/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2 by schoenebeck, Sat Oct 25 20:15:04 2003 UTC revision 1102 by persson, Sun Mar 18 07:13:06 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29    #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54    // *************** progress_t ***************
55    // *
56    
57        progress_t::progress_t() {
58            callback    = NULL;
59            custom      = NULL;
60            __range_min = 0.0f;
61            __range_max = 1.0f;
62        }
63    
64        // private helper function to convert progress of a subprocess into the global progress
65        static void __notify_progress(progress_t* pProgress, float subprogress) {
66            if (pProgress && pProgress->callback) {
67                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
68                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69                pProgress->factor         = totalprogress;
70                pProgress->callback(pProgress); // now actually notify about the progress
71            }
72        }
73    
74        // private helper function to divide a progress into subprogresses
75        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76            if (pParentProgress && pParentProgress->callback) {
77                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
78                pSubProgress->callback    = pParentProgress->callback;
79                pSubProgress->custom      = pParentProgress->custom;
80                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82            }
83        }
84    
85    
86    // *************** Internal functions for sample decompression ***************
87    // *
88    
89    namespace {
90    
91        inline int get12lo(const unsigned char* pSrc)
92        {
93            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94            return x & 0x800 ? x - 0x1000 : x;
95        }
96    
97        inline int get12hi(const unsigned char* pSrc)
98        {
99            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100            return x & 0x800 ? x - 0x1000 : x;
101        }
102    
103        inline int16_t get16(const unsigned char* pSrc)
104        {
105            return int16_t(pSrc[0] | pSrc[1] << 8);
106        }
107    
108        inline int get24(const unsigned char* pSrc)
109        {
110            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111            return x & 0x800000 ? x - 0x1000000 : x;
112        }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121        void Decompress16(int compressionmode, const unsigned char* params,
122                          int srcStep, int dstStep,
123                          const unsigned char* pSrc, int16_t* pDst,
124                          unsigned long currentframeoffset,
125                          unsigned long copysamples)
126        {
127            switch (compressionmode) {
128                case 0: // 16 bit uncompressed
129                    pSrc += currentframeoffset * srcStep;
130                    while (copysamples) {
131                        *pDst = get16(pSrc);
132                        pDst += dstStep;
133                        pSrc += srcStep;
134                        copysamples--;
135                    }
136                    break;
137    
138                case 1: // 16 bit compressed to 8 bit
139                    int y  = get16(params);
140                    int dy = get16(params + 2);
141                    while (currentframeoffset) {
142                        dy -= int8_t(*pSrc);
143                        y  -= dy;
144                        pSrc += srcStep;
145                        currentframeoffset--;
146                    }
147                    while (copysamples) {
148                        dy -= int8_t(*pSrc);
149                        y  -= dy;
150                        *pDst = y;
151                        pDst += dstStep;
152                        pSrc += srcStep;
153                        copysamples--;
154                    }
155                    break;
156            }
157        }
158    
159        void Decompress24(int compressionmode, const unsigned char* params,
160                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                          unsigned long currentframeoffset,
162                          unsigned long copysamples, int truncatedBits)
163        {
164            int y, dy, ddy, dddy;
165    
166    #define GET_PARAMS(params)                      \
167            y    = get24(params);                   \
168            dy   = y - get24((params) + 3);         \
169            ddy  = get24((params) + 6);             \
170            dddy = get24((params) + 9)
171    
172    #define SKIP_ONE(x)                             \
173            dddy -= (x);                            \
174            ddy  -= dddy;                           \
175            dy   =  -dy - ddy;                      \
176            y    += dy
177    
178    #define COPY_ONE(x)                             \
179            SKIP_ONE(x);                            \
180            store24(pDst, y << truncatedBits);      \
181            pDst += dstStep
182    
183            switch (compressionmode) {
184                case 2: // 24 bit uncompressed
185                    pSrc += currentframeoffset * 3;
186                    while (copysamples) {
187                        store24(pDst, get24(pSrc) << truncatedBits);
188                        pDst += dstStep;
189                        pSrc += 3;
190                        copysamples--;
191                    }
192                    break;
193    
194                case 3: // 24 bit compressed to 16 bit
195                    GET_PARAMS(params);
196                    while (currentframeoffset) {
197                        SKIP_ONE(get16(pSrc));
198                        pSrc += 2;
199                        currentframeoffset--;
200                    }
201                    while (copysamples) {
202                        COPY_ONE(get16(pSrc));
203                        pSrc += 2;
204                        copysamples--;
205                    }
206                    break;
207    
208                case 4: // 24 bit compressed to 12 bit
209                    GET_PARAMS(params);
210                    while (currentframeoffset > 1) {
211                        SKIP_ONE(get12lo(pSrc));
212                        SKIP_ONE(get12hi(pSrc));
213                        pSrc += 3;
214                        currentframeoffset -= 2;
215                    }
216                    if (currentframeoffset) {
217                        SKIP_ONE(get12lo(pSrc));
218                        currentframeoffset--;
219                        if (copysamples) {
220                            COPY_ONE(get12hi(pSrc));
221                            pSrc += 3;
222                            copysamples--;
223                        }
224                    }
225                    while (copysamples > 1) {
226                        COPY_ONE(get12lo(pSrc));
227                        COPY_ONE(get12hi(pSrc));
228                        pSrc += 3;
229                        copysamples -= 2;
230                    }
231                    if (copysamples) {
232                        COPY_ONE(get12lo(pSrc));
233                    }
234                    break;
235    
236                case 5: // 24 bit compressed to 8 bit
237                    GET_PARAMS(params);
238                    while (currentframeoffset) {
239                        SKIP_ONE(int8_t(*pSrc++));
240                        currentframeoffset--;
241                    }
242                    while (copysamples) {
243                        COPY_ONE(int8_t(*pSrc++));
244                        copysamples--;
245                    }
246                    break;
247            }
248        }
249    
250        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
251        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
253        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
254    }
255    
256    
257  // *************** Sample ***************  // *************** Sample ***************
258  // *  // *
259    
260      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
261      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
262    
263      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
264         *
265         * Load an existing sample or create a new one. A 'wave' list chunk must
266         * be given to this constructor. In case the given 'wave' list chunk
267         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268         * format and sample data will be loaded from there, otherwise default
269         * values will be used and those chunks will be created when
270         * File::Save() will be called later on.
271         *
272         * @param pFile          - pointer to gig::File where this sample is
273         *                         located (or will be located)
274         * @param waveList       - pointer to 'wave' list chunk which is (or
275         *                         will be) associated with this sample
276         * @param WavePoolOffset - offset of this sample data from wave pool
277         *                         ('wvpl') list chunk
278         * @param fileNo         - number of an extension file where this sample
279         *                         is located, 0 otherwise
280         */
281        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282            pInfo->UseFixedLengthStrings = true;
283          Instances++;          Instances++;
284            FileNo = fileNo;
285    
286          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
288          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
289                pGroup = pFile->GetGroup(iSampleGroup);
290          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
291          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
292          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
293          Product           = smpl->ReadInt32();          }
294          SamplePeriod      = smpl->ReadInt32();  
295          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
296          MIDIPitchFraction = smpl->ReadInt32();          if (pCkSmpl) {
297          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
298          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
299          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
300          LoopID            = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
301          smpl->Read(&LoopType, 1, 4);              FineTune      = pCkSmpl->ReadInt32();
302          LoopStart         = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
303          LoopEnd           = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
304          LoopFraction      = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
305          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
306                LoopID        = pCkSmpl->ReadInt32();
307                pCkSmpl->Read(&LoopType, 1, 4);
308                LoopStart     = pCkSmpl->ReadInt32();
309                LoopEnd       = pCkSmpl->ReadInt32();
310                LoopFraction  = pCkSmpl->ReadInt32();
311                LoopPlayCount = pCkSmpl->ReadInt32();
312            } else { // 'smpl' chunk missing
313                // use default values
314                Manufacturer  = 0;
315                Product       = 0;
316                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
317                MIDIUnityNote = 64;
318                FineTune      = 0;
319                SMPTEOffset   = 0;
320                Loops         = 0;
321                LoopID        = 0;
322                LoopStart     = 0;
323                LoopEnd       = 0;
324                LoopFraction  = 0;
325                LoopPlayCount = 0;
326            }
327    
328          FrameTable                 = NULL;          FrameTable                 = NULL;
329          SamplePos                  = 0;          SamplePos                  = 0;
# Line 62  namespace gig { Line 331  namespace gig {
331          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
332          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
333    
334          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
335    
336            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
337            Compressed        = ewav;
338            Dithered          = false;
339            TruncatedBits     = 0;
340          if (Compressed) {          if (Compressed) {
341                uint32_t version = ewav->ReadInt32();
342                if (version == 3 && BitDepth == 24) {
343                    Dithered = ewav->ReadInt32();
344                    ewav->SetPos(Channels == 2 ? 84 : 64);
345                    TruncatedBits = ewav->ReadInt32();
346                }
347              ScanCompressedSample();              ScanCompressedSample();
348              if (!pDecompressionBuffer) {          }
349                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];  
350                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
351            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
352                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
353                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
354            }
355            FrameOffset = 0; // just for streaming compressed samples
356    
357            LoopSize = LoopEnd - LoopStart + 1;
358        }
359    
360        /**
361         * Apply sample and its settings to the respective RIFF chunks. You have
362         * to call File::Save() to make changes persistent.
363         *
364         * Usually there is absolutely no need to call this method explicitly.
365         * It will be called automatically when File::Save() was called.
