/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 902 by persson, Sat Jul 22 14:22:01 2006 UTC revision 1384 by schoenebeck, Fri Oct 5 11:26:53 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
259    // *
260    
261        static uint32_t* __initCRCTable() {
262            static uint32_t res[256];
263    
264            for (int i = 0 ; i < 256 ; i++) {
265                uint32_t c = i;
266                for (int j = 0 ; j < 8 ; j++) {
267                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268                }
269                res[i] = c;
270            }
271            return res;
272        }
273    
274        static const uint32_t* __CRCTable = __initCRCTable();
275    
276        /**
277         * Initialize a CRC variable.
278         *
279         * @param crc - variable to be initialized
280         */
281        inline static void __resetCRC(uint32_t& crc) {
282            crc = 0xffffffff;
283        }
284    
285        /**
286         * Used to calculate checksums of the sample data in a gig file. The
287         * checksums are stored in the 3crc chunk of the gig file and
288         * automatically updated when a sample is written with Sample::Write().
289         *
290         * One should call __resetCRC() to initialize the CRC variable to be
291         * used before calling this function the first time.
292         *
293         * After initializing the CRC variable one can call this function
294         * arbitrary times, i.e. to split the overall CRC calculation into
295         * steps.
296         *
297         * Once the whole data was processed by __calculateCRC(), one should
298         * call __encodeCRC() to get the final CRC result.
299         *
300         * @param buf     - pointer to data the CRC shall be calculated of
301         * @param bufSize - size of the data to be processed
302         * @param crc     - variable the CRC sum shall be stored to
303         */
304        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305            for (int i = 0 ; i < bufSize ; i++) {
306                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307            }
308        }
309    
310        /**
311         * Returns the final CRC result.
312         *
313         * @param crc - variable previously passed to __calculateCRC()
314         */
315        inline static uint32_t __encodeCRC(const uint32_t& crc) {
316            return crc ^ 0xffffffff;
317        }
318    
319    
320    
321    // *************** Other Internal functions  ***************
322    // *
323    
324        static split_type_t __resolveSplitType(dimension_t dimension) {
325            return (
326                dimension == dimension_layer ||
327                dimension == dimension_samplechannel ||
328                dimension == dimension_releasetrigger ||
329                dimension == dimension_keyboard ||
330                dimension == dimension_roundrobin ||
331                dimension == dimension_random ||
332                dimension == dimension_smartmidi ||
333                dimension == dimension_roundrobinkeyboard
334            ) ? split_type_bit : split_type_normal;
335        }
336    
337        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338            return (dimension_definition.split_type == split_type_normal)
339            ? int(128.0 / dimension_definition.zones) : 0;
340        }
341    
342    
343    
344  // *************** Sample ***************  // *************** Sample ***************
345  // *  // *
346    
# Line 279  namespace { Line 366  namespace {
366       *                         is located, 0 otherwise       *                         is located, 0 otherwise
367       */       */
368      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
370                { CHUNK_ID_INAM, 64 },
371                { 0, 0 }
372            };
373            pInfo->FixedStringLengths = fixedStringLengths;
374          Instances++;          Instances++;
375          FileNo = fileNo;          FileNo = fileNo;
376    
377            __resetCRC(crc);
378    
379          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380          if (pCk3gix) {          if (pCk3gix) {
381              SampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
382                pGroup = pFile->GetGroup(iSampleGroup);
383          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
384              // use default value(s)              // by default assigned to that mandatory "Default Group"
385              SampleGroup = 0;              pGroup = pFile->GetGroup(0);
386          }          }
387    
388          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
# Line 311  namespace { Line 406  namespace {
406              // use default values              // use default values
407              Manufacturer  = 0;              Manufacturer  = 0;
408              Product       = 0;              Product       = 0;
409              SamplePeriod  = 1 / SamplesPerSecond;              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410              MIDIUnityNote = 64;              MIDIUnityNote = 60;
411              FineTune      = 0;              FineTune      = 0;
412                SMPTEFormat   = smpte_format_no_offset;
413              SMPTEOffset   = 0;              SMPTEOffset   = 0;
414              Loops         = 0;              Loops         = 0;
415              LoopID        = 0;              LoopID        = 0;
416                LoopType      = loop_type_normal;
417              LoopStart     = 0;              LoopStart     = 0;
418              LoopEnd       = 0;              LoopEnd       = 0;
419              LoopFraction  = 0;              LoopFraction  = 0;
# Line 362  namespace { Line 459  namespace {
459       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
460       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
461       *       *
462       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
463       *                        was provided yet       *                        was provided yet
464       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
465       */       */
# Line 372  namespace { Line 469  namespace {
469    
470          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
471          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
473                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474                memset(pCkSmpl->LoadChunkData(), 0, 60);
475            }
476          // update 'smpl' chunk          // update 'smpl' chunk
477          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478          SamplePeriod = 1 / SamplesPerSecond;          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
480          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
481          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
482          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
483          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
484          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
485          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
486          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
487    
488          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
489    
490          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
491          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
492          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
493          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
494          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
495          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
496    
497          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
498          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
499          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
500            // determine appropriate sample group index (to be stored in chunk)
501            uint16_t iSampleGroup = 0; // 0 refers to default sample group
502            File* pFile = static_cast<File*>(pParent);
503            if (pFile->pGroups) {
504                std::list<Group*>::iterator iter = pFile->pGroups->begin();
505                std::list<Group*>::iterator end  = pFile->pGroups->end();
506                for (int i = 0; iter != end; i++, iter++) {
507                    if (*iter == pGroup) {
508                        iSampleGroup = i;
509                        break; // found
510                    }
511                }
512            }
513          // update '3gix' chunk          // update '3gix' chunk
514          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
515          memcpy(&pData[0], &SampleGroup, 2);          store16(&pData[0], iSampleGroup);
516      }      }
517    
518      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 620  namespace { Line 733  namespace {
733       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
734       * current sample's boundary!       * current sample's boundary!
735       *       *
736       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
737       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
738       * other formats will fail!       * other formats will fail!
