/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 11 by schoenebeck, Sun Nov 16 17:47:00 2003 UTC revision 1713 by persson, Thu Mar 6 20:42:22 2008 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    
32    /// Initial size of the sample buffer which is used for decompression of
33    /// compressed sample wave streams - this value should always be bigger than
34    /// the biggest sample piece expected to be read by the sampler engine,
35    /// otherwise the buffer size will be raised at runtime and thus the buffer
36    /// reallocated which is time consuming and unefficient.
37    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
38    
39    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
41    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
42    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
43    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
44    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
45    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
46    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
47    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
48    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
50    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
51    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
52    
53  namespace gig {  namespace gig {
54    
55    // *************** progress_t ***************
56    // *
57    
58        progress_t::progress_t() {
59            callback    = NULL;
60            custom      = NULL;
61            __range_min = 0.0f;
62            __range_max = 1.0f;
63        }
64    
65        // private helper function to convert progress of a subprocess into the global progress
66        static void __notify_progress(progress_t* pProgress, float subprogress) {
67            if (pProgress && pProgress->callback) {
68                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
69                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70                pProgress->factor         = totalprogress;
71                pProgress->callback(pProgress); // now actually notify about the progress
72            }
73        }
74    
75        // private helper function to divide a progress into subprogresses
76        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77            if (pParentProgress && pParentProgress->callback) {
78                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
79                pSubProgress->callback    = pParentProgress->callback;
80                pSubProgress->custom      = pParentProgress->custom;
81                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83            }
84        }
85    
86    
87    // *************** Internal functions for sample decompression ***************
88    // *
89    
90    namespace {
91    
92        inline int get12lo(const unsigned char* pSrc)
93        {
94            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95            return x & 0x800 ? x - 0x1000 : x;
96        }
97    
98        inline int get12hi(const unsigned char* pSrc)
99        {
100            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101            return x & 0x800 ? x - 0x1000 : x;
102        }
103    
104        inline int16_t get16(const unsigned char* pSrc)
105        {
106            return int16_t(pSrc[0] | pSrc[1] << 8);
107        }
108    
109        inline int get24(const unsigned char* pSrc)
110        {
111            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112            return x & 0x800000 ? x - 0x1000000 : x;
113        }
114    
115        inline void store24(unsigned char* pDst, int x)
116        {
117            pDst[0] = x;
118            pDst[1] = x >> 8;
119            pDst[2] = x >> 16;
120        }
121    
122        void Decompress16(int compressionmode, const unsigned char* params,
123                          int srcStep, int dstStep,
124                          const unsigned char* pSrc, int16_t* pDst,
125                          unsigned long currentframeoffset,
126                          unsigned long copysamples)
127        {
128            switch (compressionmode) {
129                case 0: // 16 bit uncompressed
130                    pSrc += currentframeoffset * srcStep;
131                    while (copysamples) {
132                        *pDst = get16(pSrc);
133                        pDst += dstStep;
134                        pSrc += srcStep;
135                        copysamples--;
136                    }
137                    break;
138    
139                case 1: // 16 bit compressed to 8 bit
140                    int y  = get16(params);
141                    int dy = get16(params + 2);
142                    while (currentframeoffset) {
143                        dy -= int8_t(*pSrc);
144                        y  -= dy;
145                        pSrc += srcStep;
146                        currentframeoffset--;
147                    }
148                    while (copysamples) {
149                        dy -= int8_t(*pSrc);
150                        y  -= dy;
151                        *pDst = y;
152                        pDst += dstStep;
153                        pSrc += srcStep;
154                        copysamples--;
155                    }
156                    break;
157            }
158        }
159    
160        void Decompress24(int compressionmode, const unsigned char* params,
161                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162                          unsigned long currentframeoffset,
163                          unsigned long copysamples, int truncatedBits)
164        {
165            int y, dy, ddy, dddy;
166    
167    #define GET_PARAMS(params)                      \
168            y    = get24(params);                   \
169            dy   = y - get24((params) + 3);         \
170            ddy  = get24((params) + 6);             \
171            dddy = get24((params) + 9)
172    
173    #define SKIP_ONE(x)                             \
174            dddy -= (x);                            \
175            ddy  -= dddy;                           \
176            dy   =  -dy - ddy;                      \
177            y    += dy
178    
179    #define COPY_ONE(x)                             \
180            SKIP_ONE(x);                            \
181            store24(pDst, y << truncatedBits);      \
182            pDst += dstStep
183    
184            switch (compressionmode) {
185                case 2: // 24 bit uncompressed
186                    pSrc += currentframeoffset * 3;
187                    while (copysamples) {
188                        store24(pDst, get24(pSrc) << truncatedBits);
189                        pDst += dstStep;
190                        pSrc += 3;
191                        copysamples--;
192                    }
193                    break;
194    
195                case 3: // 24 bit compressed to 16 bit
196                    GET_PARAMS(params);
197                    while (currentframeoffset) {
198                        SKIP_ONE(get16(pSrc));
199                        pSrc += 2;
200                        currentframeoffset--;
201                    }
202                    while (copysamples) {
203                        COPY_ONE(get16(pSrc));
204                        pSrc += 2;
205                        copysamples--;
206                    }
207                    break;
208    
209                case 4: // 24 bit compressed to 12 bit
210                    GET_PARAMS(params);
211                    while (currentframeoffset > 1) {
212                        SKIP_ONE(get12lo(pSrc));
213                        SKIP_ONE(get12hi(pSrc));
214                        pSrc += 3;
215                        currentframeoffset -= 2;
216                    }
217                    if (currentframeoffset) {
218                        SKIP_ONE(get12lo(pSrc));
219                        currentframeoffset--;
220                        if (copysamples) {
221                            COPY_ONE(get12hi(pSrc));
222                            pSrc += 3;
223                            copysamples--;
224                        }
225                    }
226                    while (copysamples > 1) {
227                        COPY_ONE(get12lo(pSrc));
228                        COPY_ONE(get12hi(pSrc));
229                        pSrc += 3;
230                        copysamples -= 2;
231                    }
232                    if (copysamples) {
233                        COPY_ONE(get12lo(pSrc));
234                    }
235                    break;
236    
237                case 5: // 24 bit compressed to 8 bit
238                    GET_PARAMS(params);
239                    while (currentframeoffset) {
240                        SKIP_ONE(int8_t(*pSrc++));
241                        currentframeoffset--;
242                    }
243                    while (copysamples) {
244                        COPY_ONE(int8_t(*pSrc++));
245                        copysamples--;
246                    }
247                    break;
248            }
249        }
250    
251        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
252        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
254        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
255    }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
348      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
349      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
350    
351      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
352         *
353         * Load an existing sample or create a new one. A 'wave' list chunk must
354         * be given to this constructor. In case the given 'wave' list chunk
355         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356         * format and sample data will be loaded from there, otherwise default
357         * values will be used and those chunks will be created when
358         * File::Save() will be called later on.
359         *
360         * @param pFile          - pointer to gig::File where this sample is
361         *                         located (or will be located)
362         * @param waveList       - pointer to 'wave' list chunk which is (or
363         *                         will be) associated with this sample
364         * @param WavePoolOffset - offset of this sample data from wave pool
365         *                         ('wvpl') list chunk
366         * @param fileNo         - number of an extension file where this sample
367         *                         is located, 0 otherwise
368         */
369        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370            static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376            FileNo = fileNo;
377    
378          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
379          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");  
380          SampleGroup = _3gix->ReadInt16();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381            if (pCk3gix) {
382          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
383          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              pGroup = pFile->GetGroup(iSampleGroup);
384          Manufacturer      = smpl->ReadInt32();          } else { // '3gix' chunk missing
385          Product           = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
386          SamplePeriod      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
387          MIDIUnityNote     = smpl->ReadInt32();          }
388          MIDIPitchFraction = smpl->ReadInt32();  
389          smpl->Read(&SMPTEFormat, 1, 4);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390          SMPTEOffset       = smpl->ReadInt32();          if (pCkSmpl) {
391          Loops             = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
392          LoopID            = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
393          smpl->Read(&LoopType, 1, 4);              SamplePeriod  = pCkSmpl->ReadInt32();
394          LoopStart         = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
395          LoopEnd           = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
396          LoopFraction      = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
397          LoopPlayCount     = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
398                Loops         = pCkSmpl->ReadInt32();
399                pCkSmpl->ReadInt32(); // manufByt
400                LoopID        = pCkSmpl->ReadInt32();
401                pCkSmpl->Read(&LoopType, 1, 4);
402                LoopStart     = pCkSmpl->ReadInt32();
403                LoopEnd       = pCkSmpl->ReadInt32();
404                LoopFraction  = pCkSmpl->ReadInt32();
405                LoopPlayCount = pCkSmpl->ReadInt32();
406            } else { // 'smpl' chunk missing
407                // use default values
408                Manufacturer  = 0;
409                Product       = 0;
410                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411                MIDIUnityNote = 60;
412                FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414                SMPTEOffset   = 0;
415                Loops         = 0;
416                LoopID        = 0;
417                LoopType      = loop_type_normal;
418                LoopStart     = 0;
419                LoopEnd       = 0;
420                LoopFraction  = 0;
421                LoopPlayCount = 0;
422            }
423    
424          FrameTable                 = NULL;          FrameTable                 = NULL;
425          SamplePos                  = 0;          SamplePos                  = 0;
# Line 62  namespace gig { Line 427  namespace gig {
427          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
428          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
429    
430          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433            Compressed        = ewav;
434            Dithered          = false;
435            TruncatedBits     = 0;
436          if (Compressed) {          if (Compressed) {
437                uint32_t version = ewav->ReadInt32();
438                if (version == 3 && BitDepth == 24) {
439                    Dithered = ewav->ReadInt32();
440                    ewav->SetPos(Channels == 2 ? 84 : 64);
441                    TruncatedBits = ewav->ReadInt32();
442                }
443              ScanCompressedSample();              ScanCompressedSample();
444              if (!pDecompressionBuffer) {          }
445                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];  
446                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
450            }
451            FrameOffset = 0; // just for streaming compressed samples
452    
453            LoopSize = LoopEnd - LoopStart + 1;
454        }
455    
456        /**
457         * Apply sample and its settings to the respective RIFF chunks. You have
458         * to call File::Save() to make changes persistent.
459         *
460         * Usually there is absolutely no need to call this method explicitly.
461         * It will be called automatically when File::Save() was called.
462         *
463         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464         *                        was provided yet
465         * @throws gig::Exception if there is any invalid sample setting
466         */
467        void Sample::UpdateChunks() {
468            // first update base class's chunks
469            DLS::Sample::UpdateChunks();
470    
471            // make sure 'smpl' chunk exists
472            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473            if (!pCkSmpl) {
474                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475                memset(pCkSmpl->LoadChunkData(), 0, 60);
476            }
477            // update 'smpl' chunk
478            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480            store32(&pData[0], Manufacturer);
481            store32(&pData[4], Product);
482            store32(&pData[8], SamplePeriod);
483            store32(&pData[12], MIDIUnityNote);
484            store32(&pData[16], FineTune);
485            store32(&pData[20], SMPTEFormat);
486            store32(&pData[24], SMPTEOffset);
487            store32(&pData[28], Loops);
488    
489            // we skip 'manufByt' for now (4 bytes)
490    
491            store32(&pData[36], LoopID);
492            store32(&pData[40], LoopType);
493            store32(&pData[44], LoopStart);
494            store32(&pData[48], LoopEnd);
495            store32(&pData[52], LoopFraction);
496            store32(&pData[56], LoopPlayCount);
497    
498            // make sure '3gix' chunk exists
499            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501            // determine appropriate sample group index (to be stored in chunk)
502            uint16_t iSampleGroup = 0; // 0 refers to default sample group
503            File* pFile = static_cast<File*>(pParent);
504            if (pFile->pGroups) {
505                std::list<Group*>::iterator iter = pFile->pGroups->begin();
506                std::list<Group*>::iterator end  = pFile->pGroups->end();
507                for (int i = 0; iter != end; i++, iter++) {
508                    if (*iter == pGroup) {
509                        iSampleGroup = i;
510                        break; // found
511                    }
512              }              }
513          }          }
514          FrameOffset = 0; // just for streaming compressed samples          // update '3gix' chunk
515            pData = (uint8_t*) pCk3gix->LoadChunkData();
516            store16(&pData[0], iSampleGroup);
517      }      }
518    
519      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 79  namespace gig { Line 522  namespace gig {
522          this->SamplesTotal = 0;          this->SamplesTotal = 0;
523          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
524    
525            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527    
528          // Scanning          // Scanning
529          pCkData->SetPos(0);          pCkData->SetPos(0);
530          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
531              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
532              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
533              this->SamplesTotal += 2048;                  // stored, to save some memory
534              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535                  case 1:   // left channel compressed  
536                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
537                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
538                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541                    if (pCkData->RemainingBytes() <= frameSize) {
542                        SamplesInLastFrame =
543                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545                        SamplesTotal += SamplesInLastFrame;
546                      break;                      break;
547                  case 257: // both channels compressed                  }
548                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
549                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
550                }
551            }
552            else { // Mono
553                for (int i = 0 ; ; i++) {
554                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556                    const int mode = pCkData->ReadUint8();
557                    if (mode > 5) throw gig::Exception("Unknown compression mode");
558                    const unsigned long frameSize = bytesPerFrame[mode];
559    
560                    if (pCkData->RemainingBytes() <= frameSize) {
561                        SamplesInLastFrame =
562                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563                        SamplesTotal += SamplesInLastFrame;
564                      break;                      break;
565                  default: // both channels uncompressed                  }
566                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
567                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
568              }              }
569          }          }
570          pCkData->SetPos(0);          pCkData->SetPos(0);
571    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
572          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
574          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 138  namespace gig { Line 604  namespace gig {
604       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
605       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
606       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
607       *       * @code
608       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
609       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
610         * @endcode
611       *       *
612       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
613       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 186  namespace gig { Line 653  namespace gig {
653       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
654       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
655       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
656       *       * @code
657       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
659       *       * @endcode
660       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
661       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
662       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 249  namespace gig { Line 716  namespace gig {
716          RAMCache.Size   = 0;          RAMCache.Size   = 0;
717      }      }
718    
719        /** @brief Resize sample.
