1963            SRLZ(VCFResonanceDynamic);
1964            SRLZ(VCFResonanceController);
1965            SRLZ(VCFKeyboardTracking);
1966            SRLZ(VCFKeyboardTrackingBreakpoint);
1967            SRLZ(VelocityResponseCurve);
1968            SRLZ(VelocityResponseDepth);
1969            SRLZ(VelocityResponseCurveScaling);
1970            SRLZ(ReleaseVelocityResponseCurve);
1971            SRLZ(ReleaseVelocityResponseDepth);
1972            SRLZ(ReleaseTriggerDecay);
1973            SRLZ(Crossfade);
1974            SRLZ(PitchTrack);
1975            SRLZ(DimensionBypass);
1976            SRLZ(Pan);
1977            SRLZ(SelfMask);
1978            SRLZ(AttenuationController);
1979            SRLZ(InvertAttenuationController);
1980            SRLZ(AttenuationControllerThreshold);
1981            SRLZ(ChannelOffset);
1982            SRLZ(SustainDefeat);
1983            SRLZ(MSDecode);
1984            //SRLZ(SampleStartOffset);
1985            SRLZ(SampleAttenuation);
1986            SRLZ(EG1Options);
1987            SRLZ(EG2Options);
1988            SRLZ(SustainReleaseTrigger);
1989            SRLZ(NoNoteOffReleaseTrigger);
1990    
1991            // derived attributes from DLS::Sampler
1992            SRLZ(FineTune);
1993            SRLZ(Gain);
1994        }
1995    
1996        /**
1997         * Updates the respective member variable and updates @c SampleAttenuation
1998         * which depends on this value.
1999         */
2000        void DimensionRegion::SetGain(int32_t gain) {
2001            DLS::Sampler::SetGain(gain);
2002          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
2003      }      }
2004    
2005      /**      /**
# Line 1467  namespace { Line 2008  namespace {
2008       *       *
2009       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
2010       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
2011         *
2012         * @param pProgress - callback function for progress notification
2013       */       */
2014      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015          // first update base class's chunk          // first update base class's chunk
2016          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks(pProgress);
2017    
2018            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020            pData[12] = Crossfade.in_start;
2021            pData[13] = Crossfade.in_end;
2022            pData[14] = Crossfade.out_start;
2023            pData[15] = Crossfade.out_end;
2024    
2025          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
2026          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
2028          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031            }
2032            pData = (uint8_t*) _3ewa->LoadChunkData();
2033    
2034          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036          const uint32_t chunksize = _3ewa->GetSize();          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?          store32(&pData[0], chunksize); // unknown, always chunk size?
2038    
2039          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
2041    
2042          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
2044    
2045          // next 2 bytes unknown          // next 2 bytes unknown
2046    
2047          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
2048    
2049          // next 2 bytes unknown          // next 2 bytes unknown
2050    
2051          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
2052    
2053          // next 2 bytes unknown          // next 2 bytes unknown
2054    
2055          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
2056    
2057          // next 2 bytes unknown          // next 2 bytes unknown
2058    
2059          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
2060    
2061          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
2063    
2064          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
2066    
2067          // next 2 bytes unknown          // next 2 bytes unknown
2068    
2069          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
2070    
2071          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
2073    
2074          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
2076    
2077          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
2078              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
2079              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
2083    
2084          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
2086    
2087          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
2088              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
2089              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
2093    
2094          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
2096    
2097          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
2099    
2100          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
2102    
2103          // next 2 bytes unknown          // next 2 bytes unknown
2104    
2105          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
2106    
2107          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
2109    
2110          // next 2 bytes unknown          // next 2 bytes unknown
2111    
2112          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
2113    
2114          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
2116    
2117          // next 2 bytes unknown          // next 2 bytes unknown
2118    
2119          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
2120    
2121          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
2123    
2124          // next 2 bytes unknown          // next 2 bytes unknown
2125    
2126          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
2127    
2128          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
2130    
2131          // next 2 bytes unknown          // next 2 bytes unknown
2132    
2133          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
2134    
2135          {          {
2136              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1594  namespace { Line 2148  namespace {
2148                  default:                  default:
2149                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150              }              }
2151              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
2152          }          }
2153    
2154          {          {
# Line 1613  namespace { Line 2167  namespace {
2167                  default:                  default:
2168                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169              }              }
2170              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
2171          }          }
2172    
2173          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
2174    
2175          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
2176    
2177          // next 4 bytes unknown          // next 4 bytes unknown
2178    
2179          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
2180    
2181          // next 2 bytes unknown          // next 2 bytes unknown
2182    
# Line 1641  namespace { Line 2195  namespace {
2195                  default:                  default:
2196                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197              }              }
2198              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
2199          }          }
2200    
2201          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
2203    
2204          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
2206    
2207          // next byte unknown          // next byte unknown
2208    
# Line 1657  namespace { Line 2211  namespace {
2211              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
2215          }          }
2216    
2217          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
2219    
2220          {          {
2221              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2224              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
2226          }          }
2227    
2228          {          {
# Line 1677  namespace { Line 2231  namespace {
2231              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2232              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
2233                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
2235          }          }
2236    
2237          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239          memcpy(&pData[116], &eg3depth, 1);          store16(&pData[116], eg3depth);
2240    
2241          // next 2 bytes unknown          // next 2 bytes unknown
2242    
2243          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
2244          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
2245    
2246          {          {
2247              uint8_t regoptions = 0;              uint8_t regoptions = 0;
2248              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
2249              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
2250              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
2251          }          }
2252    
2253          // next 2 bytes unknown          // next 2 bytes unknown
2254    
2255          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
2256    
2257          // next 3 bytes unknown          // next 3 bytes unknown
2258    
2259          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2260    
2261          // next 2 bytes unknown          // next 2 bytes unknown
2262    
2263          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
2265    
2266          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2267                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2268          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2269    
2270          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2271    
2272          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2275    
2276          // next byte unknown          // next byte unknown
2277    
2278          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2280          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
2281    
2282          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2285    
2286          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2288          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2289    
2290          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
2292    
2293          if (chunksize >= 148) {          if (chunksize >= 148) {
2294              memcpy(&pData[140], DimensionUpperLimits, 8);              memcpy(&pData[140], DimensionUpperLimits, 8);
2295          }          }
2296    
2297            // chunk for own format extensions, these will *NOT* work with
2298            // Gigasampler/GigaStudio !
2299            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300            const int lsdeSize =
2301                3 /* EG cancel options */ +
2302                1 /* sustain pedal up on release trigger option */ +
2303                8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304            if (!lsde && UsesAnyGigFormatExtension()) {
2305                // only add this "LSDE" chunk if there is some (format extension)
2306                // setting effective that would require our "LSDE" format extension
2307                // chunk to be stored
2308                lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309                // move LSDE chunk to the end of parent list
2310                pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311            }
2312            if (lsde) {
2313                if (lsde->GetNewSize() < lsdeSize)
2314                    lsde->Resize(lsdeSize);
2315                // format extension for EG behavior options
2316                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319                    pData[i] =
2320                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2321                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2323                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2324                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2325                }
2326                // format extension for release trigger options
2327                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328                // format extension for LFOs' wave form, phase displacement and for
2329                // LFO3's flip phase
2330                store16(&pData[4], LFO1WaveForm);
2331                store16(&pData[6], LFO2WaveForm);
2332                store16(&pData[8], LFO3WaveForm);
2333                //NOTE: 16 bits reserved here for potential future use !
2334                const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335                const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336                const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337                store32(&pData[12], lfo1Phase);
2338                store32(&pData[16], lfo2Phase);
2339                store32(&pData[20], lfo3Phase);
2340                const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341                store32(&pData[24], flags);
2342    
2343                // compile time sanity check: is our last store access here
2344                // consistent with the initial lsdeSize value assignment?
2345                static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346            }
2347        }
2348    
2349        /**
2350         * Returns @c true in case this DimensionRegion object uses any gig format
2351         * extension, that is whether this DimensionRegion object currently has any
2352         * setting effective that would require our "LSDE" RIFF chunk to be stored
2353         * to the gig file.
2354         *
2355         * Right now this is a private method. It is considerable though this method
2356         * to become (in slightly modified form) a public API method in future, i.e.
2357         * to allow instrument editors to visualize and/or warn the user of any
2358         * format extension being used. Right now this method really just serves to
2359         * answer the question whether an LSDE chunk is required, for the public API
2360         * purpose this method would also need to check whether any other setting
2361         * stored to the regular value '3ewa' chunk, is actually a format extension
2362         * as well.
2363         */
2364        bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365            eg_opt_t defaultOpt;
2366            return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367                   memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368                   SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369                   LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370                   LFO1Phase || LFO2Phase || LFO3Phase ||
2371                   LFO3FlipPhase;
2372        }
2373    
2374        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375            curve_type_t curveType = releaseVelocityResponseCurve;
2376            uint8_t depth = releaseVelocityResponseDepth;
2377            // this models a strange behaviour or bug in GSt: two of the
2378            // velocity response curves for release time are not used even
2379            // if specified, instead another curve is chosen.
2380            if ((curveType == curve_type_nonlinear && depth == 0) ||
2381                (curveType == curve_type_special   && depth == 4)) {
2382                curveType = curve_type_nonlinear;
2383                depth = 3;
2384            }
2385            return GetVelocityTable(curveType, depth, 0);
2386        }
2387    
2388        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389                                                        uint8_t vcfVelocityDynamicRange,
2390                                                        uint8_t vcfVelocityScale,
2391                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2392        {
2393            curve_type_t curveType = vcfVelocityCurve;
2394            uint8_t depth = vcfVelocityDynamicRange;
2395            // even stranger GSt: two of the velocity response curves for
2396            // filter cutoff are not used, instead another special curve
2397            // is chosen. This curve is not used anywhere else.
2398            if ((curveType == curve_type_nonlinear && depth == 0) ||
2399                (curveType == curve_type_special   && depth == 4)) {
2400                curveType = curve_type_special;
2401                depth = 5;
2402            }
2403            return GetVelocityTable(curveType, depth,
2404                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405                                        ? vcfVelocityScale : 0);
2406      }      }
2407    
2408      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410      {      {
2411            // sanity check input parameters
2412            // (fallback to some default parameters on ill input)
2413            switch (curveType) {
2414                case curve_type_nonlinear:
2415                case curve_type_linear:
2416                    if (depth > 4) {
2417                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418                        depth   = 0;
2419                        scaling = 0;
2420                    }
2421                    break;
2422                case curve_type_special:
2423                    if (depth > 5) {
2424                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425                        depth   = 0;
2426                        scaling = 0;
2427                    }
2428                    break;
2429                case curve_type_unknown:
2430                default:
2431                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432                    curveType = curve_type_linear;
2433                    depth     = 0;
2434                    scaling   = 0;
2435                    break;
2436            }
2437    
2438          double* table;          double* table;
2439          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
# Line 1756  namespace { Line 2447  namespace {
2447          return table;          return table;
2448      }      }
2449    
2450        Region* DimensionRegion::GetParent() const {
2451            return pRegion;
2452        }
2453    
2454    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457    //#pragma GCC diagnostic push
2458    //#pragma GCC diagnostic error "-Wswitch"
2459    
2460      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2462          switch (EncodedController) {          switch (EncodedController) {
# Line 1867  namespace { Line 2568  namespace {
2568                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2569                  break;                  break;
2570    
2571                // format extension (these controllers are so far only supported by
2572                // LinuxSampler & gigedit) they will *NOT* work with
2573                // Gigasampler/GigaStudio !
2574                case _lev_ctrl_CC3_EXT:
2575                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576                    decodedcontroller.controller_number = 3;
2577                    break;
2578                case _lev_ctrl_CC6_EXT:
2579                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580                    decodedcontroller.controller_number = 6;
2581                    break;
2582                case _lev_ctrl_CC7_EXT:
2583                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584                    decodedcontroller.controller_number = 7;
2585                    break;
2586                case _lev_ctrl_CC8_EXT:
2587                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588                    decodedcontroller.controller_number = 8;
2589                    break;
2590                case _lev_ctrl_CC9_EXT:
2591                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592                    decodedcontroller.controller_number = 9;
2593                    break;
2594                case _lev_ctrl_CC10_EXT:
2595                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596                    decodedcontroller.controller_number = 10;
2597                    break;
2598                case _lev_ctrl_CC11_EXT:
2599                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600                    decodedcontroller.controller_number = 11;
2601                    break;
2602                case _lev_ctrl_CC14_EXT:
2603                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604                    decodedcontroller.controller_number = 14;
2605                    break;
2606                case _lev_ctrl_CC15_EXT:
2607                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608                    decodedcontroller.controller_number = 15;
2609                    break;
2610                case _lev_ctrl_CC20_EXT:
2611                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612                    decodedcontroller.controller_number = 20;
2613                    break;
2614                case _lev_ctrl_CC21_EXT:
2615                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616                    decodedcontroller.controller_number = 21;
2617                    break;
2618                case _lev_ctrl_CC22_EXT:
2619                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620                    decodedcontroller.controller_number = 22;
2621                    break;
2622                case _lev_ctrl_CC23_EXT:
2623                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624                    decodedcontroller.controller_number = 23;
2625                    break;
2626                case _lev_ctrl_CC24_EXT:
2627                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628                    decodedcontroller.controller_number = 24;
2629                    break;
2630                case _lev_ctrl_CC25_EXT:
2631                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632                    decodedcontroller.controller_number = 25;
2633                    break;
2634                case _lev_ctrl_CC26_EXT:
2635                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636                    decodedcontroller.controller_number = 26;
2637                    break;
2638                case _lev_ctrl_CC27_EXT:
2639                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640                    decodedcontroller.controller_number = 27;
2641                    break;
2642                case _lev_ctrl_CC28_EXT:
2643                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644                    decodedcontroller.controller_number = 28;
2645                    break;
2646                case _lev_ctrl_CC29_EXT:
2647                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648                    decodedcontroller.controller_number = 29;
2649                    break;
2650                case _lev_ctrl_CC30_EXT:
2651                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652                    decodedcontroller.controller_number = 30;
2653                    break;
2654                case _lev_ctrl_CC31_EXT:
2655                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656                    decodedcontroller.controller_number = 31;
2657                    break;
2658                case _lev_ctrl_CC68_EXT:
2659                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660                    decodedcontroller.controller_number = 68;
2661                    break;
2662                case _lev_ctrl_CC69_EXT:
2663                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664                    decodedcontroller.controller_number = 69;
2665                    break;
2666                case _lev_ctrl_CC70_EXT:
2667                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668                    decodedcontroller.controller_number = 70;
2669                    break;
2670                case _lev_ctrl_CC71_EXT:
2671                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672                    decodedcontroller.controller_number = 71;
2673                    break;
2674                case _lev_ctrl_CC72_EXT:
2675                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676                    decodedcontroller.controller_number = 72;
2677                    break;
2678                case _lev_ctrl_CC73_EXT:
2679                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680                    decodedcontroller.controller_number = 73;
2681                    break;
2682                case _lev_ctrl_CC74_EXT:
2683                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684                    decodedcontroller.controller_number = 74;
2685                    break;
2686                case _lev_ctrl_CC75_EXT:
2687                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688                    decodedcontroller.controller_number = 75;
2689                    break;
2690                case _lev_ctrl_CC76_EXT:
2691                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692                    decodedcontroller.controller_number = 76;
2693                    break;
2694                case _lev_ctrl_CC77_EXT:
2695                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696                    decodedcontroller.controller_number = 77;
2697                    break;
2698                case _lev_ctrl_CC78_EXT:
2699                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700                    decodedcontroller.controller_number = 78;
2701                    break;
2702                case _lev_ctrl_CC79_EXT:
2703                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704                    decodedcontroller.controller_number = 79;
2705                    break;
2706                case _lev_ctrl_CC84_EXT:
2707                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708                    decodedcontroller.controller_number = 84;
2709                    break;
2710                case _lev_ctrl_CC85_EXT:
2711                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712                    decodedcontroller.controller_number = 85;
2713                    break;
2714                case _lev_ctrl_CC86_EXT:
2715                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716                    decodedcontroller.controller_number = 86;
2717                    break;
2718                case _lev_ctrl_CC87_EXT:
2719                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720                    decodedcontroller.controller_number = 87;
2721                    break;
2722                case _lev_ctrl_CC89_EXT:
2723                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724                    decodedcontroller.controller_number = 89;
2725                    break;
2726                case _lev_ctrl_CC90_EXT:
2727                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728                    decodedcontroller.controller_number = 90;
2729                    break;
2730                case _lev_ctrl_CC96_EXT:
2731                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732                    decodedcontroller.controller_number = 96;
2733                    break;
2734                case _lev_ctrl_CC97_EXT:
2735                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736                    decodedcontroller.controller_number = 97;
2737                    break;
2738                case _lev_ctrl_CC102_EXT:
2739                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740                    decodedcontroller.controller_number = 102;
2741                    break;
2742                case _lev_ctrl_CC103_EXT:
2743                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744                    decodedcontroller.controller_number = 103;
2745                    break;
2746                case _lev_ctrl_CC104_EXT:
2747                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748                    decodedcontroller.controller_number = 104;
2749                    break;
2750                case _lev_ctrl_CC105_EXT:
2751                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752                    decodedcontroller.controller_number = 105;
2753                    break;
2754                case _lev_ctrl_CC106_EXT:
2755                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756                    decodedcontroller.controller_number = 106;
2757                    break;
2758                case _lev_ctrl_CC107_EXT:
2759                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760                    decodedcontroller.controller_number = 107;
2761                    break;
2762                case _lev_ctrl_CC108_EXT:
2763                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764                    decodedcontroller.controller_number = 108;
2765                    break;
2766                case _lev_ctrl_CC109_EXT:
2767                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768                    decodedcontroller.controller_number = 109;
2769                    break;
2770                case _lev_ctrl_CC110_EXT:
2771                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772                    decodedcontroller.controller_number = 110;
2773                    break;
2774                case _lev_ctrl_CC111_EXT:
2775                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776                    decodedcontroller.controller_number = 111;
2777                    break;
2778                case _lev_ctrl_CC112_EXT:
2779                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780                    decodedcontroller.controller_number = 112;
2781                    break;
2782                case _lev_ctrl_CC113_EXT:
2783                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784                    decodedcontroller.controller_number = 113;
2785                    break;
2786                case _lev_ctrl_CC114_EXT:
2787                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788                    decodedcontroller.controller_number = 114;
2789                    break;
2790                case _lev_ctrl_CC115_EXT:
2791                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792                    decodedcontroller.controller_number = 115;
2793                    break;
2794                case _lev_ctrl_CC116_EXT:
2795                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796                    decodedcontroller.controller_number = 116;
2797                    break;
2798                case _lev_ctrl_CC117_EXT:
2799                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800                    decodedcontroller.controller_number = 117;
2801                    break;
2802                case _lev_ctrl_CC118_EXT:
2803                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804                    decodedcontroller.controller_number = 118;
2805                    break;
2806                case _lev_ctrl_CC119_EXT:
2807                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808                    decodedcontroller.controller_number = 119;
2809                    break;
2810    
2811              // unknown controller type              // unknown controller type
2812              default:              default:
2813                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2814                    decodedcontroller.controller_number = 0;
2815                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816                    break;
2817          }          }
2818          return decodedcontroller;          return decodedcontroller;
2819      }      }
2820        
2821    // see above (diagnostic push not supported prior GCC 4.6)
2822    //#pragma GCC diagnostic pop
2823    
2824      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1960  namespace { Line 2907  namespace {
2907                      case 95:                      case 95:
2908                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2909                          break;                          break;
2910    
2911                        // format extension (these controllers are so far only
2912                        // supported by LinuxSampler & gigedit) they will *NOT*
2913                        // work with Gigasampler/GigaStudio !