739       *       *
740       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
741       *                   greater than zero)       *                   greater than zero)
742       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
743       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
744       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
745       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 1084  namespace { Line 1197  namespace {
1197       *       *
1198       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1199       *       *
1200         * For 16 bit samples, the data in the source buffer should be
1201         * int16_t (using native endianness). For 24 bit, the buffer
1202         * should contain three bytes per sample, little-endian.
1203         *
1204       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1205       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1206       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1092  namespace { Line 1209  namespace {
1209       */       */
1210      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212          return DLS::Sample::Write(pBuffer, SampleCount);  
1213            // if this is the first write in this sample, reset the
1214            // checksum calculator
1215            if (pCkData->GetPos() == 0) {
1216                __resetCRC(crc);
1217            }
1218            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219            unsigned long res;
1220            if (BitDepth == 24) {
1221                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222            } else { // 16 bit
1223                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224                                    : pCkData->Write(pBuffer, SampleCount, 2);
1225            }
1226            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227    
1228            // if this is the last write, update the checksum chunk in the
1229            // file
1230            if (pCkData->GetPos() == pCkData->GetSize()) {
1231                File* pFile = static_cast<File*>(GetParent());
1232                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233            }
1234            return res;
1235      }      }
1236    
1237      /**      /**
# Line 1137  namespace { Line 1276  namespace {
1276          }          }
1277      }      }
1278    
1279        /**
1280         * Returns pointer to the Group this Sample belongs to. In the .gig
1281         * format a sample always belongs to one group. If it wasn't explicitly
1282         * assigned to a certain group, it will be automatically assigned to a
1283         * default group.
1284         *
1285         * @returns Sample's Group (never NULL)
1286         */
1287        Group* Sample::GetGroup() const {
1288            return pGroup;
1289        }
1290    
1291      Sample::~Sample() {      Sample::~Sample() {
1292          Instances--;          Instances--;
1293          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1156  namespace { Line 1307  namespace {
1307      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1308      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309    
1310      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311          Instances++;          Instances++;
1312    
1313          pSample = NULL;          pSample = NULL;
1314            pRegion = pParent;
1315    
1316            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317            else memset(&Crossfade, 0, 4);
1318    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1319          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320    
1321          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1322          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1323              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1324              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1325              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
# Line 1311  namespace { Line 1465  namespace {
1465                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1466                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1467              }              }
1468                if (_3ewa->RemainingBytes() >= 8) {
1469                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1470                } else {
1471                    memset(DimensionUpperLimits, 0, 8);
1472                }
1473          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1474              // use default values              // use default values
1475              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1320  namespace { Line 1479  namespace {
1479              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1480              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1481              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1482              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1483              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1484              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1485              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1486              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1487              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1337  namespace { Line 1496  namespace {
1496              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1497              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1498              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1499              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1500              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1501              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1502              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1503              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1504              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1505              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1506              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1507              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1508              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1509              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1510              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1511              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1512              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1513              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1391  namespace { Line 1550  namespace {
1550              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1551              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1552              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1553                memset(DimensionUpperLimits, 127, 8);
1554          }          }
1555    
1556          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1558                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1559    
1560          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1561          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1562                                        ReleaseVelocityResponseDepth
1563                                    );
1564    
1565            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566                                                          VCFVelocityDynamicRange,
1567                                                          VCFVelocityScale,
1568                                                          VCFCutoffController);
1569    
1570          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571          // velocity response curves for release time are not used even          VelocityTable = 0;
1572          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1573    
1574          curveType = VCFVelocityCurve;      /*
1575          depth = VCFVelocityDynamicRange;       * Constructs a DimensionRegion by copying all parameters from
1576         * another DimensionRegion
1577         */
1578        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579            Instances++;
1580            *this = src; // default memberwise shallow copy of all parameters
1581            pParentList = _3ewl; // restore the chunk pointer
1582    
1583          // even stranger GSt: two of the velocity response curves for          // deep copy of owned structures
1584          // filter cutoff are not used, instead another special curve          if (src.VelocityTable) {
1585          // is chosen. This curve is not used anywhere else.              VelocityTable = new uint8_t[128];
1586          if ((curveType == curve_type_nonlinear && depth == 0) ||              for (int k = 0 ; k < 128 ; k++)
1587              (curveType == curve_type_special   && depth == 4)) {                  VelocityTable[k] = src.VelocityTable[k];
1588              curveType = curve_type_special;          }
1589              depth = 5;          if (src.pSampleLoops) {
1590                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591                for (int k = 0 ; k < src.SampleLoops ; k++)
1592                    pSampleLoops[k] = src.pSampleLoops[k];
1593          }          }
1594          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
                                                 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);  
1595    
1596        /**
1597         * Updates the respective member variable and updates @c SampleAttenuation
1598         * which depends on this value.