720         *
721         * Resizes the sample's wave form data, that is the actual size of
722         * sample wave data possible to be written for this sample. This call
723         * will return immediately and just schedule the resize operation. You
724         * should call File::Save() to actually perform the resize operation(s)
725         * "physically" to the file. As this can take a while on large files, it
726         * is recommended to call Resize() first on all samples which have to be
727         * resized and finally to call File::Save() to perform all those resize
728         * operations in one rush.
729         *
730         * The actual size (in bytes) is dependant to the current FrameSize
731         * value. You may want to set FrameSize before calling Resize().
732         *
733         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
734         * enlarged samples before calling File::Save() as this might exceed the
735         * current sample's boundary!
736         *
737         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
738         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
739         * other formats will fail!
740         *
741         * @param iNewSize - new sample wave data size in sample points (must be
742         *                   greater than zero)
743         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
744         *                         or if \a iNewSize is less than 1
745         * @throws gig::Exception if existing sample is compressed
746         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
747         *      DLS::Sample::FormatTag, File::Save()
748         */
749        void Sample::Resize(int iNewSize) {
750            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
751            DLS::Sample::Resize(iNewSize);
752        }
753    
754      /**      /**
755       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
756       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 310  namespace gig { Line 812  namespace gig {
812      }      }
813    
814      /**      /**
815         * Reads \a SampleCount number of sample points from the position stored
816         * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
817         * the position within the sample respectively, this method honors the
818         * looping informations of the sample (if any). The sample wave stream
819         * will be decompressed on the fly if using a compressed sample. Use this
820         * method if you don't want to load the sample into RAM, thus for disk
821         * streaming. All this methods needs to know to proceed with streaming
822         * for the next time you call this method is stored in \a pPlaybackState.
823         * You have to allocate and initialize the playback_state_t structure by
824         * yourself before you use it to stream a sample:
825         * @code
826         * gig::playback_state_t playbackstate;
827         * playbackstate.position         = 0;
828         * playbackstate.reverse          = false;
829         * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
830         * @endcode
831         * You don't have to take care of things like if there is actually a loop
832         * defined or if the current read position is located within a loop area.
833         * The method already handles such cases by itself.
834         *
835         * <b>Caution:</b> If you are using more than one streaming thread, you
836         * have to use an external decompression buffer for <b>EACH</b>
837         * streaming thread to avoid race conditions and crashes!
838         *
839         * @param pBuffer          destination buffer
840         * @param SampleCount      number of sample points to read
841         * @param pPlaybackState   will be used to store and reload the playback
842         *                         state for the next ReadAndLoop() call
843         * @param pDimRgn          dimension region with looping information
844         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
845         * @returns                number of successfully read sample points
846         * @see                    CreateDecompressionBuffer()
847         */
848        unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
849                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
850            unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
851            uint8_t* pDst = (uint8_t*) pBuffer;
852    
853            SetPos(pPlaybackState->position); // recover position from the last time
854    
855            if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
856    
857                const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
858                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
859    
860                if (GetPos() <= loopEnd) {
861                    switch (loop.LoopType) {
862    
863                        case loop_type_bidirectional: { //TODO: not tested yet!
864                            do {
865                                // if not endless loop check if max. number of loop cycles have been passed
866                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
867    
868                                if (!pPlaybackState->reverse) { // forward playback
869                                    do {
870                                        samplestoloopend  = loopEnd - GetPos();
871                                        readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
872                                        samplestoread    -= readsamples;
873                                        totalreadsamples += readsamples;
874                                        if (readsamples == samplestoloopend) {
875                                            pPlaybackState->reverse = true;
876                                            break;
877                                        }
878                                    } while (samplestoread && readsamples);
879                                }
880                                else { // backward playback
881    
882                                    // as we can only read forward from disk, we have to
883                                    // determine the end position within the loop first,
884                                    // read forward from that 'end' and finally after
885                                    // reading, swap all sample frames so it reflects
886                                    // backward playback
887    
888                                    unsigned long swapareastart       = totalreadsamples;
889                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
890                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
891                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
892    
893                                    SetPos(reverseplaybackend);
894    
895                                    // read samples for backward playback
896                                    do {
897                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
898                                        samplestoreadinloop -= readsamples;
899                                        samplestoread       -= readsamples;
900                                        totalreadsamples    += readsamples;
901                                    } while (samplestoreadinloop && readsamples);
902    
903                                    SetPos(reverseplaybackend); // pretend we really read backwards
904    
905                                    if (reverseplaybackend == loop.LoopStart) {
906                                        pPlaybackState->loop_cycles_left--;
907                                        pPlaybackState->reverse = false;
908                                    }
909    
910                                    // reverse the sample frames for backward playback
911                                    SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
912                                }
913                            } while (samplestoread && readsamples);
914                            break;
915                        }
916    
917                        case loop_type_backward: { // TODO: not tested yet!
918                            // forward playback (not entered the loop yet)
919                            if (!pPlaybackState->reverse) do {
920                                samplestoloopend  = loopEnd - GetPos();
921                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
922                                samplestoread    -= readsamples;
923                                totalreadsamples += readsamples;
924                                if (readsamples == samplestoloopend) {
925                                    pPlaybackState->reverse = true;
926                                    break;
927                                }
928                            } while (samplestoread && readsamples);
929    
930                            if (!samplestoread) break;
931    
932                            // as we can only read forward from disk, we have to
933                            // determine the end position within the loop first,
934                            // read forward from that 'end' and finally after
935                            // reading, swap all sample frames so it reflects
936                            // backward playback
937    
938                            unsigned long swapareastart       = totalreadsamples;
939                            unsigned long loopoffset          = GetPos() - loop.LoopStart;
940                            unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
941                                                                                      : samplestoread;
942                            unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
943    
944                            SetPos(reverseplaybackend);
945    
946                            // read samples for backward playback
947                            do {
948                                // if not endless loop check if max. number of loop cycles have been passed
949                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
950                                samplestoloopend     = loopEnd - GetPos();
951                                readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
952                                samplestoreadinloop -= readsamples;
953                                samplestoread       -= readsamples;
954                                totalreadsamples    += readsamples;
955                                if (readsamples == samplestoloopend) {
956                                    pPlaybackState->loop_cycles_left--;
957                                    SetPos(loop.LoopStart);
958                                }
959                            } while (samplestoreadinloop && readsamples);
960    
961                            SetPos(reverseplaybackend); // pretend we really read backwards
962    
963                            // reverse the sample frames for backward playback
964                            SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
965                            break;
966                        }
967    
968                        default: case loop_type_normal: {
969                            do {
970                                // if not endless loop check if max. number of loop cycles have been passed
971                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
972                                samplestoloopend  = loopEnd - GetPos();
973                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974                                samplestoread    -= readsamples;
975                                totalreadsamples += readsamples;
976                                if (readsamples == samplestoloopend) {
977                                    pPlaybackState->loop_cycles_left--;
978                                    SetPos(loop.LoopStart);
979                                }
980                            } while (samplestoread && readsamples);
981                            break;
982                        }
983                    }
984                }
985            }
986    
987            // read on without looping
988            if (samplestoread) do {
989                readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
990                samplestoread    -= readsamples;
991                totalreadsamples += readsamples;
992            } while (readsamples && samplestoread);
993    
994            // store current position
995            pPlaybackState->position = GetPos();
996    
997            return totalreadsamples;
998        }
999    
1000        /**
1001       * Reads \a SampleCount number of sample points from the current       * Reads \a SampleCount number of sample points from the current
1002       * position into the buffer pointed by \a pBuffer and increments the       * position into the buffer pointed by \a pBuffer and increments the
1003       * position within the sample. The sample wave stream will be       * position within the sample. The sample wave stream will be
# Line 317  namespace gig { Line 1005  namespace gig {
1005       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1006       * thus for disk streaming.       * thus for disk streaming.
1007       *       *
1008         * <b>Caution:</b> If you are using more than one streaming thread, you
1009         * have to use an external decompression buffer for <b>EACH</b>
1010         * streaming thread to avoid race conditions and crashes!
1011         *
1012         * For 16 bit samples, the data in the buffer will be int16_t
1013         * (using native endianness). For 24 bit, the buffer will
1014         * contain three bytes per sample, little-endian.
1015         *
1016       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1017       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1018         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1019       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1020       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1021       */       */
1022      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1023          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (SampleCount == 0) return 0;
1024          else { //FIXME: no support for mono compressed samples yet, are there any?          if (!Compressed) {
1025                if (BitDepth == 24) {
1026                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1027                }
1028                else { // 16 bit
1029                    // (pCkData->Read does endian correction)
1030                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1031                                         : pCkData->Read(pBuffer, SampleCount, 2);
1032                }
1033            }
1034            else {
1035              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1036              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1037              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1038                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1039                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1040                            copysamples;                            copysamples, skipsamples,
1041              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1042              this->FrameOffset = 0;              this->FrameOffset = 0;
1043    
1044              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1045                  // local buffer reallocation - hope this won't happen  
1046                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1047                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1048                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1049                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1050                    remainingsamples = SampleCount;
1051                    assumedsize      = GuessSize(SampleCount);
1052              }              }
1053    
1054              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1055              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1056              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1057              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1058    
1059              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1060                    unsigned long framesamples = SamplesPerFrame;
1061                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1062                  if (remainingbytes < 8194) {  
1063                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1064                          this->SamplePos = this->SamplesTotal;  
1065                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1066                        mode_r = *pSrc++;
1067                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1068                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1069                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1070                        if (remainingbytes < framebytes) { // last frame in sample
1071                            framesamples = SamplesInLastFrame;
1072                            if (mode_l == 4 && (framesamples & 1)) {
1073                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1074                            }
1075                            else {
1076                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1077                            }
1078                        }
1079                    }
1080                    else {
1081                        framebytes = bytesPerFrame[mode_l] + 1;
1082                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1083                        if (remainingbytes < framebytes) {
1084                            framesamples = SamplesInLastFrame;
1085                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
1086                  }                  }
1087    
1088                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1089                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1090                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1091                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1092                            skipsamples = currentframeoffset;
1093                        }
1094                        else {
1095                            copysamples = 0;
1096                            skipsamples = framesamples;
1097                        }
1098                  }                  }
1099                  else {                  else {
1100                        // This frame has enough data for pBuffer, but not
1101                        // all of the frame is needed. Set file position
1102                        // to start of this frame for next call to Read.
1103                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1104                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1105                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1106                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1107                      }                  }
1108                      else {                  remainingsamples -= copysamples;
1109    
1110                    if (remainingbytes > framebytes) {
1111                        remainingbytes -= framebytes;
1112                        if (remainingsamples == 0 &&
1113                            currentframeoffset + copysamples == framesamples) {
1114                            // This frame has enough data for pBuffer, and
1115                            // all of the frame is needed. Set file
1116                            // position to start of next frame for next
1117                            // call to Read. FrameOffset is 0.
1118                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1119                      }                      }
1120                  }                  }
1121                    else remainingbytes = 0;
1122    
1123                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1124                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1125                  switch (compressionmode) {                  if (copysamples == 0) {
1126                      case 1: // left channel compressed                      // skip this frame
1127                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1128                          if (!remainingsamples && copysamples == 2048)                  }
1129                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1130                        const unsigned char* const param_l = pSrc;
1131                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1132                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1133                          while (currentframeoffset) {  
1134                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1135                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1136                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1137                              currentframeoffset--;  
1138                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1139                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1140                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1141                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1142                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1143                          }                          }
1144                          while (copysamples) {                          else { // Mono
1145                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1146                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1147                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1148                          }                          }
1149                          break;                      }
1150                      case 257: // both channels compressed                      else { // 16 bit
1151                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1152                          if (!remainingsamples && copysamples == 2048)  
1153                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1154                            if (Channels == 2) { // Stereo
1155                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1156                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1157                          right  = *(int16_t*)pSrc; pSrc+=2;  
1158                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1159                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1160                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1161                              left   -= dleft;                                           skipsamples, copysamples);
1162                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1163                          }                          }
1164                          while (copysamples) {                          else { // Mono
1165                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1166                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1167                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1168                          }                          }
1169                          break;                      }
1170                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1171                  }                  }
1172              }  
1173                    // reload from disk to local buffer if needed
1174                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1175                        assumedsize    = GuessSize(remainingsamples);
1176                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1177                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1178                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1179                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1180                    }
1181                } // while
1182    
1183              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1184              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1185              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1186          }          }
1187      }      }
1188    
1189        /** @brief Write sample wave data.
1190         *
1191         * Writes \a SampleCount number of sample points from the buffer pointed
1192         * by \a pBuffer and increments the position within the sample. Use this
1193         * method to directly write the sample data to disk, i.e. if you don't
1194         * want or cannot load the whole sample data into RAM.
1195         *
1196         * You have to Resize() the sample to the desired size and call
1197         * File::Save() <b>before</b> using Write().
1198         *
1199         * Note: there is currently no support for writing compressed samples.
1200         *
1201         * For 16 bit samples, the data in the source buffer should be
1202         * int16_t (using native endianness). For 24 bit, the buffer
1203         * should contain three bytes per sample, little-endian.
1204         *
1205         * @param pBuffer     - source buffer
1206         * @param SampleCount - number of sample points to write
1207         * @throws DLS::Exception if current sample size is too small
1208         * @throws gig::Exception if sample is compressed
1209         * @see DLS::LoadSampleData()
1210         */
1211        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1212            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1213    
1214            // if this is the first write in this sample, reset the
1215            // checksum calculator
1216            if (pCkData->GetPos() == 0) {
1217                __resetCRC(crc);
1218            }
1219            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1220            unsigned long res;
1221            if (BitDepth == 24) {
1222                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1223            } else { // 16 bit
1224                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1225                                    : pCkData->Write(pBuffer, SampleCount, 2);
1226            }
1227            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1228    
1229            // if this is the last write, update the checksum chunk in the
1230            // file
1231            if (pCkData->GetPos() == pCkData->GetSize()) {
1232                File* pFile = static_cast<File*>(GetParent());
1233                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1234            }
1235            return res;
1236        }
1237    
1238        /**
1239         * Allocates a decompression buffer for streaming (compressed) samples
1240         * with Sample::Read(). If you are using more than one streaming thread
1241         * in your application you <b>HAVE</b> to create a decompression buffer
1242         * for <b>EACH</b> of your streaming threads and provide it with the
1243         * Sample::Read() call in order to avoid race conditions and crashes.