2914                        case 3:
2915                            encodedcontroller = _lev_ctrl_CC3_EXT;
2916                            break;
2917                        case 6:
2918                            encodedcontroller = _lev_ctrl_CC6_EXT;
2919                            break;
2920                        case 7:
2921                            encodedcontroller = _lev_ctrl_CC7_EXT;
2922                            break;
2923                        case 8:
2924                            encodedcontroller = _lev_ctrl_CC8_EXT;
2925                            break;
2926                        case 9:
2927                            encodedcontroller = _lev_ctrl_CC9_EXT;
2928                            break;
2929                        case 10:
2930                            encodedcontroller = _lev_ctrl_CC10_EXT;
2931                            break;
2932                        case 11:
2933                            encodedcontroller = _lev_ctrl_CC11_EXT;
2934                            break;
2935                        case 14:
2936                            encodedcontroller = _lev_ctrl_CC14_EXT;
2937                            break;
2938                        case 15:
2939                            encodedcontroller = _lev_ctrl_CC15_EXT;
2940                            break;
2941                        case 20:
2942                            encodedcontroller = _lev_ctrl_CC20_EXT;
2943                            break;
2944                        case 21:
2945                            encodedcontroller = _lev_ctrl_CC21_EXT;
2946                            break;
2947                        case 22:
2948                            encodedcontroller = _lev_ctrl_CC22_EXT;
2949                            break;
2950                        case 23:
2951                            encodedcontroller = _lev_ctrl_CC23_EXT;
2952                            break;
2953                        case 24:
2954                            encodedcontroller = _lev_ctrl_CC24_EXT;
2955                            break;
2956                        case 25:
2957                            encodedcontroller = _lev_ctrl_CC25_EXT;
2958                            break;
2959                        case 26:
2960                            encodedcontroller = _lev_ctrl_CC26_EXT;
2961                            break;
2962                        case 27:
2963                            encodedcontroller = _lev_ctrl_CC27_EXT;
2964                            break;
2965                        case 28:
2966                            encodedcontroller = _lev_ctrl_CC28_EXT;
2967                            break;
2968                        case 29:
2969                            encodedcontroller = _lev_ctrl_CC29_EXT;
2970                            break;
2971                        case 30:
2972                            encodedcontroller = _lev_ctrl_CC30_EXT;
2973                            break;
2974                        case 31:
2975                            encodedcontroller = _lev_ctrl_CC31_EXT;
2976                            break;
2977                        case 68:
2978                            encodedcontroller = _lev_ctrl_CC68_EXT;
2979                            break;
2980                        case 69:
2981                            encodedcontroller = _lev_ctrl_CC69_EXT;
2982                            break;
2983                        case 70:
2984                            encodedcontroller = _lev_ctrl_CC70_EXT;
2985                            break;
2986                        case 71:
2987                            encodedcontroller = _lev_ctrl_CC71_EXT;
2988                            break;
2989                        case 72:
2990                            encodedcontroller = _lev_ctrl_CC72_EXT;
2991                            break;
2992                        case 73:
2993                            encodedcontroller = _lev_ctrl_CC73_EXT;
2994                            break;
2995                        case 74:
2996                            encodedcontroller = _lev_ctrl_CC74_EXT;
2997                            break;
2998                        case 75:
2999                            encodedcontroller = _lev_ctrl_CC75_EXT;
3000                            break;
3001                        case 76:
3002                            encodedcontroller = _lev_ctrl_CC76_EXT;
3003                            break;
3004                        case 77:
3005                            encodedcontroller = _lev_ctrl_CC77_EXT;
3006                            break;
3007                        case 78:
3008                            encodedcontroller = _lev_ctrl_CC78_EXT;
3009                            break;
3010                        case 79:
3011                            encodedcontroller = _lev_ctrl_CC79_EXT;
3012                            break;
3013                        case 84:
3014                            encodedcontroller = _lev_ctrl_CC84_EXT;
3015                            break;
3016                        case 85:
3017                            encodedcontroller = _lev_ctrl_CC85_EXT;
3018                            break;
3019                        case 86:
3020                            encodedcontroller = _lev_ctrl_CC86_EXT;
3021                            break;
3022                        case 87:
3023                            encodedcontroller = _lev_ctrl_CC87_EXT;
3024                            break;
3025                        case 89:
3026                            encodedcontroller = _lev_ctrl_CC89_EXT;
3027                            break;
3028                        case 90:
3029                            encodedcontroller = _lev_ctrl_CC90_EXT;
3030                            break;
3031                        case 96:
3032                            encodedcontroller = _lev_ctrl_CC96_EXT;
3033                            break;
3034                        case 97:
3035                            encodedcontroller = _lev_ctrl_CC97_EXT;
3036                            break;
3037                        case 102:
3038                            encodedcontroller = _lev_ctrl_CC102_EXT;
3039                            break;
3040                        case 103:
3041                            encodedcontroller = _lev_ctrl_CC103_EXT;
3042                            break;
3043                        case 104:
3044                            encodedcontroller = _lev_ctrl_CC104_EXT;
3045                            break;
3046                        case 105:
3047                            encodedcontroller = _lev_ctrl_CC105_EXT;
3048                            break;
3049                        case 106:
3050                            encodedcontroller = _lev_ctrl_CC106_EXT;
3051                            break;
3052                        case 107:
3053                            encodedcontroller = _lev_ctrl_CC107_EXT;
3054                            break;
3055                        case 108:
3056                            encodedcontroller = _lev_ctrl_CC108_EXT;
3057                            break;
3058                        case 109:
3059                            encodedcontroller = _lev_ctrl_CC109_EXT;
3060                            break;
3061                        case 110:
3062                            encodedcontroller = _lev_ctrl_CC110_EXT;
3063                            break;
3064                        case 111:
3065                            encodedcontroller = _lev_ctrl_CC111_EXT;
3066                            break;
3067                        case 112:
3068                            encodedcontroller = _lev_ctrl_CC112_EXT;
3069                            break;
3070                        case 113:
3071                            encodedcontroller = _lev_ctrl_CC113_EXT;
3072                            break;
3073                        case 114:
3074                            encodedcontroller = _lev_ctrl_CC114_EXT;
3075                            break;
3076                        case 115:
3077                            encodedcontroller = _lev_ctrl_CC115_EXT;
3078                            break;
3079                        case 116:
3080                            encodedcontroller = _lev_ctrl_CC116_EXT;
3081                            break;
3082                        case 117:
3083                            encodedcontroller = _lev_ctrl_CC117_EXT;
3084                            break;
3085                        case 118:
3086                            encodedcontroller = _lev_ctrl_CC118_EXT;
3087                            break;
3088                        case 119:
3089                            encodedcontroller = _lev_ctrl_CC119_EXT;
3090                            break;
3091    
3092                      default:                      default:
3093                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
3094                  }                  }
3095                    break;
3096              default:              default:
3097                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
3098          }          }
# Line 2008  namespace { Line 3138  namespace {
3138          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
3139      }      }
3140    
3141        /**
3142         * Updates the respective member variable and the lookup table / cache
3143         * that depends on this value.
3144         */
3145        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146            pVelocityAttenuationTable =
3147                GetVelocityTable(
3148                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149                );
3150            VelocityResponseCurve = curve;
3151        }
3152    
3153        /**
3154         * Updates the respective member variable and the lookup table / cache
3155         * that depends on this value.
3156         */
3157        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158            pVelocityAttenuationTable =
3159                GetVelocityTable(
3160                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161                );
3162            VelocityResponseDepth = depth;
3163        }
3164    
3165        /**
3166         * Updates the respective member variable and the lookup table / cache
3167         * that depends on this value.
3168         */
3169        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170            pVelocityAttenuationTable =
3171                GetVelocityTable(
3172                    VelocityResponseCurve, VelocityResponseDepth, scaling
3173                );
3174            VelocityResponseCurveScaling = scaling;
3175        }
3176    
3177        /**
3178         * Updates the respective member variable and the lookup table / cache
3179         * that depends on this value.
3180         */
3181        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183            ReleaseVelocityResponseCurve = curve;
3184        }
3185    
3186        /**
3187         * Updates the respective member variable and the lookup table / cache
3188         * that depends on this value.
3189         */
3190        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192            ReleaseVelocityResponseDepth = depth;
3193        }
3194    
3195        /**
3196         * Updates the respective member variable and the lookup table / cache
3197         * that depends on this value.
3198         */
3199        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201            VCFCutoffController = controller;
3202        }
3203    
3204        /**
3205         * Updates the respective member variable and the lookup table / cache
3206         * that depends on this value.
3207         */
3208        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210            VCFVelocityCurve = curve;
3211        }
3212    
3213        /**
3214         * Updates the respective member variable and the lookup table / cache
3215         * that depends on this value.
3216         */
3217        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219            VCFVelocityDynamicRange = range;
3220        }
3221    
3222        /**
3223         * Updates the respective member variable and the lookup table / cache
3224         * that depends on this value.
