/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2 by schoenebeck, Sat Oct 25 20:15:04 2003 UTC revision 1207 by persson, Sat May 26 13:59:40 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29    #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54    // *************** progress_t ***************
55    // *
56    
57        progress_t::progress_t() {
58            callback    = NULL;
59            custom      = NULL;
60            __range_min = 0.0f;
61            __range_max = 1.0f;
62        }
63    
64        // private helper function to convert progress of a subprocess into the global progress
65        static void __notify_progress(progress_t* pProgress, float subprogress) {
66            if (pProgress && pProgress->callback) {
67                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
68                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69                pProgress->factor         = totalprogress;
70                pProgress->callback(pProgress); // now actually notify about the progress
71            }
72        }
73    
74        // private helper function to divide a progress into subprogresses
75        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76            if (pParentProgress && pParentProgress->callback) {
77                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
78                pSubProgress->callback    = pParentProgress->callback;
79                pSubProgress->custom      = pParentProgress->custom;
80                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82            }
83        }
84    
85    
86    // *************** Internal functions for sample decompression ***************
87    // *
88    
89    namespace {
90    
91        inline int get12lo(const unsigned char* pSrc)
92        {
93            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94            return x & 0x800 ? x - 0x1000 : x;
95        }
96    
97        inline int get12hi(const unsigned char* pSrc)
98        {
99            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100            return x & 0x800 ? x - 0x1000 : x;
101        }
102    
103        inline int16_t get16(const unsigned char* pSrc)
104        {
105            return int16_t(pSrc[0] | pSrc[1] << 8);
106        }
107    
108        inline int get24(const unsigned char* pSrc)
109        {
110            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111            return x & 0x800000 ? x - 0x1000000 : x;
112        }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121        void Decompress16(int compressionmode, const unsigned char* params,
122                          int srcStep, int dstStep,
123                          const unsigned char* pSrc, int16_t* pDst,
124                          unsigned long currentframeoffset,
125                          unsigned long copysamples)
126        {
127            switch (compressionmode) {
128                case 0: // 16 bit uncompressed
129                    pSrc += currentframeoffset * srcStep;
130                    while (copysamples) {
131                        *pDst = get16(pSrc);
132                        pDst += dstStep;
133                        pSrc += srcStep;
134                        copysamples--;
135                    }
136                    break;
137    
138                case 1: // 16 bit compressed to 8 bit
139                    int y  = get16(params);
140                    int dy = get16(params + 2);
141                    while (currentframeoffset) {
142                        dy -= int8_t(*pSrc);
143                        y  -= dy;
144                        pSrc += srcStep;
145                        currentframeoffset--;
146                    }
147                    while (copysamples) {
148                        dy -= int8_t(*pSrc);
149                        y  -= dy;
150                        *pDst = y;
151                        pDst += dstStep;
152                        pSrc += srcStep;
153                        copysamples--;
154                    }
155                    break;
156            }
157        }
158    
159        void Decompress24(int compressionmode, const unsigned char* params,
160                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                          unsigned long currentframeoffset,
162                          unsigned long copysamples, int truncatedBits)
163        {
164            int y, dy, ddy, dddy;
165    
166    #define GET_PARAMS(params)                      \
167            y    = get24(params);                   \
168            dy   = y - get24((params) + 3);         \
169            ddy  = get24((params) + 6);             \
170            dddy = get24((params) + 9)
171    
172    #define SKIP_ONE(x)                             \
173            dddy -= (x);                            \
174            ddy  -= dddy;                           \
175            dy   =  -dy - ddy;                      \
176            y    += dy
177    
178    #define COPY_ONE(x)                             \
179            SKIP_ONE(x);                            \
180            store24(pDst, y << truncatedBits);      \
181            pDst += dstStep
182    
183            switch (compressionmode) {
184                case 2: // 24 bit uncompressed
185                    pSrc += currentframeoffset * 3;
186                    while (copysamples) {
187                        store24(pDst, get24(pSrc) << truncatedBits);
188                        pDst += dstStep;
189                        pSrc += 3;
190                        copysamples--;
191                    }
192                    break;
193    
194                case 3: // 24 bit compressed to 16 bit
195                    GET_PARAMS(params);
196                    while (currentframeoffset) {
197                        SKIP_ONE(get16(pSrc));
198                        pSrc += 2;
199                        currentframeoffset--;
200                    }
201                    while (copysamples) {
202                        COPY_ONE(get16(pSrc));
203                        pSrc += 2;
204                        copysamples--;
205                    }
206                    break;
207    
208                case 4: // 24 bit compressed to 12 bit
209                    GET_PARAMS(params);
210                    while (currentframeoffset > 1) {
211                        SKIP_ONE(get12lo(pSrc));
212                        SKIP_ONE(get12hi(pSrc));
213                        pSrc += 3;
214                        currentframeoffset -= 2;
215                    }
216                    if (currentframeoffset) {
217                        SKIP_ONE(get12lo(pSrc));
218                        currentframeoffset--;
219                        if (copysamples) {
220                            COPY_ONE(get12hi(pSrc));
221                            pSrc += 3;
222                            copysamples--;
223                        }
224                    }
225                    while (copysamples > 1) {
226                        COPY_ONE(get12lo(pSrc));
227                        COPY_ONE(get12hi(pSrc));
228                        pSrc += 3;
229                        copysamples -= 2;
230                    }
231                    if (copysamples) {
232                        COPY_ONE(get12lo(pSrc));
233                    }
234                    break;
235    
236                case 5: // 24 bit compressed to 8 bit
237                    GET_PARAMS(params);
238                    while (currentframeoffset) {
239                        SKIP_ONE(int8_t(*pSrc++));
240                        currentframeoffset--;
241                    }
242                    while (copysamples) {
243                        COPY_ONE(int8_t(*pSrc++));
244                        copysamples--;
245                    }
246                    break;
247            }
248        }
249    
250        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
251        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
253        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
254    }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
304      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
305      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
306    
307      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
308         *
309         * Load an existing sample or create a new one. A 'wave' list chunk must
310         * be given to this constructor. In case the given 'wave' list chunk
311         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312         * format and sample data will be loaded from there, otherwise default
313         * values will be used and those chunks will be created when
314         * File::Save() will be called later on.
315         *
316         * @param pFile          - pointer to gig::File where this sample is
317         *                         located (or will be located)
318         * @param waveList       - pointer to 'wave' list chunk which is (or
319         *                         will be) associated with this sample
320         * @param WavePoolOffset - offset of this sample data from wave pool
321         *                         ('wvpl') list chunk
322         * @param fileNo         - number of an extension file where this sample
323         *                         is located, 0 otherwise
324         */
325        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332            FileNo = fileNo;
333    
334          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
336          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
337                pGroup = pFile->GetGroup(iSampleGroup);
338          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
339          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
340          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
341          Product           = smpl->ReadInt32();          }
342          SamplePeriod      = smpl->ReadInt32();  
343          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344          MIDIPitchFraction = smpl->ReadInt32();          if (pCkSmpl) {
345          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
346          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
347          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
348          LoopID            = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
349          smpl->Read(&LoopType, 1, 4);              FineTune      = pCkSmpl->ReadInt32();
350          LoopStart         = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
351          LoopEnd           = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
352          LoopFraction      = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
353          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
354                LoopID        = pCkSmpl->ReadInt32();
355                pCkSmpl->Read(&LoopType, 1, 4);
356                LoopStart     = pCkSmpl->ReadInt32();
357                LoopEnd       = pCkSmpl->ReadInt32();
358                LoopFraction  = pCkSmpl->ReadInt32();
359                LoopPlayCount = pCkSmpl->ReadInt32();
360            } else { // 'smpl' chunk missing
361                // use default values
362                Manufacturer  = 0;
363                Product       = 0;
364                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365                MIDIUnityNote = 64;
366                FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368                SMPTEOffset   = 0;
369                Loops         = 0;
370                LoopID        = 0;
371                LoopType      = loop_type_normal;
372                LoopStart     = 0;
373                LoopEnd       = 0;
374                LoopFraction  = 0;
375                LoopPlayCount = 0;
376            }
377    
378          FrameTable                 = NULL;          FrameTable                 = NULL;
379          SamplePos                  = 0;          SamplePos                  = 0;
# Line 62  namespace gig { Line 381  namespace gig {
381          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
382          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
383    
384          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387            Compressed        = ewav;
388            Dithered          = false;
389            TruncatedBits     = 0;
390          if (Compressed) {          if (Compressed) {
391                uint32_t version = ewav->ReadInt32();
392                if (version == 3 && BitDepth == 24) {
393                    Dithered = ewav->ReadInt32();
394                    ewav->SetPos(Channels == 2 ? 84 : 64);
395                    TruncatedBits = ewav->ReadInt32();
396                }
397              ScanCompressedSample();              ScanCompressedSample();
398              if (!pDecompressionBuffer) {          }
399                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];  
400                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
404            }
405            FrameOffset = 0; // just for streaming compressed samples
406    
407            LoopSize = LoopEnd - LoopStart + 1;
408        }
409    
410        /**
411         * Apply sample and its settings to the respective RIFF chunks. You have
412         * to call File::Save() to make changes persistent.
413         *
414         * Usually there is absolutely no need to call this method explicitly.
415         * It will be called automatically when File::Save() was called.
416         *
417         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418         *                        was provided yet
419         * @throws gig::Exception if there is any invalid sample setting
420         */
421        void Sample::UpdateChunks() {
422            // first update base class's chunks
423            DLS::Sample::UpdateChunks();
424    
425            // make sure 'smpl' chunk exists
426            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427            if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431            // update 'smpl' chunk
432            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434            store32(&pData[0], Manufacturer);
435            store32(&pData[4], Product);
436            store32(&pData[8], SamplePeriod);
437            store32(&pData[12], MIDIUnityNote);
438            store32(&pData[16], FineTune);
439            store32(&pData[20], SMPTEFormat);
440            store32(&pData[24], SMPTEOffset);
441            store32(&pData[28], Loops);
442    
443            // we skip 'manufByt' for now (4 bytes)
444    
445            store32(&pData[36], LoopID);
446            store32(&pData[40], LoopType);
447            store32(&pData[44], LoopStart);
448            store32(&pData[48], LoopEnd);
449            store32(&pData[52], LoopFraction);
450            store32(&pData[56], LoopPlayCount);
451    
452            // make sure '3gix' chunk exists
453            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455            // determine appropriate sample group index (to be stored in chunk)
456            uint16_t iSampleGroup = 0; // 0 refers to default sample group
457            File* pFile = static_cast<File*>(pParent);
458            if (pFile->pGroups) {
459                std::list<Group*>::iterator iter = pFile->pGroups->begin();
460                std::list<Group*>::iterator end  = pFile->pGroups->end();
461                for (int i = 0; iter != end; i++, iter++) {
462                    if (*iter == pGroup) {
463                        iSampleGroup = i;
464                        break; // found
465                    }
466              }              }
467          }          }
468          FrameOffset = 0; // just for streaming compressed samples          // update '3gix' chunk
469            pData = (uint8_t*) pCk3gix->LoadChunkData();
470            store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 79  namespace gig { Line 476  namespace gig {
476          this->SamplesTotal = 0;          this->SamplesTotal = 0;
477          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
478    
479            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481    
482          // Scanning          // Scanning
483          pCkData->SetPos(0);          pCkData->SetPos(0);
484          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
485              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
486              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
487              this->SamplesTotal += 2048;                  // stored, to save some memory
488              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489                  case 1:   // left channel compressed  
490                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
491                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
492                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495                    if (pCkData->RemainingBytes() <= frameSize) {
496                        SamplesInLastFrame =
497                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499                        SamplesTotal += SamplesInLastFrame;
500                      break;                      break;
501                  case 257: // both channels compressed                  }
502                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
503                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
504                }
505            }
506            else { // Mono
507                for (int i = 0 ; ; i++) {
508                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510                    const int mode = pCkData->ReadUint8();
511                    if (mode > 5) throw gig::Exception("Unknown compression mode");
512                    const unsigned long frameSize = bytesPerFrame[mode];
513    
514                    if (pCkData->RemainingBytes() <= frameSize) {
515                        SamplesInLastFrame =
516                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517                        SamplesTotal += SamplesInLastFrame;
518                      break;                      break;
519                  default: // both channels uncompressed                  }
520                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
521                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
522              }              }
523          }          }
524          pCkData->SetPos(0);          pCkData->SetPos(0);
525    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
526          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
528          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 138  namespace gig { Line 558  namespace gig {
558       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
559       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
560       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
561       *       * @code
562       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
563       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
564         * @endcode
565       *       *
566       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
567       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 186  namespace gig { Line 607  namespace gig {
607       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
608       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
609       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
610       *       * @code
611       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
613       *       * @endcode
614       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
615       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
616       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 249  namespace gig { Line 670  namespace gig {
670          RAMCache.Size   = 0;          RAMCache.Size   = 0;
671      }      }
672    
673        /** @brief Resize sample.