366         *
367         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
368         *                        was provided yet
369         * @throws gig::Exception if there is any invalid sample setting
370         */
371        void Sample::UpdateChunks() {
372            // first update base class's chunks
373            DLS::Sample::UpdateChunks();
374    
375            // make sure 'smpl' chunk exists
376            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
377            if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
378            // update 'smpl' chunk
379            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
380            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
381            memcpy(&pData[0], &Manufacturer, 4);
382            memcpy(&pData[4], &Product, 4);
383            memcpy(&pData[8], &SamplePeriod, 4);
384            memcpy(&pData[12], &MIDIUnityNote, 4);
385            memcpy(&pData[16], &FineTune, 4);
386            memcpy(&pData[20], &SMPTEFormat, 4);
387            memcpy(&pData[24], &SMPTEOffset, 4);
388            memcpy(&pData[28], &Loops, 4);
389    
390            // we skip 'manufByt' for now (4 bytes)
391    
392            memcpy(&pData[36], &LoopID, 4);
393            memcpy(&pData[40], &LoopType, 4);
394            memcpy(&pData[44], &LoopStart, 4);
395            memcpy(&pData[48], &LoopEnd, 4);
396            memcpy(&pData[52], &LoopFraction, 4);
397            memcpy(&pData[56], &LoopPlayCount, 4);
398    
399            // make sure '3gix' chunk exists
400            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
401            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
402            // determine appropriate sample group index (to be stored in chunk)
403            uint16_t iSampleGroup = 0; // 0 refers to default sample group
404            File* pFile = static_cast<File*>(pParent);
405            if (pFile->pGroups) {
406                std::list<Group*>::iterator iter = pFile->pGroups->begin();
407                std::list<Group*>::iterator end  = pFile->pGroups->end();
408                for (int i = 0; iter != end; i++, iter++) {
409                    if (*iter == pGroup) {
410                        iSampleGroup = i;
411                        break; // found
412                    }
413              }              }
414          }          }
415          FrameOffset = 0; // just for streaming compressed samples          // update '3gix' chunk
416            pData = (uint8_t*) pCk3gix->LoadChunkData();
417            memcpy(&pData[0], &iSampleGroup, 2);
418      }      }
419    
420      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 79  namespace gig { Line 423  namespace gig {
423          this->SamplesTotal = 0;          this->SamplesTotal = 0;
424          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
425    
426            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
427            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
428    
429          // Scanning          // Scanning
430          pCkData->SetPos(0);          pCkData->SetPos(0);
431          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
432              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
433              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
434              this->SamplesTotal += 2048;                  // stored, to save some memory
435              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
436                  case 1:   // left channel compressed  
437                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
438                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
439                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
440                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
441    
442                    if (pCkData->RemainingBytes() <= frameSize) {
443                        SamplesInLastFrame =
444                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
445                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
446                        SamplesTotal += SamplesInLastFrame;
447                      break;                      break;
448                  case 257: // both channels compressed                  }
449                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
450                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
451                }
452            }
453            else { // Mono
454                for (int i = 0 ; ; i++) {
455                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
456    
457                    const int mode = pCkData->ReadUint8();
458                    if (mode > 5) throw gig::Exception("Unknown compression mode");
459                    const unsigned long frameSize = bytesPerFrame[mode];
460    
461                    if (pCkData->RemainingBytes() <= frameSize) {
462                        SamplesInLastFrame =
463                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
464                        SamplesTotal += SamplesInLastFrame;
465                      break;                      break;
466                  default: // both channels uncompressed                  }
467                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
468                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
469              }              }
470          }          }
471          pCkData->SetPos(0);          pCkData->SetPos(0);
472    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
473          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
474          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
475          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 138  namespace gig { Line 505  namespace gig {
505       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
506       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
507       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
508       *       * @code
509       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
510       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
511         * @endcode
512       *       *
513       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
514       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 186  namespace gig { Line 554  namespace gig {
554       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
555       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
556       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
557       *       * @code
558       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
559       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
560       *       * @endcode
561       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
562       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
563       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 249  namespace gig { Line 617  namespace gig {
617          RAMCache.Size   = 0;          RAMCache.Size   = 0;
618      }      }
619    
620        /** @brief Resize sample.
621         *
622         * Resizes the sample's wave form data, that is the actual size of
623         * sample wave data possible to be written for this sample. This call
624         * will return immediately and just schedule the resize operation. You
625         * should call File::Save() to actually perform the resize operation(s)
626         * "physically" to the file. As this can take a while on large files, it
627         * is recommended to call Resize() first on all samples which have to be
628         * resized and finally to call File::Save() to perform all those resize
629         * operations in one rush.
630         *
631         * The actual size (in bytes) is dependant to the current FrameSize
632         * value. You may want to set FrameSize before calling Resize().
633         *
634         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
635         * enlarged samples before calling File::Save() as this might exceed the
636         * current sample's boundary!
637         *
638         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
639         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
640         * other formats will fail!
641         *
642         * @param iNewSize - new sample wave data size in sample points (must be
643         *                   greater than zero)
644         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
645         *                         or if \a iNewSize is less than 1
646         * @throws gig::Exception if existing sample is compressed
647         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
648         *      DLS::Sample::FormatTag, File::Save()
649         */
650        void Sample::Resize(int iNewSize) {
651            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
652            DLS::Sample::Resize(iNewSize);
653        }
654    
655      /**      /**
656       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
657       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 310  namespace gig { Line 713  namespace gig {
713      }      }
714    
715      /**      /**
716         * Reads \a SampleCount number of sample points from the position stored
717         * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
718         * the position within the sample respectively, this method honors the
719         * looping informations of the sample (if any). The sample wave stream
720         * will be decompressed on the fly if using a compressed sample. Use this
721         * method if you don't want to load the sample into RAM, thus for disk
722         * streaming. All this methods needs to know to proceed with streaming
723         * for the next time you call this method is stored in \a pPlaybackState.
724         * You have to allocate and initialize the playback_state_t structure by
725         * yourself before you use it to stream a sample:
726         * @code
727         * gig::playback_state_t playbackstate;
728         * playbackstate.position         = 0;
729         * playbackstate.reverse          = false;
730         * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
731         * @endcode
732         * You don't have to take care of things like if there is actually a loop
733         * defined or if the current read position is located within a loop area.
734         * The method already handles such cases by itself.
735         *
736         * <b>Caution:</b> If you are using more than one streaming thread, you
737         * have to use an external decompression buffer for <b>EACH</b>
738         * streaming thread to avoid race conditions and crashes!
739         *
740         * @param pBuffer          destination buffer
741         * @param SampleCount      number of sample points to read
742         * @param pPlaybackState   will be used to store and reload the playback
743         *                         state for the next ReadAndLoop() call
744         * @param pDimRgn          dimension region with looping information
745         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
746         * @returns                number of successfully read sample points
747         * @see                    CreateDecompressionBuffer()
748         */
749        unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
750                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
751            unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
752            uint8_t* pDst = (uint8_t*) pBuffer;
753    
754            SetPos(pPlaybackState->position); // recover position from the last time
755    
756            if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
757    
758                const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
759                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
760    
761                if (GetPos() <= loopEnd) {
762                    switch (loop.LoopType) {
763    
764                        case loop_type_bidirectional: { //TODO: not tested yet!
765                            do {
766                                // if not endless loop check if max. number of loop cycles have been passed
767                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
768    
769                                if (!pPlaybackState->reverse) { // forward playback
770                                    do {
771                                        samplestoloopend  = loopEnd - GetPos();
772                                        readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
773                                        samplestoread    -= readsamples;
774                                        totalreadsamples += readsamples;
775                                        if (readsamples == samplestoloopend) {
776                                            pPlaybackState->reverse = true;
777                                            break;
778                                        }
779                                    } while (samplestoread && readsamples);
780                                }
781                                else { // backward playback
782    
783                                    // as we can only read forward from disk, we have to
784                                    // determine the end position within the loop first,
785                                    // read forward from that 'end' and finally after
786                                    // reading, swap all sample frames so it reflects
787                                    // backward playback
788    
789                                    unsigned long swapareastart       = totalreadsamples;
790                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
791                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
792                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
793    
794                                    SetPos(reverseplaybackend);
795    
796                                    // read samples for backward playback
797                                    do {
798                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
799                                        samplestoreadinloop -= readsamples;
800                                        samplestoread       -= readsamples;
801                                        totalreadsamples    += readsamples;
802                                    } while (samplestoreadinloop && readsamples);
803    
804                                    SetPos(reverseplaybackend); // pretend we really read backwards
805    
806                                    if (reverseplaybackend == loop.LoopStart) {
807                                        pPlaybackState->loop_cycles_left--;
808                                        pPlaybackState->reverse = false;
809                                    }
810    
811                                    // reverse the sample frames for backward playback
812                                    SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
813                                }
814                            } while (samplestoread && readsamples);
815                            break;
816                        }
817    
818                        case loop_type_backward: { // TODO: not tested yet!
819                            // forward playback (not entered the loop yet)
820                            if (!pPlaybackState->reverse) do {
821                                samplestoloopend  = loopEnd - GetPos();
822                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
823                                samplestoread    -= readsamples;
824                                totalreadsamples += readsamples;
825                                if (readsamples == samplestoloopend) {
826                                    pPlaybackState->reverse = true;
827                                    break;
828                                }
829                            } while (samplestoread && readsamples);
830    
831                            if (!samplestoread) break;
832    
833                            // as we can only read forward from disk, we have to
834                            // determine the end position within the loop first,
835                            // read forward from that 'end' and finally after
836                            // reading, swap all sample frames so it reflects
837                            // backward playback
838    
839                            unsigned long swapareastart       = totalreadsamples;
840                            unsigned long loopoffset          = GetPos() - loop.LoopStart;
841                            unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
842                                                                                      : samplestoread;
843                            unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
844    
845                            SetPos(reverseplaybackend);
846    
847                            // read samples for backward playback
848                            do {
849                                // if not endless loop check if max. number of loop cycles have been passed
850                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
851                                samplestoloopend     = loopEnd - GetPos();
852                                readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
853                                samplestoreadinloop -= readsamples;
854                                samplestoread       -= readsamples;
855                                totalreadsamples    += readsamples;
856                                if (readsamples == samplestoloopend) {
857                                    pPlaybackState->loop_cycles_left--;
858                                    SetPos(loop.LoopStart);
859                                }
860                            } while (samplestoreadinloop && readsamples);
861    
862                            SetPos(reverseplaybackend); // pretend we really read backwards
863    
864                            // reverse the sample frames for backward playback
865                            SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866                            break;
867                        }
868    
869                        default: case loop_type_normal: {
870                            do {
871                                // if not endless loop check if max. number of loop cycles have been passed
872                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
873                                samplestoloopend  = loopEnd - GetPos();
874                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
875                                samplestoread    -= readsamples;
876                                totalreadsamples += readsamples;
877                                if (readsamples == samplestoloopend) {
878                                    pPlaybackState->loop_cycles_left--;
879                                    SetPos(loop.LoopStart);
880                                }
881                            } while (samplestoread && readsamples);
882                            break;
883                        }
884                    }
885                }
886            }
887    
888            // read on without looping
889            if (samplestoread) do {
890                readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
891                samplestoread    -= readsamples;
892                totalreadsamples += readsamples;
893            } while (readsamples && samplestoread);
894    
895            // store current position
896            pPlaybackState->position = GetPos();
897    
898            return totalreadsamples;
899        }
900    
901        /**
902       * Reads \a SampleCount number of sample points from the current       * Reads \a SampleCount number of sample points from the current
903       * position into the buffer pointed by \a pBuffer and increments the       * position into the buffer pointed by \a pBuffer and increments the
904       * position within the sample. The sample wave stream will be       * position within the sample. The sample wave stream will be
# Line 317  namespace gig { Line 906  namespace gig {
906       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
907       * thus for disk streaming.       * thus for disk streaming.
908       *       *
909         * <b>Caution:</b> If you are using more than one streaming thread, you
910         * have to use an external decompression buffer for <b>EACH</b>
911         * streaming thread to avoid race conditions and crashes!
912         *
913         * For 16 bit samples, the data in the buffer will be int16_t
914         * (using native endianness). For 24 bit, the buffer will
915         * contain three bytes per sample, little-endian.
916         *
917       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
918       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
919         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
920       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
921       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
922       */       */
923      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
924          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize);          if (SampleCount == 0) return 0;
925          else { //FIXME: no support for mono compressed samples yet, are there any?          if (!Compressed) {
926              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              if (BitDepth == 24) {
927              // best case needed buffer size (all frames compressed)                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
928              unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)              }
929                                               (SampleCount >> 10) + // 10 bytes header per 2048 sample points              else { // 16 bit
930                                               8194,                 // at least one worst case sample frame                  // (pCkData->Read does endian correction)
931                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
932                                         : pCkData->Read(pBuffer, SampleCount, 2);
933                }
934            }
935            else {
936                if (this->SamplePos >= this->SamplesTotal) return 0;
937                //TODO: efficiency: maybe we should test for an average compression rate
938                unsigned long assumedsize      = GuessSize(SampleCount),
939                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
940                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
941                            copysamples;                            copysamples, skipsamples,
942              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
943              this->FrameOffset = 0;              this->FrameOffset = 0;
944    
945              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
946                  // local buffer reallocation - hope this won't happen  
947                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
948                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
949                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
950                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
951                    remainingsamples = SampleCount;
952                    assumedsize      = GuessSize(SampleCount);
953              }              }
954    
955              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
956              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
957              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
958              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
959    
960              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
961                    unsigned long framesamples = SamplesPerFrame;
962                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
963                  if (remainingbytes < 8194) {  
964                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
965                          this->SamplePos += (SampleCount - remainingsamples);  
966                          //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;                  if (Channels == 2) {
967                          return (SampleCount - remainingsamples);                      mode_r = *pSrc++;
968                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
969                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
970                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
971                        if (remainingbytes < framebytes) { // last frame in sample
972                            framesamples = SamplesInLastFrame;
973                            if (mode_l == 4 && (framesamples & 1)) {
974                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
975                            }
976                            else {
977                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
978                            }
979                        }
980                    }
981                    else {
982                        framebytes = bytesPerFrame[mode_l] + 1;
983                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
984                        if (remainingbytes < framebytes) {
985                            framesamples = SamplesInLastFrame;
986                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
987                  }                  }
988    
989                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
990                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
991                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
992                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
993                            skipsamples = currentframeoffset;
994                        }
995                        else {
996                            copysamples = 0;
997                            skipsamples = framesamples;
998                        }
999                  }                  }
1000                  else {                  else {
1001                        // This frame has enough data for pBuffer, but not
1002                        // all of the frame is needed. Set file position
1003                        // to start of this frame for next call to Read.
