/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1102 by persson, Sun Mar 18 07:13:06 2007 UTC revision 1627 by persson, Sun Jan 6 10:53:53 2008 UTC
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
259    // *
260    
261        static uint32_t* __initCRCTable() {
262            static uint32_t res[256];
263    
264            for (int i = 0 ; i < 256 ; i++) {
265                uint32_t c = i;
266                for (int j = 0 ; j < 8 ; j++) {
267                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268                }
269                res[i] = c;
270            }
271            return res;
272        }
273    
274        static const uint32_t* __CRCTable = __initCRCTable();
275    
276        /**
277         * Initialize a CRC variable.
278         *
279         * @param crc - variable to be initialized
280         */
281        inline static void __resetCRC(uint32_t& crc) {
282            crc = 0xffffffff;
283        }
284    
285        /**
286         * Used to calculate checksums of the sample data in a gig file. The
287         * checksums are stored in the 3crc chunk of the gig file and
288         * automatically updated when a sample is written with Sample::Write().
289         *
290         * One should call __resetCRC() to initialize the CRC variable to be
291         * used before calling this function the first time.
292         *
293         * After initializing the CRC variable one can call this function
294         * arbitrary times, i.e. to split the overall CRC calculation into
295         * steps.
296         *
297         * Once the whole data was processed by __calculateCRC(), one should
298         * call __encodeCRC() to get the final CRC result.
299         *
300         * @param buf     - pointer to data the CRC shall be calculated of
301         * @param bufSize - size of the data to be processed
302         * @param crc     - variable the CRC sum shall be stored to
303         */
304        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305            for (int i = 0 ; i < bufSize ; i++) {
306                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307            }
308        }
309    
310        /**
311         * Returns the final CRC result.
312         *
313         * @param crc - variable previously passed to __calculateCRC()
314         */
315        inline static uint32_t __encodeCRC(const uint32_t& crc) {
316            return crc ^ 0xffffffff;
317        }
318    
319    
320    
321    // *************** Other Internal functions  ***************
322    // *
323    
324        static split_type_t __resolveSplitType(dimension_t dimension) {
325            return (
326                dimension == dimension_layer ||
327                dimension == dimension_samplechannel ||
328                dimension == dimension_releasetrigger ||
329                dimension == dimension_keyboard ||
330                dimension == dimension_roundrobin ||
331                dimension == dimension_random ||
332                dimension == dimension_smartmidi ||
333                dimension == dimension_roundrobinkeyboard
334            ) ? split_type_bit : split_type_normal;
335        }
336    
337        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338            return (dimension_definition.split_type == split_type_normal)
339            ? int(128.0 / dimension_definition.zones) : 0;
340        }
341    
342    
343    
344  // *************** Sample ***************  // *************** Sample ***************
345  // *  // *
346    
# Line 279  namespace { Line 366  namespace {
366       *                         is located, 0 otherwise       *                         is located, 0 otherwise
367       */       */
368      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
370                { CHUNK_ID_INAM, 64 },
371                { 0, 0 }
372            };
373            pInfo->SetFixedStringLengths(fixedStringLengths);
374          Instances++;          Instances++;
375          FileNo = fileNo;          FileNo = fileNo;
376    
377            __resetCRC(crc);
378    
379          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380          if (pCk3gix) {          if (pCk3gix) {
381              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
# Line 314  namespace { Line 407  namespace {
407              Manufacturer  = 0;              Manufacturer  = 0;
408              Product       = 0;              Product       = 0;
409              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410              MIDIUnityNote = 64;              MIDIUnityNote = 60;
411              FineTune      = 0;              FineTune      = 0;
412                SMPTEFormat   = smpte_format_no_offset;
413              SMPTEOffset   = 0;              SMPTEOffset   = 0;
414              Loops         = 0;              Loops         = 0;
415              LoopID        = 0;              LoopID        = 0;
416                LoopType      = loop_type_normal;
417              LoopStart     = 0;              LoopStart     = 0;
418              LoopEnd       = 0;              LoopEnd       = 0;
419              LoopFraction  = 0;              LoopFraction  = 0;
# Line 374  namespace { Line 469  namespace {
469    
470          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
471          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
473                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474                memset(pCkSmpl->LoadChunkData(), 0, 60);
475            }
476          // update 'smpl' chunk          // update 'smpl' chunk
477          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
480          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
481          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
482          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
483          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
484          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
485          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
486          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
487    
488          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
489    
490          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
491          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
492          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
493          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
494          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
495          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
496    
497          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
498          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 512  namespace {
512          }          }
513          // update '3gix' chunk          // update '3gix' chunk
514          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
515          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
516      }      }
517    
518      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 1099  namespace { Line 1197  namespace {
1197       *       *
1198       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1199       *       *
1200         * For 16 bit samples, the data in the source buffer should be
1201         * int16_t (using native endianness). For 24 bit, the buffer
1202         * should contain three bytes per sample, little-endian.
