/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1050 by schoenebeck, Fri Mar 2 01:04:45 2007 UTC revision 2394 by schoenebeck, Mon Jan 7 23:23:58 2013 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file access library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2013 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 25  Line 25 
25    
26  #include "helper.h"  #include "helper.h"
27    
28    #include <algorithm>
29  #include <math.h>  #include <math.h>
30  #include <iostream>  #include <iostream>
31    
# Line 254  namespace { Line 255  namespace {
255  }  }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
# Line 279  namespace { Line 367  namespace {
367       *                         is located, 0 otherwise       *                         is located, 0 otherwise
368       */       */
369      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376          FileNo = fileNo;          FileNo = fileNo;
377    
378            __resetCRC(crc);
379    
380          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381          if (pCk3gix) {          if (pCk3gix) {
382              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
# Line 314  namespace { Line 408  namespace {
408              Manufacturer  = 0;              Manufacturer  = 0;
409              Product       = 0;              Product       = 0;
410              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411              MIDIUnityNote = 64;              MIDIUnityNote = 60;
412              FineTune      = 0;              FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414              SMPTEOffset   = 0;              SMPTEOffset   = 0;
415              Loops         = 0;              Loops         = 0;
416              LoopID        = 0;              LoopID        = 0;
417                LoopType      = loop_type_normal;
418              LoopStart     = 0;              LoopStart     = 0;
419              LoopEnd       = 0;              LoopEnd       = 0;
420              LoopFraction  = 0;              LoopFraction  = 0;
# Line 374  namespace { Line 470  namespace {
470    
471          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
472          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
474                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475                memset(pCkSmpl->LoadChunkData(), 0, 60);
476            }
477          // update 'smpl' chunk          // update 'smpl' chunk
478          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
481          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
482          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
483          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
484          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
485          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
486          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
487          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
488    
489          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
490    
491          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
492          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
493          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
494          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
495          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
496          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
497    
498          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
499          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 513  namespace {
513          }          }
514          // update '3gix' chunk          // update '3gix' chunk
515          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
516          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
517      }      }
518    
519      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 578  namespace { Line 677  namespace {
677          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680            SetPos(0); // reset read position to begin of sample
681          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
682          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 615  namespace { Line 715  namespace {
715          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
717          RAMCache.Size   = 0;          RAMCache.Size   = 0;
718            RAMCache.NullExtensionSize = 0;
719      }      }
720    
721      /** @brief Resize sample.      /** @brief Resize sample.
# Line 809  namespace { Line 910  namespace {
910                                  }                                  }
911    
912                                  // reverse the sample frames for backward playback                                  // reverse the sample frames for backward playback
913                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915                              }                              }
916                          } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
917                          break;                          break;
# Line 1099  namespace { Line 1201  namespace {
1201       *       *
1202       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1203       *       *
1204         * For 16 bit samples, the data in the source buffer should be
1205         * int16_t (using native endianness). For 24 bit, the buffer
1206         * should contain three bytes per sample, little-endian.
1207         *
1208       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1209       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1210       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1107  namespace { Line 1213  namespace {
1213       */       */
1214      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216          return DLS::Sample::Write(pBuffer, SampleCount);  
1217            // if this is the first write in this sample, reset the
1218            // checksum calculator
1219            if (pCkData->GetPos() == 0) {
1220                __resetCRC(crc);
1221            }
1222            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223            unsigned long res;
1224            if (BitDepth == 24) {
1225                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226            } else { // 16 bit
1227                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228                                    : pCkData->Write(pBuffer, SampleCount, 2);
1229            }
1230            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231    
1232            // if this is the last write, update the checksum chunk in the
1233            // file
1234            if (pCkData->GetPos() == pCkData->GetSize()) {
1235                File* pFile = static_cast<File*>(GetParent());
1236                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237            }
1238            return res;
1239      }      }
1240    
1241      /**      /**
# Line 1183  namespace { Line 1311  namespace {
1311      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1312      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313    
1314      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315          Instances++;          Instances++;
1316    
1317          pSample = NULL;          pSample = NULL;
1318            pRegion = pParent;
1319    
1320            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321            else memset(&Crossfade, 0, 4);
1322    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1323          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324    
1325          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
# Line 1338  namespace { Line 1469  namespace {
1469                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1470                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1471              }              }
1472                if (_3ewa->RemainingBytes() >= 8) {
1473                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1474                } else {
1475                    memset(DimensionUpperLimits, 0, 8);
1476                }
1477          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1478              // use default values              // use default values
1479              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1347  namespace { Line 1483  namespace {
1483              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1484              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1485              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1486              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1487              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1488              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1489              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1490              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1491              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1364  namespace { Line 1500  namespace {
1500              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1501              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1502              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1503              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1504              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1505              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1506              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1507              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1508              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1509              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1510              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1511              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1512              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1513              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1514              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1515              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1516              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1517              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1418  namespace { Line 1554  namespace {
1554              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1555              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1556              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1557                memset(DimensionUpperLimits, 127, 8);
1558          }          }
1559    
1560          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1562                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1563    
1564          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1565          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1566                                        ReleaseVelocityResponseDepth
1567                                    );
1568    
1569            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570                                                          VCFVelocityDynamicRange,
1571                                                          VCFVelocityScale,
1572                                                          VCFCutoffController);
1573    
1574          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575          // velocity response curves for release time are not used even          VelocityTable = 0;
1576          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1577    
1578          curveType = VCFVelocityCurve;      /*
1579          depth = VCFVelocityDynamicRange;       * Constructs a DimensionRegion by copying all parameters from
1580         * another DimensionRegion
1581         */
1582        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583            Instances++;
1584            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1585            *this = src; // default memberwise shallow copy of all parameters
1586            pParentList = _3ewl; // restore the chunk pointer
1587    
1588          // even stranger GSt: two of the velocity response curves for          // deep copy of owned structures
1589          // filter cutoff are not used, instead another special curve          if (src.VelocityTable) {
1590          // is chosen. This curve is not used anywhere else.              VelocityTable = new uint8_t[128];
1591          if ((curveType == curve_type_nonlinear && depth == 0) ||              for (int k = 0 ; k < 128 ; k++)
1592              (curveType == curve_type_special   && depth == 4)) {                  VelocityTable[k] = src.VelocityTable[k];
1593              curveType = curve_type_special;          }
1594              depth = 5;          if (src.pSampleLoops) {
1595                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1596                for (int k = 0 ; k < src.SampleLoops ; k++)
1597                    pSampleLoops[k] = src.pSampleLoops[k];
1598            }
1599        }
1600        
1601        /**
1602         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1603         * and assign it to this object.