3225         */
3226        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228            VCFVelocityScale = scaling;
3229        }
3230    
3231      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232    
3233          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2080  namespace { Line 3300  namespace {
3300  // *  // *
3301    
3302      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
3303          // Initialization          // Initialization
3304          Dimensions = 0;          Dimensions = 0;
3305          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2089  namespace { Line 3307  namespace {
3307          }          }
3308          Layers = 1;          Layers = 1;
3309          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3310          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311    
3312          // Actual Loading          // Actual Loading
3313    
3314            if (!file->GetAutoLoad()) return;
3315    
3316          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3317    
3318          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319          if (_3lnk) {          if (_3lnk) {
3320                _3lnk->SetPos(0);
3321    
3322              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3323              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3324                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3326                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3330                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2115  namespace { Line 3337  namespace {
3337                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3338                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3339                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random ||  
                                                            dimension == dimension_smartmidi ||  
                                                            dimension == dimension_roundrobinkeyboard) ? split_type_bit  
                                                                                                       : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3342                      Dimensions++;                      Dimensions++;
3343    
3344                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2141  namespace { Line 3353  namespace {
3353              UpdateVelocityTable();              UpdateVelocityTable();
3354    
3355              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3356              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major > 2)
3357                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358              else              else
3359                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3360    
3361              // load sample references              // load sample references (if auto loading is enabled)
3362              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3363                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3364                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3365                        if (file->pWavePoolTable && pDimensionRegions[i])
3366                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367                    }
3368                    GetSample(); // load global region sample reference
3369                }
3370            } else {
3371                DimensionRegions = 0;
3372                for (int i = 0 ; i < 8 ; i++) {
3373                    pDimensionDefinitions[i].dimension  = dimension_none;
3374                    pDimensionDefinitions[i].bits       = 0;
3375                    pDimensionDefinitions[i].zones      = 0;
3376              }              }
             GetSample(); // load global region sample reference  
3377          }          }
3378    
3379          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2159  namespace { Line 3381  namespace {
3381              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385              DimensionRegions = 1;              DimensionRegions = 1;
3386          }          }
3387      }      }
# Line 2171  namespace { Line 3393  namespace {
3393       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
3394       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
3395       *       *
3396         * @param pProgress - callback function for progress notification
3397       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3398       */       */
3399      void Region::UpdateChunks() {      void Region::UpdateChunks(progress_t* pProgress) {
3400            // in the gig format we don't care about the Region's sample reference
3401            // but we still have to provide some existing one to not corrupt the
3402            // file, so to avoid the latter we simply always assign the sample of
3403            // the first dimension region of this region
3404            pSample = pDimensionRegions[0]->pSample;
3405    
3406          // first update base class's chunks          // first update base class's chunks
3407          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks(pProgress);
3408    
3409          // update dimension region's chunks          // update dimension region's chunks
3410          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
3411              pDimensionRegions[i]->UpdateChunks();              pDimensionRegions[i]->UpdateChunks(pProgress);
3412          }          }
3413    
3414          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3415          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  versiongt2 ? 8 : 5;
3417            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418    
3419          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3420          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421          if (!_3lnk) {          if (!_3lnk) {
3422              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425    
3426                // move 3prg to last position
3427                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428          }          }
3429    
3430          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3431          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
3433            int shift = 0;
3434          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3435              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
3441    
3442                shift += pDimensionDefinitions[i].bits;
3443          }          }
3444    
3445          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3446          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448              int iWaveIndex = -1;              int iWaveIndex = -1;
3449              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2218  namespace { Line 3456  namespace {
3456                          break;                          break;
3457                      }                      }
3458                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3459              }              }
3460              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461          }          }
3462      }      }
3463    
# Line 2231  namespace { Line 3468  namespace {
3468              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3469              while (_3ewl) {              while (_3ewl) {
3470                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3471                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3472                      dimensionRegionNr++;                      dimensionRegionNr++;
3473                  }                  }
3474                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2240  namespace { Line 3477  namespace {
3477          }          }
3478      }      }
3479    
3480        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3481            // update KeyRange struct and make sure regions are in correct order
3482            DLS::Region::SetKeyRange(Low, High);
3483            // update Region key table for fast lookup
3484            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3485        }
3486    
3487      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
3488          // get velocity dimension's index          // get velocity dimension's index
3489          int veldim = -1;          int veldim = -1;
# Line 2254  namespace { Line 3498  namespace {
3498          int step = 1;          int step = 1;
3499          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3500          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
         int end = step * pDimensionDefinitions[veldim].zones;  
3501    
3502          // loop through all dimension regions for all dimensions except the velocity dimension          // loop through all dimension regions for all dimensions except the velocity dimension
3503          int dim[8] = { 0 };          int dim[8] = { 0 };
3504          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
3505                const int end = i + step * pDimensionDefinitions[veldim].zones;
3506    
3507                // create a velocity table for all cases where the velocity zone is zero
3508              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3509                  pDimensionRegions[i]->VelocityUpperLimit) {                  pDimensionRegions[i]->VelocityUpperLimit) {
3510                  // create the velocity table                  // create the velocity table
# Line 2290  namespace { Line 3535  namespace {
3535                  }                  }
3536              }              }
3537    
3538                // jump to the next case where the velocity zone is zero
3539              int j;              int j;
3540              int shift = 0;              int shift = 0;
3541              for (j = 0 ; j < Dimensions ; j++) {              for (j = 0 ; j < Dimensions ; j++) {
# Line 2326  namespace { Line 3572  namespace {
3572       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3573       */       */
3574      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3575            // some initial sanity checks of the given dimension definition
3576            if (pDimDef->zones < 2)
3577                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3578            if (pDimDef->bits < 1)
3579                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3580            if (pDimDef->dimension == dimension_samplechannel) {
3581                if (pDimDef->zones != 2)
3582                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3583                if (pDimDef->bits != 1)
3584                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3585            }
3586    
3587          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3588          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3589          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3590          if (Dimensions >= iMaxDimensions)          if (Dimensions >= iMaxDimensions)
3591              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3592          // check if max. amount of dimension bits reached          // check if max. amount of dimension bits reached
# Line 2345  namespace { Line 3603  namespace {
3603              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3604                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3605    
3606            // pos is where the new dimension should be placed, normally
3607            // last in list, except for the samplechannel dimension which
3608            // has to be first in list
3609            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3610            int bitpos = 0;
3611            for (int i = 0 ; i < pos ; i++)
3612                bitpos += pDimensionDefinitions[i].bits;
3613    
3614            // make room for the new dimension
3615            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3616            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3617                for (int j = Dimensions ; j > pos ; j--) {
3618                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3619                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3620                }
3621            }
3622    
3623          // assign definition of new dimension          // assign definition of new dimension
3624          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3625    
3626            // auto correct certain dimension definition fields (where possible)
3627            pDimensionDefinitions[pos].split_type  =
3628                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3629            pDimensionDefinitions[pos].zone_size =
3630                __resolveZoneSize(pDimensionDefinitions[pos]);
3631    
3632            // create new dimension region(s) for this new dimension, and make
3633            // sure that the dimension regions are placed correctly in both the
3634            // RIFF list and the pDimensionRegions array
3635            RIFF::Chunk* moveTo = NULL;
3636            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3638                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3639                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3640                }
3641                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3642                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3643                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3644                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3645                        // create a new dimension region and copy all parameter values from
3646                        // an existing dimension region
3647                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3648                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3649    
3650          // create new dimension region(s) for this new dimension                      DimensionRegions++;
3651          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {                  }
3652              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              }
3653              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              moveTo = pDimensionRegions[i]->pParentList;
3654              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);          }
3655              DimensionRegions++;  
3656            // initialize the upper limits for this dimension
3657            int mask = (1 << bitpos) - 1;
3658            for (int z = 0 ; z < pDimDef->zones ; z++) {
3659                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3660                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3661                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3662                                      (z << bitpos) |
3663                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3664                }
3665          }          }
3666    
3667          Dimensions++;          Dimensions++;
# Line 2396  namespace { Line 3704  namespace {
3704          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3705              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3706    
3707            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3708    
3709          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3710          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3711          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2404  namespace { Line 3714  namespace {
3714                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3715                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3716                                      iLowerBit;                                      iLowerBit;
3717    
3718                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3719                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3720                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3721                      DimensionRegions--;                      DimensionRegions--;
# Line 2424  namespace { Line 3736  namespace {
3736              }              }
3737          }          }
3738    
3739            // remove the this dimension from the upper limits arrays
3740            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3741                DimensionRegion* d = pDimensionRegions[j];
3742                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3743                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3744                }
3745                d->DimensionUpperLimits[Dimensions - 1] = 127;
3746            }
3747    
3748          // 'remove' dimension definition          // 'remove' dimension definition
3749          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3750              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2438  namespace { Line 3759  namespace {
3759          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3760      }      }
3761    
3762        /** @brief Delete one split zone of a dimension (decrement zone amount).
3763         *
3764         * Instead of deleting an entire dimensions, this method will only delete
3765         * one particular split zone given by @a zone of the Region's dimension
3766         * given by @a type. So this method will simply decrement the amount of
3767         * zones by one of the dimension in question. To be able to do that, the
3768         * respective dimension must exist on this Region and it must have at least
3769         * 3 zones. All DimensionRegion objects associated with the zone will be
3770         * deleted.
3771         *
3772         * @param type - identifies the dimension where a zone shall be deleted
3773         * @param zone - index of the dimension split zone that shall be deleted
3774         * @throws gig::Exception if requested zone could not be deleted
3775         */
3776        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3777            dimension_def_t* oldDef = GetDimensionDefinition(type);
3778            if (!oldDef)
3779                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3780            if (oldDef->zones <= 2)
3781                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3782            if (zone < 0 || zone >= oldDef->zones)
3783                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3784    
3785            const int newZoneSize = oldDef->zones - 1;
3786    
3787            // create a temporary Region which just acts as a temporary copy
3788            // container and will be deleted at the end of this function and will
3789            // also not be visible through the API during this process
3790            gig::Region* tempRgn = NULL;
3791            {
3792                // adding these temporary chunks is probably not even necessary
3793                Instrument* instr = static_cast<Instrument*>(GetParent());
3794                RIFF::List* pCkInstrument = instr->pCkInstrument;
3795                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3796                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3797                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3798                tempRgn = new Region(instr, rgn);
3799            }
3800    
3801            // copy this region's dimensions (with already the dimension split size
3802            // requested by the arguments of this method call) to the temporary
3803            // region, and don't use Region::CopyAssign() here for this task, since
3804            // it would also alter fast lookup helper variables here and there
3805            dimension_def_t newDef;
3806            for (int i = 0; i < Dimensions; ++i) {
3807                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3808                // is this the dimension requested by the method arguments? ...
3809                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3810                    def.zones = newZoneSize;
3811                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3812                    newDef = def;
3813                }
3814                tempRgn->AddDimension(&def);
3815            }
3816    
3817            // find the dimension index in the tempRegion which is the dimension
3818            // type passed to this method (paranoidly expecting different order)
3819            int tempReducedDimensionIndex = -1;
3820            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3821                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3822                    tempReducedDimensionIndex = d;
3823                    break;
3824                }
3825            }
3826    
3827            // copy dimension regions from this region to the temporary region
3828            for (int iDst = 0; iDst < 256; ++iDst) {
3829                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3830                if (!dstDimRgn) continue;
3831                std::map<dimension_t,int> dimCase;
3832                bool isValidZone = true;
3833                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3834                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3835                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3836                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3837                    baseBits += dstBits;
3838                    // there are also DimensionRegion objects of unused zones, skip them
3839                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3840                        isValidZone = false;
3841                        break;
3842                    }
3843                }
3844                if (!isValidZone) continue;
3845                // a bit paranoid: cope with the chance that the dimensions would
3846                // have different order in source and destination regions
3847                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3848                if (dimCase[type] >= zone) dimCase[type]++;
3849                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3850                dstDimRgn->CopyAssign(srcDimRgn);
3851                // if this is the upper most zone of the dimension passed to this
3852                // method, then correct (raise) its upper limit to 127
3853                if (newDef.split_type == split_type_normal && isLastZone)
3854                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3855            }
3856    
3857            // now tempRegion's dimensions and DimensionRegions basically reflect
3858            // what we wanted to get for this actual Region here, so we now just
3859            // delete and recreate the dimension in question with the new amount
3860            // zones and then copy back from tempRegion      
3861            DeleteDimension(oldDef);
3862            AddDimension(&newDef);
3863            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3864                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3865                if (!srcDimRgn) continue;
3866                std::map<dimension_t,int> dimCase;
3867                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3868                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3869                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3870                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3871                    baseBits += srcBits;
3872                }
3873                // a bit paranoid: cope with the chance that the dimensions would
3874                // have different order in source and destination regions
3875                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3876                if (!dstDimRgn) continue;
3877                dstDimRgn->CopyAssign(srcDimRgn);
3878            }
3879    
3880            // delete temporary region
3881            tempRgn->DeleteChunks();
3882            delete tempRgn;
3883    
3884            UpdateVelocityTable();
3885        }
3886    
3887        /** @brief Divide split zone of a dimension in two (increment zone amount).
3888         *
3889         * This will increment the amount of zones for the dimension (given by
3890         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3891         * in the middle of its zone range in two. So the two zones resulting from
3892         * the zone being splitted, will be an equivalent copy regarding all their
3893         * articulation informations and sample reference. The two zones will only
3894         * differ in their zone's upper limit
3895         * (DimensionRegion::DimensionUpperLimits).
3896         *
3897         * @param type - identifies the dimension where a zone shall be splitted
3898         * @param zone - index of the dimension split zone that shall be splitted
3899         * @throws gig::Exception if requested zone could not be splitted
3900         */
3901        void Region::SplitDimensionZone(dimension_t type, int zone) {
3902            dimension_def_t* oldDef = GetDimensionDefinition(type);
3903            if (!oldDef)
3904                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3905            if (zone < 0 || zone >= oldDef->zones)
3906                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3907    
3908            const int newZoneSize = oldDef->zones + 1;
3909    
3910            // create a temporary Region which just acts as a temporary copy
3911            // container and will be deleted at the end of this function and will
3912            // also not be visible through the API during this process
3913            gig::Region* tempRgn = NULL;
3914            {
3915                // adding these temporary chunks is probably not even necessary
3916                Instrument* instr = static_cast<Instrument*>(GetParent());
3917                RIFF::List* pCkInstrument = instr->pCkInstrument;
3918                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3919                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3920                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3921                tempRgn = new Region(instr, rgn);
3922            }
3923    
3924            // copy this region's dimensions (with already the dimension split size
3925            // requested by the arguments of this method call) to the temporary
3926            // region, and don't use Region::CopyAssign() here for this task, since
3927            // it would also alter fast lookup helper variables here and there
3928            dimension_def_t newDef;
3929            for (int i = 0; i < Dimensions; ++i) {
3930                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3931                // is this the dimension requested by the method arguments? ...
3932                if (def.dimension == type) { // ... if yes, increment zone amount by one
3933                    def.zones = newZoneSize;
3934                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3935                    newDef = def;
3936                }
3937                tempRgn->AddDimension(&def);
3938            }
3939    
3940            // find the dimension index in the tempRegion which is the dimension
3941            // type passed to this method (paranoidly expecting different order)
3942            int tempIncreasedDimensionIndex = -1;
3943            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3944                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3945                    tempIncreasedDimensionIndex = d;
3946                    break;
3947                }
3948            }
3949    
3950            // copy dimension regions from this region to the temporary region
3951            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3952                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3953                if (!srcDimRgn) continue;
3954                std::map<dimension_t,int> dimCase;
3955                bool isValidZone = true;
3956                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3957                    const int srcBits = pDimensionDefinitions[d].bits;
3958                    dimCase[pDimensionDefinitions[d].dimension] =
3959                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3960                    // there are also DimensionRegion objects for unused zones, skip them
3961                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3962                        isValidZone = false;
3963                        break;
3964                    }
3965                    baseBits += srcBits;
3966                }
3967                if (!isValidZone) continue;
3968                // a bit paranoid: cope with the chance that the dimensions would
3969                // have different order in source and destination regions            
3970                if (dimCase[type] > zone) dimCase[type]++;
3971                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3972                dstDimRgn->CopyAssign(srcDimRgn);
3973                // if this is the requested zone to be splitted, then also copy
3974                // the source DimensionRegion to the newly created target zone
3975                // and set the old zones upper limit lower
3976                if (dimCase[type] == zone) {
3977                    // lower old zones upper limit
3978                    if (newDef.split_type == split_type_normal) {
3979                        const int high =
3980                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3981                        int low = 0;
3982                        if (zone > 0) {
3983                            std::map<dimension_t,int> lowerCase = dimCase;
3984                            lowerCase[type]--;
3985                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3986                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3987                        }
3988                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3989                    }
3990                    // fill the newly created zone of the divided zone as well
3991                    dimCase[type]++;
3992                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3993                    dstDimRgn->CopyAssign(srcDimRgn);
3994                }
3995            }
3996    
3997            // now tempRegion's dimensions and DimensionRegions basically reflect
3998            // what we wanted to get for this actual Region here, so we now just
3999            // delete and recreate the dimension in question with the new amount
4000            // zones and then copy back from tempRegion      
4001            DeleteDimension(oldDef);
4002            AddDimension(&newDef);
4003            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4004                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4005                if (!srcDimRgn) continue;
4006                std::map<dimension_t,int> dimCase;
4007                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4008                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4009                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4010                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4011                    baseBits += srcBits;
4012                }
4013                // a bit paranoid: cope with the chance that the dimensions would
4014                // have different order in source and destination regions
4015                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4016                if (!dstDimRgn) continue;
4017                dstDimRgn->CopyAssign(srcDimRgn);
4018            }
4019    
4020            // delete temporary region
4021            tempRgn->DeleteChunks();
4022            delete tempRgn;
4023    
4024            UpdateVelocityTable();
4025        }
4026    
4027        /** @brief Change type of an existing dimension.
4028         *
4029         * Alters the dimension type of a dimension already existing on this
4030         * region. If there is currently no dimension on this Region with type
4031         * @a oldType, then this call with throw an Exception. Likewise there are
4032         * cases where the requested dimension type cannot be performed. For example
4033         * if the new dimension type shall be gig::dimension_samplechannel, and the
4034         * current dimension has more than 2 zones. In such cases an Exception is
4035         * thrown as well.
4036         *
4037         * @param oldType - identifies the existing dimension to be changed
4038         * @param newType - to which dimension type it should be changed to
4039         * @throws gig::Exception if requested change cannot be performed
4040         */
4041        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4042            if (oldType == newType) return;
4043            dimension_def_t* def = GetDimensionDefinition(oldType);
4044            if (!def)
4045                throw gig::Exception("No dimension with provided old dimension type exists on this region");
4046            if (newType == dimension_samplechannel && def->zones != 2)
4047                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4048            if (GetDimensionDefinition(newType))
4049                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4050            def->dimension  = newType;
4051            def->split_type = __resolveSplitType(newType);
4052        }
4053    
4054        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4055            uint8_t bits[8] = {};
4056            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4057                 it != DimCase.end(); ++it)
4058            {
4059                for (int d = 0; d < Dimensions; ++d) {
4060                    if (pDimensionDefinitions[d].dimension == it->first) {
4061                        bits[d] = it->second;
4062                        goto nextDimCaseSlice;
4063                    }
4064                }
4065                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4066                nextDimCaseSlice:
4067                ; // noop
4068            }
4069            return GetDimensionRegionByBit(bits);
4070        }
4071    
4072        /**
4073         * Searches in the current Region for a dimension of the given dimension
4074         * type and returns the precise configuration of that dimension in this
4075         * Region.
4076         *
4077         * @param type - dimension type of the sought dimension
4078         * @returns dimension definition or NULL if there is no dimension with
4079         *          sought type in this Region.