1203         *
1204       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1205       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1206       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1107  namespace { Line 1209  namespace {
1209       */       */
1210      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212          return DLS::Sample::Write(pBuffer, SampleCount);  
1213            // if this is the first write in this sample, reset the
1214            // checksum calculator
1215            if (pCkData->GetPos() == 0) {
1216                __resetCRC(crc);
1217            }
1218            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219            unsigned long res;
1220            if (BitDepth == 24) {
1221                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222            } else { // 16 bit
1223                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224                                    : pCkData->Write(pBuffer, SampleCount, 2);
1225            }
1226            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227    
1228            // if this is the last write, update the checksum chunk in the
1229            // file
1230            if (pCkData->GetPos() == pCkData->GetSize()) {
1231                File* pFile = static_cast<File*>(GetParent());
1232                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233            }
1234            return res;
1235      }      }
1236    
1237      /**      /**
# Line 1183  namespace { Line 1307  namespace {
1307      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1308      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309    
1310      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311          Instances++;          Instances++;
1312    
1313          pSample = NULL;          pSample = NULL;
1314            pRegion = pParent;
1315    
1316            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317            else memset(&Crossfade, 0, 4);
1318    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1319          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320    
1321          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
# Line 1352  namespace { Line 1479  namespace {
1479              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1480              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1481              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1482              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1483              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1484              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1485              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1486              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1487              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1369  namespace { Line 1496  namespace {
1496              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1497              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1498              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1499              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1500              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1501              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1502              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1503              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1504              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1505              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1506              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1507              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1508              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1509              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1510              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1511              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1512              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1513              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1423  namespace { Line 1550  namespace {
1550              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1551              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1552              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1553              memset(DimensionUpperLimits, 0, 8);              memset(DimensionUpperLimits, 127, 8);
1554          }          }
1555    
1556          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1558                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1559    
1560          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1561          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1562                                        ReleaseVelocityResponseDepth
1563                                    );
1564    
1565            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566                                                          VCFVelocityDynamicRange,
1567                                                          VCFVelocityScale,
1568                                                          VCFCutoffController);
1569    
1570          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571          // velocity response curves for release time are not used even          VelocityTable = 0;
1572          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1573    
1574          curveType = VCFVelocityCurve;      /*
1575          depth = VCFVelocityDynamicRange;       * Constructs a DimensionRegion by copying all parameters from
1576         * another DimensionRegion
1577         */
1578        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579            Instances++;
1580            *this = src; // default memberwise shallow copy of all parameters
1581            pParentList = _3ewl; // restore the chunk pointer
1582    
1583          // even stranger GSt: two of the velocity response curves for          // deep copy of owned structures
1584          // filter cutoff are not used, instead another special curve          if (src.VelocityTable) {
1585          // is chosen. This curve is not used anywhere else.              VelocityTable = new uint8_t[128];
1586          if ((curveType == curve_type_nonlinear && depth == 0) ||              for (int k = 0 ; k < 128 ; k++)
1587              (curveType == curve_type_special   && depth == 4)) {                  VelocityTable[k] = src.VelocityTable[k];
             curveType = curve_type_special;  
             depth = 5;  
1588          }          }
1589          pVelocityCutoffTable = GetVelocityTable(curveType, depth,          if (src.pSampleLoops) {
1590                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591                for (int k = 0 ; k < src.SampleLoops ; k++)
1592                    pSampleLoops[k] = src.pSampleLoops[k];
1593            }
1594        }
1595    
1596        /**
1597         * Updates the respective member variable and updates @c SampleAttenuation
1598         * which depends on this value.
1599         */
1600        void DimensionRegion::SetGain(int32_t gain) {
1601            DLS::Sampler::SetGain(gain);
1602          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
1603      }      }
1604    
1605      /**      /**
# Line 1472  namespace { Line 1613  namespace {
1613          // first update base class's chunk          // first update base class's chunk
1614          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1615    
1616            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618            pData[12] = Crossfade.in_start;
1619            pData[13] = Crossfade.in_end;
1620            pData[14] = Crossfade.out_start;
1621            pData[15] = Crossfade.out_end;
1622    
1623          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1624          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1626          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629            }
1630            pData = (uint8_t*) _3ewa->LoadChunkData();
1631    
1632          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1633    
1634          const uint32_t chunksize = _3ewa->GetSize();          const uint32_t chunksize = _3ewa->GetNewSize();
1635          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?          store32(&pData[0], chunksize); // unknown, always chunk size?