1004                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1005                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1006                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1007                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1008                      }                  }
1009                      else {                  remainingsamples -= copysamples;
1010    
1011                    if (remainingbytes > framebytes) {
1012                        remainingbytes -= framebytes;
1013                        if (remainingsamples == 0 &&
1014                            currentframeoffset + copysamples == framesamples) {
1015                            // This frame has enough data for pBuffer, and
1016                            // all of the frame is needed. Set file
1017                            // position to start of next frame for next
1018                            // call to Read. FrameOffset is 0.
1019                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1020                      }                      }
1021                  }                  }
1022                    else remainingbytes = 0;
1023    
1024                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1025                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1026                  switch (compressionmode) {                  if (copysamples == 0) {
1027                      case 1: // left channel compressed                      // skip this frame
1028                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1029                          if (!remainingsamples && copysamples == 2048)                  }
1030                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1031                        const unsigned char* const param_l = pSrc;
1032                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1033                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1034                          while (currentframeoffset) {  
1035                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1036                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1037                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1038                              currentframeoffset--;  
1039                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1040                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1041                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1042                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1043                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1044                          }                          }
1045                          while (copysamples) {                          else { // Mono
1046                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1047                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1048                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1049                          }                          }
1050                          break;                      }
1051                      case 257: // both channels compressed                      else { // 16 bit
1052                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1053                          if (!remainingsamples && copysamples == 2048)  
1054                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1055                            if (Channels == 2) { // Stereo
1056                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1057                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1058                          right  = *(int16_t*)pSrc; pSrc+=2;  
1059                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1060                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1061                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1062                              left   -= dleft;                                           skipsamples, copysamples);
1063                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1064                          }                          }
1065                          while (copysamples) {                          else { // Mono
1066                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1067                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1068                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1069                          }                          }
1070                          break;                      }
1071                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1072                  }                  }
1073              }  
1074                    // reload from disk to local buffer if needed
1075                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1076                        assumedsize    = GuessSize(remainingsamples);
1077                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1078                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1079                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1080                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1081                    }
1082                } // while
1083    
1084              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1085              //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1086              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1087          }          }
1088      }      }
1089    
1090        /** @brief Write sample wave data.
1091         *
1092         * Writes \a SampleCount number of sample points from the buffer pointed
1093         * by \a pBuffer and increments the position within the sample. Use this
1094         * method to directly write the sample data to disk, i.e. if you don't
1095         * want or cannot load the whole sample data into RAM.
1096         *
1097         * You have to Resize() the sample to the desired size and call
1098         * File::Save() <b>before</b> using Write().
1099         *
1100         * Note: there is currently no support for writing compressed samples.
1101         *
1102         * @param pBuffer     - source buffer
1103         * @param SampleCount - number of sample points to write
1104         * @throws DLS::Exception if current sample size is too small
1105         * @throws gig::Exception if sample is compressed
1106         * @see DLS::LoadSampleData()
1107         */
1108        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1109            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1110            return DLS::Sample::Write(pBuffer, SampleCount);
1111        }
1112    
1113        /**
1114         * Allocates a decompression buffer for streaming (compressed) samples
1115         * with Sample::Read(). If you are using more than one streaming thread
1116         * in your application you <b>HAVE</b> to create a decompression buffer
1117         * for <b>EACH</b> of your streaming threads and provide it with the
1118         * Sample::Read() call in order to avoid race conditions and crashes.
1119         *
1120         * You should free the memory occupied by the allocated buffer(s) once
1121         * you don't need one of your streaming threads anymore by calling
1122         * DestroyDecompressionBuffer().
1123         *
1124         * @param MaxReadSize - the maximum size (in sample points) you ever
1125         *                      expect to read with one Read() call
1126         * @returns allocated decompression buffer
1127         * @see DestroyDecompressionBuffer()
1128         */
1129        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1130            buffer_t result;
1131            const double worstCaseHeaderOverhead =
1132                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1133            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1134            result.pStart            = new int8_t[result.Size];
1135            result.NullExtensionSize = 0;
1136            return result;
1137        }
1138    
1139        /**
1140         * Free decompression buffer, previously created with
1141         * CreateDecompressionBuffer().
1142         *
1143         * @param DecompressionBuffer - previously allocated decompression
1144         *                              buffer to free
1145         */
1146        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1147            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1148                delete[] (int8_t*) DecompressionBuffer.pStart;
1149                DecompressionBuffer.pStart = NULL;
1150                DecompressionBuffer.Size   = 0;
1151                DecompressionBuffer.NullExtensionSize = 0;
1152            }
1153        }
1154    
1155        /**
1156         * Returns pointer to the Group this Sample belongs to. In the .gig
1157         * format a sample always belongs to one group. If it wasn't explicitly
1158         * assigned to a certain group, it will be automatically assigned to a
1159         * default group.
1160         *
1161         * @returns Sample's Group (never NULL)
1162         */
1163        Group* Sample::GetGroup() const {
1164            return pGroup;
1165        }
1166    
1167      Sample::~Sample() {      Sample::~Sample() {
1168          Instances--;          Instances--;
1169          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1170                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1171                InternalDecompressionBuffer.pStart = NULL;
1172                InternalDecompressionBuffer.Size   = 0;
1173            }
1174          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1175          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1176      }      }
# Line 491  namespace gig { Line 1180  namespace gig {
1180  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1181  // *  // *
1182    
1183        uint                               DimensionRegion::Instances       = 0;
1184        DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1185    
1186      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1187            Instances++;
1188    
1189            pSample = NULL;
1190    
1191          memcpy(&Crossfade, &SamplerOptions, 4);          memcpy(&Crossfade, &SamplerOptions, 4);
1192            if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1193    
1194          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1195          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1196          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1197          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1200          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1201          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1202          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1203          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1204          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1205          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1206          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1207          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1208          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1209          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1210          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1211          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1212          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1213          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1214          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1215          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1216          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1217          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1218          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1219          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1220          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1221          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1222          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1223          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1224          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1225          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1226          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1227          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1228          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1229          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1230          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1231          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1232          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1233          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1234          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1235          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1236          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1237          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1238          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1239          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1240          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1241          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1242          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1243          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1244          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1245          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1246              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1247              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1248          }                  VelocityResponseDepth = velocityresponse;
1249          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1250              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1251              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1252          }              } else if (velocityresponse < 15) {
1253          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1254              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1255              VelocityResponseDepth = velocityresponse - 10;              } else {
1256                    VelocityResponseCurve = curve_type_unknown;
1257                    VelocityResponseDepth = 0;
1258                }
1259                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1260                if (releasevelocityresponse < 5) {
1261                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1262                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1263                } else if (releasevelocityresponse < 10) {
1264                    ReleaseVelocityResponseCurve = curve_type_linear;
1265                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1266                } else if (releasevelocityresponse < 15) {
1267                    ReleaseVelocityResponseCurve = curve_type_special;
1268                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1269                } else {
1270                    ReleaseVelocityResponseCurve = curve_type_unknown;
1271                    ReleaseVelocityResponseDepth = 0;
1272                }
1273                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1274                AttenuationControllerThreshold = _3ewa->ReadInt8();
1275                _3ewa->ReadInt32(); // unknown
1276                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1277                _3ewa->ReadInt16(); // unknown
1278                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1279                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1280                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1281                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1282                else                                       DimensionBypass = dim_bypass_ctrl_none;
1283                uint8_t pan = _3ewa->ReadUint8();
1284                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1285                SelfMask = _3ewa->ReadInt8() & 0x01;
1286                _3ewa->ReadInt8(); // unknown
1287                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1288                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1289                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1290                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1291                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1292                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1293                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1294                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1295                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1296                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1297                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1298                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1299                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1300                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1301                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1302                                                            : vcf_res_ctrl_none;