1244         *
1245         * You should free the memory occupied by the allocated buffer(s) once
1246         * you don't need one of your streaming threads anymore by calling
1247         * DestroyDecompressionBuffer().
1248         *
1249         * @param MaxReadSize - the maximum size (in sample points) you ever
1250         *                      expect to read with one Read() call
1251         * @returns allocated decompression buffer
1252         * @see DestroyDecompressionBuffer()
1253         */
1254        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1255            buffer_t result;
1256            const double worstCaseHeaderOverhead =
1257                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1258            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1259            result.pStart            = new int8_t[result.Size];
1260            result.NullExtensionSize = 0;
1261            return result;
1262        }
1263    
1264        /**
1265         * Free decompression buffer, previously created with
1266         * CreateDecompressionBuffer().
1267         *
1268         * @param DecompressionBuffer - previously allocated decompression
1269         *                              buffer to free
1270         */
1271        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1272            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1273                delete[] (int8_t*) DecompressionBuffer.pStart;
1274                DecompressionBuffer.pStart = NULL;
1275                DecompressionBuffer.Size   = 0;
1276                DecompressionBuffer.NullExtensionSize = 0;
1277            }
1278        }
1279    
1280        /**
1281         * Returns pointer to the Group this Sample belongs to. In the .gig
1282         * format a sample always belongs to one group. If it wasn't explicitly
1283         * assigned to a certain group, it will be automatically assigned to a
1284         * default group.
1285         *
1286         * @returns Sample's Group (never NULL)
1287         */
1288        Group* Sample::GetGroup() const {
1289            return pGroup;
1290        }
1291    
1292      Sample::~Sample() {      Sample::~Sample() {
1293          Instances--;          Instances--;
1294          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1295                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1296                InternalDecompressionBuffer.pStart = NULL;
1297                InternalDecompressionBuffer.Size   = 0;
1298            }
1299          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1300          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1301      }      }
# Line 491  namespace gig { Line 1305  namespace gig {
1305  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1306  // *  // *
1307    
1308      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      uint                               DimensionRegion::Instances       = 0;
1309          memcpy(&Crossfade, &SamplerOptions, 4);      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1310    
1311        DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1312            Instances++;
1313    
1314            pSample = NULL;
1315            pRegion = pParent;
1316    
1317            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1318            else memset(&Crossfade, 0, 4);
1319    
1320            if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1321    
1322          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1323          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1324          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1325          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1327          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1328          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1329          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1330          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1331          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1332          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1333          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1334          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1335          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1337          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1338          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1339          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1341          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1342          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1343          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1344          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1345          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1346          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1347          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1348          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1349          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1350          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1351          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1352          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1355          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1356          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1357          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1359          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1360          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1362          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1363          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1364          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1365          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1366          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1367          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1368          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1369          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1370          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1371          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1372          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1373          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1374              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1375              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1376          }                  VelocityResponseDepth = velocityresponse;
1377          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1378              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1379              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1380          }              } else if (velocityresponse < 15) {
1381          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1382              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1383              VelocityResponseDepth = velocityresponse - 10;              } else {
1384                    VelocityResponseCurve = curve_type_unknown;
1385                    VelocityResponseDepth = 0;
1386                }
1387                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1388                if (releasevelocityresponse < 5) {
1389                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1390                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1391                } else if (releasevelocityresponse < 10) {
1392                    ReleaseVelocityResponseCurve = curve_type_linear;
1393                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1394                } else if (releasevelocityresponse < 15) {
1395                    ReleaseVelocityResponseCurve = curve_type_special;
1396                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1397                } else {
1398                    ReleaseVelocityResponseCurve = curve_type_unknown;
1399                    ReleaseVelocityResponseDepth = 0;
1400                }
1401                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1402                AttenuationControllerThreshold = _3ewa->ReadInt8();
1403                _3ewa->ReadInt32(); // unknown
1404                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1405                _3ewa->ReadInt16(); // unknown
1406                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1407                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1408                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1409                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1410                else                                       DimensionBypass = dim_bypass_ctrl_none;
1411                uint8_t pan = _3ewa->ReadUint8();
1412                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1413                SelfMask = _3ewa->ReadInt8() & 0x01;
1414                _3ewa->ReadInt8(); // unknown
1415                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1416                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1417                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1418                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1419                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1421                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1422                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1423                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1424                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1425                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1426                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1427                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1428                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1429                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1430                                                            : vcf_res_ctrl_none;
1431                uint16_t eg3depth = _3ewa->ReadUint16();
1432                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1433                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1434                _3ewa->ReadInt16(); // unknown
1435                ChannelOffset = _3ewa->ReadUint8() / 4;
1436                uint8_t regoptions = _3ewa->ReadUint8();
1437                MSDecode           = regoptions & 0x01; // bit 0
1438                SustainDefeat      = regoptions & 0x02; // bit 1
1439                _3ewa->ReadInt16(); // unknown
1440                VelocityUpperLimit = _3ewa->ReadInt8();
1441                _3ewa->ReadInt8(); // unknown
1442                _3ewa->ReadInt16(); // unknown
1443                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1444                _3ewa->ReadInt8(); // unknown
1445                _3ewa->ReadInt8(); // unknown
1446                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1447                uint8_t vcfcutoff = _3ewa->ReadUint8();
1448                VCFEnabled = vcfcutoff & 0x80; // bit 7
1449                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1450                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1451                uint8_t vcfvelscale = _3ewa->ReadUint8();
1452                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1453                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1454                _3ewa->ReadInt8(); // unknown
1455                uint8_t vcfresonance = _3ewa->ReadUint8();
1456                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1457                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1458                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1459                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1460                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1461                uint8_t vcfvelocity = _3ewa->ReadUint8();
1462                VCFVelocityDynamicRange = vcfvelocity % 5;
1463                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1464                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1465                if (VCFType == vcf_type_lowpass) {
1466                    if (lfo3ctrl & 0x40) // bit 6
1467                        VCFType = vcf_type_lowpassturbo;
1468                }
1469                if (_3ewa->RemainingBytes() >= 8) {
1470                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1471                } else {
1472                    memset(DimensionUpperLimits, 0, 8);
1473                }
1474            } else { // '3ewa' chunk does not exist yet
1475                // use default values
1476                LFO3Frequency                   = 1.0;
1477                EG3Attack                       = 0.0;
1478                LFO1InternalDepth               = 0;
1479                LFO3InternalDepth               = 0;
1480                LFO1ControlDepth                = 0;
1481                LFO3ControlDepth                = 0;
1482                EG1Attack                       = 0.0;
1483                EG1Decay1                       = 0.005;
1484                EG1Sustain                      = 1000;
1485                EG1Release                      = 0.3;
1486                EG1Controller.type              = eg1_ctrl_t::type_none;
1487                EG1Controller.controller_number = 0;
1488                EG1ControllerInvert             = false;
1489                EG1ControllerAttackInfluence    = 0;
1490                EG1ControllerDecayInfluence     = 0;
1491                EG1ControllerReleaseInfluence   = 0;
1492                EG2Controller.type              = eg2_ctrl_t::type_none;
1493                EG2Controller.controller_number = 0;
1494                EG2ControllerInvert             = false;
1495                EG2ControllerAttackInfluence    = 0;
1496                EG2ControllerDecayInfluence     = 0;
1497                EG2ControllerReleaseInfluence   = 0;
1498                LFO1Frequency                   = 1.0;
1499                EG2Attack                       = 0.0;
1500                EG2Decay1                       = 0.005;
1501                EG2Sustain                      = 1000;
1502                EG2Release                      = 0.3;
1503                LFO2ControlDepth                = 0;
1504                LFO2Frequency                   = 1.0;
1505                LFO2InternalDepth               = 0;
1506                EG1Decay2                       = 0.0;
1507                EG1InfiniteSustain              = true;
1508                EG1PreAttack                    = 0;
1509                EG2Decay2                       = 0.0;
1510                EG2InfiniteSustain              = true;
1511                EG2PreAttack                    = 0;
1512                VelocityResponseCurve           = curve_type_nonlinear;
1513                VelocityResponseDepth           = 3;
1514                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1515                ReleaseVelocityResponseDepth    = 3;
1516                VelocityResponseCurveScaling    = 32;
1517                AttenuationControllerThreshold  = 0;
1518                SampleStartOffset               = 0;
1519                PitchTrack                      = true;
1520                DimensionBypass                 = dim_bypass_ctrl_none;
1521                Pan                             = 0;
1522                SelfMask                        = true;
1523                LFO3Controller                  = lfo3_ctrl_modwheel;
1524                LFO3Sync                        = false;
1525                InvertAttenuationController     = false;
1526                AttenuationController.type      = attenuation_ctrl_t::type_none;
1527                AttenuationController.controller_number = 0;
1528                LFO2Controller                  = lfo2_ctrl_internal;
1529                LFO2FlipPhase                   = false;
1530                LFO2Sync                        = false;
1531                LFO1Controller                  = lfo1_ctrl_internal;
1532                LFO1FlipPhase                   = false;
1533                LFO1Sync                        = false;
1534                VCFResonanceController          = vcf_res_ctrl_none;
1535                EG3Depth                        = 0;
1536                ChannelOffset                   = 0;
1537                MSDecode                        = false;
1538                SustainDefeat                   = false;
1539                VelocityUpperLimit              = 0;
1540                ReleaseTriggerDecay             = 0;
1541                EG1Hold                         = false;
1542                VCFEnabled                      = false;
1543                VCFCutoff                       = 0;
1544                VCFCutoffController             = vcf_cutoff_ctrl_none;
1545                VCFCutoffControllerInvert       = false;
1546                VCFVelocityScale                = 0;
1547                VCFResonance                    = 0;
1548                VCFResonanceDynamic             = false;
1549                VCFKeyboardTracking             = false;
1550                VCFKeyboardTrackingBreakpoint   = 0;
1551                VCFVelocityDynamicRange         = 0x04;
1552                VCFVelocityCurve                = curve_type_linear;
1553                VCFType                         = vcf_type_lowpass;
1554                memset(DimensionUpperLimits, 127, 8);
1555            }
1556    
1557            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1558                                                         VelocityResponseDepth,
1559                                                         VelocityResponseCurveScaling);
1560    
1561            pVelocityReleaseTable = GetReleaseVelocityTable(
1562                                        ReleaseVelocityResponseCurve,
1563                                        ReleaseVelocityResponseDepth
1564                                    );
1565    
1566            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1567                                                          VCFVelocityDynamicRange,
1568                                                          VCFVelocityScale,
1569                                                          VCFCutoffController);
1570    
1571            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1572            VelocityTable = 0;
1573        }
1574    
1575        /*
1576         * Constructs a DimensionRegion by copying all parameters from
1577         * another DimensionRegion
1578         */
1579        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1580            Instances++;
1581            *this = src; // default memberwise shallow copy of all parameters
1582            pParentList = _3ewl; // restore the chunk pointer
1583    
1584            // deep copy of owned structures
1585            if (src.VelocityTable) {
1586                VelocityTable = new uint8_t[128];
1587                for (int k = 0 ; k < 128 ; k++)
1588                    VelocityTable[k] = src.VelocityTable[k];
1589            }
1590            if (src.pSampleLoops) {
1591                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1592                for (int k = 0 ; k < src.SampleLoops ; k++)
1593                    pSampleLoops[k] = src.pSampleLoops[k];
1594          }          }
1595          else {      }
1596              VelocityResponseCurve = curve_type_unknown;  
1597              VelocityResponseDepth = 0;      /**
1598         * Updates the respective member variable and updates @c SampleAttenuation
1599         * which depends on this value.
1600         */
1601        void DimensionRegion::SetGain(int32_t gain) {
1602            DLS::Sampler::SetGain(gain);
1603            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1604        }
1605    
1606        /**
1607         * Apply dimension region settings to the respective RIFF chunks. You
1608         * have to call File::Save() to make changes persistent.
1609         *
1610         * Usually there is absolutely no need to call this method explicitly.
1611         * It will be called automatically when File::Save() was called.
1612         */
1613        void DimensionRegion::UpdateChunks() {
1614            // first update base class's chunk
1615            DLS::Sampler::UpdateChunks();
1616    
1617            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1618            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1619            pData[12] = Crossfade.in_start;
1620            pData[13] = Crossfade.in_end;
1621            pData[14] = Crossfade.out_start;
1622            pData[15] = Crossfade.out_end;
1623    
1624            // make sure '3ewa' chunk exists
1625            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1626            if (!_3ewa) {
1627                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1628                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1629                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1630            }
1631            pData = (uint8_t*) _3ewa->LoadChunkData();
1632    
1633            // update '3ewa' chunk with DimensionRegion's current settings
1634    
1635            const uint32_t chunksize = _3ewa->GetNewSize();
1636            store32(&pData[0], chunksize); // unknown, always chunk size?
