/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 773 by persson, Sat Sep 17 14:24:45 2005 UTC revision 1627 by persson, Sun Jan 6 10:53:53 2008 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29  #include <iostream>  #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54  // *************** progress_t ***************  // *************** progress_t ***************
# Line 59  namespace gig { Line 83  namespace gig {
83      }      }
84    
85    
86  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
87  // *  // *
88    
89  namespace {  namespace {
# Line 87  namespace { Line 111  namespace {
111          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
112      }      }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
122                        int srcStep, int dstStep,                        int srcStep, int dstStep,
123                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
# Line 126  namespace { Line 157  namespace {
157      }      }
158    
159      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
160                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
162                        unsigned long copysamples, int truncatedBits)                        unsigned long copysamples, int truncatedBits)
163      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
164          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
165    
166  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
167          y    = get24(params);                   \          y    = get24(params);                   \
# Line 149  namespace { Line 177  namespace {
177    
178  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
179          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
180          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
181          pDst += dstStep          pDst += dstStep
182    
183          switch (compressionmode) {          switch (compressionmode) {
184              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
185                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
186                  while (copysamples) {                  while (copysamples) {
187                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
188                      pDst += dstStep;                      pDst += dstStep;
189                      pSrc += 3;                      pSrc += 3;
190                      copysamples--;                      copysamples--;
# Line 226  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
259    // *
260    
261        static uint32_t* __initCRCTable() {
262            static uint32_t res[256];
263    
264            for (int i = 0 ; i < 256 ; i++) {
265                uint32_t c = i;
266                for (int j = 0 ; j < 8 ; j++) {
267                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268                }
269                res[i] = c;
270            }
271            return res;
272        }
273    
274        static const uint32_t* __CRCTable = __initCRCTable();
275    
276        /**
277         * Initialize a CRC variable.
278         *
279         * @param crc - variable to be initialized
280         */
281        inline static void __resetCRC(uint32_t& crc) {
282            crc = 0xffffffff;
283        }
284    
285        /**
286         * Used to calculate checksums of the sample data in a gig file. The
287         * checksums are stored in the 3crc chunk of the gig file and
288         * automatically updated when a sample is written with Sample::Write().
289         *
290         * One should call __resetCRC() to initialize the CRC variable to be
291         * used before calling this function the first time.
292         *
293         * After initializing the CRC variable one can call this function
294         * arbitrary times, i.e. to split the overall CRC calculation into
295         * steps.
296         *
297         * Once the whole data was processed by __calculateCRC(), one should
298         * call __encodeCRC() to get the final CRC result.
299         *
300         * @param buf     - pointer to data the CRC shall be calculated of
301         * @param bufSize - size of the data to be processed
302         * @param crc     - variable the CRC sum shall be stored to
303         */
304        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305            for (int i = 0 ; i < bufSize ; i++) {
306                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307            }
308        }
309    
310        /**
311         * Returns the final CRC result.
312         *
313         * @param crc - variable previously passed to __calculateCRC()
314         */
315        inline static uint32_t __encodeCRC(const uint32_t& crc) {
316            return crc ^ 0xffffffff;
317        }
318    
319    
320    
321    // *************** Other Internal functions  ***************
322    // *
323    
324        static split_type_t __resolveSplitType(dimension_t dimension) {
325            return (
326                dimension == dimension_layer ||
327                dimension == dimension_samplechannel ||
328                dimension == dimension_releasetrigger ||
329                dimension == dimension_keyboard ||
330                dimension == dimension_roundrobin ||
331                dimension == dimension_random ||
332                dimension == dimension_smartmidi ||
333                dimension == dimension_roundrobinkeyboard
334            ) ? split_type_bit : split_type_normal;
335        }
336    
337        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338            return (dimension_definition.split_type == split_type_normal)
339            ? int(128.0 / dimension_definition.zones) : 0;
340        }
341    
342    
343    
344  // *************** Sample ***************  // *************** Sample ***************
345  // *  // *
346    
347      unsigned int Sample::Instances = 0;      unsigned int Sample::Instances = 0;
348      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
349    
350        /** @brief Constructor.
351         *
352         * Load an existing sample or create a new one. A 'wave' list chunk must
353         * be given to this constructor. In case the given 'wave' list chunk
354         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355         * format and sample data will be loaded from there, otherwise default
356         * values will be used and those chunks will be created when
357         * File::Save() will be called later on.
358         *
359         * @param pFile          - pointer to gig::File where this sample is
360         *                         located (or will be located)
361         * @param waveList       - pointer to 'wave' list chunk which is (or
362         *                         will be) associated with this sample
363         * @param WavePoolOffset - offset of this sample data from wave pool
364         *                         ('wvpl') list chunk
365         * @param fileNo         - number of an extension file where this sample
366         *                         is located, 0 otherwise
367         */
368      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369            static const DLS::Info::string_length_t fixedStringLengths[] = {
370                { CHUNK_ID_INAM, 64 },
371                { 0, 0 }
372            };
373            pInfo->SetFixedStringLengths(fixedStringLengths);
374          Instances++;          Instances++;
375          FileNo = fileNo;          FileNo = fileNo;
376    
377          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
378          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");  
379          SampleGroup = _3gix->ReadInt16();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380            if (pCk3gix) {
381          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
382          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              pGroup = pFile->GetGroup(iSampleGroup);
383          Manufacturer      = smpl->ReadInt32();          } else { // '3gix' chunk missing
384          Product           = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
385          SamplePeriod      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
386          MIDIUnityNote     = smpl->ReadInt32();          }
387          FineTune          = smpl->ReadInt32();  
388          smpl->Read(&SMPTEFormat, 1, 4);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
389          SMPTEOffset       = smpl->ReadInt32();          if (pCkSmpl) {
390          Loops             = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
391          smpl->ReadInt32(); // manufByt              Product       = pCkSmpl->ReadInt32();
392          LoopID            = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
393          smpl->Read(&LoopType, 1, 4);              MIDIUnityNote = pCkSmpl->ReadInt32();
394          LoopStart         = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
395          LoopEnd           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
396          LoopFraction      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
397          LoopPlayCount     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
398                pCkSmpl->ReadInt32(); // manufByt
399                LoopID        = pCkSmpl->ReadInt32();
400                pCkSmpl->Read(&LoopType, 1, 4);
401                LoopStart     = pCkSmpl->ReadInt32();
402                LoopEnd       = pCkSmpl->ReadInt32();
403                LoopFraction  = pCkSmpl->ReadInt32();
404                LoopPlayCount = pCkSmpl->ReadInt32();
405            } else { // 'smpl' chunk missing
406                // use default values
407                Manufacturer  = 0;
408                Product       = 0;
409                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410                MIDIUnityNote = 60;
411                FineTune      = 0;
412                SMPTEFormat   = smpte_format_no_offset;
413                SMPTEOffset   = 0;
414                Loops         = 0;
415                LoopID        = 0;
416                LoopType      = loop_type_normal;
417                LoopStart     = 0;
418                LoopEnd       = 0;
419                LoopFraction  = 0;
420                LoopPlayCount = 0;
421            }
422    
423          FrameTable                 = NULL;          FrameTable                 = NULL;
424          SamplePos                  = 0;          SamplePos                  = 0;
# Line 287  namespace { Line 449  namespace {
449          }          }
450          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
451    
452          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
453        }
454    
455        /**
456         * Apply sample and its settings to the respective RIFF chunks. You have
457         * to call File::Save() to make changes persistent.
458         *
459         * Usually there is absolutely no need to call this method explicitly.
460         * It will be called automatically when File::Save() was called.
461         *
462         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
463         *                        was provided yet
464         * @throws gig::Exception if there is any invalid sample setting
465         */
466        void Sample::UpdateChunks() {
467            // first update base class's chunks
468            DLS::Sample::UpdateChunks();
469    
470            // make sure 'smpl' chunk exists
471            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472            if (!pCkSmpl) {
473                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474                memset(pCkSmpl->LoadChunkData(), 0, 60);
475            }
476            // update 'smpl' chunk
477            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479            store32(&pData[0], Manufacturer);
480            store32(&pData[4], Product);
481            store32(&pData[8], SamplePeriod);
482            store32(&pData[12], MIDIUnityNote);
483            store32(&pData[16], FineTune);
484            store32(&pData[20], SMPTEFormat);
485            store32(&pData[24], SMPTEOffset);
486            store32(&pData[28], Loops);
487    
488            // we skip 'manufByt' for now (4 bytes)
489    
490            store32(&pData[36], LoopID);
491            store32(&pData[40], LoopType);
492            store32(&pData[44], LoopStart);
493            store32(&pData[48], LoopEnd);
494            store32(&pData[52], LoopFraction);
495            store32(&pData[56], LoopPlayCount);
496    
497            // make sure '3gix' chunk exists
498            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
499            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
500            // determine appropriate sample group index (to be stored in chunk)
501            uint16_t iSampleGroup = 0; // 0 refers to default sample group
502            File* pFile = static_cast<File*>(pParent);
503            if (pFile->pGroups) {
504                std::list<Group*>::iterator iter = pFile->pGroups->begin();
505                std::list<Group*>::iterator end  = pFile->pGroups->end();
506                for (int i = 0; iter != end; i++, iter++) {
507                    if (*iter == pGroup) {
508                        iSampleGroup = i;
509                        break; // found
510                    }
511                }
512            }
513            // update '3gix' chunk
514            pData = (uint8_t*) pCk3gix->LoadChunkData();
515            store16(&pData[0], iSampleGroup);
516      }      }
517    
518      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 490  namespace { Line 715  namespace {
715          RAMCache.Size   = 0;          RAMCache.Size   = 0;
716      }      }
717    
718        /** @brief Resize sample.
719         *
720         * Resizes the sample's wave form data, that is the actual size of
721         * sample wave data possible to be written for this sample. This call
722         * will return immediately and just schedule the resize operation. You
723         * should call File::Save() to actually perform the resize operation(s)
724         * "physically" to the file. As this can take a while on large files, it
725         * is recommended to call Resize() first on all samples which have to be
726         * resized and finally to call File::Save() to perform all those resize
727         * operations in one rush.
728         *
729         * The actual size (in bytes) is dependant to the current FrameSize
730         * value. You may want to set FrameSize before calling Resize().
731         *
732         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
733         * enlarged samples before calling File::Save() as this might exceed the
734         * current sample's boundary!
735         *
736         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
737         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
738         * other formats will fail!