1604         *
1605         * Note that all sample pointers referenced by @a orig are simply copied as
1606         * memory address. Thus the respective samples are shared, not duplicated!
1607         *
1608         * @param orig - original DimensionRegion object to be copied from
1609         */
1610        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1611            // delete all allocated data first
1612            if (VelocityTable) delete [] VelocityTable;
1613            if (pSampleLoops) delete [] pSampleLoops;
1614            
1615            // backup parent list pointer
1616            RIFF::List* p = pParentList;
1617            
1618            //NOTE: copy code copied from assignment constructor above, see comment there as well
1619            
1620            *this = *orig; // default memberwise shallow copy of all parameters
1621            pParentList = p; // restore the chunk pointer
1622    
1623            // deep copy of owned structures
1624            if (orig->VelocityTable) {
1625                VelocityTable = new uint8_t[128];
1626                for (int k = 0 ; k < 128 ; k++)
1627                    VelocityTable[k] = orig->VelocityTable[k];
1628          }          }
1629          pVelocityCutoffTable = GetVelocityTable(curveType, depth,          if (orig->pSampleLoops) {
1630                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1631                for (int k = 0 ; k < orig->SampleLoops ; k++)
1632                    pSampleLoops[k] = orig->pSampleLoops[k];
1633            }
1634        }
1635    
1636        /**
1637         * Updates the respective member variable and updates @c SampleAttenuation
1638         * which depends on this value.
1639         */
1640        void DimensionRegion::SetGain(int32_t gain) {
1641            DLS::Sampler::SetGain(gain);
1642          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
1643      }      }
1644    
1645      /**      /**
# Line 1466  namespace { Line 1653  namespace {
1653          // first update base class's chunk          // first update base class's chunk
1654          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1655    
1656            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1657            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1658            pData[12] = Crossfade.in_start;
1659            pData[13] = Crossfade.in_end;
1660            pData[14] = Crossfade.out_start;
1661            pData[15] = Crossfade.out_end;
1662    
1663          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1664          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1665          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1666          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1667                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1668                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1669            }
1670            pData = (uint8_t*) _3ewa->LoadChunkData();
1671    
1672          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1673    
1674          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = _3ewa->GetNewSize();
1675          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1676    
1677          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1678          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1679    
1680          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1681          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1682    
1683          // next 2 bytes unknown          // next 2 bytes unknown
1684    
1685          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1686    
1687          // next 2 bytes unknown          // next 2 bytes unknown
1688    
1689          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1690    
1691          // next 2 bytes unknown          // next 2 bytes unknown
1692    
1693          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1694    
1695          // next 2 bytes unknown          // next 2 bytes unknown
1696    
1697          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1698    
1699          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1700          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1701    
1702          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1703          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1704    
1705          // next 2 bytes unknown          // next 2 bytes unknown
1706    
1707          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1708    
1709          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1710          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1711    
1712          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1713          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1714    
1715          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1716              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
1717              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1718              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1719              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1720          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1721    
1722          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1723          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1724    
1725          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1726              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
1727              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1728              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1729              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1730          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1731    
1732          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1733          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1734    
1735          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1736          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1737    
1738          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1739          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1740    
1741          // next 2 bytes unknown          // next 2 bytes unknown
1742    
1743          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1744    
1745          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1746          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1747    
1748          // next 2 bytes unknown          // next 2 bytes unknown
1749    
1750          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1751    
1752          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1753          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1754    
1755          // next 2 bytes unknown          // next 2 bytes unknown
1756    
1757          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1758    
1759          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1760          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1761    
1762          // next 2 bytes unknown          // next 2 bytes unknown
1763    
1764          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1765    
1766          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1767          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1768    
1769          // next 2 bytes unknown          // next 2 bytes unknown
1770    
1771          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1772    
1773          {          {
1774              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 1786  namespace {
1786                  default:                  default:
1787                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1788              }              }
1789              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1790          }          }
1791    
1792          {          {
# Line 1607  namespace { Line 1805  namespace {
1805                  default:                  default:
1806                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1807              }              }
1808              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1809          }          }
1810    
1811          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1812    
1813          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1814    
1815          // next 4 bytes unknown          // next 4 bytes unknown
1816    
1817          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1818    
1819          // next 2 bytes unknown          // next 2 bytes unknown
1820    
# Line 1635  namespace { Line 1833  namespace {
1833                  default:                  default:
1834                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1835              }              }
1836              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1837          }          }
1838    
1839          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1840          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1841    
1842          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1843          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1844    
1845          // next byte unknown          // next byte unknown
1846    
# Line 1651  namespace { Line 1849  namespace {
1849              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1850              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1851              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1852              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1853          }          }
1854    
1855          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1856          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1857    
1858          {          {
1859              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1860              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1861              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1862              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1863              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1864          }          }
1865    
1866          {          {
# Line 1671  namespace { Line 1869  namespace {
1869              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1870              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1871                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1872              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1873          }          }
1874    
1875          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1876                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1877          memcpy(&pData[116], &eg3depth, 1);          store16(&pData[116], eg3depth);
1878    
1879          // next 2 bytes unknown          // next 2 bytes unknown
1880    
1881          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1882          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1883    
1884          {          {
1885              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1886              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1887              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1888              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1889          }          }
1890    
1891          // next 2 bytes unknown          // next 2 bytes unknown
1892    
1893          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1894    
1895          // next 3 bytes unknown          // next 3 bytes unknown
1896    
1897          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1898    
1899          // next 2 bytes unknown          // next 2 bytes unknown
1900    
1901          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1902          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1903    
1904          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1905                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1906          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1907    
1908          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1909    
1910          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1911                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1912          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1913    
1914          // next byte unknown          // next byte unknown
1915    
1916          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1917                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1918          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1919    
1920          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1921                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1922          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1923    
1924          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
1925                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1926          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1927    
1928          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1929          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1930    
1931            if (chunksize >= 148) {
1932                memcpy(&pData[140], DimensionUpperLimits, 8);
1933            }
1934        }
1935    
1936        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1937            curve_type_t curveType = releaseVelocityResponseCurve;
1938            uint8_t depth = releaseVelocityResponseDepth;
1939            // this models a strange behaviour or bug in GSt: two of the
1940            // velocity response curves for release time are not used even
1941            // if specified, instead another curve is chosen.