4080         */
4081        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4082            for (int i = 0; i < Dimensions; ++i)
4083                if (pDimensionDefinitions[i].dimension == type)
4084                    return &pDimensionDefinitions[i];
4085            return NULL;
4086        }
4087    
4088      Region::~Region() {      Region::~Region() {
4089          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
4090              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
# Line 2465  namespace { Line 4112  namespace {
4112      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4113          uint8_t bits;          uint8_t bits;
4114          int veldim = -1;          int veldim = -1;
4115          int velbitpos;          int velbitpos = 0;
4116          int bitpos = 0;          int bitpos = 0;
4117          int dimregidx = 0;          int dimregidx = 0;
4118          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
# Line 2495  namespace { Line 4142  namespace {
4142              }              }
4143              bitpos += pDimensionDefinitions[i].bits;              bitpos += pDimensionDefinitions[i].bits;
4144          }          }
4145          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4146            if (!dimreg) return NULL;
4147          if (veldim != -1) {          if (veldim != -1) {
4148              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
4149              if (dimreg->VelocityTable) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
4150                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4151              else // normal split type              else // normal split type
4152                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4153    
4154              dimregidx |= bits << velbitpos;              const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4155              dimreg = pDimensionRegions[dimregidx];              dimregidx |= (bits & limiter_mask) << velbitpos;
4156                dimreg = pDimensionRegions[dimregidx & 255];
4157          }          }
4158          return dimreg;          return dimreg;
4159      }      }
4160    
4161        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4162            uint8_t bits;
4163            int veldim = -1;
4164            int velbitpos = 0;
4165            int bitpos = 0;
4166            int dimregidx = 0;
4167            for (uint i = 0; i < Dimensions; i++) {
4168                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4169                    // the velocity dimension must be handled after the other dimensions
4170                    veldim = i;
4171                    velbitpos = bitpos;
4172                } else {
4173                    switch (pDimensionDefinitions[i].split_type) {
4174                        case split_type_normal:
4175                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4176                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4177                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4178                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4179                                }
4180                            } else {
4181                                // gig2: evenly sized zones
4182                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4183                            }
4184                            break;
4185                        case split_type_bit: // the value is already the sought dimension bit number
4186                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4187                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4188                            break;
4189                    }
4190                    dimregidx |= bits << bitpos;
4191                }
4192                bitpos += pDimensionDefinitions[i].bits;
4193            }
4194            dimregidx &= 255;
4195            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4196            if (!dimreg) return -1;
4197            if (veldim != -1) {
4198                // (dimreg is now the dimension region for the lowest velocity)
4199                if (dimreg->VelocityTable) // custom defined zone ranges
4200                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4201                else // normal split type
4202                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4203    
4204                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4205                dimregidx |= (bits & limiter_mask) << velbitpos;
4206                dimregidx &= 255;
4207            }
4208            return dimregidx;
4209        }
4210    
4211      /**      /**
4212       * Returns the appropriate DimensionRegion for the given dimension bit       * Returns the appropriate DimensionRegion for the given dimension bit
4213       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
# Line 2547  namespace { Line 4246  namespace {
4246          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4247          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4248          if (!file->pWavePoolTable) return NULL;          if (!file->pWavePoolTable) return NULL;
4249          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4250          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          // for new files or files >= 2 GB use 64 bit wave pool offsets
4251          Sample* sample = file->GetFirstSample(pProgress);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4252          while (sample) {              // use 64 bit wave pool offsets (treating this as large file)
4253              if (sample->ulWavePoolOffset == soughtoffset &&              uint64_t soughtoffset =
4254                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4255              sample = file->GetNextSample();                  uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4256                Sample* sample = file->GetFirstSample(pProgress);
4257                while (sample) {
4258                    if (sample->ullWavePoolOffset == soughtoffset)
4259                        return static_cast<gig::Sample*>(sample);
4260                    sample = file->GetNextSample();
4261                }
4262            } else {
4263                // use extension files and 32 bit wave pool offsets
4264                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4265                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4266                Sample* sample = file->GetFirstSample(pProgress);
4267                while (sample) {
4268                    if (sample->ullWavePoolOffset == soughtoffset &&
4269                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4270                    sample = file->GetNextSample();
4271                }
4272          }          }
4273          return NULL;          return NULL;
4274      }      }
4275        
4276        /**
4277         * Make a (semi) deep copy of the Region object given by @a orig
4278         * and assign it to this object.
4279         *
4280         * Note that all sample pointers referenced by @a orig are simply copied as
4281         * memory address. Thus the respective samples are shared, not duplicated!
4282         *
4283         * @param orig - original Region object to be copied from
4284         */
4285        void Region::CopyAssign(const Region* orig) {
4286            CopyAssign(orig, NULL);
4287        }
4288        
4289        /**
4290         * Make a (semi) deep copy of the Region object given by @a orig and
4291         * assign it to this object
4292         *
4293         * @param mSamples - crosslink map between the foreign file's samples and
4294         *                   this file's samples
4295         */
4296        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4297            // handle base classes
4298            DLS::Region::CopyAssign(orig);
4299            
4300            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4301                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4302            }
4303            
4304            // handle own member variables
4305            for (int i = Dimensions - 1; i >= 0; --i) {
4306                DeleteDimension(&pDimensionDefinitions[i]);
4307            }
4308            Layers = 0; // just to be sure
4309            for (int i = 0; i < orig->Dimensions; i++) {
4310                // we need to copy the dim definition here, to avoid the compiler
4311                // complaining about const-ness issue
4312                dimension_def_t def = orig->pDimensionDefinitions[i];
4313                AddDimension(&def);
4314            }
4315            for (int i = 0; i < 256; i++) {
4316                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4317                    pDimensionRegions[i]->CopyAssign(
4318                        orig->pDimensionRegions[i],
4319                        mSamples
4320                    );
4321                }
4322            }
4323            Layers = orig->Layers;
4324        }
4325    
4326    
4327    // *************** MidiRule ***************
4328    // *
4329    
4330        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4331            _3ewg->SetPos(36);
4332            Triggers = _3ewg->ReadUint8();
4333            _3ewg->SetPos(40);
4334            ControllerNumber = _3ewg->ReadUint8();
4335            _3ewg->SetPos(46);
4336            for (int i = 0 ; i < Triggers ; i++) {
4337                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4338                pTriggers[i].Descending = _3ewg->ReadUint8();
4339                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4340                pTriggers[i].Key = _3ewg->ReadUint8();
4341                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4342                pTriggers[i].Velocity = _3ewg->ReadUint8();
4343                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4344                _3ewg->ReadUint8();
4345            }
4346        }
4347    
4348        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4349            ControllerNumber(0),
4350            Triggers(0) {
4351        }
4352    
4353        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4354            pData[32] = 4;
4355            pData[33] = 16;
4356            pData[36] = Triggers;
4357            pData[40] = ControllerNumber;
4358            for (int i = 0 ; i < Triggers ; i++) {
4359                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4360                pData[47 + i * 8] = pTriggers[i].Descending;
4361                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4362                pData[49 + i * 8] = pTriggers[i].Key;
4363                pData[50 + i * 8] = pTriggers[i].NoteOff;
4364                pData[51 + i * 8] = pTriggers[i].Velocity;
4365                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4366            }
4367        }
4368    
4369        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4370            _3ewg->SetPos(36);
4371            LegatoSamples = _3ewg->ReadUint8(); // always 12
4372            _3ewg->SetPos(40);
4373            BypassUseController = _3ewg->ReadUint8();
4374            BypassKey = _3ewg->ReadUint8();
4375            BypassController = _3ewg->ReadUint8();
4376            ThresholdTime = _3ewg->ReadUint16();
4377            _3ewg->ReadInt16();
4378            ReleaseTime = _3ewg->ReadUint16();
4379            _3ewg->ReadInt16();
4380            KeyRange.low = _3ewg->ReadUint8();
4381            KeyRange.high = _3ewg->ReadUint8();
4382            _3ewg->SetPos(64);
4383            ReleaseTriggerKey = _3ewg->ReadUint8();
4384            AltSustain1Key = _3ewg->ReadUint8();
4385            AltSustain2Key = _3ewg->ReadUint8();
4386        }
4387    
4388        MidiRuleLegato::MidiRuleLegato() :
4389            LegatoSamples(12),
4390            BypassUseController(false),
4391            BypassKey(0),
4392            BypassController(1),
4393            ThresholdTime(20),
4394            ReleaseTime(20),
4395            ReleaseTriggerKey(0),
4396            AltSustain1Key(0),
4397            AltSustain2Key(0)
4398        {
4399            KeyRange.low = KeyRange.high = 0;
4400        }
4401    
4402        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4403            pData[32] = 0;
4404            pData[33] = 16;
4405            pData[36] = LegatoSamples;
4406            pData[40] = BypassUseController;
4407            pData[41] = BypassKey;
4408            pData[42] = BypassController;
4409            store16(&pData[43], ThresholdTime);
4410            store16(&pData[47], ReleaseTime);
4411            pData[51] = KeyRange.low;
4412            pData[52] = KeyRange.high;
4413            pData[64] = ReleaseTriggerKey;
4414            pData[65] = AltSustain1Key;
4415            pData[66] = AltSustain2Key;
4416        }
4417    
4418        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4419            _3ewg->SetPos(36);
4420            Articulations = _3ewg->ReadUint8();
4421            int flags = _3ewg->ReadUint8();
4422            Polyphonic = flags & 8;
4423            Chained = flags & 4;
4424            Selector = (flags & 2) ? selector_controller :
4425                (flags & 1) ? selector_key_switch : selector_none;
4426            Patterns = _3ewg->ReadUint8();
4427            _3ewg->ReadUint8(); // chosen row
4428            _3ewg->ReadUint8(); // unknown
4429            _3ewg->ReadUint8(); // unknown
4430            _3ewg->ReadUint8(); // unknown
4431            KeySwitchRange.low = _3ewg->ReadUint8();
4432            KeySwitchRange.high = _3ewg->ReadUint8();
4433            Controller = _3ewg->ReadUint8();
4434            PlayRange.low = _3ewg->ReadUint8();
4435            PlayRange.high = _3ewg->ReadUint8();
4436    
4437            int n = std::min(int(Articulations), 32);
4438            for (int i = 0 ; i < n ; i++) {
4439                _3ewg->ReadString(pArticulations[i], 32);
4440            }
4441            _3ewg->SetPos(1072);
4442            n = std::min(int(Patterns), 32);
4443            for (int i = 0 ; i < n ; i++) {
4444                _3ewg->ReadString(pPatterns[i].Name, 16);
4445                pPatterns[i].Size = _3ewg->ReadUint8();
4446                _3ewg->Read(&pPatterns[i][0], 1, 32);
4447            }
4448        }
4449    
4450        MidiRuleAlternator::MidiRuleAlternator() :
4451            Articulations(0),
4452            Patterns(0),
4453            Selector(selector_none),
4454            Controller(0),
4455            Polyphonic(false),
4456            Chained(false)
4457        {
4458            PlayRange.low = PlayRange.high = 0;
4459            KeySwitchRange.low = KeySwitchRange.high = 0;
4460        }
4461    
4462        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4463            pData[32] = 3;
4464            pData[33] = 16;
4465            pData[36] = Articulations;
4466            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4467                (Selector == selector_controller ? 2 :
4468                 (Selector == selector_key_switch ? 1 : 0));
4469            pData[38] = Patterns;
4470    
4471            pData[43] = KeySwitchRange.low;
4472            pData[44] = KeySwitchRange.high;
4473            pData[45] = Controller;
4474            pData[46] = PlayRange.low;
4475            pData[47] = PlayRange.high;
4476    
4477            char* str = reinterpret_cast<char*>(pData);
4478            int pos = 48;
4479            int n = std::min(int(Articulations), 32);
4480            for (int i = 0 ; i < n ; i++, pos += 32) {
4481                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4482            }
4483    
4484            pos = 1072;
4485            n = std::min(int(Patterns), 32);
4486            for (int i = 0 ; i < n ; i++, pos += 49) {
4487                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4488                pData[pos + 16] = pPatterns[i].Size;
4489                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4490            }
4491        }
4492    
4493    // *************** Script ***************
4494    // *
4495    
4496        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4497            pGroup = group;
4498            pChunk = ckScri;
4499            if (ckScri) { // object is loaded from file ...
4500                ckScri->SetPos(0);
4501    
4502                // read header
4503                uint32_t headerSize = ckScri->ReadUint32();
4504                Compression = (Compression_t) ckScri->ReadUint32();
4505                Encoding    = (Encoding_t) ckScri->ReadUint32();
4506                Language    = (Language_t) ckScri->ReadUint32();
4507                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4508                crc         = ckScri->ReadUint32();
4509                uint32_t nameSize = ckScri->ReadUint32();
4510                Name.resize(nameSize, ' ');
4511                for (int i = 0; i < nameSize; ++i)
4512                    Name[i] = ckScri->ReadUint8();
4513                // to handle potential future extensions of the header
4514                ckScri->SetPos(sizeof(int32_t) + headerSize);
4515                // read actual script data
4516                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4517                data.resize(scriptSize);
4518                for (int i = 0; i < scriptSize; ++i)
4519                    data[i] = ckScri->ReadUint8();
4520            } else { // this is a new script object, so just initialize it as such ...
4521                Compression = COMPRESSION_NONE;
4522                Encoding = ENCODING_ASCII;
4523                Language = LANGUAGE_NKSP;
4524                Bypass   = false;
4525                crc      = 0;
4526                Name     = "Unnamed Script";
4527            }
4528        }
4529    
4530        Script::~Script() {
4531        }
4532    
4533        /**
4534         * Returns the current script (i.e. as source code) in text format.
4535         */
4536        String Script::GetScriptAsText() {
4537            String s;
4538            s.resize(data.size(), ' ');
4539            memcpy(&s[0], &data[0], data.size());
4540            return s;
4541        }
4542    
4543        /**
4544         * Replaces the current script with the new script source code text given
4545         * by @a text.
4546         *
4547         * @param text - new script source code
4548         */
4549        void Script::SetScriptAsText(const String& text) {
4550            data.resize(text.size());
4551            memcpy(&data[0], &text[0], text.size());
4552        }
4553    
4554        /** @brief Remove all RIFF chunks associated with this Script object.
4555         *
4556         * At the moment Script::DeleteChunks() does nothing. It is
4557         * recommended to call this method explicitly though from deriving classes's
4558         * own overridden implementation of this method to avoid potential future
4559         * compatiblity issues.
4560         *
4561         * See DLS::Storage::DeleteChunks() for details.
4562         */
4563        void Script::DeleteChunks() {
4564        }
4565    
4566        /**
4567         * Apply this script to the respective RIFF chunks. You have to call
4568         * File::Save() to make changes persistent.
4569         *
4570         * Usually there is absolutely no need to call this method explicitly.
4571         * It will be called automatically when File::Save() was called.
4572         *
4573         * @param pProgress - callback function for progress notification
4574         */
4575        void Script::UpdateChunks(progress_t* pProgress) {
4576            // recalculate CRC32 check sum
4577            __resetCRC(crc);
4578            __calculateCRC(&data[0], data.size(), crc);
4579            __finalizeCRC(crc);
4580            // make sure chunk exists and has the required size
4581            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4582            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4583            else pChunk->Resize(chunkSize);
4584            // fill the chunk data to be written to disk
4585            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4586            int pos = 0;
4587            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4588            pos += sizeof(int32_t);
4589            store32(&pData[pos], Compression);
4590            pos += sizeof(int32_t);
4591            store32(&pData[pos], Encoding);
4592            pos += sizeof(int32_t);
4593            store32(&pData[pos], Language);
4594            pos += sizeof(int32_t);
4595            store32(&pData[pos], Bypass ? 1 : 0);
4596            pos += sizeof(int32_t);
4597            store32(&pData[pos], crc);
4598            pos += sizeof(int32_t);
4599            store32(&pData[pos], (uint32_t) Name.size());
4600            pos += sizeof(int32_t);
4601            for (int i = 0; i < Name.size(); ++i, ++pos)
4602                pData[pos] = Name[i];
4603            for (int i = 0; i < data.size(); ++i, ++pos)
4604                pData[pos] = data[i];
4605        }
4606    
4607        /**
4608         * Move this script from its current ScriptGroup to another ScriptGroup
4609         * given by @a pGroup.
4610         *
4611         * @param pGroup - script's new group
4612         */
4613        void Script::SetGroup(ScriptGroup* pGroup) {
4614            if (this->pGroup == pGroup) return;
4615            if (pChunk)
4616                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4617            this->pGroup = pGroup;
4618        }
4619    
4620        /**
4621         * Returns the script group this script currently belongs to. Each script
4622         * is a member of exactly one ScriptGroup.
4623         *
4624         * @returns current script group
4625         */
4626        ScriptGroup* Script::GetGroup() const {
4627            return pGroup;
4628        }
4629    
4630        /**
4631         * Make a (semi) deep copy of the Script object given by @a orig
4632         * and assign it to this object. Note: the ScriptGroup this Script
4633         * object belongs to remains untouched by this call.