739         *
740         * @param iNewSize - new sample wave data size in sample points (must be
741         *                   greater than zero)
742         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
743         *                         or if \a iNewSize is less than 1
744         * @throws gig::Exception if existing sample is compressed
745         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
746         *      DLS::Sample::FormatTag, File::Save()
747         */
748        void Sample::Resize(int iNewSize) {
749            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
750            DLS::Sample::Resize(iNewSize);
751        }
752    
753      /**      /**
754       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
755       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 579  namespace { Line 839  namespace {
839       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
840       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
841       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
842         * @param pDimRgn          dimension region with looping information
843       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
844       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
845       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
846       */       */
847      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
848                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
849          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
850          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
851    
852          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
853    
854          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
855    
856              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
857                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
858    
859                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
860                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
861    
862                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
863                              // determine the end position within the loop first,                          do {
864                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
865                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
866                              // backward playback  
867                                if (!pPlaybackState->reverse) { // forward playback
868                              unsigned long swapareastart       = totalreadsamples;                                  do {
869                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
870                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
871                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
872                                        totalreadsamples += readsamples;
873                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
874                                            pPlaybackState->reverse = true;
875                              // read samples for backward playback                                          break;
876                              do {                                      }
877                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
878                                  samplestoreadinloop -= readsamples;                              }
879                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
880    
881                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
882                                    // determine the end position within the loop first,
883                                    // read forward from that 'end' and finally after
884                                    // reading, swap all sample frames so it reflects
885                                    // backward playback
886    
887                                    unsigned long swapareastart       = totalreadsamples;
888                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
889                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
890                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
891    
892                                    SetPos(reverseplaybackend);
893    
894                                    // read samples for backward playback
895                                    do {
896                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
897                                        samplestoreadinloop -= readsamples;
898                                        samplestoread       -= readsamples;
899                                        totalreadsamples    += readsamples;
900                                    } while (samplestoreadinloop && readsamples);
901    
902                                    SetPos(reverseplaybackend); // pretend we really read backwards
903    
904                                    if (reverseplaybackend == loop.LoopStart) {
905                                        pPlaybackState->loop_cycles_left--;
906                                        pPlaybackState->reverse = false;
907                                    }
908    
909                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
910                                  pPlaybackState->loop_cycles_left--;                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
                                 pPlaybackState->reverse = false;  
911                              }                              }
912                            } while (samplestoread && readsamples);
913                            break;
914                        }
915    
916                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
917                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
918                          }                          if (!pPlaybackState->reverse) do {
919                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
920                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
921                  }                              samplestoread    -= readsamples;
922                                totalreadsamples += readsamples;
923                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
924                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
925                      if (!pPlaybackState->reverse) do {                                  break;
926                          samplestoloopend  = this->LoopEnd - GetPos();                              }
927                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
928    
929                      if (!samplestoread) break;                          if (!samplestoread) break;
930    
931                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
932                      // determine the end position within the loop first,                          // determine the end position within the loop first,
933                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
934                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
935                      // backward playback                          // backward playback
936    
937                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
938                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
939                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
940                                                                                : samplestoread;                                                                                    : samplestoread;
941                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
942    
943                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
944    
945                      // read samples for backward playback                          // read samples for backward playback
946                      do {                          do {
947                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
948                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
949                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
950                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
951                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
952                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
953                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
954                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
955                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
956                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
957                          }                              }
958                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
959    
960                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
961    
962                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
963                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964                      break;                          break;
965                  }                      }
966    
967                  default: case loop_type_normal: {                      default: case loop_type_normal: {
968                      do {                          do {
969                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
970                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
971                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
972                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
973                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
974                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
975                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
976                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
977                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
978                          }                              }
979                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
980                      break;                          break;
981                        }
982                  }                  }
983              }              }
984          }          }
# Line 741  namespace { Line 1008  namespace {
1008       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1009       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1010       *       *
1011         * For 16 bit samples, the data in the buffer will be int16_t
1012         * (using native endianness). For 24 bit, the buffer will
1013         * contain three bytes per sample, little-endian.
1014         *
1015       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1016       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1017       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
# Line 751  namespace { Line 1022  namespace {
1022          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1023          if (!Compressed) {          if (!Compressed) {
1024              if (BitDepth == 24) {              if (BitDepth == 24) {
1025                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1026              }              }
1027              else { // 16 bit              else { // 16 bit
1028                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 801  namespace { Line 1052  namespace {
1052    
1053              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1054              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1055                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1056              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1057    
1058              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
# Line 882  namespace { Line 1134  namespace {
1134                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1135                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1136    
1137                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1138                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1139                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1140                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1141                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1142                          }                          }
1143                          else { // Mono                          else { // Mono
1144                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1145                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1146                              pDst += copysamples;                              pDst24 += copysamples * 3;
1147                          }                          }
1148                      }                      }
1149                      else { // 16 bit                      else { // 16 bit
# Line 933  namespace { Line 1185  namespace {
1185          }          }
1186      }      }
1187    
1188        /** @brief Write sample wave data.
1189         *
1190         * Writes \a SampleCount number of sample points from the buffer pointed
1191         * by \a pBuffer and increments the position within the sample. Use this
1192         * method to directly write the sample data to disk, i.e. if you don't
1193         * want or cannot load the whole sample data into RAM.
1194         *
1195         * You have to Resize() the sample to the desired size and call
1196         * File::Save() <b>before</b> using Write().
1197         *
1198         * Note: there is currently no support for writing compressed samples.
1199         *
1200         * For 16 bit samples, the data in the source buffer should be
1201         * int16_t (using native endianness). For 24 bit, the buffer
1202         * should contain three bytes per sample, little-endian.
1203         *
1204         * @param pBuffer     - source buffer
1205         * @param SampleCount - number of sample points to write
1206         * @throws DLS::Exception if current sample size is too small
1207         * @throws gig::Exception if sample is compressed
1208         * @see DLS::LoadSampleData()
1209         */
1210        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212    
1213            // if this is the first write in this sample, reset the
1214            // checksum calculator
1215            if (pCkData->GetPos() == 0) {
1216                __resetCRC(crc);
1217            }
1218            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219            unsigned long res;
1220            if (BitDepth == 24) {
1221                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222            } else { // 16 bit
1223                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224                                    : pCkData->Write(pBuffer, SampleCount, 2);
1225            }
1226            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227    
1228            // if this is the last write, update the checksum chunk in the
1229            // file
1230            if (pCkData->GetPos() == pCkData->GetSize()) {
1231                File* pFile = static_cast<File*>(GetParent());
1232                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233            }
1234            return res;
1235        }
1236    
1237      /**      /**
1238       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1239       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 975  namespace { Line 1276  namespace {
1276          }          }
1277      }      }
1278    
1279        /**
1280         * Returns pointer to the Group this Sample belongs to. In the .gig
1281         * format a sample always belongs to one group. If it wasn't explicitly
1282         * assigned to a certain group, it will be automatically assigned to a
1283         * default group.
1284         *
1285         * @returns Sample's Group (never NULL)
1286         */
1287        Group* Sample::GetGroup() const {
1288            return pGroup;
1289        }
1290    
1291      Sample::~Sample() {      Sample::~Sample() {
1292          Instances--;          Instances--;
1293          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 994  namespace { Line 1307  namespace {
1307      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1308      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309    
1310      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311          Instances++;          Instances++;
1312    
1313          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1314            pRegion = pParent;
1315    
1316            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317            else memset(&Crossfade, 0, 4);
1318    
1319          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320    
1321          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1322          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1323          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1324          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1325          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1327          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1328          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1329          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1330          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1331          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1332          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1333          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1334          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1335          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1337          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1338          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1340          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1341          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1342          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1343          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1344          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1345          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1346          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1347          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1348          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1349          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1350          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1351          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1352          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1355          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1356          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1358          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1359          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1361          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1362          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1363          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1364          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1365          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1366          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1367          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1368          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1369          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1370          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1371          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1372          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1373              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1374              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1375          }                  VelocityResponseDepth = velocityresponse;
1376          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1377              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1378              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1379          }              } else if (velocityresponse < 15) {
1380          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1381              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1382              VelocityResponseDepth = velocityresponse - 10;              } else {
1383                    VelocityResponseCurve = curve_type_unknown;
1384                    VelocityResponseDepth = 0;
1385                }
1386                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1387                if (releasevelocityresponse < 5) {
1388                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1389                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1390                } else if (releasevelocityresponse < 10) {
1391                    ReleaseVelocityResponseCurve = curve_type_linear;
