/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 933 by schoenebeck, Fri Nov 24 12:50:05 2006 UTC revision 1264 by persson, Sun Jul 29 10:51:09 2007 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file access library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2006 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
# Line 279  namespace { Line 323  namespace {
323       *                         is located, 0 otherwise       *                         is located, 0 otherwise
324       */       */
325      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332          FileNo = fileNo;          FileNo = fileNo;
333    
# Line 314  namespace { Line 362  namespace {
362              Manufacturer  = 0;              Manufacturer  = 0;
363              Product       = 0;              Product       = 0;
364              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365              MIDIUnityNote = 64;              MIDIUnityNote = 60;
366              FineTune      = 0;              FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368              SMPTEOffset   = 0;              SMPTEOffset   = 0;
369              Loops         = 0;              Loops         = 0;
370              LoopID        = 0;              LoopID        = 0;
371                LoopType      = loop_type_normal;
372              LoopStart     = 0;              LoopStart     = 0;
373              LoopEnd       = 0;              LoopEnd       = 0;
374              LoopFraction  = 0;              LoopFraction  = 0;
# Line 364  namespace { Line 414  namespace {
414       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
415       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
416       *       *
417       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418       *                        was provided yet       *                        was provided yet
419       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
420       */       */
# Line 374  namespace { Line 424  namespace {
424    
425          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
426          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431          // update 'smpl' chunk          // update 'smpl' chunk
432          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
435          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
436          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
437          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
438          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
439          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
440          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
441          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
442    
443          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
444    
445          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
446          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
447          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
448          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
449          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
450          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
451    
452          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
453          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 467  namespace {
467          }          }
468          // update '3gix' chunk          // update '3gix' chunk
469          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
470          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 635  namespace { Line 688  namespace {
688       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
689       * current sample's boundary!       * current sample's boundary!
690       *       *
691       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693       * other formats will fail!       * other formats will fail!
694       *       *
695       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
696       *                   greater than zero)       *                   greater than zero)
697       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
699       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
700       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 1099  namespace { Line 1152  namespace {
1152       *       *
1153       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1154       *       *
1155         * For 16 bit samples, the data in the source buffer should be
1156         * int16_t (using native endianness). For 24 bit, the buffer
1157         * should contain three bytes per sample, little-endian.
1158         *
1159       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1160       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1161       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1107  namespace { Line 1164  namespace {
1164       */       */
1165      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167          return DLS::Sample::Write(pBuffer, SampleCount);  
1168            // if this is the first write in this sample, reset the
1169            // checksum calculator
1170            if (pCkData->GetPos() == 0) {
1171                crc.reset();
1172            }
1173            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174            unsigned long res;
1175            if (BitDepth == 24) {
1176                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177            } else { // 16 bit
1178                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179                                    : pCkData->Write(pBuffer, SampleCount, 2);
1180            }
1181            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183            // if this is the last write, update the checksum chunk in the
1184            // file
1185            if (pCkData->GetPos() == pCkData->GetSize()) {
1186                File* pFile = static_cast<File*>(GetParent());
1187                pFile->SetSampleChecksum(this, crc.getValue());
1188            }
1189            return res;
1190      }      }
1191    
1192      /**      /**
# Line 1188  namespace { Line 1267  namespace {
1267    
1268          pSample = NULL;          pSample = NULL;
1269    
1270          memcpy(&Crossfade, &SamplerOptions, 4);          if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1271            else memset(&Crossfade, 0, 4);
1272    
1273          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1274    
1275          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
# Line 1338  namespace { Line 1419  namespace {
1419                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1420                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1421              }              }
1422                if (_3ewa->RemainingBytes() >= 8) {
1423                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1424                } else {
1425                    memset(DimensionUpperLimits, 0, 8);
1426                }
1427          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1428              // use default values              // use default values
1429              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1347  namespace { Line 1433  namespace {
1433              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1434              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1435              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1436              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1437              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1438              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1439              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1440              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1441              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1364  namespace { Line 1450  namespace {
1450              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1451              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1452              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1453              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1454              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1455              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1456              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1457              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1458              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1459              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1460              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1461              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1462              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1463              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1464              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1465              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1466              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1467              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1418  namespace { Line 1504  namespace {
1504              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1505              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1506              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1507                memset(DimensionUpperLimits, 127, 8);