674         *
675         * Resizes the sample's wave form data, that is the actual size of
676         * sample wave data possible to be written for this sample. This call
677         * will return immediately and just schedule the resize operation. You
678         * should call File::Save() to actually perform the resize operation(s)
679         * "physically" to the file. As this can take a while on large files, it
680         * is recommended to call Resize() first on all samples which have to be
681         * resized and finally to call File::Save() to perform all those resize
682         * operations in one rush.
683         *
684         * The actual size (in bytes) is dependant to the current FrameSize
685         * value. You may want to set FrameSize before calling Resize().
686         *
687         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688         * enlarged samples before calling File::Save() as this might exceed the
689         * current sample's boundary!
690         *
691         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693         * other formats will fail!
694         *
695         * @param iNewSize - new sample wave data size in sample points (must be
696         *                   greater than zero)
697         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698         *                         or if \a iNewSize is less than 1
699         * @throws gig::Exception if existing sample is compressed
700         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701         *      DLS::Sample::FormatTag, File::Save()
702         */
703        void Sample::Resize(int iNewSize) {
704            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705            DLS::Sample::Resize(iNewSize);
706        }
707    
708      /**      /**
709       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
710       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 310  namespace gig { Line 766  namespace gig {
766      }      }
767    
768      /**      /**
769         * Reads \a SampleCount number of sample points from the position stored
770         * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771         * the position within the sample respectively, this method honors the
772         * looping informations of the sample (if any). The sample wave stream
773         * will be decompressed on the fly if using a compressed sample. Use this
774         * method if you don't want to load the sample into RAM, thus for disk
775         * streaming. All this methods needs to know to proceed with streaming
776         * for the next time you call this method is stored in \a pPlaybackState.
777         * You have to allocate and initialize the playback_state_t structure by
778         * yourself before you use it to stream a sample:
779         * @code
780         * gig::playback_state_t playbackstate;
781         * playbackstate.position         = 0;
782         * playbackstate.reverse          = false;
783         * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784         * @endcode
785         * You don't have to take care of things like if there is actually a loop
786         * defined or if the current read position is located within a loop area.
787         * The method already handles such cases by itself.
788         *
789         * <b>Caution:</b> If you are using more than one streaming thread, you
790         * have to use an external decompression buffer for <b>EACH</b>
791         * streaming thread to avoid race conditions and crashes!
792         *
793         * @param pBuffer          destination buffer
794         * @param SampleCount      number of sample points to read
795         * @param pPlaybackState   will be used to store and reload the playback
796         *                         state for the next ReadAndLoop() call
797         * @param pDimRgn          dimension region with looping information
798         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
799         * @returns                number of successfully read sample points
800         * @see                    CreateDecompressionBuffer()
801         */
802        unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804            unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805            uint8_t* pDst = (uint8_t*) pBuffer;
806    
807            SetPos(pPlaybackState->position); // recover position from the last time
808    
809            if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810    
811                const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813    
814                if (GetPos() <= loopEnd) {
815                    switch (loop.LoopType) {
816    
817                        case loop_type_bidirectional: { //TODO: not tested yet!
818                            do {
819                                // if not endless loop check if max. number of loop cycles have been passed
820                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821    
822                                if (!pPlaybackState->reverse) { // forward playback
823                                    do {
824                                        samplestoloopend  = loopEnd - GetPos();
825                                        readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826                                        samplestoread    -= readsamples;
827                                        totalreadsamples += readsamples;
828                                        if (readsamples == samplestoloopend) {
829                                            pPlaybackState->reverse = true;
830                                            break;
831                                        }
832                                    } while (samplestoread && readsamples);
833                                }
834                                else { // backward playback
835    
836                                    // as we can only read forward from disk, we have to
837                                    // determine the end position within the loop first,
838                                    // read forward from that 'end' and finally after
839                                    // reading, swap all sample frames so it reflects
840                                    // backward playback
841    
842                                    unsigned long swapareastart       = totalreadsamples;
843                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
844                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
846    
847                                    SetPos(reverseplaybackend);
848    
849                                    // read samples for backward playback
850                                    do {
851                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852                                        samplestoreadinloop -= readsamples;
853                                        samplestoread       -= readsamples;
854                                        totalreadsamples    += readsamples;
855                                    } while (samplestoreadinloop && readsamples);
856    
857                                    SetPos(reverseplaybackend); // pretend we really read backwards
858    
859                                    if (reverseplaybackend == loop.LoopStart) {
860                                        pPlaybackState->loop_cycles_left--;
861                                        pPlaybackState->reverse = false;
862                                    }
863    
864                                    // reverse the sample frames for backward playback
865                                    SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866                                }
867                            } while (samplestoread && readsamples);
868                            break;
869                        }
870    
871                        case loop_type_backward: { // TODO: not tested yet!
872                            // forward playback (not entered the loop yet)
873                            if (!pPlaybackState->reverse) do {
874                                samplestoloopend  = loopEnd - GetPos();
875                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876                                samplestoread    -= readsamples;
877                                totalreadsamples += readsamples;
878                                if (readsamples == samplestoloopend) {
879                                    pPlaybackState->reverse = true;
880                                    break;
881                                }
882                            } while (samplestoread && readsamples);
883    
884                            if (!samplestoread) break;
885    
886                            // as we can only read forward from disk, we have to
887                            // determine the end position within the loop first,
888                            // read forward from that 'end' and finally after
889                            // reading, swap all sample frames so it reflects
890                            // backward playback
891    
892                            unsigned long swapareastart       = totalreadsamples;
893                            unsigned long loopoffset          = GetPos() - loop.LoopStart;
894                            unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895                                                                                      : samplestoread;
896                            unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897    
898                            SetPos(reverseplaybackend);
899    
900                            // read samples for backward playback
901                            do {
902                                // if not endless loop check if max. number of loop cycles have been passed
903                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904                                samplestoloopend     = loopEnd - GetPos();
905                                readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906                                samplestoreadinloop -= readsamples;
907                                samplestoread       -= readsamples;
908                                totalreadsamples    += readsamples;
909                                if (readsamples == samplestoloopend) {
910                                    pPlaybackState->loop_cycles_left--;
911                                    SetPos(loop.LoopStart);
912                                }
913                            } while (samplestoreadinloop && readsamples);
914    
915                            SetPos(reverseplaybackend); // pretend we really read backwards
916    
917                            // reverse the sample frames for backward playback
918                            SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919                            break;
920                        }
921    
922                        default: case loop_type_normal: {
923                            do {
924                                // if not endless loop check if max. number of loop cycles have been passed
925                                if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926                                samplestoloopend  = loopEnd - GetPos();
927                                readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928                                samplestoread    -= readsamples;
929                                totalreadsamples += readsamples;
930                                if (readsamples == samplestoloopend) {
931                                    pPlaybackState->loop_cycles_left--;
932                                    SetPos(loop.LoopStart);
933                                }
934                            } while (samplestoread && readsamples);
935                            break;
936                        }
937                    }
938                }
939            }
940    
941            // read on without looping
942            if (samplestoread) do {
943                readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944                samplestoread    -= readsamples;
945                totalreadsamples += readsamples;
946            } while (readsamples && samplestoread);
947    
948            // store current position
949            pPlaybackState->position = GetPos();
950    
951            return totalreadsamples;
952        }
953    
954        /**
955       * Reads \a SampleCount number of sample points from the current       * Reads \a SampleCount number of sample points from the current
956       * position into the buffer pointed by \a pBuffer and increments the       * position into the buffer pointed by \a pBuffer and increments the
957       * position within the sample. The sample wave stream will be       * position within the sample. The sample wave stream will be
# Line 317  namespace gig { Line 959  namespace gig {
959       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960       * thus for disk streaming.       * thus for disk streaming.
961       *       *
962         * <b>Caution:</b> If you are using more than one streaming thread, you
963         * have to use an external decompression buffer for <b>EACH</b>
964         * streaming thread to avoid race conditions and crashes!
965         *
966         * For 16 bit samples, the data in the buffer will be int16_t
967         * (using native endianness). For 24 bit, the buffer will
968         * contain three bytes per sample, little-endian.
969         *
970       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
971       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
972         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
973       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
974       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
975       */       */
976      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize);          if (SampleCount == 0) return 0;
978          else { //FIXME: no support for mono compressed samples yet, are there any?          if (!Compressed) {
979              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              if (BitDepth == 24) {
980              // best case needed buffer size (all frames compressed)                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981              unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)              }
982                                               (SampleCount >> 10) + // 10 bytes header per 2048 sample points              else { // 16 bit
983                                               8194,                 // at least one worst case sample frame                  // (pCkData->Read does endian correction)
984                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985                                         : pCkData->Read(pBuffer, SampleCount, 2);
986                }
987            }
988            else {
989                if (this->SamplePos >= this->SamplesTotal) return 0;
990                //TODO: efficiency: maybe we should test for an average compression rate
991                unsigned long assumedsize      = GuessSize(SampleCount),
992                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
993                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
994                            copysamples;                            copysamples, skipsamples,
995              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
996              this->FrameOffset = 0;              this->FrameOffset = 0;
997    
998              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999                  // local buffer reallocation - hope this won't happen  
1000                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1001                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1002                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1004                    remainingsamples = SampleCount;
1005                    assumedsize      = GuessSize(SampleCount);
1006              }              }
1007    
1008              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1014                    unsigned long framesamples = SamplesPerFrame;
1015                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016                  if (remainingbytes < 8194) {  
1017                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1018                          this->SamplePos += (SampleCount - remainingsamples);  
1019                          //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;                  if (Channels == 2) {
1020                          return (SampleCount - remainingsamples);                      mode_r = *pSrc++;
1021                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024                        if (remainingbytes < framebytes) { // last frame in sample
1025                            framesamples = SamplesInLastFrame;
1026                            if (mode_l == 4 && (framesamples & 1)) {
1027                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028                            }
1029                            else {
1030                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031                            }
1032                        }
1033                    }
1034                    else {
1035                        framebytes = bytesPerFrame[mode_l] + 1;
1036                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037                        if (remainingbytes < framebytes) {
1038                            framesamples = SamplesInLastFrame;
1039                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
1040                  }                  }
1041    
1042                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1043                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1044                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1045                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1046                            skipsamples = currentframeoffset;
1047                        }
1048                        else {
1049                            copysamples = 0;
1050                            skipsamples = framesamples;
1051                        }
1052                  }                  }
1053                  else {                  else {
1054                        // This frame has enough data for pBuffer, but not
1055                        // all of the frame is needed. Set file position
1056                        // to start of this frame for next call to Read.
1057                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1058                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1059                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1061                      }                  }
1062                      else {                  remainingsamples -= copysamples;
1063    
1064                    if (remainingbytes > framebytes) {
1065                        remainingbytes -= framebytes;
1066                        if (remainingsamples == 0 &&
1067                            currentframeoffset + copysamples == framesamples) {
1068                            // This frame has enough data for pBuffer, and
1069                            // all of the frame is needed. Set file
1070                            // position to start of next frame for next
1071                            // call to Read. FrameOffset is 0.
1072                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1073                      }                      }
1074                  }                  }
1075                    else remainingbytes = 0;
1076    
1077                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1078                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1079                  switch (compressionmode) {                  if (copysamples == 0) {
1080                      case 1: // left channel compressed                      // skip this frame
1081                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1082                          if (!remainingsamples && copysamples == 2048)                  }
1083                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1084                        const unsigned char* const param_l = pSrc;
1085                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1086                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1087                          while (currentframeoffset) {  
1088                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1089                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1090                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1091                              currentframeoffset--;  
1092                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1094                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1096                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1097                          }                          }
1098                          while (copysamples) {                          else { // Mono
1099                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1101                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1102                          }                          }
1103                          break;                      }
1104                      case 257: // both channels compressed                      else { // 16 bit
1105                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1106                          if (!remainingsamples && copysamples == 2048)  
1107                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1108                            if (Channels == 2) { // Stereo
1109                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1110                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1111                          right  = *(int16_t*)pSrc; pSrc+=2;  
1112                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1113                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115                              left   -= dleft;                                           skipsamples, copysamples);
1116                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1117                          }                          }
1118                          while (copysamples) {                          else { // Mono
1119                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1120                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1122                          }                          }
1123                          break;                      }
1124                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1125                  }                  }
1126              }  
1127                    // reload from disk to local buffer if needed
1128                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129                        assumedsize    = GuessSize(remainingsamples);
1130                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134                    }
1135                } // while
1136    
1137              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1138              //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1140          }          }
1141      }      }
1142    
1143        /** @brief Write sample wave data.