4634         *
4635         * @param orig - original Script object to be copied from
4636         */
4637        void Script::CopyAssign(const Script* orig) {
4638            Name        = orig->Name;
4639            Compression = orig->Compression;
4640            Encoding    = orig->Encoding;
4641            Language    = orig->Language;
4642            Bypass      = orig->Bypass;
4643            data        = orig->data;
4644        }
4645    
4646        void Script::RemoveAllScriptReferences() {
4647            File* pFile = pGroup->pFile;
4648            for (int i = 0; pFile->GetInstrument(i); ++i) {
4649                Instrument* instr = pFile->GetInstrument(i);
4650                instr->RemoveScript(this);
4651            }
4652        }
4653    
4654    // *************** ScriptGroup ***************
4655    // *
4656    
4657        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4658            pFile = file;
4659            pList = lstRTIS;
4660            pScripts = NULL;
4661            if (lstRTIS) {
4662                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4663                ::LoadString(ckName, Name);
4664            } else {
4665                Name = "Default Group";
4666            }
4667        }
4668    
4669        ScriptGroup::~ScriptGroup() {
4670            if (pScripts) {
4671                std::list<Script*>::iterator iter = pScripts->begin();
4672                std::list<Script*>::iterator end  = pScripts->end();
4673                while (iter != end) {
4674                    delete *iter;
4675                    ++iter;
4676                }
4677                delete pScripts;
4678            }
4679        }
4680    
4681        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4682         *
4683         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4684         * recommended to call this method explicitly though from deriving classes's
4685         * own overridden implementation of this method to avoid potential future
4686         * compatiblity issues.
4687         *
4688         * See DLS::Storage::DeleteChunks() for details.
4689         */
4690        void ScriptGroup::DeleteChunks() {
4691        }
4692    
4693        /**
4694         * Apply this script group to the respective RIFF chunks. You have to call
4695         * File::Save() to make changes persistent.
4696         *
4697         * Usually there is absolutely no need to call this method explicitly.
4698         * It will be called automatically when File::Save() was called.
4699         *
4700         * @param pProgress - callback function for progress notification
4701         */
4702        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4703            if (pScripts) {
4704                if (!pList)
4705                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4706    
4707                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4708                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4709    
4710                for (std::list<Script*>::iterator it = pScripts->begin();
4711                     it != pScripts->end(); ++it)
4712                {
4713                    (*it)->UpdateChunks(pProgress);
4714                }
4715            }
4716        }
4717    
4718        /** @brief Get instrument script.
4719         *
4720         * Returns the real-time instrument script with the given index.
4721         *
4722         * @param index - number of the sought script (0..n)
4723         * @returns sought script or NULL if there's no such script
4724         */
4725        Script* ScriptGroup::GetScript(uint index) {
4726            if (!pScripts) LoadScripts();
4727            std::list<Script*>::iterator it = pScripts->begin();
4728            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4729                if (i == index) return *it;
4730            return NULL;
4731        }
4732    
4733        /** @brief Add new instrument script.
4734         *
4735         * Adds a new real-time instrument script to the file. The script is not
4736         * actually used / executed unless it is referenced by an instrument to be
4737         * used. This is similar to samples, which you can add to a file, without
4738         * an instrument necessarily actually using it.
4739         *
4740         * You have to call Save() to make this persistent to the file.
4741         *
4742         * @return new empty script object
4743         */
4744        Script* ScriptGroup::AddScript() {
4745            if (!pScripts) LoadScripts();
4746            Script* pScript = new Script(this, NULL);
4747            pScripts->push_back(pScript);
4748            return pScript;
4749        }
4750    
4751        /** @brief Delete an instrument script.
4752         *
4753         * This will delete the given real-time instrument script. References of
4754         * instruments that are using that script will be removed accordingly.
4755         *
4756         * You have to call Save() to make this persistent to the file.
4757         *
4758         * @param pScript - script to delete
4759         * @throws gig::Exception if given script could not be found
4760         */
4761        void ScriptGroup::DeleteScript(Script* pScript) {
4762            if (!pScripts) LoadScripts();
4763            std::list<Script*>::iterator iter =
4764                find(pScripts->begin(), pScripts->end(), pScript);
4765            if (iter == pScripts->end())
4766                throw gig::Exception("Could not delete script, could not find given script");
4767            pScripts->erase(iter);
4768            pScript->RemoveAllScriptReferences();
4769            if (pScript->pChunk)
4770                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4771            delete pScript;
4772        }
4773    
4774        void ScriptGroup::LoadScripts() {
4775            if (pScripts) return;
4776            pScripts = new std::list<Script*>;
4777            if (!pList) return;
4778    
4779            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4780                 ck = pList->GetNextSubChunk())
4781            {
4782                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4783                    pScripts->push_back(new Script(this, ck));
4784                }
4785            }
4786        }
4787    
4788  // *************** Instrument ***************  // *************** Instrument ***************
4789  // *  // *
4790    
4791      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4792          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
4793                { CHUNK_ID_INAM, 64 },
4794                { CHUNK_ID_ISFT, 12 },
4795                { 0, 0 }
4796            };
4797            pInfo->SetFixedStringLengths(fixedStringLengths);
4798    
4799          // Initialization          // Initialization
4800          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4801            EffectSend = 0;
4802            Attenuation = 0;
4803            FineTune = 0;
4804            PitchbendRange = 2;
4805            PianoReleaseMode = false;
4806            DimensionKeyRange.low = 0;
4807            DimensionKeyRange.high = 0;
4808            pMidiRules = new MidiRule*[3];
4809            pMidiRules[0] = NULL;
4810            pScriptRefs = NULL;
4811    
4812          // Loading          // Loading
4813          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4814          if (lart) {          if (lart) {
4815              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4816              if (_3ewg) {              if (_3ewg) {
4817                    _3ewg->SetPos(0);
4818    
4819                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4820                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4821                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 2582  namespace { Line 4824  namespace {
4824                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4825                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4826                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4827    
4828                    if (_3ewg->GetSize() > 32) {
4829                        // read MIDI rules
4830                        int i = 0;
4831                        _3ewg->SetPos(32);
4832                        uint8_t id1 = _3ewg->ReadUint8();
4833                        uint8_t id2 = _3ewg->ReadUint8();
4834    
4835                        if (id2 == 16) {
4836                            if (id1 == 4) {
4837                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4838                            } else if (id1 == 0) {
4839                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4840                            } else if (id1 == 3) {
4841                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4842                            } else {
4843                                pMidiRules[i++] = new MidiRuleUnknown;
4844                            }
4845                        }
4846                        else if (id1 != 0 || id2 != 0) {
4847                            pMidiRules[i++] = new MidiRuleUnknown;
4848                        }
4849                        //TODO: all the other types of rules
4850    
4851                        pMidiRules[i] = NULL;
4852                    }
4853                }
4854            }
4855    
4856            if (pFile->GetAutoLoad()) {
4857                if (!pRegions) pRegions = new RegionList;
4858                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4859                if (lrgn) {
4860                    RIFF::List* rgn = lrgn->GetFirstSubList();
4861                    while (rgn) {
4862                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4863                            if (pProgress)
4864                                __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4865                            pRegions->push_back(new Region(this, rgn));
4866                        }
4867                        rgn = lrgn->GetNextSubList();
4868                    }
4869                    // Creating Region Key Table for fast lookup
4870                    UpdateRegionKeyTable();
4871              }              }
4872          }          }
4873    
4874          if (!pRegions) pRegions = new RegionList;          // own gig format extensions
4875          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4876          if (lrgn) {          if (lst3LS) {
4877              RIFF::List* rgn = lrgn->GetFirstSubList();              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4878              while (rgn) {              if (ckSCSL) {
4879                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  ckSCSL->SetPos(0);
4880                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);  
4881                      pRegions->push_back(new Region(this, rgn));                  int headerSize = ckSCSL->ReadUint32();
4882                    int slotCount  = ckSCSL->ReadUint32();
4883                    if (slotCount) {
4884                        int slotSize  = ckSCSL->ReadUint32();
4885                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4886                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4887                        for (int i = 0; i < slotCount; ++i) {
4888                            _ScriptPooolEntry e;
4889                            e.fileOffset = ckSCSL->ReadUint32();
4890                            e.bypass     = ckSCSL->ReadUint32() & 1;
4891                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4892                            scriptPoolFileOffsets.push_back(e);
4893                        }
4894                  }                  }
                 rgn = lrgn->GetNextSubList();  
4895              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
4896          }          }
4897    
4898          __notify_progress(pProgress, 1.0f); // notify done          if (pProgress)
4899                __notify_progress(pProgress, 1.0f); // notify done
4900      }      }
4901    
4902      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
4903            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4904          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
4905          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
4906          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
4907              gig::Region* pRegion = static_cast<gig::Region*>(*iter);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4908              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {              const int low  = std::max(int(pRegion->KeyRange.low), 0);
4909                const int high = std::min(int(pRegion->KeyRange.high), 127);
4910                for (int iKey = low; iKey <= high; iKey++) {
4911                  RegionKeyTable[iKey] = pRegion;                  RegionKeyTable[iKey] = pRegion;
4912              }              }
4913          }          }
4914      }      }
4915    
4916      Instrument::~Instrument() {      Instrument::~Instrument() {
4917            for (int i = 0 ; pMidiRules[i] ; i++) {
4918                delete pMidiRules[i];
4919            }
4920            delete[] pMidiRules;
4921            if (pScriptRefs) delete pScriptRefs;
4922      }      }
4923    
4924      /**      /**
# Line 2624  namespace { Line 4928  namespace {
4928       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
4929       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
4930       *       *
4931         * @param pProgress - callback function for progress notification
4932       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
4933       */       */
4934      void Instrument::UpdateChunks() {      void Instrument::UpdateChunks(progress_t* pProgress) {
4935          // first update base classes' chunks          // first update base classes' chunks
4936          DLS::Instrument::UpdateChunks();          DLS::Instrument::UpdateChunks(pProgress);
4937    
4938          // update Regions' chunks          // update Regions' chunks
4939          {          {
4940              RegionList::iterator iter = pRegions->begin();              RegionList::iterator iter = pRegions->begin();
4941              RegionList::iterator end  = pRegions->end();              RegionList::iterator end  = pRegions->end();
4942              for (; iter != end; ++iter)              for (; iter != end; ++iter)
4943                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
4944          }          }
4945    
4946          // make sure 'lart' RIFF list chunk exists          // make sure 'lart' RIFF list chunk exists
# Line 2643  namespace { Line 4948  namespace {
4948          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4949          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
4950          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4951          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
4952                File* pFile = (File*) GetParent();
4953    
4954                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4955                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4956                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4957                memset(_3ewg->LoadChunkData(), 0, size);
4958            }
4959          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
4960          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4961          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
4962          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
4963          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
4964          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
4965          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4966                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
4967          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
4968          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
4969    
4970            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4971                pData[32] = 0;
4972                pData[33] = 0;
4973            } else {
4974                for (int i = 0 ; pMidiRules[i] ; i++) {
4975                    pMidiRules[i]->UpdateChunks(pData);
4976                }
4977            }
4978    
4979            // own gig format extensions
4980           if (ScriptSlotCount()) {
4981               // make sure we have converted the original loaded script file
4982               // offsets into valid Script object pointers
4983               LoadScripts();
4984    
4985               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4986               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4987               const int slotCount = (int) pScriptRefs->size();
4988               const int headerSize = 3 * sizeof(uint32_t);
4989               const int slotSize  = 2 * sizeof(uint32_t);
4990               const int totalChunkSize = headerSize + slotCount * slotSize;
4991               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4992               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4993               else ckSCSL->Resize(totalChunkSize);
4994               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4995               int pos = 0;
4996               store32(&pData[pos], headerSize);
4997               pos += sizeof(uint32_t);
4998               store32(&pData[pos], slotCount);
4999               pos += sizeof(uint32_t);
5000               store32(&pData[pos], slotSize);
5001               pos += sizeof(uint32_t);
5002               for (int i = 0; i < slotCount; ++i) {
5003                   // arbitrary value, the actual file offset will be updated in
5004                   // UpdateScriptFileOffsets() after the file has been resized
5005                   int bogusFileOffset = 0;
5006                   store32(&pData[pos], bogusFileOffset);
5007                   pos += sizeof(uint32_t);
5008                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5009                   pos += sizeof(uint32_t);
5010               }
5011           } else {
5012               // no script slots, so get rid of any LS custom RIFF chunks (if any)
5013               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5014               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5015           }
5016        }
5017    
5018        void Instrument::UpdateScriptFileOffsets() {
5019           // own gig format extensions
5020           if (pScriptRefs && pScriptRefs->size() > 0) {
5021               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5022               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5023               const int slotCount = (int) pScriptRefs->size();
5024               const int headerSize = 3 * sizeof(uint32_t);
5025               ckSCSL->SetPos(headerSize);
5026               for (int i = 0; i < slotCount; ++i) {
5027                   uint32_t fileOffset = uint32_t(
5028                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5029                        (*pScriptRefs)[i].script->pChunk->GetPos() -
5030                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5031                   );
5032                   ckSCSL->WriteUint32(&fileOffset);
5033                   // jump over flags entry (containing the bypass flag)
5034                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5035               }
5036           }        
5037      }      }
5038    
5039      /**      /**
# Line 2664  namespace { Line 5044  namespace {
5044       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
5045       */       */
5046      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
5047          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5048          return RegionKeyTable[Key];          return RegionKeyTable[Key];
5049    
5050          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2708  namespace { Line 5088  namespace {
5088          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5089          Region* pNewRegion = new Region(this, rgn);          Region* pNewRegion = new Region(this, rgn);
5090          pRegions->push_back(pNewRegion);          pRegions->push_back(pNewRegion);
5091          Regions = pRegions->size();          Regions = (uint32_t) pRegions->size();
5092          // update Region key table for fast lookup          // update Region key table for fast lookup
5093          UpdateRegionKeyTable();          UpdateRegionKeyTable();
5094          // done          // done
# Line 2722  namespace { Line 5102  namespace {
5102          UpdateRegionKeyTable();          UpdateRegionKeyTable();
5103      }      }
5104    
5105        /**
5106         * Move this instrument at the position before @arg dst.
5107         *
5108         * This method can be used to reorder the sequence of instruments in a
5109         * .gig file. This might be helpful especially on large .gig files which
5110         * contain a large number of instruments within the same .gig file. So
5111         * grouping such instruments to similar ones, can help to keep track of them
5112         * when working with such complex .gig files.
5113         *
5114         * When calling this method, this instrument will be removed from in its
5115         * current position in the instruments list and moved to the requested
5116         * target position provided by @param dst. You may also pass NULL as
5117         * argument to this method, in that case this intrument will be moved to the
5118         * very end of the .gig file's instrument list.
5119         *
5120         * You have to call Save() to make the order change persistent to the .gig
5121         * file.
5122         *
5123         * Currently this method is limited to moving the instrument within the same
5124         * .gig file. Trying to move it to another .gig file by calling this method
5125         * will throw an exception.
5126         *
5127         * @param dst - destination instrument at which this instrument will be
5128         *              moved to, or pass NULL for moving to end of list
5129         * @throw gig::Exception if this instrument and target instrument are not
5130         *                       part of the same file
5131         */
5132        void Instrument::MoveTo(Instrument* dst) {
5133            if (dst && GetParent() != dst->GetParent())
5134                throw Exception(
5135                    "gig::Instrument::MoveTo() can only be used for moving within "
5136                    "the same gig file."
5137                );
5138    
5139            File* pFile = (File*) GetParent();
5140    
5141            // move this instrument within the instrument list
5142            {
5143                File::InstrumentList& list = *pFile->pInstruments;
5144    
5145                File::InstrumentList::iterator itFrom =
5146                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5147    
5148                File::InstrumentList::iterator itTo =
5149                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5150    
5151                list.splice(itTo, list, itFrom);
5152            }
5153    
5154            // move the instrument's actual list RIFF chunk appropriately
5155            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5156            lstCkInstruments->MoveSubChunk(
5157                this->pCkInstrument,
5158                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5159            );
5160        }
5161    
5162        /**
5163         * Returns a MIDI rule of the instrument.
5164         *
5165         * The list of MIDI rules, at least in gig v3, always contains at
5166         * most two rules. The second rule can only be the DEF filter
5167         * (which currently isn't supported by libgig).
5168         *
5169         * @param i - MIDI rule number
5170         * @returns   pointer address to MIDI rule number i or NULL if there is none
5171         */
5172        MidiRule* Instrument::GetMidiRule(int i) {
5173            return pMidiRules[i];
5174        }
5175    
5176        /**
5177         * Adds the "controller trigger" MIDI rule to the instrument.