1508          }          }
1509    
1510          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1463  namespace { Line 1550  namespace {
1550       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
1551       */       */
1552      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks() {
1553            // check if wsmp is going to be created by
1554            // DLS::Sampler::UpdateChunks
1555            bool wsmp_created = !pParentList->GetSubChunk(CHUNK_ID_WSMP);
1556    
1557          // first update base class's chunk          // first update base class's chunk
1558          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1559    
1560            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1561            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1562            pData[12] = Crossfade.in_start;
1563            pData[13] = Crossfade.in_end;
1564            pData[14] = Crossfade.out_start;
1565            pData[15] = Crossfade.out_end;
1566    
1567          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1568          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1569          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1570          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();          else if (wsmp_created) {
1571                // make sure the chunk order is: wsmp, 3ewa
1572                pParentList->MoveSubChunk(_3ewa, 0);
1573            }
1574            pData = (uint8_t*) _3ewa->LoadChunkData();
1575    
1576          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1577    
1578          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = _3ewa->GetNewSize();
1579          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1580    
1581          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1582          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1583    
1584          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1585          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1586    
1587          // next 2 bytes unknown          // next 2 bytes unknown
1588    
1589          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1590    
1591          // next 2 bytes unknown          // next 2 bytes unknown
1592    
1593          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1594    
1595          // next 2 bytes unknown          // next 2 bytes unknown
1596    
1597          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1598    
1599          // next 2 bytes unknown          // next 2 bytes unknown
1600    
1601          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1602    
1603          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1604          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1605    
1606          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1607          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1608    
1609          // next 2 bytes unknown          // next 2 bytes unknown
1610    
1611          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1612    
1613          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1614          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1615    
1616          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1617          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1618    
1619          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1620              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1621              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1622              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1623              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1624          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1625    
1626          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1627          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1628    
1629          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1630              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1631              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1632              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1633              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1634          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1635    
1636          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1637          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1638    
1639          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1640          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1641    
1642          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1643          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1644    
1645          // next 2 bytes unknown          // next 2 bytes unknown
1646    
1647          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1648    
1649          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1650          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1651    
1652          // next 2 bytes unknown          // next 2 bytes unknown
1653    
1654          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1655    
1656          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1657          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1658    
1659          // next 2 bytes unknown          // next 2 bytes unknown
1660    
1661          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1662    
1663          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1664          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1665    
1666          // next 2 bytes unknown          // next 2 bytes unknown
1667    
1668          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1669    
1670          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1671          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1672    
1673          // next 2 bytes unknown          // next 2 bytes unknown
1674    
1675          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1676    
1677          {          {
1678              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 1690  namespace {
1690                  default:                  default:
1691                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1692              }              }
1693              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1694          }          }
1695    
1696          {          {
# Line 1607  namespace { Line 1709  namespace {
1709                  default:                  default:
1710                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1711              }              }
1712              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1713          }          }
1714    
1715          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1716    
1717          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1718    
1719          // next 4 bytes unknown          // next 4 bytes unknown
1720    
1721          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1722    
1723          // next 2 bytes unknown          // next 2 bytes unknown
1724    
# Line 1635  namespace { Line 1737  namespace {
1737                  default:                  default:
1738                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1739              }              }
1740              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1741          }          }
1742    
1743          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1744          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1745    
1746          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1747          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1748    
1749          // next byte unknown          // next byte unknown
1750    
# Line 1651  namespace { Line 1753  namespace {
1753              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1754              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1755              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1756              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1757          }          }
1758    
1759          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1760          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1761    
1762          {          {
1763              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1764              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1765              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1766              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1767              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1768          }          }
1769    
1770          {          {
# Line 1671  namespace { Line 1773  namespace {
1773              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1774              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1775                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1776              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1777          }          }
1778    
1779          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1780                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1781          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1782    
1783          // next 2 bytes unknown          // next 2 bytes unknown
1784    