1144         *
1145         * Writes \a SampleCount number of sample points from the buffer pointed
1146         * by \a pBuffer and increments the position within the sample. Use this
1147         * method to directly write the sample data to disk, i.e. if you don't
1148         * want or cannot load the whole sample data into RAM.
1149         *
1150         * You have to Resize() the sample to the desired size and call
1151         * File::Save() <b>before</b> using Write().
1152         *
1153         * Note: there is currently no support for writing compressed samples.
1154         *
1155         * @param pBuffer     - source buffer
1156         * @param SampleCount - number of sample points to write
1157         * @throws DLS::Exception if current sample size is too small
1158         * @throws gig::Exception if sample is compressed
1159         * @see DLS::LoadSampleData()
1160         */
1161        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163    
1164            // if this is the first write in this sample, reset the
1165            // checksum calculator
1166            if (pCkData->GetPos() == 0) {
1167                crc.reset();
1168            }
1169            unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171    
1172            // if this is the last write, update the checksum chunk in the
1173            // file
1174            if (pCkData->GetPos() == pCkData->GetSize()) {
1175                File* pFile = static_cast<File*>(GetParent());
1176                pFile->SetSampleChecksum(this, crc.getValue());
1177            }
1178            return res;
1179        }
1180    
1181        /**
1182         * Allocates a decompression buffer for streaming (compressed) samples
1183         * with Sample::Read(). If you are using more than one streaming thread
1184         * in your application you <b>HAVE</b> to create a decompression buffer
1185         * for <b>EACH</b> of your streaming threads and provide it with the
1186         * Sample::Read() call in order to avoid race conditions and crashes.
1187         *
1188         * You should free the memory occupied by the allocated buffer(s) once
1189         * you don't need one of your streaming threads anymore by calling
1190         * DestroyDecompressionBuffer().
1191         *
1192         * @param MaxReadSize - the maximum size (in sample points) you ever
1193         *                      expect to read with one Read() call
1194         * @returns allocated decompression buffer
1195         * @see DestroyDecompressionBuffer()
1196         */
1197        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1198            buffer_t result;
1199            const double worstCaseHeaderOverhead =
1200                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1201            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1202            result.pStart            = new int8_t[result.Size];
1203            result.NullExtensionSize = 0;
1204            return result;
1205        }
1206    
1207        /**
1208         * Free decompression buffer, previously created with
1209         * CreateDecompressionBuffer().
1210         *
1211         * @param DecompressionBuffer - previously allocated decompression
1212         *                              buffer to free
1213         */
1214        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1215            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1216                delete[] (int8_t*) DecompressionBuffer.pStart;
1217                DecompressionBuffer.pStart = NULL;
1218                DecompressionBuffer.Size   = 0;
1219                DecompressionBuffer.NullExtensionSize = 0;
1220            }
1221        }
1222    
1223        /**
1224         * Returns pointer to the Group this Sample belongs to. In the .gig
1225         * format a sample always belongs to one group. If it wasn't explicitly
1226         * assigned to a certain group, it will be automatically assigned to a
1227         * default group.
1228         *
1229         * @returns Sample's Group (never NULL)
1230         */
1231        Group* Sample::GetGroup() const {
1232            return pGroup;
1233        }
1234    
1235      Sample::~Sample() {      Sample::~Sample() {
1236          Instances--;          Instances--;
1237          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1238                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1239                InternalDecompressionBuffer.pStart = NULL;
1240                InternalDecompressionBuffer.Size   = 0;
1241            }
1242          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1243          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1244      }      }
# Line 491  namespace gig { Line 1248  namespace gig {
1248  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1249  // *  // *
1250    
1251        uint                               DimensionRegion::Instances       = 0;
1252        DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1253    
1254      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1255            Instances++;
1256    
1257            pSample = NULL;
1258    
1259          memcpy(&Crossfade, &SamplerOptions, 4);          memcpy(&Crossfade, &SamplerOptions, 4);
1260            if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1261    
1262          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1263          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1264          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1265          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1266          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1267          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1268          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1269          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1270          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1271          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1272          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1273          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1274          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1275          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1276          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1277          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1278          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1279          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1281          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1282          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1283          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1284          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1285          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1286          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1287          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1288          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1289          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1290          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1291          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1292          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1295          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1296          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1297          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1298          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1299          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1300          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1301          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1302          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1303          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1304          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1305          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1306          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1307          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1308          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1309          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1310          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1311          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1312          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1313          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1314              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1315              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1316          }                  VelocityResponseDepth = velocityresponse;
1317          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1318              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1319              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1320          }              } else if (velocityresponse < 15) {
1321          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1322              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1323              VelocityResponseDepth = velocityresponse - 10;              } else {
1324                    VelocityResponseCurve = curve_type_unknown;
1325                    VelocityResponseDepth = 0;
1326                }
1327                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1328                if (releasevelocityresponse < 5) {
1329                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1330                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1331                } else if (releasevelocityresponse < 10) {
1332                    ReleaseVelocityResponseCurve = curve_type_linear;
1333                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1334                } else if (releasevelocityresponse < 15) {
1335                    ReleaseVelocityResponseCurve = curve_type_special;
1336                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1337                } else {
1338                    ReleaseVelocityResponseCurve = curve_type_unknown;
1339                    ReleaseVelocityResponseDepth = 0;
1340                }
1341                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1342                AttenuationControllerThreshold = _3ewa->ReadInt8();
1343                _3ewa->ReadInt32(); // unknown
1344                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1345                _3ewa->ReadInt16(); // unknown
1346                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1347                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1348                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1349                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1350                else                                       DimensionBypass = dim_bypass_ctrl_none;
1351                uint8_t pan = _3ewa->ReadUint8();
1352                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1353                SelfMask = _3ewa->ReadInt8() & 0x01;
1354                _3ewa->ReadInt8(); // unknown
1355                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1356                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1357                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1358                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1359                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1360                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1361                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1362                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1363                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1364                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1365                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1366                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1367                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1368                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1369                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1370                                                            : vcf_res_ctrl_none;
1371                uint16_t eg3depth = _3ewa->ReadUint16();
1372                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1373                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1374                _3ewa->ReadInt16(); // unknown
1375                ChannelOffset = _3ewa->ReadUint8() / 4;
1376                uint8_t regoptions = _3ewa->ReadUint8();
1377                MSDecode           = regoptions & 0x01; // bit 0
1378                SustainDefeat      = regoptions & 0x02; // bit 1
1379                _3ewa->ReadInt16(); // unknown
1380                VelocityUpperLimit = _3ewa->ReadInt8();
1381                _3ewa->ReadInt8(); // unknown
1382                _3ewa->ReadInt16(); // unknown
1383                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1384                _3ewa->ReadInt8(); // unknown
1385                _3ewa->ReadInt8(); // unknown
1386                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1387                uint8_t vcfcutoff = _3ewa->ReadUint8();
1388                VCFEnabled = vcfcutoff & 0x80; // bit 7
1389                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1390                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1391                uint8_t vcfvelscale = _3ewa->ReadUint8();
1392                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1393                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1394                _3ewa->ReadInt8(); // unknown
1395                uint8_t vcfresonance = _3ewa->ReadUint8();
1396                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1397                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1398                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1399                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1400                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1401                uint8_t vcfvelocity = _3ewa->ReadUint8();
1402                VCFVelocityDynamicRange = vcfvelocity % 5;
1403                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1404                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1405                if (VCFType == vcf_type_lowpass) {
1406                    if (lfo3ctrl & 0x40) // bit 6
1407                        VCFType = vcf_type_lowpassturbo;
1408                }
1409                if (_3ewa->RemainingBytes() >= 8) {
1410                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1411                } else {
1412                    memset(DimensionUpperLimits, 0, 8);
1413                }
1414            } else { // '3ewa' chunk does not exist yet
1415                // use default values
1416                LFO3Frequency                   = 1.0;
1417                EG3Attack                       = 0.0;
1418                LFO1InternalDepth               = 0;
1419                LFO3InternalDepth               = 0;
1420                LFO1ControlDepth                = 0;
1421                LFO3ControlDepth                = 0;
1422                EG1Attack                       = 0.0;
1423                EG1Decay1                       = 0.0;
1424                EG1Sustain                      = 0;
1425                EG1Release                      = 0.0;
1426                EG1Controller.type              = eg1_ctrl_t::type_none;
1427                EG1Controller.controller_number = 0;
1428                EG1ControllerInvert             = false;
1429                EG1ControllerAttackInfluence    = 0;
1430                EG1ControllerDecayInfluence     = 0;
1431                EG1ControllerReleaseInfluence   = 0;
1432                EG2Controller.type              = eg2_ctrl_t::type_none;
1433                EG2Controller.controller_number = 0;
1434                EG2ControllerInvert             = false;
1435                EG2ControllerAttackInfluence    = 0;
1436                EG2ControllerDecayInfluence     = 0;
1437                EG2ControllerReleaseInfluence   = 0;
1438                LFO1Frequency                   = 1.0;
1439                EG2Attack                       = 0.0;
1440                EG2Decay1                       = 0.0;
1441                EG2Sustain                      = 0;
1442                EG2Release                      = 0.0;
1443                LFO2ControlDepth                = 0;
1444                LFO2Frequency                   = 1.0;
1445                LFO2InternalDepth               = 0;
1446                EG1Decay2                       = 0.0;
1447                EG1InfiniteSustain              = false;
1448                EG1PreAttack                    = 1000;
1449                EG2Decay2                       = 0.0;
1450                EG2InfiniteSustain              = false;
1451                EG2PreAttack                    = 1000;
1452                VelocityResponseCurve           = curve_type_nonlinear;
1453                VelocityResponseDepth           = 3;
1454                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1455                ReleaseVelocityResponseDepth    = 3;
1456                VelocityResponseCurveScaling    = 32;
1457                AttenuationControllerThreshold  = 0;
1458                SampleStartOffset               = 0;
1459                PitchTrack                      = true;
1460                DimensionBypass                 = dim_bypass_ctrl_none;
1461                Pan                             = 0;
1462                SelfMask                        = true;
1463                LFO3Controller                  = lfo3_ctrl_modwheel;
1464                LFO3Sync                        = false;
1465                InvertAttenuationController     = false;
1466                AttenuationController.type      = attenuation_ctrl_t::type_none;
1467                AttenuationController.controller_number = 0;
1468                LFO2Controller                  = lfo2_ctrl_internal;
1469                LFO2FlipPhase                   = false;
1470                LFO2Sync                        = false;
1471                LFO1Controller                  = lfo1_ctrl_internal;
1472                LFO1FlipPhase                   = false;
1473                LFO1Sync                        = false;
1474                VCFResonanceController          = vcf_res_ctrl_none;
1475                EG3Depth                        = 0;
1476                ChannelOffset                   = 0;
1477                MSDecode                        = false;
1478                SustainDefeat                   = false;
1479                VelocityUpperLimit              = 0;
1480                ReleaseTriggerDecay             = 0;
1481                EG1Hold                         = false;
1482                VCFEnabled                      = false;
1483                VCFCutoff                       = 0;
1484                VCFCutoffController             = vcf_cutoff_ctrl_none;
1485                VCFCutoffControllerInvert       = false;
1486                VCFVelocityScale                = 0;
1487                VCFResonance                    = 0;
1488                VCFResonanceDynamic             = false;
1489                VCFKeyboardTracking             = false;
1490                VCFKeyboardTrackingBreakpoint   = 0;
1491                VCFVelocityDynamicRange         = 0x04;
1492                VCFVelocityCurve                = curve_type_linear;
1493                VCFType                         = vcf_type_lowpass;
1494                memset(DimensionUpperLimits, 0, 8);
1495            }
1496    
1497            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1498                                                         VelocityResponseDepth,
1499                                                         VelocityResponseCurveScaling);
1500    
1501            curve_type_t curveType = ReleaseVelocityResponseCurve;
1502            uint8_t depth = ReleaseVelocityResponseDepth;
1503    
1504            // this models a strange behaviour or bug in GSt: two of the
1505            // velocity response curves for release time are not used even
1506            // if specified, instead another curve is chosen.