1636    
1637          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1639    
1640          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1642    
1643          // next 2 bytes unknown          // next 2 bytes unknown
1644    
1645          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1646    
1647          // next 2 bytes unknown          // next 2 bytes unknown
1648    
1649          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1650    
1651          // next 2 bytes unknown          // next 2 bytes unknown
1652    
1653          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1654    
1655          // next 2 bytes unknown          // next 2 bytes unknown
1656    
1657          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1658    
1659          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1661    
1662          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1664    
1665          // next 2 bytes unknown          // next 2 bytes unknown
1666    
1667          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1668    
1669          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1671    
1672          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1674    
1675          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1676              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
1677              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1681    
1682          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1684    
1685          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1686              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
1687              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1691    
1692          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1694    
1695          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1697    
1698          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1700    
1701          // next 2 bytes unknown          // next 2 bytes unknown
1702    
1703          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1704    
1705          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1707    
1708          // next 2 bytes unknown          // next 2 bytes unknown
1709    
1710          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1711    
1712          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1714    
1715          // next 2 bytes unknown          // next 2 bytes unknown
1716    
1717          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1718    
1719          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1721    
1722          // next 2 bytes unknown          // next 2 bytes unknown
1723    
1724          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1725    
1726          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1728    
1729          // next 2 bytes unknown          // next 2 bytes unknown
1730    
1731          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1732    
1733          {          {
1734              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1594  namespace { Line 1746  namespace {
1746                  default:                  default:
1747                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748              }              }
1749              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1750          }          }
1751    
1752          {          {
# Line 1613  namespace { Line 1765  namespace {
1765                  default:                  default:
1766                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767              }              }
1768              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1769          }          }
1770    
1771          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1772    
1773          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1774    
1775          // next 4 bytes unknown          // next 4 bytes unknown
1776    
1777          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1778    
1779          // next 2 bytes unknown          // next 2 bytes unknown
1780    
# Line 1641  namespace { Line 1793  namespace {
1793                  default:                  default:
1794                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795              }              }
1796              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1797          }          }
1798    
1799          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1801    
1802          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1804    
1805          // next byte unknown          // next byte unknown
1806    
# Line 1657  namespace { Line 1809  namespace {
1809              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1813          }          }
1814    
1815          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1817    
1818          {          {
1819              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1822              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1824          }          }
1825    
1826          {          {
# Line 1677  namespace { Line 1829  namespace {
1829              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1830              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1831                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1833          }          }
1834    
1835          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1838    
1839          // next 2 bytes unknown          // next 2 bytes unknown
1840    
1841          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1842          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1843    
1844          {          {
1845              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1846              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1847              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1848              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1849          }          }
1850    
1851          // next 2 bytes unknown          // next 2 bytes unknown
1852    
1853          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1854    
1855          // next 3 bytes unknown          // next 3 bytes unknown
1856    
1857          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1858    
1859          // next 2 bytes unknown          // next 2 bytes unknown
1860    
1861          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1863    
1864          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1865                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1866          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1867    
1868          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1869    
1870          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1873    
1874          // next byte unknown          // next byte unknown
1875    
1876          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1878          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1879    
1880          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1883    
1884          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1886          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1887    
1888          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1890    
1891          if (chunksize >= 148) {          if (chunksize >= 148) {
1892              memcpy(&pData[140], DimensionUpperLimits, 8);              memcpy(&pData[140], DimensionUpperLimits, 8);
1893          }          }
1894      }      }
1895    
1896        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897            curve_type_t curveType = releaseVelocityResponseCurve;
1898            uint8_t depth = releaseVelocityResponseDepth;
1899            // this models a strange behaviour or bug in GSt: two of the
1900            // velocity response curves for release time are not used even
1901            // if specified, instead another curve is chosen.
1902            if ((curveType == curve_type_nonlinear && depth == 0) ||
1903                (curveType == curve_type_special   && depth == 4)) {
1904                curveType = curve_type_nonlinear;
1905                depth = 3;
1906            }
1907            return GetVelocityTable(curveType, depth, 0);
1908        }
1909    
1910        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911                                                        uint8_t vcfVelocityDynamicRange,
1912                                                        uint8_t vcfVelocityScale,
1913                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1914        {
1915            curve_type_t curveType = vcfVelocityCurve;
1916            uint8_t depth = vcfVelocityDynamicRange;
1917            // even stranger GSt: two of the velocity response curves for
1918            // filter cutoff are not used, instead another special curve
1919            // is chosen. This curve is not used anywhere else.
1920            if ((curveType == curve_type_nonlinear && depth == 0) ||
1921                (curveType == curve_type_special   && depth == 4)) {
1922                curveType = curve_type_special;
1923                depth = 5;
1924            }
1925            return GetVelocityTable(curveType, depth,
1926                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927                                        ? vcfVelocityScale : 0);
1928        }
1929    
1930      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1931      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1932      {      {
# Line 1756  namespace { Line 1942  namespace {
1942          return table;          return table;
1943      }      }
1944    
1945        Region* DimensionRegion::GetParent() const {
1946            return pRegion;
1947        }
1948    
1949      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
1951          switch (EncodedController) {          switch (EncodedController) {
# Line 1963  namespace { Line 2153  namespace {
2153                      default:                      default:
2154                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2155                  }                  }
2156                    break;
2157              default:              default:
2158                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2159          }          }
# Line 2008  namespace { Line 2199  namespace {
2199          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2200      }      }
2201    
2202        /**
2203         * Updates the respective member variable and the lookup table / cache
2204         * that depends on this value.
2205         */
2206        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207            pVelocityAttenuationTable =
2208                GetVelocityTable(
2209                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210                );
2211            VelocityResponseCurve = curve;
2212        }
2213    
2214        /**
2215         * Updates the respective member variable and the lookup table / cache
2216         * that depends on this value.
2217         */
2218        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219            pVelocityAttenuationTable =
2220                GetVelocityTable(
2221                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222                );
2223            VelocityResponseDepth = depth;
2224        }
2225    
2226        /**
2227         * Updates the respective member variable and the lookup table / cache
2228         * that depends on this value.
2229         */
2230        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231            pVelocityAttenuationTable =
2232                GetVelocityTable(
2233                    VelocityResponseCurve, VelocityResponseDepth, scaling
2234                );
2235            VelocityResponseCurveScaling = scaling;
2236        }
2237    
2238        /**
2239         * Updates the respective member variable and the lookup table / cache
2240         * that depends on this value.