1303                uint16_t eg3depth = _3ewa->ReadUint16();
1304                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1305                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1306                _3ewa->ReadInt16(); // unknown
1307                ChannelOffset = _3ewa->ReadUint8() / 4;
1308                uint8_t regoptions = _3ewa->ReadUint8();
1309                MSDecode           = regoptions & 0x01; // bit 0
1310                SustainDefeat      = regoptions & 0x02; // bit 1
1311                _3ewa->ReadInt16(); // unknown
1312                VelocityUpperLimit = _3ewa->ReadInt8();
1313                _3ewa->ReadInt8(); // unknown
1314                _3ewa->ReadInt16(); // unknown
1315                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1316                _3ewa->ReadInt8(); // unknown
1317                _3ewa->ReadInt8(); // unknown
1318                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1319                uint8_t vcfcutoff = _3ewa->ReadUint8();
1320                VCFEnabled = vcfcutoff & 0x80; // bit 7
1321                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1322                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1323                uint8_t vcfvelscale = _3ewa->ReadUint8();
1324                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1325                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1326                _3ewa->ReadInt8(); // unknown
1327                uint8_t vcfresonance = _3ewa->ReadUint8();
1328                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1329                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1330                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1331                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1332                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1333                uint8_t vcfvelocity = _3ewa->ReadUint8();
1334                VCFVelocityDynamicRange = vcfvelocity % 5;
1335                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1336                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1337                if (VCFType == vcf_type_lowpass) {
1338                    if (lfo3ctrl & 0x40) // bit 6
1339                        VCFType = vcf_type_lowpassturbo;
1340                }
1341                if (_3ewa->RemainingBytes() >= 8) {
1342                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1343                } else {
1344                    memset(DimensionUpperLimits, 0, 8);
1345                }
1346            } else { // '3ewa' chunk does not exist yet
1347                // use default values
1348                LFO3Frequency                   = 1.0;
1349                EG3Attack                       = 0.0;
1350                LFO1InternalDepth               = 0;
1351                LFO3InternalDepth               = 0;
1352                LFO1ControlDepth                = 0;
1353                LFO3ControlDepth                = 0;
1354                EG1Attack                       = 0.0;
1355                EG1Decay1                       = 0.0;
1356                EG1Sustain                      = 0;
1357                EG1Release                      = 0.0;
1358                EG1Controller.type              = eg1_ctrl_t::type_none;
1359                EG1Controller.controller_number = 0;
1360                EG1ControllerInvert             = false;
1361                EG1ControllerAttackInfluence    = 0;
1362                EG1ControllerDecayInfluence     = 0;
1363                EG1ControllerReleaseInfluence   = 0;
1364                EG2Controller.type              = eg2_ctrl_t::type_none;
1365                EG2Controller.controller_number = 0;
1366                EG2ControllerInvert             = false;
1367                EG2ControllerAttackInfluence    = 0;
1368                EG2ControllerDecayInfluence     = 0;
1369                EG2ControllerReleaseInfluence   = 0;
1370                LFO1Frequency                   = 1.0;
1371                EG2Attack                       = 0.0;
1372                EG2Decay1                       = 0.0;
1373                EG2Sustain                      = 0;
1374                EG2Release                      = 0.0;
1375                LFO2ControlDepth                = 0;
1376                LFO2Frequency                   = 1.0;
1377                LFO2InternalDepth               = 0;
1378                EG1Decay2                       = 0.0;
1379                EG1InfiniteSustain              = false;
1380                EG1PreAttack                    = 1000;
1381                EG2Decay2                       = 0.0;
1382                EG2InfiniteSustain              = false;
1383                EG2PreAttack                    = 1000;
1384                VelocityResponseCurve           = curve_type_nonlinear;
1385                VelocityResponseDepth           = 3;
1386                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1387                ReleaseVelocityResponseDepth    = 3;
1388                VelocityResponseCurveScaling    = 32;
1389                AttenuationControllerThreshold  = 0;
1390                SampleStartOffset               = 0;
1391                PitchTrack                      = true;
1392                DimensionBypass                 = dim_bypass_ctrl_none;
1393                Pan                             = 0;
1394                SelfMask                        = true;
1395                LFO3Controller                  = lfo3_ctrl_modwheel;
1396                LFO3Sync                        = false;
1397                InvertAttenuationController     = false;
1398                AttenuationController.type      = attenuation_ctrl_t::type_none;
1399                AttenuationController.controller_number = 0;
1400                LFO2Controller                  = lfo2_ctrl_internal;
1401                LFO2FlipPhase                   = false;
1402                LFO2Sync                        = false;
1403                LFO1Controller                  = lfo1_ctrl_internal;
1404                LFO1FlipPhase                   = false;
1405                LFO1Sync                        = false;
1406                VCFResonanceController          = vcf_res_ctrl_none;
1407                EG3Depth                        = 0;
1408                ChannelOffset                   = 0;
1409                MSDecode                        = false;
1410                SustainDefeat                   = false;
1411                VelocityUpperLimit              = 0;
1412                ReleaseTriggerDecay             = 0;
1413                EG1Hold                         = false;
1414                VCFEnabled                      = false;
1415                VCFCutoff                       = 0;
1416                VCFCutoffController             = vcf_cutoff_ctrl_none;
1417                VCFCutoffControllerInvert       = false;
1418                VCFVelocityScale                = 0;
1419                VCFResonance                    = 0;
1420                VCFResonanceDynamic             = false;
1421                VCFKeyboardTracking             = false;
1422                VCFKeyboardTrackingBreakpoint   = 0;
1423                VCFVelocityDynamicRange         = 0x04;
1424                VCFVelocityCurve                = curve_type_linear;
1425                VCFType                         = vcf_type_lowpass;
1426                memset(DimensionUpperLimits, 0, 8);
1427            }
1428    
1429            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1430                                                         VelocityResponseDepth,
1431                                                         VelocityResponseCurveScaling);
1432    
1433            curve_type_t curveType = ReleaseVelocityResponseCurve;
1434            uint8_t depth = ReleaseVelocityResponseDepth;
1435    
1436            // this models a strange behaviour or bug in GSt: two of the
1437            // velocity response curves for release time are not used even
1438            // if specified, instead another curve is chosen.
1439            if ((curveType == curve_type_nonlinear && depth == 0) ||
1440                (curveType == curve_type_special   && depth == 4)) {
1441                curveType = curve_type_nonlinear;
1442                depth = 3;
1443            }
1444            pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1445    
1446            curveType = VCFVelocityCurve;
1447            depth = VCFVelocityDynamicRange;
1448    
1449            // even stranger GSt: two of the velocity response curves for
1450            // filter cutoff are not used, instead another special curve
1451            // is chosen. This curve is not used anywhere else.
1452            if ((curveType == curve_type_nonlinear && depth == 0) ||
1453                (curveType == curve_type_special   && depth == 4)) {
1454                curveType = curve_type_special;
1455                depth = 5;
1456          }          }
1457          else {          pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1458              VelocityResponseCurve = curve_type_unknown;                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1459              VelocityResponseDepth = 0;  
1460            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1461            VelocityTable = 0;
1462        }
1463    
1464        /**
1465         * Apply dimension region settings to the respective RIFF chunks. You
1466         * have to call File::Save() to make changes persistent.
1467         *
1468         * Usually there is absolutely no need to call this method explicitly.
1469         * It will be called automatically when File::Save() was called.
1470         */
1471        void DimensionRegion::UpdateChunks() {
1472            // first update base class's chunk
1473            DLS::Sampler::UpdateChunks();
1474    
1475            // make sure '3ewa' chunk exists
1476            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1477            if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1478            uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1479    
1480            // update '3ewa' chunk with DimensionRegion's current settings
1481    
1482            const uint32_t chunksize = _3ewa->GetSize();
1483            memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?
1484    
1485            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1486            memcpy(&pData[4], &lfo3freq, 4);
1487    
1488            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1489            memcpy(&pData[8], &eg3attack, 4);
1490    
1491            // next 2 bytes unknown
1492    
1493            memcpy(&pData[14], &LFO1InternalDepth, 2);
1494    
1495            // next 2 bytes unknown
1496    
1497            memcpy(&pData[18], &LFO3InternalDepth, 2);
1498    
1499            // next 2 bytes unknown
1500    
1501            memcpy(&pData[22], &LFO1ControlDepth, 2);
1502    
1503            // next 2 bytes unknown
1504    
1505            memcpy(&pData[26], &LFO3ControlDepth, 2);
1506    
1507            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1508            memcpy(&pData[28], &eg1attack, 4);
1509    
1510            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1511            memcpy(&pData[32], &eg1decay1, 4);
1512    
1513            // next 2 bytes unknown
1514    
1515            memcpy(&pData[38], &EG1Sustain, 2);
1516    
1517            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1518            memcpy(&pData[40], &eg1release, 4);
1519    
1520            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1521            memcpy(&pData[44], &eg1ctl, 1);
1522    
1523            const uint8_t eg1ctrloptions =
1524                (EG1ControllerInvert) ? 0x01 : 0x00 |
1525                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1526                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1527                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1528            memcpy(&pData[45], &eg1ctrloptions, 1);
1529    
1530            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1531            memcpy(&pData[46], &eg2ctl, 1);
1532    
1533            const uint8_t eg2ctrloptions =
1534                (EG2ControllerInvert) ? 0x01 : 0x00 |
1535                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1536                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1537                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1538            memcpy(&pData[47], &eg2ctrloptions, 1);
1539    
1540            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1541            memcpy(&pData[48], &lfo1freq, 4);
1542    
1543            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1544            memcpy(&pData[52], &eg2attack, 4);
1545    
1546            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1547            memcpy(&pData[56], &eg2decay1, 4);
1548    
1549            // next 2 bytes unknown
1550    
1551            memcpy(&pData[62], &EG2Sustain, 2);
1552    
1553            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1554            memcpy(&pData[64], &eg2release, 4);
1555    
1556            // next 2 bytes unknown
1557    
1558            memcpy(&pData[70], &LFO2ControlDepth, 2);
1559    
1560            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1561            memcpy(&pData[72], &lfo2freq, 4);
1562    
1563            // next 2 bytes unknown
1564    
1565            memcpy(&pData[78], &LFO2InternalDepth, 2);
1566    
1567            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1568            memcpy(&pData[80], &eg1decay2, 4);
1569    
1570            // next 2 bytes unknown
1571    
1572            memcpy(&pData[86], &EG1PreAttack, 2);
1573    
1574            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1575            memcpy(&pData[88], &eg2decay2, 4);
1576    
1577            // next 2 bytes unknown
1578    
1579            memcpy(&pData[94], &EG2PreAttack, 2);
1580    
1581            {
1582                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1583                uint8_t velocityresponse = VelocityResponseDepth;
1584                switch (VelocityResponseCurve) {
1585                    case curve_type_nonlinear:
1586                        break;
1587                    case curve_type_linear:
1588                        velocityresponse += 5;
1589                        break;
1590                    case curve_type_special:
1591                        velocityresponse += 10;
1592                        break;
1593                    case curve_type_unknown:
1594                    default:
1595                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1596                }
1597                memcpy(&pData[96], &velocityresponse, 1);
1598            }
1599    
1600            {
1601                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1602                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1603                switch (ReleaseVelocityResponseCurve) {
1604                    case curve_type_nonlinear:
1605                        break;
1606                    case curve_type_linear:
1607                        releasevelocityresponse += 5;
1608                        break;
1609                    case curve_type_special:
1610                        releasevelocityresponse += 10;
1611                        break;
1612                    case curve_type_unknown:
1613                    default:
1614                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1615                }
1616                memcpy(&pData[97], &releasevelocityresponse, 1);
1617            }
1618    
1619            memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1620    
1621            memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1622    
1623            // next 4 bytes unknown
1624    
1625            memcpy(&pData[104], &SampleStartOffset, 2);
1626    
1627            // next 2 bytes unknown
1628    
1629            {
1630                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1631                switch (DimensionBypass) {
1632                    case dim_bypass_ctrl_94:
1633                        pitchTrackDimensionBypass |= 0x10;
1634                        break;
1635                    case dim_bypass_ctrl_95:
1636                        pitchTrackDimensionBypass |= 0x20;
1637                        break;
1638                    case dim_bypass_ctrl_none:
1639                        //FIXME: should we set anything here?