1599         */
1600        void DimensionRegion::SetGain(int32_t gain) {
1601            DLS::Sampler::SetGain(gain);
1602          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
1603      }      }
1604    
1605      /**      /**
# Line 1439  namespace { Line 1613  namespace {
1613          // first update base class's chunk          // first update base class's chunk
1614          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1615    
1616            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618            pData[12] = Crossfade.in_start;
1619            pData[13] = Crossfade.in_end;
1620            pData[14] = Crossfade.out_start;
1621            pData[15] = Crossfade.out_end;
1622    
1623          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1624          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1626          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629            }
1630            pData = (uint8_t*) _3ewa->LoadChunkData();
1631    
1632          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1633    
1634          const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?          const uint32_t chunksize = _3ewa->GetNewSize();
1635          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1636    
1637          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1639    
1640          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641          memcpy(&pData[4], &eg3attack, 4);          store32(&pData[8], eg3attack);
1642    
1643          // next 2 bytes unknown          // next 2 bytes unknown
1644    
1645          memcpy(&pData[10], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1646    
1647          // next 2 bytes unknown          // next 2 bytes unknown
1648    
1649          memcpy(&pData[14], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1650    
1651          // next 2 bytes unknown          // next 2 bytes unknown
1652    
1653          memcpy(&pData[18], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1654    
1655          // next 2 bytes unknown          // next 2 bytes unknown
1656    
1657          memcpy(&pData[22], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1658    
1659          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660          memcpy(&pData[24], &eg1attack, 4);          store32(&pData[28], eg1attack);
1661    
1662          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663          memcpy(&pData[28], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1664    
1665          // next 2 bytes unknown          // next 2 bytes unknown
1666    
1667          memcpy(&pData[34], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1668    
1669          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670          memcpy(&pData[36], &eg1release, 4);          store32(&pData[40], eg1release);
1671    
1672          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673          memcpy(&pData[40], &eg1ctl, 1);          pData[44] = eg1ctl;
1674    
1675          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1676              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
1677              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680          memcpy(&pData[41], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1681    
1682          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683          memcpy(&pData[42], &eg2ctl, 1);          pData[46] = eg2ctl;
1684    
1685          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1686              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
1687              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690          memcpy(&pData[43], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1691    
1692          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693          memcpy(&pData[44], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1694    
1695          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696          memcpy(&pData[48], &eg2attack, 4);          store32(&pData[52], eg2attack);
1697    
1698          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699          memcpy(&pData[52], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1700    
1701          // next 2 bytes unknown          // next 2 bytes unknown
1702    
1703          memcpy(&pData[58], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1704    
1705          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706          memcpy(&pData[60], &eg2release, 4);          store32(&pData[64], eg2release);
1707    
1708          // next 2 bytes unknown          // next 2 bytes unknown
1709    
1710          memcpy(&pData[66], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1711    
1712          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713          memcpy(&pData[68], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1714    
1715          // next 2 bytes unknown          // next 2 bytes unknown
1716    
1717          memcpy(&pData[72], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1718    
1719          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720          memcpy(&pData[74], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1721    
1722          // next 2 bytes unknown          // next 2 bytes unknown
1723    
1724          memcpy(&pData[80], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1725    
1726          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727          memcpy(&pData[82], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1728    
1729          // next 2 bytes unknown          // next 2 bytes unknown
1730    
1731          memcpy(&pData[88], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1732    
1733          {          {
1734              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1561  namespace { Line 1746  namespace {
1746                  default:                  default:
1747                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748              }              }
1749              memcpy(&pData[90], &velocityresponse, 1);              pData[96] = velocityresponse;
1750          }          }
1751    
1752          {          {
# Line 1580  namespace { Line 1765  namespace {
1765                  default:                  default:
1766                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767              }              }
1768              memcpy(&pData[91], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1769          }          }
1770    
1771          memcpy(&pData[92], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1772    
1773          memcpy(&pData[93], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1774    
1775          // next 4 bytes unknown          // next 4 bytes unknown
1776    
1777          memcpy(&pData[98], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1778    
1779          // next 2 bytes unknown          // next 2 bytes unknown
1780    
# Line 1608  namespace { Line 1793  namespace {
1793                  default:                  default:
1794                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795              }              }
1796              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1797          }          }
1798    
1799          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800          memcpy(&pData[103], &pan, 1);          pData[109] = pan;
1801    
1802          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803          memcpy(&pData[104], &selfmask, 1);          pData[110] = selfmask;
1804    
1805          // next byte unknown          // next byte unknown
1806    
# Line 1624  namespace { Line 1809  namespace {
1809              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812              memcpy(&pData[106], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1813          }          }
1814    
1815          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816          memcpy(&pData[107], &attenctl, 1);          pData[113] = attenctl;
1817    
1818          {          {
1819              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1822              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823              memcpy(&pData[108], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1824          }          }
1825    
1826          {          {
# Line 1644  namespace { Line 1829  namespace {
1829              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1830              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1831                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832              memcpy(&pData[109], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1833          }          }
1834    
1835          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837          memcpy(&pData[110], &eg3depth, 1);          pData[116] = eg3depth;
1838    
1839          // next 2 bytes unknown          // next 2 bytes unknown
1840    
1841          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1842          memcpy(&pData[113], &channeloffset, 1);          pData[120] = channeloffset;
1843    
1844          {          {
1845              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1846              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1847              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1848              memcpy(&pData[114], &regoptions, 1);              pData[121] = regoptions;
1849          }          }
1850    
1851          // next 2 bytes unknown          // next 2 bytes unknown
1852    
1853          memcpy(&pData[117], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1854    
1855          // next 3 bytes unknown          // next 3 bytes unknown
1856    
1857          memcpy(&pData[121], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1858    
1859          // next 2 bytes unknown          // next 2 bytes unknown
1860    
1861          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862          memcpy(&pData[124], &eg1hold, 1);          pData[131] = eg1hold;
1863    
1864          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1865                                    (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1866          memcpy(&pData[125], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1867    
1868          memcpy(&pData[126], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1869    
1870          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871                                      (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872          memcpy(&pData[127], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1873    
1874          // next byte unknown          // next byte unknown
1875    
1876          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877                                       (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1878          memcpy(&pData[129], &vcfresonance, 1);          pData[136] = vcfresonance;
1879    
1880          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881                                        (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882          memcpy(&pData[130], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1883    
1884          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1886          memcpy(&pData[131], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1887    
1888          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889          memcpy(&pData[132], &vcftype, 1);          pData[139] = vcftype;
1890    
1891            if (chunksize >= 148) {
1892                memcpy(&pData[140], DimensionUpperLimits, 8);
1893            }
1894        }
1895    
1896        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897            curve_type_t curveType = releaseVelocityResponseCurve;
1898            uint8_t depth = releaseVelocityResponseDepth;
1899            // this models a strange behaviour or bug in GSt: two of the
1900            // velocity response curves for release time are not used even
1901            // if specified, instead another curve is chosen.
1902            if ((curveType == curve_type_nonlinear && depth == 0) ||
1903                (curveType == curve_type_special   && depth == 4)) {
1904                curveType = curve_type_nonlinear;
1905                depth = 3;
1906            }
1907            return GetVelocityTable(curveType, depth, 0);
1908        }
1909    
1910        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911                                                        uint8_t vcfVelocityDynamicRange,
1912                                                        uint8_t vcfVelocityScale,
1913                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1914        {
1915            curve_type_t curveType = vcfVelocityCurve;
1916            uint8_t depth = vcfVelocityDynamicRange;
1917            // even stranger GSt: two of the velocity response curves for
1918            // filter cutoff are not used, instead another special curve
1919            // is chosen. This curve is not used anywhere else.