1392                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1393                } else if (releasevelocityresponse < 15) {
1394                    ReleaseVelocityResponseCurve = curve_type_special;
1395                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1396                } else {
1397                    ReleaseVelocityResponseCurve = curve_type_unknown;
1398                    ReleaseVelocityResponseDepth = 0;
1399                }
1400                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1401                AttenuationControllerThreshold = _3ewa->ReadInt8();
1402                _3ewa->ReadInt32(); // unknown
1403                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1404                _3ewa->ReadInt16(); // unknown
1405                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1406                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1407                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1408                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1409                else                                       DimensionBypass = dim_bypass_ctrl_none;
1410                uint8_t pan = _3ewa->ReadUint8();
1411                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1412                SelfMask = _3ewa->ReadInt8() & 0x01;
1413                _3ewa->ReadInt8(); // unknown
1414                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1415                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1416                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1417                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1418                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1420                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1421                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1422                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1423                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1424                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1425                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1426                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1427                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1428                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1429                                                            : vcf_res_ctrl_none;
1430                uint16_t eg3depth = _3ewa->ReadUint16();
1431                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1432                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1433                _3ewa->ReadInt16(); // unknown
1434                ChannelOffset = _3ewa->ReadUint8() / 4;
1435                uint8_t regoptions = _3ewa->ReadUint8();
1436                MSDecode           = regoptions & 0x01; // bit 0
1437                SustainDefeat      = regoptions & 0x02; // bit 1
1438                _3ewa->ReadInt16(); // unknown
1439                VelocityUpperLimit = _3ewa->ReadInt8();
1440                _3ewa->ReadInt8(); // unknown
1441                _3ewa->ReadInt16(); // unknown
1442                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1443                _3ewa->ReadInt8(); // unknown
1444                _3ewa->ReadInt8(); // unknown
1445                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1446                uint8_t vcfcutoff = _3ewa->ReadUint8();
1447                VCFEnabled = vcfcutoff & 0x80; // bit 7
1448                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1449                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1450                uint8_t vcfvelscale = _3ewa->ReadUint8();
1451                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1452                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1453                _3ewa->ReadInt8(); // unknown
1454                uint8_t vcfresonance = _3ewa->ReadUint8();
1455                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1456                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1457                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1458                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1459                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1460                uint8_t vcfvelocity = _3ewa->ReadUint8();
1461                VCFVelocityDynamicRange = vcfvelocity % 5;
1462                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1463                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1464                if (VCFType == vcf_type_lowpass) {
1465                    if (lfo3ctrl & 0x40) // bit 6
1466                        VCFType = vcf_type_lowpassturbo;
1467                }
1468                if (_3ewa->RemainingBytes() >= 8) {
1469                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1470                } else {
1471                    memset(DimensionUpperLimits, 0, 8);
1472                }
1473            } else { // '3ewa' chunk does not exist yet
1474                // use default values
1475                LFO3Frequency                   = 1.0;
1476                EG3Attack                       = 0.0;
1477                LFO1InternalDepth               = 0;
1478                LFO3InternalDepth               = 0;
1479                LFO1ControlDepth                = 0;
1480                LFO3ControlDepth                = 0;
1481                EG1Attack                       = 0.0;
1482                EG1Decay1                       = 0.005;
1483                EG1Sustain                      = 1000;
1484                EG1Release                      = 0.3;
1485                EG1Controller.type              = eg1_ctrl_t::type_none;
1486                EG1Controller.controller_number = 0;
1487                EG1ControllerInvert             = false;
1488                EG1ControllerAttackInfluence    = 0;
1489                EG1ControllerDecayInfluence     = 0;
1490                EG1ControllerReleaseInfluence   = 0;
1491                EG2Controller.type              = eg2_ctrl_t::type_none;
1492                EG2Controller.controller_number = 0;
1493                EG2ControllerInvert             = false;
1494                EG2ControllerAttackInfluence    = 0;
1495                EG2ControllerDecayInfluence     = 0;
1496                EG2ControllerReleaseInfluence   = 0;
1497                LFO1Frequency                   = 1.0;
1498                EG2Attack                       = 0.0;
1499                EG2Decay1                       = 0.005;
1500                EG2Sustain                      = 1000;
1501                EG2Release                      = 0.3;
1502                LFO2ControlDepth                = 0;
1503                LFO2Frequency                   = 1.0;
1504                LFO2InternalDepth               = 0;
1505                EG1Decay2                       = 0.0;
1506                EG1InfiniteSustain              = true;
1507                EG1PreAttack                    = 0;
1508                EG2Decay2                       = 0.0;
1509                EG2InfiniteSustain              = true;
1510                EG2PreAttack                    = 0;
1511                VelocityResponseCurve           = curve_type_nonlinear;
1512                VelocityResponseDepth           = 3;
1513                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1514                ReleaseVelocityResponseDepth    = 3;
1515                VelocityResponseCurveScaling    = 32;
1516                AttenuationControllerThreshold  = 0;
1517                SampleStartOffset               = 0;
1518                PitchTrack                      = true;
1519                DimensionBypass                 = dim_bypass_ctrl_none;
1520                Pan                             = 0;
1521                SelfMask                        = true;
1522                LFO3Controller                  = lfo3_ctrl_modwheel;
1523                LFO3Sync                        = false;
1524                InvertAttenuationController     = false;
1525                AttenuationController.type      = attenuation_ctrl_t::type_none;
1526                AttenuationController.controller_number = 0;
1527                LFO2Controller                  = lfo2_ctrl_internal;
1528                LFO2FlipPhase                   = false;
1529                LFO2Sync                        = false;
1530                LFO1Controller                  = lfo1_ctrl_internal;
1531                LFO1FlipPhase                   = false;
1532                LFO1Sync                        = false;
1533                VCFResonanceController          = vcf_res_ctrl_none;
1534                EG3Depth                        = 0;
1535                ChannelOffset                   = 0;
1536                MSDecode                        = false;
1537                SustainDefeat                   = false;
1538                VelocityUpperLimit              = 0;
1539                ReleaseTriggerDecay             = 0;
1540                EG1Hold                         = false;
1541                VCFEnabled                      = false;
1542                VCFCutoff                       = 0;
1543                VCFCutoffController             = vcf_cutoff_ctrl_none;
1544                VCFCutoffControllerInvert       = false;
1545                VCFVelocityScale                = 0;
1546                VCFResonance                    = 0;
1547                VCFResonanceDynamic             = false;
1548                VCFKeyboardTracking             = false;
1549                VCFKeyboardTrackingBreakpoint   = 0;
1550                VCFVelocityDynamicRange         = 0x04;
1551                VCFVelocityCurve                = curve_type_linear;
1552                VCFType                         = vcf_type_lowpass;
1553                memset(DimensionUpperLimits, 127, 8);
1554          }          }
1555          else {  
1556              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1558                                                         VelocityResponseCurveScaling);
1559    
1560            pVelocityReleaseTable = GetReleaseVelocityTable(
1561                                        ReleaseVelocityResponseCurve,
1562                                        ReleaseVelocityResponseDepth
1563                                    );
1564    
1565            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566                                                          VCFVelocityDynamicRange,
1567                                                          VCFVelocityScale,
1568                                                          VCFCutoffController);
1569    
1570            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571            VelocityTable = 0;
1572        }
1573    
1574        /*
1575         * Constructs a DimensionRegion by copying all parameters from
1576         * another DimensionRegion
1577         */
1578        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579            Instances++;
1580            *this = src; // default memberwise shallow copy of all parameters
1581            pParentList = _3ewl; // restore the chunk pointer
1582    
1583            // deep copy of owned structures
1584            if (src.VelocityTable) {
1585                VelocityTable = new uint8_t[128];
1586                for (int k = 0 ; k < 128 ; k++)
1587                    VelocityTable[k] = src.VelocityTable[k];
1588            }
1589            if (src.pSampleLoops) {
1590                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591                for (int k = 0 ; k < src.SampleLoops ; k++)
1592                    pSampleLoops[k] = src.pSampleLoops[k];
1593          }          }
1594          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1595          if (releasevelocityresponse < 5) {  
1596              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1597              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Updates the respective member variable and updates @c SampleAttenuation
1598          }       * which depends on this value.
1599          else if (releasevelocityresponse < 10) {       */
1600              ReleaseVelocityResponseCurve = curve_type_linear;      void DimensionRegion::SetGain(int32_t gain) {
1601              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          DLS::Sampler::SetGain(gain);
1602          }          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1603          else if (releasevelocityresponse < 15) {      }
1604              ReleaseVelocityResponseCurve = curve_type_special;  
1605              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      /**
1606         * Apply dimension region settings to the respective RIFF chunks. You
1607         * have to call File::Save() to make changes persistent.
1608         *
1609         * Usually there is absolutely no need to call this method explicitly.
1610         * It will be called automatically when File::Save() was called.
1611         */
1612        void DimensionRegion::UpdateChunks() {
1613            // first update base class's chunk
1614            DLS::Sampler::UpdateChunks();
1615    
1616            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618            pData[12] = Crossfade.in_start;
1619            pData[13] = Crossfade.in_end;
1620            pData[14] = Crossfade.out_start;
1621            pData[15] = Crossfade.out_end;
1622    
1623            // make sure '3ewa' chunk exists
1624            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625            if (!_3ewa) {
1626                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629          }          }
1630          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1631              ReleaseVelocityResponseCurve = curve_type_unknown;  
1632              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
1633    
1634            const uint32_t chunksize = _3ewa->GetNewSize();
1635            store32(&pData[0], chunksize); // unknown, always chunk size?
1636    
1637            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638            store32(&pData[4], lfo3freq);
1639    
1640            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641            store32(&pData[8], eg3attack);
1642    
1643            // next 2 bytes unknown
1644    
1645            store16(&pData[14], LFO1InternalDepth);
1646    
1647            // next 2 bytes unknown
1648    
1649            store16(&pData[18], LFO3InternalDepth);
1650    
1651            // next 2 bytes unknown
1652    
1653            store16(&pData[22], LFO1ControlDepth);
1654    
1655            // next 2 bytes unknown
1656    
1657            store16(&pData[26], LFO3ControlDepth);
1658    
1659            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660            store32(&pData[28], eg1attack);
1661    
1662            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663            store32(&pData[32], eg1decay1);
1664    
1665            // next 2 bytes unknown
1666    
1667            store16(&pData[38], EG1Sustain);
1668    
1669            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670            store32(&pData[40], eg1release);
1671    
1672            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673            pData[44] = eg1ctl;
1674    
1675            const uint8_t eg1ctrloptions =
1676                (EG1ControllerInvert ? 0x01 : 0x00) |
1677                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680            pData[45] = eg1ctrloptions;
1681    
1682            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683            pData[46] = eg2ctl;
1684    
1685            const uint8_t eg2ctrloptions =
1686                (EG2ControllerInvert ? 0x01 : 0x00) |
1687                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690            pData[47] = eg2ctrloptions;
1691    
1692            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693            store32(&pData[48], lfo1freq);
1694    
1695            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696            store32(&pData[52], eg2attack);
1697    
1698            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699            store32(&pData[56], eg2decay1);
1700    
1701            // next 2 bytes unknown
1702    
1703            store16(&pData[62], EG2Sustain);
1704    
1705            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706            store32(&pData[64], eg2release);
1707    
1708            // next 2 bytes unknown
1709    
1710            store16(&pData[70], LFO2ControlDepth);
1711    
1712            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713            store32(&pData[72], lfo2freq);
1714    
1715            // next 2 bytes unknown
1716    
1717            store16(&pData[78], LFO2InternalDepth);
1718    
1719            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720            store32(&pData[80], eg1decay2);
1721    
1722            // next 2 bytes unknown
1723    
1724            store16(&pData[86], EG1PreAttack);
1725    
1726            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727            store32(&pData[88], eg2decay2);
1728    
1729            // next 2 bytes unknown
1730    
1731            store16(&pData[94], EG2PreAttack);
1732    
1733            {
1734                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1735                uint8_t velocityresponse = VelocityResponseDepth;
1736                switch (VelocityResponseCurve) {
1737                    case curve_type_nonlinear:
1738                        break;
1739                    case curve_type_linear:
1740                        velocityresponse += 5;
1741                        break;
1742                    case curve_type_special:
1743                        velocityresponse += 10;
1744                        break;
1745                    case curve_type_unknown:
1746                    default:
1747                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748                }
1749                pData[96] = velocityresponse;
1750          }          }
1751          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
1752          AttenuationControllerThreshold = _3ewa->ReadInt8();          {
1753          _3ewa->ReadInt32(); // unknown              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1754          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();              uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1755          _3ewa->ReadInt16(); // unknown              switch (ReleaseVelocityResponseCurve) {
1756          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();                  case curve_type_nonlinear:
1757          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);                      break;
1758          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;                  case curve_type_linear:
1759          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;                      releasevelocityresponse += 5;
1760          else                                       DimensionBypass = dim_bypass_ctrl_none;                      break;
1761          uint8_t pan = _3ewa->ReadUint8();                  case curve_type_special:
1762          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit                      releasevelocityresponse += 10;
1763          SelfMask = _3ewa->ReadInt8() & 0x01;                      break;
1764          _3ewa->ReadInt8(); // unknown                  case curve_type_unknown:
1765          uint8_t lfo3ctrl = _3ewa->ReadUint8();                  default:
1766          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5              }
1768          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7              pData[97] = releasevelocityresponse;
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t vcfvelscale = _3ewa->ReadUint8();  
         VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7  
         VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
1769          }          }
1770    
1771          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pData[98] = VelocityResponseCurveScaling;
1772                                                       VelocityResponseDepth,  
1773                                                       VelocityResponseCurveScaling);          pData[99] = AttenuationControllerThreshold;
1774    
1775            // next 4 bytes unknown
1776    
1777            store16(&pData[104], SampleStartOffset);
1778    
1779            // next 2 bytes unknown
1780    
1781            {
1782                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1783                switch (DimensionBypass) {
1784                    case dim_bypass_ctrl_94:
1785                        pitchTrackDimensionBypass |= 0x10;
1786                        break;
1787                    case dim_bypass_ctrl_95:
1788                        pitchTrackDimensionBypass |= 0x20;
1789                        break;
1790                    case dim_bypass_ctrl_none:
1791                        //FIXME: should we set anything here?