2241         */
2242        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244            ReleaseVelocityResponseCurve = curve;
2245        }
2246    
2247        /**
2248         * Updates the respective member variable and the lookup table / cache
2249         * that depends on this value.
2250         */
2251        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253            ReleaseVelocityResponseDepth = depth;
2254        }
2255    
2256        /**
2257         * Updates the respective member variable and the lookup table / cache
2258         * that depends on this value.
2259         */
2260        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262            VCFCutoffController = controller;
2263        }
2264    
2265        /**
2266         * Updates the respective member variable and the lookup table / cache
2267         * that depends on this value.
2268         */
2269        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271            VCFVelocityCurve = curve;
2272        }
2273    
2274        /**
2275         * Updates the respective member variable and the lookup table / cache
2276         * that depends on this value.
2277         */
2278        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280            VCFVelocityDynamicRange = range;
2281        }
2282    
2283        /**
2284         * Updates the respective member variable and the lookup table / cache
2285         * that depends on this value.
2286         */
2287        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289            VCFVelocityScale = scaling;
2290        }
2291    
2292      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293    
2294          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2080  namespace { Line 2361  namespace {
2361  // *  // *
2362    
2363      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2364          // Initialization          // Initialization
2365          Dimensions = 0;          Dimensions = 0;
2366          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2093  namespace { Line 2372  namespace {
2372    
2373          // Actual Loading          // Actual Loading
2374    
2375            if (!file->GetAutoLoad()) return;
2376    
2377          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2378    
2379          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2101  namespace { Line 2382  namespace {
2382              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2383                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2384                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2385                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2386                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2387                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2388                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2389                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2115  namespace { Line 2396  namespace {
2396                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2397                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2398                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2399                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2400                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random ||  
                                                            dimension == dimension_smartmidi ||  
                                                            dimension == dimension_roundrobinkeyboard) ? split_type_bit  
                                                                                                       : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2401                      Dimensions++;                      Dimensions++;
2402    
2403                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2146  namespace { Line 2417  namespace {
2417              else              else
2418                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2419    
2420              // load sample references              // load sample references (if auto loading is enabled)
2421              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2422                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2423                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2424                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2425                    }
2426                    GetSample(); // load global region sample reference
2427              }              }
             GetSample(); // load global region sample reference  
2428          } else {          } else {
2429              DimensionRegions = 0;              DimensionRegions = 0;
2430                for (int i = 0 ; i < 8 ; i++) {
2431                    pDimensionDefinitions[i].dimension  = dimension_none;
2432                    pDimensionDefinitions[i].bits       = 0;
2433                    pDimensionDefinitions[i].zones      = 0;
2434                }
2435          }          }
2436    
2437          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2161  namespace { Line 2439  namespace {
2439              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2440              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2441              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2442              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2443              DimensionRegions = 1;              DimensionRegions = 1;
2444          }          }
2445      }      }
# Line 2176  namespace { Line 2454  namespace {
2454       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2455       */       */
2456      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2457            // in the gig format we don't care about the Region's sample reference
2458            // but we still have to provide some existing one to not corrupt the
2459            // file, so to avoid the latter we simply always assign the sample of
2460            // the first dimension region of this region
2461            pSample = pDimensionRegions[0]->pSample;
2462    
2463          // first update base class's chunks          // first update base class's chunks
2464          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2465    
# Line 2185  namespace { Line 2469  namespace {
2469          }          }
2470    
2471          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
2472          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2473          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
2474            const int iMaxDimensionRegions = version3 ? 256 : 32;
2475    
2476          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
2477          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2478          if (!_3lnk) {          if (!_3lnk) {
2479              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
2480              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2481                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2482    
2483                // move 3prg to last position
2484                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2485          }          }
2486    
2487          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2488          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2489          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2490            int shift = 0;
2491          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2492              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2493              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2494              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2495                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2496              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2497              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
2498    
2499                shift += pDimensionDefinitions[i].bits;
2500          }          }
2501    
2502          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
2503          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
2504          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
2505              int iWaveIndex = -1;              int iWaveIndex = -1;
2506              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2220  namespace { Line 2513  namespace {
2513                          break;                          break;
2514                      }                      }
2515                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
2516              }              }
2517              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2518          }          }
2519      }      }
2520    
# Line 2233  namespace { Line 2525  namespace {
2525              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2526              while (_3ewl) {              while (_3ewl) {
2527                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2528                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2529                      dimensionRegionNr++;                      dimensionRegionNr++;
2530                  }                  }
2531                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2242  namespace { Line 2534  namespace {
2534          }          }
2535      }      }
2536    
2537        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2538            // update KeyRange struct and make sure regions are in correct order
2539            DLS::Region::SetKeyRange(Low, High);
2540            // update Region key table for fast lookup
2541            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2542        }
2543    
2544      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
2545          // get velocity dimension's index          // get velocity dimension's index
2546          int veldim = -1;          int veldim = -1;
# Line 2347  namespace { Line 2646  namespace {
2646              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2647                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2648    
2649            // pos is where the new dimension should be placed, normally
2650            // last in list, except for the samplechannel dimension which
2651            // has to be first in list
2652            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2653            int bitpos = 0;
2654            for (int i = 0 ; i < pos ; i++)
2655                bitpos += pDimensionDefinitions[i].bits;
2656    
2657            // make room for the new dimension
2658            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2659            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2660                for (int j = Dimensions ; j > pos ; j--) {
2661                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2662                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2663                }
2664            }
2665    
2666          // assign definition of new dimension          // assign definition of new dimension