1785          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1786          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1787    
1788          {          {
1789              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1790              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1791              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1792              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1793          }          }
1794    
1795          // next 2 bytes unknown          // next 2 bytes unknown
1796    
1797          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1798    
1799          // next 3 bytes unknown          // next 3 bytes unknown
1800    
1801          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1802    
1803          // next 2 bytes unknown          // next 2 bytes unknown
1804    
1805          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1806          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1807    
1808          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1809                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1810          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1811    
1812          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1813    
1814          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1815                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1816          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1817    
1818          // next byte unknown          // next byte unknown
1819    
1820          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1821                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1822          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1823    
1824          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1825                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1826          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1827    
1828          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1829                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1830          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1831    
1832          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1833          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1834    
1835            if (chunksize >= 148) {
1836                memcpy(&pData[140], DimensionUpperLimits, 8);
1837            }
1838      }      }
1839    
1840      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1953  namespace { Line 2059  namespace {
2059                      default:                      default:
2060                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2061                  }                  }
2062                    break;
2063              default:              default:
2064                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2065          }          }
# Line 2070  namespace { Line 2177  namespace {
2177  // *  // *
2178    
2179      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2180          // Initialization          // Initialization
2181          Dimensions = 0;          Dimensions = 0;
2182          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2091  namespace { Line 2196  namespace {
2196              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2197                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2198                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2199                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2200                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2201                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2202                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2203                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2105  namespace { Line 2210  namespace {
2210                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2211                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2212                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2213                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2214                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2215                      Dimensions++;                      Dimensions++;
2216    
2217                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2140  namespace { Line 2237  namespace {
2237                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2238              }              }
2239              GetSample(); // load global region sample reference              GetSample(); // load global region sample reference
2240            } else {
2241                DimensionRegions = 0;
2242                for (int i = 0 ; i < 8 ; i++) {
2243                    pDimensionDefinitions[i].dimension  = dimension_none;
2244                    pDimensionDefinitions[i].bits       = 0;
2245                    pDimensionDefinitions[i].zones      = 0;
2246                }
2247          }          }
2248    
2249          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2162  namespace { Line 2266  namespace {
2266       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2267       */       */
2268      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2269            // in the gig format we don't care about the Region's sample reference
2270            // but we still have to provide some existing one to not corrupt the
2271            // file, so to avoid the latter we simply always assign the sample of
2272            // the first dimension region of this region
2273            pSample = pDimensionRegions[0]->pSample;
2274    
2275          // first update base class's chunks          // first update base class's chunks
2276          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2277    
2278            File* pFile = (File*) GetParent()->GetParent();
2279            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2280    
2281          // update dimension region's chunks          // update dimension region's chunks
2282          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
2283              pDimensionRegions[i]->UpdateChunks();              DimensionRegion* d = pDimensionRegions[i];
2284    
2285                // make sure '3ewa' chunk exists (we need to this before
2286                // calling DimensionRegion::UpdateChunks, as
2287                // DimensionRegion doesn't know which file version it is)
2288                RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2289                if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2290    
2291                d->UpdateChunks();
2292          }          }
2293    
2294          File* pFile = (File*) GetParent()->GetParent();          const int iMaxDimensions =  version3 ? 8 : 5;
2295          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensionRegions = version3 ? 256 : 32;
         const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;  
2296    
2297          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
2298          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2299          if (!_3lnk) {          if (!_3lnk) {
2300              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
2301              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2302                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2303    
2304                // move 3prg to last position
2305                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2306          }          }
2307    
2308          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2309          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2310          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2311            int shift = 0;
2312          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2313              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2314              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2315              // next 2 bytes unknown              pData[6 + i * 8] = shift;
2316                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2317              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2318              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
2319    
2320                shift += pDimensionDefinitions[i].bits;
2321          }          }
2322    
2323          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
2324          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
2325          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
2326              int iWaveIndex = -1;              int iWaveIndex = -1;
2327              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2208  namespace { Line 2336  namespace {
2336                  }                  }
2337                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2338              }              }
2339              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2340          }          }
2341      }      }
2342    
# Line 2248  namespace { Line 2376  namespace {
2376          int dim[8] = { 0 };          int dim[8] = { 0 };
2377          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2378    
2379              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2380                    pDimensionRegions[i]->VelocityUpperLimit) {
2381                  // create the velocity table                  // create the velocity table