1637    
1638            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1639            store32(&pData[4], lfo3freq);
1640    
1641            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1642            store32(&pData[8], eg3attack);
1643    
1644            // next 2 bytes unknown
1645    
1646            store16(&pData[14], LFO1InternalDepth);
1647    
1648            // next 2 bytes unknown
1649    
1650            store16(&pData[18], LFO3InternalDepth);
1651    
1652            // next 2 bytes unknown
1653    
1654            store16(&pData[22], LFO1ControlDepth);
1655    
1656            // next 2 bytes unknown
1657    
1658            store16(&pData[26], LFO3ControlDepth);
1659    
1660            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1661            store32(&pData[28], eg1attack);
1662    
1663            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1664            store32(&pData[32], eg1decay1);
1665    
1666            // next 2 bytes unknown
1667    
1668            store16(&pData[38], EG1Sustain);
1669    
1670            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1671            store32(&pData[40], eg1release);
1672    
1673            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1674            pData[44] = eg1ctl;
1675    
1676            const uint8_t eg1ctrloptions =
1677                (EG1ControllerInvert ? 0x01 : 0x00) |
1678                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1679                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1680                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1681            pData[45] = eg1ctrloptions;
1682    
1683            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1684            pData[46] = eg2ctl;
1685    
1686            const uint8_t eg2ctrloptions =
1687                (EG2ControllerInvert ? 0x01 : 0x00) |
1688                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1689                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1690                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1691            pData[47] = eg2ctrloptions;
1692    
1693            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1694            store32(&pData[48], lfo1freq);
1695    
1696            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1697            store32(&pData[52], eg2attack);
1698    
1699            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1700            store32(&pData[56], eg2decay1);
1701    
1702            // next 2 bytes unknown
1703    
1704            store16(&pData[62], EG2Sustain);
1705    
1706            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1707            store32(&pData[64], eg2release);
1708    
1709            // next 2 bytes unknown
1710    
1711            store16(&pData[70], LFO2ControlDepth);
1712    
1713            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1714            store32(&pData[72], lfo2freq);
1715    
1716            // next 2 bytes unknown
1717    
1718            store16(&pData[78], LFO2InternalDepth);
1719    
1720            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1721            store32(&pData[80], eg1decay2);
1722    
1723            // next 2 bytes unknown
1724    
1725            store16(&pData[86], EG1PreAttack);
1726    
1727            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1728            store32(&pData[88], eg2decay2);
1729    
1730            // next 2 bytes unknown
1731    
1732            store16(&pData[94], EG2PreAttack);
1733    
1734            {
1735                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1736                uint8_t velocityresponse = VelocityResponseDepth;
1737                switch (VelocityResponseCurve) {
1738                    case curve_type_nonlinear:
1739                        break;
1740                    case curve_type_linear:
1741                        velocityresponse += 5;
1742                        break;
1743                    case curve_type_special:
1744                        velocityresponse += 10;
1745                        break;
1746                    case curve_type_unknown:
1747                    default:
1748                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1749                }
1750                pData[96] = velocityresponse;
1751            }
1752    
1753            {
1754                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1755                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1756                switch (ReleaseVelocityResponseCurve) {
1757                    case curve_type_nonlinear:
1758                        break;
1759                    case curve_type_linear:
1760                        releasevelocityresponse += 5;
1761                        break;
1762                    case curve_type_special:
1763                        releasevelocityresponse += 10;
1764                        break;
1765                    case curve_type_unknown:
1766                    default:
1767                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1768                }
1769                pData[97] = releasevelocityresponse;
1770            }
1771    
1772            pData[98] = VelocityResponseCurveScaling;
1773    
1774            pData[99] = AttenuationControllerThreshold;
1775    
1776            // next 4 bytes unknown
1777    
1778            store16(&pData[104], SampleStartOffset);
1779    
1780            // next 2 bytes unknown
1781    
1782            {
1783                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1784                switch (DimensionBypass) {
1785                    case dim_bypass_ctrl_94:
1786                        pitchTrackDimensionBypass |= 0x10;
1787                        break;
1788                    case dim_bypass_ctrl_95:
1789                        pitchTrackDimensionBypass |= 0x20;
1790                        break;
1791                    case dim_bypass_ctrl_none:
1792                        //FIXME: should we set anything here?
1793                        break;
1794                    default:
1795                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1796                }
1797                pData[108] = pitchTrackDimensionBypass;
1798            }
1799    
1800            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1801            pData[109] = pan;
1802    
1803            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1804            pData[110] = selfmask;
1805    
1806            // next byte unknown
1807    
1808            {
1809                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1810                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1811                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1812                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1813                pData[112] = lfo3ctrl;
1814          }          }
1815          uint8_t releasevelocityresponse = _3ewa->ReadUint8();  
1816          if (releasevelocityresponse < 5) {          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1817              ReleaseVelocityResponseCurve = curve_type_nonlinear;          pData[113] = attenctl;
1818              ReleaseVelocityResponseDepth = releasevelocityresponse;  
1819          }          {
1820          else if (releasevelocityresponse < 10) {              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1821              ReleaseVelocityResponseCurve = curve_type_linear;              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1822              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1823          }              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1824          else if (releasevelocityresponse < 15) {              pData[114] = lfo2ctrl;
1825              ReleaseVelocityResponseCurve = curve_type_special;          }
1826              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1827            {
1828                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1829                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1830                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1831                if (VCFResonanceController != vcf_res_ctrl_none)
1832                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1833                pData[115] = lfo1ctrl;
1834            }
1835    
1836            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1837                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1838            pData[116] = eg3depth;
1839    
1840            // next 2 bytes unknown
1841    
1842            const uint8_t channeloffset = ChannelOffset * 4;
1843            pData[120] = channeloffset;
1844    
1845            {
1846                uint8_t regoptions = 0;
1847                if (MSDecode)      regoptions |= 0x01; // bit 0
1848                if (SustainDefeat) regoptions |= 0x02; // bit 1
1849                pData[121] = regoptions;
1850            }
1851    
1852            // next 2 bytes unknown
1853    
1854            pData[124] = VelocityUpperLimit;
1855    
1856            // next 3 bytes unknown
1857    
1858            pData[128] = ReleaseTriggerDecay;
1859    
1860            // next 2 bytes unknown
1861    
1862            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1863            pData[131] = eg1hold;
1864    
1865            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1866                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1867            pData[132] = vcfcutoff;
1868    
1869            pData[133] = VCFCutoffController;
1870    
1871            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1872                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1873            pData[134] = vcfvelscale;
1874    
1875            // next byte unknown
1876    
1877            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1878                                         (VCFResonance & 0x7f); /* lower 7 bits */
1879            pData[136] = vcfresonance;
1880    
1881            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1882                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1883            pData[137] = vcfbreakpoint;
1884    
1885            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1886                                        VCFVelocityCurve * 5;
1887            pData[138] = vcfvelocity;
1888    
1889            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1890            pData[139] = vcftype;
1891    
1892            if (chunksize >= 148) {
1893                memcpy(&pData[140], DimensionUpperLimits, 8);
1894            }
1895        }
1896    
1897        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1898            curve_type_t curveType = releaseVelocityResponseCurve;
1899            uint8_t depth = releaseVelocityResponseDepth;
1900            // this models a strange behaviour or bug in GSt: two of the
1901            // velocity response curves for release time are not used even
1902            // if specified, instead another curve is chosen.
1903            if ((curveType == curve_type_nonlinear && depth == 0) ||
1904                (curveType == curve_type_special   && depth == 4)) {
1905                curveType = curve_type_nonlinear;
1906                depth = 3;
1907            }
1908            return GetVelocityTable(curveType, depth, 0);
1909        }
1910    
1911        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1912                                                        uint8_t vcfVelocityDynamicRange,
1913                                                        uint8_t vcfVelocityScale,
1914                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1915        {
1916            curve_type_t curveType = vcfVelocityCurve;
1917            uint8_t depth = vcfVelocityDynamicRange;
1918            // even stranger GSt: two of the velocity response curves for
1919            // filter cutoff are not used, instead another special curve
1920            // is chosen. This curve is not used anywhere else.
1921            if ((curveType == curve_type_nonlinear && depth == 0) ||
1922                (curveType == curve_type_special   && depth == 4)) {
1923                curveType = curve_type_special;
1924                depth = 5;
1925            }
1926            return GetVelocityTable(curveType, depth,
1927                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1928                                        ? vcfVelocityScale : 0);
1929        }
1930    
1931        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1932        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1933        {
1934            double* table;
1935            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1936            if (pVelocityTables->count(tableKey)) { // if key exists
1937                table = (*pVelocityTables)[tableKey];
1938          }          }
1939          else {          else {
1940              ReleaseVelocityResponseCurve = curve_type_unknown;              table = CreateVelocityTable(curveType, depth, scaling);
1941              ReleaseVelocityResponseDepth = 0;              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1942            }
1943            return table;
1944        }
1945    
1946        Region* DimensionRegion::GetParent() const {
1947            return pRegion;
1948        }
1949    
1950        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1951            leverage_ctrl_t decodedcontroller;
1952            switch (EncodedController) {
1953                // special controller
1954                case _lev_ctrl_none:
1955                    decodedcontroller.type = leverage_ctrl_t::type_none;
1956                    decodedcontroller.controller_number = 0;
1957                    break;
1958                case _lev_ctrl_velocity:
1959                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
1960                    decodedcontroller.controller_number = 0;
1961                    break;
1962                case _lev_ctrl_channelaftertouch:
1963                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1964                    decodedcontroller.controller_number = 0;
1965                    break;
1966    
1967                // ordinary MIDI control change controller
1968                case _lev_ctrl_modwheel:
1969                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1970                    decodedcontroller.controller_number = 1;
1971                    break;
1972                case _lev_ctrl_breath:
1973                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1974                    decodedcontroller.controller_number = 2;
1975                    break;
1976                case _lev_ctrl_foot:
1977                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1978                    decodedcontroller.controller_number = 4;
1979                    break;
1980                case _lev_ctrl_effect1:
1981                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1982                    decodedcontroller.controller_number = 12;
1983                    break;
1984                case _lev_ctrl_effect2:
1985                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1986                    decodedcontroller.controller_number = 13;
1987                    break;
1988                case _lev_ctrl_genpurpose1:
1989                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1990                    decodedcontroller.controller_number = 16;
1991                    break;
1992                case _lev_ctrl_genpurpose2:
1993                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1994                    decodedcontroller.controller_number = 17;
1995                    break;
1996                case _lev_ctrl_genpurpose3:
1997                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1998                    decodedcontroller.controller_number = 18;
1999                    break;
2000                case _lev_ctrl_genpurpose4:
2001                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2002                    decodedcontroller.controller_number = 19;
2003                    break;
2004                case _lev_ctrl_portamentotime:
2005                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2006                    decodedcontroller.controller_number = 5;
2007                    break;
2008                case _lev_ctrl_sustainpedal:
2009                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2010                    decodedcontroller.controller_number = 64;
2011                    break;
2012                case _lev_ctrl_portamento:
2013                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2014                    decodedcontroller.controller_number = 65;
2015                    break;
2016                case _lev_ctrl_sostenutopedal:
2017                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2018                    decodedcontroller.controller_number = 66;
2019                    break;
2020                case _lev_ctrl_softpedal:
2021                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2022                    decodedcontroller.controller_number = 67;
2023                    break;
2024                case _lev_ctrl_genpurpose5:
2025                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2026                    decodedcontroller.controller_number = 80;
2027                    break;
2028                case _lev_ctrl_genpurpose6:
2029                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2030                    decodedcontroller.controller_number = 81;
2031                    break;
2032                case _lev_ctrl_genpurpose7:
2033                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2034                    decodedcontroller.controller_number = 82;
2035                    break;
2036                case _lev_ctrl_genpurpose8:
2037                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2038                    decodedcontroller.controller_number = 83;
2039                    break;
2040                case _lev_ctrl_effect1depth:
2041                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2042                    decodedcontroller.controller_number = 91;
2043                    break;
2044                case _lev_ctrl_effect2depth:
2045                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2046                    decodedcontroller.controller_number = 92;
2047                    break;
2048                case _lev_ctrl_effect3depth:
2049                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2050                    decodedcontroller.controller_number = 93;
2051                    break;
2052                case _lev_ctrl_effect4depth:
2053                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2054                    decodedcontroller.controller_number = 94;
2055                    break;
2056                case _lev_ctrl_effect5depth:
2057                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2058                    decodedcontroller.controller_number = 95;
2059                    break;
2060    
2061                // unknown controller type
2062                default:
2063                    throw gig::Exception("Unknown leverage controller type.");
2064            }
2065            return decodedcontroller;
2066        }
2067    
2068        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2069            _lev_ctrl_t encodedcontroller;
2070            switch (DecodedController.type) {
2071                // special controller
2072                case leverage_ctrl_t::type_none:
2073                    encodedcontroller = _lev_ctrl_none;
2074                    break;
2075                case leverage_ctrl_t::type_velocity:
2076                    encodedcontroller = _lev_ctrl_velocity;
2077                    break;
2078                case leverage_ctrl_t::type_channelaftertouch:
2079                    encodedcontroller = _lev_ctrl_channelaftertouch;
2080                    break;
2081    
2082                // ordinary MIDI control change controller
2083                case leverage_ctrl_t::type_controlchange:
2084                    switch (DecodedController.controller_number) {
2085                        case 1:
2086                            encodedcontroller = _lev_ctrl_modwheel;
2087                            break;
2088                        case 2:
2089                            encodedcontroller = _lev_ctrl_breath;
2090                            break;
2091                        case 4:
2092                            encodedcontroller = _lev_ctrl_foot;
2093                            break;
2094                        case 12:
2095                            encodedcontroller = _lev_ctrl_effect1;
2096                            break;
2097                        case 13:
2098                            encodedcontroller = _lev_ctrl_effect2;
2099                            break;
2100                        case 16:
2101                            encodedcontroller = _lev_ctrl_genpurpose1;
2102                            break;
2103                        case 17:
2104                            encodedcontroller = _lev_ctrl_genpurpose2;
2105                            break;
2106                        case 18:
2107                            encodedcontroller = _lev_ctrl_genpurpose3;
2108                            break;
2109                        case 19:
2110                            encodedcontroller = _lev_ctrl_genpurpose4;
2111                            break;
2112                        case 5:
2113                            encodedcontroller = _lev_ctrl_portamentotime;
2114                            break;
2115                        case 64:
2116                            encodedcontroller = _lev_ctrl_sustainpedal;
2117                            break;
2118                        case 65:
2119                            encodedcontroller = _lev_ctrl_portamento;
2120                            break;
2121                        case 66:
2122                            encodedcontroller = _lev_ctrl_sostenutopedal;
2123                            break;
2124                        case 67:
2125                            encodedcontroller = _lev_ctrl_softpedal;
2126                            break;
2127                        case 80:
2128                            encodedcontroller = _lev_ctrl_genpurpose5;
2129                            break;
2130                        case 81:
2131                            encodedcontroller = _lev_ctrl_genpurpose6;
2132                            break;
2133                        case 82:
2134                            encodedcontroller = _lev_ctrl_genpurpose7;
2135                            break;
2136                        case 83:
2137                            encodedcontroller = _lev_ctrl_genpurpose8;
2138                            break;
2139                        case 91:
2140                            encodedcontroller = _lev_ctrl_effect1depth;
2141                            break;
2142                        case 92:
2143                            encodedcontroller = _lev_ctrl_effect2depth;
2144                            break;
2145                        case 93:
2146                            encodedcontroller = _lev_ctrl_effect3depth;
2147                            break;
2148                        case 94:
2149                            encodedcontroller = _lev_ctrl_effect4depth;
2150                            break;
2151                        case 95:
2152                            encodedcontroller = _lev_ctrl_effect5depth;
2153                            break;
2154                        default:
2155                            throw gig::Exception("leverage controller number is not supported by the gig format");
2156                    }
2157                    break;
2158                default:
2159                    throw gig::Exception("Unknown leverage controller type.");
2160            }
2161            return encodedcontroller;
2162        }
2163    
2164        DimensionRegion::~DimensionRegion() {
2165            Instances--;
2166            if (!Instances) {
2167                // delete the velocity->volume tables
2168                VelocityTableMap::iterator iter;
2169                for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2170                    double* pTable = iter->second;
2171                    if (pTable) delete[] pTable;
2172                }
2173                pVelocityTables->clear();
2174                delete pVelocityTables;
2175                pVelocityTables = NULL;
2176          }          }
2177          VelocityResponseCurveScaling = _3ewa->ReadUint8();          if (VelocityTable) delete[] VelocityTable;
2178          AttenuationControlTreshold   = _3ewa->ReadInt8();      }
2179          _3ewa->ReadInt32(); // unknown  
2180          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();      /**
2181          _3ewa->ReadInt16(); // unknown       * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2182          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();       * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2183          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);       * and VelocityResponseCurveScaling) involved are taken into account to
2184          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;       * calculate the amplitude factor. Use this method when a key was
2185          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;       * triggered to get the volume with which the sample should be played
2186          else                                       DimensionBypass = dim_bypass_ctrl_none;       * back.