1942            if ((curveType == curve_type_nonlinear && depth == 0) ||
1943                (curveType == curve_type_special   && depth == 4)) {
1944                curveType = curve_type_nonlinear;
1945                depth = 3;
1946            }
1947            return GetVelocityTable(curveType, depth, 0);
1948        }
1949    
1950        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1951                                                        uint8_t vcfVelocityDynamicRange,
1952                                                        uint8_t vcfVelocityScale,
1953                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1954        {
1955            curve_type_t curveType = vcfVelocityCurve;
1956            uint8_t depth = vcfVelocityDynamicRange;
1957            // even stranger GSt: two of the velocity response curves for
1958            // filter cutoff are not used, instead another special curve
1959            // is chosen. This curve is not used anywhere else.
1960            if ((curveType == curve_type_nonlinear && depth == 0) ||
1961                (curveType == curve_type_special   && depth == 4)) {
1962                curveType = curve_type_special;
1963                depth = 5;
1964            }
1965            return GetVelocityTable(curveType, depth,
1966                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1967                                        ? vcfVelocityScale : 0);
1968      }      }
1969    
1970      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1746  namespace { Line 1982  namespace {
1982          return table;          return table;
1983      }      }
1984    
1985        Region* DimensionRegion::GetParent() const {
1986            return pRegion;
1987        }
1988    
1989      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1990          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
1991          switch (EncodedController) {          switch (EncodedController) {
# Line 1953  namespace { Line 2193  namespace {
2193                      default:                      default:
2194                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2195                  }                  }
2196                    break;
2197              default:              default:
2198                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2199          }          }
# Line 1998  namespace { Line 2239  namespace {
2239          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2240      }      }
2241    
2242        /**
2243         * Updates the respective member variable and the lookup table / cache
2244         * that depends on this value.
2245         */
2246        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2247            pVelocityAttenuationTable =
2248                GetVelocityTable(
2249                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2250                );
2251            VelocityResponseCurve = curve;
2252        }
2253    
2254        /**
2255         * Updates the respective member variable and the lookup table / cache
2256         * that depends on this value.
2257         */
2258        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2259            pVelocityAttenuationTable =
2260                GetVelocityTable(
2261                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2262                );
2263            VelocityResponseDepth = depth;
2264        }
2265    
2266        /**
2267         * Updates the respective member variable and the lookup table / cache
2268         * that depends on this value.
2269         */
2270        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2271            pVelocityAttenuationTable =
2272                GetVelocityTable(
2273                    VelocityResponseCurve, VelocityResponseDepth, scaling
2274                );
2275            VelocityResponseCurveScaling = scaling;
2276        }
2277    
2278        /**
2279         * Updates the respective member variable and the lookup table / cache
2280         * that depends on this value.
2281         */
2282        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2283            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2284            ReleaseVelocityResponseCurve = curve;
2285        }
2286    
2287        /**
2288         * Updates the respective member variable and the lookup table / cache
2289         * that depends on this value.
2290         */
2291        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2292            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2293            ReleaseVelocityResponseDepth = depth;
2294        }
2295    
2296        /**
2297         * Updates the respective member variable and the lookup table / cache
2298         * that depends on this value.
2299         */
2300        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2301            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2302            VCFCutoffController = controller;
2303        }
2304    
2305        /**
2306         * Updates the respective member variable and the lookup table / cache
2307         * that depends on this value.
2308         */
2309        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2310            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2311            VCFVelocityCurve = curve;
2312        }
2313    
2314        /**
2315         * Updates the respective member variable and the lookup table / cache
2316         * that depends on this value.
2317         */
2318        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2319            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2320            VCFVelocityDynamicRange = range;
2321        }
2322    
2323        /**
2324         * Updates the respective member variable and the lookup table / cache
2325         * that depends on this value.