1792                        break;
1793                    default:
1794                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795                }
1796                pData[108] = pitchTrackDimensionBypass;
1797            }
1798    
1799            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800            pData[109] = pan;
1801    
1802            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803            pData[110] = selfmask;
1804    
1805            // next byte unknown
1806    
1807            {
1808                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1809                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812                pData[112] = lfo3ctrl;
1813            }
1814    
1815            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816            pData[113] = attenctl;
1817    
1818            {
1819                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1822                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823                pData[114] = lfo2ctrl;
1824            }
1825    
1826            {
1827                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1828                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1829                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1830                if (VCFResonanceController != vcf_res_ctrl_none)
1831                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832                pData[115] = lfo1ctrl;
1833            }
1834    
1835            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837            pData[116] = eg3depth;
1838    
1839            // next 2 bytes unknown
1840    
1841            const uint8_t channeloffset = ChannelOffset * 4;
1842            pData[120] = channeloffset;
1843    
1844            {
1845                uint8_t regoptions = 0;
1846                if (MSDecode)      regoptions |= 0x01; // bit 0
1847                if (SustainDefeat) regoptions |= 0x02; // bit 1
1848                pData[121] = regoptions;
1849            }
1850    
1851            // next 2 bytes unknown
1852    
1853            pData[124] = VelocityUpperLimit;
1854    
1855            // next 3 bytes unknown
1856    
1857            pData[128] = ReleaseTriggerDecay;
1858    
1859            // next 2 bytes unknown
1860    
1861            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862            pData[131] = eg1hold;
1863    
1864            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1865                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1866            pData[132] = vcfcutoff;
1867    
1868            pData[133] = VCFCutoffController;
1869    
1870          curve_type_t curveType = ReleaseVelocityResponseCurve;          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871          uint8_t depth = ReleaseVelocityResponseDepth;                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872            pData[134] = vcfvelscale;
1873    
1874            // next byte unknown
1875    
1876            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877                                         (VCFResonance & 0x7f); /* lower 7 bits */
1878            pData[136] = vcfresonance;
1879    
1880            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882            pData[137] = vcfbreakpoint;
1883    
1884            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885                                        VCFVelocityCurve * 5;
1886            pData[138] = vcfvelocity;
1887    
1888            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889            pData[139] = vcftype;
1890    
1891            if (chunksize >= 148) {
1892                memcpy(&pData[140], DimensionUpperLimits, 8);
1893            }
1894        }
1895    
1896        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897            curve_type_t curveType = releaseVelocityResponseCurve;
1898            uint8_t depth = releaseVelocityResponseDepth;
1899          // this models a strange behaviour or bug in GSt: two of the          // this models a strange behaviour or bug in GSt: two of the
1900          // velocity response curves for release time are not used even          // velocity response curves for release time are not used even
1901          // if specified, instead another curve is chosen.          // if specified, instead another curve is chosen.
# Line 1168  namespace { Line 1904  namespace {
1904              curveType = curve_type_nonlinear;              curveType = curve_type_nonlinear;
1905              depth = 3;              depth = 3;
1906          }          }
1907          pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);          return GetVelocityTable(curveType, depth, 0);
1908        }
         curveType = VCFVelocityCurve;  
         depth = VCFVelocityDynamicRange;  
1909    
1910        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911                                                        uint8_t vcfVelocityDynamicRange,
1912                                                        uint8_t vcfVelocityScale,
1913                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1914        {
1915            curve_type_t curveType = vcfVelocityCurve;
1916            uint8_t depth = vcfVelocityDynamicRange;
1917          // even stranger GSt: two of the velocity response curves for          // even stranger GSt: two of the velocity response curves for
1918          // filter cutoff are not used, instead another special curve          // filter cutoff are not used, instead another special curve
1919          // is chosen. This curve is not used anywhere else.          // is chosen. This curve is not used anywhere else.
# Line 1181  namespace { Line 1922  namespace {
1922              curveType = curve_type_special;              curveType = curve_type_special;
1923              depth = 5;              depth = 5;
1924          }          }
1925          pVelocityCutoffTable = GetVelocityTable(curveType, depth,          return GetVelocityTable(curveType, depth,
1926                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);                                  (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927                                        ? vcfVelocityScale : 0);
         SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));  
1928      }      }
1929    
1930      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1202  namespace { Line 1942  namespace {
1942          return table;          return table;
1943      }      }
1944    
1945        Region* DimensionRegion::GetParent() const {
1946            return pRegion;
1947        }
1948    
1949      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
1951          switch (EncodedController) {          switch (EncodedController) {
# Line 1320  namespace { Line 2064  namespace {
2064          return decodedcontroller;          return decodedcontroller;
2065      }      }
2066    
2067        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2068            _lev_ctrl_t encodedcontroller;
2069            switch (DecodedController.type) {
2070                // special controller
2071                case leverage_ctrl_t::type_none:
2072                    encodedcontroller = _lev_ctrl_none;
2073                    break;
2074                case leverage_ctrl_t::type_velocity:
2075                    encodedcontroller = _lev_ctrl_velocity;
2076                    break;
2077                case leverage_ctrl_t::type_channelaftertouch:
2078                    encodedcontroller = _lev_ctrl_channelaftertouch;
2079                    break;
2080    
2081                // ordinary MIDI control change controller
2082                case leverage_ctrl_t::type_controlchange:
2083                    switch (DecodedController.controller_number) {
2084                        case 1:
2085                            encodedcontroller = _lev_ctrl_modwheel;
2086                            break;
2087                        case 2:
2088                            encodedcontroller = _lev_ctrl_breath;
2089                            break;
2090                        case 4:
2091                            encodedcontroller = _lev_ctrl_foot;
2092                            break;
2093                        case 12:
2094                            encodedcontroller = _lev_ctrl_effect1;
2095                            break;
2096                        case 13:
2097                            encodedcontroller = _lev_ctrl_effect2;
2098                            break;
2099                        case 16:
2100                            encodedcontroller = _lev_ctrl_genpurpose1;
2101                            break;
2102                        case 17:
2103                            encodedcontroller = _lev_ctrl_genpurpose2;
2104                            break;
2105                        case 18:
2106                            encodedcontroller = _lev_ctrl_genpurpose3;
2107                            break;
2108                        case 19:
2109                            encodedcontroller = _lev_ctrl_genpurpose4;
2110                            break;
2111                        case 5:
2112                            encodedcontroller = _lev_ctrl_portamentotime;
2113                            break;
2114                        case 64:
2115                            encodedcontroller = _lev_ctrl_sustainpedal;
2116                            break;
2117                        case 65:
2118                            encodedcontroller = _lev_ctrl_portamento;
2119                            break;
2120                        case 66:
2121                            encodedcontroller = _lev_ctrl_sostenutopedal;
2122                            break;
2123                        case 67:
2124                            encodedcontroller = _lev_ctrl_softpedal;
2125                            break;
2126                        case 80:
2127                            encodedcontroller = _lev_ctrl_genpurpose5;
2128                            break;
2129                        case 81:
2130                            encodedcontroller = _lev_ctrl_genpurpose6;
2131                            break;
2132                        case 82:
2133                            encodedcontroller = _lev_ctrl_genpurpose7;
2134                            break;
2135                        case 83:
2136                            encodedcontroller = _lev_ctrl_genpurpose8;
2137                            break;
2138                        case 91:
2139                            encodedcontroller = _lev_ctrl_effect1depth;
2140                            break;
2141                        case 92:
2142                            encodedcontroller = _lev_ctrl_effect2depth;
2143                            break;
2144                        case 93:
2145                            encodedcontroller = _lev_ctrl_effect3depth;
2146                            break;
2147                        case 94:
2148                            encodedcontroller = _lev_ctrl_effect4depth;
2149                            break;
2150                        case 95:
2151                            encodedcontroller = _lev_ctrl_effect5depth;
2152                            break;
2153                        default:
2154                            throw gig::Exception("leverage controller number is not supported by the gig format");
2155                    }
2156                    break;
2157                default:
2158                    throw gig::Exception("Unknown leverage controller type.");
2159            }
2160            return encodedcontroller;
2161        }
2162    
2163      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2164          Instances--;          Instances--;
2165          if (!Instances) {          if (!Instances) {
# Line 1333  namespace { Line 2173  namespace {
2173              delete pVelocityTables;              delete pVelocityTables;
2174              pVelocityTables = NULL;              pVelocityTables = NULL;
2175          }          }
2176            if (VelocityTable) delete[] VelocityTable;
2177      }      }
2178    
2179      /**      /**
# Line 1358  namespace { Line 2199  namespace {
2199          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2200      }      }
2201    
2202        /**
2203         * Updates the respective member variable and the lookup table / cache
2204         * that depends on this value.
2205         */
2206        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207            pVelocityAttenuationTable =
2208                GetVelocityTable(
2209                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210                );
2211            VelocityResponseCurve = curve;
2212        }
2213    
2214        /**
2215         * Updates the respective member variable and the lookup table / cache
2216         * that depends on this value.
2217         */
2218        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219            pVelocityAttenuationTable =
2220                GetVelocityTable(
2221                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222                );
2223            VelocityResponseDepth = depth;
2224        }
2225    
2226        /**
2227         * Updates the respective member variable and the lookup table / cache
2228         * that depends on this value.
2229         */
2230        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231            pVelocityAttenuationTable =
2232                GetVelocityTable(
2233                    VelocityResponseCurve, VelocityResponseDepth, scaling
2234                );
2235            VelocityResponseCurveScaling = scaling;
2236        }
2237    
2238        /**
2239         * Updates the respective member variable and the lookup table / cache
2240         * that depends on this value.
2241         */
2242        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244            ReleaseVelocityResponseCurve = curve;
2245        }
2246    
2247        /**
2248         * Updates the respective member variable and the lookup table / cache
2249         * that depends on this value.
2250         */
2251        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253            ReleaseVelocityResponseDepth = depth;
2254        }
2255    
2256        /**
2257         * Updates the respective member variable and the lookup table / cache
2258         * that depends on this value.
2259         */
2260        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262            VCFCutoffController = controller;
2263        }
2264    
2265        /**
2266         * Updates the respective member variable and the lookup table / cache
2267         * that depends on this value.
2268         */
2269        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271            VCFVelocityCurve = curve;
2272        }
2273    
2274        /**
2275         * Updates the respective member variable and the lookup table / cache
2276         * that depends on this value.
2277         */
2278        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280            VCFVelocityDynamicRange = range;
2281        }
2282    
2283        /**
2284         * Updates the respective member variable and the lookup table / cache
2285         * that depends on this value.
2286         */
2287        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289            VCFVelocityScale = scaling;
2290        }
2291    
2292      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293    
2294          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1441  namespace { Line 2372  namespace {
2372    
2373          // Actual Loading          // Actual Loading
2374    
2375            if (!file->GetAutoLoad()) return;
2376    
2377          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2378    
2379          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1449  namespace { Line 2382  namespace {
2382              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2383                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2384                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2385                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2386                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2387                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2388                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2389                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2390                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2391                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2392                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2393                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2394                  }                  }
2395                  else { // active dimension                  else { // active dimension
2396                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2397                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2398                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2399                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2400                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2401                      Dimensions++;                      Dimensions++;
2402    
2403                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
2404                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2405                  }                  }
2406                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2407              }              }
2408                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2409    
2410              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2411              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2412                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2413    
2414              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2415              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2416                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2417              else              else
2418                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2419    
2420              // load sample references              // load sample references (if auto loading is enabled)
2421              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2422                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2423                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2424                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2425                    }
2426                    GetSample(); // load global region sample reference
2427                }
2428            } else {
2429                DimensionRegions = 0;
2430                for (int i = 0 ; i < 8 ; i++) {
2431                    pDimensionDefinitions[i].dimension  = dimension_none;
2432                    pDimensionDefinitions[i].bits       = 0;
2433                    pDimensionDefinitions[i].zones      = 0;
2434                }
2435            }
2436    
2437            // make sure there is at least one dimension region
2438            if (!DimensionRegions) {
2439                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2440                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2441                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2442                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2443                DimensionRegions = 1;
2444            }
2445        }
2446    
2447        /**
2448         * Apply Region settings and all its DimensionRegions to the respective
2449         * RIFF chunks. You have to call File::Save() to make changes persistent.