1640                        break;
1641                    default:
1642                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1643                }
1644                memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1645            }
1646    
1647            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1648            memcpy(&pData[109], &pan, 1);
1649    
1650            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1651            memcpy(&pData[110], &selfmask, 1);
1652    
1653            // next byte unknown
1654    
1655            {
1656                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1657                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1658                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1659                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1660                memcpy(&pData[112], &lfo3ctrl, 1);
1661            }
1662    
1663            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1664            memcpy(&pData[113], &attenctl, 1);
1665    
1666            {
1667                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1668                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1669                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1670                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1671                memcpy(&pData[114], &lfo2ctrl, 1);
1672            }
1673    
1674            {
1675                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1676                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1677                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1678                if (VCFResonanceController != vcf_res_ctrl_none)
1679                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1680                memcpy(&pData[115], &lfo1ctrl, 1);
1681            }
1682    
1683            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1684                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1685            memcpy(&pData[116], &eg3depth, 1);
1686    
1687            // next 2 bytes unknown
1688    
1689            const uint8_t channeloffset = ChannelOffset * 4;
1690            memcpy(&pData[120], &channeloffset, 1);
1691    
1692            {
1693                uint8_t regoptions = 0;
1694                if (MSDecode)      regoptions |= 0x01; // bit 0
1695                if (SustainDefeat) regoptions |= 0x02; // bit 1
1696                memcpy(&pData[121], &regoptions, 1);
1697            }
1698    
1699            // next 2 bytes unknown
1700    
1701            memcpy(&pData[124], &VelocityUpperLimit, 1);
1702    
1703            // next 3 bytes unknown
1704    
1705            memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1706    
1707            // next 2 bytes unknown
1708    
1709            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1710            memcpy(&pData[131], &eg1hold, 1);
1711    
1712            const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1713                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1714            memcpy(&pData[132], &vcfcutoff, 1);
1715    
1716            memcpy(&pData[133], &VCFCutoffController, 1);
1717    
1718            const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1719                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1720            memcpy(&pData[134], &vcfvelscale, 1);
1721    
1722            // next byte unknown
1723    
1724            const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1725                                         (VCFResonance & 0x7f); /* lower 7 bits */
1726            memcpy(&pData[136], &vcfresonance, 1);
1727    
1728            const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1729                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1730            memcpy(&pData[137], &vcfbreakpoint, 1);
1731    
1732            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1733                                        VCFVelocityCurve * 5;
1734            memcpy(&pData[138], &vcfvelocity, 1);
1735    
1736            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1737            memcpy(&pData[139], &vcftype, 1);
1738    
1739            if (chunksize >= 148) {
1740                memcpy(&pData[140], DimensionUpperLimits, 8);
1741          }          }
1742          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1743          if (releasevelocityresponse < 5) {  
1744              ReleaseVelocityResponseCurve = curve_type_nonlinear;      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1745              ReleaseVelocityResponseDepth = releasevelocityresponse;      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1746          }      {
1747          else if (releasevelocityresponse < 10) {          double* table;
1748              ReleaseVelocityResponseCurve = curve_type_linear;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1749              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          if (pVelocityTables->count(tableKey)) { // if key exists
1750          }              table = (*pVelocityTables)[tableKey];
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1751          }          }
1752          else {          else {
1753              ReleaseVelocityResponseCurve = curve_type_unknown;              table = CreateVelocityTable(curveType, depth, scaling);
1754              ReleaseVelocityResponseDepth = 0;              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1755          }          }
1756          VelocityResponseCurveScaling = _3ewa->ReadUint8();          return table;
         AttenuationControlTreshold   = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1757      }      }
1758    
1759        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1760            leverage_ctrl_t decodedcontroller;
1761            switch (EncodedController) {
1762                // special controller
1763                case _lev_ctrl_none:
1764                    decodedcontroller.type = leverage_ctrl_t::type_none;
1765                    decodedcontroller.controller_number = 0;
1766                    break;
1767                case _lev_ctrl_velocity:
1768                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
1769                    decodedcontroller.controller_number = 0;
1770                    break;
1771                case _lev_ctrl_channelaftertouch:
1772                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1773                    decodedcontroller.controller_number = 0;
1774                    break;
1775    
1776                // ordinary MIDI control change controller
1777                case _lev_ctrl_modwheel:
1778                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779                    decodedcontroller.controller_number = 1;
1780                    break;
1781                case _lev_ctrl_breath:
1782                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783                    decodedcontroller.controller_number = 2;
1784                    break;
1785                case _lev_ctrl_foot:
1786                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787                    decodedcontroller.controller_number = 4;
1788                    break;
1789                case _lev_ctrl_effect1:
1790                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791                    decodedcontroller.controller_number = 12;
1792                    break;
1793                case _lev_ctrl_effect2:
1794                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795                    decodedcontroller.controller_number = 13;
1796                    break;
1797                case _lev_ctrl_genpurpose1:
1798                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799                    decodedcontroller.controller_number = 16;
1800                    break;
1801                case _lev_ctrl_genpurpose2:
1802                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803                    decodedcontroller.controller_number = 17;
1804                    break;
1805                case _lev_ctrl_genpurpose3:
1806                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807                    decodedcontroller.controller_number = 18;
1808                    break;
1809                case _lev_ctrl_genpurpose4:
1810                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811                    decodedcontroller.controller_number = 19;
1812                    break;
1813                case _lev_ctrl_portamentotime:
1814                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815                    decodedcontroller.controller_number = 5;
1816                    break;
1817                case _lev_ctrl_sustainpedal:
1818                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819                    decodedcontroller.controller_number = 64;
1820                    break;
1821                case _lev_ctrl_portamento:
1822                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823                    decodedcontroller.controller_number = 65;
1824                    break;
1825                case _lev_ctrl_sostenutopedal:
1826                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827                    decodedcontroller.controller_number = 66;
1828                    break;
1829                case _lev_ctrl_softpedal:
1830                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831                    decodedcontroller.controller_number = 67;
1832                    break;
1833                case _lev_ctrl_genpurpose5:
1834                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835                    decodedcontroller.controller_number = 80;
1836                    break;
1837                case _lev_ctrl_genpurpose6:
1838                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839                    decodedcontroller.controller_number = 81;
1840                    break;
1841                case _lev_ctrl_genpurpose7:
1842                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843                    decodedcontroller.controller_number = 82;
1844                    break;
1845                case _lev_ctrl_genpurpose8:
1846                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847                    decodedcontroller.controller_number = 83;
1848                    break;
1849                case _lev_ctrl_effect1depth:
1850                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851                    decodedcontroller.controller_number = 91;
1852                    break;
1853                case _lev_ctrl_effect2depth:
1854                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855                    decodedcontroller.controller_number = 92;
1856                    break;
1857                case _lev_ctrl_effect3depth:
1858                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859                    decodedcontroller.controller_number = 93;
1860                    break;
1861                case _lev_ctrl_effect4depth:
1862                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863                    decodedcontroller.controller_number = 94;
1864                    break;
1865                case _lev_ctrl_effect5depth:
1866                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867                    decodedcontroller.controller_number = 95;
1868                    break;
1869    
1870                // unknown controller type
1871                default:
1872                    throw gig::Exception("Unknown leverage controller type.");
1873            }
1874            return decodedcontroller;
1875        }
1876    
1877        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1878            _lev_ctrl_t encodedcontroller;
1879            switch (DecodedController.type) {
1880                // special controller
1881                case leverage_ctrl_t::type_none:
1882                    encodedcontroller = _lev_ctrl_none;
1883                    break;
1884                case leverage_ctrl_t::type_velocity:
1885                    encodedcontroller = _lev_ctrl_velocity;
1886                    break;
1887                case leverage_ctrl_t::type_channelaftertouch:
1888                    encodedcontroller = _lev_ctrl_channelaftertouch;
1889                    break;
1890    
1891                // ordinary MIDI control change controller
1892                case leverage_ctrl_t::type_controlchange:
1893                    switch (DecodedController.controller_number) {
1894                        case 1:
1895                            encodedcontroller = _lev_ctrl_modwheel;
1896                            break;
1897                        case 2:
1898                            encodedcontroller = _lev_ctrl_breath;
1899                            break;
1900                        case 4:
1901                            encodedcontroller = _lev_ctrl_foot;
1902                            break;
1903                        case 12:
1904                            encodedcontroller = _lev_ctrl_effect1;
1905                            break;
1906                        case 13:
1907                            encodedcontroller = _lev_ctrl_effect2;
1908                            break;
1909                        case 16:
1910                            encodedcontroller = _lev_ctrl_genpurpose1;
1911                            break;
1912                        case 17:
1913                            encodedcontroller = _lev_ctrl_genpurpose2;
1914                            break;
1915                        case 18:
1916                            encodedcontroller = _lev_ctrl_genpurpose3;
1917                            break;
1918                        case 19:
1919                            encodedcontroller = _lev_ctrl_genpurpose4;
1920                            break;
1921                        case 5:
1922                            encodedcontroller = _lev_ctrl_portamentotime;
1923                            break;
1924                        case 64:
1925                            encodedcontroller = _lev_ctrl_sustainpedal;
1926                            break;
1927                        case 65:
1928                            encodedcontroller = _lev_ctrl_portamento;
1929                            break;
1930                        case 66:
1931                            encodedcontroller = _lev_ctrl_sostenutopedal;
1932                            break;
1933                        case 67:
1934                            encodedcontroller = _lev_ctrl_softpedal;
1935                            break;
1936                        case 80:
1937                            encodedcontroller = _lev_ctrl_genpurpose5;
1938                            break;
1939                        case 81:
1940                            encodedcontroller = _lev_ctrl_genpurpose6;
1941                            break;
1942                        case 82:
1943                            encodedcontroller = _lev_ctrl_genpurpose7;
1944                            break;
1945                        case 83:
1946                            encodedcontroller = _lev_ctrl_genpurpose8;
1947                            break;
1948                        case 91:
1949                            encodedcontroller = _lev_ctrl_effect1depth;
1950                            break;
1951                        case 92:
1952                            encodedcontroller = _lev_ctrl_effect2depth;
1953                            break;
1954                        case 93:
1955                            encodedcontroller = _lev_ctrl_effect3depth;
1956                            break;
1957                        case 94:
1958                            encodedcontroller = _lev_ctrl_effect4depth;
1959                            break;
1960                        case 95:
1961                            encodedcontroller = _lev_ctrl_effect5depth;
1962                            break;
1963                        default:
1964                            throw gig::Exception("leverage controller number is not supported by the gig format");
1965                    }
1966                default:
1967                    throw gig::Exception("Unknown leverage controller type.");
1968            }
1969            return encodedcontroller;
1970        }
1971    
1972        DimensionRegion::~DimensionRegion() {
1973            Instances--;
1974            if (!Instances) {
1975                // delete the velocity->volume tables
1976                VelocityTableMap::iterator iter;
1977                for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1978                    double* pTable = iter->second;
1979                    if (pTable) delete[] pTable;
1980                }
1981                pVelocityTables->clear();
1982                delete pVelocityTables;
1983                pVelocityTables = NULL;
1984            }
1985            if (VelocityTable) delete[] VelocityTable;
1986        }
1987    
1988        /**
1989         * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1990         * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1991         * and VelocityResponseCurveScaling) involved are taken into account to
1992         * calculate the amplitude factor. Use this method when a key was
1993         * triggered to get the volume with which the sample should be played
1994         * back.
1995         *
1996         * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
1997         * @returns                amplitude factor (between 0.0 and 1.0)
1998         */
1999        double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2000            return pVelocityAttenuationTable[MIDIKeyVelocity];
2001        }
2002    
2003        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2004            return pVelocityReleaseTable[MIDIKeyVelocity];
2005        }
2006    
2007        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2008            return pVelocityCutoffTable[MIDIKeyVelocity];
2009        }
2010    
2011        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2012    
2013            // line-segment approximations of the 15 velocity curves
2014    
2015            // linear
2016            const int lin0[] = { 1, 1, 127, 127 };
2017            const int lin1[] = { 1, 21, 127, 127 };
2018            const int lin2[] = { 1, 45, 127, 127 };
2019            const int lin3[] = { 1, 74, 127, 127 };
2020            const int lin4[] = { 1, 127, 127, 127 };
2021    
2022            // non-linear
2023            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2024            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2025                                 127, 127 };
2026            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2027                                 127, 127 };
2028            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2029                                 127, 127 };
2030            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2031    
2032            // special
2033            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2034                                 113, 127, 127, 127 };
2035            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2036                                 118, 127, 127, 127 };
2037            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2038                                 85, 90, 91, 127, 127, 127 };
2039            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2040                                 117, 127, 127, 127 };
2041            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2042                                 127, 127 };
2043    
2044            // this is only used by the VCF velocity curve
2045            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2046                                 91, 127, 127, 127 };
2047    
2048            const int* const curves[] = { non0, non1, non2, non3, non4,
2049                                          lin0, lin1, lin2, lin3, lin4,
2050                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2051    
2052            double* const table = new double[128];
2053    
2054            const int* curve = curves[curveType * 5 + depth];
2055            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2056    
2057            table[0] = 0;
2058            for (int x = 1 ; x < 128 ; x++) {
2059    
2060                if (x > curve[2]) curve += 2;
2061                double y = curve[1] + (x - curve[0]) *
2062                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2063                y = y / 127;
2064    
2065                // Scale up for s > 20, down for s < 20. When
2066                // down-scaling, the curve still ends at 1.0.
