/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1083 by schoenebeck, Thu Mar 8 16:41:27 2007 UTC revision 1180 by persson, Sat May 12 12:39:25 2007 UTC
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281  // *************** Sample ***************  // *************** Sample ***************
282  // *  // *
283    
# Line 279  namespace { Line 303  namespace {
303       *                         is located, 0 otherwise       *                         is located, 0 otherwise
304       */       */
305      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
306          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
307                { CHUNK_ID_INAM, 64 },
308                { 0, 0 }
309            };
310            pInfo->FixedStringLengths = fixedStringLengths;
311          Instances++;          Instances++;
312          FileNo = fileNo;          FileNo = fileNo;
313    
# Line 378  namespace { Line 406  namespace {
406          // update 'smpl' chunk          // update 'smpl' chunk
407          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
408          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
409          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
410          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
411          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
412          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
413          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
414          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
415          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
416          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
417    
418          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
419    
420          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
421          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
422          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
423          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
424          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
425          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
426    
427          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
428          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 442  namespace {
442          }          }
443          // update '3gix' chunk          // update '3gix' chunk
444          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
445          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
446      }      }
447    
448      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 1480  namespace { Line 1508  namespace {
1508          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1509    
1510          const uint32_t chunksize = _3ewa->GetSize();          const uint32_t chunksize = _3ewa->GetSize();
1511          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?          store32(&pData[0], chunksize); // unknown, always chunk size?
1512    
1513          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1514          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1515    
1516          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1517          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1518    
1519          // next 2 bytes unknown          // next 2 bytes unknown
1520    
1521          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1522    
1523          // next 2 bytes unknown          // next 2 bytes unknown
1524    
1525          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1526    
1527          // next 2 bytes unknown          // next 2 bytes unknown
1528    
1529          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1530    
1531          // next 2 bytes unknown          // next 2 bytes unknown
1532    
1533          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1534    
1535          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1536          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1537    
1538          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1539          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1540    
1541          // next 2 bytes unknown          // next 2 bytes unknown
1542    
1543          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1544    
1545          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1546          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1547    
1548          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1549          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1550    
1551          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1552              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1553              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1554              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1555              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1556          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1557    
1558          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1559          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1560    
1561          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1562              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1563              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1564              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1565              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1566          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1567    
1568          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1569          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1570    
1571          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1572          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1573    
1574          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1575          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1576    
1577          // next 2 bytes unknown          // next 2 bytes unknown
1578    
1579          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1580    
1581          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1582          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1583    
1584          // next 2 bytes unknown          // next 2 bytes unknown
1585    
1586          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1587    
1588          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1589          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1590    
1591          // next 2 bytes unknown          // next 2 bytes unknown
1592    
1593          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1594    
1595          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1596          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1597    
1598          // next 2 bytes unknown          // next 2 bytes unknown
1599    
1600          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1601    
1602          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1603          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1604    
1605          // next 2 bytes unknown          // next 2 bytes unknown
1606    
1607          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1608    
1609          {          {
1610              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1594  namespace { Line 1622  namespace {
1622                  default:                  default:
1623                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1624              }              }
1625              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1626          }          }
1627    
1628          {          {
# Line 1613  namespace { Line 1641  namespace {
1641                  default:                  default:
1642                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1643              }              }
1644              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1645          }          }
1646    
1647          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1648    
1649          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1650    
1651          // next 4 bytes unknown          // next 4 bytes unknown
1652    
1653          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1654    
1655          // next 2 bytes unknown          // next 2 bytes unknown
1656    
# Line 1641  namespace { Line 1669  namespace {
1669                  default:                  default:
1670                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1671              }              }
1672              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1673          }          }
1674    
1675          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1676          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1677    
1678          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1679          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1680    
1681          // next byte unknown          // next byte unknown
1682    
# Line 1657  namespace { Line 1685  namespace {
1685              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1686              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1687              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1688              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1689          }          }
1690    
1691          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1692          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1693    
1694          {          {
1695              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1696              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1697              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1698              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1699              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1700          }          }
1701    
1702          {          {
# Line 1677  namespace { Line 1705  namespace {
1705              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1706              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1707                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1708              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1709          }          }
1710    
1711          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1712                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1713          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1714    
1715          // next 2 bytes unknown          // next 2 bytes unknown
1716    
1717          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1718          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1719    
1720          {          {
1721              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1722              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1723              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1724              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1725          }          }
1726    
1727          // next 2 bytes unknown          // next 2 bytes unknown