2382                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2383                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 2386  namespace {
2386                  }                  }
2387                  int tableidx = 0;                  int tableidx = 0;
2388                  int velocityZone = 0;                  int velocityZone = 0;
2389                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2390                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2391                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2392                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2393                            velocityZone++;
2394                        }
2395                    } else { // gig2
2396                        for (int k = i ; k < end ; k += step) {
2397                            DimensionRegion *d = pDimensionRegions[k];
2398                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2399                            velocityZone++;
2400                        }
2401                  }                  }
2402              } else {              } else {
2403                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2327  namespace { Line 2464  namespace {
2464          // assign definition of new dimension          // assign definition of new dimension
2465          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2466    
2467            // auto correct certain dimension definition fields (where possible)
2468            pDimensionDefinitions[Dimensions].split_type  =
2469                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2470            pDimensionDefinitions[Dimensions].zone_size =
2471                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2472    
2473          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2474          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2475              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2476              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2477                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2478              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2479    
2480                // copy the upper limits for the other dimensions
2481                memcpy(pDimensionRegions[i]->DimensionUpperLimits,
2482                       pDimensionRegions[i & ((1 << iCurrentBits) - 1)]->DimensionUpperLimits, 8);
2483    
2484              DimensionRegions++;              DimensionRegions++;
2485          }          }
2486    
2487            // initialize the upper limits for this dimension
2488            for (int z = 0, j = 0 ; z < pDimDef->zones ; z++, j += 1 << iCurrentBits) {
2489                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2490                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2491                    pDimensionRegions[j + i]->DimensionUpperLimits[Dimensions] = upperLimit;
2492                }
2493            }
2494    
2495          Dimensions++;          Dimensions++;
2496    
2497          // if this is a layer dimension, update 'Layers' attribute          // if this is a layer dimension, update 'Layers' attribute
# Line 2375  namespace { Line 2532  namespace {
2532          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
2533              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
2534    
2535            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2536    
2537          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
2538          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
2539          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2383  namespace { Line 2542  namespace {
2542                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2543                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
2544                                      iLowerBit;                                      iLowerBit;
2545    
2546                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2547                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
2548                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
2549                      DimensionRegions--;                      DimensionRegions--;
# Line 2403  namespace { Line 2564  namespace {
2564              }              }
2565          }          }
2566    
2567            // remove the this dimension from the upper limits arrays
2568            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2569                DimensionRegion* d = pDimensionRegions[j];
2570                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2571                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2572                }
2573                d->DimensionUpperLimits[Dimensions - 1] = 127;
2574            }
2575    
2576          // 'remove' dimension definition          // 'remove' dimension definition
2577          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2578              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2455  namespace { Line 2625  namespace {
2625              } else {              } else {
2626                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2627                      case split_type_normal:                      case split_type_normal:
2628                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2629                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2630                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2631                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2632                                }
2633                            } else {
2634                                // gig2: evenly sized zones
2635                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2636                            }
2637                          break;                          break;
2638                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2639                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2469  namespace { Line 2647  namespace {
2647          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2648          if (veldim != -1) {          if (veldim != -1) {
2649              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2650              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2651                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2652              else // normal split type              else // normal split type
2653                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2535  namespace { Line 2713  namespace {
2713  // *  // *
2714    
2715      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2716          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2717                { CHUNK_ID_INAM, 64 },
2718                { CHUNK_ID_ISFT, 12 },
2719                { 0, 0 }
2720            };
2721            pInfo->FixedStringLengths = fixedStringLengths;
2722    
2723          // Initialization          // Initialization
2724          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2725            EffectSend = 0;
2726            Attenuation = 0;
2727            FineTune = 0;
2728            PitchbendRange = 0;
2729            PianoReleaseMode = false;
2730            DimensionKeyRange.low = 0;
2731            DimensionKeyRange.high = 0;
2732    
2733          // Loading          // Loading
2734          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2614  namespace { Line 2804  namespace {
2804          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2805          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
2806          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2807          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
2808                File* pFile = (File*) GetParent();
2809    
2810                // 3ewg is bigger in gig3, as it includes the iMIDI rules
2811                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2812                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2813                memset(_3ewg->LoadChunkData(), 0, size);
2814            }
2815          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2816          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2817          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2818          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2819          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2820          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2821          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2822                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2823          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2824          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2825      }      }
2826    
2827      /**      /**
# Line 2711  namespace { Line 2908  namespace {
2908      }      }
2909    
2910      Group::~Group() {      Group::~Group() {
2911            // remove the chunk associated with this group (if any)
2912            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2913      }      }
2914    
2915      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
2916       *       *
2917       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
2918       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
2919         *
2920         * Usually there is absolutely no need to call this method explicitly.