1507            if ((curveType == curve_type_nonlinear && depth == 0) ||
1508                (curveType == curve_type_special   && depth == 4)) {
1509                curveType = curve_type_nonlinear;
1510                depth = 3;
1511            }
1512            pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1513    
1514            curveType = VCFVelocityCurve;
1515            depth = VCFVelocityDynamicRange;
1516    
1517            // even stranger GSt: two of the velocity response curves for
1518            // filter cutoff are not used, instead another special curve
1519            // is chosen. This curve is not used anywhere else.
1520            if ((curveType == curve_type_nonlinear && depth == 0) ||
1521                (curveType == curve_type_special   && depth == 4)) {
1522                curveType = curve_type_special;
1523                depth = 5;
1524          }          }
1525          else {          pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1526              VelocityResponseCurve = curve_type_unknown;                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1527              VelocityResponseDepth = 0;  
1528            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1529            VelocityTable = 0;
1530        }
1531    
1532        /**
1533         * Apply dimension region settings to the respective RIFF chunks. You
1534         * have to call File::Save() to make changes persistent.
1535         *
1536         * Usually there is absolutely no need to call this method explicitly.
1537         * It will be called automatically when File::Save() was called.
1538         */
1539        void DimensionRegion::UpdateChunks() {
1540            // first update base class's chunk
1541            DLS::Sampler::UpdateChunks();
1542    
1543            // make sure '3ewa' chunk exists
1544            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1545            if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1546            uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1547    
1548            // update '3ewa' chunk with DimensionRegion's current settings
1549    
1550            const uint32_t chunksize = _3ewa->GetNewSize();
1551            store32(&pData[0], chunksize); // unknown, always chunk size?
1552    
1553            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1554            store32(&pData[4], lfo3freq);
1555    
1556            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1557            store32(&pData[8], eg3attack);
1558    
1559            // next 2 bytes unknown
1560    
1561            store16(&pData[14], LFO1InternalDepth);
1562    
1563            // next 2 bytes unknown
1564    
1565            store16(&pData[18], LFO3InternalDepth);
1566    
1567            // next 2 bytes unknown
1568    
1569            store16(&pData[22], LFO1ControlDepth);
1570    
1571            // next 2 bytes unknown
1572    
1573            store16(&pData[26], LFO3ControlDepth);
1574    
1575            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1576            store32(&pData[28], eg1attack);
1577    
1578            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1579            store32(&pData[32], eg1decay1);
1580    
1581            // next 2 bytes unknown
1582    
1583            store16(&pData[38], EG1Sustain);
1584    
1585            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1586            store32(&pData[40], eg1release);
1587    
1588            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1589            pData[44] = eg1ctl;
1590    
1591            const uint8_t eg1ctrloptions =
1592                (EG1ControllerInvert) ? 0x01 : 0x00 |
1593                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1594                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1595                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1596            pData[45] = eg1ctrloptions;
1597    
1598            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1599            pData[46] = eg2ctl;
1600    
1601            const uint8_t eg2ctrloptions =
1602                (EG2ControllerInvert) ? 0x01 : 0x00 |
1603                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1604                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1605                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1606            pData[47] = eg2ctrloptions;
1607    
1608            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1609            store32(&pData[48], lfo1freq);
1610    
1611            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1612            store32(&pData[52], eg2attack);
1613    
1614            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1615            store32(&pData[56], eg2decay1);
1616    
1617            // next 2 bytes unknown
1618    
1619            store16(&pData[62], EG2Sustain);
1620    
1621            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1622            store32(&pData[64], eg2release);
1623    
1624            // next 2 bytes unknown
1625    
1626            store16(&pData[70], LFO2ControlDepth);
1627    
1628            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1629            store32(&pData[72], lfo2freq);
1630    
1631            // next 2 bytes unknown
1632    
1633            store16(&pData[78], LFO2InternalDepth);
1634    
1635            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1636            store32(&pData[80], eg1decay2);
1637    
1638            // next 2 bytes unknown
1639    
1640            store16(&pData[86], EG1PreAttack);
1641    
1642            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1643            store32(&pData[88], eg2decay2);
1644    
1645            // next 2 bytes unknown
1646    
1647            store16(&pData[94], EG2PreAttack);
1648    
1649            {
1650                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1651                uint8_t velocityresponse = VelocityResponseDepth;
1652                switch (VelocityResponseCurve) {
1653                    case curve_type_nonlinear:
1654                        break;
1655                    case curve_type_linear:
1656                        velocityresponse += 5;
1657                        break;
1658                    case curve_type_special:
1659                        velocityresponse += 10;
1660                        break;
1661                    case curve_type_unknown:
1662                    default:
1663                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1664                }
1665                pData[96] = velocityresponse;
1666            }
1667    
1668            {
1669                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1670                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1671                switch (ReleaseVelocityResponseCurve) {
1672                    case curve_type_nonlinear:
1673                        break;
1674                    case curve_type_linear:
1675                        releasevelocityresponse += 5;
1676                        break;
1677                    case curve_type_special:
1678                        releasevelocityresponse += 10;
1679                        break;
1680                    case curve_type_unknown:
1681                    default:
1682                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1683                }
1684                pData[97] = releasevelocityresponse;
1685            }
1686    
1687            pData[98] = VelocityResponseCurveScaling;
1688    
1689            pData[99] = AttenuationControllerThreshold;
1690    
1691            // next 4 bytes unknown
1692    
1693            store16(&pData[104], SampleStartOffset);
1694    
1695            // next 2 bytes unknown
1696    
1697            {
1698                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1699                switch (DimensionBypass) {
1700                    case dim_bypass_ctrl_94:
1701                        pitchTrackDimensionBypass |= 0x10;
1702                        break;
1703                    case dim_bypass_ctrl_95:
1704                        pitchTrackDimensionBypass |= 0x20;
1705                        break;
1706                    case dim_bypass_ctrl_none:
1707                        //FIXME: should we set anything here?
1708                        break;
1709                    default:
1710                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1711                }
1712                pData[108] = pitchTrackDimensionBypass;
1713            }
1714    
1715            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1716            pData[109] = pan;
1717    
1718            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1719            pData[110] = selfmask;
1720    
1721            // next byte unknown
1722    
1723            {
1724                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1725                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1726                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1727                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1728                pData[112] = lfo3ctrl;
1729            }
1730    
1731            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1732            pData[113] = attenctl;
1733    
1734            {
1735                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1736                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1737                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1738                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1739                pData[114] = lfo2ctrl;
1740            }
1741    
1742            {
1743                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1744                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1745                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1746                if (VCFResonanceController != vcf_res_ctrl_none)
1747                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1748                pData[115] = lfo1ctrl;
1749            }
1750    
1751            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1752                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1753            pData[116] = eg3depth;
1754    
1755            // next 2 bytes unknown
1756    
1757            const uint8_t channeloffset = ChannelOffset * 4;
1758            pData[120] = channeloffset;
1759    
1760            {
1761                uint8_t regoptions = 0;
1762                if (MSDecode)      regoptions |= 0x01; // bit 0
1763                if (SustainDefeat) regoptions |= 0x02; // bit 1
1764                pData[121] = regoptions;
1765            }
1766    
1767            // next 2 bytes unknown
1768    
1769            pData[124] = VelocityUpperLimit;
1770    
1771            // next 3 bytes unknown
1772    
1773            pData[128] = ReleaseTriggerDecay;
1774    
1775            // next 2 bytes unknown
1776    
1777            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1778            pData[131] = eg1hold;
1779    
1780            const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1781                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1782            pData[132] = vcfcutoff;
1783    
1784            pData[133] = VCFCutoffController;
1785    
1786            const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1787                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1788            pData[134] = vcfvelscale;
1789    
1790            // next byte unknown
1791    
1792            const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1793                                         (VCFResonance & 0x7f); /* lower 7 bits */
1794            pData[136] = vcfresonance;
1795    
1796            const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1797                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1798            pData[137] = vcfbreakpoint;
1799    
1800            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1801                                        VCFVelocityCurve * 5;
1802            pData[138] = vcfvelocity;
1803    
1804            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1805            pData[139] = vcftype;
1806    
1807            if (chunksize >= 148) {
1808                memcpy(&pData[140], DimensionUpperLimits, 8);
1809          }          }
1810          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1811          if (releasevelocityresponse < 5) {  
1812              ReleaseVelocityResponseCurve = curve_type_nonlinear;      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1813              ReleaseVelocityResponseDepth = releasevelocityresponse;      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1814          }      {
1815          else if (releasevelocityresponse < 10) {          double* table;
1816              ReleaseVelocityResponseCurve = curve_type_linear;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1817              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          if (pVelocityTables->count(tableKey)) { // if key exists
1818          }              table = (*pVelocityTables)[tableKey];
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1819          }          }
1820          else {          else {
1821              ReleaseVelocityResponseCurve = curve_type_unknown;              table = CreateVelocityTable(curveType, depth, scaling);
1822              ReleaseVelocityResponseDepth = 0;              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1823            }
1824            return table;
1825        }
1826    
1827        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1828            leverage_ctrl_t decodedcontroller;
1829            switch (EncodedController) {
1830                // special controller
1831                case _lev_ctrl_none:
1832                    decodedcontroller.type = leverage_ctrl_t::type_none;
1833                    decodedcontroller.controller_number = 0;
1834                    break;
1835                case _lev_ctrl_velocity:
1836                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
1837                    decodedcontroller.controller_number = 0;
1838                    break;
1839                case _lev_ctrl_channelaftertouch:
1840                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1841                    decodedcontroller.controller_number = 0;
1842                    break;
1843    
1844                // ordinary MIDI control change controller
1845                case _lev_ctrl_modwheel:
1846                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847                    decodedcontroller.controller_number = 1;
1848                    break;
1849                case _lev_ctrl_breath:
1850                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851                    decodedcontroller.controller_number = 2;
1852                    break;
1853                case _lev_ctrl_foot:
1854                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855                    decodedcontroller.controller_number = 4;
1856                    break;
1857                case _lev_ctrl_effect1:
1858                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859                    decodedcontroller.controller_number = 12;
1860                    break;
1861                case _lev_ctrl_effect2:
1862                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863                    decodedcontroller.controller_number = 13;
1864                    break;
1865                case _lev_ctrl_genpurpose1:
1866                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867                    decodedcontroller.controller_number = 16;
1868                    break;
1869                case _lev_ctrl_genpurpose2:
1870                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1871                    decodedcontroller.controller_number = 17;
1872                    break;
1873                case _lev_ctrl_genpurpose3:
1874                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1875                    decodedcontroller.controller_number = 18;
1876                    break;
1877                case _lev_ctrl_genpurpose4:
1878                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1879                    decodedcontroller.controller_number = 19;
1880                    break;
1881                case _lev_ctrl_portamentotime:
1882                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1883                    decodedcontroller.controller_number = 5;
1884                    break;
1885                case _lev_ctrl_sustainpedal:
1886                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1887                    decodedcontroller.controller_number = 64;
1888                    break;
1889                case _lev_ctrl_portamento:
1890                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1891                    decodedcontroller.controller_number = 65;
1892                    break;
1893                case _lev_ctrl_sostenutopedal:
1894                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1895                    decodedcontroller.controller_number = 66;
1896                    break;
1897                case _lev_ctrl_softpedal:
1898                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1899                    decodedcontroller.controller_number = 67;
1900                    break;
1901                case _lev_ctrl_genpurpose5:
1902                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1903                    decodedcontroller.controller_number = 80;
1904                    break;
1905                case _lev_ctrl_genpurpose6:
1906                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1907                    decodedcontroller.controller_number = 81;
1908                    break;
1909                case _lev_ctrl_genpurpose7:
1910                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1911                    decodedcontroller.controller_number = 82;
1912                    break;
1913                case _lev_ctrl_genpurpose8:
1914                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1915                    decodedcontroller.controller_number = 83;
1916                    break;
1917                case _lev_ctrl_effect1depth:
1918                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1919                    decodedcontroller.controller_number = 91;
1920                    break;
1921                case _lev_ctrl_effect2depth:
1922                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1923                    decodedcontroller.controller_number = 92;
1924                    break;
1925                case _lev_ctrl_effect3depth:
1926                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1927                    decodedcontroller.controller_number = 93;
1928                    break;
1929                case _lev_ctrl_effect4depth:
1930                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1931                    decodedcontroller.controller_number = 94;
1932                    break;
1933                case _lev_ctrl_effect5depth:
1934                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1935                    decodedcontroller.controller_number = 95;
1936                    break;
1937    
1938                // unknown controller type
1939                default:
1940                    throw gig::Exception("Unknown leverage controller type.");
1941            }
1942            return decodedcontroller;
1943        }
1944    
1945        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1946            _lev_ctrl_t encodedcontroller;
1947            switch (DecodedController.type) {
1948                // special controller
1949                case leverage_ctrl_t::type_none:
1950                    encodedcontroller = _lev_ctrl_none;
1951                    break;
1952                case leverage_ctrl_t::type_velocity:
1953                    encodedcontroller = _lev_ctrl_velocity;
1954                    break;
1955                case leverage_ctrl_t::type_channelaftertouch:
1956                    encodedcontroller = _lev_ctrl_channelaftertouch;
1957                    break;
1958    
1959                // ordinary MIDI control change controller
1960                case leverage_ctrl_t::type_controlchange:
1961                    switch (DecodedController.controller_number) {
1962                        case 1:
1963                            encodedcontroller = _lev_ctrl_modwheel;
1964                            break;
1965                        case 2:
1966                            encodedcontroller = _lev_ctrl_breath;
1967                            break;
1968                        case 4:
1969                            encodedcontroller = _lev_ctrl_foot;
1970                            break;
1971                        case 12:
1972                            encodedcontroller = _lev_ctrl_effect1;
1973                            break;
1974                        case 13:
1975                            encodedcontroller = _lev_ctrl_effect2;
1976                            break;
1977                        case 16:
1978                            encodedcontroller = _lev_ctrl_genpurpose1;
1979                            break;
1980                        case 17:
1981                            encodedcontroller = _lev_ctrl_genpurpose2;
1982                            break;
1983                        case 18:
1984                            encodedcontroller = _lev_ctrl_genpurpose3;
1985                            break;
1986                        case 19:
1987                            encodedcontroller = _lev_ctrl_genpurpose4;
1988                            break;
1989                        case 5:
1990                            encodedcontroller = _lev_ctrl_portamentotime;
1991                            break;
1992                        case 64:
1993                            encodedcontroller = _lev_ctrl_sustainpedal;
1994                            break;
1995                        case 65:
1996                            encodedcontroller = _lev_ctrl_portamento;
1997                            break;
1998                        case 66:
1999                            encodedcontroller = _lev_ctrl_sostenutopedal;
2000                            break;
2001                        case 67:
2002                            encodedcontroller = _lev_ctrl_softpedal;
2003                            break;
2004                        case 80:
2005                            encodedcontroller = _lev_ctrl_genpurpose5;
2006                            break;
2007                        case 81:
2008                            encodedcontroller = _lev_ctrl_genpurpose6;
2009                            break;
2010                        case 82:
2011                            encodedcontroller = _lev_ctrl_genpurpose7;
2012                            break;
2013                        case 83:
2014                            encodedcontroller = _lev_ctrl_genpurpose8;
2015                            break;
2016                        case 91:
2017                            encodedcontroller = _lev_ctrl_effect1depth;
2018                            break;
2019                        case 92:
2020                            encodedcontroller = _lev_ctrl_effect2depth;
2021                            break;
2022                        case 93:
2023                            encodedcontroller = _lev_ctrl_effect3depth;
2024                            break;
2025                        case 94:
2026                            encodedcontroller = _lev_ctrl_effect4depth;
2027                            break;
2028                        case 95:
2029                            encodedcontroller = _lev_ctrl_effect5depth;
2030                            break;
2031                        default:
2032                            throw gig::Exception("leverage controller number is not supported by the gig format");
2033                    }
2034                    break;
2035                default:
2036                    throw gig::Exception("Unknown leverage controller type.");
2037          }          }
2038          VelocityResponseCurveScaling = _3ewa->ReadUint8();          return encodedcontroller;
2039          AttenuationControlTreshold   = _3ewa->ReadInt8();      }
2040          _3ewa->ReadInt32(); // unknown  
2041          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();      DimensionRegion::~DimensionRegion() {
2042          _3ewa->ReadInt16(); // unknown          Instances--;
2043          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          if (!Instances) {
2044          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);              // delete the velocity->volume tables
2045          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;              VelocityTableMap::iterator iter;
2046          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;              for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2047          else                                       DimensionBypass = dim_bypass_ctrl_none;                  double* pTable = iter->second;
2048          uint8_t pan = _3ewa->ReadUint8();                  if (pTable) delete[] pTable;
2049          Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;              }
2050          SelfMask = _3ewa->ReadInt8() & 0x01;              pVelocityTables->clear();
2051          _3ewa->ReadInt8(); // unknown              delete pVelocityTables;
2052          uint8_t lfo3ctrl = _3ewa->ReadUint8();              pVelocityTables = NULL;
2053          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits          }
2054          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5          if (VelocityTable) delete[] VelocityTable;
2055          InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7      }
2056          if (VCFType == vcf_type_lowpass) {  
2057              if (lfo3ctrl & 0x40) // bit 6      /**
2058                  VCFType = vcf_type_lowpassturbo;       * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2059          }       * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2060          AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());       * and VelocityResponseCurveScaling) involved are taken into account to
2061          uint8_t lfo2ctrl       = _3ewa->ReadUint8();       * calculate the amplitude factor. Use this method when a key was
2062          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits       * triggered to get the volume with which the sample should be played
2063          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7       * back.
2064          LFO2Sync               = lfo2ctrl & 0x20; // bit 5       *
2065          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2066          uint8_t lfo1ctrl       = _3ewa->ReadUint8();       * @returns                amplitude factor (between 0.0 and 1.0)
2067          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits       */
2068          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2069          LFO1Sync               = lfo1ctrl & 0x40; // bit 6          return pVelocityAttenuationTable[MIDIKeyVelocity];
2070          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))      }
2071                                                      : vcf_res_ctrl_none;  
2072          uint16_t eg3depth = _3ewa->ReadUint16();      double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2073          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */          return pVelocityReleaseTable[MIDIKeyVelocity];
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
2074      }      }
2075    
2076        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2077            return pVelocityCutoffTable[MIDIKeyVelocity];
2078        }
2079    
2080        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2081    
2082            // line-segment approximations of the 15 velocity curves
2083    
2084            // linear
2085            const int lin0[] = { 1, 1, 127, 127 };
2086            const int lin1[] = { 1, 21, 127, 127 };
2087            const int lin2[] = { 1, 45, 127, 127 };
2088            const int lin3[] = { 1, 74, 127, 127 };
2089            const int lin4[] = { 1, 127, 127, 127 };
2090    
2091            // non-linear
2092            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2093            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2094                                 127, 127 };
2095            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2096                                 127, 127 };
2097            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2098                                 127, 127 };
2099            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2100    
2101            // special
2102            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2103                                 113, 127, 127, 127 };
2104            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2105                                 118, 127, 127, 127 };
2106            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2107                                 85, 90, 91, 127, 127, 127 };
2108            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2109                                 117, 127, 127, 127 };
2110            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2111                                 127, 127 };
2112    
2113            // this is only used by the VCF velocity curve
2114            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2115                                 91, 127, 127, 127 };
2116    
2117            const int* const curves[] = { non0, non1, non2, non3, non4,
2118                                          lin0, lin1, lin2, lin3, lin4,
2119                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2120    
2121            double* const table = new double[128];
2122    
2123            const int* curve = curves[curveType * 5 + depth];
2124            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2125    
2126            table[0] = 0;
2127            for (int x = 1 ; x < 128 ; x++) {
2128    
2129                if (x > curve[2]) curve += 2;
2130                double y = curve[1] + (x - curve[0]) *
2131                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2132                y = y / 127;
2133    
2134                // Scale up for s > 20, down for s < 20. When
2135                // down-scaling, the curve still ends at 1.0.
2136                if (s < 20 && y >= 0.5)
2137                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2138                else
2139                    y = y * (s / 20.0);
2140                if (y > 1) y = 1;
2141    
2142                table[x] = y;
2143            }
2144            return table;
2145        }
2146    
2147    
2148  // *************** Region ***************  // *************** Region ***************
# Line 654  namespace gig { Line 2151  namespace gig {
2151      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2152          // Initialization          // Initialization
2153          Dimensions = 0;          Dimensions = 0;
2154          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2155              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2156          }          }
2157            Layers = 1;
2158            File* file = (File*) GetParent()->GetParent();
2159            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2160    
2161          // Actual Loading          // Actual Loading
2162    
# Line 665  namespace gig { Line 2165  namespace gig {
2165          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2166          if (_3lnk) {          if (_3lnk) {
2167              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2168              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2169                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2170                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2171                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2172                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2173                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2174                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2175                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2176                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2177                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2178                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2179                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2180                  }                  }
2181                  else { // active dimension                  else { // active dimension
2182                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2183                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2184                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2185                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2186                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2187                      Dimensions++;                      Dimensions++;
                 }  
                 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition  
             }  
2188    
2189              // check velocity dimension (if there is one) for custom defined zone ranges                      // if this is a layer dimension, remember the amount of layers
2190              for (uint i = 0; i < Dimensions; i++) {                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
                 dimension_def_t* pDimDef = pDimensionDefinitions + i;  
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         unsigned int bits[5] = {0,0,0,0,0};  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2191                  }                  }
2192                    _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2193              }              }
2194                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2195    
2196                // if there's a velocity dimension and custom velocity zone splits are used,
2197                // update the VelocityTables in the dimension regions
2198                UpdateVelocityTable();
2199    
2200                // jump to start of the wave pool indices (if not already there)
2201                if (file->pVersion && file->pVersion->major == 3)
2202                    _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2203                else
2204                    _3lnk->SetPos(44);
2205    
2206              // load sample references              // load sample references
             _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)  
2207              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2208                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2209                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2210                }
2211                GetSample(); // load global region sample reference
2212            } else {
2213                DimensionRegions = 0;
2214                for (int i = 0 ; i < 8 ; i++) {
2215                    pDimensionDefinitions[i].dimension  = dimension_none;
2216                    pDimensionDefinitions[i].bits       = 0;
2217                    pDimensionDefinitions[i].zones      = 0;
2218                }
2219            }
2220    
2221            // make sure there is at least one dimension region
2222            if (!DimensionRegions) {
2223                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2224                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2225                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2226                pDimensionRegions[0] = new DimensionRegion(_3ewl);
2227                DimensionRegions = 1;
2228            }
2229        }
2230    
2231        /**
2232         * Apply Region settings and all its DimensionRegions to the respective
2233         * RIFF chunks. You have to call File::Save() to make changes persistent.
2234         *
2235         * Usually there is absolutely no need to call this method explicitly.
2236         * It will be called automatically when File::Save() was called.
2237         *
2238         * @throws gig::Exception if samples cannot be dereferenced
2239         */
2240        void Region::UpdateChunks() {
2241            // in the gig format we don't care about the Region's sample reference
2242            // but we still have to provide some existing one to not corrupt the
2243            // file, so to avoid the latter we simply always assign the sample of
2244            // the first dimension region of this region
2245            pSample = pDimensionRegions[0]->pSample;
2246    
2247            // first update base class's chunks
2248            DLS::Region::UpdateChunks();
2249    
2250            // update dimension region's chunks
2251            for (int i = 0; i < DimensionRegions; i++) {
2252                pDimensionRegions[i]->UpdateChunks();
2253            }
2254    
2255            File* pFile = (File*) GetParent()->GetParent();
2256            const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2257            const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2258    
2259            // make sure '3lnk' chunk exists
2260            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2261            if (!_3lnk) {
2262                const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2263                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2264                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2265    
2266                // move 3prg to last position
2267                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2268            }
2269    
2270            // update dimension definitions in '3lnk' chunk
2271            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2272            store32(&pData[0], DimensionRegions);
2273            int shift = 0;
2274            for (int i = 0; i < iMaxDimensions; i++) {
2275                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2276                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2277                pData[6 + i * 8] = shift;
2278                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2279                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2280                // next 3 bytes unknown, always zero?
