/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 858 by persson, Sat May 6 11:29:29 2006 UTC revision 1292 by schoenebeck, Sat Aug 11 14:38:51 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 111  namespace { Line 111  namespace {
111          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
112      }      }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
122                        int srcStep, int dstStep,                        int srcStep, int dstStep,
123                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
# Line 150  namespace { Line 157  namespace {
157      }      }
158    
159      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
160                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
162                        unsigned long copysamples, int truncatedBits)                        unsigned long copysamples, int truncatedBits)
163      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
164          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
165    
166  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
167          y    = get24(params);                   \          y    = get24(params);                   \
# Line 173  namespace { Line 177  namespace {
177    
178  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
179          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
180          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
181          pDst += dstStep          pDst += dstStep
182    
183          switch (compressionmode) {          switch (compressionmode) {
184              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
185                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
186                  while (copysamples) {                  while (copysamples) {
187                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
188                      pDst += dstStep;                      pDst += dstStep;
189                      pSrc += 3;                      pSrc += 3;
190                      copysamples--;                      copysamples--;
# Line 250  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
# Line 275  namespace { Line 323  namespace {
323       *                         is located, 0 otherwise       *                         is located, 0 otherwise
324       */       */
325      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332          FileNo = fileNo;          FileNo = fileNo;
333    
334          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335          if (pCk3gix) {          if (pCk3gix) {
336              SampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
337                pGroup = pFile->GetGroup(iSampleGroup);
338          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
339              // use default value(s)              // by default assigned to that mandatory "Default Group"
340              SampleGroup = 0;              pGroup = pFile->GetGroup(0);
341          }          }
342    
343          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
# Line 307  namespace { Line 361  namespace {
361              // use default values              // use default values
362              Manufacturer  = 0;              Manufacturer  = 0;
363              Product       = 0;              Product       = 0;
364              SamplePeriod  = 1 / SamplesPerSecond;              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365              MIDIUnityNote = 64;              MIDIUnityNote = 60;
366              FineTune      = 0;              FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368              SMPTEOffset   = 0;              SMPTEOffset   = 0;
369              Loops         = 0;              Loops         = 0;
370              LoopID        = 0;              LoopID        = 0;
371                LoopType      = loop_type_normal;
372              LoopStart     = 0;              LoopStart     = 0;
373              LoopEnd       = 0;              LoopEnd       = 0;
374              LoopFraction  = 0;              LoopFraction  = 0;
# Line 348  namespace { Line 404  namespace {
404          }          }
405          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
406    
407          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
408      }      }
409    
410      /**      /**
# Line 358  namespace { Line 414  namespace {
414       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
415       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
416       *       *
417       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418       *                        was provided yet       *                        was provided yet
419       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
420       */       */
# Line 368  namespace { Line 424  namespace {
424    
425          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
426          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431          // update 'smpl' chunk          // update 'smpl' chunk
432          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433          SamplePeriod = 1 / SamplesPerSecond;          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
435          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
436          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
437          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
438          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
439          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
440          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
441          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
442    
443          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
444    
445          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
446          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
447          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
448          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
449          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
450          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
451    
452          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
453          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455            // determine appropriate sample group index (to be stored in chunk)
456            uint16_t iSampleGroup = 0; // 0 refers to default sample group
457            File* pFile = static_cast<File*>(pParent);
458            if (pFile->pGroups) {
459                std::list<Group*>::iterator iter = pFile->pGroups->begin();
460                std::list<Group*>::iterator end  = pFile->pGroups->end();
461                for (int i = 0; iter != end; i++, iter++) {
462                    if (*iter == pGroup) {
463                        iSampleGroup = i;
464                        break; // found
465                    }
466                }
467            }
468          // update '3gix' chunk          // update '3gix' chunk
469          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
470          memcpy(&pData[0], &SampleGroup, 2);          store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 616  namespace { Line 688  namespace {
688       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
689       * current sample's boundary!       * current sample's boundary!
690       *       *
691       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693       * other formats will fail!       * other formats will fail!