1920            if ((curveType == curve_type_nonlinear && depth == 0) ||
1921                (curveType == curve_type_special   && depth == 4)) {
1922                curveType = curve_type_special;
1923                depth = 5;
1924            }
1925            return GetVelocityTable(curveType, depth,
1926                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927                                        ? vcfVelocityScale : 0);
1928      }      }
1929    
1930      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1719  namespace { Line 1942  namespace {
1942          return table;          return table;
1943      }      }
1944    
1945        Region* DimensionRegion::GetParent() const {
1946            return pRegion;
1947        }
1948    
1949      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
1951          switch (EncodedController) {          switch (EncodedController) {
# Line 1926  namespace { Line 2153  namespace {
2153                      default:                      default:
2154                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2155                  }                  }
2156                    break;
2157              default:              default:
2158                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2159          }          }
# Line 1971  namespace { Line 2199  namespace {
2199          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2200      }      }
2201    
2202        /**
2203         * Updates the respective member variable and the lookup table / cache
2204         * that depends on this value.
2205         */
2206        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207            pVelocityAttenuationTable =
2208                GetVelocityTable(
2209                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210                );
2211            VelocityResponseCurve = curve;
2212        }
2213    
2214        /**
2215         * Updates the respective member variable and the lookup table / cache
2216         * that depends on this value.
2217         */
2218        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219            pVelocityAttenuationTable =
2220                GetVelocityTable(
2221                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222                );
2223            VelocityResponseDepth = depth;
2224        }
2225    
2226        /**
2227         * Updates the respective member variable and the lookup table / cache
2228         * that depends on this value.
2229         */
2230        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231            pVelocityAttenuationTable =
2232                GetVelocityTable(
2233                    VelocityResponseCurve, VelocityResponseDepth, scaling
2234                );
2235            VelocityResponseCurveScaling = scaling;
2236        }
2237    
2238        /**
2239         * Updates the respective member variable and the lookup table / cache
2240         * that depends on this value.
2241         */
2242        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244            ReleaseVelocityResponseCurve = curve;
2245        }
2246    
2247        /**
2248         * Updates the respective member variable and the lookup table / cache
2249         * that depends on this value.
2250         */
2251        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253            ReleaseVelocityResponseDepth = depth;
2254        }
2255    
2256        /**
2257         * Updates the respective member variable and the lookup table / cache
2258         * that depends on this value.
2259         */
2260        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262            VCFCutoffController = controller;
2263        }
2264    
2265        /**
2266         * Updates the respective member variable and the lookup table / cache
2267         * that depends on this value.
2268         */
2269        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271            VCFVelocityCurve = curve;
2272        }
2273    
2274        /**
2275         * Updates the respective member variable and the lookup table / cache
2276         * that depends on this value.
2277         */
2278        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280            VCFVelocityDynamicRange = range;
2281        }
2282    
2283        /**
2284         * Updates the respective member variable and the lookup table / cache
2285         * that depends on this value.
2286         */
2287        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289            VCFVelocityScale = scaling;
2290        }
2291    
2292      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293    
2294          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2062  namespace { Line 2380  namespace {
2380              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2381                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2382                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2383                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2384                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2385                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2386                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2387                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2076  namespace { Line 2394  namespace {
2394                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2395                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2396                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2397                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2398                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2399                      Dimensions++;                      Dimensions++;
2400    
2401                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2110  namespace { Line 2420  namespace {
2420                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2421                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2422              }              }
2423                GetSample(); // load global region sample reference
2424            } else {
2425                DimensionRegions = 0;
2426                for (int i = 0 ; i < 8 ; i++) {
2427                    pDimensionDefinitions[i].dimension  = dimension_none;
2428                    pDimensionDefinitions[i].bits       = 0;
2429                    pDimensionDefinitions[i].zones      = 0;
2430                }
2431          }          }
2432    
2433          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2117  namespace { Line 2435  namespace {
2435              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2436              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2437              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2438              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2439              DimensionRegions = 1;              DimensionRegions = 1;
2440          }          }
2441      }      }
# Line 2132  namespace { Line 2450  namespace {
2450       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2451       */       */
2452      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2453            // in the gig format we don't care about the Region's sample reference
2454            // but we still have to provide some existing one to not corrupt the
2455            // file, so to avoid the latter we simply always assign the sample of
2456            // the first dimension region of this region
2457            pSample = pDimensionRegions[0]->pSample;
2458    
2459          // first update base class's chunks          // first update base class's chunks
2460          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2461    
# Line 2141  namespace { Line 2465  namespace {
2465          }          }
2466    
2467          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
2468          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2469          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
2470            const int iMaxDimensionRegions = version3 ? 256 : 32;
2471    
2472          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
2473          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2474          if (!_3lnk) {          if (!_3lnk) {
2475              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
2476              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2477                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2478    
2479                // move 3prg to last position
2480                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2481          }          }
2482    
2483          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2484          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2485            store32(&pData[0], DimensionRegions);
2486            int shift = 0;
2487          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2488              pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2489              pData[i * 8 + 1] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2490              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2491              pData[i * 8 + 4] = pDimensionDefinitions[i].zones;              pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2492              // next 3 bytes unknown              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2493                // next 3 bytes unknown, always zero?