1728    
1729          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1730    
1731          // next 3 bytes unknown          // next 3 bytes unknown
1732    
1733          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1734    
1735          // next 2 bytes unknown          // next 2 bytes unknown
1736    
1737          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1738          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1739    
1740          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1741                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1742          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1743    
1744          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1745    
1746          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1747                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1748          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1749    
1750          // next byte unknown          // next byte unknown
1751    
1752          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1753                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1754          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1755    
1756          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1757                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1758          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1759    
1760          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1761                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1762          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1763    
1764          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1765          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1766    
1767          if (chunksize >= 148) {          if (chunksize >= 148) {
1768              memcpy(&pData[140], DimensionUpperLimits, 8);              memcpy(&pData[140], DimensionUpperLimits, 8);
# Line 2080  namespace { Line 2108  namespace {
2108  // *  // *
2109    
2110      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2111          // Initialization          // Initialization
2112          Dimensions = 0;          Dimensions = 0;
2113          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2115  namespace { Line 2141  namespace {
2141                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2142                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2143                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2144                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2145                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random ||  
                                                            dimension == dimension_smartmidi ||  
                                                            dimension == dimension_roundrobinkeyboard) ? split_type_bit  
                                                                                                       : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2146                      Dimensions++;                      Dimensions++;
2147    
2148                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2152  namespace { Line 2168  namespace {
2168                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2169              }              }
2170              GetSample(); // load global region sample reference              GetSample(); // load global region sample reference
2171            } else {
2172                DimensionRegions = 0;
2173          }          }
2174    
2175          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2174  namespace { Line 2192  namespace {
2192       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2193       */       */
2194      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2195            // in the gig format we don't care about the Region's sample reference
2196            // but we still have to provide some existing one to not corrupt the
2197            // file, so to avoid the latter we simply always assign the sample of
2198            // the first dimension region of this region
2199            pSample = pDimensionRegions[0]->pSample;
2200    
2201          // first update base class's chunks          // first update base class's chunks
2202          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2203    
# Line 2195  namespace { Line 2219  namespace {
2219    
2220          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2221          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2222          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2223          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2224              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2225              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
# Line 2220  namespace { Line 2244  namespace {
2244                  }                  }
2245                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2246              }              }
2247              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2248          }          }
2249      }      }
2250    
# Line 2348  namespace { Line 2372  namespace {
2372          // assign definition of new dimension          // assign definition of new dimension
2373          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2374    
2375            // auto correct certain dimension definition fields (where possible)
2376            pDimensionDefinitions[Dimensions].split_type  =
2377                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2378            pDimensionDefinitions[Dimensions].zone_size =
2379                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2380    
2381          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2382          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2383              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
# Line 2564  namespace { Line 2594  namespace {
2594  // *  // *
2595    
2596      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2597          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2598                { CHUNK_ID_INAM, 64 },
2599                { CHUNK_ID_ISFT, 12 },
2600                { 0, 0 }
2601            };
2602            pInfo->FixedStringLengths = fixedStringLengths;
2603    
2604          // Initialization          // Initialization
2605          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
# Line 2646  namespace { Line 2681  namespace {
2681          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2682          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2683          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2684          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2685          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2686          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2687          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2688          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2689                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2690          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2691          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2692      }      }
2693    
2694      /**      /**
# Line 2740  namespace { Line 2775  namespace {
2775      }      }
2776    
2777      Group::~Group() {      Group::~Group() {
2778            // remove the chunk associated with this group (if any)
2779            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2780      }      }
2781    
2782      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
2783       *       *
2784       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
2785       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
2786         *
2787         * Usually there is absolutely no need to call this method explicitly.
2788         * It will be called automatically when File::Save() was called.
2789       */       */
2790      void Group::UpdateChunks() {      void Group::UpdateChunks() {
2791          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
# Line 2828  namespace { Line 2868  namespace {
2868  // *************** File ***************  // *************** File ***************
2869  // *  // *
2870    
2871        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2872            { CHUNK_ID_IARL, 256 },
2873            { CHUNK_ID_IART, 128 },
2874            { CHUNK_ID_ICMS, 128 },
2875            { CHUNK_ID_ICMT, 1024 },
2876            { CHUNK_ID_ICOP, 128 },
2877            { CHUNK_ID_ICRD, 128 },
2878            { CHUNK_ID_IENG, 128 },
2879            { CHUNK_ID_IGNR, 128 },
2880            { CHUNK_ID_IKEY, 128 },
2881            { CHUNK_ID_IMED, 128 },
2882            { CHUNK_ID_INAM, 128 },
2883            { CHUNK_ID_IPRD, 128 },
2884            { CHUNK_ID_ISBJ, 128 },
2885            { CHUNK_ID_ISFT, 128 },
2886            { CHUNK_ID_ISRC, 128 },
2887            { CHUNK_ID_ISRF, 128 },
2888            { CHUNK_ID_ITCH, 128 },
2889            { 0, 0 }
2890        };
2891    
2892      File::File() : DLS::File() {      File::File() : DLS::File() {
2893          pGroups = NULL;          pGroups = NULL;
2894          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2895      }      }
2896    
2897      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2898          pGroups = NULL;          pGroups = NULL;
2899          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2900      }      }
2901    
2902      File::~File() {      File::~File() {
# Line 2905  namespace { Line 2966  namespace {
2966      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
2967          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
2968          // to resolve the group they belong to          // to resolve the group they belong to
2969          LoadGroups();          if (!pGroups) LoadGroups();
2970    
2971          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
2972    
# Line 3176  namespace { Line 3237  namespace {
3237          }          }
3238      }      }
3239    
3240        /**
3241         * Apply all the gig file's current instruments, samples, groups and settings
3242         * to the respective RIFF chunks. You have to call Save() to make changes
3243         * persistent.
3244         *
3245         * Usually there is absolutely no need to call this method explicitly.
3246         * It will be called automatically when File::Save() was called.
3247         *
3248         * @throws Exception - on errors
3249         */
3250        void File::UpdateChunks() {
3251            // first update base class's chunks
3252            DLS::File::UpdateChunks();
3253    
3254            // update group's chunks
3255            if (pGroups) {
3256                std::list<Group*>::iterator iter = pGroups->begin();
3257                std::list<Group*>::iterator end  = pGroups->end();
3258                for (; iter != end; ++iter) {
3259                    (*iter)->UpdateChunks();
3260                }
3261            }
3262        }
3263    
3264    
3265    
3266  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.1083  
changed lines
  Added in v.1180

  ViewVC Help
Powered by ViewVC