694       *       *
695       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
696       *                   greater than zero)       *                   greater than zero)
697       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
699       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
700       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 722  namespace { Line 794  namespace {
794       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
795       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
796       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
797         * @param pDimRgn          dimension region with looping information
798       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
799       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
800       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
801       */       */
802      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
806    
807          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
808    
809          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810    
811              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813    
814                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
815                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
816    
817                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
818                              // determine the end position within the loop first,                          do {
819                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
820                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821                              // backward playback  
822                                if (!pPlaybackState->reverse) { // forward playback
823                              unsigned long swapareastart       = totalreadsamples;                                  do {
824                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
825                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
827                                        totalreadsamples += readsamples;
828                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
829                                            pPlaybackState->reverse = true;
830                              // read samples for backward playback                                          break;
831                              do {                                      }
832                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
833                                  samplestoreadinloop -= readsamples;                              }
834                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
835    
836                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
837                                    // determine the end position within the loop first,
838                                    // read forward from that 'end' and finally after
839                                    // reading, swap all sample frames so it reflects
840                                    // backward playback
841    
842                                    unsigned long swapareastart       = totalreadsamples;
843                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
844                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
846    
847                                    SetPos(reverseplaybackend);
848    
849                                    // read samples for backward playback
850                                    do {
851                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852                                        samplestoreadinloop -= readsamples;
853                                        samplestoread       -= readsamples;
854                                        totalreadsamples    += readsamples;
855                                    } while (samplestoreadinloop && readsamples);
856    
857                                    SetPos(reverseplaybackend); // pretend we really read backwards
858    
859                                    if (reverseplaybackend == loop.LoopStart) {
860                                        pPlaybackState->loop_cycles_left--;
861                                        pPlaybackState->reverse = false;
862                                    }
863    
864                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
865                                  pPlaybackState->loop_cycles_left--;                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
                                 pPlaybackState->reverse = false;  
866                              }                              }
867                            } while (samplestoread && readsamples);
868                            break;
869                        }
870    
871                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
872                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
873                          }                          if (!pPlaybackState->reverse) do {
874                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
875                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876                  }                              samplestoread    -= readsamples;
877                                totalreadsamples += readsamples;
878                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
879                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
880                      if (!pPlaybackState->reverse) do {                                  break;
881                          samplestoloopend  = this->LoopEnd - GetPos();                              }
882                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
883    
884                      if (!samplestoread) break;                          if (!samplestoread) break;
885    
886                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
887                      // determine the end position within the loop first,                          // determine the end position within the loop first,
888                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
889                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
890                      // backward playback                          // backward playback
891    
892                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
893                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
894                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895                                                                                : samplestoread;                                                                                    : samplestoread;
896                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897    
898                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
899    
900                      // read samples for backward playback                          // read samples for backward playback
901                      do {                          do {
902                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
903                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
905                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
907                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
908                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
909                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
910                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
911                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
912                          }                              }
913                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
914    
915                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
916    
917                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
918                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919                      break;                          break;
920                  }                      }
921    
922                  default: case loop_type_normal: {                      default: case loop_type_normal: {
923                      do {                          do {
924                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
925                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
927                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
929                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
930                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
931                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
932                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
933                          }                              }
934                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
935                      break;                          break;
936                        }
937                  }                  }
938              }              }
939          }          }
# Line 884  namespace { Line 963  namespace {
963       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
964       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
965       *       *
966         * For 16 bit samples, the data in the buffer will be int16_t
967         * (using native endianness). For 24 bit, the buffer will
968         * contain three bytes per sample, little-endian.
969         *
970       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
971       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
972       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
# Line 894  namespace { Line 977  namespace {
977          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
978          if (!Compressed) {          if (!Compressed) {
979              if (BitDepth == 24) {              if (BitDepth == 24) {
980                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
981              }              }
982              else { // 16 bit              else { // 16 bit
983                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 944  namespace { Line 1007  namespace {
1007    
1008              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
# Line 1025  namespace { Line 1089  namespace {
1089                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1090                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1091    
1092                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1094                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1096                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1097                          }                          }
1098                          else { // Mono                          else { // Mono
1099                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1101                              pDst += copysamples;                              pDst24 += copysamples * 3;
1102                          }                          }
1103                      }                      }
1104                      else { // 16 bit                      else { // 16 bit
# Line 1088  namespace { Line 1152  namespace {
1152       *       *
1153       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1154       *       *
1155         * For 16 bit samples, the data in the source buffer should be
1156         * int16_t (using native endianness). For 24 bit, the buffer
1157         * should contain three bytes per sample, little-endian.
1158         *
1159       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1160       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1161       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1096  namespace { Line 1164  namespace {
1164       */       */
1165      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167          return DLS::Sample::Write(pBuffer, SampleCount);  
1168            // if this is the first write in this sample, reset the
1169            // checksum calculator
1170            if (pCkData->GetPos() == 0) {
1171                crc.reset();
1172            }
1173            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174            unsigned long res;
1175            if (BitDepth == 24) {
1176                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177            } else { // 16 bit
1178                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179                                    : pCkData->Write(pBuffer, SampleCount, 2);
1180            }
1181            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183            // if this is the last write, update the checksum chunk in the
1184            // file
1185            if (pCkData->GetPos() == pCkData->GetSize()) {
1186                File* pFile = static_cast<File*>(GetParent());
1187                pFile->SetSampleChecksum(this, crc.getValue());
1188            }
1189            return res;
1190      }      }
1191    
1192      /**      /**
# Line 1141  namespace { Line 1231  namespace {
1231          }          }
1232      }      }
1233    
1234        /**
1235         * Returns pointer to the Group this Sample belongs to. In the .gig
1236         * format a sample always belongs to one group. If it wasn't explicitly
1237         * assigned to a certain group, it will be automatically assigned to a
1238         * default group.