2450         *
2451         * Usually there is absolutely no need to call this method explicitly.
2452         * It will be called automatically when File::Save() was called.
2453         *
2454         * @throws gig::Exception if samples cannot be dereferenced
2455         */
2456        void Region::UpdateChunks() {
2457            // in the gig format we don't care about the Region's sample reference
2458            // but we still have to provide some existing one to not corrupt the
2459            // file, so to avoid the latter we simply always assign the sample of
2460            // the first dimension region of this region
2461            pSample = pDimensionRegions[0]->pSample;
2462    
2463            // first update base class's chunks
2464            DLS::Region::UpdateChunks();
2465    
2466            // update dimension region's chunks
2467            for (int i = 0; i < DimensionRegions; i++) {
2468                pDimensionRegions[i]->UpdateChunks();
2469            }
2470    
2471            File* pFile = (File*) GetParent()->GetParent();
2472            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2473            const int iMaxDimensions =  version3 ? 8 : 5;
2474            const int iMaxDimensionRegions = version3 ? 256 : 32;
2475    
2476            // make sure '3lnk' chunk exists
2477            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2478            if (!_3lnk) {
2479                const int _3lnkChunkSize = version3 ? 1092 : 172;
2480                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2481                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2482    
2483                // move 3prg to last position
2484                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2485            }
2486    
2487            // update dimension definitions in '3lnk' chunk
2488            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2489            store32(&pData[0], DimensionRegions);
2490            int shift = 0;
2491            for (int i = 0; i < iMaxDimensions; i++) {
2492                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2493                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2494                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2495                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2496                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2497                // next 3 bytes unknown, always zero?
2498    
2499                shift += pDimensionDefinitions[i].bits;
2500            }
2501    
2502            // update wave pool table in '3lnk' chunk
2503            const int iWavePoolOffset = version3 ? 68 : 44;
2504            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2505                int iWaveIndex = -1;
2506                if (i < DimensionRegions) {
2507                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2508                    File::SampleList::iterator iter = pFile->pSamples->begin();
2509                    File::SampleList::iterator end  = pFile->pSamples->end();
2510                    for (int index = 0; iter != end; ++iter, ++index) {
2511                        if (*iter == pDimensionRegions[i]->pSample) {
2512                            iWaveIndex = index;
2513                            break;
2514                        }
2515                    }
2516              }              }
2517                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2518          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2519      }      }
2520    
2521      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1532  namespace { Line 2525  namespace {
2525              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2526              while (_3ewl) {              while (_3ewl) {
2527                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2528                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2529                      dimensionRegionNr++;                      dimensionRegionNr++;
2530                  }                  }
2531                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1541  namespace { Line 2534  namespace {
2534          }          }
2535      }      }
2536    
2537      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2538          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
2539              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
2540            // update Region key table for fast lookup
2541            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2542        }
2543    
2544        void Region::UpdateVelocityTable() {
2545            // get velocity dimension's index
2546            int veldim = -1;
2547            for (int i = 0 ; i < Dimensions ; i++) {
2548                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2549                    veldim = i;
2550                    break;
2551                }
2552            }
2553            if (veldim == -1) return;
2554    
2555            int step = 1;
2556            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2557            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2558            int end = step * pDimensionDefinitions[veldim].zones;
2559    
2560            // loop through all dimension regions for all dimensions except the velocity dimension
2561            int dim[8] = { 0 };
2562            for (int i = 0 ; i < DimensionRegions ; i++) {
2563    
2564                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2565                    pDimensionRegions[i]->VelocityUpperLimit) {
2566                    // create the velocity table
2567                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2568                    if (!table) {
2569                        table = new uint8_t[128];
2570                        pDimensionRegions[i]->VelocityTable = table;
2571                    }
2572                    int tableidx = 0;
2573                    int velocityZone = 0;
2574                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2575                        for (int k = i ; k < end ; k += step) {
2576                            DimensionRegion *d = pDimensionRegions[k];
2577                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2578                            velocityZone++;
2579                        }
2580                    } else { // gig2
2581                        for (int k = i ; k < end ; k += step) {
2582                            DimensionRegion *d = pDimensionRegions[k];
2583                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2584                            velocityZone++;
2585                        }
2586                    }
2587                } else {
2588                    if (pDimensionRegions[i]->VelocityTable) {
2589                        delete[] pDimensionRegions[i]->VelocityTable;
2590                        pDimensionRegions[i]->VelocityTable = 0;
2591                    }
2592                }
2593    
2594                int j;
2595                int shift = 0;
2596                for (j = 0 ; j < Dimensions ; j++) {
2597                    if (j == veldim) i += skipveldim; // skip velocity dimension
2598                    else {
2599                        dim[j]++;
2600                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2601                        else {
2602                            // skip unused dimension regions
2603                            dim[j] = 0;
2604                            i += ((1 << pDimensionDefinitions[j].bits) -
2605                                  pDimensionDefinitions[j].zones) << shift;
2606                        }
2607                    }
2608                    shift += pDimensionDefinitions[j].bits;
2609                }
2610                if (j == Dimensions) break;
2611            }
2612        }
2613    
2614        /** @brief Einstein would have dreamed of it - create a new dimension.
2615         *
2616         * Creates a new dimension with the dimension definition given by
2617         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2618         * There is a hard limit of dimensions and total amount of "bits" all
2619         * dimensions can have. This limit is dependant to what gig file format
2620         * version this file refers to. The gig v2 (and lower) format has a
2621         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2622         * format has a limit of 8.
2623         *
2624         * @param pDimDef - defintion of the new dimension
2625         * @throws gig::Exception if dimension of the same type exists already
2626         * @throws gig::Exception if amount of dimensions or total amount of
2627         *                        dimension bits limit is violated
2628         */
2629        void Region::AddDimension(dimension_def_t* pDimDef) {
2630            // check if max. amount of dimensions reached
2631            File* file = (File*) GetParent()->GetParent();
2632            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2633            if (Dimensions >= iMaxDimensions)
2634                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2635            // check if max. amount of dimension bits reached
2636            int iCurrentBits = 0;
2637            for (int i = 0; i < Dimensions; i++)
2638                iCurrentBits += pDimensionDefinitions[i].bits;
2639            if (iCurrentBits >= iMaxDimensions)
2640                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2641            const int iNewBits = iCurrentBits + pDimDef->bits;
2642            if (iNewBits > iMaxDimensions)
2643                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2644            // check if there's already a dimensions of the same type
2645            for (int i = 0; i < Dimensions; i++)
2646                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2647                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2648    
2649            // pos is where the new dimension should be placed, normally
2650            // last in list, except for the samplechannel dimension which
2651            // has to be first in list
2652            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2653            int bitpos = 0;
2654            for (int i = 0 ; i < pos ; i++)
2655                bitpos += pDimensionDefinitions[i].bits;
2656    
2657            // make room for the new dimension
2658            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2659            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2660                for (int j = Dimensions ; j > pos ; j--) {
2661                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2662                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2663                }
2664            }
2665    
2666            // assign definition of new dimension
2667            pDimensionDefinitions[pos] = *pDimDef;
2668    
2669            // auto correct certain dimension definition fields (where possible)
2670            pDimensionDefinitions[pos].split_type  =
2671                __resolveSplitType(pDimensionDefinitions[pos].dimension);
2672            pDimensionDefinitions[pos].zone_size =
2673                __resolveZoneSize(pDimensionDefinitions[pos]);
2674    
2675            // create new dimension region(s) for this new dimension, and make
2676            // sure that the dimension regions are placed correctly in both the
2677            // RIFF list and the pDimensionRegions array
2678            RIFF::Chunk* moveTo = NULL;
2679            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2680            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2681                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2682                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2683                }
2684                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2685                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2687                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2688                        // create a new dimension region and copy all parameter values from
2689                        // an existing dimension region
2690                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2691                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2692    
2693                        DimensionRegions++;
2694                    }
2695                }
2696                moveTo = pDimensionRegions[i]->pParentList;
2697            }
2698    
2699            // initialize the upper limits for this dimension
2700            int mask = (1 << bitpos) - 1;
2701            for (int z = 0 ; z < pDimDef->zones ; z++) {
2702                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2703                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2704                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2705                                      (z << bitpos) |
2706                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2707                }
2708            }
2709    
2710            Dimensions++;
2711    
2712            // if this is a layer dimension, update 'Layers' attribute
2713            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2714    
2715            UpdateVelocityTable();
2716        }
2717    
2718        /** @brief Delete an existing dimension.
2719         *
2720         * Deletes the dimension given by \a pDimDef and deletes all respective
2721         * dimension regions, that is all dimension regions where the dimension's
2722         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2723         * for example this would delete all dimension regions for the case(s)
2724         * where the sustain pedal is pressed down.