2494    
2495                shift += pDimensionDefinitions[i].bits;
2496          }          }
2497    
2498          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
2499          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
2500          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
2501              int iWaveIndex = -1;              int iWaveIndex = -1;
2502              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2175  namespace { Line 2509  namespace {
2509                          break;                          break;
2510                      }                      }
2511                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
2512              }              }
2513              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2514          }          }
2515      }      }
2516    
# Line 2188  namespace { Line 2521  namespace {
2521              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2522              while (_3ewl) {              while (_3ewl) {
2523                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2524                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2525                      dimensionRegionNr++;                      dimensionRegionNr++;
2526                  }                  }
2527                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2197  namespace { Line 2530  namespace {
2530          }          }
2531      }      }
2532    
2533        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2534            // update KeyRange struct and make sure regions are in correct order
2535            DLS::Region::SetKeyRange(Low, High);
2536            // update Region key table for fast lookup
2537            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2538        }
2539    
2540      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
2541          // get velocity dimension's index          // get velocity dimension's index
2542          int veldim = -1;          int veldim = -1;
# Line 2217  namespace { Line 2557  namespace {
2557          int dim[8] = { 0 };          int dim[8] = { 0 };
2558          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2559    
2560              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2561                    pDimensionRegions[i]->VelocityUpperLimit) {
2562                  // create the velocity table                  // create the velocity table
2563                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2564                  if (!table) {                  if (!table) {
# Line 2226  namespace { Line 2567  namespace {
2567                  }                  }
2568                  int tableidx = 0;                  int tableidx = 0;
2569                  int velocityZone = 0;                  int velocityZone = 0;
2570                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2571                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2572                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2573                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2574                            velocityZone++;
2575                        }
2576                    } else { // gig2
2577                        for (int k = i ; k < end ; k += step) {
2578                            DimensionRegion *d = pDimensionRegions[k];
2579                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2580                            velocityZone++;
2581                        }
2582                  }                  }
2583              } else {              } else {
2584                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2293  namespace { Line 2642  namespace {
2642              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2643                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2644    
2645            // pos is where the new dimension should be placed, normally
2646            // last in list, except for the samplechannel dimension which
2647            // has to be first in list
2648            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2649            int bitpos = 0;
2650            for (int i = 0 ; i < pos ; i++)
2651                bitpos += pDimensionDefinitions[i].bits;
2652    
2653            // make room for the new dimension
2654            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2655            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2656                for (int j = Dimensions ; j > pos ; j--) {
2657                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2658                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2659                }
2660            }
2661    
2662          // assign definition of new dimension          // assign definition of new dimension
2663          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
2664    
2665          // create new dimension region(s) for this new dimension          // auto correct certain dimension definition fields (where possible)
2666          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          pDimensionDefinitions[pos].split_type  =
2667              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              __resolveSplitType(pDimensionDefinitions[pos].dimension);
2668              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);          pDimensionDefinitions[pos].zone_size =
2669              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              __resolveZoneSize(pDimensionDefinitions[pos]);
2670              DimensionRegions++;  
2671            // create new dimension region(s) for this new dimension, and make
2672            // sure that the dimension regions are placed correctly in both the
2673            // RIFF list and the pDimensionRegions array
2674            RIFF::Chunk* moveTo = NULL;
2675            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2676            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2677                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2678                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2679                }
2680                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2681                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2682                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2683                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2684                        // create a new dimension region and copy all parameter values from
2685                        // an existing dimension region
2686                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2687                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2688    
2689                        DimensionRegions++;
2690                    }
2691                }
2692                moveTo = pDimensionRegions[i]->pParentList;
2693            }
2694    
2695            // initialize the upper limits for this dimension
2696            int mask = (1 << bitpos) - 1;
2697            for (int z = 0 ; z < pDimDef->zones ; z++) {
2698                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2699                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2700                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2701                                      (z << bitpos) |
2702                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2703                }
2704          }          }
2705    
2706          Dimensions++;          Dimensions++;
# Line 2344  namespace { Line 2743  namespace {
2743          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
2744              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
2745    
2746            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2747    
2748          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
2749          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
2750          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2352  namespace { Line 2753  namespace {
2753                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2754                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
2755                                      iLowerBit;                                      iLowerBit;
2756    
2757                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2758                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
2759                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
2760                      DimensionRegions--;                      DimensionRegions--;
# Line 2372  namespace { Line 2775  namespace {
2775              }              }
2776          }          }
2777    
2778            // remove the this dimension from the upper limits arrays
2779            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2780                DimensionRegion* d = pDimensionRegions[j];
2781                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2782                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2783                }
2784                d->DimensionUpperLimits[Dimensions - 1] = 127;
2785            }
2786    
2787          // 'remove' dimension definition          // 'remove' dimension definition
2788          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2789              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2424  namespace { Line 2836  namespace {
2836              } else {              } else {
2837                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2838                      case split_type_normal:                      case split_type_normal:
2839                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2840                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2841                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2842                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2843                                }
2844                            } else {
2845                                // gig2: evenly sized zones
2846                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2847                            }
2848                          break;                          break;
2849                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2850                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2438  namespace { Line 2858  namespace {
2858          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2859          if (veldim != -1) {          if (veldim != -1) {
2860              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2861              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2862                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2863              else // normal split type              else // normal split type
2864                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2492  namespace { Line 2912  namespace {
2912          Sample* sample = file->GetFirstSample(pProgress);          Sample* sample = file->GetFirstSample(pProgress);
2913          while (sample) {          while (sample) {
2914              if (sample->ulWavePoolOffset == soughtoffset &&              if (sample->ulWavePoolOffset == soughtoffset &&
2915                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2916              sample = file->GetNextSample();              sample = file->GetNextSample();
2917          }          }
2918          return NULL;          return NULL;
# Line 2504  namespace { Line 2924  namespace {
2924  // *  // *
2925    
2926      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2927            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2928                { CHUNK_ID_INAM, 64 },
2929                { CHUNK_ID_ISFT, 12 },
2930                { 0, 0 }
2931            };
2932            pInfo->FixedStringLengths = fixedStringLengths;
2933    
2934          // Initialization          // Initialization
2935          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2936            EffectSend = 0;
2937            Attenuation = 0;
2938            FineTune = 0;
2939            PitchbendRange = 0;
2940            PianoReleaseMode = false;
2941            DimensionKeyRange.low = 0;
2942            DimensionKeyRange.high = 0;
2943    
2944          // Loading          // Loading
2945          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2542  namespace { Line 2976  namespace {
2976      }      }
2977    
2978      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
2979            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2980          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
2981          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
2982          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
# Line 2581  namespace { Line 3016  namespace {
3016          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3017          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
3018          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3019          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
3020                File* pFile = (File*) GetParent();
3021    
3022                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3023                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3024                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3025                memset(_3ewg->LoadChunkData(), 0, size);
3026            }
3027          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
3028          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3029          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
3030          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
3031          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
3032          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
3033          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3034                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
3035          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
3036          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
3037      }      }
3038    
3039      /**      /**
# Line 2602  namespace { Line 3044  namespace {
3044       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3045       */       */
3046      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3047          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3048          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3049    
3050          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2662  namespace { Line 3104  namespace {
3104    
3105    
3106    
3107    // *************** Group ***************
3108    // *
3109    
3110        /** @brief Constructor.