1239         *
1240         * @returns Sample's Group (never NULL)
1241         */
1242        Group* Sample::GetGroup() const {
1243            return pGroup;
1244        }
1245    
1246      Sample::~Sample() {      Sample::~Sample() {
1247          Instances--;          Instances--;
1248          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1165  namespace { Line 1267  namespace {
1267    
1268          pSample = NULL;          pSample = NULL;
1269    
1270          memcpy(&Crossfade, &SamplerOptions, 4);          if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1271            else memset(&Crossfade, 0, 4);
1272    
1273          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1274    
1275          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1276          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1277              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1278              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1279              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
# Line 1315  namespace { Line 1419  namespace {
1419                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1420                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1421              }              }
1422                if (_3ewa->RemainingBytes() >= 8) {
1423                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1424                } else {
1425                    memset(DimensionUpperLimits, 0, 8);
1426                }
1427          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1428              // use default values              // use default values
1429              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1324  namespace { Line 1433  namespace {
1433              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1434              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1435              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1436              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1437              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1438              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1439              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1440              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1441              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1341  namespace { Line 1450  namespace {
1450              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1451              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1452              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1453              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1454              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1455              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1456              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1457              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1458              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1459              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1460              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1461              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1462              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1463              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1464              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1465              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1466              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1467              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1395  namespace { Line 1504  namespace {
1504              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1505              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1506              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1507                memset(DimensionUpperLimits, 127, 8);
1508          }          }
1509    
1510          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1440  namespace { Line 1550  namespace {
1550       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
1551       */       */
1552      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks() {
1553            // check if wsmp is going to be created by
1554            // DLS::Sampler::UpdateChunks
1555            bool wsmp_created = !pParentList->GetSubChunk(CHUNK_ID_WSMP);
1556    
1557          // first update base class's chunk          // first update base class's chunk
1558          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1559    
1560            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1561            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1562            pData[12] = Crossfade.in_start;
1563            pData[13] = Crossfade.in_end;
1564            pData[14] = Crossfade.out_start;
1565            pData[15] = Crossfade.out_end;
1566    
1567          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1568          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1569          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1570          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();          else if (wsmp_created) {
1571                // make sure the chunk order is: wsmp, 3ewa
1572                pParentList->MoveSubChunk(_3ewa, 0);
1573            }
1574            pData = (uint8_t*) _3ewa->LoadChunkData();
1575    
1576          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1577    
1578          const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?          const uint32_t chunksize = _3ewa->GetNewSize();
1579          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1580    
1581          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1582          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1583    
1584          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1585          memcpy(&pData[4], &eg3attack, 4);          store32(&pData[8], eg3attack);
1586    
1587          // next 2 bytes unknown          // next 2 bytes unknown
1588    
1589          memcpy(&pData[10], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1590    
1591          // next 2 bytes unknown          // next 2 bytes unknown
1592    
1593          memcpy(&pData[14], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1594    
1595          // next 2 bytes unknown          // next 2 bytes unknown
1596    
1597          memcpy(&pData[18], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1598    
1599          // next 2 bytes unknown          // next 2 bytes unknown
1600    
1601          memcpy(&pData[22], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1602    
1603          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1604          memcpy(&pData[24], &eg1attack, 4);          store32(&pData[28], eg1attack);
1605    
1606          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1607          memcpy(&pData[28], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1608    
1609          // next 2 bytes unknown          // next 2 bytes unknown
1610    
1611          memcpy(&pData[34], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1612    
1613          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1614          memcpy(&pData[36], &eg1release, 4);          store32(&pData[40], eg1release);
1615    
1616          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1617          memcpy(&pData[40], &eg1ctl, 1);          pData[44] = eg1ctl;
1618    
1619          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1620              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
1621              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1622              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1623              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1624          memcpy(&pData[41], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1625    
1626          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1627          memcpy(&pData[42], &eg2ctl, 1);          pData[46] = eg2ctl;
1628    
1629          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1630              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
1631              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1632              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1633              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1634          memcpy(&pData[43], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1635    
1636          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1637          memcpy(&pData[44], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1638    
1639          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1640          memcpy(&pData[48], &eg2attack, 4);          store32(&pData[52], eg2attack);
1641    
1642          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1643          memcpy(&pData[52], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1644    
1645          // next 2 bytes unknown          // next 2 bytes unknown
1646    
1647          memcpy(&pData[58], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1648    
1649          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1650          memcpy(&pData[60], &eg2release, 4);          store32(&pData[64], eg2release);
1651    
1652          // next 2 bytes unknown          // next 2 bytes unknown
1653    
1654          memcpy(&pData[66], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1655    
1656          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1657          memcpy(&pData[68], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1658    
1659          // next 2 bytes unknown          // next 2 bytes unknown
1660    
1661          memcpy(&pData[72], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1662    
1663          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1664          memcpy(&pData[74], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1665    
1666          // next 2 bytes unknown          // next 2 bytes unknown
1667    
1668          memcpy(&pData[80], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1669    
1670          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1671          memcpy(&pData[82], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1672    
1673          // next 2 bytes unknown          // next 2 bytes unknown
1674    
1675          memcpy(&pData[88], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1676    
1677          {          {
1678              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1565  namespace { Line 1690  namespace {
1690                  default:                  default:
1691                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1692              }              }
1693              memcpy(&pData[90], &velocityresponse, 1);              pData[96] = velocityresponse;
1694          }          }
1695    
1696          {          {
# Line 1584  namespace { Line 1709  namespace {
1709                  default:                  default:
1710                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1711              }              }
1712              memcpy(&pData[91], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1713          }          }