2281    
2282                shift += pDimensionDefinitions[i].bits;
2283            }
2284    
2285            // update wave pool table in '3lnk' chunk
2286            const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2287            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2288                int iWaveIndex = -1;
2289                if (i < DimensionRegions) {
2290                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2291                    File::SampleList::iterator iter = pFile->pSamples->begin();
2292                    File::SampleList::iterator end  = pFile->pSamples->end();
2293                    for (int index = 0; iter != end; ++iter, ++index) {
2294                        if (*iter == pDimensionRegions[i]->pSample) {
2295                            iWaveIndex = index;
2296                            break;
2297                        }
2298                    }
2299                    if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2300              }              }
2301                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2302          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2303      }      }
2304    
2305      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 748  namespace gig { Line 2318  namespace gig {
2318          }          }
2319      }      }
2320    
2321      Region::~Region() {      void Region::UpdateVelocityTable() {
2322          for (uint i = 0; i < Dimensions; i++) {          // get velocity dimension's index
2323              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          int veldim = -1;
2324            for (int i = 0 ; i < Dimensions ; i++) {
2325                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2326                    veldim = i;
2327                    break;
2328                }
2329            }
2330            if (veldim == -1) return;
2331    
2332            int step = 1;
2333            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2334            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2335            int end = step * pDimensionDefinitions[veldim].zones;
2336    
2337            // loop through all dimension regions for all dimensions except the velocity dimension
2338            int dim[8] = { 0 };
2339            for (int i = 0 ; i < DimensionRegions ; i++) {
2340    
2341                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2342                    pDimensionRegions[i]->VelocityUpperLimit) {
2343                    // create the velocity table
2344                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2345                    if (!table) {
2346                        table = new uint8_t[128];
2347                        pDimensionRegions[i]->VelocityTable = table;
2348                    }
2349                    int tableidx = 0;
2350                    int velocityZone = 0;
2351                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2352                        for (int k = i ; k < end ; k += step) {
2353                            DimensionRegion *d = pDimensionRegions[k];
2354                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2355                            velocityZone++;
2356                        }
2357                    } else { // gig2
2358                        for (int k = i ; k < end ; k += step) {
2359                            DimensionRegion *d = pDimensionRegions[k];
2360                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2361                            velocityZone++;
2362                        }
2363                    }
2364                } else {
2365                    if (pDimensionRegions[i]->VelocityTable) {
2366                        delete[] pDimensionRegions[i]->VelocityTable;
2367                        pDimensionRegions[i]->VelocityTable = 0;
2368                    }
2369                }
2370    
2371                int j;
2372                int shift = 0;
2373                for (j = 0 ; j < Dimensions ; j++) {
2374                    if (j == veldim) i += skipveldim; // skip velocity dimension
2375                    else {
2376                        dim[j]++;
2377                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2378                        else {
2379                            // skip unused dimension regions
2380                            dim[j] = 0;
2381                            i += ((1 << pDimensionDefinitions[j].bits) -
2382                                  pDimensionDefinitions[j].zones) << shift;
2383                        }
2384                    }
2385                    shift += pDimensionDefinitions[j].bits;
2386                }
2387                if (j == Dimensions) break;
2388            }
2389        }
2390    
2391        /** @brief Einstein would have dreamed of it - create a new dimension.
2392         *
2393         * Creates a new dimension with the dimension definition given by
2394         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2395         * There is a hard limit of dimensions and total amount of "bits" all
2396         * dimensions can have. This limit is dependant to what gig file format
2397         * version this file refers to. The gig v2 (and lower) format has a
2398         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2399         * format has a limit of 8.
2400         *
2401         * @param pDimDef - defintion of the new dimension
2402         * @throws gig::Exception if dimension of the same type exists already
2403         * @throws gig::Exception if amount of dimensions or total amount of
2404         *                        dimension bits limit is violated
2405         */
2406        void Region::AddDimension(dimension_def_t* pDimDef) {
2407            // check if max. amount of dimensions reached
2408            File* file = (File*) GetParent()->GetParent();
2409            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2410            if (Dimensions >= iMaxDimensions)
2411                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2412            // check if max. amount of dimension bits reached
2413            int iCurrentBits = 0;
2414            for (int i = 0; i < Dimensions; i++)
2415                iCurrentBits += pDimensionDefinitions[i].bits;
2416            if (iCurrentBits >= iMaxDimensions)
2417                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2418            const int iNewBits = iCurrentBits + pDimDef->bits;
2419            if (iNewBits > iMaxDimensions)
2420                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2421            // check if there's already a dimensions of the same type
2422            for (int i = 0; i < Dimensions; i++)
2423                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2424                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2425    
2426            // assign definition of new dimension
2427            pDimensionDefinitions[Dimensions] = *pDimDef;
2428    
2429            // auto correct certain dimension definition fields (where possible)
2430            pDimensionDefinitions[Dimensions].split_type  =
2431                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2432            pDimensionDefinitions[Dimensions].zone_size =
2433                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2434    
2435            // create new dimension region(s) for this new dimension
2436            for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2437                //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2438                RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2439                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2440                pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2441                DimensionRegions++;
2442            }
2443    
2444            Dimensions++;
2445    
2446            // if this is a layer dimension, update 'Layers' attribute
2447            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2448    
2449            UpdateVelocityTable();
2450        }
2451    
2452        /** @brief Delete an existing dimension.
2453         *
2454         * Deletes the dimension given by \a pDimDef and deletes all respective
2455         * dimension regions, that is all dimension regions where the dimension's
2456         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2457         * for example this would delete all dimension regions for the case(s)
2458         * where the sustain pedal is pressed down.
2459         *
2460         * @param pDimDef - dimension to delete
2461         * @throws gig::Exception if given dimension cannot be found
2462         */
2463        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2464            // get dimension's index
2465            int iDimensionNr = -1;
2466            for (int i = 0; i < Dimensions; i++) {
2467                if (&pDimensionDefinitions[i] == pDimDef) {
2468                    iDimensionNr = i;
2469                    break;
2470                }
2471            }
2472            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2473    
2474            // get amount of bits below the dimension to delete
2475            int iLowerBits = 0;
2476            for (int i = 0; i < iDimensionNr; i++)
2477                iLowerBits += pDimensionDefinitions[i].bits;
2478    
2479            // get amount ot bits above the dimension to delete
2480            int iUpperBits = 0;
2481            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2482                iUpperBits += pDimensionDefinitions[i].bits;
2483    
2484            // delete dimension regions which belong to the given dimension
2485            // (that is where the dimension's bit > 0)
2486            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2487                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2488                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2489                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2490                                        iObsoleteBit << iLowerBits |
2491                                        iLowerBit;
2492                        delete pDimensionRegions[iToDelete];
2493                        pDimensionRegions[iToDelete] = NULL;
2494                        DimensionRegions--;
2495                    }
2496                }
2497          }          }
2498          for (int i = 0; i < 32; i++) {  
2499            // defrag pDimensionRegions array
2500            // (that is remove the NULL spaces within the pDimensionRegions array)
2501            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2502                if (!pDimensionRegions[iTo]) {
2503                    if (iFrom <= iTo) iFrom = iTo + 1;
2504                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2505                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2506                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2507                        pDimensionRegions[iFrom] = NULL;
2508                    }
2509                }
2510            }
2511    
2512            // 'remove' dimension definition
2513            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2514                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2515            }
2516            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2517            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2518            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2519    
2520            Dimensions--;
2521    
2522            // if this was a layer dimension, update 'Layers' attribute
2523            if (pDimDef->dimension == dimension_layer) Layers = 1;
2524        }
2525    
2526        Region::~Region() {
2527            for (int i = 0; i < 256; i++) {
2528              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2529          }          }
2530      }      }
# Line 770  namespace gig { Line 2542  namespace gig {
2542       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2543       * etc.).       * etc.).
2544       *       *
2545       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2546       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2547       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2548       * @see             Dimensions       * @see             Dimensions
2549       */       */
2550      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2551          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
2552            int veldim = -1;
2553            int velbitpos;
2554            int bitpos = 0;
2555            int dimregidx = 0;
2556          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2557              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2558                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
2559                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
2560                      break;                  velbitpos = bitpos;
2561                  case split_type_customvelocity:              } else {
2562                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
2563                      break;                      case split_type_normal:
2564                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2565                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2566                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2567                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2568                                }
2569                            } else {
2570                                // gig2: evenly sized zones
2571                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2572                            }
2573                            break;
2574                        case split_type_bit: // the value is already the sought dimension bit number
2575                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2576                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2577                            break;
2578                    }
2579                    dimregidx |= bits << bitpos;
2580              }              }
2581                bitpos += pDimensionDefinitions[i].bits;
2582            }
2583            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2584            if (veldim != -1) {
2585                // (dimreg is now the dimension region for the lowest velocity)
2586                if (dimreg->VelocityTable) // custom defined zone ranges
2587                    bits = dimreg->VelocityTable[DimValues[veldim]];
2588                else // normal split type
2589                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2590    
2591                dimregidx |= bits << velbitpos;
2592                dimreg = pDimensionRegions[dimregidx];
2593          }          }
2594          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimreg;
2595      }      }
2596    
2597      /**      /**
# Line 800  namespace gig { Line 2599  namespace gig {
2599       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2600       * instead of calling this method directly!       * instead of calling this method directly!
2601       *       *
2602       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2603       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2604       *                 bit numbers       *                 bit numbers
2605       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2606       */       */
2607      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2608          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2609                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2610                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2611                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2612                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2613                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2614                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2615      }      }
2616    
2617      /**      /**
# Line 830  namespace gig { Line 2628  namespace gig {
2628          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2629      }      }
2630    
2631      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2632            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2633          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2634            if (!file->pWavePoolTable) return NULL;
2635          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2636          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2637            Sample* sample = file->GetFirstSample(pProgress);
2638          while (sample) {          while (sample) {
2639              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2640                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2641              sample = file->GetNextSample();              sample = file->GetNextSample();
2642          }          }
2643          return NULL;          return NULL;
# Line 846  namespace gig { Line 2648  namespace gig {
2648  // *************** Instrument ***************  // *************** Instrument ***************
2649  // *  // *
2650    
2651      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2652            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2653                { CHUNK_ID_INAM, 64 },
2654                { CHUNK_ID_ISFT, 12 },
2655                { 0, 0 }
2656            };
2657            pInfo->FixedStringLengths = fixedStringLengths;
2658    
2659          // Initialization          // Initialization
2660          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2661          RegionIndex = -1;          EffectSend = 0;
2662            Attenuation = 0;
2663            FineTune = 0;
2664            PitchbendRange = 0;
2665            PianoReleaseMode = false;
2666            DimensionKeyRange.low = 0;
2667            DimensionKeyRange.high = 0;
2668    
2669          // Loading          // Loading
2670          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 865  namespace gig { Line 2680  namespace gig {
2680                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2681                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2682              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2683          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2684    
2685            if (!pRegions) pRegions = new RegionList;
2686          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2687          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2688          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2689          RIFF::List* rgn = lrgn->GetFirstSubList();              while (rgn) {
2690          unsigned int iRegion = 0;                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2691          while (rgn) {                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2692              if (rgn->GetListType() == LIST_TYPE_RGN) {                      pRegions->push_back(new Region(this, rgn));
2693                  pRegions[iRegion] = new Region(this, rgn);                  }
2694                  iRegion++;                  rgn = lrgn->GetNextSubList();
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2695              }              }
2696                // Creating Region Key Table for fast lookup
2697                UpdateRegionKeyTable();
2698          }          }
2699    
2700            __notify_progress(pProgress, 1.0f); // notify done
2701      }      }
2702    
2703      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2704          for (uint i = 0; i < Regions; i++) {          RegionList::iterator iter = pRegions->begin();
2705              if (pRegions) {          RegionList::iterator end  = pRegions->end();
2706                  if (pRegions[i]) delete (pRegions[i]);          for (; iter != end; ++iter) {
2707                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2708                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2709                    RegionKeyTable[iKey] = pRegion;
2710              }              }
             delete[] pRegions;  
2711          }          }
2712      }      }
2713    
2714        Instrument::~Instrument() {
2715        }
2716    
2717        /**
2718         * Apply Instrument with all its Regions to the respective RIFF chunks.
2719         * You have to call File::Save() to make changes persistent.
2720         *
2721         * Usually there is absolutely no need to call this method explicitly.
2722         * It will be called automatically when File::Save() was called.