3111         *
3112         * @param file   - pointer to the gig::File object
3113         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3114         *                 NULL if this is a new Group
3115         */
3116        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3117            pFile      = file;
3118            pNameChunk = ck3gnm;
3119            ::LoadString(pNameChunk, Name);
3120        }
3121    
3122        Group::~Group() {
3123            // remove the chunk associated with this group (if any)
3124            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3125        }
3126    
3127        /** @brief Update chunks with current group settings.
3128         *
3129         * Apply current Group field values to the respective chunks. You have
3130         * to call File::Save() to make changes persistent.
3131         *
3132         * Usually there is absolutely no need to call this method explicitly.
3133         * It will be called automatically when File::Save() was called.
3134         */
3135        void Group::UpdateChunks() {
3136            // make sure <3gri> and <3gnl> list chunks exist
3137            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3138            if (!_3gri) {
3139                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3140                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3141            }
3142            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3143            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3144    
3145            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3146                // v3 has a fixed list of 128 strings, find a free one
3147                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3148                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3149                        pNameChunk = ck;
3150                        break;
3151                    }
3152                }
3153            }
3154    
3155            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3156            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3157        }
3158    
3159        /**
3160         * Returns the first Sample of this Group. You have to call this method
3161         * once before you use GetNextSample().
3162         *
3163         * <b>Notice:</b> this method might block for a long time, in case the
3164         * samples of this .gig file were not scanned yet
3165         *
3166         * @returns  pointer address to first Sample or NULL if there is none
3167         *           applied to this Group
3168         * @see      GetNextSample()
3169         */
3170        Sample* Group::GetFirstSample() {
3171            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3172            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3173                if (pSample->GetGroup() == this) return pSample;
3174            }
3175            return NULL;
3176        }
3177    
3178        /**
3179         * Returns the next Sample of the Group. You have to call
3180         * GetFirstSample() once before you can use this method. By calling this
3181         * method multiple times it iterates through the Samples assigned to
3182         * this Group.
3183         *
3184         * @returns  pointer address to the next Sample of this Group or NULL if
3185         *           end reached
3186         * @see      GetFirstSample()
3187         */
3188        Sample* Group::GetNextSample() {
3189            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3190            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3191                if (pSample->GetGroup() == this) return pSample;
3192            }
3193            return NULL;
3194        }
3195    
3196        /**
3197         * Move Sample given by \a pSample from another Group to this Group.
3198         */
3199        void Group::AddSample(Sample* pSample) {
3200            pSample->pGroup = this;
3201        }
3202    
3203        /**
3204         * Move all members of this group to another group (preferably the 1st
3205         * one except this). This method is called explicitly by
3206         * File::DeleteGroup() thus when a Group was deleted. This code was
3207         * intentionally not placed in the destructor!
3208         */
3209        void Group::MoveAll() {
3210            // get "that" other group first
3211            Group* pOtherGroup = NULL;
3212            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3213                if (pOtherGroup != this) break;
3214            }
3215            if (!pOtherGroup) throw Exception(
3216                "Could not move samples to another group, since there is no "
3217                "other Group. This is a bug, report it!"
3218            );
3219            // now move all samples of this group to the other group
3220            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3221                pOtherGroup->AddSample(pSample);
3222            }
3223        }
3224    
3225    
3226    
3227  // *************** File ***************  // *************** File ***************
3228  // *  // *
3229    
3230        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3231        const DLS::version_t File::VERSION_2 = {
3232            0, 2, 19980628 & 0xffff, 19980628 >> 16
3233        };
3234    
3235        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3236        const DLS::version_t File::VERSION_3 = {
3237            0, 3, 20030331 & 0xffff, 20030331 >> 16
3238        };
3239    
3240        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3241            { CHUNK_ID_IARL, 256 },
3242            { CHUNK_ID_IART, 128 },
3243            { CHUNK_ID_ICMS, 128 },
3244            { CHUNK_ID_ICMT, 1024 },
3245            { CHUNK_ID_ICOP, 128 },
3246            { CHUNK_ID_ICRD, 128 },
3247            { CHUNK_ID_IENG, 128 },
3248            { CHUNK_ID_IGNR, 128 },
3249            { CHUNK_ID_IKEY, 128 },
3250            { CHUNK_ID_IMED, 128 },
3251            { CHUNK_ID_INAM, 128 },
3252            { CHUNK_ID_IPRD, 128 },
3253            { CHUNK_ID_ISBJ, 128 },
3254            { CHUNK_ID_ISFT, 128 },
3255            { CHUNK_ID_ISRC, 128 },
3256            { CHUNK_ID_ISRF, 128 },
3257            { CHUNK_ID_ITCH, 128 },
3258            { 0, 0 }
3259        };
3260    
3261      File::File() : DLS::File() {      File::File() : DLS::File() {
3262            *pVersion = VERSION_3;
3263            pGroups = NULL;
3264            pInfo->FixedStringLengths = FixedStringLengths;
3265            pInfo->ArchivalLocation = String(256, ' ');
3266    
3267            // add some mandatory chunks to get the file chunks in right
3268            // order (INFO chunk will be moved to first position later)
3269            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3270            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3271            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3272    
3273            GenerateDLSID();
3274      }      }
3275    
3276      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3277            pGroups = NULL;
3278            pInfo->FixedStringLengths = FixedStringLengths;
3279        }
3280    
3281        File::~File() {
3282            if (pGroups) {
3283                std::list<Group*>::iterator iter = pGroups->begin();
3284                std::list<Group*>::iterator end  = pGroups->end();
3285                while (iter != end) {
3286                    delete *iter;
3287                    ++iter;
3288                }
3289                delete pGroups;
3290            }
3291      }      }
3292    
3293      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2698  namespace { Line 3317  namespace {
3317         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3318         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3319         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3320    
3321           // add mandatory chunks to get the chunks in right order
3322           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3323           wave->AddSubList(LIST_TYPE_INFO);
3324    
3325         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3326         return pSample;         return pSample;
3327      }      }
3328    
3329      /** @brief Delete a sample.      /** @brief Delete a sample.