2725         *
2726         * @param pDimDef - dimension to delete
2727         * @throws gig::Exception if given dimension cannot be found
2728         */
2729        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2730            // get dimension's index
2731            int iDimensionNr = -1;
2732            for (int i = 0; i < Dimensions; i++) {
2733                if (&pDimensionDefinitions[i] == pDimDef) {
2734                    iDimensionNr = i;
2735                    break;
2736                }
2737            }
2738            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2739    
2740            // get amount of bits below the dimension to delete
2741            int iLowerBits = 0;
2742            for (int i = 0; i < iDimensionNr; i++)
2743                iLowerBits += pDimensionDefinitions[i].bits;
2744    
2745            // get amount ot bits above the dimension to delete
2746            int iUpperBits = 0;
2747            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2748                iUpperBits += pDimensionDefinitions[i].bits;
2749    
2750            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2751    
2752            // delete dimension regions which belong to the given dimension
2753            // (that is where the dimension's bit > 0)
2754            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2755                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2756                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2757                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2758                                        iObsoleteBit << iLowerBits |
2759                                        iLowerBit;
2760    
2761                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2762                        delete pDimensionRegions[iToDelete];
2763                        pDimensionRegions[iToDelete] = NULL;
2764                        DimensionRegions--;
2765                    }
2766                }
2767            }
2768    
2769            // defrag pDimensionRegions array
2770            // (that is remove the NULL spaces within the pDimensionRegions array)
2771            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2772                if (!pDimensionRegions[iTo]) {
2773                    if (iFrom <= iTo) iFrom = iTo + 1;
2774                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2775                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2776                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2777                        pDimensionRegions[iFrom] = NULL;
2778                    }
2779                }
2780            }
2781    
2782            // remove the this dimension from the upper limits arrays
2783            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2784                DimensionRegion* d = pDimensionRegions[j];
2785                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2786                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2787                }
2788                d->DimensionUpperLimits[Dimensions - 1] = 127;
2789            }
2790    
2791            // 'remove' dimension definition
2792            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2793                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2794          }          }
2795            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2796            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2797            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2798    
2799            Dimensions--;
2800    
2801            // if this was a layer dimension, update 'Layers' attribute
2802            if (pDimDef->dimension == dimension_layer) Layers = 1;
2803        }
2804    
2805        Region::~Region() {
2806          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
2807              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2808          }          }
# Line 1569  namespace { Line 2827  namespace {
2827       * @see             Dimensions       * @see             Dimensions
2828       */       */
2829      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2830          uint8_t bits[8] = { 0 };          uint8_t bits;
2831            int veldim = -1;
2832            int velbitpos;
2833            int bitpos = 0;
2834            int dimregidx = 0;
2835          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2836              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2837              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
2838                  case split_type_normal:                  veldim = i;
2839                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
2840                      break;              } else {
2841                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
2842                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
2843                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2844                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2845                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2846                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2847                      break;                              }
2848              }                          } else {
2849                                // gig2: evenly sized zones
2850                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2851                            }
2852                            break;
2853                        case split_type_bit: // the value is already the sought dimension bit number
2854                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2855                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2856                            break;
2857                    }
2858                    dimregidx |= bits << bitpos;
2859                }
2860                bitpos += pDimensionDefinitions[i].bits;
2861            }
2862            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2863            if (veldim != -1) {
2864                // (dimreg is now the dimension region for the lowest velocity)
2865                if (dimreg->VelocityTable) // custom defined zone ranges
2866                    bits = dimreg->VelocityTable[DimValues[veldim]];
2867                else // normal split type
2868                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2869    
2870                dimregidx |= bits << velbitpos;
2871                dimreg = pDimensionRegions[dimregidx];
2872          }          }
2873          return GetDimensionRegionByBit(bits);          return dimreg;
2874      }      }
2875    
2876      /**      /**
# Line 1625  namespace { Line 2910  namespace {
2910      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2911          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
2912          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2913            if (!file->pWavePoolTable) return NULL;
2914          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2915          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2916          Sample* sample = file->GetFirstSample(pProgress);          Sample* sample = file->GetFirstSample(pProgress);
2917          while (sample) {          while (sample) {
2918              if (sample->ulWavePoolOffset == soughtoffset &&              if (sample->ulWavePoolOffset == soughtoffset &&
2919                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2920              sample = file->GetNextSample();              sample = file->GetNextSample();
2921          }          }
2922          return NULL;          return NULL;
2923      }      }
2924    
2925    
2926    // *************** MidiRule ***************
2927    // *
2928    
2929    MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2930        _3ewg->SetPos(36);
2931        Triggers = _3ewg->ReadUint8();
2932        _3ewg->SetPos(40);
2933        ControllerNumber = _3ewg->ReadUint8();
2934        _3ewg->SetPos(46);
2935        for (int i = 0 ; i < Triggers ; i++) {
2936            pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2937            pTriggers[i].Descending = _3ewg->ReadUint8();
2938            pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2939            pTriggers[i].Key = _3ewg->ReadUint8();
2940            pTriggers[i].NoteOff = _3ewg->ReadUint8();
2941            pTriggers[i].Velocity = _3ewg->ReadUint8();
2942            pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2943            _3ewg->ReadUint8();
2944        }
2945    }
2946    
2947    
2948  // *************** Instrument ***************  // *************** Instrument ***************
2949  // *  // *
2950    
2951      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2952            static const DLS::Info::string_length_t fixedStringLengths[] = {
2953                { CHUNK_ID_INAM, 64 },
2954                { CHUNK_ID_ISFT, 12 },
2955                { 0, 0 }
2956            };
2957            pInfo->SetFixedStringLengths(fixedStringLengths);
2958    
2959          // Initialization          // Initialization
2960          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2961          RegionIndex = -1;          EffectSend = 0;
2962            Attenuation = 0;
2963            FineTune = 0;
2964            PitchbendRange = 0;
2965            PianoReleaseMode = false;
2966            DimensionKeyRange.low = 0;
2967            DimensionKeyRange.high = 0;
2968    
2969          // Loading          // Loading
2970          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1659  namespace { Line 2979  namespace {
2979                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
2980                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2981                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2982    
2983                    if (_3ewg->GetSize() > 32) {
2984                        // read MIDI rules
2985                        _3ewg->SetPos(32);
2986                        uint8_t id1 = _3ewg->ReadUint8();
2987                        uint8_t id2 = _3ewg->ReadUint8();
2988    
2989                        if (id1 == 4 && id2 == 16) {
2990                            MidiRules.push_back(new MidiRuleCtrlTrigger(_3ewg));
2991                        }
2992                        //TODO: all the other types of rules
2993                    }
2994              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2995          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2996    
2997          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
2998          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
2999          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3000          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              if (lrgn) {
3001          RIFF::List* rgn = lrgn->GetFirstSubList();                  RIFF::List* rgn = lrgn->GetFirstSubList();
3002          unsigned int iRegion = 0;                  while (rgn) {
3003          while (rgn) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3004              if (rgn->GetListType() == LIST_TYPE_RGN) {                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3005                  __notify_progress(pProgress, (float) iRegion / (float) Regions);                          pRegions->push_back(new Region(this, rgn));
3006                  pRegions[iRegion] = new Region(this, rgn);                      }
3007                  iRegion++;                      rgn = lrgn->GetNextSubList();
3008              }                  }
3009              rgn = lrgn->GetNextSubList();                  // Creating Region Key Table for fast lookup
3010          }                  UpdateRegionKeyTable();
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
3011              }              }
3012          }          }
3013    
3014          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
3015      }      }
3016    
3017      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
3018          for (uint i = 0; i < Regions; i++) {          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3019              if (pRegions) {          RegionList::iterator iter = pRegions->begin();
3020                  if (pRegions[i]) delete (pRegions[i]);          RegionList::iterator end  = pRegions->end();
3021            for (; iter != end; ++iter) {
3022                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3023                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3024                    RegionKeyTable[iKey] = pRegion;
3025              }              }
3026          }          }
3027          if (pRegions) delete[] pRegions;      }
3028    
3029        Instrument::~Instrument() {
3030        }
3031    
3032        /**
3033         * Apply Instrument with all its Regions to the respective RIFF chunks.
3034         * You have to call File::Save() to make changes persistent.
3035         *
3036         * Usually there is absolutely no need to call this method explicitly.
3037         * It will be called automatically when File::Save() was called.
3038         *
3039         * @throws gig::Exception if samples cannot be dereferenced
3040         */
3041        void Instrument::UpdateChunks() {
3042            // first update base classes' chunks
3043            DLS::Instrument::UpdateChunks();
3044    
3045            // update Regions' chunks
3046            {
3047                RegionList::iterator iter = pRegions->begin();
3048                RegionList::iterator end  = pRegions->end();
3049                for (; iter != end; ++iter)
3050                    (*iter)->UpdateChunks();
3051            }
3052    
3053            // make sure 'lart' RIFF list chunk exists
3054            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3055            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3056            // make sure '3ewg' RIFF chunk exists
3057            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3058            if (!_3ewg)  {
3059                File* pFile = (File*) GetParent();
3060    
3061                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3062                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3063                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3064                memset(_3ewg->LoadChunkData(), 0, size);
3065            }
3066            // update '3ewg' RIFF chunk
3067            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3068            store16(&pData[0], EffectSend);
3069            store32(&pData[2], Attenuation);
3070            store16(&pData[6], FineTune);
3071            store16(&pData[8], PitchbendRange);
3072            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3073                                        DimensionKeyRange.low << 1;
3074            pData[10] = dimkeystart;
3075            pData[11] = DimensionKeyRange.high;
3076      }      }
3077    
3078      /**      /**
# Line 1706  namespace { Line 3083  namespace {
3083       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3084       */       */
3085      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3086          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3087          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3088    
3089          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3090              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3091                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1723  namespace { Line 3101  namespace {
3101       * @see      GetNextRegion()       * @see      GetNextRegion()
3102       */       */
3103      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3104          if (!Regions) return NULL;          if (!pRegions) return NULL;
3105          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3106          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3107      }      }
3108    
3109      /**      /**
# Line 1737  namespace { Line 3115  namespace {
3115       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3116       */       */
3117      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3118          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
3119          return pRegions[RegionIndex++];          RegionsIterator++;
3120            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3121        }
3122    
3123        Region* Instrument::AddRegion() {
3124            // create new Region object (and its RIFF chunks)
3125            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3126            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3127            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3128            Region* pNewRegion = new Region(this, rgn);
3129            pRegions->push_back(pNewRegion);
3130            Regions = pRegions->size();
3131            // update Region key table for fast lookup
3132            UpdateRegionKeyTable();
3133            // done
3134            return pNewRegion;
3135        }
3136    
3137        void Instrument::DeleteRegion(Region* pRegion) {
3138            if (!pRegions) return;
3139            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3140            // update Region key table for fast lookup
3141            UpdateRegionKeyTable();
3142        }
3143    
3144        /**
3145         * Returns the first MIDI rule of the instrument. You have to call
3146         * this method once before you use GetNextMidiRule().
3147         *
3148         * The list of MIDI rules, at least in gig v3, always contains at
3149         * most two rules. The second rule can only be the DEF filter
3150         * (which currently isn't supported by libgig).
3151         *
3152         * @returns  pointer address to first MIDI rule or NULL if there is none
3153         * @see      GetNextMidiRule()
3154         */
3155        MidiRule* Instrument::GetFirstMidiRule() {
3156            MidiRulesIterator = MidiRules.begin();
3157            return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3158        }
3159    
3160        /**
3161         * Returns the next MIDI rule of the instrument. You have to call
3162         * GetFirstMidiRule() once before you can use this method. By
3163         * calling this method multiple times it iterates through the
3164         * available rules.
3165         *
3166         * @returns  pointer address to the next MIDI rule or NULL if end reached
3167         * @see      GetFirstMidiRule()
3168         */
3169        MidiRule* Instrument::GetNextMidiRule() {
3170            MidiRulesIterator++;
3171            return MidiRulesIterator != MidiRules.end() ? *MidiRulesIterator : NULL;
3172        }
3173    
3174    
3175    // *************** Group ***************
3176    // *
3177    
3178        /** @brief Constructor.
3179         *
3180         * @param file   - pointer to the gig::File object
3181         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3182         *                 NULL if this is a new Group
3183         */
3184        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3185            pFile      = file;
3186            pNameChunk = ck3gnm;
3187            ::LoadString(pNameChunk, Name);
3188        }
3189    
3190        Group::~Group() {
3191            // remove the chunk associated with this group (if any)
3192            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3193        }
3194    
3195        /** @brief Update chunks with current group settings.
3196         *
3197         * Apply current Group field values to the respective chunks. You have
3198         * to call File::Save() to make changes persistent.
3199         *
3200         * Usually there is absolutely no need to call this method explicitly.
3201         * It will be called automatically when File::Save() was called.