2667          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
2668    
2669          // create new dimension region(s) for this new dimension          // auto correct certain dimension definition fields (where possible)
2670          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          pDimensionDefinitions[pos].split_type  =
2671              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              __resolveSplitType(pDimensionDefinitions[pos].dimension);
2672              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);          pDimensionDefinitions[pos].zone_size =
2673              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              __resolveZoneSize(pDimensionDefinitions[pos]);
2674              DimensionRegions++;  
2675            // create new dimension region(s) for this new dimension, and make
2676            // sure that the dimension regions are placed correctly in both the
2677            // RIFF list and the pDimensionRegions array
2678            RIFF::Chunk* moveTo = NULL;
2679            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2680            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2681                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2682                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2683                }
2684                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2685                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2687                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2688                        // create a new dimension region and copy all parameter values from
2689                        // an existing dimension region
2690                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2691                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2692    
2693                        DimensionRegions++;
2694                    }
2695                }
2696                moveTo = pDimensionRegions[i]->pParentList;
2697            }
2698    
2699            // initialize the upper limits for this dimension
2700            int mask = (1 << bitpos) - 1;
2701            for (int z = 0 ; z < pDimDef->zones ; z++) {
2702                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2703                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2704                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2705                                      (z << bitpos) |
2706                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2707                }
2708          }          }
2709    
2710          Dimensions++;          Dimensions++;
# Line 2398  namespace { Line 2747  namespace {
2747          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
2748              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
2749    
2750            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2751    
2752          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
2753          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
2754          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2406  namespace { Line 2757  namespace {
2757                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2758                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
2759                                      iLowerBit;                                      iLowerBit;
2760    
2761                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2762                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
2763                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
2764                      DimensionRegions--;                      DimensionRegions--;
# Line 2426  namespace { Line 2779  namespace {
2779              }              }
2780          }          }
2781    
2782            // remove the this dimension from the upper limits arrays
2783            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2784                DimensionRegion* d = pDimensionRegions[j];
2785                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2786                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2787                }
2788                d->DimensionUpperLimits[Dimensions - 1] = 127;
2789            }
2790    
2791          // 'remove' dimension definition          // 'remove' dimension definition
2792          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2793              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2561  namespace { Line 2923  namespace {
2923      }      }
2924    
2925    
2926    // *************** MidiRule ***************
2927    // *
2928    
2929    MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2930        _3ewg->SetPos(36);
2931        Triggers = _3ewg->ReadUint8();
2932        _3ewg->SetPos(40);
2933        ControllerNumber = _3ewg->ReadUint8();
2934        _3ewg->SetPos(46);
2935        for (int i = 0 ; i < Triggers ; i++) {
2936            pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2937            pTriggers[i].Descending = _3ewg->ReadUint8();
2938            pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2939            pTriggers[i].Key = _3ewg->ReadUint8();
2940            pTriggers[i].NoteOff = _3ewg->ReadUint8();
2941            pTriggers[i].Velocity = _3ewg->ReadUint8();
2942            pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2943            _3ewg->ReadUint8();
2944        }
2945    }
2946    
2947    
2948  // *************** Instrument ***************  // *************** Instrument ***************
2949  // *  // *
2950    
2951      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2952          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
2953                { CHUNK_ID_INAM, 64 },
2954                { CHUNK_ID_ISFT, 12 },
2955                { 0, 0 }
2956            };
2957            pInfo->SetFixedStringLengths(fixedStringLengths);
2958    
2959          // Initialization          // Initialization
2960          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2961            EffectSend = 0;
2962            Attenuation = 0;
2963            FineTune = 0;
2964            PitchbendRange = 0;
2965            PianoReleaseMode = false;
2966            DimensionKeyRange.low = 0;
2967            DimensionKeyRange.high = 0;
2968    
2969          // Loading          // Loading
2970          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2584  namespace { Line 2979  namespace {
2979                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
2980                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2981                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2982    
2983                    if (_3ewg->GetSize() > 32) {
2984                        // read MIDI rules
2985                        _3ewg->SetPos(32);
2986                        uint8_t id1 = _3ewg->ReadUint8();
2987                        uint8_t id2 = _3ewg->ReadUint8();
2988    
2989                        if (id1 == 4 && id2 == 16) {
2990                            MidiRules.push_back(new MidiRuleCtrlTrigger(_3ewg));
2991                        }
2992                        //TODO: all the other types of rules
2993                    }
2994              }              }
2995          }          }
2996    
2997          if (!pRegions) pRegions = new RegionList;          if (pFile->GetAutoLoad()) {
2998          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);              if (!pRegions) pRegions = new RegionList;
2999          if (lrgn) {              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3000              RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
3001              while (rgn) {                  RIFF::List* rgn = lrgn->GetFirstSubList();
3002                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  while (rgn) {
3003                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3004                      pRegions->push_back(new Region(this, rgn));                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3005                            pRegions->push_back(new Region(this, rgn));
3006                        }
3007                        rgn = lrgn->GetNextSubList();
3008                  }                  }
3009                  rgn = lrgn->GetNextSubList();                  // Creating Region Key Table for fast lookup
3010                    UpdateRegionKeyTable();
3011              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
3012          }          }
3013    
3014          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
3015      }      }
3016    
3017      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
3018            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3019          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
3020          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
3021          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
# Line 2645  namespace { Line 3055  namespace {
3055          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3056          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
3057          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3058          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
3059                File* pFile = (File*) GetParent();
3060    
3061                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3062                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3063                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3064                memset(_3ewg->LoadChunkData(), 0, size);
3065            }
3066          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
3067          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3068          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
3069          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
3070          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
3071          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
3072          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3073                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
3074          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
3075          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
3076      }      }
3077    
3078      /**      /**
# Line 2666  namespace { Line 3083  namespace {
3083       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3084       */       */
3085      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3086          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3087          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3088    
3089          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2724  namespace { Line 3141  namespace {
3141          UpdateRegionKeyTable();          UpdateRegionKeyTable();
3142      }      }
3143    
3144        /**
3145         * Returns the first MIDI rule of the instrument. You have to call
3146         * this method once before you use GetNextMidiRule().