2921         * It will be called automatically when File::Save() was called.
2922       */       */
2923      void Group::UpdateChunks() {      void Group::UpdateChunks() {
2924          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
2925          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2926          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
2927                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2928                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2929            }
2930          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2931          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2932          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2933          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2934      }      }
# Line 2799  namespace { Line 3004  namespace {
3004  // *************** File ***************  // *************** File ***************
3005  // *  // *
3006    
3007        // File version 2.0, 1998-06-28
3008        const DLS::version_t File::VERSION_2 = {
3009            0, 2, 19980628 & 0xffff, 19980628 >> 16
3010        };
3011    
3012        // File version 3.0, 2003-03-31
3013        const DLS::version_t File::VERSION_3 = {
3014            0, 3, 20030331 & 0xffff, 20030331 >> 16
3015        };
3016    
3017        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3018            { CHUNK_ID_IARL, 256 },
3019            { CHUNK_ID_IART, 128 },
3020            { CHUNK_ID_ICMS, 128 },
3021            { CHUNK_ID_ICMT, 1024 },
3022            { CHUNK_ID_ICOP, 128 },
3023            { CHUNK_ID_ICRD, 128 },
3024            { CHUNK_ID_IENG, 128 },
3025            { CHUNK_ID_IGNR, 128 },
3026            { CHUNK_ID_IKEY, 128 },
3027            { CHUNK_ID_IMED, 128 },
3028            { CHUNK_ID_INAM, 128 },
3029            { CHUNK_ID_IPRD, 128 },
3030            { CHUNK_ID_ISBJ, 128 },
3031            { CHUNK_ID_ISFT, 128 },
3032            { CHUNK_ID_ISRC, 128 },
3033            { CHUNK_ID_ISRF, 128 },
3034            { CHUNK_ID_ITCH, 128 },
3035            { 0, 0 }
3036        };
3037    
3038      File::File() : DLS::File() {      File::File() : DLS::File() {
3039            *pVersion = VERSION_3;
3040          pGroups = NULL;          pGroups = NULL;
3041          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
3042            pInfo->ArchivalLocation = String(256, ' ');
3043    
3044            // add some mandatory chunks to get the file chunks in right
3045            // order (INFO chunk will be moved to first position later)
3046            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3047            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3048            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3049    
3050            GenerateDLSID();
3051      }      }
3052    
3053      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3054          pGroups = NULL;          pGroups = NULL;
3055          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
3056      }      }
3057    
3058      File::~File() {      File::~File() {
# Line 2848  namespace { Line 3094  namespace {
3094         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3095         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3096         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3097    
3098           // add mandatory chunks to get the chunks in right order
3099           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3100           wave->AddSubList(LIST_TYPE_INFO);
3101    
3102         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3103         return pSample;         return pSample;
3104      }      }
# Line 2864  namespace { Line 3115  namespace {
3115          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3116          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3117          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3118            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3119          pSamples->erase(iter);          pSamples->erase(iter);
3120          delete pSample;          delete pSample;
3121      }      }
# Line 2875  namespace { Line 3127  namespace {
3127      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3128          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
3129          // to resolve the group they belong to          // to resolve the group they belong to
3130          LoadGroups();          if (!pGroups) LoadGroups();
3131    
3132          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3133    
# Line 2989  namespace { Line 3241  namespace {
3241         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3242         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3243         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3244    
3245           // add mandatory chunks to get the chunks in right order
3246           lstInstr->AddSubList(LIST_TYPE_INFO);
3247           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3248    
3249         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3250           pInstrument->GenerateDLSID();
3251    
3252           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3253    
3254           // this string is needed for the gig to be loadable in GSt:
3255           pInstrument->pInfo->Software = "Endless Wave";
3256    
3257         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3258         return pInstrument;         return pInstrument;
3259      }      }
# Line 3000  namespace { Line 3264  namespace {
3264       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3265       *       *
3266       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3267       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3268       */       */