2326         */
2327        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2328            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2329            VCFVelocityScale = scaling;
2330        }
2331    
2332      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2333    
2334          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2070  namespace { Line 2401  namespace {
2401  // *  // *
2402    
2403      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2404          // Initialization          // Initialization
2405          Dimensions = 0;          Dimensions = 0;
2406          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2083  namespace { Line 2412  namespace {
2412    
2413          // Actual Loading          // Actual Loading
2414    
2415            if (!file->GetAutoLoad()) return;
2416    
2417          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2418    
2419          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2091  namespace { Line 2422  namespace {
2422              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2423                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2424                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2425                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2426                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2427                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2428                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2429                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2105  namespace { Line 2436  namespace {
2436                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2437                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2438                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2439                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2440                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2441                      Dimensions++;                      Dimensions++;
2442    
2443                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2134  namespace { Line 2457  namespace {
2457              else              else
2458                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2459    
2460              // load sample references              // load sample references (if auto loading is enabled)
2461              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2462                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2463                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2464                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2465                    }
2466                    GetSample(); // load global region sample reference
2467                }
2468            } else {
2469                DimensionRegions = 0;
2470                for (int i = 0 ; i < 8 ; i++) {
2471                    pDimensionDefinitions[i].dimension  = dimension_none;
2472                    pDimensionDefinitions[i].bits       = 0;
2473                    pDimensionDefinitions[i].zones      = 0;
2474              }              }
             GetSample(); // load global region sample reference  
2475          }          }
2476    
2477          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2147  namespace { Line 2479  namespace {
2479              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2480              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2481              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2482              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2483              DimensionRegions = 1;              DimensionRegions = 1;
2484          }          }
2485      }      }
# Line 2162  namespace { Line 2494  namespace {
2494       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2495       */       */
2496      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2497            // in the gig format we don't care about the Region's sample reference
2498            // but we still have to provide some existing one to not corrupt the
2499            // file, so to avoid the latter we simply always assign the sample of
2500            // the first dimension region of this region
2501            pSample = pDimensionRegions[0]->pSample;
2502    
2503          // first update base class's chunks          // first update base class's chunks
2504          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2505    
# Line 2171  namespace { Line 2509  namespace {
2509          }          }
2510    
2511          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
2512          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2513          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
2514            const int iMaxDimensionRegions = version3 ? 256 : 32;
2515    
2516          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
2517          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2518          if (!_3lnk) {          if (!_3lnk) {
2519              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
2520              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2521                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2522    
2523                // move 3prg to last position
2524                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2525          }          }
2526    
2527          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2528          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2529          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2530            int shift = 0;
2531          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2532              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2533              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2534              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2535                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2536              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2537              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
2538    
2539                shift += pDimensionDefinitions[i].bits;
2540          }          }
2541    
2542          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
2543          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
2544          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
2545              int iWaveIndex = -1;              int iWaveIndex = -1;
2546              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2206  namespace { Line 2553  namespace {
2553                          break;                          break;
2554                      }                      }
2555                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
2556              }              }
2557              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2558          }          }
2559      }      }
2560    
# Line 2219  namespace { Line 2565  namespace {
2565              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2566              while (_3ewl) {              while (_3ewl) {
2567                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2568                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2569                      dimensionRegionNr++;                      dimensionRegionNr++;
2570                  }                  }
2571                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2228  namespace { Line 2574  namespace {
2574          }          }
2575      }      }
2576    
2577        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2578            // update KeyRange struct and make sure regions are in correct order
2579            DLS::Region::SetKeyRange(Low, High);
2580            // update Region key table for fast lookup
2581            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2582        }
2583    
2584      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
2585          // get velocity dimension's index          // get velocity dimension's index
2586          int veldim = -1;          int veldim = -1;
# Line 2248  namespace { Line 2601  namespace {
2601          int dim[8] = { 0 };          int dim[8] = { 0 };
2602          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2603    
2604              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2605                    pDimensionRegions[i]->VelocityUpperLimit) {
2606                  // create the velocity table                  // create the velocity table
2607                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2608                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 2611  namespace {
2611                  }                  }
2612                  int tableidx = 0;                  int tableidx = 0;
2613                  int velocityZone = 0;                  int velocityZone = 0;
2614                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2615                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2616                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2617                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2618                            velocityZone++;
2619                        }
2620                    } else { // gig2
2621                        for (int k = i ; k < end ; k += step) {
2622                            DimensionRegion *d = pDimensionRegions[k];
2623                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2624                            velocityZone++;
2625                        }
2626                  }                  }
2627              } else {              } else {
2628                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2324  namespace { Line 2686  namespace {
2686              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2687                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2688    
2689            // pos is where the new dimension should be placed, normally
2690            // last in list, except for the samplechannel dimension which
2691            // has to be first in list
2692            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2693            int bitpos = 0;
2694            for (int i = 0 ; i < pos ; i++)
2695                bitpos += pDimensionDefinitions[i].bits;
2696    
2697            // make room for the new dimension
2698            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2699            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2700                for (int j = Dimensions ; j > pos ; j--) {
2701                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2702                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2703                }
2704            }
2705    
2706          // assign definition of new dimension          // assign definition of new dimension
2707          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
2708    
2709          // create new dimension region(s) for this new dimension          // auto correct certain dimension definition fields (where possible)
2710          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          pDimensionDefinitions[pos].split_type  =
2711              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              __resolveSplitType(pDimensionDefinitions[pos].dimension);
2712              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);          pDimensionDefinitions[pos].zone_size =
2713              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              __resolveZoneSize(pDimensionDefinitions[pos]);
2714              DimensionRegions++;  
2715            // create new dimension region(s) for this new dimension, and make
2716            // sure that the dimension regions are placed correctly in both the
2717            // RIFF list and the pDimensionRegions array
2718            RIFF::Chunk* moveTo = NULL;
2719            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2720            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2721                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2722                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2723                }
2724                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2725                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2726                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2727                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2728                        // create a new dimension region and copy all parameter values from
2729                        // an existing dimension region
2730                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2731                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2732    
2733                        DimensionRegions++;
2734                    }
2735                }
2736                moveTo = pDimensionRegions[i]->pParentList;
2737            }
2738    
2739            // initialize the upper limits for this dimension
2740            int mask = (1 << bitpos) - 1;
2741            for (int z = 0 ; z < pDimDef->zones ; z++) {
2742                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2743                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2744                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2745                                      (z << bitpos) |
2746                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2747                }
2748          }          }
2749    
2750          Dimensions++;          Dimensions++;
# Line 2375  namespace { Line 2787  namespace {
2787          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
2788              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
2789    
2790            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2791    
2792          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
2793          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
2794          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2383  namespace { Line 2797  namespace {
2797                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2798                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
2799                                      iLowerBit;                                      iLowerBit;
2800    
2801                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2802                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
2803                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
2804                      DimensionRegions--;                      DimensionRegions--;
# Line 2403  namespace { Line 2819  namespace {
2819              }              }
2820          }          }
2821    
2822            // remove the this dimension from the upper limits arrays
2823            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2824                DimensionRegion* d = pDimensionRegions[j];
2825                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2826                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2827                }
2828                d->DimensionUpperLimits[Dimensions - 1] = 127;
2829            }
2830    
2831          // 'remove' dimension definition          // 'remove' dimension definition
2832          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2833              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2455  namespace { Line 2880  namespace {
2880              } else {              } else {
2881                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2882                      case split_type_normal:                      case split_type_normal:
2883                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2884                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2885                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2886                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2887                                }
2888                            } else {
2889                                // gig2: evenly sized zones
2890                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2891                            }
2892                          break;                          break;
2893                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2894                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2469  namespace { Line 2902  namespace {
2902          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2903          if (veldim != -1) {          if (veldim != -1) {
2904              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2905              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2906                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2907              else // normal split type              else // normal split type
2908                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2528  namespace { Line 2961  namespace {
2961          }          }
2962          return NULL;          return NULL;
2963      }      }
2964        
2965        /**
2966         * Make a (semi) deep copy of the Region object given by @a orig
2967         * and assign it to this object.