3202         */
3203        void Group::UpdateChunks() {
3204            // make sure <3gri> and <3gnl> list chunks exist
3205            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3206            if (!_3gri) {
3207                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3208                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3209            }
3210            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3211            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3212    
3213            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3214                // v3 has a fixed list of 128 strings, find a free one
3215                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3216                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3217                        pNameChunk = ck;
3218                        break;
3219                    }
3220                }
3221            }
3222    
3223            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3224            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3225        }
3226    
3227        /**
3228         * Returns the first Sample of this Group. You have to call this method
3229         * once before you use GetNextSample().
3230         *
3231         * <b>Notice:</b> this method might block for a long time, in case the
3232         * samples of this .gig file were not scanned yet
3233         *
3234         * @returns  pointer address to first Sample or NULL if there is none
3235         *           applied to this Group
3236         * @see      GetNextSample()
3237         */
3238        Sample* Group::GetFirstSample() {
3239            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3240            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3241                if (pSample->GetGroup() == this) return pSample;
3242            }
3243            return NULL;
3244        }
3245    
3246        /**
3247         * Returns the next Sample of the Group. You have to call
3248         * GetFirstSample() once before you can use this method. By calling this
3249         * method multiple times it iterates through the Samples assigned to
3250         * this Group.
3251         *
3252         * @returns  pointer address to the next Sample of this Group or NULL if
3253         *           end reached
3254         * @see      GetFirstSample()
3255         */
3256        Sample* Group::GetNextSample() {
3257            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3258            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3259                if (pSample->GetGroup() == this) return pSample;
3260            }
3261            return NULL;
3262        }
3263    
3264        /**
3265         * Move Sample given by \a pSample from another Group to this Group.
3266         */
3267        void Group::AddSample(Sample* pSample) {
3268            pSample->pGroup = this;
3269        }
3270    
3271        /**
3272         * Move all members of this group to another group (preferably the 1st
3273         * one except this). This method is called explicitly by
3274         * File::DeleteGroup() thus when a Group was deleted. This code was
3275         * intentionally not placed in the destructor!
3276         */
3277        void Group::MoveAll() {
3278            // get "that" other group first
3279            Group* pOtherGroup = NULL;
3280            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3281                if (pOtherGroup != this) break;
3282            }
3283            if (!pOtherGroup) throw Exception(
3284                "Could not move samples to another group, since there is no "
3285                "other Group. This is a bug, report it!"
3286            );
3287            // now move all samples of this group to the other group
3288            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3289                pOtherGroup->AddSample(pSample);
3290            }
3291      }      }
3292    
3293    
# Line 1746  namespace { Line 3295  namespace {
3295  // *************** File ***************  // *************** File ***************
3296  // *  // *
3297    
3298        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3299        const DLS::version_t File::VERSION_2 = {
3300            0, 2, 19980628 & 0xffff, 19980628 >> 16
3301        };
3302    
3303        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3304        const DLS::version_t File::VERSION_3 = {
3305            0, 3, 20030331 & 0xffff, 20030331 >> 16
3306        };
3307    
3308        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3309            { CHUNK_ID_IARL, 256 },
3310            { CHUNK_ID_IART, 128 },
3311            { CHUNK_ID_ICMS, 128 },
3312            { CHUNK_ID_ICMT, 1024 },
3313            { CHUNK_ID_ICOP, 128 },
3314            { CHUNK_ID_ICRD, 128 },
3315            { CHUNK_ID_IENG, 128 },
3316            { CHUNK_ID_IGNR, 128 },
3317            { CHUNK_ID_IKEY, 128 },
3318            { CHUNK_ID_IMED, 128 },
3319            { CHUNK_ID_INAM, 128 },
3320            { CHUNK_ID_IPRD, 128 },
3321            { CHUNK_ID_ISBJ, 128 },
3322            { CHUNK_ID_ISFT, 128 },
3323            { CHUNK_ID_ISRC, 128 },
3324            { CHUNK_ID_ISRF, 128 },
3325            { CHUNK_ID_ITCH, 128 },
3326            { 0, 0 }
3327        };
3328    
3329        File::File() : DLS::File() {
3330            bAutoLoad = true;
3331            *pVersion = VERSION_3;
3332            pGroups = NULL;
3333            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3334            pInfo->ArchivalLocation = String(256, ' ');
3335    
3336            // add some mandatory chunks to get the file chunks in right
3337            // order (INFO chunk will be moved to first position later)
3338            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3339            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3340            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3341    
3342            GenerateDLSID();
3343        }
3344    
3345      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3346          pSamples     = NULL;          bAutoLoad = true;
3347          pInstruments = NULL;          pGroups = NULL;
3348            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3349      }      }
3350    
3351      File::~File() {      File::~File() {
3352          // free samples          if (pGroups) {
3353          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
3354              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
3355              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
3356                  delete (*SamplesIterator);                  delete *iter;
3357                  SamplesIterator++;                  ++iter;
3358              }              }
3359              pSamples->clear();              delete pGroups;
3360              delete pSamples;          }
   
         }  
         // free instruments  
         if (pInstruments) {  
             InstrumentsIterator = pInstruments->begin();  
             while (InstrumentsIterator != pInstruments->end() ) {  
                 delete (*InstrumentsIterator);  
                 InstrumentsIterator++;  
             }  
             pInstruments->clear();  
             delete pInstruments;  
         }  
         // free extension files  
         for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)  
             delete *i;  
3361      }      }
3362    
3363      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 1791  namespace { Line 3373  namespace {
3373          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3374      }      }
3375    
3376        /** @brief Add a new sample.
3377         *
3378         * This will create a new Sample object for the gig file. You have to
3379         * call Save() to make this persistent to the file.
3380         *
3381         * @returns pointer to new Sample object
3382         */
3383        Sample* File::AddSample() {
3384           if (!pSamples) LoadSamples();
3385           __ensureMandatoryChunksExist();
3386           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3387           // create new Sample object and its respective 'wave' list chunk
3388           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3389           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3390    
3391           // add mandatory chunks to get the chunks in right order
3392           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3393           wave->AddSubList(LIST_TYPE_INFO);
3394    
3395           pSamples->push_back(pSample);
3396           return pSample;
3397        }
3398    
3399        /** @brief Delete a sample.
3400         *
3401         * This will delete the given Sample object from the gig file. Any
3402         * references to this sample from Regions and DimensionRegions will be
3403         * removed. You have to call Save() to make this persistent to the file.
3404         *
3405         * @param pSample - sample to delete
3406         * @throws gig::Exception if given sample could not be found
3407         */
3408        void File::DeleteSample(Sample* pSample) {
3409            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3410            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3411            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3412            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3413            pSamples->erase(iter);
3414            delete pSample;
3415    
3416            // remove all references to the sample
3417            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3418                 instrument = GetNextInstrument()) {
3419                for (Region* region = instrument->GetFirstRegion() ; region ;
3420                     region = instrument->GetNextRegion()) {
3421    
3422                    if (region->GetSample() == pSample) region->SetSample(NULL);
3423    
3424                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3425                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3426                        if (d->pSample == pSample) d->pSample = NULL;
3427                    }
3428                }
3429            }
3430        }
3431    
3432        void File::LoadSamples() {
3433            LoadSamples(NULL);
3434        }
3435    
3436      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3437            // Groups must be loaded before samples, because samples will try
3438            // to resolve the group they belong to
3439            if (!pGroups) LoadGroups();
3440    
3441            if (!pSamples) pSamples = new SampleList;
3442    
3443          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
3444    
3445          // just for progress calculation          // just for progress calculation
# Line 1803  namespace { Line 3451  namespace {
3451          for (int i = 0 ; i < WavePoolCount ; i++) {          for (int i = 0 ; i < WavePoolCount ; i++) {
3452              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3453          }          }
3454          String name(pRIFF->Filename);          String name(pRIFF->GetFileName());
3455          int nameLen = pRIFF->Filename.length();          int nameLen = name.length();
3456          char suffix[6];          char suffix[6];
3457          if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3458    
3459          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
3460              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
# Line 1819  namespace { Line 3467  namespace {
3467                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3468                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
3469    
                         if (!pSamples) pSamples = new SampleList;  
3470                          unsigned long waveFileOffset = wave->GetFilePos();                          unsigned long waveFileOffset = wave->GetFilePos();
3471                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3472    
# Line 1836  namespace { Line 3483  namespace {
3483                  name.replace(nameLen, 5, suffix);                  name.replace(nameLen, 5, suffix);
3484                  file = new RIFF::File(name);                  file = new RIFF::File(name);
3485                  ExtensionFiles.push_back(file);                  ExtensionFiles.push_back(file);
3486              }              } else break;
             else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
3487          }          }
3488    
3489          __notify_progress(pProgress, 1.0); // notify done          __notify_progress(pProgress, 1.0); // notify done
# Line 1847  namespace { Line 3493  namespace {
3493          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3494          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3495          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3496          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3497      }      }
3498    
3499      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3500          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3501          InstrumentsIterator++;          InstrumentsIterator++;
3502          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3503      }      }
3504    
3505      /**      /**
# Line 1871  namespace { Line 3517  namespace {
3517              progress_t subprogress;              progress_t subprogress;
3518              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3519              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
3520              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
3521                    GetFirstSample(&subprogress); // now force all samples to be loaded
3522              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
3523    
3524              // instrument loading subtask              // instrument loading subtask
# Line 1886  namespace { Line 3533  namespace {
3533          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3534          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3535          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3536              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3537              InstrumentsIterator++;              InstrumentsIterator++;
3538          }          }
3539          return NULL;          return NULL;
3540      }      }
3541    
3542        /** @brief Add a new instrument definition.
3543         *
3544         * This will create a new Instrument object for the gig file. You have
3545         * to call Save() to make this persistent to the file.
3546         *
3547         * @returns pointer to new Instrument object
3548         */
3549        Instrument* File::AddInstrument() {
3550           if (!pInstruments) LoadInstruments();
3551           __ensureMandatoryChunksExist();
3552           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3553           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3554    
3555           // add mandatory chunks to get the chunks in right order
3556           lstInstr->AddSubList(LIST_TYPE_INFO);
3557           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3558    
3559           Instrument* pInstrument = new Instrument(this, lstInstr);
3560           pInstrument->GenerateDLSID();
3561    
3562           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3563    
3564           // this string is needed for the gig to be loadable in GSt:
3565           pInstrument->pInfo->Software = "Endless Wave";
3566    
3567           pInstruments->push_back(pInstrument);
3568           return pInstrument;
3569        }
3570    
3571        /** @brief Delete an instrument.
3572         *
3573         * This will delete the given Instrument object from the gig file. You
3574         * have to call Save() to make this persistent to the file.