2187          uint8_t pan = _3ewa->ReadUint8();       *
2188          Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2189          SelfMask = _3ewa->ReadInt8() & 0x01;       * @returns                amplitude factor (between 0.0 and 1.0)
2190          _3ewa->ReadInt8(); // unknown       */
2191          uint8_t lfo3ctrl = _3ewa->ReadUint8();      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2192          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits          return pVelocityAttenuationTable[MIDIKeyVelocity];
2193          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5      }
2194          InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
2195          if (VCFType == vcf_type_lowpass) {      double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2196              if (lfo3ctrl & 0x40) // bit 6          return pVelocityReleaseTable[MIDIKeyVelocity];
2197                  VCFType = vcf_type_lowpassturbo;      }
2198          }  
2199          AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());      double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2200          uint8_t lfo2ctrl       = _3ewa->ReadUint8();          return pVelocityCutoffTable[MIDIKeyVelocity];
2201          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits      }
2202          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
2203          LFO2Sync               = lfo2ctrl & 0x20; // bit 5      /**
2204          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6       * Updates the respective member variable and the lookup table / cache
2205          uint8_t lfo1ctrl       = _3ewa->ReadUint8();       * that depends on this value.
2206          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits       */
2207          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7      void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2208          LFO1Sync               = lfo1ctrl & 0x40; // bit 6          pVelocityAttenuationTable =
2209          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))              GetVelocityTable(
2210                                                      : vcf_res_ctrl_none;                  curve, VelocityResponseDepth, VelocityResponseCurveScaling
2211          uint16_t eg3depth = _3ewa->ReadUint16();              );
2212          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */          VelocityResponseCurve = curve;
2213                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */      }
2214          _3ewa->ReadInt16(); // unknown  
2215          ChannelOffset = _3ewa->ReadUint8() / 4;      /**
2216          uint8_t regoptions = _3ewa->ReadUint8();       * Updates the respective member variable and the lookup table / cache
2217          MSDecode           = regoptions & 0x01; // bit 0       * that depends on this value.
2218          SustainDefeat      = regoptions & 0x02; // bit 1       */
2219          _3ewa->ReadInt16(); // unknown      void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2220          VelocityUpperLimit = _3ewa->ReadInt8();          pVelocityAttenuationTable =
2221          _3ewa->ReadInt8(); // unknown              GetVelocityTable(
2222          _3ewa->ReadInt16(); // unknown                  VelocityResponseCurve, depth, VelocityResponseCurveScaling
2223          ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay              );
2224          _3ewa->ReadInt8(); // unknown          VelocityResponseDepth = depth;
2225          _3ewa->ReadInt8(); // unknown      }
2226          EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
2227          uint8_t vcfcutoff = _3ewa->ReadUint8();      /**
2228          VCFEnabled = vcfcutoff & 0x80; // bit 7       * Updates the respective member variable and the lookup table / cache
2229          VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits       * that depends on this value.
2230          VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());       */
2231          VCFVelocityScale = _3ewa->ReadUint8();      void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2232          _3ewa->ReadInt8(); // unknown          pVelocityAttenuationTable =
2233          uint8_t vcfresonance = _3ewa->ReadUint8();              GetVelocityTable(
2234          VCFResonance = vcfresonance & 0x7f; // lower 7 bits                  VelocityResponseCurve, VelocityResponseDepth, scaling
2235          VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7              );
2236          uint8_t vcfbreakpoint         = _3ewa->ReadUint8();          VelocityResponseCurveScaling = scaling;
2237          VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7      }
2238          VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
2239          uint8_t vcfvelocity = _3ewa->ReadUint8();      /**
2240          VCFVelocityDynamicRange = vcfvelocity % 5;       * Updates the respective member variable and the lookup table / cache
2241          VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);       * that depends on this value.
2242          VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());       */
2243        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2244            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2245            ReleaseVelocityResponseCurve = curve;
2246        }
2247    
2248        /**
2249         * Updates the respective member variable and the lookup table / cache
2250         * that depends on this value.
2251         */
2252        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2253            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2254            ReleaseVelocityResponseDepth = depth;
2255        }
2256    
2257        /**
2258         * Updates the respective member variable and the lookup table / cache
2259         * that depends on this value.
2260         */
2261        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2262            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2263            VCFCutoffController = controller;
2264        }
2265    
2266        /**
2267         * Updates the respective member variable and the lookup table / cache
2268         * that depends on this value.
2269         */
2270        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2271            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2272            VCFVelocityCurve = curve;
2273        }
2274    
2275        /**
2276         * Updates the respective member variable and the lookup table / cache
2277         * that depends on this value.
2278         */
2279        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2280            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2281            VCFVelocityDynamicRange = range;
2282      }      }
2283    
2284        /**
2285         * Updates the respective member variable and the lookup table / cache
2286         * that depends on this value.
2287         */
2288        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2289            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2290            VCFVelocityScale = scaling;
2291        }
2292    
2293        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2294    
2295            // line-segment approximations of the 15 velocity curves
2296    
2297            // linear
2298            const int lin0[] = { 1, 1, 127, 127 };
2299            const int lin1[] = { 1, 21, 127, 127 };
2300            const int lin2[] = { 1, 45, 127, 127 };
2301            const int lin3[] = { 1, 74, 127, 127 };
2302            const int lin4[] = { 1, 127, 127, 127 };
2303    
2304            // non-linear
2305            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2306            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2307                                 127, 127 };
2308            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2309                                 127, 127 };
2310            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2311                                 127, 127 };
2312            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2313    
2314            // special
2315            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2316                                 113, 127, 127, 127 };
2317            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2318                                 118, 127, 127, 127 };
2319            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2320                                 85, 90, 91, 127, 127, 127 };
2321            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2322                                 117, 127, 127, 127 };
2323            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2324                                 127, 127 };
2325    
2326            // this is only used by the VCF velocity curve
2327            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2328                                 91, 127, 127, 127 };
2329    
2330            const int* const curves[] = { non0, non1, non2, non3, non4,
2331                                          lin0, lin1, lin2, lin3, lin4,
2332                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2333    
2334            double* const table = new double[128];
2335    
2336            const int* curve = curves[curveType * 5 + depth];
2337            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2338    
2339            table[0] = 0;
2340            for (int x = 1 ; x < 128 ; x++) {
2341    
2342                if (x > curve[2]) curve += 2;
2343                double y = curve[1] + (x - curve[0]) *
2344                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2345                y = y / 127;
2346    
2347                // Scale up for s > 20, down for s < 20. When
2348                // down-scaling, the curve still ends at 1.0.
2349                if (s < 20 && y >= 0.5)
2350                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2351                else
2352                    y = y * (s / 20.0);
2353                if (y > 1) y = 1;
2354    
2355                table[x] = y;
2356            }
2357            return table;
2358        }
2359    
2360    
2361  // *************** Region ***************  // *************** Region ***************
# Line 654  namespace gig { Line 2364  namespace gig {
2364      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2365          // Initialization          // Initialization
2366          Dimensions = 0;          Dimensions = 0;
2367          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2368              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2369          }          }
2370            Layers = 1;
2371            File* file = (File*) GetParent()->GetParent();
2372            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2373    
2374          // Actual Loading          // Actual Loading
2375    
2376            if (!file->GetAutoLoad()) return;
2377    
2378          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2379    
2380          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2381          if (_3lnk) {          if (_3lnk) {
2382              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2383              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2384                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2385                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2386                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2387                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2388                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2389                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2390                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2391                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2392                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2393                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2394                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2395                  }                  }
2396                  else { // active dimension                  else { // active dimension
2397                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2398                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2399                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2400                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2401                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2402                      Dimensions++;                      Dimensions++;
2403    
2404                        // if this is a layer dimension, remember the amount of layers
2405                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2406                  }                  }
2407                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2408              }              }
2409                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2410    
2411              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2412              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2413                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
2414                  if (pDimDef->dimension == dimension_velocity) {  
2415                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
2416                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
2417                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2418                          pDimDef->ranges     = NULL;              else
2419                      }                  _3lnk->SetPos(44);
2420                      else { // custom defined ranges  
2421                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
2422                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
2423                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
2424                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2425                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2426                  }                  }
2427                    GetSample(); // load global region sample reference
2428                }
2429            } else {
2430                DimensionRegions = 0;
2431                for (int i = 0 ; i < 8 ; i++) {
2432                    pDimensionDefinitions[i].dimension  = dimension_none;
2433                    pDimensionDefinitions[i].bits       = 0;
2434                    pDimensionDefinitions[i].zones      = 0;
2435              }              }
2436            }
2437    
2438              // load sample references          // make sure there is at least one dimension region
2439              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          if (!DimensionRegions) {
2440              for (uint i = 0; i < DimensionRegions; i++) {              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2441                  uint32_t wavepoolindex = _3lnk->ReadUint32();              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2442                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2443                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2444                DimensionRegions = 1;
2445            }
2446        }
2447    
2448        /**
2449         * Apply Region settings and all its DimensionRegions to the respective
2450         * RIFF chunks. You have to call File::Save() to make changes persistent.
2451         *
2452         * Usually there is absolutely no need to call this method explicitly.
2453         * It will be called automatically when File::Save() was called.
2454         *
2455         * @throws gig::Exception if samples cannot be dereferenced
2456         */
2457        void Region::UpdateChunks() {
2458            // in the gig format we don't care about the Region's sample reference
2459            // but we still have to provide some existing one to not corrupt the
2460            // file, so to avoid the latter we simply always assign the sample of
2461            // the first dimension region of this region
2462            pSample = pDimensionRegions[0]->pSample;
2463    
2464            // first update base class's chunks
2465            DLS::Region::UpdateChunks();
2466    
2467            // update dimension region's chunks
2468            for (int i = 0; i < DimensionRegions; i++) {
2469                pDimensionRegions[i]->UpdateChunks();
2470            }
2471    
2472            File* pFile = (File*) GetParent()->GetParent();
2473            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2474            const int iMaxDimensions =  version3 ? 8 : 5;
2475            const int iMaxDimensionRegions = version3 ? 256 : 32;
2476    
2477            // make sure '3lnk' chunk exists
2478            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2479            if (!_3lnk) {
2480                const int _3lnkChunkSize = version3 ? 1092 : 172;
2481                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2482                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2483    
2484                // move 3prg to last position
2485                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2486            }
2487    
2488            // update dimension definitions in '3lnk' chunk
2489            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2490            store32(&pData[0], DimensionRegions);
2491            int shift = 0;
2492            for (int i = 0; i < iMaxDimensions; i++) {
2493                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2494                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2495                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2496                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2497                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2498                // next 3 bytes unknown, always zero?