2968         *
2969         * Note that all sample pointers referenced by @a orig are simply copied as
2970         * memory address. Thus the respective samples are shared, not duplicated!
2971         *
2972         * @param orig - original Region object to be copied from
2973         */
2974        void Region::CopyAssign(const Region* orig) {
2975            // handle base classes
2976            DLS::Region::CopyAssign(orig);
2977            
2978            // handle own member variables
2979            for (int i = Dimensions - 1; i >= 0; --i) {
2980                DeleteDimension(&pDimensionDefinitions[i]);
2981            }
2982            Layers = 0; // just to be sure
2983            for (int i = 0; i < orig->Dimensions; i++) {
2984                // we need to copy the dim definition here, to avoid the compiler
2985                // complaining about const-ness issue
2986                dimension_def_t def = orig->pDimensionDefinitions[i];
2987                AddDimension(&def);
2988            }
2989            for (int i = 0; i < 256; i++) {
2990                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
2991                    pDimensionRegions[i]->CopyAssign(
2992                        orig->pDimensionRegions[i]
2993                    );
2994                }
2995            }
2996            Layers = orig->Layers;
2997        }
2998    
2999    
3000    // *************** MidiRule ***************
3001    // *
3002    
3003    MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3004        _3ewg->SetPos(36);
3005        Triggers = _3ewg->ReadUint8();
3006        _3ewg->SetPos(40);
3007        ControllerNumber = _3ewg->ReadUint8();
3008        _3ewg->SetPos(46);
3009        for (int i = 0 ; i < Triggers ; i++) {
3010            pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3011            pTriggers[i].Descending = _3ewg->ReadUint8();
3012            pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3013            pTriggers[i].Key = _3ewg->ReadUint8();
3014            pTriggers[i].NoteOff = _3ewg->ReadUint8();
3015            pTriggers[i].Velocity = _3ewg->ReadUint8();
3016            pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3017            _3ewg->ReadUint8();
3018        }
3019    }
3020    
3021    
3022  // *************** Instrument ***************  // *************** Instrument ***************
3023  // *  // *
3024    
3025      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3026          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
3027                { CHUNK_ID_INAM, 64 },
3028                { CHUNK_ID_ISFT, 12 },
3029                { 0, 0 }
3030            };
3031            pInfo->SetFixedStringLengths(fixedStringLengths);
3032    
3033          // Initialization          // Initialization
3034          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3035            EffectSend = 0;
3036            Attenuation = 0;
3037            FineTune = 0;
3038            PitchbendRange = 0;
3039            PianoReleaseMode = false;
3040            DimensionKeyRange.low = 0;
3041            DimensionKeyRange.high = 0;
3042            pMidiRules = new MidiRule*[3];
3043            pMidiRules[0] = NULL;
3044    
3045          // Loading          // Loading
3046          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2553  namespace { Line 3055  namespace {
3055                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
3056                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
3057                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
3058    
3059                    if (_3ewg->GetSize() > 32) {
3060                        // read MIDI rules
3061                        int i = 0;
3062                        _3ewg->SetPos(32);
3063                        uint8_t id1 = _3ewg->ReadUint8();
3064                        uint8_t id2 = _3ewg->ReadUint8();
3065    
3066                        if (id1 == 4 && id2 == 16) {
3067                            pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3068                        }
3069                        //TODO: all the other types of rules
3070    
3071                        pMidiRules[i] = NULL;
3072                    }
3073              }              }
3074          }          }
3075    
3076          if (!pRegions) pRegions = new RegionList;          if (pFile->GetAutoLoad()) {
3077          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);              if (!pRegions) pRegions = new RegionList;
3078          if (lrgn) {              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3079              RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
3080              while (rgn) {                  RIFF::List* rgn = lrgn->GetFirstSubList();
3081                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  while (rgn) {
3082                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3083                      pRegions->push_back(new Region(this, rgn));                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3084                            pRegions->push_back(new Region(this, rgn));
3085                        }
3086                        rgn = lrgn->GetNextSubList();
3087                  }                  }
3088                  rgn = lrgn->GetNextSubList();                  // Creating Region Key Table for fast lookup
3089                    UpdateRegionKeyTable();
3090              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
3091          }          }
3092    
3093          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
3094      }      }
3095    
3096      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
3097            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3098          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
3099          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
3100          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
# Line 2586  namespace { Line 3106  namespace {
3106      }      }
3107    
3108      Instrument::~Instrument() {      Instrument::~Instrument() {
3109            for (int i = 0 ; pMidiRules[i] ; i++) {
3110                delete pMidiRules[i];
3111            }
3112            delete[] pMidiRules;
3113      }      }
3114    
3115      /**      /**
# Line 2614  namespace { Line 3138  namespace {
3138          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3139          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
3140          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3141          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
3142                File* pFile = (File*) GetParent();
3143    
3144                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3145                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3146                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3147                memset(_3ewg->LoadChunkData(), 0, size);
3148            }
3149          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
3150          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3151          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
3152          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
3153          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
3154          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
3155          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3156                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
3157          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
3158          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
3159      }      }
3160    
3161      /**      /**
# Line 2635  namespace { Line 3166  namespace {
3166       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3167       */       */
3168      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3169          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3170          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3171    
3172          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2693  namespace { Line 3224  namespace {
3224          UpdateRegionKeyTable();          UpdateRegionKeyTable();
3225      }      }
3226    
3227        /**
3228         * Returns a MIDI rule of the instrument.
3229         *
3230         * The list of MIDI rules, at least in gig v3, always contains at
3231         * most two rules. The second rule can only be the DEF filter
3232         * (which currently isn't supported by libgig).