1714    
1715          memcpy(&pData[92], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1716    
1717          memcpy(&pData[93], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1718    
1719          // next 4 bytes unknown          // next 4 bytes unknown
1720    
1721          memcpy(&pData[98], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1722    
1723          // next 2 bytes unknown          // next 2 bytes unknown
1724    
# Line 1612  namespace { Line 1737  namespace {
1737                  default:                  default:
1738                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1739              }              }
1740              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1741          }          }
1742    
1743          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1744          memcpy(&pData[103], &pan, 1);          pData[109] = pan;
1745    
1746          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1747          memcpy(&pData[104], &selfmask, 1);          pData[110] = selfmask;
1748    
1749          // next byte unknown          // next byte unknown
1750    
# Line 1628  namespace { Line 1753  namespace {
1753              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1754              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1755              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1756              memcpy(&pData[106], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1757          }          }
1758    
1759          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1760          memcpy(&pData[107], &attenctl, 1);          pData[113] = attenctl;
1761    
1762          {          {
1763              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1764              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1765              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1766              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1767              memcpy(&pData[108], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1768          }          }
1769    
1770          {          {
# Line 1648  namespace { Line 1773  namespace {
1773              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1774              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1775                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1776              memcpy(&pData[109], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1777          }          }
1778    
1779          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1780                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1781          memcpy(&pData[110], &eg3depth, 1);          pData[116] = eg3depth;
1782    
1783          // next 2 bytes unknown          // next 2 bytes unknown
1784    
1785          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1786          memcpy(&pData[113], &channeloffset, 1);          pData[120] = channeloffset;
1787    
1788          {          {
1789              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1790              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1791              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1792              memcpy(&pData[114], &regoptions, 1);              pData[121] = regoptions;
1793          }          }
1794    
1795          // next 2 bytes unknown          // next 2 bytes unknown
1796    
1797          memcpy(&pData[117], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1798    
1799          // next 3 bytes unknown          // next 3 bytes unknown
1800    
1801          memcpy(&pData[121], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1802    
1803          // next 2 bytes unknown          // next 2 bytes unknown
1804    
1805          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1806          memcpy(&pData[124], &eg1hold, 1);          pData[131] = eg1hold;
1807    
1808          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1809                                    (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1810          memcpy(&pData[125], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1811    
1812          memcpy(&pData[126], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1813    
1814          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1815                                      (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1816          memcpy(&pData[127], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1817    
1818          // next byte unknown          // next byte unknown
1819    
1820          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1821                                       (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1822          memcpy(&pData[129], &vcfresonance, 1);          pData[136] = vcfresonance;
1823    
1824          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1825                                        (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1826          memcpy(&pData[130], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1827    
1828          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1829                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1830          memcpy(&pData[131], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1831    
1832          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1833          memcpy(&pData[132], &vcftype, 1);          pData[139] = vcftype;
1834    
1835            if (chunksize >= 148) {
1836                memcpy(&pData[140], DimensionUpperLimits, 8);
1837            }
1838      }      }
1839    
1840      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1930  namespace { Line 2059  namespace {
2059                      default:                      default:
2060                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2061                  }                  }
2062                    break;
2063              default:              default:
2064                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2065          }          }
# Line 2066  namespace { Line 2196  namespace {
2196              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2197                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2198                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2199                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2200                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2201                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2202                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2203                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2080  namespace { Line 2210  namespace {
2210                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2211                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2212                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2213                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2214                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2215                      Dimensions++;                      Dimensions++;
2216    
2217                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2111  namespace { Line 2234  namespace {
2234              // load sample references              // load sample references
2235              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2236                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2237                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2238                }
2239                GetSample(); // load global region sample reference
2240            } else {
2241                DimensionRegions = 0;
2242                for (int i = 0 ; i < 8 ; i++) {
2243                    pDimensionDefinitions[i].dimension  = dimension_none;
2244                    pDimensionDefinitions[i].bits       = 0;
2245                    pDimensionDefinitions[i].zones      = 0;
2246              }              }
2247          }          }
2248    
# Line 2135  namespace { Line 2266  namespace {
2266       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2267       */       */
2268      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2269            // in the gig format we don't care about the Region's sample reference
2270            // but we still have to provide some existing one to not corrupt the
2271            // file, so to avoid the latter we simply always assign the sample of
2272            // the first dimension region of this region
2273            pSample = pDimensionRegions[0]->pSample;
2274    
2275          // first update base class's chunks          // first update base class's chunks
2276          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2277    
2278            File* pFile = (File*) GetParent()->GetParent();
2279            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2280    
2281          // update dimension region's chunks          // update dimension region's chunks
2282          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
2283              pDimensionRegions[i]->UpdateChunks();              DimensionRegion* d = pDimensionRegions[i];
2284    
2285                // make sure '3ewa' chunk exists (we need to this before
2286                // calling DimensionRegion::UpdateChunks, as
2287                // DimensionRegion doesn't know which file version it is)
2288                RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2289                if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2290    
2291                d->UpdateChunks();
2292          }          }
2293    
2294          File* pFile = (File*) GetParent()->GetParent();          const int iMaxDimensions =  version3 ? 8 : 5;
2295          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensionRegions = version3 ? 256 : 32;
         const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;  
2296    
2297          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
2298          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2299          if (!_3lnk) {          if (!_3lnk) {
2300              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
2301              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2302                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2303    
2304                // move 3prg to last position
2305                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2306          }          }
2307    
2308          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2309          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2310            store32(&pData[0], DimensionRegions);
2311            int shift = 0;
2312          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2313              pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2314              pData[i * 8 + 1] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2315              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2316              pData[i * 8 + 4] = pDimensionDefinitions[i].zones;              pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2317              // next 3 bytes unknown              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2318                // next 3 bytes unknown, always zero?