5178         *
5179         * @returns the new MIDI rule
5180         */
5181        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5182            delete pMidiRules[0];
5183            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5184            pMidiRules[0] = r;
5185            pMidiRules[1] = 0;
5186            return r;
5187        }
5188    
5189        /**
5190         * Adds the legato MIDI rule to the instrument.
5191         *
5192         * @returns the new MIDI rule
5193         */
5194        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5195            delete pMidiRules[0];
5196            MidiRuleLegato* r = new MidiRuleLegato;
5197            pMidiRules[0] = r;
5198            pMidiRules[1] = 0;
5199            return r;
5200        }
5201    
5202        /**
5203         * Adds the alternator MIDI rule to the instrument.
5204         *
5205         * @returns the new MIDI rule
5206         */
5207        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5208            delete pMidiRules[0];
5209            MidiRuleAlternator* r = new MidiRuleAlternator;
5210            pMidiRules[0] = r;
5211            pMidiRules[1] = 0;
5212            return r;
5213        }
5214    
5215        /**
5216         * Deletes a MIDI rule from the instrument.
5217         *
5218         * @param i - MIDI rule number
5219         */
5220        void Instrument::DeleteMidiRule(int i) {
5221            delete pMidiRules[i];
5222            pMidiRules[i] = 0;
5223        }
5224    
5225        void Instrument::LoadScripts() {
5226            if (pScriptRefs) return;
5227            pScriptRefs = new std::vector<_ScriptPooolRef>;
5228            if (scriptPoolFileOffsets.empty()) return;
5229            File* pFile = (File*) GetParent();
5230            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5231                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5232                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5233                    ScriptGroup* group = pFile->GetScriptGroup(i);
5234                    for (uint s = 0; group->GetScript(s); ++s) {
5235                        Script* script = group->GetScript(s);
5236                        if (script->pChunk) {
5237                            uint32_t offset = uint32_t(
5238                                script->pChunk->GetFilePos() -
5239                                script->pChunk->GetPos() -
5240                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5241                            );
5242                            if (offset == soughtOffset)
5243                            {
5244                                _ScriptPooolRef ref;
5245                                ref.script = script;
5246                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5247                                pScriptRefs->push_back(ref);
5248                                break;
5249                            }
5250                        }
5251                    }
5252                }
5253            }
5254            // we don't need that anymore
5255            scriptPoolFileOffsets.clear();
5256        }
5257    
5258        /** @brief Get instrument script (gig format extension).
5259         *
5260         * Returns the real-time instrument script of instrument script slot
5261         * @a index.
5262         *
5263         * @note This is an own format extension which did not exist i.e. in the
5264         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5265         * gigedit.
5266         *
5267         * @param index - instrument script slot index
5268         * @returns script or NULL if index is out of bounds
5269         */
5270        Script* Instrument::GetScriptOfSlot(uint index) {
5271            LoadScripts();
5272            if (index >= pScriptRefs->size()) return NULL;
5273            return pScriptRefs->at(index).script;
5274        }
5275    
5276        /** @brief Add new instrument script slot (gig format extension).
5277         *
5278         * Add the given real-time instrument script reference to this instrument,
5279         * which shall be executed by the sampler for for this instrument. The
5280         * script will be added to the end of the script list of this instrument.
5281         * The positions of the scripts in the Instrument's Script list are
5282         * relevant, because they define in which order they shall be executed by
5283         * the sampler. For this reason it is also legal to add the same script
5284         * twice to an instrument, for example you might have a script called
5285         * "MyFilter" which performs an event filter task, and you might have
5286         * another script called "MyNoteTrigger" which triggers new notes, then you
5287         * might for example have the following list of scripts on the instrument:
5288         *
5289         * 1. Script "MyFilter"
5290         * 2. Script "MyNoteTrigger"
5291         * 3. Script "MyFilter"
5292         *
5293         * Which would make sense, because the 2nd script launched new events, which
5294         * you might need to filter as well.
5295         *
5296         * There are two ways to disable / "bypass" scripts. You can either disable
5297         * a script locally for the respective script slot on an instrument (i.e. by
5298         * passing @c false to the 2nd argument of this method, or by calling
5299         * SetScriptBypassed()). Or you can disable a script globally for all slots
5300         * and all instruments by setting Script::Bypass.
5301         *
5302         * @note This is an own format extension which did not exist i.e. in the
5303         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5304         * gigedit.
5305         *
5306         * @param pScript - script that shall be executed for this instrument
5307         * @param bypass  - if enabled, the sampler shall skip executing this
5308         *                  script (in the respective list position)
5309         * @see SetScriptBypassed()
5310         */
5311        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5312            LoadScripts();
5313            _ScriptPooolRef ref = { pScript, bypass };
5314            pScriptRefs->push_back(ref);
5315        }
5316    
5317        /** @brief Flip two script slots with each other (gig format extension).
5318         *
5319         * Swaps the position of the two given scripts in the Instrument's Script
5320         * list. The positions of the scripts in the Instrument's Script list are
5321         * relevant, because they define in which order they shall be executed by
5322         * the sampler.
5323         *
5324         * @note This is an own format extension which did not exist i.e. in the
5325         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5326         * gigedit.
5327         *
5328         * @param index1 - index of the first script slot to swap
5329         * @param index2 - index of the second script slot to swap
5330         */
5331        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5332            LoadScripts();
5333            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5334                return;
5335            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5336            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5337            (*pScriptRefs)[index2] = tmp;
5338        }
5339    
5340        /** @brief Remove script slot.
5341         *
5342         * Removes the script slot with the given slot index.
5343         *
5344         * @param index - index of script slot to remove
5345         */
5346        void Instrument::RemoveScriptSlot(uint index) {
5347            LoadScripts();
5348            if (index >= pScriptRefs->size()) return;
5349            pScriptRefs->erase( pScriptRefs->begin() + index );
5350        }
5351    
5352        /** @brief Remove reference to given Script (gig format extension).
5353         *
5354         * This will remove all script slots on the instrument which are referencing
5355         * the given script.
5356         *
5357         * @note This is an own format extension which did not exist i.e. in the
5358         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5359         * gigedit.
5360         *
5361         * @param pScript - script reference to remove from this instrument
5362         * @see RemoveScriptSlot()
5363         */
5364        void Instrument::RemoveScript(Script* pScript) {
5365            LoadScripts();
5366            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5367                if ((*pScriptRefs)[i].script == pScript) {
5368                    pScriptRefs->erase( pScriptRefs->begin() + i );
5369                }
5370            }
5371        }
5372    
5373        /** @brief Instrument's amount of script slots.
5374         *
5375         * This method returns the amount of script slots this instrument currently
5376         * uses.
5377         *
5378         * A script slot is a reference of a real-time instrument script to be
5379         * executed by the sampler. The scripts will be executed by the sampler in
5380         * sequence of the slots. One (same) script may be referenced multiple
5381         * times in different slots.
5382         *
5383         * @note This is an own format extension which did not exist i.e. in the
5384         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5385         * gigedit.
5386         */
5387        uint Instrument::ScriptSlotCount() const {
5388            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5389        }
5390    
5391        /** @brief Whether script execution shall be skipped.
5392         *
5393         * Defines locally for the Script reference slot in the Instrument's Script
5394         * list, whether the script shall be skipped by the sampler regarding
5395         * execution.
5396         *
5397         * It is also possible to ignore exeuction of the script globally, for all
5398         * slots and for all instruments by setting Script::Bypass.
5399         *
5400         * @note This is an own format extension which did not exist i.e. in the
5401         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5402         * gigedit.
5403         *
5404         * @param index - index of the script slot on this instrument
5405         * @see Script::Bypass
5406         */
5407        bool Instrument::IsScriptSlotBypassed(uint index) {
5408            if (index >= ScriptSlotCount()) return false;
5409            return pScriptRefs ? pScriptRefs->at(index).bypass
5410                               : scriptPoolFileOffsets.at(index).bypass;
5411            
5412        }
5413    
5414        /** @brief Defines whether execution shall be skipped.
5415         *
5416         * You can call this method to define locally whether or whether not the
5417         * given script slot shall be executed by the sampler.
5418         *
5419         * @note This is an own format extension which did not exist i.e. in the
5420         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5421         * gigedit.
5422         *
5423         * @param index - script slot index on this instrument
5424         * @param bBypass - if true, the script slot will be skipped by the sampler
5425         * @see Script::Bypass
5426         */
5427        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5428            if (index >= ScriptSlotCount()) return;
5429            if (pScriptRefs)
5430                pScriptRefs->at(index).bypass = bBypass;
5431            else
5432                scriptPoolFileOffsets.at(index).bypass = bBypass;
5433        }
5434    
5435        /**
5436         * Make a (semi) deep copy of the Instrument object given by @a orig
5437         * and assign it to this object.
5438         *
5439         * Note that all sample pointers referenced by @a orig are simply copied as
5440         * memory address. Thus the respective samples are shared, not duplicated!
5441         *
5442         * @param orig - original Instrument object to be copied from
5443         */
5444        void Instrument::CopyAssign(const Instrument* orig) {
5445            CopyAssign(orig, NULL);
5446        }
5447            
5448        /**
5449         * Make a (semi) deep copy of the Instrument object given by @a orig
5450         * and assign it to this object.
5451         *
5452         * @param orig - original Instrument object to be copied from
5453         * @param mSamples - crosslink map between the foreign file's samples and
5454         *                   this file's samples
5455         */
5456        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5457            // handle base class
5458            // (without copying DLS region stuff)
5459            DLS::Instrument::CopyAssignCore(orig);
5460            
5461            // handle own member variables
5462            Attenuation = orig->Attenuation;
5463            EffectSend = orig->EffectSend;
5464            FineTune = orig->FineTune;
5465            PitchbendRange = orig->PitchbendRange;
5466            PianoReleaseMode = orig->PianoReleaseMode;
5467            DimensionKeyRange = orig->DimensionKeyRange;
5468            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5469            pScriptRefs = orig->pScriptRefs;
5470            
5471            // free old midi rules
5472            for (int i = 0 ; pMidiRules[i] ; i++) {
5473                delete pMidiRules[i];
5474            }
5475            //TODO: MIDI rule copying
5476            pMidiRules[0] = NULL;
5477            
5478            // delete all old regions
5479            while (Regions) DeleteRegion(GetFirstRegion());
5480            // create new regions and copy them from original
5481            {
5482                RegionList::const_iterator it = orig->pRegions->begin();
5483                for (int i = 0; i < orig->Regions; ++i, ++it) {
5484                    Region* dstRgn = AddRegion();
5485                    //NOTE: Region does semi-deep copy !
5486                    dstRgn->CopyAssign(
5487                        static_cast<gig::Region*>(*it),
5488                        mSamples
5489                    );
5490                }
5491            }
5492    
5493            UpdateRegionKeyTable();
5494        }
5495    
5496    
5497  // *************** Group ***************  // *************** Group ***************
# Line 2739  namespace { Line 5509  namespace {
5509          ::LoadString(pNameChunk, Name);          ::LoadString(pNameChunk, Name);
5510      }      }
5511    
5512        /** @brief Destructor.
5513         *
5514         * Currently this destructor implementation does nothing.
5515         */
5516      Group::~Group() {      Group::~Group() {
5517          // remove the chunk associated with this group (if any)      }
5518          if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);  
5519        /** @brief Remove all RIFF chunks associated with this Group object.
5520         *
5521         * See DLS::Storage::DeleteChunks() for details.
5522         */
5523        void Group::DeleteChunks() {
5524            // handle own RIFF chunks
5525            if (pNameChunk) {
5526                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5527                pNameChunk = NULL;
5528            }
5529      }      }
5530    
5531      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
# Line 2751  namespace { Line 5535  namespace {
5535       *       *
5536       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
5537       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
5538         *
5539         * @param pProgress - callback function for progress notification
5540       */       */
5541      void Group::UpdateChunks() {      void Group::UpdateChunks(progress_t* pProgress) {
5542          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
5543          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5544          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
5545                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5546                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5547            }
5548          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5549          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5550    
5551            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5552                // v3 has a fixed list of 128 strings, find a free one
5553                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5554                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5555                        pNameChunk = ck;
5556                        break;
5557                    }
5558                }
5559            }
5560    
5561          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5562          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5563      }      }
# Line 2833  namespace { Line 5633  namespace {
5633  // *************** File ***************  // *************** File ***************
5634  // *  // *
5635    
5636        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5637        const DLS::version_t File::VERSION_2 = {
5638            0, 2, 19980628 & 0xffff, 19980628 >> 16
5639        };
5640    
5641        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5642        const DLS::version_t File::VERSION_3 = {
5643            0, 3, 20030331 & 0xffff, 20030331 >> 16
5644        };
5645    
5646        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5647        const DLS::version_t File::VERSION_4 = {
5648            0, 4, 20071012 & 0xffff, 20071012 >> 16
5649        };
5650    
5651        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5652            { CHUNK_ID_IARL, 256 },
5653            { CHUNK_ID_IART, 128 },
5654            { CHUNK_ID_ICMS, 128 },
5655            { CHUNK_ID_ICMT, 1024 },
5656            { CHUNK_ID_ICOP, 128 },
5657            { CHUNK_ID_ICRD, 128 },
5658            { CHUNK_ID_IENG, 128 },
5659            { CHUNK_ID_IGNR, 128 },
5660            { CHUNK_ID_IKEY, 128 },
5661            { CHUNK_ID_IMED, 128 },
5662            { CHUNK_ID_INAM, 128 },
5663            { CHUNK_ID_IPRD, 128 },
5664            { CHUNK_ID_ISBJ, 128 },
5665            { CHUNK_ID_ISFT, 128 },
5666            { CHUNK_ID_ISRC, 128 },
5667            { CHUNK_ID_ISRF, 128 },
5668            { CHUNK_ID_ITCH, 128 },
5669            { 0, 0 }
5670        };
5671    
5672      File::File() : DLS::File() {      File::File() : DLS::File() {
5673            bAutoLoad = true;
5674            *pVersion = VERSION_3;
5675          pGroups = NULL;          pGroups = NULL;
5676          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5677            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5678            pInfo->ArchivalLocation = String(256, ' ');
5679    
5680            // add some mandatory chunks to get the file chunks in right
5681            // order (INFO chunk will be moved to first position later)
5682            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5683            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5684            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5685    
5686            GenerateDLSID();
5687      }      }
5688    
5689      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5690            bAutoLoad = true;
5691          pGroups = NULL;          pGroups = NULL;
5692          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5693            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5694      }      }
5695    
5696      File::~File() {      File::~File() {
# Line 2853  namespace { Line 5703  namespace {
5703              }              }
5704              delete pGroups;              delete pGroups;
5705          }          }
5706            if (pScriptGroups) {
5707                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5708                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5709                while (iter != end) {
5710                    delete *iter;
5711                    ++iter;
5712                }
5713                delete pScriptGroups;
5714            }
5715      }      }
5716    
5717      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2867  namespace { Line 5726  namespace {
5726          SamplesIterator++;          SamplesIterator++;
5727          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5728      }      }
5729        
5730        /**
5731         * Returns Sample object of @a index.
5732         *
5733         * @returns sample object or NULL if index is out of bounds
5734         */
5735        Sample* File::GetSample(uint index) {
5736            if (!pSamples) LoadSamples();
5737            if (!pSamples) return NULL;
5738            DLS::File::SampleList::iterator it = pSamples->begin();
5739            for (int i = 0; i < index; ++i) {
5740                ++it;
5741                if (it == pSamples->end()) return NULL;
5742            }
5743            if (it == pSamples->end()) return NULL;
5744            return static_cast<gig::Sample*>( *it );
5745        }
5746    
5747        /**
5748         * Returns the total amount of samples of this gig file.
5749         *
5750         * Note that this method might block for a long time in case it is required
5751         * to load the sample info for the first time.
5752         *
5753         * @returns total amount of samples
5754         */
5755        size_t File::CountSamples() {
5756            if (!pSamples) LoadSamples();
5757            if (!pSamples) return 0;
5758            return pSamples->size();
5759        }
5760    
5761      /** @brief Add a new sample.      /** @brief Add a new sample.
5762       *       *
# Line 2882  namespace { Line 5772  namespace {
5772         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
5773         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5774         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5775    
5776           // add mandatory chunks to get the chunks in right order
5777           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5778           wave->AddSubList(LIST_TYPE_INFO);
5779    
5780         pSamples->push_back(pSample);         pSamples->push_back(pSample);
5781         return pSample;         return pSample;
5782      }      }
5783    
5784      /** @brief Delete a sample.      /** @brief Delete a sample.