3147         *
3148         * The list of MIDI rules, at least in gig v3, always contains at
3149         * most two rules. The second rule can only be the DEF filter
3150         * (which currently isn't supported by libgig).
3151         *
3152         * @returns  pointer address to first MIDI rule or NULL if there is none
3153         * @see      GetNextMidiRule()
3154         */
3155        MidiRule* Instrument::GetFirstMidiRule() {
3156            MidiRulesIterator = MidiRules.begin();
3157            return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3158        }
3159    
3160        /**
3161         * Returns the next MIDI rule of the instrument. You have to call
3162         * GetFirstMidiRule() once before you can use this method. By
3163         * calling this method multiple times it iterates through the
3164         * available rules.
3165         *
3166         * @returns  pointer address to the next MIDI rule or NULL if end reached
3167         * @see      GetFirstMidiRule()
3168         */
3169        MidiRule* Instrument::GetNextMidiRule() {
3170            MidiRulesIterator++;
3171            return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3172        }
3173    
3174    
3175  // *************** Group ***************  // *************** Group ***************
# Line 2757  namespace { Line 3203  namespace {
3203      void Group::UpdateChunks() {      void Group::UpdateChunks() {
3204          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
3205          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3206          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
3207                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3208                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3209            }
3210          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3211          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3212    
3213            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3214                // v3 has a fixed list of 128 strings, find a free one
3215                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3216                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3217                        pNameChunk = ck;
3218                        break;
3219                    }
3220                }
3221            }
3222    
3223          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3224          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3225      }      }
# Line 2835  namespace { Line 3295  namespace {
3295  // *************** File ***************  // *************** File ***************
3296  // *  // *
3297    
3298        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3299        const DLS::version_t File::VERSION_2 = {
3300            0, 2, 19980628 & 0xffff, 19980628 >> 16
3301        };
3302    
3303        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3304        const DLS::version_t File::VERSION_3 = {
3305            0, 3, 20030331 & 0xffff, 20030331 >> 16
3306        };
3307    
3308        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3309            { CHUNK_ID_IARL, 256 },
3310            { CHUNK_ID_IART, 128 },
3311            { CHUNK_ID_ICMS, 128 },
3312            { CHUNK_ID_ICMT, 1024 },
3313            { CHUNK_ID_ICOP, 128 },
3314            { CHUNK_ID_ICRD, 128 },
3315            { CHUNK_ID_IENG, 128 },
3316            { CHUNK_ID_IGNR, 128 },
3317            { CHUNK_ID_IKEY, 128 },
3318            { CHUNK_ID_IMED, 128 },
3319            { CHUNK_ID_INAM, 128 },
3320            { CHUNK_ID_IPRD, 128 },
3321            { CHUNK_ID_ISBJ, 128 },
3322            { CHUNK_ID_ISFT, 128 },
3323            { CHUNK_ID_ISRC, 128 },
3324            { CHUNK_ID_ISRF, 128 },
3325            { CHUNK_ID_ITCH, 128 },
3326            { 0, 0 }
3327        };
3328    
3329      File::File() : DLS::File() {      File::File() : DLS::File() {
3330            bAutoLoad = true;
3331            *pVersion = VERSION_3;
3332          pGroups = NULL;          pGroups = NULL;
3333          pInfo->UseFixedLengthStrings = true;          pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3334            pInfo->ArchivalLocation = String(256, ' ');
3335    
3336            // add some mandatory chunks to get the file chunks in right
3337            // order (INFO chunk will be moved to first position later)
3338            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3339            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3340            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3341    
3342            GenerateDLSID();
3343      }      }
3344    
3345      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3346            bAutoLoad = true;
3347          pGroups = NULL;          pGroups = NULL;
3348          pInfo->UseFixedLengthStrings = true;          pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3349      }      }
3350    
3351      File::~File() {      File::~File() {
# Line 2884  namespace { Line 3387  namespace {
3387         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3388         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3389         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3390    
3391           // add mandatory chunks to get the chunks in right order
3392           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3393           wave->AddSubList(LIST_TYPE_INFO);
3394    
3395         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3396         return pSample;         return pSample;
3397      }      }
3398    
3399      /** @brief Delete a sample.      /** @brief Delete a sample.