2319    
2320                shift += pDimensionDefinitions[i].bits;
2321          }          }
2322    
2323          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
2324          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
2325          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
2326              int iWaveIndex = -1;              int iWaveIndex = -1;
2327              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2178  namespace { Line 2334  namespace {
2334                          break;                          break;
2335                      }                      }
2336                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
2337              }              }
2338              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2339          }          }
2340      }      }
2341    
# Line 2220  namespace { Line 2375  namespace {
2375          int dim[8] = { 0 };          int dim[8] = { 0 };
2376          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2377    
2378              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2379                    pDimensionRegions[i]->VelocityUpperLimit) {
2380                  // create the velocity table                  // create the velocity table
2381                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2382                  if (!table) {                  if (!table) {
# Line 2229  namespace { Line 2385  namespace {
2385                  }                  }
2386                  int tableidx = 0;                  int tableidx = 0;
2387                  int velocityZone = 0;                  int velocityZone = 0;
2388                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2389                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2390                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2391                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2392                            velocityZone++;
2393                        }
2394                    } else { // gig2
2395                        for (int k = i ; k < end ; k += step) {
2396                            DimensionRegion *d = pDimensionRegions[k];
2397                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2398                            velocityZone++;
2399                        }
2400                  }                  }
2401              } else {              } else {
2402                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2299  namespace { Line 2463  namespace {
2463          // assign definition of new dimension          // assign definition of new dimension
2464          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2465    
2466            // auto correct certain dimension definition fields (where possible)
2467            pDimensionDefinitions[Dimensions].split_type  =
2468                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2469            pDimensionDefinitions[Dimensions].zone_size =
2470                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2471    
2472          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2473          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2474              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2475              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2476                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2477              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2478    
2479                // copy the upper limits for the other dimensions
2480                memcpy(pDimensionRegions[i]->DimensionUpperLimits,
2481                       pDimensionRegions[i & ((1 << iCurrentBits) - 1)]->DimensionUpperLimits, 8);
2482    
2483              DimensionRegions++;              DimensionRegions++;
2484          }          }
2485    
2486            // initialize the upper limits for this dimension
2487            for (int z = 0, j = 0 ; z < pDimDef->zones ; z++, j += 1 << iCurrentBits) {
2488                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2489                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2490                    pDimensionRegions[j + i]->DimensionUpperLimits[Dimensions] = upperLimit;
2491                }
2492            }
2493    
2494          Dimensions++;          Dimensions++;
2495    
2496          // if this is a layer dimension, update 'Layers' attribute          // if this is a layer dimension, update 'Layers' attribute
# Line 2347  namespace { Line 2531  namespace {
2531          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
2532              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
2533    
2534            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2535    
2536          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
2537          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
2538          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2355  namespace { Line 2541  namespace {
2541                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2542                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
2543                                      iLowerBit;                                      iLowerBit;
2544    
2545                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2546                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
2547                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
2548                      DimensionRegions--;                      DimensionRegions--;
# Line 2375  namespace { Line 2563  namespace {
2563              }              }
2564          }          }
2565    
2566            // remove the this dimension from the upper limits arrays
2567            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2568                DimensionRegion* d = pDimensionRegions[j];
2569                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2570                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2571                }
2572                d->DimensionUpperLimits[Dimensions - 1] = 127;
2573            }
2574    
2575          // 'remove' dimension definition          // 'remove' dimension definition
2576          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2577              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2427  namespace { Line 2624  namespace {
2624              } else {              } else {
2625                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2626                      case split_type_normal:                      case split_type_normal:
2627                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2628                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2629                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2630                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2631                                }
2632                            } else {
2633                                // gig2: evenly sized zones
2634                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2635                            }
2636                          break;                          break;
2637                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2638                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2441  namespace { Line 2646  namespace {
2646          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2647          if (veldim != -1) {          if (veldim != -1) {
2648              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2649              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2650                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2651              else // normal split type              else // normal split type
2652                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2489  namespace { Line 2694  namespace {
2694      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2695          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
2696          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2697            if (!file->pWavePoolTable) return NULL;
2698          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2699          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2700          Sample* sample = file->GetFirstSample(pProgress);          Sample* sample = file->GetFirstSample(pProgress);
2701          while (sample) {          while (sample) {
2702              if (sample->ulWavePoolOffset == soughtoffset &&              if (sample->ulWavePoolOffset == soughtoffset &&
2703                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2704              sample = file->GetNextSample();              sample = file->GetNextSample();
2705          }          }
2706          return NULL;          return NULL;
# Line 2506  namespace { Line 2712  namespace {
2712  // *  // *
2713    
2714      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2715            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2716                { CHUNK_ID_INAM, 64 },
2717                { CHUNK_ID_ISFT, 12 },
2718                { 0, 0 }
2719            };
2720            pInfo->FixedStringLengths = fixedStringLengths;
2721    
2722          // Initialization          // Initialization
2723          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2724            EffectSend = 0;
2725            Attenuation = 0;
2726            FineTune = 0;
2727            PitchbendRange = 0;
2728            PianoReleaseMode = false;
2729            DimensionKeyRange.low = 0;
2730            DimensionKeyRange.high = 0;
2731    
2732          // Loading          // Loading
2733          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2583  namespace { Line 2803  namespace {
2803          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2804          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
2805          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2806          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
2807                File* pFile = (File*) GetParent();
2808    
2809                // 3ewg is bigger in gig3, as it includes the iMIDI rules
2810                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2811                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2812                memset(_3ewg->LoadChunkData(), 0, size);
2813            }
2814          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2815          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2816          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2817          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2818          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2819          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2820          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2821                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2822          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2823          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2824      }      }
2825    
2826      /**      /**
# Line 2664  namespace { Line 2891  namespace {
2891    
2892    
2893    
2894    // *************** Group ***************
2895    // *
2896    
2897        /** @brief Constructor.
2898         *
2899         * @param file   - pointer to the gig::File object
2900         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2901         *                 NULL if this is a new Group
2902         */
2903        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2904            pFile      = file;
2905            pNameChunk = ck3gnm;
2906            ::LoadString(pNameChunk, Name);
2907        }
2908    
2909        Group::~Group() {
2910            // remove the chunk associated with this group (if any)
2911            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2912        }
2913    
2914        /** @brief Update chunks with current group settings.
2915         *
2916         * Apply current Group field values to the respective chunks. You have
2917         * to call File::Save() to make changes persistent.
2918         *
2919         * Usually there is absolutely no need to call this method explicitly.
2920         * It will be called automatically when File::Save() was called.
2921         */
2922        void Group::UpdateChunks() {
2923            // make sure <3gri> and <3gnl> list chunks exist
2924            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2925            if (!_3gri) {
2926                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2927                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2928            }
2929            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2930            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2931    
2932            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
2933                // v3 has a fixed list of 128 strings, find a free one
2934                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
2935                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
2936                        pNameChunk = ck;
2937                        break;
2938                    }
2939                }
2940            }
2941    
2942            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2943            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2944        }
2945    
2946        /**
2947         * Returns the first Sample of this Group. You have to call this method
2948         * once before you use GetNextSample().