3575         *
3576         * @param pInstrument - instrument to delete
3577         * @throws gig::Exception if given instrument could not be found
3578         */
3579        void File::DeleteInstrument(Instrument* pInstrument) {
3580            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3581            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3582            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3583            pInstruments->erase(iter);
3584            delete pInstrument;
3585        }
3586    
3587        void File::LoadInstruments() {
3588            LoadInstruments(NULL);
3589        }
3590    
3591      void File::LoadInstruments(progress_t* pProgress) {      void File::LoadInstruments(progress_t* pProgress) {
3592            if (!pInstruments) pInstruments = new InstrumentList;
3593          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3594          if (lstInstruments) {          if (lstInstruments) {
3595              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
# Line 1907  namespace { Line 3604  namespace {
3604                      progress_t subprogress;                      progress_t subprogress;
3605                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3606    
                     if (!pInstruments) pInstruments = new InstrumentList;  
3607                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3608    
3609                      iInstrumentIndex++;                      iInstrumentIndex++;
# Line 1916  namespace { Line 3612  namespace {
3612              }              }
3613              __notify_progress(pProgress, 1.0); // notify done              __notify_progress(pProgress, 1.0); // notify done
3614          }          }
3615          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
3616    
3617        /// Updates the 3crc chunk with the checksum of a sample. The
3618        /// update is done directly to disk, as this method is called
3619        /// after File::Save()
3620        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3621            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3622            if (!_3crc) return;
3623    
3624            // get the index of the sample
3625            int iWaveIndex = -1;
3626            File::SampleList::iterator iter = pSamples->begin();
3627            File::SampleList::iterator end  = pSamples->end();
3628            for (int index = 0; iter != end; ++iter, ++index) {
3629                if (*iter == pSample) {
3630                    iWaveIndex = index;
3631                    break;
3632                }
3633            }
3634            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3635    
3636            // write the CRC-32 checksum to disk
3637            _3crc->SetPos(iWaveIndex * 8);
3638            uint32_t tmp = 1;
3639            _3crc->WriteUint32(&tmp); // unknown, always 1?
3640            _3crc->WriteUint32(&crc);
3641        }
3642    
3643        Group* File::GetFirstGroup() {
3644            if (!pGroups) LoadGroups();
3645            // there must always be at least one group
3646            GroupsIterator = pGroups->begin();
3647            return *GroupsIterator;
3648        }
3649    
3650        Group* File::GetNextGroup() {
3651            if (!pGroups) return NULL;
3652            ++GroupsIterator;
3653            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3654        }
3655    
3656        /**
3657         * Returns the group with the given index.
3658         *
3659         * @param index - number of the sought group (0..n)
3660         * @returns sought group or NULL if there's no such group
3661         */
3662        Group* File::GetGroup(uint index) {
3663            if (!pGroups) LoadGroups();
3664            GroupsIterator = pGroups->begin();
3665            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3666                if (i == index) return *GroupsIterator;
3667                ++GroupsIterator;
3668            }
3669            return NULL;
3670        }
3671    
3672        Group* File::AddGroup() {
3673            if (!pGroups) LoadGroups();
3674            // there must always be at least one group
3675            __ensureMandatoryChunksExist();
3676            Group* pGroup = new Group(this, NULL);
3677            pGroups->push_back(pGroup);
3678            return pGroup;
3679        }
3680    
3681        /** @brief Delete a group and its samples.
3682         *
3683         * This will delete the given Group object and all the samples that
3684         * belong to this group from the gig file. You have to call Save() to
3685         * make this persistent to the file.
3686         *
3687         * @param pGroup - group to delete
3688         * @throws gig::Exception if given group could not be found
3689         */
3690        void File::DeleteGroup(Group* pGroup) {
3691            if (!pGroups) LoadGroups();
3692            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3693            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3694            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3695            // delete all members of this group
3696            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3697                DeleteSample(pSample);
3698            }
3699            // now delete this group object
3700            pGroups->erase(iter);
3701            delete pGroup;
3702        }
3703    
3704        /** @brief Delete a group.
3705         *
3706         * This will delete the given Group object from the gig file. All the
3707         * samples that belong to this group will not be deleted, but instead
3708         * be moved to another group. You have to call Save() to make this
3709         * persistent to the file.
3710         *
3711         * @param pGroup - group to delete
3712         * @throws gig::Exception if given group could not be found
3713         */
3714        void File::DeleteGroupOnly(Group* pGroup) {
3715            if (!pGroups) LoadGroups();
3716            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3717            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3718            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3719            // move all members of this group to another group
3720            pGroup->MoveAll();
3721            pGroups->erase(iter);
3722            delete pGroup;
3723        }
3724    
3725        void File::LoadGroups() {
3726            if (!pGroups) pGroups = new std::list<Group*>;
3727            // try to read defined groups from file
3728            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3729            if (lst3gri) {
3730                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3731                if (lst3gnl) {
3732                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3733                    while (ck) {
3734                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3735                            if (pVersion && pVersion->major == 3 &&
3736                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3737    
3738                            pGroups->push_back(new Group(this, ck));
3739                        }
3740                        ck = lst3gnl->GetNextSubChunk();
3741                    }
3742                }
3743            }
3744            // if there were no group(s), create at least the mandatory default group
3745            if (!pGroups->size()) {
3746                Group* pGroup = new Group(this, NULL);
3747                pGroup->Name = "Default Group";
3748                pGroups->push_back(pGroup);
3749            }
3750        }
3751    
3752        /**
3753         * Apply all the gig file's current instruments, samples, groups and settings
3754         * to the respective RIFF chunks. You have to call Save() to make changes
3755         * persistent.
3756         *
3757         * Usually there is absolutely no need to call this method explicitly.
3758         * It will be called automatically when File::Save() was called.
3759         *
3760         * @throws Exception - on errors
3761         */
3762        void File::UpdateChunks() {
3763            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3764    
3765            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3766    
3767            // first update base class's chunks
3768            DLS::File::UpdateChunks();
3769    
3770            if (newFile) {
3771                // INFO was added by Resource::UpdateChunks - make sure it
3772                // is placed first in file
3773                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3774                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3775                if (first != info) {
3776                    pRIFF->MoveSubChunk(info, first);
3777                }
3778            }
3779    
3780            // update group's chunks
3781            if (pGroups) {
3782                std::list<Group*>::iterator iter = pGroups->begin();
3783                std::list<Group*>::iterator end  = pGroups->end();
3784                for (; iter != end; ++iter) {
3785                    (*iter)->UpdateChunks();
3786                }
3787    
3788                // v3: make sure the file has 128 3gnm chunks
3789                if (pVersion && pVersion->major == 3) {
3790                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3791                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3792                    for (int i = 0 ; i < 128 ; i++) {
3793                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3794                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3795                    }
3796                }
3797            }
3798    
3799            // update einf chunk
3800    
3801            // The einf chunk contains statistics about the gig file, such
3802            // as the number of regions and samples used by each
3803            // instrument. It is divided in equally sized parts, where the
3804            // first part contains information about the whole gig file,
3805            // and the rest of the parts map to each instrument in the
3806            // file.
3807            //
3808            // At the end of each part there is a bit map of each sample
3809            // in the file, where a set bit means that the sample is used
3810            // by the file/instrument.
3811            //
3812            // Note that there are several fields with unknown use. These
3813            // are set to zero.
3814    
3815            int sublen = pSamples->size() / 8 + 49;
3816            int einfSize = (Instruments + 1) * sublen;
3817    
3818            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3819            if (einf) {
3820                if (einf->GetSize() != einfSize) {
3821                    einf->Resize(einfSize);
3822                    memset(einf->LoadChunkData(), 0, einfSize);
3823                }
3824            } else if (newFile) {
3825                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3826            }
3827            if (einf) {
3828                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3829    
3830                std::map<gig::Sample*,int> sampleMap;
3831                int sampleIdx = 0;
3832                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3833                    sampleMap[pSample] = sampleIdx++;
3834                }
3835    
3836                int totnbusedsamples = 0;
3837                int totnbusedchannels = 0;
3838                int totnbregions = 0;
3839                int totnbdimregions = 0;
3840                int totnbloops = 0;
3841                int instrumentIdx = 0;
3842    
3843                memset(&pData[48], 0, sublen - 48);
3844    
3845                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3846                     instrument = GetNextInstrument()) {
3847                    int nbusedsamples = 0;
3848                    int nbusedchannels = 0;
3849                    int nbdimregions = 0;
3850                    int nbloops = 0;
3851    
3852                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3853    
3854                    for (Region* region = instrument->GetFirstRegion() ; region ;
3855                         region = instrument->GetNextRegion()) {
3856                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3857                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3858                            if (d->pSample) {
3859                                int sampleIdx = sampleMap[d->pSample];
3860                                int byte = 48 + sampleIdx / 8;
3861                                int bit = 1 << (sampleIdx & 7);
3862                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3863                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3864                                    nbusedsamples++;
3865                                    nbusedchannels += d->pSample->Channels;
3866    
3867                                    if ((pData[byte] & bit) == 0) {
3868                                        pData[byte] |= bit;
3869                                        totnbusedsamples++;
3870                                        totnbusedchannels += d->pSample->Channels;
3871                                    }
3872                                }
3873                            }
3874                            if (d->SampleLoops) nbloops++;
3875                        }
3876                        nbdimregions += region->DimensionRegions;
3877                    }
3878                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3879                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3880                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3881                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3882                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3883                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3884                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3885                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3886                    // next 8 bytes unknown
3887                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3888                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3889                    // next 4 bytes unknown
3890    
3891                    totnbregions += instrument->Regions;
3892                    totnbdimregions += nbdimregions;
3893                    totnbloops += nbloops;
3894                    instrumentIdx++;
3895                }
3896                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3897                // store32(&pData[0], sublen);
3898                store32(&pData[4], totnbusedchannels);
3899                store32(&pData[8], totnbusedsamples);
3900                store32(&pData[12], Instruments);
3901                store32(&pData[16], totnbregions);
3902                store32(&pData[20], totnbdimregions);
3903                store32(&pData[24], totnbloops);
3904                // next 8 bytes unknown
3905                // next 4 bytes unknown, not always 0
3906                store32(&pData[40], pSamples->size());
3907                // next 4 bytes unknown
3908            }
3909    
3910            // update 3crc chunk
3911    
3912            // The 3crc chunk contains CRC-32 checksums for the
3913            // samples. The actual checksum values will be filled in
3914            // later, by Sample::Write.
3915    
3916            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3917            if (_3crc) {
3918                _3crc->Resize(pSamples->size() * 8);
3919            } else if (newFile) {
3920                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3921                _3crc->LoadChunkData();
3922    
3923                // the order of einf and 3crc is not the same in v2 and v3
3924                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3925            }
3926        }
3927    
3928        /**
3929         * Enable / disable automatic loading. By default this properyt is
3930         * enabled and all informations are loaded automatically. However
3931         * loading all Regions, DimensionRegions and especially samples might
3932         * take a long time for large .gig files, and sometimes one might only
3933         * be interested in retrieving very superficial informations like the
3934         * amount of instruments and their names. In this case one might disable
3935         * automatic loading to avoid very slow response times.
3936         *
3937         * @e CAUTION: by disabling this property many pointers (i.e. sample
3938         * references) and informations will have invalid or even undefined
3939         * data! This feature is currently only intended for retrieving very
3940         * superficial informations in a very fast way. Don't use it to retrieve
3941         * details like synthesis informations or even to modify .gig files!
3942         */
3943        void File::SetAutoLoad(bool b) {
3944            bAutoLoad = b;
3945        }
3946    
3947        /**
3948         * Returns whether automatic loading is enabled.
3949         * @see SetAutoLoad()
3950         */
3951        bool File::GetAutoLoad() {
3952            return bAutoLoad;
3953      }      }
3954    
3955    

Legend:
Removed from v.773  
changed lines
  Added in v.1627

  ViewVC Help
Powered by ViewVC