3330       *       *
3331       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
3332       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
3333         * removed. You have to call Save() to make this persistent to the file.
3334       *       *
3335       * @param pSample - sample to delete       * @param pSample - sample to delete
3336       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2714  namespace { Line 3339  namespace {
3339          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3340          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3341          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3342            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3343          pSamples->erase(iter);          pSamples->erase(iter);
3344          delete pSample;          delete pSample;
3345    
3346            // remove all references to the sample
3347            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3348                 instrument = GetNextInstrument()) {
3349                for (Region* region = instrument->GetFirstRegion() ; region ;
3350                     region = instrument->GetNextRegion()) {
3351    
3352                    if (region->GetSample() == pSample) region->SetSample(NULL);
3353    
3354                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3355                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3356                        if (d->pSample == pSample) d->pSample = NULL;
3357                    }
3358                }
3359            }
3360      }      }
3361    
3362      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2723  namespace { Line 3364  namespace {
3364      }      }
3365    
3366      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3367            // Groups must be loaded before samples, because samples will try
3368            // to resolve the group they belong to
3369            if (!pGroups) LoadGroups();
3370    
3371          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3372    
3373          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
# Line 2835  namespace { Line 3480  namespace {
3480         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3481         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3482         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3483    
3484           // add mandatory chunks to get the chunks in right order
3485           lstInstr->AddSubList(LIST_TYPE_INFO);
3486           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3487    
3488         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3489           pInstrument->GenerateDLSID();
3490    
3491           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3492    
3493           // this string is needed for the gig to be loadable in GSt:
3494           pInstrument->pInfo->Software = "Endless Wave";
3495    
3496         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3497         return pInstrument;         return pInstrument;
3498      }      }
# Line 2846  namespace { Line 3503  namespace {
3503       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3504       *       *
3505       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3506       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3507       */       */
3508      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3509          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 2886  namespace { Line 3543  namespace {
3543          }          }
3544      }      }
3545    
3546        /// Updates the 3crc chunk with the checksum of a sample. The
3547        /// update is done directly to disk, as this method is called
3548        /// after File::Save()
3549        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3550            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3551            if (!_3crc) return;
3552    
3553            // get the index of the sample
3554            int iWaveIndex = -1;
3555            File::SampleList::iterator iter = pSamples->begin();
3556            File::SampleList::iterator end  = pSamples->end();
3557            for (int index = 0; iter != end; ++iter, ++index) {
3558                if (*iter == pSample) {
3559                    iWaveIndex = index;
3560                    break;
3561                }
3562            }
3563            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3564    
3565            // write the CRC-32 checksum to disk
3566            _3crc->SetPos(iWaveIndex * 8);
3567            uint32_t tmp = 1;
3568            _3crc->WriteUint32(&tmp); // unknown, always 1?
3569            _3crc->WriteUint32(&crc);
3570        }
3571    
3572        Group* File::GetFirstGroup() {
3573            if (!pGroups) LoadGroups();
3574            // there must always be at least one group
3575            GroupsIterator = pGroups->begin();
3576            return *GroupsIterator;
3577        }
3578    
3579        Group* File::GetNextGroup() {
3580            if (!pGroups) return NULL;
3581            ++GroupsIterator;
3582            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3583        }
3584    
3585        /**
3586         * Returns the group with the given index.
3587         *
3588         * @param index - number of the sought group (0..n)
3589         * @returns sought group or NULL if there's no such group
3590         */
3591        Group* File::GetGroup(uint index) {
3592            if (!pGroups) LoadGroups();
3593            GroupsIterator = pGroups->begin();
3594            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3595                if (i == index) return *GroupsIterator;
3596                ++GroupsIterator;
3597            }
3598            return NULL;
3599        }
3600    
3601        Group* File::AddGroup() {
3602            if (!pGroups) LoadGroups();
3603            // there must always be at least one group
3604            __ensureMandatoryChunksExist();
3605            Group* pGroup = new Group(this, NULL);
3606            pGroups->push_back(pGroup);
3607            return pGroup;
3608        }
3609    
3610        /** @brief Delete a group and its samples.
3611         *
3612         * This will delete the given Group object and all the samples that
3613         * belong to this group from the gig file. You have to call Save() to
3614         * make this persistent to the file.
3615         *
3616         * @param pGroup - group to delete
3617         * @throws gig::Exception if given group could not be found
3618         */
3619        void File::DeleteGroup(Group* pGroup) {
3620            if (!pGroups) LoadGroups();
3621            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3622            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3623            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3624            // delete all members of this group
3625            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3626                DeleteSample(pSample);
3627            }
3628            // now delete this group object
3629            pGroups->erase(iter);
3630            delete pGroup;
3631        }
3632    
3633        /** @brief Delete a group.
3634         *
3635         * This will delete the given Group object from the gig file. All the
3636         * samples that belong to this group will not be deleted, but instead
3637         * be moved to another group. You have to call Save() to make this
3638         * persistent to the file.