5785       *       *
5786       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
5787       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
5788         * removed. You have to call Save() to make this persistent to the file.
5789       *       *
5790       * @param pSample - sample to delete       * @param pSample - sample to delete
5791       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2900  namespace { Line 5796  namespace {
5796          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5797          if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation          if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5798          pSamples->erase(iter);          pSamples->erase(iter);
5799            pSample->DeleteChunks();
5800          delete pSample;          delete pSample;
5801    
5802            SampleList::iterator tmp = SamplesIterator;
5803            // remove all references to the sample
5804            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5805                 instrument = GetNextInstrument()) {
5806                for (Region* region = instrument->GetFirstRegion() ; region ;
5807                     region = instrument->GetNextRegion()) {
5808    
5809                    if (region->GetSample() == pSample) region->SetSample(NULL);
5810    
5811                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5812                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5813                        if (d->pSample == pSample) d->pSample = NULL;
5814                    }
5815                }
5816            }
5817            SamplesIterator = tmp; // restore iterator
5818      }      }
5819    
5820      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2910  namespace { Line 5824  namespace {
5824      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5825          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
5826          // to resolve the group they belong to          // to resolve the group they belong to
5827          LoadGroups();          if (!pGroups) LoadGroups();
5828    
5829          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
5830    
# Line 2920  namespace { Line 5834  namespace {
5834          int iSampleIndex  = 0;          int iSampleIndex  = 0;
5835          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5836    
5837          // check if samples should be loaded from extension files          // just for assembling path of optional extension files to be read
5838          int lastFileNo = 0;          const std::string folder = parentPath(pRIFF->GetFileName());
5839          for (int i = 0 ; i < WavePoolCount ; i++) {          const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5840              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];  
5841          }          // the main gig file and the extension files (.gx01, ... , .gx98) may
5842          String name(pRIFF->GetFileName());          // contain wave data (wave pool)
5843          int nameLen = name.length();          std::vector<RIFF::File*> poolFiles;
5844          char suffix[6];          poolFiles.push_back(pRIFF);
5845          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;  
5846            // get info about all extension files
5847            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5848            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5849                const uint32_t n = ckXfil->ReadInt32();
5850                for (int i = 0; i < n; i++) {
5851                    // read the filename and load the extension file
5852                    std::string name;
5853                    ckXfil->ReadString(name, 128);
5854                    std::string path = concatPath(folder, name);
5855                    RIFF::File* pExtFile = new RIFF::File(path);
5856                    // check that the dlsids match
5857                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5858                    if (ckDLSID) {
5859                        ::DLS::dlsid_t idExpected;
5860                        idExpected.ulData1 = ckXfil->ReadInt32();
5861                        idExpected.usData2 = ckXfil->ReadInt16();
5862                        idExpected.usData3 = ckXfil->ReadInt16();
5863                        ckXfil->Read(idExpected.abData, 8, 1);
5864                        ::DLS::dlsid_t idFound;
5865                        ckDLSID->Read(&idFound.ulData1, 1, 4);
5866                        ckDLSID->Read(&idFound.usData2, 1, 2);
5867                        ckDLSID->Read(&idFound.usData3, 1, 2);
5868                        ckDLSID->Read(idFound.abData, 8, 1);
5869                        if (memcmp(&idExpected, &idFound, 16) != 0)
5870                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5871                    }
5872                    poolFiles.push_back(pExtFile);
5873                    ExtensionFiles.push_back(pExtFile);
5874                }
5875            }
5876    
5877            // check if a .gx99 (GigaPulse) file exists
5878            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5879            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5880                std::string path = baseName + ".gx99";
5881                RIFF::File* pExtFile = new RIFF::File(path);
5882    
5883                // skip unused int and filename
5884                ckDoxf->SetPos(132, RIFF::stream_curpos);
5885    
5886                // check that the dlsids match
5887                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5888                if (ckDLSID) {
5889                    ::DLS::dlsid_t idExpected;
5890                    idExpected.ulData1 = ckDoxf->ReadInt32();
5891                    idExpected.usData2 = ckDoxf->ReadInt16();
5892                    idExpected.usData3 = ckDoxf->ReadInt16();
5893                    ckDoxf->Read(idExpected.abData, 8, 1);
5894                    ::DLS::dlsid_t idFound;
5895                    ckDLSID->Read(&idFound.ulData1, 1, 4);
5896                    ckDLSID->Read(&idFound.usData2, 1, 2);
5897                    ckDLSID->Read(&idFound.usData3, 1, 2);
5898                    ckDLSID->Read(idFound.abData, 8, 1);
5899                    if (memcmp(&idExpected, &idFound, 16) != 0)
5900                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5901                }
5902                poolFiles.push_back(pExtFile);
5903                ExtensionFiles.push_back(pExtFile);
5904            }
5905    
5906          for (int fileNo = 0 ; ; ) {          // load samples from extension files (if required)
5907            for (int i = 0; i < poolFiles.size(); i++) {
5908                RIFF::File* file = poolFiles[i];
5909              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5910              if (wvpl) {              if (wvpl) {
5911                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5912                                                   wvpl->GetPos(); // should be zero, but just to be sure
5913                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5914                  while (wave) {                  while (wave) {
5915                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
5916                          // notify current progress                          // notify current progress
5917                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          if (pProgress) {
5918                          __notify_progress(pProgress, subprogress);                              const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5919                                __notify_progress(pProgress, subprogress);
5920                            }
5921    
5922                          unsigned long waveFileOffset = wave->GetFilePos();                          file_offset_t waveFileOffset = wave->GetFilePos();
5923                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5924    
5925                          iSampleIndex++;                          iSampleIndex++;
5926                      }                      }
5927                      wave = wvpl->GetNextSubList();                      wave = wvpl->GetNextSubList();
5928                  }                  }
5929                }
                 if (fileNo == lastFileNo) break;  
   
                 // open extension file (*.gx01, *.gx02, ...)  
                 fileNo++;  
                 sprintf(suffix, ".gx%02d", fileNo);  
                 name.replace(nameLen, 5, suffix);  
                 file = new RIFF::File(name);  
                 ExtensionFiles.push_back(file);  
             } else break;  
5930          }          }
5931    
5932          __notify_progress(pProgress, 1.0); // notify done          if (pProgress)
5933                __notify_progress(pProgress, 1.0); // notify done
5934      }      }
5935    
5936      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
# Line 2977  namespace { Line 5947  namespace {
5947      }      }
5948    
5949      /**      /**
5950         * Returns the total amount of instruments of this gig file.
5951         *
5952         * Note that this method might block for a long time in case it is required
5953         * to load the instruments info for the first time.
5954         *
5955         * @returns total amount of instruments
5956         */
5957        size_t File::CountInstruments() {
5958            if (!pInstruments) LoadInstruments();
5959            if (!pInstruments) return 0;
5960            return pInstruments->size();
5961        }
5962    
5963        /**
5964       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5965       *       *
5966       * @param index     - number of the sought instrument (0..n)       * @param index     - number of the sought instrument (0..n)
# Line 2987  namespace { Line 5971  namespace {
5971          if (!pInstruments) {          if (!pInstruments) {
5972              // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)              // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5973    
5974              // sample loading subtask              if (pProgress) {
5975              progress_t subprogress;                  // sample loading subtask
5976              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask                  progress_t subprogress;
5977              __notify_progress(&subprogress, 0.0f);                  __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5978              GetFirstSample(&subprogress); // now force all samples to be loaded                  __notify_progress(&subprogress, 0.0f);
5979              __notify_progress(&subprogress, 1.0f);                  if (GetAutoLoad())
5980                        GetFirstSample(&subprogress); // now force all samples to be loaded
5981              // instrument loading subtask                  __notify_progress(&subprogress, 1.0f);
5982              if (pProgress && pProgress->callback) {  
5983                  subprogress.__range_min = subprogress.__range_max;                  // instrument loading subtask
5984                  subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask                  if (pProgress->callback) {
5985              }                      subprogress.__range_min = subprogress.__range_max;
5986              __notify_progress(&subprogress, 0.0f);                      subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5987              LoadInstruments(&subprogress);                  }
5988              __notify_progress(&subprogress, 1.0f);                  __notify_progress(&subprogress, 0.0f);
5989                    LoadInstruments(&subprogress);
5990                    __notify_progress(&subprogress, 1.0f);
5991                } else {
5992                    // sample loading subtask
5993                    if (GetAutoLoad())
5994                        GetFirstSample(); // now force all samples to be loaded
5995    
5996                    // instrument loading subtask
5997                    LoadInstruments();
5998                }
5999          }          }
6000          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6001          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
# Line 3024  namespace { Line 6018  namespace {
6018         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
6019         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6020         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6021    
6022           // add mandatory chunks to get the chunks in right order
6023           lstInstr->AddSubList(LIST_TYPE_INFO);
6024           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6025    
6026         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
6027           pInstrument->GenerateDLSID();
6028    
6029           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6030    
6031           // this string is needed for the gig to be loadable in GSt:
6032           pInstrument->pInfo->Software = "Endless Wave";
6033    
6034         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
6035         return pInstrument;         return pInstrument;
6036      }      }
6037        
6038        /** @brief Add a duplicate of an existing instrument.
6039         *
6040         * Duplicates the instrument definition given by @a orig and adds it
6041         * to this file. This allows in an instrument editor application to
6042         * easily create variations of an instrument, which will be stored in
6043         * the same .gig file, sharing i.e. the same samples.
6044         *
6045         * Note that all sample pointers referenced by @a orig are simply copied as
6046         * memory address. Thus the respective samples are shared, not duplicated!
6047         *
6048         * You have to call Save() to make this persistent to the file.
6049         *
6050         * @param orig - original instrument to be copied
6051         * @returns duplicated copy of the given instrument
6052         */
6053        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6054            Instrument* instr = AddInstrument();
6055            instr->CopyAssign(orig);
6056            return instr;
6057        }
6058        
6059        /** @brief Add content of another existing file.
6060         *
6061         * Duplicates the samples, groups and instruments of the original file
6062         * given by @a pFile and adds them to @c this File. In case @c this File is
6063         * a new one that you haven't saved before, then you have to call
6064         * SetFileName() before calling AddContentOf(), because this method will
6065         * automatically save this file during operation, which is required for
6066         * writing the sample waveform data by disk streaming.
6067         *
6068         * @param pFile - original file whose's content shall be copied from
6069         */
6070        void File::AddContentOf(File* pFile) {
6071            static int iCallCount = -1;
6072            iCallCount++;
6073            std::map<Group*,Group*> mGroups;
6074            std::map<Sample*,Sample*> mSamples;
6075            
6076            // clone sample groups
6077            for (int i = 0; pFile->GetGroup(i); ++i) {
6078                Group* g = AddGroup();
6079                g->Name =
6080                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6081                mGroups[pFile->GetGroup(i)] = g;
6082            }
6083            
6084            // clone samples (not waveform data here yet)
6085            for (int i = 0; pFile->GetSample(i); ++i) {
6086                Sample* s = AddSample();
6087                s->CopyAssignMeta(pFile->GetSample(i));
6088                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6089                mSamples[pFile->GetSample(i)] = s;
6090            }
6091    
6092            // clone script groups and their scripts
6093            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6094                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6095                ScriptGroup* dg = AddScriptGroup();
6096                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6097                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6098                    Script* ss = sg->GetScript(iScript);
6099                    Script* ds = dg->AddScript();
6100                    ds->CopyAssign(ss);
6101                }
6102            }
6103    
6104            //BUG: For some reason this method only works with this additional
6105            //     Save() call in between here.
6106            //
6107            // Important: The correct one of the 2 Save() methods has to be called
6108            // here, depending on whether the file is completely new or has been
6109            // saved to disk already, otherwise it will result in data corruption.
6110            if (pRIFF->IsNew())
6111                Save(GetFileName());
6112            else
6113                Save();
6114            
6115            // clone instruments
6116            // (passing the crosslink table here for the cloned samples)
6117            for (int i = 0; pFile->GetInstrument(i); ++i) {
6118                Instrument* instr = AddInstrument();
6119                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6120            }
6121            
6122            // Mandatory: file needs to be saved to disk at this point, so this
6123            // file has the correct size and data layout for writing the samples'
6124            // waveform data to disk.
6125            Save();
6126            
6127            // clone samples' waveform data
6128            // (using direct read & write disk streaming)
6129            for (int i = 0; pFile->GetSample(i); ++i) {
6130                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6131            }
6132        }
6133    
6134      /** @brief Delete an instrument.      /** @brief Delete an instrument.
6135       *       *
# Line 3042  namespace { Line 6144  namespace {
6144          InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);          InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6145          if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");          if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6146          pInstruments->erase(iter);          pInstruments->erase(iter);
6147            pInstrument->DeleteChunks();
6148          delete pInstrument;          delete pInstrument;
6149      }      }
6150    
# Line 3057  namespace { Line 6160  namespace {
6160              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6161              while (lstInstr) {              while (lstInstr) {
6162                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6163                      // notify current progress                      if (pProgress) {
6164                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;                          // notify current progress
6165                      __notify_progress(pProgress, localProgress);                          const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6166                            __notify_progress(pProgress, localProgress);
                     // divide local progress into subprogress for loading current Instrument  
                     progress_t subprogress;  
                     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);  
6167    
6168                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                          // divide local progress into subprogress for loading current Instrument
6169                            progress_t subprogress;
6170                            __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6171    
6172                            pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6173                        } else {
6174                            pInstruments->push_back(new Instrument(this, lstInstr));
6175                        }
6176    
6177                      iInstrumentIndex++;                      iInstrumentIndex++;
6178                  }                  }
6179                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
6180              }              }
6181              __notify_progress(pProgress, 1.0); // notify done              if (pProgress)
6182                    __notify_progress(pProgress, 1.0); // notify done
6183          }          }
6184      }      }
6185    
6186        /// Updates the 3crc chunk with the checksum of a sample. The
6187        /// update is done directly to disk, as this method is called
6188        /// after File::Save()
6189        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6190            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6191            if (!_3crc) return;
6192    
6193            // get the index of the sample
6194            int iWaveIndex = GetWaveTableIndexOf(pSample);
6195            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6196    
6197            // write the CRC-32 checksum to disk
6198            _3crc->SetPos(iWaveIndex * 8);
6199            uint32_t one = 1;
6200            _3crc->WriteUint32(&one); // always 1
6201            _3crc->WriteUint32(&crc);
6202        }
6203    
6204        uint32_t File::GetSampleChecksum(Sample* pSample) {
6205            // get the index of the sample
6206            int iWaveIndex = GetWaveTableIndexOf(pSample);
6207            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6208    
6209            return GetSampleChecksumByIndex(iWaveIndex);
6210        }
6211    
6212        uint32_t File::GetSampleChecksumByIndex(int index) {
6213            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6214    
6215            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6216            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6217            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6218            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6219    
6220            // read the CRC-32 checksum directly from disk
6221            size_t pos = index * 8;
6222            if (pos + 8 > _3crc->GetNewSize())
6223                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6224    
6225            uint32_t one = load32(&pData[pos]); // always 1
6226            if (one != 1)
6227                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6228    
6229            return load32(&pData[pos+4]);
6230        }
6231    
6232        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6233            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6234            File::SampleList::iterator iter = pSamples->begin();
6235            File::SampleList::iterator end  = pSamples->end();
6236            for (int index = 0; iter != end; ++iter, ++index)
6237                if (*iter == pSample)
6238                    return index;
6239            return -1;
6240        }
6241    
6242        /**
6243         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6244         * the CRC32 check sums of all samples' raw wave data.
6245         *
6246         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6247         */
6248        bool File::VerifySampleChecksumTable() {
6249            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6250            if (!_3crc) return false;
6251            if (_3crc->GetNewSize() <= 0) return false;
6252            if (_3crc->GetNewSize() % 8) return false;
6253            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6254            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6255    
6256            const file_offset_t n = _3crc->GetNewSize() / 8;
6257    
6258            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6259            if (!pData) return false;
6260    
6261            for (file_offset_t i = 0; i < n; ++i) {
6262                uint32_t one = pData[i*2];
6263                if (one != 1) return false;
6264            }
6265    
6266            return true;
6267        }
6268    
6269        /**
6270         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6271         * file's checksum table with those new checksums. This might usually
6272         * just be necessary if the checksum table was damaged.
6273         *
6274         * @e IMPORTANT: The current implementation of this method only works
6275         * with files that have not been modified since it was loaded, because
6276         * it expects that no externally caused file structure changes are
6277         * required!