3269      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3270          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3040  namespace { Line 3304  namespace {
3304          }          }
3305      }      }
3306    
3307        /// Updates the 3crc chunk with the checksum of a sample. The
3308        /// update is done directly to disk, as this method is called
3309        /// after File::Save()
3310        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3311            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3312            if (!_3crc) return;
3313    
3314            // get the index of the sample
3315            int iWaveIndex = -1;
3316            File::SampleList::iterator iter = pSamples->begin();
3317            File::SampleList::iterator end  = pSamples->end();
3318            for (int index = 0; iter != end; ++iter, ++index) {
3319                if (*iter == pSample) {
3320                    iWaveIndex = index;
3321                    break;
3322                }
3323            }
3324            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3325    
3326            // write the CRC-32 checksum to disk
3327            _3crc->SetPos(iWaveIndex * 8);
3328            uint32_t tmp = 1;
3329            _3crc->WriteUint32(&tmp); // unknown, always 1?
3330            _3crc->WriteUint32(&crc);
3331        }
3332    
3333      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
3334          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3335          // there must always be at least one group          // there must always be at least one group
# Line 3078  namespace { Line 3368  namespace {
3368          return pGroup;          return pGroup;
3369      }      }
3370    
3371        /** @brief Delete a group and its samples.
3372         *
3373         * This will delete the given Group object and all the samples that
3374         * belong to this group from the gig file. You have to call Save() to
3375         * make this persistent to the file.
3376         *
3377         * @param pGroup - group to delete
3378         * @throws gig::Exception if given group could not be found
3379         */
3380      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
3381          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3382          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3383          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3384          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3385            // delete all members of this group
3386            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3387                DeleteSample(pSample);
3388            }
3389            // now delete this group object
3390            pGroups->erase(iter);
3391            delete pGroup;
3392        }
3393    
3394        /** @brief Delete a group.
3395         *
3396         * This will delete the given Group object from the gig file. All the
3397         * samples that belong to this group will not be deleted, but instead
3398         * be moved to another group. You have to call Save() to make this
3399         * persistent to the file.
3400         *
3401         * @param pGroup - group to delete
3402         * @throws gig::Exception if given group could not be found
3403         */
3404        void File::DeleteGroupOnly(Group* pGroup) {
3405            if (!pGroups) LoadGroups();
3406            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3407            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3408            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3409          // move all members of this group to another group          // move all members of this group to another group
3410          pGroup->MoveAll();          pGroup->MoveAll();
3411          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3113  namespace { Line 3436  namespace {
3436          }          }
3437      }      }
3438    
3439        /**
3440         * Apply all the gig file's current instruments, samples, groups and settings
3441         * to the respective RIFF chunks. You have to call Save() to make changes
3442         * persistent.
3443         *
3444         * Usually there is absolutely no need to call this method explicitly.
3445         * It will be called automatically when File::Save() was called.
3446         *
3447         * @throws Exception - on errors
3448         */
3449        void File::UpdateChunks() {
3450            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3451    
3452            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3453    
3454            // first update base class's chunks
3455            DLS::File::UpdateChunks();
3456    
3457            if (newFile) {
3458                // INFO was added by Resource::UpdateChunks - make sure it
3459                // is placed first in file
3460                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3461                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3462                if (first != info) {
3463                    pRIFF->MoveSubChunk(info, first);
3464                }
3465            }
3466    
3467            // update group's chunks
3468            if (pGroups) {
3469                std::list<Group*>::iterator iter = pGroups->begin();
3470                std::list<Group*>::iterator end  = pGroups->end();
3471                for (; iter != end; ++iter) {
3472                    (*iter)->UpdateChunks();
3473                }
3474            }
3475    
3476            // update einf chunk
3477    
3478            // The einf chunk contains statistics about the gig file, such
3479            // as the number of regions and samples used by each
3480            // instrument. It is divided in equally sized parts, where the
3481            // first part contains information about the whole gig file,
3482            // and the rest of the parts map to each instrument in the
3483            // file.