3400       *       *
3401       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
3402       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
3403         * removed. You have to call Save() to make this persistent to the file.
3404       *       *
3405       * @param pSample - sample to delete       * @param pSample - sample to delete
3406       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2903  namespace { Line 3412  namespace {
3412          if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation          if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3413          pSamples->erase(iter);          pSamples->erase(iter);
3414          delete pSample;          delete pSample;
3415    
3416            // remove all references to the sample
3417            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3418                 instrument = GetNextInstrument()) {
3419                for (Region* region = instrument->GetFirstRegion() ; region ;
3420                     region = instrument->GetNextRegion()) {
3421    
3422                    if (region->GetSample() == pSample) region->SetSample(NULL);
3423    
3424                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3425                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3426                        if (d->pSample == pSample) d->pSample = NULL;
3427                    }
3428                }
3429            }
3430      }      }
3431    
3432      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2912  namespace { Line 3436  namespace {
3436      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3437          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
3438          // to resolve the group they belong to          // to resolve the group they belong to
3439          LoadGroups();          if (!pGroups) LoadGroups();
3440    
3441          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3442    
# Line 2993  namespace { Line 3517  namespace {
3517              progress_t subprogress;              progress_t subprogress;
3518              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3519              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
3520              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
3521                    GetFirstSample(&subprogress); // now force all samples to be loaded
3522              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
3523    
3524              // instrument loading subtask              // instrument loading subtask
# Line 3026  namespace { Line 3551  namespace {
3551         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3552         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3553         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3554    
3555           // add mandatory chunks to get the chunks in right order
3556           lstInstr->AddSubList(LIST_TYPE_INFO);
3557           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3558    
3559         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3560           pInstrument->GenerateDLSID();
3561    
3562           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3563    
3564           // this string is needed for the gig to be loadable in GSt:
3565           pInstrument->pInfo->Software = "Endless Wave";
3566    
3567         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3568         return pInstrument;         return pInstrument;
3569      }      }
# Line 3077  namespace { Line 3614  namespace {
3614          }          }
3615      }      }
3616    
3617        /// Updates the 3crc chunk with the checksum of a sample. The
3618        /// update is done directly to disk, as this method is called
3619        /// after File::Save()
3620        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3621            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3622            if (!_3crc) return;
3623    
3624            // get the index of the sample
3625            int iWaveIndex = -1;
3626            File::SampleList::iterator iter = pSamples->begin();
3627            File::SampleList::iterator end  = pSamples->end();
3628            for (int index = 0; iter != end; ++iter, ++index) {
3629                if (*iter == pSample) {
3630                    iWaveIndex = index;
3631                    break;
3632                }
3633            }
3634            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3635    
3636            // write the CRC-32 checksum to disk
3637            _3crc->SetPos(iWaveIndex * 8);
3638            uint32_t tmp = 1;
3639            _3crc->WriteUint32(&tmp); // unknown, always 1?
3640            _3crc->WriteUint32(&crc);
3641        }
3642    
3643      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
3644          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3645          // there must always be at least one group          // there must always be at least one group
# Line 3169  namespace { Line 3732  namespace {
3732                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3733                  while (ck) {                  while (ck) {
3734                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3735                            if (pVersion && pVersion->major == 3 &&
3736                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3737    
3738                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
3739                      }                      }
3740                      ck = lst3gnl->GetNextSubChunk();                      ck = lst3gnl->GetNextSubChunk();
# Line 3194  namespace { Line 3760  namespace {
3760       * @throws Exception - on errors       * @throws Exception - on errors
3761       */       */
3762      void File::UpdateChunks() {      void File::UpdateChunks() {
3763            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3764    
3765            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3766    
3767          // first update base class's chunks          // first update base class's chunks
3768          DLS::File::UpdateChunks();          DLS::File::UpdateChunks();
3769    
3770            if (newFile) {
3771                // INFO was added by Resource::UpdateChunks - make sure it
3772                // is placed first in file
3773                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3774                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3775                if (first != info) {
3776                    pRIFF->MoveSubChunk(info, first);
3777                }
3778            }
3779    
3780          // update group's chunks          // update group's chunks
3781          if (pGroups) {          if (pGroups) {
3782              std::list<Group*>::iterator iter = pGroups->begin();              std::list<Group*>::iterator iter = pGroups->begin();
# Line 3204  namespace { Line 3784  namespace {
3784              for (; iter != end; ++iter) {              for (; iter != end; ++iter) {
3785                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks();
3786              }              }
3787          }  
3788                // v3: make sure the file has 128 3gnm chunks
3789                if (pVersion && pVersion->major == 3) {
3790                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3791                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3792                    for (int i = 0 ; i < 128 ; i++) {
3793                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3794                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3795                    }
3796                }
3797            }
3798    
3799            // update einf chunk
3800    
3801            // The einf chunk contains statistics about the gig file, such
3802            // as the number of regions and samples used by each
3803            // instrument. It is divided in equally sized parts, where the
3804            // first part contains information about the whole gig file,
3805            // and the rest of the parts map to each instrument in the
3806            // file.