2949         *
2950         * <b>Notice:</b> this method might block for a long time, in case the
2951         * samples of this .gig file were not scanned yet
2952         *
2953         * @returns  pointer address to first Sample or NULL if there is none
2954         *           applied to this Group
2955         * @see      GetNextSample()
2956         */
2957        Sample* Group::GetFirstSample() {
2958            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2959            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2960                if (pSample->GetGroup() == this) return pSample;
2961            }
2962            return NULL;
2963        }
2964    
2965        /**
2966         * Returns the next Sample of the Group. You have to call
2967         * GetFirstSample() once before you can use this method. By calling this
2968         * method multiple times it iterates through the Samples assigned to
2969         * this Group.
2970         *
2971         * @returns  pointer address to the next Sample of this Group or NULL if
2972         *           end reached
2973         * @see      GetFirstSample()
2974         */
2975        Sample* Group::GetNextSample() {
2976            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2977            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2978                if (pSample->GetGroup() == this) return pSample;
2979            }
2980            return NULL;
2981        }
2982    
2983        /**
2984         * Move Sample given by \a pSample from another Group to this Group.
2985         */
2986        void Group::AddSample(Sample* pSample) {
2987            pSample->pGroup = this;
2988        }
2989    
2990        /**
2991         * Move all members of this group to another group (preferably the 1st
2992         * one except this). This method is called explicitly by
2993         * File::DeleteGroup() thus when a Group was deleted. This code was
2994         * intentionally not placed in the destructor!
2995         */
2996        void Group::MoveAll() {
2997            // get "that" other group first
2998            Group* pOtherGroup = NULL;
2999            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3000                if (pOtherGroup != this) break;
3001            }
3002            if (!pOtherGroup) throw Exception(
3003                "Could not move samples to another group, since there is no "
3004                "other Group. This is a bug, report it!"
3005            );
3006            // now move all samples of this group to the other group
3007            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3008                pOtherGroup->AddSample(pSample);
3009            }
3010        }
3011    
3012    
3013    
3014  // *************** File ***************  // *************** File ***************
3015  // *  // *
3016    
3017        // File version 2.0, 1998-06-28
3018        const DLS::version_t File::VERSION_2 = {
3019            0, 2, 19980628 & 0xffff, 19980628 >> 16
3020        };
3021    
3022        // File version 3.0, 2003-03-31
3023        const DLS::version_t File::VERSION_3 = {
3024            0, 3, 20030331 & 0xffff, 20030331 >> 16
3025        };
3026    
3027        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3028            { CHUNK_ID_IARL, 256 },
3029            { CHUNK_ID_IART, 128 },
3030            { CHUNK_ID_ICMS, 128 },
3031            { CHUNK_ID_ICMT, 1024 },
3032            { CHUNK_ID_ICOP, 128 },
3033            { CHUNK_ID_ICRD, 128 },
3034            { CHUNK_ID_IENG, 128 },
3035            { CHUNK_ID_IGNR, 128 },
3036            { CHUNK_ID_IKEY, 128 },
3037            { CHUNK_ID_IMED, 128 },
3038            { CHUNK_ID_INAM, 128 },
3039            { CHUNK_ID_IPRD, 128 },
3040            { CHUNK_ID_ISBJ, 128 },
3041            { CHUNK_ID_ISFT, 128 },
3042            { CHUNK_ID_ISRC, 128 },
3043            { CHUNK_ID_ISRF, 128 },
3044            { CHUNK_ID_ITCH, 128 },
3045            { 0, 0 }
3046        };
3047    
3048      File::File() : DLS::File() {      File::File() : DLS::File() {
3049            *pVersion = VERSION_3;
3050            pGroups = NULL;
3051            pInfo->FixedStringLengths = FixedStringLengths;
3052            pInfo->ArchivalLocation = String(256, ' ');
3053    
3054            // add some mandatory chunks to get the file chunks in right
3055            // order (INFO chunk will be moved to first position later)
3056            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3057            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3058            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3059    
3060            GenerateDLSID();
3061      }      }
3062    
3063      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3064            pGroups = NULL;
3065            pInfo->FixedStringLengths = FixedStringLengths;
3066        }
3067    
3068        File::~File() {
3069            if (pGroups) {
3070                std::list<Group*>::iterator iter = pGroups->begin();
3071                std::list<Group*>::iterator end  = pGroups->end();
3072                while (iter != end) {
3073                    delete *iter;
3074                    ++iter;
3075                }
3076                delete pGroups;
3077            }
3078      }      }
3079    
3080      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2700  namespace { Line 3104  namespace {
3104         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3105         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3106         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3107    
3108           // add mandatory chunks to get the chunks in right order
3109           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3110           wave->AddSubList(LIST_TYPE_INFO);
3111    
3112         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3113         return pSample;         return pSample;
3114      }      }
3115    
3116      /** @brief Delete a sample.      /** @brief Delete a sample.
3117       *       *
3118       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
3119       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
3120         * removed. You have to call Save() to make this persistent to the file.