3484            //
3485            // At the end of each part there is a bit map of each sample
3486            // in the file, where a set bit means that the sample is used
3487            // by the file/instrument.
3488            //
3489            // Note that there are several fields with unknown use. These
3490            // are set to zero.
3491    
3492            int sublen = pSamples->size() / 8 + 49;
3493            int einfSize = (Instruments + 1) * sublen;
3494    
3495            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3496            if (einf) {
3497                if (einf->GetSize() != einfSize) {
3498                    einf->Resize(einfSize);
3499                    memset(einf->LoadChunkData(), 0, einfSize);
3500                }
3501            } else if (newFile) {
3502                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3503            }
3504            if (einf) {
3505                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3506    
3507                std::map<gig::Sample*,int> sampleMap;
3508                int sampleIdx = 0;
3509                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3510                    sampleMap[pSample] = sampleIdx++;
3511                }
3512    
3513                int totnbusedsamples = 0;
3514                int totnbusedchannels = 0;
3515                int totnbregions = 0;
3516                int totnbdimregions = 0;
3517                int totnbloops = 0;
3518                int instrumentIdx = 0;
3519    
3520                memset(&pData[48], 0, sublen - 48);
3521    
3522                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3523                     instrument = GetNextInstrument()) {
3524                    int nbusedsamples = 0;
3525                    int nbusedchannels = 0;
3526                    int nbdimregions = 0;
3527                    int nbloops = 0;
3528    
3529                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3530    
3531                    for (Region* region = instrument->GetFirstRegion() ; region ;
3532                         region = instrument->GetNextRegion()) {
3533                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3534                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3535                            if (d->pSample) {
3536                                int sampleIdx = sampleMap[d->pSample];
3537                                int byte = 48 + sampleIdx / 8;
3538                                int bit = 1 << (sampleIdx & 7);
3539                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3540                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3541                                    nbusedsamples++;
3542                                    nbusedchannels += d->pSample->Channels;
3543    
3544                                    if ((pData[byte] & bit) == 0) {
3545                                        pData[byte] |= bit;
3546                                        totnbusedsamples++;
3547                                        totnbusedchannels += d->pSample->Channels;
3548                                    }
3549                                }
3550                            }
3551                            if (d->SampleLoops) nbloops++;
3552                        }
3553                        nbdimregions += region->DimensionRegions;
3554                    }
3555                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3556                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3557                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3558                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3559                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3560                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3561                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3562                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3563                    // next 8 bytes unknown
3564                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3565                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3566                    // next 4 bytes unknown
3567    
3568                    totnbregions += instrument->Regions;
3569                    totnbdimregions += nbdimregions;
3570                    totnbloops += nbloops;
3571                    instrumentIdx++;
3572                }
3573                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3574                // store32(&pData[0], sublen);
3575                store32(&pData[4], totnbusedchannels);
3576                store32(&pData[8], totnbusedsamples);
3577                store32(&pData[12], Instruments);
3578                store32(&pData[16], totnbregions);
3579                store32(&pData[20], totnbdimregions);
3580                store32(&pData[24], totnbloops);
3581                // next 8 bytes unknown
3582                // next 4 bytes unknown, not always 0
3583                store32(&pData[40], pSamples->size());
3584                // next 4 bytes unknown
3585            }
3586    
3587            // update 3crc chunk
3588    
3589            // The 3crc chunk contains CRC-32 checksums for the
3590            // samples. The actual checksum values will be filled in
3591            // later, by Sample::Write.
3592    
3593            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3594            if (_3crc) {
3595                _3crc->Resize(pSamples->size() * 8);
3596            } else if (newFile) {
3597                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3598                _3crc->LoadChunkData();
3599    
3600                // the order of einf and 3crc is not the same in v2 and v3
3601                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3602            }
3603        }
3604    
3605    
3606    
3607  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.933  
changed lines
  Added in v.1264

  ViewVC Help
Powered by ViewVC