2499    
2500                shift += pDimensionDefinitions[i].bits;
2501            }
2502    
2503            // update wave pool table in '3lnk' chunk
2504            const int iWavePoolOffset = version3 ? 68 : 44;
2505            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2506                int iWaveIndex = -1;
2507                if (i < DimensionRegions) {
2508                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2509                    File::SampleList::iterator iter = pFile->pSamples->begin();
2510                    File::SampleList::iterator end  = pFile->pSamples->end();
2511                    for (int index = 0; iter != end; ++iter, ++index) {
2512                        if (*iter == pDimensionRegions[i]->pSample) {
2513                            iWaveIndex = index;
2514                            break;
2515                        }
2516                    }
2517              }              }
2518                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2519          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2520      }      }
2521    
2522      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 739  namespace gig { Line 2526  namespace gig {
2526              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2527              while (_3ewl) {              while (_3ewl) {
2528                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2529                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2530                      dimensionRegionNr++;                      dimensionRegionNr++;
2531                  }                  }
2532                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 748  namespace gig { Line 2535  namespace gig {
2535          }          }
2536      }      }
2537    
2538      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2539          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
2540              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
2541            // update Region key table for fast lookup
2542            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2543        }
2544    
2545        void Region::UpdateVelocityTable() {
2546            // get velocity dimension's index
2547            int veldim = -1;
2548            for (int i = 0 ; i < Dimensions ; i++) {
2549                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2550                    veldim = i;
2551                    break;
2552                }
2553          }          }
2554          for (int i = 0; i < 32; i++) {          if (veldim == -1) return;
2555    
2556            int step = 1;
2557            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2558            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2559            int end = step * pDimensionDefinitions[veldim].zones;
2560    
2561            // loop through all dimension regions for all dimensions except the velocity dimension
2562            int dim[8] = { 0 };
2563            for (int i = 0 ; i < DimensionRegions ; i++) {
2564    
2565                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2566                    pDimensionRegions[i]->VelocityUpperLimit) {
2567                    // create the velocity table
2568                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2569                    if (!table) {
2570                        table = new uint8_t[128];
2571                        pDimensionRegions[i]->VelocityTable = table;
2572                    }
2573                    int tableidx = 0;
2574                    int velocityZone = 0;
2575                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2576                        for (int k = i ; k < end ; k += step) {
2577                            DimensionRegion *d = pDimensionRegions[k];
2578                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2579                            velocityZone++;
2580                        }
2581                    } else { // gig2
2582                        for (int k = i ; k < end ; k += step) {
2583                            DimensionRegion *d = pDimensionRegions[k];
2584                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2585                            velocityZone++;
2586                        }
2587                    }
2588                } else {
2589                    if (pDimensionRegions[i]->VelocityTable) {
2590                        delete[] pDimensionRegions[i]->VelocityTable;
2591                        pDimensionRegions[i]->VelocityTable = 0;
2592                    }
2593                }
2594    
2595                int j;
2596                int shift = 0;
2597                for (j = 0 ; j < Dimensions ; j++) {
2598                    if (j == veldim) i += skipveldim; // skip velocity dimension
2599                    else {
2600                        dim[j]++;
2601                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2602                        else {
2603                            // skip unused dimension regions
2604                            dim[j] = 0;
2605                            i += ((1 << pDimensionDefinitions[j].bits) -
2606                                  pDimensionDefinitions[j].zones) << shift;
2607                        }
2608                    }
2609                    shift += pDimensionDefinitions[j].bits;
2610                }
2611                if (j == Dimensions) break;
2612            }
2613        }
2614    
2615        /** @brief Einstein would have dreamed of it - create a new dimension.
2616         *
2617         * Creates a new dimension with the dimension definition given by
2618         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2619         * There is a hard limit of dimensions and total amount of "bits" all
2620         * dimensions can have. This limit is dependant to what gig file format
2621         * version this file refers to. The gig v2 (and lower) format has a
2622         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2623         * format has a limit of 8.
2624         *
2625         * @param pDimDef - defintion of the new dimension
2626         * @throws gig::Exception if dimension of the same type exists already
2627         * @throws gig::Exception if amount of dimensions or total amount of
2628         *                        dimension bits limit is violated
2629         */
2630        void Region::AddDimension(dimension_def_t* pDimDef) {
2631            // check if max. amount of dimensions reached
2632            File* file = (File*) GetParent()->GetParent();
2633            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2634            if (Dimensions >= iMaxDimensions)
2635                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2636            // check if max. amount of dimension bits reached
2637            int iCurrentBits = 0;
2638            for (int i = 0; i < Dimensions; i++)
2639                iCurrentBits += pDimensionDefinitions[i].bits;
2640            if (iCurrentBits >= iMaxDimensions)
2641                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2642            const int iNewBits = iCurrentBits + pDimDef->bits;
2643            if (iNewBits > iMaxDimensions)
2644                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2645            // check if there's already a dimensions of the same type
2646            for (int i = 0; i < Dimensions; i++)
2647                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2648                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2649    
2650            // pos is where the new dimension should be placed, normally
2651            // last in list, except for the samplechannel dimension which
2652            // has to be first in list
2653            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2654            int bitpos = 0;
2655            for (int i = 0 ; i < pos ; i++)
2656                bitpos += pDimensionDefinitions[i].bits;
2657    
2658            // make room for the new dimension
2659            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2660            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2661                for (int j = Dimensions ; j > pos ; j--) {
2662                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2663                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2664                }
2665            }
2666    
2667            // assign definition of new dimension
2668            pDimensionDefinitions[pos] = *pDimDef;
2669    
2670            // auto correct certain dimension definition fields (where possible)
2671            pDimensionDefinitions[pos].split_type  =
2672                __resolveSplitType(pDimensionDefinitions[pos].dimension);
2673            pDimensionDefinitions[pos].zone_size =
2674                __resolveZoneSize(pDimensionDefinitions[pos]);
2675    
2676            // create new dimension region(s) for this new dimension, and make
2677            // sure that the dimension regions are placed correctly in both the
2678            // RIFF list and the pDimensionRegions array
2679            RIFF::Chunk* moveTo = NULL;
2680            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2681            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2682                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2683                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2684                }
2685                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2686                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2687                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2688                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2689                        // create a new dimension region and copy all parameter values from
2690                        // an existing dimension region
2691                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2692                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2693    
2694                        DimensionRegions++;
2695                    }
2696                }
2697                moveTo = pDimensionRegions[i]->pParentList;
2698            }
2699    
2700            // initialize the upper limits for this dimension
2701            int mask = (1 << bitpos) - 1;
2702            for (int z = 0 ; z < pDimDef->zones ; z++) {
2703                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2704                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2705                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2706                                      (z << bitpos) |
2707                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2708                }
2709            }
2710    
2711            Dimensions++;
2712    
2713            // if this is a layer dimension, update 'Layers' attribute
2714            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2715    
2716            UpdateVelocityTable();
2717        }
2718    
2719        /** @brief Delete an existing dimension.
2720         *
2721         * Deletes the dimension given by \a pDimDef and deletes all respective
2722         * dimension regions, that is all dimension regions where the dimension's
2723         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2724         * for example this would delete all dimension regions for the case(s)
2725         * where the sustain pedal is pressed down.
2726         *
2727         * @param pDimDef - dimension to delete
2728         * @throws gig::Exception if given dimension cannot be found
2729         */
2730        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2731            // get dimension's index
2732            int iDimensionNr = -1;
2733            for (int i = 0; i < Dimensions; i++) {
2734                if (&pDimensionDefinitions[i] == pDimDef) {
2735                    iDimensionNr = i;
2736                    break;
2737                }
2738            }
2739            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2740    
2741            // get amount of bits below the dimension to delete
2742            int iLowerBits = 0;
2743            for (int i = 0; i < iDimensionNr; i++)
2744                iLowerBits += pDimensionDefinitions[i].bits;
2745    
2746            // get amount ot bits above the dimension to delete
2747            int iUpperBits = 0;
2748            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2749                iUpperBits += pDimensionDefinitions[i].bits;
2750    
2751            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2752    
2753            // delete dimension regions which belong to the given dimension
2754            // (that is where the dimension's bit > 0)
2755            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2756                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2757                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2758                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2759                                        iObsoleteBit << iLowerBits |
2760                                        iLowerBit;
2761    
2762                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2763                        delete pDimensionRegions[iToDelete];
2764                        pDimensionRegions[iToDelete] = NULL;
2765                        DimensionRegions--;
2766                    }
2767                }
2768            }
2769    
2770            // defrag pDimensionRegions array
2771            // (that is remove the NULL spaces within the pDimensionRegions array)
2772            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2773                if (!pDimensionRegions[iTo]) {
2774                    if (iFrom <= iTo) iFrom = iTo + 1;
2775                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2776                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2777                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2778                        pDimensionRegions[iFrom] = NULL;
2779                    }
2780                }
2781            }
2782    
2783            // remove the this dimension from the upper limits arrays
2784            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2785                DimensionRegion* d = pDimensionRegions[j];
2786                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2787                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2788                }
2789                d->DimensionUpperLimits[Dimensions - 1] = 127;
2790            }
2791    
2792            // 'remove' dimension definition
2793            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2794                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2795            }
2796            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2797            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2798            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2799    
2800            Dimensions--;
2801    
2802            // if this was a layer dimension, update 'Layers' attribute
2803            if (pDimDef->dimension == dimension_layer) Layers = 1;
2804        }
2805    
2806        Region::~Region() {
2807            for (int i = 0; i < 256; i++) {
2808              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2809          }          }
2810      }      }
# Line 770  namespace gig { Line 2822  namespace gig {
2822       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2823       * etc.).       * etc.).
2824       *       *
2825       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2826       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2827       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2828       * @see             Dimensions       * @see             Dimensions
2829       */       */
2830      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2831          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
2832            int veldim = -1;
2833            int velbitpos;
2834            int bitpos = 0;
2835            int dimregidx = 0;
2836          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2837              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2838                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
2839                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
2840                      break;                  velbitpos = bitpos;
2841                  case split_type_customvelocity:              } else {
2842                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
2843                      break;                      case split_type_normal:
2844                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2845                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2846                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2847                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2848                                }
2849                            } else {
2850                                // gig2: evenly sized zones
2851                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2852                            }
2853                            break;
2854                        case split_type_bit: // the value is already the sought dimension bit number
2855                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2856                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2857                            break;
2858                    }
2859                    dimregidx |= bits << bitpos;
2860              }              }
2861                bitpos += pDimensionDefinitions[i].bits;
2862          }          }
2863          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2864            if (veldim != -1) {
2865                // (dimreg is now the dimension region for the lowest velocity)
2866                if (dimreg->VelocityTable) // custom defined zone ranges
2867                    bits = dimreg->VelocityTable[DimValues[veldim]];
2868                else // normal split type
2869                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2870    
2871                dimregidx |= bits << velbitpos;
2872                dimreg = pDimensionRegions[dimregidx];
2873            }
2874            return dimreg;
2875      }      }
2876    
2877      /**      /**
# Line 800  namespace gig { Line 2879  namespace gig {
2879       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2880       * instead of calling this method directly!       * instead of calling this method directly!
2881       *       *
2882       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2883       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2884       *                 bit numbers       *                 bit numbers
2885       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2886       */       */
2887      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2888          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2889                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2890                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2891                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2892                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2893                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2894                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2895      }      }
2896    
2897      /**      /**
# Line 830  namespace gig { Line 2908  namespace gig {
2908          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2909      }      }
2910    
2911      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2912            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2913          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2914            if (!file->pWavePoolTable) return NULL;
2915          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2916          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2917            Sample* sample = file->GetFirstSample(pProgress);
2918          while (sample) {          while (sample) {
2919              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2920                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2921              sample = file->GetNextSample();              sample = file->GetNextSample();
2922          }          }
2923          return NULL;          return NULL;
2924      }      }
2925    
2926    
2927    // *************** MidiRule ***************
2928    // *
2929    
2930    MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2931        _3ewg->SetPos(36);
2932        Triggers = _3ewg->ReadUint8();
2933        _3ewg->SetPos(40);
2934        ControllerNumber = _3ewg->ReadUint8();
2935        _3ewg->SetPos(46);
2936        for (int i = 0 ; i < Triggers ; i++) {
2937            pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2938            pTriggers[i].Descending = _3ewg->ReadUint8();
2939            pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2940            pTriggers[i].Key = _3ewg->ReadUint8();
2941            pTriggers[i].NoteOff = _3ewg->ReadUint8();
2942            pTriggers[i].Velocity = _3ewg->ReadUint8();
2943            pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2944            _3ewg->ReadUint8();
2945        }
2946    }
2947    
2948    
2949  // *************** Instrument ***************  // *************** Instrument ***************
2950  // *  // *
2951    
2952      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2953            static const DLS::Info::string_length_t fixedStringLengths[] = {
2954                { CHUNK_ID_INAM, 64 },
2955                { CHUNK_ID_ISFT, 12 },
2956                { 0, 0 }
2957            };
2958            pInfo->SetFixedStringLengths(fixedStringLengths);
2959    
2960          // Initialization          // Initialization
2961          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2962          RegionIndex = -1;          EffectSend = 0;
2963            Attenuation = 0;
2964            FineTune = 0;
2965            PitchbendRange = 0;
2966            PianoReleaseMode = false;
2967            DimensionKeyRange.low = 0;
2968            DimensionKeyRange.high = 0;
2969            pMidiRules = new MidiRule*[3];
2970            pMidiRules[0] = NULL;
2971    
2972          // Loading          // Loading
2973          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 864  namespace gig { Line 2982  namespace gig {
2982                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
2983                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2984                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2985    
2986                    if (_3ewg->GetSize() > 32) {
2987                        // read MIDI rules
2988                        int i = 0;
2989                        _3ewg->SetPos(32);
2990                        uint8_t id1 = _3ewg->ReadUint8();
2991                        uint8_t id2 = _3ewg->ReadUint8();
2992    
2993                        if (id1 == 4 && id2 == 16) {
2994                            pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2995                        }
2996                        //TODO: all the other types of rules
2997    
2998                        pMidiRules[i] = NULL;
2999                    }
3000              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
3001          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
3002    
3003          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
3004          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
3005          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3006          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
3007          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
3008          while (rgn) {                  while (rgn) {
3009              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3010                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3011                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
3012              }                      }
3013              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
3014          }                  }
3015                    // Creating Region Key Table for fast lookup
3016          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
3017              }              }
3018          }          }
3019    
3020            __notify_progress(pProgress, 1.0f); // notify done
3021      }      }
3022    
3023      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
3024          for (uint i = 0; i < Regions; i++) {          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3025              if (pRegions) {          RegionList::iterator iter = pRegions->begin();
3026                  if (pRegions[i]) delete (pRegions[i]);          RegionList::iterator end  = pRegions->end();
3027            for (; iter != end; ++iter) {
3028                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3029                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3030                    RegionKeyTable[iKey] = pRegion;
3031              }              }
             delete[] pRegions;  
3032          }          }
3033      }      }
3034    
3035        Instrument::~Instrument() {
3036            delete[] pMidiRules;
3037        }
3038    
3039        /**
3040         * Apply Instrument with all its Regions to the respective RIFF chunks.