2723         *
2724         * @throws gig::Exception if samples cannot be dereferenced
2725         */
2726        void Instrument::UpdateChunks() {
2727            // first update base classes' chunks
2728            DLS::Instrument::UpdateChunks();
2729    
2730            // update Regions' chunks
2731            {
2732                RegionList::iterator iter = pRegions->begin();
2733                RegionList::iterator end  = pRegions->end();
2734                for (; iter != end; ++iter)
2735                    (*iter)->UpdateChunks();
2736            }
2737    
2738            // make sure 'lart' RIFF list chunk exists
2739            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2740            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2741            // make sure '3ewg' RIFF chunk exists
2742            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2743            if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2744            // update '3ewg' RIFF chunk
2745            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2746            store16(&pData[0], EffectSend);
2747            store32(&pData[2], Attenuation);
2748            store16(&pData[6], FineTune);
2749            store16(&pData[8], PitchbendRange);
2750            const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2751                                        DimensionKeyRange.low << 1;
2752            pData[10] = dimkeystart;
2753            pData[11] = DimensionKeyRange.high;
2754        }
2755    
2756      /**      /**
2757       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
2758       *       *
# Line 907  namespace gig { Line 2761  namespace gig {
2761       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2762       */       */
2763      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2764          if (!pRegions || Key > 127) return NULL;          if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2765          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2766    
2767          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2768              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2769                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 924  namespace gig { Line 2779  namespace gig {
2779       * @see      GetNextRegion()       * @see      GetNextRegion()
2780       */       */
2781      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2782          if (!Regions) return NULL;          if (!pRegions) return NULL;
2783          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2784          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2785      }      }
2786    
2787      /**      /**
# Line 938  namespace gig { Line 2793  namespace gig {
2793       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2794       */       */
2795      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2796          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
2797          return pRegions[RegionIndex++];          RegionsIterator++;
2798            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2799        }
2800    
2801        Region* Instrument::AddRegion() {
2802            // create new Region object (and its RIFF chunks)
2803            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2804            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2805            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2806            Region* pNewRegion = new Region(this, rgn);
2807            pRegions->push_back(pNewRegion);
2808            Regions = pRegions->size();
2809            // update Region key table for fast lookup
2810            UpdateRegionKeyTable();
2811            // done
2812            return pNewRegion;
2813        }
2814    
2815        void Instrument::DeleteRegion(Region* pRegion) {
2816            if (!pRegions) return;
2817            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2818            // update Region key table for fast lookup
2819            UpdateRegionKeyTable();
2820        }
2821    
2822    
2823    
2824    // *************** Group ***************
2825    // *
2826    
2827        /** @brief Constructor.
2828         *
2829         * @param file   - pointer to the gig::File object
2830         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2831         *                 NULL if this is a new Group
2832         */
2833        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2834            pFile      = file;
2835            pNameChunk = ck3gnm;
2836            ::LoadString(pNameChunk, Name);
2837        }
2838    
2839        Group::~Group() {
2840            // remove the chunk associated with this group (if any)
2841            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2842        }
2843    
2844        /** @brief Update chunks with current group settings.
2845         *
2846         * Apply current Group field values to the respective chunks. You have
2847         * to call File::Save() to make changes persistent.
2848         *
2849         * Usually there is absolutely no need to call this method explicitly.
2850         * It will be called automatically when File::Save() was called.
2851         */
2852        void Group::UpdateChunks() {
2853            // make sure <3gri> and <3gnl> list chunks exist
2854            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2855            if (!_3gri) {
2856                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2857                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2858            }
2859            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2860            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2861            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2862            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2863        }
2864    
2865        /**
2866         * Returns the first Sample of this Group. You have to call this method
2867         * once before you use GetNextSample().
2868         *
2869         * <b>Notice:</b> this method might block for a long time, in case the
2870         * samples of this .gig file were not scanned yet
2871         *
2872         * @returns  pointer address to first Sample or NULL if there is none
2873         *           applied to this Group
2874         * @see      GetNextSample()
2875         */
2876        Sample* Group::GetFirstSample() {
2877            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2878            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2879                if (pSample->GetGroup() == this) return pSample;
2880            }
2881            return NULL;
2882        }
2883    
2884        /**
2885         * Returns the next Sample of the Group. You have to call
2886         * GetFirstSample() once before you can use this method. By calling this
2887         * method multiple times it iterates through the Samples assigned to
2888         * this Group.
2889         *
2890         * @returns  pointer address to the next Sample of this Group or NULL if
2891         *           end reached
2892         * @see      GetFirstSample()
2893         */
2894        Sample* Group::GetNextSample() {
2895            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2896            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2897                if (pSample->GetGroup() == this) return pSample;
2898            }
2899            return NULL;
2900        }
2901    
2902        /**
2903         * Move Sample given by \a pSample from another Group to this Group.
2904         */
2905        void Group::AddSample(Sample* pSample) {
2906            pSample->pGroup = this;
2907        }
2908    
2909        /**
2910         * Move all members of this group to another group (preferably the 1st
2911         * one except this). This method is called explicitly by
2912         * File::DeleteGroup() thus when a Group was deleted. This code was
2913         * intentionally not placed in the destructor!
2914         */
2915        void Group::MoveAll() {
2916            // get "that" other group first
2917            Group* pOtherGroup = NULL;
2918            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2919                if (pOtherGroup != this) break;
2920            }
2921            if (!pOtherGroup) throw Exception(
2922                "Could not move samples to another group, since there is no "
2923                "other Group. This is a bug, report it!"
2924            );
2925            // now move all samples of this group to the other group
2926            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2927                pOtherGroup->AddSample(pSample);
2928            }
2929      }      }
2930    
2931    
# Line 947  namespace gig { Line 2933  namespace gig {
2933  // *************** File ***************  // *************** File ***************
2934  // *  // *
2935    
2936        // File version 2.0, 1998-06-28
2937        const DLS::version_t File::VERSION_2 = {
2938            0, 2, 19980628 & 0xffff, 19980628 >> 16
2939        };
2940    
2941        // File version 3.0, 2003-03-31
2942        const DLS::version_t File::VERSION_3 = {
2943            0, 3, 20030331 & 0xffff, 20030331 >> 16
2944        };
2945    
2946        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2947            { CHUNK_ID_IARL, 256 },
2948            { CHUNK_ID_IART, 128 },
2949            { CHUNK_ID_ICMS, 128 },
2950            { CHUNK_ID_ICMT, 1024 },
2951            { CHUNK_ID_ICOP, 128 },
2952            { CHUNK_ID_ICRD, 128 },
2953            { CHUNK_ID_IENG, 128 },
2954            { CHUNK_ID_IGNR, 128 },
2955            { CHUNK_ID_IKEY, 128 },
2956            { CHUNK_ID_IMED, 128 },
2957            { CHUNK_ID_INAM, 128 },
2958            { CHUNK_ID_IPRD, 128 },
2959            { CHUNK_ID_ISBJ, 128 },
2960            { CHUNK_ID_ISFT, 128 },
2961            { CHUNK_ID_ISRC, 128 },
2962            { CHUNK_ID_ISRF, 128 },
2963            { CHUNK_ID_ITCH, 128 },
2964            { 0, 0 }
2965        };
2966    
2967        File::File() : DLS::File() {
2968            pGroups = NULL;
2969            pInfo->FixedStringLengths = FixedStringLengths;
2970            pInfo->ArchivalLocation = String(256, ' ');
2971    
2972            // add some mandatory chunks to get the file chunks in right
2973            // order (INFO chunk will be moved to first position later)
2974            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2975            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2976        }
2977    
2978      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2979          pSamples     = NULL;          pGroups = NULL;
2980          pInstruments = NULL;          pInfo->FixedStringLengths = FixedStringLengths;
2981      }      }
2982    
2983      Sample* File::GetFirstSample() {      File::~File() {
2984          if (!pSamples) LoadSamples();          if (pGroups) {
2985                std::list<Group*>::iterator iter = pGroups->begin();
2986                std::list<Group*>::iterator end  = pGroups->end();
2987                while (iter != end) {
2988                    delete *iter;
2989                    ++iter;
2990                }
2991                delete pGroups;
2992            }
2993        }
2994    
2995        Sample* File::GetFirstSample(progress_t* pProgress) {
2996            if (!pSamples) LoadSamples(pProgress);
2997          if (!pSamples) return NULL;          if (!pSamples) return NULL;
2998          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
2999          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 965  namespace gig { Line 3005  namespace gig {
3005          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3006      }      }
3007    
3008        /** @brief Add a new sample.
3009         *
3010         * This will create a new Sample object for the gig file. You have to
3011         * call Save() to make this persistent to the file.
3012         *
3013         * @returns pointer to new Sample object
3014         */
3015        Sample* File::AddSample() {
3016           if (!pSamples) LoadSamples();
3017           __ensureMandatoryChunksExist();
3018           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3019           // create new Sample object and its respective 'wave' list chunk
3020           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3021           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3022    
3023           // add mandatory chunks to get the chunks in right order
3024           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3025           wave->AddSubList(LIST_TYPE_INFO);
3026    
3027           pSamples->push_back(pSample);
3028           return pSample;
3029        }
3030    
3031        /** @brief Delete a sample.
3032         *
3033         * This will delete the given Sample object from the gig file. You have
3034         * to call Save() to make this persistent to the file.
3035         *
3036         * @param pSample - sample to delete
3037         * @throws gig::Exception if given sample could not be found
3038         */
3039        void File::DeleteSample(Sample* pSample) {
3040            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3041            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3042            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3043            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3044            pSamples->erase(iter);
3045            delete pSample;
3046        }
3047    
3048      void File::LoadSamples() {      void File::LoadSamples() {
3049          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
3050          if (wvpl) {      }
3051              unsigned long wvplFileOffset = wvpl->GetFilePos();  
3052              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
3053              while (wave) {          // Groups must be loaded before samples, because samples will try
3054                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
3055                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
3056                      unsigned long waveFileOffset = wave->GetFilePos();  
3057                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
3058    
3059            RIFF::File* file = pRIFF;
3060    
3061            // just for progress calculation
3062            int iSampleIndex  = 0;
3063            int iTotalSamples = WavePoolCount;
3064    
3065            // check if samples should be loaded from extension files
3066            int lastFileNo = 0;
3067            for (int i = 0 ; i < WavePoolCount ; i++) {
3068                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3069            }
3070            String name(pRIFF->GetFileName());
3071            int nameLen = name.length();
3072            char suffix[6];
3073            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3074    
3075            for (int fileNo = 0 ; ; ) {
3076                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3077                if (wvpl) {
3078                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3079                    RIFF::List* wave = wvpl->GetFirstSubList();
3080                    while (wave) {
3081                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3082                            // notify current progress
3083                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3084                            __notify_progress(pProgress, subprogress);
3085    
3086                            unsigned long waveFileOffset = wave->GetFilePos();
3087                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3088    
3089                            iSampleIndex++;
3090                        }
3091                        wave = wvpl->GetNextSubList();
3092                  }                  }
3093                  wave = wvpl->GetNextSubList();  
3094              }                  if (fileNo == lastFileNo) break;
3095    
3096                    // open extension file (*.gx01, *.gx02, ...)
3097                    fileNo++;
3098                    sprintf(suffix, ".gx%02d", fileNo);
3099                    name.replace(nameLen, 5, suffix);
3100                    file = new RIFF::File(name);
3101                    ExtensionFiles.push_back(file);
3102                } else break;
3103          }          }
3104          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
3105            __notify_progress(pProgress, 1.0); // notify done
3106      }      }
3107    
3108      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3109          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3110          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3111          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3112          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3113      }      }
3114    
3115      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3116          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3117          InstrumentsIterator++;          InstrumentsIterator++;
3118          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3119        }
3120    
3121        /**
3122         * Returns the instrument with the given index.
3123         *
3124         * @param index     - number of the sought instrument (0..n)
3125         * @param pProgress - optional: callback function for progress notification
3126         * @returns  sought instrument or NULL if there's no such instrument
3127         */
3128        Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3129            if (!pInstruments) {
3130                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3131    
3132                // sample loading subtask
3133                progress_t subprogress;
3134                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3135                __notify_progress(&subprogress, 0.0f);
3136                GetFirstSample(&subprogress); // now force all samples to be loaded
3137                __notify_progress(&subprogress, 1.0f);
3138    
3139                // instrument loading subtask
3140                if (pProgress && pProgress->callback) {
3141                    subprogress.__range_min = subprogress.__range_max;
3142                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3143                }
3144                __notify_progress(&subprogress, 0.0f);
3145                LoadInstruments(&subprogress);
3146                __notify_progress(&subprogress, 1.0f);
3147            }
3148            if (!pInstruments) return NULL;
3149            InstrumentsIterator = pInstruments->begin();
3150            for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3151                if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3152                InstrumentsIterator++;
3153            }
3154            return NULL;
3155        }
3156    
3157        /** @brief Add a new instrument definition.