3233         *
3234         * @param i - MIDI rule number
3235         * @returns   pointer address to MIDI rule number i or NULL if there is none
3236         */
3237        MidiRule* Instrument::GetMidiRule(int i) {
3238            return pMidiRules[i];
3239        }
3240        
3241        /**
3242         * Make a (semi) deep copy of the Instrument object given by @a orig
3243         * and assign it to this object.
3244         *
3245         * Note that all sample pointers referenced by @a orig are simply copied as
3246         * memory address. Thus the respective samples are shared, not duplicated!
3247         *
3248         * @param orig - original Instrument object to be copied from
3249         */
3250        void Instrument::CopyAssign(const Instrument* orig) {
3251            // handle base class
3252            // (without copying DLS region stuff)
3253            DLS::Instrument::CopyAssignCore(orig);
3254            
3255            // handle own member variables
3256            Attenuation = orig->Attenuation;
3257            EffectSend = orig->EffectSend;
3258            FineTune = orig->FineTune;
3259            PitchbendRange = orig->PitchbendRange;
3260            PianoReleaseMode = orig->PianoReleaseMode;
3261            DimensionKeyRange = orig->DimensionKeyRange;
3262            
3263            // free old midi rules
3264            for (int i = 0 ; pMidiRules[i] ; i++) {
3265                delete pMidiRules[i];
3266            }
3267            //TODO: MIDI rule copying
3268            pMidiRules[0] = NULL;
3269            
3270            // delete all old regions
3271            while (Regions) DeleteRegion(GetFirstRegion());
3272            // create new regions and copy them from original
3273            {
3274                RegionList::const_iterator it = orig->pRegions->begin();
3275                for (int i = 0; i < orig->Regions; ++i, ++it) {
3276                    Region* dstRgn = AddRegion();
3277                    //NOTE: Region does semi-deep copy !
3278                    dstRgn->CopyAssign(
3279                        static_cast<gig::Region*>(*it)
3280                    );
3281                }
3282            }
3283    
3284            UpdateRegionKeyTable();
3285        }
3286    
3287    
3288  // *************** Group ***************  // *************** Group ***************
# Line 2711  namespace { Line 3301  namespace {
3301      }      }
3302    
3303      Group::~Group() {      Group::~Group() {
3304            // remove the chunk associated with this group (if any)
3305            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3306      }      }
3307    
3308      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
3309       *       *
3310       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
3311       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
3312         *
3313         * Usually there is absolutely no need to call this method explicitly.
3314         * It will be called automatically when File::Save() was called.
3315       */       */
3316      void Group::UpdateChunks() {      void Group::UpdateChunks() {
3317          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
3318          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3319          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
3320                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3321                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3322            }
3323          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3324          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3325    
3326            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3327                // v3 has a fixed list of 128 strings, find a free one
3328                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3329                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3330                        pNameChunk = ck;
3331                        break;
3332                    }
3333                }
3334            }
3335    
3336          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3337          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3338      }      }
# Line 2799  namespace { Line 3408  namespace {
3408  // *************** File ***************  // *************** File ***************
3409  // *  // *
3410    
3411        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3412        const DLS::version_t File::VERSION_2 = {
3413            0, 2, 19980628 & 0xffff, 19980628 >> 16
3414        };
3415    
3416        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3417        const DLS::version_t File::VERSION_3 = {
3418            0, 3, 20030331 & 0xffff, 20030331 >> 16
3419        };
3420    
3421        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3422            { CHUNK_ID_IARL, 256 },
3423            { CHUNK_ID_IART, 128 },
3424            { CHUNK_ID_ICMS, 128 },
3425            { CHUNK_ID_ICMT, 1024 },
3426            { CHUNK_ID_ICOP, 128 },
3427            { CHUNK_ID_ICRD, 128 },
3428            { CHUNK_ID_IENG, 128 },
3429            { CHUNK_ID_IGNR, 128 },
3430            { CHUNK_ID_IKEY, 128 },
3431            { CHUNK_ID_IMED, 128 },
3432            { CHUNK_ID_INAM, 128 },
3433            { CHUNK_ID_IPRD, 128 },
3434            { CHUNK_ID_ISBJ, 128 },
3435            { CHUNK_ID_ISFT, 128 },
3436            { CHUNK_ID_ISRC, 128 },
3437            { CHUNK_ID_ISRF, 128 },
3438            { CHUNK_ID_ITCH, 128 },
3439            { 0, 0 }
3440        };
3441    
3442      File::File() : DLS::File() {      File::File() : DLS::File() {
3443            bAutoLoad = true;
3444            *pVersion = VERSION_3;
3445          pGroups = NULL;          pGroups = NULL;
3446          pInfo->UseFixedLengthStrings = true;          pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3447            pInfo->ArchivalLocation = String(256, ' ');
3448    
3449            // add some mandatory chunks to get the file chunks in right
3450            // order (INFO chunk will be moved to first position later)
3451            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3452            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3453            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3454    
3455            GenerateDLSID();
3456      }      }
3457    
3458      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3459            bAutoLoad = true;
3460          pGroups = NULL;          pGroups = NULL;
3461          pInfo->UseFixedLengthStrings = true;          pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3462      }      }
3463    
3464      File::~File() {      File::~File() {
# Line 2848  namespace { Line 3500  namespace {
3500         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3501         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3502         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3503    
3504           // add mandatory chunks to get the chunks in right order
3505           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3506           wave->AddSubList(LIST_TYPE_INFO);
3507    
3508         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3509         return pSample;         return pSample;
3510      }      }
3511    
3512      /** @brief Delete a sample.      /** @brief Delete a sample.
3513       *       *
3514       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
3515       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
3516         * removed. You have to call Save() to make this persistent to the file.