3041         * You have to call File::Save() to make changes persistent.
3042         *
3043         * Usually there is absolutely no need to call this method explicitly.
3044         * It will be called automatically when File::Save() was called.
3045         *
3046         * @throws gig::Exception if samples cannot be dereferenced
3047         */
3048        void Instrument::UpdateChunks() {
3049            // first update base classes' chunks
3050            DLS::Instrument::UpdateChunks();
3051    
3052            // update Regions' chunks
3053            {
3054                RegionList::iterator iter = pRegions->begin();
3055                RegionList::iterator end  = pRegions->end();
3056                for (; iter != end; ++iter)
3057                    (*iter)->UpdateChunks();
3058            }
3059    
3060            // make sure 'lart' RIFF list chunk exists
3061            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3062            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3063            // make sure '3ewg' RIFF chunk exists
3064            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3065            if (!_3ewg)  {
3066                File* pFile = (File*) GetParent();
3067    
3068                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3069                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3070                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3071                memset(_3ewg->LoadChunkData(), 0, size);
3072            }
3073            // update '3ewg' RIFF chunk
3074            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3075            store16(&pData[0], EffectSend);
3076            store32(&pData[2], Attenuation);
3077            store16(&pData[6], FineTune);
3078            store16(&pData[8], PitchbendRange);
3079            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3080                                        DimensionKeyRange.low << 1;
3081            pData[10] = dimkeystart;
3082            pData[11] = DimensionKeyRange.high;
3083        }
3084    
3085      /**      /**
3086       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
3087       *       *
# Line 907  namespace gig { Line 3090  namespace gig {
3090       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3091       */       */
3092      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3093          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3094          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3095    
3096          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3097              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3098                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 924  namespace gig { Line 3108  namespace gig {
3108       * @see      GetNextRegion()       * @see      GetNextRegion()
3109       */       */
3110      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3111          if (!Regions) return NULL;          if (!pRegions) return NULL;
3112          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3113          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3114      }      }
3115    
3116      /**      /**
# Line 938  namespace gig { Line 3122  namespace gig {
3122       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3123       */       */
3124      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3125          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
3126          return pRegions[RegionIndex++];          RegionsIterator++;
3127            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3128        }
3129    
3130        Region* Instrument::AddRegion() {
3131            // create new Region object (and its RIFF chunks)
3132            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3133            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3134            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3135            Region* pNewRegion = new Region(this, rgn);
3136            pRegions->push_back(pNewRegion);
3137            Regions = pRegions->size();
3138            // update Region key table for fast lookup
3139            UpdateRegionKeyTable();
3140            // done
3141            return pNewRegion;
3142        }
3143    
3144        void Instrument::DeleteRegion(Region* pRegion) {
3145            if (!pRegions) return;
3146            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3147            // update Region key table for fast lookup
3148            UpdateRegionKeyTable();
3149        }
3150    
3151        /**
3152         * Returns a MIDI rule of the instrument.
3153         *
3154         * The list of MIDI rules, at least in gig v3, always contains at
3155         * most two rules. The second rule can only be the DEF filter
3156         * (which currently isn't supported by libgig).
3157         *
3158         * @param i - MIDI rule number
3159         * @returns   pointer address to MIDI rule number i or NULL if there is none
3160         */
3161        MidiRule* Instrument::GetMidiRule(int i) {
3162            return pMidiRules[i];
3163        }
3164    
3165    
3166    // *************** Group ***************
3167    // *
3168    
3169        /** @brief Constructor.
3170         *
3171         * @param file   - pointer to the gig::File object
3172         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3173         *                 NULL if this is a new Group
3174         */
3175        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3176            pFile      = file;
3177            pNameChunk = ck3gnm;
3178            ::LoadString(pNameChunk, Name);
3179        }
3180    
3181        Group::~Group() {
3182            // remove the chunk associated with this group (if any)
3183            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3184        }
3185    
3186        /** @brief Update chunks with current group settings.
3187         *
3188         * Apply current Group field values to the respective chunks. You have
3189         * to call File::Save() to make changes persistent.
3190         *
3191         * Usually there is absolutely no need to call this method explicitly.
3192         * It will be called automatically when File::Save() was called.
3193         */
3194        void Group::UpdateChunks() {
3195            // make sure <3gri> and <3gnl> list chunks exist
3196            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3197            if (!_3gri) {
3198                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3199                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3200            }
3201            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3202            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3203    
3204            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3205                // v3 has a fixed list of 128 strings, find a free one
3206                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3207                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3208                        pNameChunk = ck;
3209                        break;
3210                    }
3211                }
3212            }
3213    
3214            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3215            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3216        }
3217    
3218        /**
3219         * Returns the first Sample of this Group. You have to call this method
3220         * once before you use GetNextSample().
3221         *
3222         * <b>Notice:</b> this method might block for a long time, in case the
3223         * samples of this .gig file were not scanned yet
3224         *
3225         * @returns  pointer address to first Sample or NULL if there is none
3226         *           applied to this Group
3227         * @see      GetNextSample()
3228         */
3229        Sample* Group::GetFirstSample() {
3230            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3231            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3232                if (pSample->GetGroup() == this) return pSample;
3233            }
3234            return NULL;
3235        }
3236    
3237        /**
3238         * Returns the next Sample of the Group. You have to call
3239         * GetFirstSample() once before you can use this method. By calling this
3240         * method multiple times it iterates through the Samples assigned to
3241         * this Group.
3242         *
3243         * @returns  pointer address to the next Sample of this Group or NULL if
3244         *           end reached
3245         * @see      GetFirstSample()
3246         */
3247        Sample* Group::GetNextSample() {
3248            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3249            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3250                if (pSample->GetGroup() == this) return pSample;
3251            }
3252            return NULL;
3253        }
3254    
3255        /**
3256         * Move Sample given by \a pSample from another Group to this Group.
3257         */
3258        void Group::AddSample(Sample* pSample) {
3259            pSample->pGroup = this;
3260        }
3261    
3262        /**
3263         * Move all members of this group to another group (preferably the 1st
3264         * one except this). This method is called explicitly by
3265         * File::DeleteGroup() thus when a Group was deleted. This code was
3266         * intentionally not placed in the destructor!
3267         */
3268        void Group::MoveAll() {
3269            // get "that" other group first
3270            Group* pOtherGroup = NULL;
3271            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3272                if (pOtherGroup != this) break;
3273            }
3274            if (!pOtherGroup) throw Exception(
3275                "Could not move samples to another group, since there is no "
3276                "other Group. This is a bug, report it!"
3277            );
3278            // now move all samples of this group to the other group
3279            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3280                pOtherGroup->AddSample(pSample);
3281            }
3282      }      }
3283    
3284    
# Line 947  namespace gig { Line 3286  namespace gig {
3286  // *************** File ***************  // *************** File ***************
3287  // *  // *
3288    
3289        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3290        const DLS::version_t File::VERSION_2 = {
3291            0, 2, 19980628 & 0xffff, 19980628 >> 16
3292        };
3293    
3294        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3295        const DLS::version_t File::VERSION_3 = {
3296            0, 3, 20030331 & 0xffff, 20030331 >> 16
3297        };
3298    
3299        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3300            { CHUNK_ID_IARL, 256 },
3301            { CHUNK_ID_IART, 128 },
3302            { CHUNK_ID_ICMS, 128 },
3303            { CHUNK_ID_ICMT, 1024 },
3304            { CHUNK_ID_ICOP, 128 },
3305            { CHUNK_ID_ICRD, 128 },
3306            { CHUNK_ID_IENG, 128 },
3307            { CHUNK_ID_IGNR, 128 },
3308            { CHUNK_ID_IKEY, 128 },
3309            { CHUNK_ID_IMED, 128 },
3310            { CHUNK_ID_INAM, 128 },
3311            { CHUNK_ID_IPRD, 128 },
3312            { CHUNK_ID_ISBJ, 128 },
3313            { CHUNK_ID_ISFT, 128 },
3314            { CHUNK_ID_ISRC, 128 },
3315            { CHUNK_ID_ISRF, 128 },
3316            { CHUNK_ID_ITCH, 128 },
3317            { 0, 0 }
3318        };
3319    
3320        File::File() : DLS::File() {
3321            bAutoLoad = true;
3322            *pVersion = VERSION_3;
3323            pGroups = NULL;
3324            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3325            pInfo->ArchivalLocation = String(256, ' ');
3326    
3327            // add some mandatory chunks to get the file chunks in right
3328            // order (INFO chunk will be moved to first position later)
3329            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3330            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3331            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3332    
3333            GenerateDLSID();
3334        }
3335    
3336      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3337          pSamples     = NULL;          bAutoLoad = true;
3338          pInstruments = NULL;          pGroups = NULL;
3339            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3340      }      }
3341    
3342      Sample* File::GetFirstSample() {      File::~File() {
3343          if (!pSamples) LoadSamples();          if (pGroups) {
3344                std::list<Group*>::iterator iter = pGroups->begin();
3345                std::list<Group*>::iterator end  = pGroups->end();
3346                while (iter != end) {
3347                    delete *iter;
3348                    ++iter;
3349                }
3350                delete pGroups;
3351            }
3352        }
3353    
3354        Sample* File::GetFirstSample(progress_t* pProgress) {
3355            if (!pSamples) LoadSamples(pProgress);
3356          if (!pSamples) return NULL;          if (!pSamples) return NULL;
3357          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
3358          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 965  namespace gig { Line 3364  namespace gig {
3364          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3365      }      }
3366    
3367      void File::LoadSamples() {      /** @brief Add a new sample.
3368          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
3369          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
3370              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
3371              RIFF::List* wave = wvpl->GetFirstSubList();       *
3372              while (wave) {       * @returns pointer to new Sample object
3373                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
3374                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
3375                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
3376                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
3377           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3378           // create new Sample object and its respective 'wave' list chunk
3379           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3380           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3381    
3382           // add mandatory chunks to get the chunks in right order
3383           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3384           wave->AddSubList(LIST_TYPE_INFO);
3385    
3386           pSamples->push_back(pSample);
3387           return pSample;
3388        }
3389    
3390        /** @brief Delete a sample.
3391         *
3392         * This will delete the given Sample object from the gig file. Any
3393         * references to this sample from Regions and DimensionRegions will be
3394         * removed. You have to call Save() to make this persistent to the file.
3395         *
3396         * @param pSample - sample to delete
3397         * @throws gig::Exception if given sample could not be found
3398         */
3399        void File::DeleteSample(Sample* pSample) {
3400            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3401            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3402            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3403            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3404            pSamples->erase(iter);
3405            delete pSample;
3406    
3407            SampleList::iterator tmp = SamplesIterator;
3408            // remove all references to the sample
3409            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3410                 instrument = GetNextInstrument()) {
3411                for (Region* region = instrument->GetFirstRegion() ; region ;
3412                     region = instrument->GetNextRegion()) {
3413    
3414                    if (region->GetSample() == pSample) region->SetSample(NULL);
3415    
3416                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3417                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3418                        if (d->pSample == pSample) d->pSample = NULL;
3419                  }                  }
                 wave = wvpl->GetNextSubList();  
3420              }              }
3421          }          }
3422          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
3423        }
3424    
3425        void File::LoadSamples() {
3426            LoadSamples(NULL);
3427        }
3428    
3429        void File::LoadSamples(progress_t* pProgress) {
3430            // Groups must be loaded before samples, because samples will try
3431            // to resolve the group they belong to
3432            if (!pGroups) LoadGroups();
3433    
3434            if (!pSamples) pSamples = new SampleList;
3435    
3436            RIFF::File* file = pRIFF;
3437    
3438            // just for progress calculation
3439            int iSampleIndex  = 0;
3440            int iTotalSamples = WavePoolCount;
3441    
3442            // check if samples should be loaded from extension files
3443            int lastFileNo = 0;
3444            for (int i = 0 ; i < WavePoolCount ; i++) {
3445                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3446            }
3447            String name(pRIFF->GetFileName());
3448            int nameLen = name.length();
3449            char suffix[6];
3450            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3451    
3452            for (int fileNo = 0 ; ; ) {
3453                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3454                if (wvpl) {
3455                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3456                    RIFF::List* wave = wvpl->GetFirstSubList();
3457                    while (wave) {
3458                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3459                            // notify current progress
3460                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3461                            __notify_progress(pProgress, subprogress);
3462    
3463                            unsigned long waveFileOffset = wave->GetFilePos();
3464                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3465    
3466                            iSampleIndex++;
3467                        }
3468                        wave = wvpl->GetNextSubList();
3469                    }
3470    
3471                    if (fileNo == lastFileNo) break;
3472    
3473                    // open extension file (*.gx01, *.gx02, ...)
3474                    fileNo++;
3475                    sprintf(suffix, ".gx%02d", fileNo);
3476                    name.replace(nameLen, 5, suffix);
3477                    file = new RIFF::File(name);
3478                    ExtensionFiles.push_back(file);
3479                } else break;
3480            }
3481    
3482            __notify_progress(pProgress, 1.0); // notify done
3483      }      }
3484    
3485      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3486          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3487          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3488          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3489          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3490      }      }
3491    
3492      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3493          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3494          InstrumentsIterator++;          InstrumentsIterator++;
3495          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3496        }
3497    
3498        /**
3499         * Returns the instrument with the given index.
3500         *
3501         * @param index     - number of the sought instrument (0..n)
3502         * @param pProgress - optional: callback function for progress notification
3503         * @returns  sought instrument or NULL if there's no such instrument
3504         */
3505        Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3506            if (!pInstruments) {
3507                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3508    
3509                // sample loading subtask
3510                progress_t subprogress;
3511                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3512                __notify_progress(&subprogress, 0.0f);
3513                if (GetAutoLoad())
3514                    GetFirstSample(&subprogress); // now force all samples to be loaded
3515                __notify_progress(&subprogress, 1.0f);
3516    
3517                // instrument loading subtask
3518                if (pProgress && pProgress->callback) {
3519                    subprogress.__range_min = subprogress.__range_max;
3520                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3521                }
3522                __notify_progress(&subprogress, 0.0f);
3523                LoadInstruments(&subprogress);
3524                __notify_progress(&subprogress, 1.0f);
3525            }
3526            if (!pInstruments) return NULL;
3527            InstrumentsIterator = pInstruments->begin();
3528            for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3529                if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3530                InstrumentsIterator++;
3531            }
3532            return NULL;
3533        }
3534    
3535        /** @brief Add a new instrument definition.