2067                if (s < 20 && y >= 0.5)
2068                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2069                else
2070                    y = y * (s / 20.0);
2071                if (y > 1) y = 1;
2072    
2073                table[x] = y;
2074            }
2075            return table;
2076        }
2077    
2078    
2079  // *************** Region ***************  // *************** Region ***************
2080  // *  // *
2081    
2082      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2083            pInfo->UseFixedLengthStrings = true;
2084    
2085          // Initialization          // Initialization
2086          Dimensions = 0;          Dimensions = 0;
2087          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2088              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2089          }          }
2090            Layers = 1;
2091            File* file = (File*) GetParent()->GetParent();
2092            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2093    
2094          // Actual Loading          // Actual Loading
2095    
# Line 665  namespace gig { Line 2098  namespace gig {
2098          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2099          if (_3lnk) {          if (_3lnk) {
2100              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2101              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2102                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2103                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2104                    _3lnk->ReadUint8(); // probably the position of the dimension
2105                    _3lnk->ReadUint8(); // unknown
2106                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2107                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2108                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2109                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2110                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2111                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2112                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2113                  }                  }
2114                  else { // active dimension                  else { // active dimension
2115                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2116                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2117                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2118                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2119                                                             dimension == dimension_samplechannel) ? split_type_bit                                                             dimension == dimension_samplechannel ||
2120                                                                                                   : split_type_normal;                                                             dimension == dimension_releasetrigger ||
2121                      pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point                                                             dimension == dimension_keyboard ||
2122                                                               dimension == dimension_roundrobin ||
2123                                                               dimension == dimension_random ||
2124                                                               dimension == dimension_smartmidi ||
2125                                                               dimension == dimension_roundrobinkeyboard) ? split_type_bit
2126                                                                                                          : split_type_normal;
2127                      pDimensionDefinitions[i].zone_size  =                      pDimensionDefinitions[i].zone_size  =
2128                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2129                                                                                     : 0;                                                                                     : 0;
2130                      Dimensions++;                      Dimensions++;
                 }  
                 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition  
             }  
2131    
2132              // check velocity dimension (if there is one) for custom defined zone ranges                      // if this is a layer dimension, remember the amount of layers
2133              for (uint i = 0; i < Dimensions; i++) {                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
                 dimension_def_t* pDimDef = pDimensionDefinitions + i;  
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         unsigned int bits[5] = {0,0,0,0,0};  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2134                  }                  }
2135                    _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2136              }              }
2137                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2138    
2139                // if there's a velocity dimension and custom velocity zone splits are used,
2140                // update the VelocityTables in the dimension regions
2141                UpdateVelocityTable();
2142    
2143                // jump to start of the wave pool indices (if not already there)
2144                if (file->pVersion && file->pVersion->major == 3)
2145                    _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2146                else
2147                    _3lnk->SetPos(44);
2148    
2149              // load sample references              // load sample references
             _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)  
2150              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2151                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2152                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2153                }
2154                GetSample(); // load global region sample reference
2155            } else {
2156                DimensionRegions = 0;
2157            }
2158    
2159            // make sure there is at least one dimension region
2160            if (!DimensionRegions) {
2161                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2162                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2163                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2164                pDimensionRegions[0] = new DimensionRegion(_3ewl);
2165                DimensionRegions = 1;
2166            }
2167        }
2168    
2169        /**
2170         * Apply Region settings and all its DimensionRegions to the respective
2171         * RIFF chunks. You have to call File::Save() to make changes persistent.
2172         *
2173         * Usually there is absolutely no need to call this method explicitly.
2174         * It will be called automatically when File::Save() was called.
2175         *
2176         * @throws gig::Exception if samples cannot be dereferenced
2177         */
2178        void Region::UpdateChunks() {
2179            // first update base class's chunks
2180            DLS::Region::UpdateChunks();
2181    
2182            // update dimension region's chunks
2183            for (int i = 0; i < DimensionRegions; i++) {
2184                pDimensionRegions[i]->UpdateChunks();
2185            }
2186    
2187            File* pFile = (File*) GetParent()->GetParent();
2188            const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2189            const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2190    
2191            // make sure '3lnk' chunk exists
2192            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2193            if (!_3lnk) {
2194                const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2195                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2196            }
2197    
2198            // update dimension definitions in '3lnk' chunk
2199            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2200            memcpy(&pData[0], &DimensionRegions, 4);
2201            for (int i = 0; i < iMaxDimensions; i++) {
2202                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2203                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2204                // next 2 bytes unknown
2205                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2206                // next 3 bytes unknown
2207            }
2208    
2209            // update wave pool table in '3lnk' chunk
2210            const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2211            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2212                int iWaveIndex = -1;
2213                if (i < DimensionRegions) {
2214                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2215                    File::SampleList::iterator iter = pFile->pSamples->begin();
2216                    File::SampleList::iterator end  = pFile->pSamples->end();
2217                    for (int index = 0; iter != end; ++iter, ++index) {
2218                        if (*iter == pDimensionRegions[i]->pSample) {
2219                            iWaveIndex = index;
2220                            break;
2221                        }
2222                    }
2223                    if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2224              }              }
2225                memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2226          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2227      }      }
2228    
2229      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 748  namespace gig { Line 2242  namespace gig {
2242          }          }
2243      }      }
2244    
2245      Region::~Region() {      void Region::UpdateVelocityTable() {
2246          for (uint i = 0; i < Dimensions; i++) {          // get velocity dimension's index
2247              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          int veldim = -1;
2248            for (int i = 0 ; i < Dimensions ; i++) {
2249                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2250                    veldim = i;
2251                    break;
2252                }
2253            }
2254            if (veldim == -1) return;
2255    
2256            int step = 1;
2257            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2258            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2259            int end = step * pDimensionDefinitions[veldim].zones;
2260    
2261            // loop through all dimension regions for all dimensions except the velocity dimension
2262            int dim[8] = { 0 };
2263            for (int i = 0 ; i < DimensionRegions ; i++) {
2264    
2265                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2266                    pDimensionRegions[i]->VelocityUpperLimit) {
2267                    // create the velocity table
2268                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2269                    if (!table) {
2270                        table = new uint8_t[128];
2271                        pDimensionRegions[i]->VelocityTable = table;
2272                    }
2273                    int tableidx = 0;
2274                    int velocityZone = 0;
2275                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2276                        for (int k = i ; k < end ; k += step) {
2277                            DimensionRegion *d = pDimensionRegions[k];
2278                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2279                            velocityZone++;
2280                        }
2281                    } else { // gig2
2282                        for (int k = i ; k < end ; k += step) {
2283                            DimensionRegion *d = pDimensionRegions[k];
2284                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2285                            velocityZone++;
2286                        }
2287                    }
2288                } else {
2289                    if (pDimensionRegions[i]->VelocityTable) {
2290                        delete[] pDimensionRegions[i]->VelocityTable;
2291                        pDimensionRegions[i]->VelocityTable = 0;
2292                    }
2293                }
2294    
2295                int j;
2296                int shift = 0;
2297                for (j = 0 ; j < Dimensions ; j++) {
2298                    if (j == veldim) i += skipveldim; // skip velocity dimension
2299                    else {
2300                        dim[j]++;
2301                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2302                        else {
2303                            // skip unused dimension regions
2304                            dim[j] = 0;
2305                            i += ((1 << pDimensionDefinitions[j].bits) -
2306                                  pDimensionDefinitions[j].zones) << shift;
2307                        }
2308                    }
2309                    shift += pDimensionDefinitions[j].bits;
2310                }
2311                if (j == Dimensions) break;
2312            }
2313        }
2314    
2315        /** @brief Einstein would have dreamed of it - create a new dimension.
2316         *
2317         * Creates a new dimension with the dimension definition given by
2318         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2319         * There is a hard limit of dimensions and total amount of "bits" all
2320         * dimensions can have. This limit is dependant to what gig file format
2321         * version this file refers to. The gig v2 (and lower) format has a
2322         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2323         * format has a limit of 8.
2324         *
2325         * @param pDimDef - defintion of the new dimension
2326         * @throws gig::Exception if dimension of the same type exists already
2327         * @throws gig::Exception if amount of dimensions or total amount of
2328         *                        dimension bits limit is violated
2329         */
2330        void Region::AddDimension(dimension_def_t* pDimDef) {
2331            // check if max. amount of dimensions reached
2332            File* file = (File*) GetParent()->GetParent();
2333            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2334            if (Dimensions >= iMaxDimensions)
2335                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2336            // check if max. amount of dimension bits reached
2337            int iCurrentBits = 0;
2338            for (int i = 0; i < Dimensions; i++)
2339                iCurrentBits += pDimensionDefinitions[i].bits;
2340            if (iCurrentBits >= iMaxDimensions)
2341                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2342            const int iNewBits = iCurrentBits + pDimDef->bits;
2343            if (iNewBits > iMaxDimensions)
2344                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2345            // check if there's already a dimensions of the same type
2346            for (int i = 0; i < Dimensions; i++)
2347                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2348                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2349    
2350            // assign definition of new dimension
2351            pDimensionDefinitions[Dimensions] = *pDimDef;
2352    
2353            // create new dimension region(s) for this new dimension
2354            for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2355                //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2356                RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2357                pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2358                DimensionRegions++;
2359            }
2360    
2361            Dimensions++;
2362    
2363            // if this is a layer dimension, update 'Layers' attribute
2364            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2365    
2366            UpdateVelocityTable();
2367        }
2368    
2369        /** @brief Delete an existing dimension.
2370         *
2371         * Deletes the dimension given by \a pDimDef and deletes all respective
2372         * dimension regions, that is all dimension regions where the dimension's
2373         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2374         * for example this would delete all dimension regions for the case(s)
2375         * where the sustain pedal is pressed down.
2376         *
2377         * @param pDimDef - dimension to delete
2378         * @throws gig::Exception if given dimension cannot be found
2379         */
2380        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2381            // get dimension's index
2382            int iDimensionNr = -1;
2383            for (int i = 0; i < Dimensions; i++) {
2384                if (&pDimensionDefinitions[i] == pDimDef) {
2385                    iDimensionNr = i;
2386                    break;
2387                }
2388            }
2389            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2390    
2391            // get amount of bits below the dimension to delete
2392            int iLowerBits = 0;
2393            for (int i = 0; i < iDimensionNr; i++)
2394                iLowerBits += pDimensionDefinitions[i].bits;
2395    
2396            // get amount ot bits above the dimension to delete
2397            int iUpperBits = 0;
2398            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2399                iUpperBits += pDimensionDefinitions[i].bits;
2400    
2401            // delete dimension regions which belong to the given dimension
2402            // (that is where the dimension's bit > 0)
2403            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2404                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2405                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2406                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2407                                        iObsoleteBit << iLowerBits |
2408                                        iLowerBit;
2409                        delete pDimensionRegions[iToDelete];
2410                        pDimensionRegions[iToDelete] = NULL;
2411                        DimensionRegions--;
2412                    }
2413                }
2414            }
2415    
2416            // defrag pDimensionRegions array
2417            // (that is remove the NULL spaces within the pDimensionRegions array)
2418            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2419                if (!pDimensionRegions[iTo]) {
2420                    if (iFrom <= iTo) iFrom = iTo + 1;
2421                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2422                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2423                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2424                        pDimensionRegions[iFrom] = NULL;
2425                    }
2426                }
2427          }          }
2428          for (int i = 0; i < 32; i++) {  
2429            // 'remove' dimension definition
2430            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2431                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2432            }
2433            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2434            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2435            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2436    
2437            Dimensions--;
2438    
2439            // if this was a layer dimension, update 'Layers' attribute
2440            if (pDimDef->dimension == dimension_layer) Layers = 1;
2441        }
2442    
2443        Region::~Region() {
2444            for (int i = 0; i < 256; i++) {
2445              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2446          }          }
2447      }      }
# Line 770  namespace gig { Line 2459  namespace gig {
2459       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2460       * etc.).       * etc.).