3121       *       *
3122       * @param pSample - sample to delete       * @param pSample - sample to delete
3123       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2716  namespace { Line 3126  namespace {
3126          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3127          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3128          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3129            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3130          pSamples->erase(iter);          pSamples->erase(iter);
3131          delete pSample;          delete pSample;
3132    
3133            // remove all references to the sample
3134            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3135                 instrument = GetNextInstrument()) {
3136                for (Region* region = instrument->GetFirstRegion() ; region ;
3137                     region = instrument->GetNextRegion()) {
3138    
3139                    if (region->GetSample() == pSample) region->SetSample(NULL);
3140    
3141                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3142                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3143                        if (d->pSample == pSample) d->pSample = NULL;
3144                    }
3145                }
3146            }
3147      }      }
3148    
3149      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2725  namespace { Line 3151  namespace {
3151      }      }
3152    
3153      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3154            // Groups must be loaded before samples, because samples will try
3155            // to resolve the group they belong to
3156            if (!pGroups) LoadGroups();
3157    
3158          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3159    
3160          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
# Line 2837  namespace { Line 3267  namespace {
3267         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3268         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3269         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3270    
3271           // add mandatory chunks to get the chunks in right order
3272           lstInstr->AddSubList(LIST_TYPE_INFO);
3273           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3274    
3275         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3276           pInstrument->GenerateDLSID();
3277    
3278           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3279    
3280           // this string is needed for the gig to be loadable in GSt:
3281           pInstrument->pInfo->Software = "Endless Wave";
3282    
3283         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3284         return pInstrument;         return pInstrument;
3285      }      }
# Line 2848  namespace { Line 3290  namespace {
3290       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3291       *       *
3292       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3293       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3294       */       */
3295      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3296          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 2888  namespace { Line 3330  namespace {
3330          }          }
3331      }      }
3332    
3333        /// Updates the 3crc chunk with the checksum of a sample. The
3334        /// update is done directly to disk, as this method is called
3335        /// after File::Save()
3336        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3337            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3338            if (!_3crc) return;
3339    
3340            // get the index of the sample
3341            int iWaveIndex = -1;
3342            File::SampleList::iterator iter = pSamples->begin();
3343            File::SampleList::iterator end  = pSamples->end();
3344            for (int index = 0; iter != end; ++iter, ++index) {
3345                if (*iter == pSample) {
3346                    iWaveIndex = index;
3347                    break;
3348                }
3349            }
3350            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3351    
3352            // write the CRC-32 checksum to disk
3353            _3crc->SetPos(iWaveIndex * 8);
3354            uint32_t tmp = 1;
3355            _3crc->WriteUint32(&tmp); // unknown, always 1?
3356            _3crc->WriteUint32(&crc);
3357        }
3358    
3359        Group* File::GetFirstGroup() {
3360            if (!pGroups) LoadGroups();
3361            // there must always be at least one group
3362            GroupsIterator = pGroups->begin();
3363            return *GroupsIterator;
3364        }
3365    
3366        Group* File::GetNextGroup() {
3367            if (!pGroups) return NULL;
3368            ++GroupsIterator;
3369            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3370        }
3371    
3372        /**
3373         * Returns the group with the given index.
3374         *
3375         * @param index - number of the sought group (0..n)
3376         * @returns sought group or NULL if there's no such group
3377         */
3378        Group* File::GetGroup(uint index) {
3379            if (!pGroups) LoadGroups();
3380            GroupsIterator = pGroups->begin();
3381            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3382                if (i == index) return *GroupsIterator;
3383                ++GroupsIterator;
3384            }
3385            return NULL;
3386        }
3387    
3388        Group* File::AddGroup() {
3389            if (!pGroups) LoadGroups();
3390            // there must always be at least one group
3391            __ensureMandatoryChunksExist();
3392            Group* pGroup = new Group(this, NULL);
3393            pGroups->push_back(pGroup);
3394            return pGroup;
3395        }
3396    
3397        /** @brief Delete a group and its samples.
3398         *
3399         * This will delete the given Group object and all the samples that
3400         * belong to this group from the gig file. You have to call Save() to
3401         * make this persistent to the file.
3402         *
3403         * @param pGroup - group to delete
3404         * @throws gig::Exception if given group could not be found
3405         */
3406        void File::DeleteGroup(Group* pGroup) {
3407            if (!pGroups) LoadGroups();
3408            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3409            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3410            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3411            // delete all members of this group
3412            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3413                DeleteSample(pSample);
3414            }
3415            // now delete this group object
3416            pGroups->erase(iter);
3417            delete pGroup;
3418        }
3419    
3420        /** @brief Delete a group.
3421         *
3422         * This will delete the given Group object from the gig file. All the
3423         * samples that belong to this group will not be deleted, but instead
3424         * be moved to another group. You have to call Save() to make this
3425         * persistent to the file.
3426         *
3427         * @param pGroup - group to delete
3428         * @throws gig::Exception if given group could not be found
3429         */
3430        void File::DeleteGroupOnly(Group* pGroup) {
3431            if (!pGroups) LoadGroups();
3432            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3433            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3434            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3435            // move all members of this group to another group
3436            pGroup->MoveAll();
3437            pGroups->erase(iter);
3438            delete pGroup;
3439        }
3440    
3441        void File::LoadGroups() {
3442            if (!pGroups) pGroups = new std::list<Group*>;
3443            // try to read defined groups from file
3444            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3445            if (lst3gri) {
3446                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3447                if (lst3gnl) {
3448                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3449                    while (ck) {
3450                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3451                            if (pVersion && pVersion->major == 3 &&
3452                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3453    
3454                            pGroups->push_back(new Group(this, ck));
3455                        }
3456                        ck = lst3gnl->GetNextSubChunk();
3457                    }
3458                }
3459            }
3460            // if there were no group(s), create at least the mandatory default group
3461            if (!pGroups->size()) {
3462                Group* pGroup = new Group(this, NULL);
3463                pGroup->Name = "Default Group";
3464                pGroups->push_back(pGroup);
3465            }
3466        }
3467    
3468        /**
3469         * Apply all the gig file's current instruments, samples, groups and settings
3470         * to the respective RIFF chunks. You have to call Save() to make changes
3471         * persistent.