3536         *
3537         * This will create a new Instrument object for the gig file. You have
3538         * to call Save() to make this persistent to the file.
3539         *
3540         * @returns pointer to new Instrument object
3541         */
3542        Instrument* File::AddInstrument() {
3543           if (!pInstruments) LoadInstruments();
3544           __ensureMandatoryChunksExist();
3545           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3546           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3547    
3548           // add mandatory chunks to get the chunks in right order
3549           lstInstr->AddSubList(LIST_TYPE_INFO);
3550           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3551    
3552           Instrument* pInstrument = new Instrument(this, lstInstr);
3553           pInstrument->GenerateDLSID();
3554    
3555           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3556    
3557           // this string is needed for the gig to be loadable in GSt:
3558           pInstrument->pInfo->Software = "Endless Wave";
3559    
3560           pInstruments->push_back(pInstrument);
3561           return pInstrument;
3562        }
3563    
3564        /** @brief Delete an instrument.
3565         *
3566         * This will delete the given Instrument object from the gig file. You
3567         * have to call Save() to make this persistent to the file.
3568         *
3569         * @param pInstrument - instrument to delete
3570         * @throws gig::Exception if given instrument could not be found
3571         */
3572        void File::DeleteInstrument(Instrument* pInstrument) {
3573            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3574            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3575            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3576            pInstruments->erase(iter);
3577            delete pInstrument;
3578      }      }
3579    
3580      void File::LoadInstruments() {      void File::LoadInstruments() {
3581            LoadInstruments(NULL);
3582        }
3583    
3584        void File::LoadInstruments(progress_t* pProgress) {
3585            if (!pInstruments) pInstruments = new InstrumentList;
3586          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3587          if (lstInstruments) {          if (lstInstruments) {
3588                int iInstrumentIndex = 0;
3589              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3590              while (lstInstr) {              while (lstInstr) {
3591                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3592                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3593                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3594                        __notify_progress(pProgress, localProgress);
3595    
3596                        // divide local progress into subprogress for loading current Instrument
3597                        progress_t subprogress;
3598                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3599    
3600                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3601    
3602                        iInstrumentIndex++;
3603                  }                  }
3604                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3605              }              }
3606                __notify_progress(pProgress, 1.0); // notify done
3607            }
3608        }
3609    
3610        /// Updates the 3crc chunk with the checksum of a sample. The
3611        /// update is done directly to disk, as this method is called
3612        /// after File::Save()
3613        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3614            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3615            if (!_3crc) return;
3616    
3617            // get the index of the sample
3618            int iWaveIndex = -1;
3619            File::SampleList::iterator iter = pSamples->begin();
3620            File::SampleList::iterator end  = pSamples->end();
3621            for (int index = 0; iter != end; ++iter, ++index) {
3622                if (*iter == pSample) {
3623                    iWaveIndex = index;
3624                    break;
3625                }
3626            }
3627            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3628    
3629            // write the CRC-32 checksum to disk
3630            _3crc->SetPos(iWaveIndex * 8);
3631            uint32_t tmp = 1;
3632            _3crc->WriteUint32(&tmp); // unknown, always 1?
3633            _3crc->WriteUint32(&crc);
3634        }
3635    
3636        Group* File::GetFirstGroup() {
3637            if (!pGroups) LoadGroups();
3638            // there must always be at least one group
3639            GroupsIterator = pGroups->begin();
3640            return *GroupsIterator;
3641        }
3642    
3643        Group* File::GetNextGroup() {
3644            if (!pGroups) return NULL;
3645            ++GroupsIterator;
3646            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3647        }
3648    
3649        /**
3650         * Returns the group with the given index.
3651         *
3652         * @param index - number of the sought group (0..n)
3653         * @returns sought group or NULL if there's no such group
3654         */
3655        Group* File::GetGroup(uint index) {
3656            if (!pGroups) LoadGroups();
3657            GroupsIterator = pGroups->begin();
3658            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3659                if (i == index) return *GroupsIterator;
3660                ++GroupsIterator;
3661            }
3662            return NULL;
3663        }
3664    
3665        Group* File::AddGroup() {
3666            if (!pGroups) LoadGroups();
3667            // there must always be at least one group
3668            __ensureMandatoryChunksExist();
3669            Group* pGroup = new Group(this, NULL);
3670            pGroups->push_back(pGroup);
3671            return pGroup;
3672        }
3673    
3674        /** @brief Delete a group and its samples.
3675         *
3676         * This will delete the given Group object and all the samples that
3677         * belong to this group from the gig file. You have to call Save() to
3678         * make this persistent to the file.
3679         *
3680         * @param pGroup - group to delete
3681         * @throws gig::Exception if given group could not be found
3682         */
3683        void File::DeleteGroup(Group* pGroup) {
3684            if (!pGroups) LoadGroups();
3685            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3686            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3687            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3688            // delete all members of this group
3689            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3690                DeleteSample(pSample);
3691            }
3692            // now delete this group object
3693            pGroups->erase(iter);
3694            delete pGroup;
3695        }
3696    
3697        /** @brief Delete a group.
3698         *
3699         * This will delete the given Group object from the gig file. All the
3700         * samples that belong to this group will not be deleted, but instead
3701         * be moved to another group. You have to call Save() to make this
3702         * persistent to the file.
3703         *
3704         * @param pGroup - group to delete
3705         * @throws gig::Exception if given group could not be found
3706         */
3707        void File::DeleteGroupOnly(Group* pGroup) {
3708            if (!pGroups) LoadGroups();
3709            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3710            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3711            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3712            // move all members of this group to another group
3713            pGroup->MoveAll();
3714            pGroups->erase(iter);
3715            delete pGroup;
3716        }
3717    
3718        void File::LoadGroups() {
3719            if (!pGroups) pGroups = new std::list<Group*>;
3720            // try to read defined groups from file
3721            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3722            if (lst3gri) {
3723                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3724                if (lst3gnl) {
3725                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3726                    while (ck) {
3727                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3728                            if (pVersion && pVersion->major == 3 &&
3729                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3730    
3731                            pGroups->push_back(new Group(this, ck));
3732                        }
3733                        ck = lst3gnl->GetNextSubChunk();
3734                    }
3735                }
3736            }
3737            // if there were no group(s), create at least the mandatory default group
3738            if (!pGroups->size()) {
3739                Group* pGroup = new Group(this, NULL);
3740                pGroup->Name = "Default Group";
3741                pGroups->push_back(pGroup);
3742          }          }
3743          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
3744    
3745        /**
3746         * Apply all the gig file's current instruments, samples, groups and settings
3747         * to the respective RIFF chunks. You have to call Save() to make changes
3748         * persistent.
3749         *
3750         * Usually there is absolutely no need to call this method explicitly.
3751         * It will be called automatically when File::Save() was called.
3752         *
3753         * @throws Exception - on errors
3754         */
3755        void File::UpdateChunks() {
3756            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3757    
3758            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3759    
3760            // first update base class's chunks
3761            DLS::File::UpdateChunks();
3762    
3763            if (newFile) {
3764                // INFO was added by Resource::UpdateChunks - make sure it
3765                // is placed first in file
3766                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3767                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3768                if (first != info) {
3769                    pRIFF->MoveSubChunk(info, first);
3770                }
3771            }
3772    
3773            // update group's chunks
3774            if (pGroups) {
3775                std::list<Group*>::iterator iter = pGroups->begin();
3776                std::list<Group*>::iterator end  = pGroups->end();
3777                for (; iter != end; ++iter) {
3778                    (*iter)->UpdateChunks();
3779                }
3780    
3781                // v3: make sure the file has 128 3gnm chunks
3782                if (pVersion && pVersion->major == 3) {
3783                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3784                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3785                    for (int i = 0 ; i < 128 ; i++) {
3786                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3787                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3788                    }
3789                }
3790            }
3791    
3792            // update einf chunk
3793    
3794            // The einf chunk contains statistics about the gig file, such
3795            // as the number of regions and samples used by each
3796            // instrument. It is divided in equally sized parts, where the
3797            // first part contains information about the whole gig file,
3798            // and the rest of the parts map to each instrument in the
3799            // file.
3800            //
3801            // At the end of each part there is a bit map of each sample
3802            // in the file, where a set bit means that the sample is used
3803            // by the file/instrument.
3804            //
3805            // Note that there are several fields with unknown use. These
3806            // are set to zero.
3807    
3808            int sublen = pSamples->size() / 8 + 49;
3809            int einfSize = (Instruments + 1) * sublen;
3810    
3811            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3812            if (einf) {
3813                if (einf->GetSize() != einfSize) {
3814                    einf->Resize(einfSize);
3815                    memset(einf->LoadChunkData(), 0, einfSize);
3816                }
3817            } else if (newFile) {
3818                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3819            }
3820            if (einf) {
3821                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3822    
3823                std::map<gig::Sample*,int> sampleMap;
3824                int sampleIdx = 0;
3825                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3826                    sampleMap[pSample] = sampleIdx++;
3827                }
3828    
3829                int totnbusedsamples = 0;
3830                int totnbusedchannels = 0;
3831                int totnbregions = 0;
3832                int totnbdimregions = 0;
3833                int totnbloops = 0;
3834                int instrumentIdx = 0;
3835    
3836                memset(&pData[48], 0, sublen - 48);
3837    
3838                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3839                     instrument = GetNextInstrument()) {
3840                    int nbusedsamples = 0;
3841                    int nbusedchannels = 0;
3842                    int nbdimregions = 0;
3843                    int nbloops = 0;
3844    
3845                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3846    
3847                    for (Region* region = instrument->GetFirstRegion() ; region ;
3848                         region = instrument->GetNextRegion()) {
3849                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3850                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3851                            if (d->pSample) {
3852                                int sampleIdx = sampleMap[d->pSample];
3853                                int byte = 48 + sampleIdx / 8;
3854                                int bit = 1 << (sampleIdx & 7);
3855                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3856                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3857                                    nbusedsamples++;
3858                                    nbusedchannels += d->pSample->Channels;
3859    
3860                                    if ((pData[byte] & bit) == 0) {
3861                                        pData[byte] |= bit;
3862                                        totnbusedsamples++;
3863                                        totnbusedchannels += d->pSample->Channels;
3864                                    }
3865                                }
3866                            }
3867                            if (d->SampleLoops) nbloops++;
3868                        }
3869                        nbdimregions += region->DimensionRegions;
3870                    }
3871                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3872                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3873                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3874                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3875                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3876                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3877                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3878                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3879                    // next 8 bytes unknown
3880                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3881                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3882                    // next 4 bytes unknown
3883    
3884                    totnbregions += instrument->Regions;
3885                    totnbdimregions += nbdimregions;
3886                    totnbloops += nbloops;
3887                    instrumentIdx++;
3888                }
3889                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3890                // store32(&pData[0], sublen);
3891                store32(&pData[4], totnbusedchannels);
3892                store32(&pData[8], totnbusedsamples);
3893                store32(&pData[12], Instruments);
3894                store32(&pData[16], totnbregions);
3895                store32(&pData[20], totnbdimregions);
3896                store32(&pData[24], totnbloops);
3897                // next 8 bytes unknown
3898                // next 4 bytes unknown, not always 0
3899                store32(&pData[40], pSamples->size());
3900                // next 4 bytes unknown
3901            }
3902    
3903            // update 3crc chunk
3904    
3905            // The 3crc chunk contains CRC-32 checksums for the
3906            // samples. The actual checksum values will be filled in
3907            // later, by Sample::Write.
3908    
3909            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3910            if (_3crc) {
3911                _3crc->Resize(pSamples->size() * 8);
3912            } else if (newFile) {
3913                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3914                _3crc->LoadChunkData();
3915    
3916                // the order of einf and 3crc is not the same in v2 and v3
3917                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3918            }
3919        }
3920    
3921        /**
3922         * Enable / disable automatic loading. By default this properyt is
3923         * enabled and all informations are loaded automatically. However
3924         * loading all Regions, DimensionRegions and especially samples might
3925         * take a long time for large .gig files, and sometimes one might only
3926         * be interested in retrieving very superficial informations like the
3927         * amount of instruments and their names. In this case one might disable
3928         * automatic loading to avoid very slow response times.
3929         *
3930         * @e CAUTION: by disabling this property many pointers (i.e. sample
3931         * references) and informations will have invalid or even undefined
3932         * data! This feature is currently only intended for retrieving very
3933         * superficial informations in a very fast way. Don't use it to retrieve
3934         * details like synthesis informations or even to modify .gig files!
3935         */
3936        void File::SetAutoLoad(bool b) {
3937            bAutoLoad = b;
3938        }
3939    
3940        /**
3941         * Returns whether automatic loading is enabled.
3942         * @see SetAutoLoad()
3943         */
3944        bool File::GetAutoLoad() {
3945            return bAutoLoad;
3946      }      }
3947    
3948    
# Line 1022  namespace gig { Line 3957  namespace gig {
3957          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
3958      }      }
3959    
3960    
3961    // *************** functions ***************
3962    // *
3963    
3964        /**
3965         * Returns the name of this C++ library. This is usually "libgig" of
3966         * course. This call is equivalent to RIFF::libraryName() and
3967         * DLS::libraryName().
3968         */
3969        String libraryName() {
3970            return PACKAGE;
3971        }
3972    
3973        /**
3974         * Returns version of this C++ library. This call is equivalent to
3975         * RIFF::libraryVersion() and DLS::libraryVersion().
3976         */
3977        String libraryVersion() {
3978            return VERSION;
3979        }
3980    
3981  } // namespace gig  } // namespace gig

Legend:
Removed from v.11  
changed lines
  Added in v.1713

  ViewVC Help
Powered by ViewVC