3639         *
3640         * @param pGroup - group to delete
3641         * @throws gig::Exception if given group could not be found
3642         */
3643        void File::DeleteGroupOnly(Group* pGroup) {
3644            if (!pGroups) LoadGroups();
3645            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3646            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3647            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3648            // move all members of this group to another group
3649            pGroup->MoveAll();
3650            pGroups->erase(iter);
3651            delete pGroup;
3652        }
3653    
3654        void File::LoadGroups() {
3655            if (!pGroups) pGroups = new std::list<Group*>;
3656            // try to read defined groups from file
3657            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3658            if (lst3gri) {
3659                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3660                if (lst3gnl) {
3661                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3662                    while (ck) {
3663                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3664                            if (pVersion && pVersion->major == 3 &&
3665                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3666    
3667                            pGroups->push_back(new Group(this, ck));
3668                        }
3669                        ck = lst3gnl->GetNextSubChunk();
3670                    }
3671                }
3672            }
3673            // if there were no group(s), create at least the mandatory default group
3674            if (!pGroups->size()) {
3675                Group* pGroup = new Group(this, NULL);
3676                pGroup->Name = "Default Group";
3677                pGroups->push_back(pGroup);
3678            }
3679        }
3680    
3681        /**
3682         * Apply all the gig file's current instruments, samples, groups and settings
3683         * to the respective RIFF chunks. You have to call Save() to make changes
3684         * persistent.
3685         *
3686         * Usually there is absolutely no need to call this method explicitly.
3687         * It will be called automatically when File::Save() was called.
3688         *
3689         * @throws Exception - on errors
3690         */
3691        void File::UpdateChunks() {
3692            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3693    
3694            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3695    
3696            // first update base class's chunks
3697            DLS::File::UpdateChunks();
3698    
3699            if (newFile) {
3700                // INFO was added by Resource::UpdateChunks - make sure it
3701                // is placed first in file
3702                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3703                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3704                if (first != info) {
3705                    pRIFF->MoveSubChunk(info, first);
3706                }
3707            }
3708    
3709            // update group's chunks
3710            if (pGroups) {
3711                std::list<Group*>::iterator iter = pGroups->begin();
3712                std::list<Group*>::iterator end  = pGroups->end();
3713                for (; iter != end; ++iter) {
3714                    (*iter)->UpdateChunks();
3715                }
3716    
3717                // v3: make sure the file has 128 3gnm chunks
3718                if (pVersion && pVersion->major == 3) {
3719                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3720                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3721                    for (int i = 0 ; i < 128 ; i++) {
3722                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3723                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3724                    }
3725                }
3726            }
3727    
3728            // update einf chunk
3729    
3730            // The einf chunk contains statistics about the gig file, such
3731            // as the number of regions and samples used by each
3732            // instrument. It is divided in equally sized parts, where the
3733            // first part contains information about the whole gig file,
3734            // and the rest of the parts map to each instrument in the
3735            // file.
3736            //
3737            // At the end of each part there is a bit map of each sample
3738            // in the file, where a set bit means that the sample is used
3739            // by the file/instrument.
3740            //
3741            // Note that there are several fields with unknown use. These
3742            // are set to zero.
3743    
3744            int sublen = pSamples->size() / 8 + 49;
3745            int einfSize = (Instruments + 1) * sublen;
3746    
3747            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3748            if (einf) {
3749                if (einf->GetSize() != einfSize) {
3750                    einf->Resize(einfSize);
3751                    memset(einf->LoadChunkData(), 0, einfSize);
3752                }
3753            } else if (newFile) {
3754                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3755            }
3756            if (einf) {
3757                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3758    
3759                std::map<gig::Sample*,int> sampleMap;
3760                int sampleIdx = 0;
3761                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3762                    sampleMap[pSample] = sampleIdx++;
3763                }
3764    
3765                int totnbusedsamples = 0;
3766                int totnbusedchannels = 0;
3767                int totnbregions = 0;
3768                int totnbdimregions = 0;
3769                int totnbloops = 0;
3770                int instrumentIdx = 0;
3771    
3772                memset(&pData[48], 0, sublen - 48);
3773    
3774                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3775                     instrument = GetNextInstrument()) {
3776                    int nbusedsamples = 0;
3777                    int nbusedchannels = 0;
3778                    int nbdimregions = 0;
3779                    int nbloops = 0;
3780    
3781                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3782    
3783                    for (Region* region = instrument->GetFirstRegion() ; region ;
3784                         region = instrument->GetNextRegion()) {
3785                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3786                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3787                            if (d->pSample) {
3788                                int sampleIdx = sampleMap[d->pSample];
3789                                int byte = 48 + sampleIdx / 8;
3790                                int bit = 1 << (sampleIdx & 7);
3791                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3792                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3793                                    nbusedsamples++;
3794                                    nbusedchannels += d->pSample->Channels;
3795    
3796                                    if ((pData[byte] & bit) == 0) {
3797                                        pData[byte] |= bit;
3798                                        totnbusedsamples++;
3799                                        totnbusedchannels += d->pSample->Channels;
3800                                    }
3801                                }
3802                            }
3803                            if (d->SampleLoops) nbloops++;
3804                        }
3805                        nbdimregions += region->DimensionRegions;
3806                    }
3807                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3808                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3809                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3810                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3811                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3812                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3813                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3814                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3815                    // next 8 bytes unknown
3816                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3817                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3818                    // next 4 bytes unknown
3819    
3820                    totnbregions += instrument->Regions;
3821                    totnbdimregions += nbdimregions;
3822                    totnbloops += nbloops;
3823                    instrumentIdx++;
3824                }
3825                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3826                // store32(&pData[0], sublen);
3827                store32(&pData[4], totnbusedchannels);
3828                store32(&pData[8], totnbusedsamples);
3829                store32(&pData[12], Instruments);
3830                store32(&pData[16], totnbregions);
3831                store32(&pData[20], totnbdimregions);
3832                store32(&pData[24], totnbloops);
3833                // next 8 bytes unknown
3834                // next 4 bytes unknown, not always 0
3835                store32(&pData[40], pSamples->size());
3836                // next 4 bytes unknown
3837            }
3838    
3839            // update 3crc chunk
3840    
3841            // The 3crc chunk contains CRC-32 checksums for the
3842            // samples. The actual checksum values will be filled in
3843            // later, by Sample::Write.
3844    
3845            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3846            if (_3crc) {
3847                _3crc->Resize(pSamples->size() * 8);
3848            } else if (newFile) {
3849                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3850                _3crc->LoadChunkData();
3851    
3852                // the order of einf and 3crc is not the same in v2 and v3
3853                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3854            }
3855        }
3856    
3857    
3858    
3859  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.902  
changed lines
  Added in v.1384

  ViewVC Help
Powered by ViewVC