3158         *
3159         * This will create a new Instrument object for the gig file. You have
3160         * to call Save() to make this persistent to the file.
3161         *
3162         * @returns pointer to new Instrument object
3163         */
3164        Instrument* File::AddInstrument() {
3165           if (!pInstruments) LoadInstruments();
3166           __ensureMandatoryChunksExist();
3167           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3168           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3169    
3170           // add mandatory chunks to get the chunks in right order
3171           lstInstr->AddSubList(LIST_TYPE_INFO);
3172    
3173           Instrument* pInstrument = new Instrument(this, lstInstr);
3174    
3175           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3176    
3177           // this string is needed for the gig to be loadable in GSt:
3178           pInstrument->pInfo->Software = "Endless Wave";
3179    
3180           pInstruments->push_back(pInstrument);
3181           return pInstrument;
3182        }
3183    
3184        /** @brief Delete an instrument.
3185         *
3186         * This will delete the given Instrument object from the gig file. You
3187         * have to call Save() to make this persistent to the file.
3188         *
3189         * @param pInstrument - instrument to delete
3190         * @throws gig::Exception if given instrument could not be found
3191         */
3192        void File::DeleteInstrument(Instrument* pInstrument) {
3193            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3194            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3195            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3196            pInstruments->erase(iter);
3197            delete pInstrument;
3198      }      }
3199    
3200      void File::LoadInstruments() {      void File::LoadInstruments() {
3201            LoadInstruments(NULL);
3202        }
3203    
3204        void File::LoadInstruments(progress_t* pProgress) {
3205            if (!pInstruments) pInstruments = new InstrumentList;
3206          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3207          if (lstInstruments) {          if (lstInstruments) {
3208                int iInstrumentIndex = 0;
3209              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3210              while (lstInstr) {              while (lstInstr) {
3211                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3212                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3213                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3214                        __notify_progress(pProgress, localProgress);
3215    
3216                        // divide local progress into subprogress for loading current Instrument
3217                        progress_t subprogress;
3218                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3219    
3220                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3221    
3222                        iInstrumentIndex++;
3223                  }                  }
3224                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3225              }              }
3226                __notify_progress(pProgress, 1.0); // notify done
3227            }
3228        }
3229    
3230        /// Updates the 3crc chunk with the checksum of a sample. The
3231        /// update is done directly to disk, as this method is called
3232        /// after File::Save()
3233        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3234            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3235            if (!_3crc) return;
3236    
3237            // get the index of the sample
3238            int iWaveIndex = -1;
3239            File::SampleList::iterator iter = pSamples->begin();
3240            File::SampleList::iterator end  = pSamples->end();
3241            for (int index = 0; iter != end; ++iter, ++index) {
3242                if (*iter == pSample) {
3243                    iWaveIndex = index;
3244                    break;
3245                }
3246            }
3247            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3248    
3249            // write the CRC-32 checksum to disk
3250            _3crc->SetPos(iWaveIndex * 8);
3251            uint32_t tmp = 1;
3252            _3crc->WriteUint32(&tmp); // unknown, always 1?
3253            _3crc->WriteUint32(&crc);
3254        }
3255    
3256        Group* File::GetFirstGroup() {
3257            if (!pGroups) LoadGroups();
3258            // there must always be at least one group
3259            GroupsIterator = pGroups->begin();
3260            return *GroupsIterator;
3261        }
3262    
3263        Group* File::GetNextGroup() {
3264            if (!pGroups) return NULL;
3265            ++GroupsIterator;
3266            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3267        }
3268    
3269        /**
3270         * Returns the group with the given index.
3271         *
3272         * @param index - number of the sought group (0..n)
3273         * @returns sought group or NULL if there's no such group
3274         */
3275        Group* File::GetGroup(uint index) {
3276            if (!pGroups) LoadGroups();
3277            GroupsIterator = pGroups->begin();
3278            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3279                if (i == index) return *GroupsIterator;
3280                ++GroupsIterator;
3281            }
3282            return NULL;
3283        }
3284    
3285        Group* File::AddGroup() {
3286            if (!pGroups) LoadGroups();
3287            // there must always be at least one group
3288            __ensureMandatoryChunksExist();
3289            Group* pGroup = new Group(this, NULL);
3290            pGroups->push_back(pGroup);
3291            return pGroup;
3292        }
3293    
3294        /** @brief Delete a group and its samples.
3295         *
3296         * This will delete the given Group object and all the samples that
3297         * belong to this group from the gig file. You have to call Save() to
3298         * make this persistent to the file.
3299         *
3300         * @param pGroup - group to delete
3301         * @throws gig::Exception if given group could not be found
3302         */
3303        void File::DeleteGroup(Group* pGroup) {
3304            if (!pGroups) LoadGroups();
3305            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3306            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3307            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3308            // delete all members of this group
3309            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3310                DeleteSample(pSample);
3311            }
3312            // now delete this group object
3313            pGroups->erase(iter);
3314            delete pGroup;
3315        }
3316    
3317        /** @brief Delete a group.
3318         *
3319         * This will delete the given Group object from the gig file. All the
3320         * samples that belong to this group will not be deleted, but instead
3321         * be moved to another group. You have to call Save() to make this
3322         * persistent to the file.
3323         *
3324         * @param pGroup - group to delete
3325         * @throws gig::Exception if given group could not be found
3326         */
3327        void File::DeleteGroupOnly(Group* pGroup) {
3328            if (!pGroups) LoadGroups();
3329            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3330            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3331            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3332            // move all members of this group to another group
3333            pGroup->MoveAll();
3334            pGroups->erase(iter);
3335            delete pGroup;
3336        }
3337    
3338        void File::LoadGroups() {
3339            if (!pGroups) pGroups = new std::list<Group*>;
3340            // try to read defined groups from file
3341            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3342            if (lst3gri) {
3343                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3344                if (lst3gnl) {
3345                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3346                    while (ck) {
3347                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3348                            pGroups->push_back(new Group(this, ck));
3349                        }
3350                        ck = lst3gnl->GetNextSubChunk();
3351                    }
3352                }
3353            }
3354            // if there were no group(s), create at least the mandatory default group
3355            if (!pGroups->size()) {
3356                Group* pGroup = new Group(this, NULL);
3357                pGroup->Name = "Default Group";
3358                pGroups->push_back(pGroup);
3359            }
3360        }
3361    
3362        /**
3363         * Apply all the gig file's current instruments, samples, groups and settings
3364         * to the respective RIFF chunks. You have to call Save() to make changes
3365         * persistent.
3366         *
3367         * Usually there is absolutely no need to call this method explicitly.
3368         * It will be called automatically when File::Save() was called.
3369         *
3370         * @throws Exception - on errors
3371         */
3372        void File::UpdateChunks() {
3373            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3374    
3375            // first update base class's chunks
3376            DLS::File::UpdateChunks();
3377    
3378            if (newFile) {
3379                // INFO was added by Resource::UpdateChunks - make sure it
3380                // is placed first in file
3381                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3382                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3383                if (first != info) {
3384                    pRIFF->MoveSubChunk(info, first);
3385                }
3386            }
3387    
3388            // update group's chunks
3389            if (pGroups) {
3390                std::list<Group*>::iterator iter = pGroups->begin();
3391                std::list<Group*>::iterator end  = pGroups->end();
3392                for (; iter != end; ++iter) {
3393                    (*iter)->UpdateChunks();
3394                }
3395            }
3396    
3397            // update einf chunk
3398    
3399            // The einf chunk contains statistics about the gig file, such
3400            // as the number of regions and samples used by each
3401            // instrument. It is divided in equally sized parts, where the
3402            // first part contains information about the whole gig file,
3403            // and the rest of the parts map to each instrument in the
3404            // file.
3405            //
3406            // At the end of each part there is a bit map of each sample
3407            // in the file, where a set bit means that the sample is used
3408            // by the file/instrument.
3409            //
3410            // Note that there are several fields with unknown use. These
3411            // are set to zero.
3412    
3413            int sublen = pSamples->size() / 8 + 49;
3414            int einfSize = (Instruments + 1) * sublen;
3415    
3416            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3417            if (einf) {
3418                if (einf->GetSize() != einfSize) {
3419                    einf->Resize(einfSize);
3420                    memset(einf->LoadChunkData(), 0, einfSize);
3421                }
3422            } else if (newFile) {
3423                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3424            }
3425            if (einf) {
3426                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3427    
3428                std::map<gig::Sample*,int> sampleMap;
3429                int sampleIdx = 0;
3430                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3431                    sampleMap[pSample] = sampleIdx++;
3432                }
3433    
3434                int totnbusedsamples = 0;
3435                int totnbusedchannels = 0;
3436                int totnbregions = 0;
3437                int totnbdimregions = 0;
3438                int instrumentIdx = 0;
3439    
3440                memset(&pData[48], 0, sublen - 48);
3441    
3442                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3443                     instrument = GetNextInstrument()) {
3444                    int nbusedsamples = 0;
3445                    int nbusedchannels = 0;
3446                    int nbdimregions = 0;
3447    
3448                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3449    
3450                    for (Region* region = instrument->GetFirstRegion() ; region ;
3451                         region = instrument->GetNextRegion()) {
3452                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3453                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3454                            if (d->pSample) {
3455                                int sampleIdx = sampleMap[d->pSample];
3456                                int byte = 48 + sampleIdx / 8;
3457                                int bit = 1 << (sampleIdx & 7);
3458                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3459                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3460                                    nbusedsamples++;
3461                                    nbusedchannels += d->pSample->Channels;
3462    
3463                                    if ((pData[byte] & bit) == 0) {
3464                                        pData[byte] |= bit;
3465                                        totnbusedsamples++;
3466                                        totnbusedchannels += d->pSample->Channels;
3467                                    }
3468                                }
3469                            }
3470                        }
3471                        nbdimregions += region->DimensionRegions;
3472                    }
3473                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3474                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3475                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3476                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3477                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3478                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3479                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3480                    // next 12 bytes unknown
3481                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3482                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3483                    // next 4 bytes unknown
3484    
3485                    totnbregions += instrument->Regions;
3486                    totnbdimregions += nbdimregions;
3487                    instrumentIdx++;
3488                }
3489                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3490                // store32(&pData[0], sublen);
3491                store32(&pData[4], totnbusedchannels);
3492                store32(&pData[8], totnbusedsamples);
3493                store32(&pData[12], Instruments);
3494                store32(&pData[16], totnbregions);
3495                store32(&pData[20], totnbdimregions);
3496                // next 12 bytes unknown
3497                // next 4 bytes unknown, always 0?
3498                store32(&pData[40], pSamples->size());
3499                // next 4 bytes unknown
3500            }
3501    
3502            // update 3crc chunk
3503    
3504            // The 3crc chunk contains CRC-32 checksums for the
3505            // samples. The actual checksum values will be filled in
3506            // later, by Sample::Write.
3507    
3508            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3509            if (_3crc) {
3510                _3crc->Resize(pSamples->size() * 8);
3511            } else if (newFile) {
3512                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3513                _3crc->LoadChunkData();
3514          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
3515      }      }
3516    
3517    
# Line 1022  namespace gig { Line 3526  namespace gig {
3526          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
3527      }      }
3528    
3529    
3530    // *************** functions ***************
3531    // *
3532    
3533        /**
3534         * Returns the name of this C++ library. This is usually "libgig" of
3535         * course. This call is equivalent to RIFF::libraryName() and
3536         * DLS::libraryName().
3537         */
3538        String libraryName() {
3539            return PACKAGE;
3540        }
3541    
3542        /**
3543         * Returns version of this C++ library. This call is equivalent to
3544         * RIFF::libraryVersion() and DLS::libraryVersion().
3545         */
3546        String libraryVersion() {
3547            return VERSION;
3548        }
3549    
3550  } // namespace gig  } // namespace gig

Legend:
Removed from v.2  
changed lines
  Added in v.1207

  ViewVC Help
Powered by ViewVC