3517       *       *
3518       * @param pSample - sample to delete       * @param pSample - sample to delete
3519       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2864  namespace { Line 3522  namespace {
3522          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3523          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3524          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3525            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3526          pSamples->erase(iter);          pSamples->erase(iter);
3527          delete pSample;          delete pSample;
3528    
3529            SampleList::iterator tmp = SamplesIterator;
3530            // remove all references to the sample
3531            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3532                 instrument = GetNextInstrument()) {
3533                for (Region* region = instrument->GetFirstRegion() ; region ;
3534                     region = instrument->GetNextRegion()) {
3535    
3536                    if (region->GetSample() == pSample) region->SetSample(NULL);
3537    
3538                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3539                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3540                        if (d->pSample == pSample) d->pSample = NULL;
3541                    }
3542                }
3543            }
3544            SamplesIterator = tmp; // restore iterator
3545      }      }
3546    
3547      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2875  namespace { Line 3551  namespace {
3551      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3552          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
3553          // to resolve the group they belong to          // to resolve the group they belong to
3554          LoadGroups();          if (!pGroups) LoadGroups();
3555    
3556          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3557    
# Line 2956  namespace { Line 3632  namespace {
3632              progress_t subprogress;              progress_t subprogress;
3633              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3634              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
3635              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
3636                    GetFirstSample(&subprogress); // now force all samples to be loaded
3637              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
3638    
3639              // instrument loading subtask              // instrument loading subtask
# Line 2989  namespace { Line 3666  namespace {
3666         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3667         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3668         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3669    
3670           // add mandatory chunks to get the chunks in right order
3671           lstInstr->AddSubList(LIST_TYPE_INFO);
3672           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3673    
3674         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3675           pInstrument->GenerateDLSID();
3676    
3677           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3678    
3679           // this string is needed for the gig to be loadable in GSt:
3680           pInstrument->pInfo->Software = "Endless Wave";
3681    
3682         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3683         return pInstrument;         return pInstrument;
3684      }      }
3685        
3686        /** @brief Add a duplicate of an existing instrument.
3687         *
3688         * Duplicates the instrument definition given by @a orig and adds it
3689         * to this file. This allows in an instrument editor application to
3690         * easily create variations of an instrument, which will be stored in
3691         * the same .gig file, sharing i.e. the same samples.
3692         *
3693         * Note that all sample pointers referenced by @a orig are simply copied as
3694         * memory address. Thus the respective samples are shared, not duplicated!
3695         *
3696         * You have to call Save() to make this persistent to the file.
3697         *
3698         * @param orig - original instrument to be copied
3699         * @returns duplicated copy of the given instrument
3700         */
3701        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
3702            Instrument* instr = AddInstrument();
3703            instr->CopyAssign(orig);
3704            return instr;
3705        }
3706    
3707      /** @brief Delete an instrument.      /** @brief Delete an instrument.
3708       *       *
# Line 3000  namespace { Line 3710  namespace {
3710       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3711       *       *
3712       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3713       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3714       */       */
3715      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3716          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3040  namespace { Line 3750  namespace {
3750          }          }
3751      }      }
3752    
3753        /// Updates the 3crc chunk with the checksum of a sample. The
3754        /// update is done directly to disk, as this method is called
3755        /// after File::Save()
3756        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3757            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3758            if (!_3crc) return;
3759    
3760            // get the index of the sample
3761            int iWaveIndex = -1;
3762            File::SampleList::iterator iter = pSamples->begin();
3763            File::SampleList::iterator end  = pSamples->end();
3764            for (int index = 0; iter != end; ++iter, ++index) {
3765                if (*iter == pSample) {
3766                    iWaveIndex = index;
3767                    break;
3768                }
3769            }
3770            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3771    
3772            // write the CRC-32 checksum to disk
3773            _3crc->SetPos(iWaveIndex * 8);
3774            uint32_t tmp = 1;
3775            _3crc->WriteUint32(&tmp); // unknown, always 1?
3776            _3crc->WriteUint32(&crc);
3777        }
3778    
3779      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
3780          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3781          // there must always be at least one group          // there must always be at least one group
# Line 3078  namespace { Line 3814  namespace {
3814          return pGroup;          return pGroup;
3815      }      }
3816    
3817        /** @brief Delete a group and its samples.
3818         *
3819         * This will delete the given Group object and all the samples that
3820         * belong to this group from the gig file. You have to call Save() to
3821         * make this persistent to the file.
3822         *
3823         * @param pGroup - group to delete
3824         * @throws gig::Exception if given group could not be found
3825         */
3826      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
3827          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3828          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3829          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3830          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3831            // delete all members of this group
3832            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3833                DeleteSample(pSample);
3834            }
3835            // now delete this group object
3836            pGroups->erase(iter);
3837            delete pGroup;
3838        }
3839    
3840        /** @brief Delete a group.
3841         *
3842         * This will delete the given Group object from the gig file. All the
3843         * samples that belong to this group will not be deleted, but instead
3844         * be moved to another group. You have to call Save() to make this
3845         * persistent to the file.
3846         *
3847         * @param pGroup - group to delete
3848         * @throws gig::Exception if given group could not be found
3849         */
3850        void File::DeleteGroupOnly(Group* pGroup) {
3851            if (!pGroups) LoadGroups();
3852            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3853            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3854            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3855          // move all members of this group to another group          // move all members of this group to another group
3856          pGroup->MoveAll();          pGroup->MoveAll();
3857          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3099  namespace { Line 3868  namespace {
3868                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3869                  while (ck) {                  while (ck) {
3870                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3871                            if (pVersion && pVersion->major == 3 &&
3872                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3873    
3874                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
3875                      }                      }
3876                      ck = lst3gnl->GetNextSubChunk();                      ck = lst3gnl->GetNextSubChunk();
# Line 3113  namespace { Line 3885  namespace {
3885          }          }
3886      }      }
3887    
3888        /**
3889         * Apply all the gig file's current instruments, samples, groups and settings
3890         * to the respective RIFF chunks. You have to call Save() to make changes
3891         * persistent.
3892         *
3893         * Usually there is absolutely no need to call this method explicitly.
3894         * It will be called automatically when File::Save() was called.