6278         *
6279         * Due to the expectation above, this method is currently protected
6280         * and actually only used by the command line tool "gigdump" yet.
6281         *
6282         * @returns true if Save() is required to be called after this call,
6283         *          false if no further action is required
6284         */
6285        bool File::RebuildSampleChecksumTable() {
6286            // make sure sample chunks were scanned
6287            if (!pSamples) GetFirstSample();
6288    
6289            bool bRequiresSave = false;
6290    
6291            // make sure "3CRC" chunk exists with required size
6292            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6293            if (!_3crc) {
6294                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6295                // the order of einf and 3crc is not the same in v2 and v3
6296                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6297                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6298                bRequiresSave = true;
6299            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6300                _3crc->Resize(pSamples->size() * 8);
6301                bRequiresSave = true;
6302            }
6303    
6304            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6305                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6306                {
6307                    File::SampleList::iterator iter = pSamples->begin();
6308                    File::SampleList::iterator end  = pSamples->end();
6309                    for (; iter != end; ++iter) {
6310                        gig::Sample* pSample = (gig::Sample*) *iter;
6311                        int index = GetWaveTableIndexOf(pSample);
6312                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6313                        pData[index*2]   = 1; // always 1
6314                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6315                    }
6316                }
6317            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6318                // make sure file is in write mode
6319                pRIFF->SetMode(RIFF::stream_mode_read_write);
6320                {
6321                    File::SampleList::iterator iter = pSamples->begin();
6322                    File::SampleList::iterator end  = pSamples->end();
6323                    for (; iter != end; ++iter) {
6324                        gig::Sample* pSample = (gig::Sample*) *iter;
6325                        int index = GetWaveTableIndexOf(pSample);
6326                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6327                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6328                        SetSampleChecksum(pSample, pSample->crc);
6329                    }
6330                }
6331            }
6332    
6333            return bRequiresSave;
6334        }
6335    
6336      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
6337          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6338          // there must always be at least one group          // there must always be at least one group
# Line 3104  namespace { Line 6362  namespace {
6362          return NULL;          return NULL;
6363      }      }
6364    
6365        /**
6366         * Returns the group with the given group name.
6367         *
6368         * Note: group names don't have to be unique in the gig format! So there
6369         * can be multiple groups with the same name. This method will simply
6370         * return the first group found with the given name.
6371         *
6372         * @param name - name of the sought group
6373         * @returns sought group or NULL if there's no group with that name
6374         */
6375        Group* File::GetGroup(String name) {
6376            if (!pGroups) LoadGroups();
6377            GroupsIterator = pGroups->begin();
6378            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6379                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6380            return NULL;
6381        }
6382    
6383      Group* File::AddGroup() {      Group* File::AddGroup() {
6384          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6385          // there must always be at least one group          // there must always be at least one group
# Line 3133  namespace { Line 6409  namespace {
6409          }          }
6410          // now delete this group object          // now delete this group object
6411          pGroups->erase(iter);          pGroups->erase(iter);
6412            pGroup->DeleteChunks();
6413          delete pGroup;          delete pGroup;
6414      }      }
6415    
# Line 3154  namespace { Line 6431  namespace {
6431          // move all members of this group to another group          // move all members of this group to another group
6432          pGroup->MoveAll();          pGroup->MoveAll();
6433          pGroups->erase(iter);          pGroups->erase(iter);
6434            pGroup->DeleteChunks();
6435          delete pGroup;          delete pGroup;
6436      }      }
6437    
# Line 3167  namespace { Line 6445  namespace {
6445                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6446                  while (ck) {                  while (ck) {
6447                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6448                            if (pVersion && pVersion->major > 2 &&
6449                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6450    
6451                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
6452                      }                      }
6453                      ck = lst3gnl->GetNextSubChunk();                      ck = lst3gnl->GetNextSubChunk();
# Line 3181  namespace { Line 6462  namespace {
6462          }          }
6463      }      }
6464    
6465        /** @brief Get instrument script group (by index).
6466         *
6467         * Returns the real-time instrument script group with the given index.
6468         *
6469         * @param index - number of the sought group (0..n)
6470         * @returns sought script group or NULL if there's no such group
6471         */
6472        ScriptGroup* File::GetScriptGroup(uint index) {
6473            if (!pScriptGroups) LoadScriptGroups();
6474            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6475            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6476                if (i == index) return *it;
6477            return NULL;
6478        }
6479    
6480        /** @brief Get instrument script group (by name).
6481         *
6482         * Returns the first real-time instrument script group found with the given
6483         * group name. Note that group names may not necessarily be unique.
6484         *
6485         * @param name - name of the sought script group
6486         * @returns sought script group or NULL if there's no such group
6487         */
6488        ScriptGroup* File::GetScriptGroup(const String& name) {
6489            if (!pScriptGroups) LoadScriptGroups();
6490            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6491            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6492                if ((*it)->Name == name) return *it;
6493            return NULL;
6494        }
6495    
6496        /** @brief Add new instrument script group.
6497         *
6498         * Adds a new, empty real-time instrument script group to the file.
6499         *
6500         * You have to call Save() to make this persistent to the file.
6501         *
6502         * @return new empty script group
6503         */
6504        ScriptGroup* File::AddScriptGroup() {
6505            if (!pScriptGroups) LoadScriptGroups();
6506            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6507            pScriptGroups->push_back(pScriptGroup);
6508            return pScriptGroup;
6509        }
6510    
6511        /** @brief Delete an instrument script group.
6512         *
6513         * This will delete the given real-time instrument script group and all its
6514         * instrument scripts it contains. References inside instruments that are
6515         * using the deleted scripts will be removed from the respective instruments
6516         * accordingly.
6517         *
6518         * You have to call Save() to make this persistent to the file.
6519         *
6520         * @param pScriptGroup - script group to delete
6521         * @throws gig::Exception if given script group could not be found
6522         */
6523        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6524            if (!pScriptGroups) LoadScriptGroups();
6525            std::list<ScriptGroup*>::iterator iter =
6526                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6527            if (iter == pScriptGroups->end())
6528                throw gig::Exception("Could not delete script group, could not find given script group");
6529            pScriptGroups->erase(iter);
6530            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6531                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6532            if (pScriptGroup->pList)
6533                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6534            pScriptGroup->DeleteChunks();
6535            delete pScriptGroup;
6536        }
6537    
6538        void File::LoadScriptGroups() {
6539            if (pScriptGroups) return;
6540            pScriptGroups = new std::list<ScriptGroup*>;
6541            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6542            if (lstLS) {
6543                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6544                     lst = lstLS->GetNextSubList())
6545                {
6546                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6547                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6548                    }
6549                }
6550            }
6551        }
6552    
6553      /**      /**
6554       * Apply all the gig file's current instruments, samples, groups and settings       * Apply all the gig file's current instruments, samples, groups and settings
6555       * to the respective RIFF chunks. You have to call Save() to make changes       * to the respective RIFF chunks. You have to call Save() to make changes
# Line 3189  namespace { Line 6558  namespace {
6558       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
6559       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
6560       *       *
6561         * @param pProgress - callback function for progress notification
6562       * @throws Exception - on errors       * @throws Exception - on errors
6563       */       */
6564      void File::UpdateChunks() {      void File::UpdateChunks(progress_t* pProgress) {
6565            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6566    
6567            // update own gig format extension chunks
6568            // (not part of the GigaStudio 4 format)
6569            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6570            if (!lst3LS) {
6571                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6572            }
6573            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6574            // location of <3LS > is irrelevant, however it should be located
6575            // before  the actual wave data
6576            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6577            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6578    
6579            // This must be performed before writing the chunks for instruments,
6580            // because the instruments' script slots will write the file offsets
6581            // of the respective instrument script chunk as reference.
6582            if (pScriptGroups) {
6583                // Update instrument script (group) chunks.
6584                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6585                     it != pScriptGroups->end(); ++it)
6586                {
6587                    (*it)->UpdateChunks(pProgress);
6588                }
6589            }
6590    
6591            // in case no libgig custom format data was added, then remove the
6592            // custom "3LS " chunk again
6593            if (!lst3LS->CountSubChunks()) {
6594                pRIFF->DeleteSubChunk(lst3LS);
6595                lst3LS = NULL;
6596            }
6597    
6598          // first update base class's chunks          // first update base class's chunks
6599          DLS::File::UpdateChunks();          DLS::File::UpdateChunks(pProgress);
6600    
6601            if (newFile) {
6602                // INFO was added by Resource::UpdateChunks - make sure it
6603                // is placed first in file
6604                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6605                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6606                if (first != info) {
6607                    pRIFF->MoveSubChunk(info, first);
6608                }
6609            }
6610    
6611          // update group's chunks          // update group's chunks
6612          if (pGroups) {          if (pGroups) {
6613                // make sure '3gri' and '3gnl' list chunks exist
6614                // (before updating the Group chunks)
6615                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6616                if (!_3gri) {
6617                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6618                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6619                }
6620                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6621                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6622    
6623                // v3: make sure the file has 128 3gnm chunks
6624                // (before updating the Group chunks)
6625                if (pVersion && pVersion->major > 2) {
6626                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6627                    for (int i = 0 ; i < 128 ; i++) {
6628                        // create 128 empty placeholder strings which will either
6629                        // be filled by Group::UpdateChunks below or left empty.
6630                        ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6631                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6632                    }
6633                }
6634    
6635              std::list<Group*>::iterator iter = pGroups->begin();              std::list<Group*>::iterator iter = pGroups->begin();
6636              std::list<Group*>::iterator end  = pGroups->end();              std::list<Group*>::iterator end  = pGroups->end();
6637              for (; iter != end; ++iter) {              for (; iter != end; ++iter) {
6638                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
6639                }
6640            }
6641    
6642            // update einf chunk
6643    
6644            // The einf chunk contains statistics about the gig file, such
6645            // as the number of regions and samples used by each
6646            // instrument. It is divided in equally sized parts, where the
6647            // first part contains information about the whole gig file,
6648            // and the rest of the parts map to each instrument in the
6649            // file.
6650            //
6651            // At the end of each part there is a bit map of each sample
6652            // in the file, where a set bit means that the sample is used
6653            // by the file/instrument.
6654            //
6655            // Note that there are several fields with unknown use. These
6656            // are set to zero.
6657    
6658            int sublen = int(pSamples->size() / 8 + 49);
6659            int einfSize = (Instruments + 1) * sublen;
6660    
6661            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6662            if (einf) {
6663                if (einf->GetSize() != einfSize) {
6664                    einf->Resize(einfSize);
6665                    memset(einf->LoadChunkData(), 0, einfSize);
6666                }
6667            } else if (newFile) {
6668                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6669            }
6670            if (einf) {
6671                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6672    
6673                std::map<gig::Sample*,int> sampleMap;
6674                int sampleIdx = 0;
6675                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6676                    sampleMap[pSample] = sampleIdx++;
6677              }              }
6678    
6679                int totnbusedsamples = 0;
6680                int totnbusedchannels = 0;
6681                int totnbregions = 0;
6682                int totnbdimregions = 0;
6683                int totnbloops = 0;
6684                int instrumentIdx = 0;
6685    
6686                memset(&pData[48], 0, sublen - 48);
6687    
6688                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6689                     instrument = GetNextInstrument()) {
6690                    int nbusedsamples = 0;
6691                    int nbusedchannels = 0;
6692                    int nbdimregions = 0;
6693                    int nbloops = 0;
6694    
6695                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6696    
6697                    for (Region* region = instrument->GetFirstRegion() ; region ;
6698                         region = instrument->GetNextRegion()) {
6699                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6700                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6701                            if (d->pSample) {
6702                                int sampleIdx = sampleMap[d->pSample];
6703                                int byte = 48 + sampleIdx / 8;
6704                                int bit = 1 << (sampleIdx & 7);
6705                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6706                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6707                                    nbusedsamples++;
6708                                    nbusedchannels += d->pSample->Channels;
6709    
6710                                    if ((pData[byte] & bit) == 0) {
6711                                        pData[byte] |= bit;
6712                                        totnbusedsamples++;
6713                                        totnbusedchannels += d->pSample->Channels;
6714                                    }
6715                                }
6716                            }
6717                            if (d->SampleLoops) nbloops++;
6718                        }
6719                        nbdimregions += region->DimensionRegions;
6720                    }
6721                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6722                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6723                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6724                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6725                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6726                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6727                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6728                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6729                    // next 8 bytes unknown
6730                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6731                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6732                    // next 4 bytes unknown
6733    
6734                    totnbregions += instrument->Regions;
6735                    totnbdimregions += nbdimregions;
6736                    totnbloops += nbloops;
6737                    instrumentIdx++;
6738                }
6739                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6740                // store32(&pData[0], sublen);
6741                store32(&pData[4], totnbusedchannels);
6742                store32(&pData[8], totnbusedsamples);
6743                store32(&pData[12], Instruments);
6744                store32(&pData[16], totnbregions);
6745                store32(&pData[20], totnbdimregions);
6746                store32(&pData[24], totnbloops);
6747                // next 8 bytes unknown
6748                // next 4 bytes unknown, not always 0
6749                store32(&pData[40], (uint32_t) pSamples->size());
6750                // next 4 bytes unknown
6751            }
6752    
6753            // update 3crc chunk
6754    
6755            // The 3crc chunk contains CRC-32 checksums for the
6756            // samples. When saving a gig file to disk, we first update the 3CRC
6757            // chunk here (in RAM) with the old crc values which we read from the
6758            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6759            // member variable). This step is required, because samples might have
6760            // been deleted by the user since the file was opened, which in turn
6761            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6762            // If a sample was conciously modified by the user (that is if
6763            // Sample::Write() was called later on) then Sample::Write() will just
6764            // update the respective individual checksum(s) directly on disk and
6765            // leaves all other sample checksums untouched.
6766    
6767            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6768            if (_3crc) {
6769                _3crc->Resize(pSamples->size() * 8);
6770            } else /*if (newFile)*/ {
6771                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6772                // the order of einf and 3crc is not the same in v2 and v3
6773                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6774            }
6775            { // must be performed in RAM here ...
6776                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6777                if (pData) {
6778                    File::SampleList::iterator iter = pSamples->begin();
6779                    File::SampleList::iterator end  = pSamples->end();
6780                    for (int index = 0; iter != end; ++iter, ++index) {
6781                        gig::Sample* pSample = (gig::Sample*) *iter;
6782                        pData[index*2]   = 1; // always 1
6783                        pData[index*2+1] = pSample->crc;
6784                    }
6785                }
6786            }
6787        }
6788        
6789        void File::UpdateFileOffsets() {
6790            DLS::File::UpdateFileOffsets();
6791    
6792            for (Instrument* instrument = GetFirstInstrument(); instrument;
6793                 instrument = GetNextInstrument())
6794            {
6795                instrument->UpdateScriptFileOffsets();
6796          }          }
6797      }      }
6798    
6799        /**
6800         * Enable / disable automatic loading. By default this property is
6801         * enabled and every information is loaded automatically. However
6802         * loading all Regions, DimensionRegions and especially samples might
6803         * take a long time for large .gig files, and sometimes one might only
6804         * be interested in retrieving very superficial informations like the
6805         * amount of instruments and their names. In this case one might disable
6806         * automatic loading to avoid very slow response times.
6807         *
6808         * @e CAUTION: by disabling this property many pointers (i.e. sample
6809         * references) and attributes will have invalid or even undefined
6810         * data! This feature is currently only intended for retrieving very
6811         * superficial information in a very fast way. Don't use it to retrieve
6812         * details like synthesis information or even to modify .gig files!
6813         */
6814        void File::SetAutoLoad(bool b) {
6815            bAutoLoad = b;
6816        }
6817    
6818        /**
6819         * Returns whether automatic loading is enabled.
6820         * @see SetAutoLoad()
6821         */
6822        bool File::GetAutoLoad() {
6823            return bAutoLoad;
6824        }
6825    
6826    
6827    
6828  // *************** Exception ***************  // *************** Exception ***************
6829  // *  // *
6830    
6831      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6832        }
6833    
6834        Exception::Exception(String format, ...) : DLS::Exception() {
6835            va_list arg;
6836            va_start(arg, format);
6837            Message = assemble(format, arg);
6838            va_end(arg);
6839        }
6840    
6841        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6842            Message = assemble(format, arg);
6843      }      }
6844    
6845      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.1099  
changed lines
  Added in v.3656

  ViewVC Help
Powered by ViewVC