3807            //
3808            // At the end of each part there is a bit map of each sample
3809            // in the file, where a set bit means that the sample is used
3810            // by the file/instrument.
3811            //
3812            // Note that there are several fields with unknown use. These
3813            // are set to zero.
3814    
3815            int sublen = pSamples->size() / 8 + 49;
3816            int einfSize = (Instruments + 1) * sublen;
3817    
3818            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3819            if (einf) {
3820                if (einf->GetSize() != einfSize) {
3821                    einf->Resize(einfSize);
3822                    memset(einf->LoadChunkData(), 0, einfSize);
3823                }
3824            } else if (newFile) {
3825                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3826            }
3827            if (einf) {
3828                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3829    
3830                std::map<gig::Sample*,int> sampleMap;
3831                int sampleIdx = 0;
3832                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3833                    sampleMap[pSample] = sampleIdx++;
3834                }
3835    
3836                int totnbusedsamples = 0;
3837                int totnbusedchannels = 0;
3838                int totnbregions = 0;
3839                int totnbdimregions = 0;
3840                int totnbloops = 0;
3841                int instrumentIdx = 0;
3842    
3843                memset(&pData[48], 0, sublen - 48);
3844    
3845                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3846                     instrument = GetNextInstrument()) {
3847                    int nbusedsamples = 0;
3848                    int nbusedchannels = 0;
3849                    int nbdimregions = 0;
3850                    int nbloops = 0;
3851    
3852                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3853    
3854                    for (Region* region = instrument->GetFirstRegion() ; region ;
3855                         region = instrument->GetNextRegion()) {
3856                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3857                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3858                            if (d->pSample) {
3859                                int sampleIdx = sampleMap[d->pSample];
3860                                int byte = 48 + sampleIdx / 8;
3861                                int bit = 1 << (sampleIdx & 7);
3862                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3863                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3864                                    nbusedsamples++;
3865                                    nbusedchannels += d->pSample->Channels;
3866    
3867                                    if ((pData[byte] & bit) == 0) {
3868                                        pData[byte] |= bit;
3869                                        totnbusedsamples++;
3870                                        totnbusedchannels += d->pSample->Channels;
3871                                    }
3872                                }
3873                            }
3874                            if (d->SampleLoops) nbloops++;
3875                        }
3876                        nbdimregions += region->DimensionRegions;
3877                    }
3878                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3879                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3880                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3881                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3882                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3883                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3884                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3885                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3886                    // next 8 bytes unknown
3887                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3888                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3889                    // next 4 bytes unknown
3890    
3891                    totnbregions += instrument->Regions;
3892                    totnbdimregions += nbdimregions;
3893                    totnbloops += nbloops;
3894                    instrumentIdx++;
3895                }
3896                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3897                // store32(&pData[0], sublen);
3898                store32(&pData[4], totnbusedchannels);
3899                store32(&pData[8], totnbusedsamples);
3900                store32(&pData[12], Instruments);
3901                store32(&pData[16], totnbregions);
3902                store32(&pData[20], totnbdimregions);
3903                store32(&pData[24], totnbloops);
3904                // next 8 bytes unknown
3905                // next 4 bytes unknown, not always 0
3906                store32(&pData[40], pSamples->size());
3907                // next 4 bytes unknown
3908            }
3909    
3910            // update 3crc chunk
3911    
3912            // The 3crc chunk contains CRC-32 checksums for the
3913            // samples. The actual checksum values will be filled in
3914            // later, by Sample::Write.
3915    
3916            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3917            if (_3crc) {
3918                _3crc->Resize(pSamples->size() * 8);
3919            } else if (newFile) {
3920                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3921                _3crc->LoadChunkData();
3922    
3923                // the order of einf and 3crc is not the same in v2 and v3
3924                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3925            }
3926        }
3927    
3928        /**
3929         * Enable / disable automatic loading. By default this properyt is
3930         * enabled and all informations are loaded automatically. However
3931         * loading all Regions, DimensionRegions and especially samples might
3932         * take a long time for large .gig files, and sometimes one might only
3933         * be interested in retrieving very superficial informations like the
3934         * amount of instruments and their names. In this case one might disable
3935         * automatic loading to avoid very slow response times.
3936         *
3937         * @e CAUTION: by disabling this property many pointers (i.e. sample
3938         * references) and informations will have invalid or even undefined
3939         * data! This feature is currently only intended for retrieving very
3940         * superficial informations in a very fast way. Don't use it to retrieve
3941         * details like synthesis informations or even to modify .gig files!
3942         */
3943        void File::SetAutoLoad(bool b) {
3944            bAutoLoad = b;
3945        }
3946    
3947        /**
3948         * Returns whether automatic loading is enabled.
3949         * @see SetAutoLoad()
3950         */
3951        bool File::GetAutoLoad() {
3952            return bAutoLoad;
3953      }      }
3954    
3955    

Legend:
Removed from v.1102  
changed lines
  Added in v.1627

  ViewVC Help
Powered by ViewVC