2461       *       *
2462       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2463       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2464       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2465       * @see             Dimensions       * @see             Dimensions
2466       */       */
2467      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2468          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
2469            int veldim = -1;
2470            int velbitpos;
2471            int bitpos = 0;
2472            int dimregidx = 0;
2473          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2474              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2475                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
2476                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
2477                      break;                  velbitpos = bitpos;
2478                  case split_type_customvelocity:              } else {
2479                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
2480                      break;                      case split_type_normal:
2481                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2482                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2483                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2484                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2485                                }
2486                            } else {
2487                                // gig2: evenly sized zones
2488                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2489                            }
2490                            break;
2491                        case split_type_bit: // the value is already the sought dimension bit number
2492                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2493                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2494                            break;
2495                    }
2496                    dimregidx |= bits << bitpos;
2497              }              }
2498                bitpos += pDimensionDefinitions[i].bits;
2499          }          }
2500          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2501            if (veldim != -1) {
2502                // (dimreg is now the dimension region for the lowest velocity)
2503                if (dimreg->VelocityTable) // custom defined zone ranges
2504                    bits = dimreg->VelocityTable[DimValues[veldim]];
2505                else // normal split type
2506                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2507    
2508                dimregidx |= bits << velbitpos;
2509                dimreg = pDimensionRegions[dimregidx];
2510            }
2511            return dimreg;
2512      }      }
2513    
2514      /**      /**
# Line 800  namespace gig { Line 2516  namespace gig {
2516       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2517       * instead of calling this method directly!       * instead of calling this method directly!
2518       *       *
2519       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2520       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2521       *                 bit numbers       *                 bit numbers
2522       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2523       */       */
2524      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2525          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2526                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2527                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2528                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2529                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2530                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2531                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2532      }      }
2533    
2534      /**      /**
# Line 830  namespace gig { Line 2545  namespace gig {
2545          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2546      }      }
2547    
2548      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2549            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2550          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2551            if (!file->pWavePoolTable) return NULL;
2552          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2553          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2554            Sample* sample = file->GetFirstSample(pProgress);
2555          while (sample) {          while (sample) {
2556              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2557                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2558              sample = file->GetNextSample();              sample = file->GetNextSample();
2559          }          }
2560          return NULL;          return NULL;
# Line 846  namespace gig { Line 2565  namespace gig {
2565  // *************** Instrument ***************  // *************** Instrument ***************
2566  // *  // *
2567    
2568      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2569            pInfo->UseFixedLengthStrings = true;
2570    
2571          // Initialization          // Initialization
2572          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
         RegionIndex = -1;  
2573    
2574          // Loading          // Loading
2575          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 865  namespace gig { Line 2585  namespace gig {
2585                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2586                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2587              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2588          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2589    
2590            if (!pRegions) pRegions = new RegionList;
2591          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2592          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2593          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2594          RIFF::List* rgn = lrgn->GetFirstSubList();              while (rgn) {
2595          unsigned int iRegion = 0;                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2596          while (rgn) {                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2597              if (rgn->GetListType() == LIST_TYPE_RGN) {                      pRegions->push_back(new Region(this, rgn));
2598                  pRegions[iRegion] = new Region(this, rgn);                  }
2599                  iRegion++;                  rgn = lrgn->GetNextSubList();
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2600              }              }
2601                // Creating Region Key Table for fast lookup
2602                UpdateRegionKeyTable();
2603          }          }
2604    
2605            __notify_progress(pProgress, 1.0f); // notify done
2606      }      }
2607    
2608      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2609          for (uint i = 0; i < Regions; i++) {          RegionList::iterator iter = pRegions->begin();
2610              if (pRegions) {          RegionList::iterator end  = pRegions->end();
2611                  if (pRegions[i]) delete (pRegions[i]);          for (; iter != end; ++iter) {
2612                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2613                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2614                    RegionKeyTable[iKey] = pRegion;
2615              }              }
             delete[] pRegions;  
2616          }          }
2617      }      }
2618    
2619        Instrument::~Instrument() {
2620        }
2621    
2622        /**
2623         * Apply Instrument with all its Regions to the respective RIFF chunks.
2624         * You have to call File::Save() to make changes persistent.
2625         *
2626         * Usually there is absolutely no need to call this method explicitly.
2627         * It will be called automatically when File::Save() was called.
2628         *
2629         * @throws gig::Exception if samples cannot be dereferenced
2630         */
2631        void Instrument::UpdateChunks() {
2632            // first update base classes' chunks
2633            DLS::Instrument::UpdateChunks();
2634    
2635            // update Regions' chunks
2636            {
2637                RegionList::iterator iter = pRegions->begin();
2638                RegionList::iterator end  = pRegions->end();
2639                for (; iter != end; ++iter)
2640                    (*iter)->UpdateChunks();
2641            }
2642    
2643            // make sure 'lart' RIFF list chunk exists
2644            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2645            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2646            // make sure '3ewg' RIFF chunk exists
2647            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2648            if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2649            // update '3ewg' RIFF chunk
2650            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2651            memcpy(&pData[0], &EffectSend, 2);
2652            memcpy(&pData[2], &Attenuation, 4);
2653            memcpy(&pData[6], &FineTune, 2);
2654            memcpy(&pData[8], &PitchbendRange, 2);
2655            const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2656                                        DimensionKeyRange.low << 1;
2657            memcpy(&pData[10], &dimkeystart, 1);
2658            memcpy(&pData[11], &DimensionKeyRange.high, 1);
2659        }
2660    
2661      /**      /**
2662       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
2663       *       *
# Line 907  namespace gig { Line 2666  namespace gig {
2666       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2667       */       */
2668      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2669          if (!pRegions || Key > 127) return NULL;          if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2670          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2671    
2672          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2673              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2674                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 924  namespace gig { Line 2684  namespace gig {
2684       * @see      GetNextRegion()       * @see      GetNextRegion()
2685       */       */
2686      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2687          if (!Regions) return NULL;          if (!pRegions) return NULL;
2688          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2689          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2690      }      }
2691    
2692      /**      /**
# Line 938  namespace gig { Line 2698  namespace gig {
2698       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2699       */       */
2700      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2701          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
2702          return pRegions[RegionIndex++];          RegionsIterator++;
2703            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2704        }
2705    
2706        Region* Instrument::AddRegion() {
2707            // create new Region object (and its RIFF chunks)
2708            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2709            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2710            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2711            Region* pNewRegion = new Region(this, rgn);
2712            pRegions->push_back(pNewRegion);
2713            Regions = pRegions->size();
2714            // update Region key table for fast lookup
2715            UpdateRegionKeyTable();
2716            // done
2717            return pNewRegion;
2718        }
2719    
2720        void Instrument::DeleteRegion(Region* pRegion) {
2721            if (!pRegions) return;
2722            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2723            // update Region key table for fast lookup
2724            UpdateRegionKeyTable();
2725        }
2726    
2727    
2728    
2729    // *************** Group ***************
2730    // *
2731    
2732        /** @brief Constructor.
2733         *
2734         * @param file   - pointer to the gig::File object
2735         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2736         *                 NULL if this is a new Group
2737         */
2738        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2739            pFile      = file;
2740            pNameChunk = ck3gnm;
2741            ::LoadString(pNameChunk, Name);
2742        }
2743    
2744        Group::~Group() {
2745            // remove the chunk associated with this group (if any)
2746            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2747        }
2748    
2749        /** @brief Update chunks with current group settings.
2750         *
2751         * Apply current Group field values to the respective chunks. You have
2752         * to call File::Save() to make changes persistent.
2753         *
2754         * Usually there is absolutely no need to call this method explicitly.
2755         * It will be called automatically when File::Save() was called.
2756         */
2757        void Group::UpdateChunks() {
2758            // make sure <3gri> and <3gnl> list chunks exist
2759            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2760            if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2761            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2762            if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);
2763            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2764            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2765        }
2766    
2767        /**
2768         * Returns the first Sample of this Group. You have to call this method
2769         * once before you use GetNextSample().
2770         *
2771         * <b>Notice:</b> this method might block for a long time, in case the
2772         * samples of this .gig file were not scanned yet
2773         *
2774         * @returns  pointer address to first Sample or NULL if there is none
2775         *           applied to this Group
2776         * @see      GetNextSample()
2777         */
2778        Sample* Group::GetFirstSample() {
2779            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2780            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2781                if (pSample->GetGroup() == this) return pSample;
2782            }
2783            return NULL;
2784        }
2785    
2786        /**
2787         * Returns the next Sample of the Group. You have to call
2788         * GetFirstSample() once before you can use this method. By calling this
2789         * method multiple times it iterates through the Samples assigned to
2790         * this Group.
2791         *
2792         * @returns  pointer address to the next Sample of this Group or NULL if
2793         *           end reached
2794         * @see      GetFirstSample()
2795         */
2796        Sample* Group::GetNextSample() {
2797            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2798            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2799                if (pSample->GetGroup() == this) return pSample;
2800            }
2801            return NULL;
2802        }
2803    
2804        /**
2805         * Move Sample given by \a pSample from another Group to this Group.
2806         */
2807        void Group::AddSample(Sample* pSample) {
2808            pSample->pGroup = this;
2809        }
2810    
2811        /**
2812         * Move all members of this group to another group (preferably the 1st
2813         * one except this). This method is called explicitly by
2814         * File::DeleteGroup() thus when a Group was deleted. This code was
2815         * intentionally not placed in the destructor!
2816         */
2817        void Group::MoveAll() {
2818            // get "that" other group first
2819            Group* pOtherGroup = NULL;
2820            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2821                if (pOtherGroup != this) break;
2822            }
2823            if (!pOtherGroup) throw Exception(
2824                "Could not move samples to another group, since there is no "
2825                "other Group. This is a bug, report it!"
2826            );
2827            // now move all samples of this group to the other group
2828            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2829                pOtherGroup->AddSample(pSample);
2830            }
2831      }      }
2832    
2833    
# Line 947  namespace gig { Line 2835  namespace gig {
2835  // *************** File ***************  // *************** File ***************
2836  // *  // *
2837    
2838        File::File() : DLS::File() {
2839            pGroups = NULL;
2840            pInfo->UseFixedLengthStrings = true;
2841        }
2842    
2843      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2844          pSamples     = NULL;          pGroups = NULL;
2845          pInstruments = NULL;          pInfo->UseFixedLengthStrings = true;
2846      }      }
2847    
2848      Sample* File::GetFirstSample() {      File::~File() {
2849          if (!pSamples) LoadSamples();          if (pGroups) {
2850                std::list<Group*>::iterator iter = pGroups->begin();
2851                std::list<Group*>::iterator end  = pGroups->end();
2852                while (iter != end) {
2853                    delete *iter;
2854                    ++iter;
2855                }
2856                delete pGroups;
2857            }
2858        }
2859    
2860        Sample* File::GetFirstSample(progress_t* pProgress) {
2861            if (!pSamples) LoadSamples(pProgress);
2862          if (!pSamples) return NULL;          if (!pSamples) return NULL;
2863          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
2864          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 965  namespace gig { Line 2870  namespace gig {
2870          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2871      }      }
2872    
2873        /** @brief Add a new sample.