3895         *
3896         * @throws Exception - on errors
3897         */
3898        void File::UpdateChunks() {
3899            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3900    
3901            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3902    
3903            // first update base class's chunks
3904            DLS::File::UpdateChunks();
3905    
3906            if (newFile) {
3907                // INFO was added by Resource::UpdateChunks - make sure it
3908                // is placed first in file
3909                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3910                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3911                if (first != info) {
3912                    pRIFF->MoveSubChunk(info, first);
3913                }
3914            }
3915    
3916            // update group's chunks
3917            if (pGroups) {
3918                std::list<Group*>::iterator iter = pGroups->begin();
3919                std::list<Group*>::iterator end  = pGroups->end();
3920                for (; iter != end; ++iter) {
3921                    (*iter)->UpdateChunks();
3922                }
3923    
3924                // v3: make sure the file has 128 3gnm chunks
3925                if (pVersion && pVersion->major == 3) {
3926                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3927                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3928                    for (int i = 0 ; i < 128 ; i++) {
3929                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3930                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3931                    }
3932                }
3933            }
3934    
3935            // update einf chunk
3936    
3937            // The einf chunk contains statistics about the gig file, such
3938            // as the number of regions and samples used by each
3939            // instrument. It is divided in equally sized parts, where the
3940            // first part contains information about the whole gig file,
3941            // and the rest of the parts map to each instrument in the
3942            // file.
3943            //
3944            // At the end of each part there is a bit map of each sample
3945            // in the file, where a set bit means that the sample is used
3946            // by the file/instrument.
3947            //
3948            // Note that there are several fields with unknown use. These
3949            // are set to zero.
3950    
3951            int sublen = pSamples->size() / 8 + 49;
3952            int einfSize = (Instruments + 1) * sublen;
3953    
3954            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3955            if (einf) {
3956                if (einf->GetSize() != einfSize) {
3957                    einf->Resize(einfSize);
3958                    memset(einf->LoadChunkData(), 0, einfSize);
3959                }
3960            } else if (newFile) {
3961                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3962            }
3963            if (einf) {
3964                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3965    
3966                std::map<gig::Sample*,int> sampleMap;
3967                int sampleIdx = 0;
3968                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3969                    sampleMap[pSample] = sampleIdx++;
3970                }
3971    
3972                int totnbusedsamples = 0;
3973                int totnbusedchannels = 0;
3974                int totnbregions = 0;
3975                int totnbdimregions = 0;
3976                int totnbloops = 0;
3977                int instrumentIdx = 0;
3978    
3979                memset(&pData[48], 0, sublen - 48);
3980    
3981                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3982                     instrument = GetNextInstrument()) {
3983                    int nbusedsamples = 0;
3984                    int nbusedchannels = 0;
3985                    int nbdimregions = 0;
3986                    int nbloops = 0;
3987    
3988                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3989    
3990                    for (Region* region = instrument->GetFirstRegion() ; region ;
3991                         region = instrument->GetNextRegion()) {
3992                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3993                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3994                            if (d->pSample) {
3995                                int sampleIdx = sampleMap[d->pSample];
3996                                int byte = 48 + sampleIdx / 8;
3997                                int bit = 1 << (sampleIdx & 7);
3998                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3999                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4000                                    nbusedsamples++;
4001                                    nbusedchannels += d->pSample->Channels;
4002    
4003                                    if ((pData[byte] & bit) == 0) {
4004                                        pData[byte] |= bit;
4005                                        totnbusedsamples++;
4006                                        totnbusedchannels += d->pSample->Channels;
4007                                    }
4008                                }
4009                            }
4010                            if (d->SampleLoops) nbloops++;
4011                        }
4012                        nbdimregions += region->DimensionRegions;
4013                    }
4014                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4015                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4016                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4017                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4018                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4019                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4020                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4021                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4022                    // next 8 bytes unknown
4023                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4024                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4025                    // next 4 bytes unknown
4026    
4027                    totnbregions += instrument->Regions;
4028                    totnbdimregions += nbdimregions;
4029                    totnbloops += nbloops;
4030                    instrumentIdx++;
4031                }
4032                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4033                // store32(&pData[0], sublen);
4034                store32(&pData[4], totnbusedchannels);
4035                store32(&pData[8], totnbusedsamples);
4036                store32(&pData[12], Instruments);
4037                store32(&pData[16], totnbregions);
4038                store32(&pData[20], totnbdimregions);
4039                store32(&pData[24], totnbloops);
4040                // next 8 bytes unknown
4041                // next 4 bytes unknown, not always 0
4042                store32(&pData[40], pSamples->size());
4043                // next 4 bytes unknown
4044            }
4045    
4046            // update 3crc chunk
4047    
4048            // The 3crc chunk contains CRC-32 checksums for the
4049            // samples. The actual checksum values will be filled in
4050            // later, by Sample::Write.
4051    
4052            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4053            if (_3crc) {
4054                _3crc->Resize(pSamples->size() * 8);
4055            } else if (newFile) {
4056                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4057                _3crc->LoadChunkData();
4058    
4059                // the order of einf and 3crc is not the same in v2 and v3
4060                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4061            }
4062        }
4063    
4064        /**
4065         * Enable / disable automatic loading. By default this properyt is
4066         * enabled and all informations are loaded automatically. However
4067         * loading all Regions, DimensionRegions and especially samples might
4068         * take a long time for large .gig files, and sometimes one might only
4069         * be interested in retrieving very superficial informations like the
4070         * amount of instruments and their names. In this case one might disable
4071         * automatic loading to avoid very slow response times.
4072         *
4073         * @e CAUTION: by disabling this property many pointers (i.e. sample
4074         * references) and informations will have invalid or even undefined
4075         * data! This feature is currently only intended for retrieving very
4076         * superficial informations in a very fast way. Don't use it to retrieve
4077         * details like synthesis informations or even to modify .gig files!
4078         */
4079        void File::SetAutoLoad(bool b) {
4080            bAutoLoad = b;
4081        }
4082    
4083        /**
4084         * Returns whether automatic loading is enabled.
4085         * @see SetAutoLoad()
4086         */
4087        bool File::GetAutoLoad() {
4088            return bAutoLoad;
4089        }
4090    
4091    
4092    
4093  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.1050  
changed lines
  Added in v.2394

  ViewVC Help
Powered by ViewVC