3472         *
3473         * Usually there is absolutely no need to call this method explicitly.
3474         * It will be called automatically when File::Save() was called.
3475         *
3476         * @throws Exception - on errors
3477         */
3478        void File::UpdateChunks() {
3479            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3480    
3481            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3482    
3483            // first update base class's chunks
3484            DLS::File::UpdateChunks();
3485    
3486            if (newFile) {
3487                // INFO was added by Resource::UpdateChunks - make sure it
3488                // is placed first in file
3489                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3490                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3491                if (first != info) {
3492                    pRIFF->MoveSubChunk(info, first);
3493                }
3494            }
3495    
3496            // update group's chunks
3497            if (pGroups) {
3498                std::list<Group*>::iterator iter = pGroups->begin();
3499                std::list<Group*>::iterator end  = pGroups->end();
3500                for (; iter != end; ++iter) {
3501                    (*iter)->UpdateChunks();
3502                }
3503    
3504                // v3: make sure the file has 128 3gnm chunks
3505                if (pVersion && pVersion->major == 3) {
3506                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3507                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3508                    for (int i = 0 ; i < 128 ; i++) {
3509                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3510                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3511                    }
3512                }
3513            }
3514    
3515            // update einf chunk
3516    
3517            // The einf chunk contains statistics about the gig file, such
3518            // as the number of regions and samples used by each
3519            // instrument. It is divided in equally sized parts, where the
3520            // first part contains information about the whole gig file,
3521            // and the rest of the parts map to each instrument in the
3522            // file.
3523            //
3524            // At the end of each part there is a bit map of each sample
3525            // in the file, where a set bit means that the sample is used
3526            // by the file/instrument.
3527            //
3528            // Note that there are several fields with unknown use. These
3529            // are set to zero.
3530    
3531            int sublen = pSamples->size() / 8 + 49;
3532            int einfSize = (Instruments + 1) * sublen;
3533    
3534            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3535            if (einf) {
3536                if (einf->GetSize() != einfSize) {
3537                    einf->Resize(einfSize);
3538                    memset(einf->LoadChunkData(), 0, einfSize);
3539                }
3540            } else if (newFile) {
3541                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3542            }
3543            if (einf) {
3544                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3545    
3546                std::map<gig::Sample*,int> sampleMap;
3547                int sampleIdx = 0;
3548                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3549                    sampleMap[pSample] = sampleIdx++;
3550                }
3551    
3552                int totnbusedsamples = 0;
3553                int totnbusedchannels = 0;
3554                int totnbregions = 0;
3555                int totnbdimregions = 0;
3556                int totnbloops = 0;
3557                int instrumentIdx = 0;
3558    
3559                memset(&pData[48], 0, sublen - 48);
3560    
3561                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3562                     instrument = GetNextInstrument()) {
3563                    int nbusedsamples = 0;
3564                    int nbusedchannels = 0;
3565                    int nbdimregions = 0;
3566                    int nbloops = 0;
3567    
3568                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3569    
3570                    for (Region* region = instrument->GetFirstRegion() ; region ;
3571                         region = instrument->GetNextRegion()) {
3572                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3573                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3574                            if (d->pSample) {
3575                                int sampleIdx = sampleMap[d->pSample];
3576                                int byte = 48 + sampleIdx / 8;
3577                                int bit = 1 << (sampleIdx & 7);
3578                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3579                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3580                                    nbusedsamples++;
3581                                    nbusedchannels += d->pSample->Channels;
3582    
3583                                    if ((pData[byte] & bit) == 0) {
3584                                        pData[byte] |= bit;
3585                                        totnbusedsamples++;
3586                                        totnbusedchannels += d->pSample->Channels;
3587                                    }
3588                                }
3589                            }
3590                            if (d->SampleLoops) nbloops++;
3591                        }
3592                        nbdimregions += region->DimensionRegions;
3593                    }
3594                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3595                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3596                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3597                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3598                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3599                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3600                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3601                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3602                    // next 8 bytes unknown
3603                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3604                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3605                    // next 4 bytes unknown
3606    
3607                    totnbregions += instrument->Regions;
3608                    totnbdimregions += nbdimregions;
3609                    totnbloops += nbloops;
3610                    instrumentIdx++;
3611                }
3612                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3613                // store32(&pData[0], sublen);
3614                store32(&pData[4], totnbusedchannels);
3615                store32(&pData[8], totnbusedsamples);
3616                store32(&pData[12], Instruments);
3617                store32(&pData[16], totnbregions);
3618                store32(&pData[20], totnbdimregions);
3619                store32(&pData[24], totnbloops);
3620                // next 8 bytes unknown
3621                // next 4 bytes unknown, not always 0
3622                store32(&pData[40], pSamples->size());
3623                // next 4 bytes unknown
3624            }
3625    
3626            // update 3crc chunk
3627    
3628            // The 3crc chunk contains CRC-32 checksums for the
3629            // samples. The actual checksum values will be filled in
3630            // later, by Sample::Write.
3631    
3632            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3633            if (_3crc) {
3634                _3crc->Resize(pSamples->size() * 8);
3635            } else if (newFile) {
3636                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3637                _3crc->LoadChunkData();
3638    
3639                // the order of einf and 3crc is not the same in v2 and v3
3640                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3641            }
3642        }
3643    
3644    
3645    
3646  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.858  
changed lines
  Added in v.1292

  ViewVC Help
Powered by ViewVC