2874         *
2875         * This will create a new Sample object for the gig file. You have to
2876         * call Save() to make this persistent to the file.
2877         *
2878         * @returns pointer to new Sample object
2879         */
2880        Sample* File::AddSample() {
2881           if (!pSamples) LoadSamples();
2882           __ensureMandatoryChunksExist();
2883           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2884           // create new Sample object and its respective 'wave' list chunk
2885           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2886           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2887           pSamples->push_back(pSample);
2888           return pSample;
2889        }
2890    
2891        /** @brief Delete a sample.
2892         *
2893         * This will delete the given Sample object from the gig file. You have
2894         * to call Save() to make this persistent to the file.
2895         *
2896         * @param pSample - sample to delete
2897         * @throws gig::Exception if given sample could not be found
2898         */
2899        void File::DeleteSample(Sample* pSample) {
2900            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2901            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2902            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2903            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2904            pSamples->erase(iter);
2905            delete pSample;
2906        }
2907    
2908      void File::LoadSamples() {      void File::LoadSamples() {
2909          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
2910          if (wvpl) {      }
2911              unsigned long wvplFileOffset = wvpl->GetFilePos();  
2912              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
2913              while (wave) {          // Groups must be loaded before samples, because samples will try
2914                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
2915                      if (!pSamples) pSamples = new SampleList;          LoadGroups();
2916                      unsigned long waveFileOffset = wave->GetFilePos();  
2917                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
2918    
2919            RIFF::File* file = pRIFF;
2920    
2921            // just for progress calculation
2922            int iSampleIndex  = 0;
2923            int iTotalSamples = WavePoolCount;
2924    
2925            // check if samples should be loaded from extension files
2926            int lastFileNo = 0;
2927            for (int i = 0 ; i < WavePoolCount ; i++) {
2928                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2929            }
2930            String name(pRIFF->GetFileName());
2931            int nameLen = name.length();
2932            char suffix[6];
2933            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2934    
2935            for (int fileNo = 0 ; ; ) {
2936                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2937                if (wvpl) {
2938                    unsigned long wvplFileOffset = wvpl->GetFilePos();
2939                    RIFF::List* wave = wvpl->GetFirstSubList();
2940                    while (wave) {
2941                        if (wave->GetListType() == LIST_TYPE_WAVE) {
2942                            // notify current progress
2943                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2944                            __notify_progress(pProgress, subprogress);
2945    
2946                            unsigned long waveFileOffset = wave->GetFilePos();
2947                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2948    
2949                            iSampleIndex++;
2950                        }
2951                        wave = wvpl->GetNextSubList();
2952                  }                  }
2953                  wave = wvpl->GetNextSubList();  
2954              }                  if (fileNo == lastFileNo) break;
2955    
2956                    // open extension file (*.gx01, *.gx02, ...)
2957                    fileNo++;
2958                    sprintf(suffix, ".gx%02d", fileNo);
2959                    name.replace(nameLen, 5, suffix);
2960                    file = new RIFF::File(name);
2961                    ExtensionFiles.push_back(file);
2962                } else break;
2963          }          }
2964          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
2965            __notify_progress(pProgress, 1.0); // notify done
2966      }      }
2967    
2968      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
2969          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
2970          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2971          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
2972          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2973      }      }
2974    
2975      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
2976          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2977          InstrumentsIterator++;          InstrumentsIterator++;
2978          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2979        }
2980    
2981        /**
2982         * Returns the instrument with the given index.
2983         *
2984         * @param index     - number of the sought instrument (0..n)
2985         * @param pProgress - optional: callback function for progress notification
2986         * @returns  sought instrument or NULL if there's no such instrument
2987         */
2988        Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2989            if (!pInstruments) {
2990                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2991    
2992                // sample loading subtask
2993                progress_t subprogress;
2994                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2995                __notify_progress(&subprogress, 0.0f);
2996                GetFirstSample(&subprogress); // now force all samples to be loaded
2997                __notify_progress(&subprogress, 1.0f);
2998    
2999                // instrument loading subtask
3000                if (pProgress && pProgress->callback) {
3001                    subprogress.__range_min = subprogress.__range_max;
3002                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3003                }
3004                __notify_progress(&subprogress, 0.0f);
3005                LoadInstruments(&subprogress);
3006                __notify_progress(&subprogress, 1.0f);
3007            }
3008            if (!pInstruments) return NULL;
3009            InstrumentsIterator = pInstruments->begin();
3010            for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3011                if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3012                InstrumentsIterator++;
3013            }
3014            return NULL;
3015        }
3016    
3017        /** @brief Add a new instrument definition.
3018         *
3019         * This will create a new Instrument object for the gig file. You have
3020         * to call Save() to make this persistent to the file.
3021         *
3022         * @returns pointer to new Instrument object
3023         */
3024        Instrument* File::AddInstrument() {
3025           if (!pInstruments) LoadInstruments();
3026           __ensureMandatoryChunksExist();
3027           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3028           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3029           Instrument* pInstrument = new Instrument(this, lstInstr);
3030           pInstruments->push_back(pInstrument);
3031           return pInstrument;
3032        }
3033    
3034        /** @brief Delete an instrument.
3035         *
3036         * This will delete the given Instrument object from the gig file. You
3037         * have to call Save() to make this persistent to the file.
3038         *
3039         * @param pInstrument - instrument to delete
3040         * @throws gig::Exception if given instrument could not be found
3041         */
3042        void File::DeleteInstrument(Instrument* pInstrument) {
3043            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3044            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3045            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3046            pInstruments->erase(iter);
3047            delete pInstrument;
3048      }      }
3049    
3050      void File::LoadInstruments() {      void File::LoadInstruments() {
3051            LoadInstruments(NULL);
3052        }
3053    
3054        void File::LoadInstruments(progress_t* pProgress) {
3055            if (!pInstruments) pInstruments = new InstrumentList;
3056          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3057          if (lstInstruments) {          if (lstInstruments) {
3058                int iInstrumentIndex = 0;
3059              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3060              while (lstInstr) {              while (lstInstr) {
3061                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3062                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3063                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3064                        __notify_progress(pProgress, localProgress);
3065    
3066                        // divide local progress into subprogress for loading current Instrument
3067                        progress_t subprogress;
3068                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3069    
3070                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3071    
3072                        iInstrumentIndex++;
3073                  }                  }
3074                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3075              }              }
3076                __notify_progress(pProgress, 1.0); // notify done
3077            }
3078        }
3079    
3080        Group* File::GetFirstGroup() {
3081            if (!pGroups) LoadGroups();
3082            // there must always be at least one group
3083            GroupsIterator = pGroups->begin();
3084            return *GroupsIterator;
3085        }
3086    
3087        Group* File::GetNextGroup() {
3088            if (!pGroups) return NULL;
3089            ++GroupsIterator;
3090            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3091        }
3092    
3093        /**
3094         * Returns the group with the given index.
3095         *
3096         * @param index - number of the sought group (0..n)
3097         * @returns sought group or NULL if there's no such group
3098         */
3099        Group* File::GetGroup(uint index) {
3100            if (!pGroups) LoadGroups();
3101            GroupsIterator = pGroups->begin();
3102            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3103                if (i == index) return *GroupsIterator;
3104                ++GroupsIterator;
3105            }
3106            return NULL;
3107        }
3108    
3109        Group* File::AddGroup() {
3110            if (!pGroups) LoadGroups();
3111            // there must always be at least one group
3112            __ensureMandatoryChunksExist();
3113            Group* pGroup = new Group(this, NULL);
3114            pGroups->push_back(pGroup);
3115            return pGroup;
3116        }
3117    
3118        /** @brief Delete a group and its samples.
3119         *
3120         * This will delete the given Group object and all the samples that
3121         * belong to this group from the gig file. You have to call Save() to
3122         * make this persistent to the file.
3123         *
3124         * @param pGroup - group to delete
3125         * @throws gig::Exception if given group could not be found
3126         */
3127        void File::DeleteGroup(Group* pGroup) {
3128            if (!pGroups) LoadGroups();
3129            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3130            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3131            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3132            // delete all members of this group
3133            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3134                DeleteSample(pSample);
3135            }
3136            // now delete this group object
3137            pGroups->erase(iter);
3138            delete pGroup;
3139        }
3140    
3141        /** @brief Delete a group.
3142         *
3143         * This will delete the given Group object from the gig file. All the
3144         * samples that belong to this group will not be deleted, but instead
3145         * be moved to another group. You have to call Save() to make this
3146         * persistent to the file.
3147         *
3148         * @param pGroup - group to delete
3149         * @throws gig::Exception if given group could not be found
3150         */
3151        void File::DeleteGroupOnly(Group* pGroup) {
3152            if (!pGroups) LoadGroups();
3153            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3154            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3155            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3156            // move all members of this group to another group
3157            pGroup->MoveAll();
3158            pGroups->erase(iter);
3159            delete pGroup;
3160        }
3161    
3162        void File::LoadGroups() {
3163            if (!pGroups) pGroups = new std::list<Group*>;
3164            // try to read defined groups from file
3165            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3166            if (lst3gri) {
3167                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3168                if (lst3gnl) {
3169                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3170                    while (ck) {
3171                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3172                            pGroups->push_back(new Group(this, ck));
3173                        }
3174                        ck = lst3gnl->GetNextSubChunk();
3175                    }
3176                }
3177            }
3178            // if there were no group(s), create at least the mandatory default group
3179            if (!pGroups->size()) {
3180                Group* pGroup = new Group(this, NULL);
3181                pGroup->Name = "Default Group";
3182                pGroups->push_back(pGroup);
3183            }
3184        }
3185    
3186        /**
3187         * Apply all the gig file's current instruments, samples, groups and settings
3188         * to the respective RIFF chunks. You have to call Save() to make changes
3189         * persistent.
3190         *
3191         * Usually there is absolutely no need to call this method explicitly.
3192         * It will be called automatically when File::Save() was called.
3193         *
3194         * @throws Exception - on errors
3195         */
3196        void File::UpdateChunks() {
3197            // first update base class's chunks
3198            DLS::File::UpdateChunks();
3199    
3200            // update group's chunks
3201            if (pGroups) {
3202                std::list<Group*>::iterator iter = pGroups->begin();
3203                std::list<Group*>::iterator end  = pGroups->end();
3204                for (; iter != end; ++iter) {
3205                    (*iter)->UpdateChunks();
3206                }
3207          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
3208      }      }
3209    
3210    
# Line 1022  namespace gig { Line 3219  namespace gig {
3219          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
3220      }      }
3221    
3222    
3223    // *************** functions ***************
3224    // *
3225    
3226        /**
3227         * Returns the name of this C++ library. This is usually "libgig" of
3228         * course. This call is equivalent to RIFF::libraryName() and
3229         * DLS::libraryName().
3230         */
3231        String libraryName() {
3232            return PACKAGE;
3233        }
3234    
3235        /**
3236         * Returns version of this C++ library. This call is equivalent to
3237         * RIFF::libraryVersion() and DLS::libraryVersion().
3238         */
3239        String libraryVersion() {
3240            return VERSION;
3241        }
3242    
3243  } // namespace gig  } // namespace gig

Legend:
Removed from v.2  
changed lines
  Added in v.1102

  ViewVC Help
Powered by ViewVC