/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 231 by schoenebeck, Sun Sep 5 00:46:28 2004 UTC revision 2394 by schoenebeck, Mon Jan 7 23:23:58 2013 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2013 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    
32    /// Initial size of the sample buffer which is used for decompression of
33    /// compressed sample wave streams - this value should always be bigger than
34    /// the biggest sample piece expected to be read by the sampler engine,
35    /// otherwise the buffer size will be raised at runtime and thus the buffer
36    /// reallocated which is time consuming and unefficient.
37    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
38    
39    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
41    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
42    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
43    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
44    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
45    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
46    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
47    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
48    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
50    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
51    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
52    
53  namespace gig {  namespace gig {
54    
55    // *************** progress_t ***************
56    // *
57    
58        progress_t::progress_t() {
59            callback    = NULL;
60            custom      = NULL;
61            __range_min = 0.0f;
62            __range_max = 1.0f;
63        }
64    
65        // private helper function to convert progress of a subprocess into the global progress
66        static void __notify_progress(progress_t* pProgress, float subprogress) {
67            if (pProgress && pProgress->callback) {
68                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
69                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70                pProgress->factor         = totalprogress;
71                pProgress->callback(pProgress); // now actually notify about the progress
72            }
73        }
74    
75        // private helper function to divide a progress into subprogresses
76        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77            if (pParentProgress && pParentProgress->callback) {
78                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
79                pSubProgress->callback    = pParentProgress->callback;
80                pSubProgress->custom      = pParentProgress->custom;
81                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83            }
84        }
85    
86    
87    // *************** Internal functions for sample decompression ***************
88    // *
89    
90    namespace {
91    
92        inline int get12lo(const unsigned char* pSrc)
93        {
94            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95            return x & 0x800 ? x - 0x1000 : x;
96        }
97    
98        inline int get12hi(const unsigned char* pSrc)
99        {
100            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101            return x & 0x800 ? x - 0x1000 : x;
102        }
103    
104        inline int16_t get16(const unsigned char* pSrc)
105        {
106            return int16_t(pSrc[0] | pSrc[1] << 8);
107        }
108    
109        inline int get24(const unsigned char* pSrc)
110        {
111            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112            return x & 0x800000 ? x - 0x1000000 : x;
113        }
114    
115        inline void store24(unsigned char* pDst, int x)
116        {
117            pDst[0] = x;
118            pDst[1] = x >> 8;
119            pDst[2] = x >> 16;
120        }
121    
122        void Decompress16(int compressionmode, const unsigned char* params,
123                          int srcStep, int dstStep,
124                          const unsigned char* pSrc, int16_t* pDst,
125                          unsigned long currentframeoffset,
126                          unsigned long copysamples)
127        {
128            switch (compressionmode) {
129                case 0: // 16 bit uncompressed
130                    pSrc += currentframeoffset * srcStep;
131                    while (copysamples) {
132                        *pDst = get16(pSrc);
133                        pDst += dstStep;
134                        pSrc += srcStep;
135                        copysamples--;
136                    }
137                    break;
138    
139                case 1: // 16 bit compressed to 8 bit
140                    int y  = get16(params);
141                    int dy = get16(params + 2);
142                    while (currentframeoffset) {
143                        dy -= int8_t(*pSrc);
144                        y  -= dy;
145                        pSrc += srcStep;
146                        currentframeoffset--;
147                    }
148                    while (copysamples) {
149                        dy -= int8_t(*pSrc);
150                        y  -= dy;
151                        *pDst = y;
152                        pDst += dstStep;
153                        pSrc += srcStep;
154                        copysamples--;
155                    }
156                    break;
157            }
158        }
159    
160        void Decompress24(int compressionmode, const unsigned char* params,
161                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162                          unsigned long currentframeoffset,
163                          unsigned long copysamples, int truncatedBits)
164        {
165            int y, dy, ddy, dddy;
166    
167    #define GET_PARAMS(params)                      \
168            y    = get24(params);                   \
169            dy   = y - get24((params) + 3);         \
170            ddy  = get24((params) + 6);             \
171            dddy = get24((params) + 9)
172    
173    #define SKIP_ONE(x)                             \
174            dddy -= (x);                            \
175            ddy  -= dddy;                           \
176            dy   =  -dy - ddy;                      \
177            y    += dy
178    
179    #define COPY_ONE(x)                             \
180            SKIP_ONE(x);                            \
181            store24(pDst, y << truncatedBits);      \
182            pDst += dstStep
183    
184            switch (compressionmode) {
185                case 2: // 24 bit uncompressed
186                    pSrc += currentframeoffset * 3;
187                    while (copysamples) {
188                        store24(pDst, get24(pSrc) << truncatedBits);
189                        pDst += dstStep;
190                        pSrc += 3;
191                        copysamples--;
192                    }
193                    break;
194    
195                case 3: // 24 bit compressed to 16 bit
196                    GET_PARAMS(params);
197                    while (currentframeoffset) {
198                        SKIP_ONE(get16(pSrc));
199                        pSrc += 2;
200                        currentframeoffset--;
201                    }
202                    while (copysamples) {
203                        COPY_ONE(get16(pSrc));
204                        pSrc += 2;
205                        copysamples--;
206                    }
207                    break;
208    
209                case 4: // 24 bit compressed to 12 bit
210                    GET_PARAMS(params);
211                    while (currentframeoffset > 1) {
212                        SKIP_ONE(get12lo(pSrc));
213                        SKIP_ONE(get12hi(pSrc));
214                        pSrc += 3;
215                        currentframeoffset -= 2;
216                    }
217                    if (currentframeoffset) {
218                        SKIP_ONE(get12lo(pSrc));
219                        currentframeoffset--;
220                        if (copysamples) {
221                            COPY_ONE(get12hi(pSrc));
222                            pSrc += 3;
223                            copysamples--;
224                        }
225                    }
226                    while (copysamples > 1) {
227                        COPY_ONE(get12lo(pSrc));
228                        COPY_ONE(get12hi(pSrc));
229                        pSrc += 3;
230                        copysamples -= 2;
231                    }
232                    if (copysamples) {
233                        COPY_ONE(get12lo(pSrc));
234                    }
235                    break;
236    
237                case 5: // 24 bit compressed to 8 bit
238                    GET_PARAMS(params);
239                    while (currentframeoffset) {
240                        SKIP_ONE(int8_t(*pSrc++));
241                        currentframeoffset--;
242                    }
243                    while (copysamples) {
244                        COPY_ONE(int8_t(*pSrc++));
245                        copysamples--;
246                    }
247                    break;
248            }
249        }
250    
251        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
252        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
254        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
255    }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
348      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
349      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
350    
351      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
352         *
353         * Load an existing sample or create a new one. A 'wave' list chunk must
354         * be given to this constructor. In case the given 'wave' list chunk
355         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356         * format and sample data will be loaded from there, otherwise default
357         * values will be used and those chunks will be created when
358         * File::Save() will be called later on.
359         *
360         * @param pFile          - pointer to gig::File where this sample is
361         *                         located (or will be located)
362         * @param waveList       - pointer to 'wave' list chunk which is (or
363         *                         will be) associated with this sample
364         * @param WavePoolOffset - offset of this sample data from wave pool
365         *                         ('wvpl') list chunk
366         * @param fileNo         - number of an extension file where this sample
367         *                         is located, 0 otherwise
368         */
369        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370            static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376            FileNo = fileNo;
377    
378            __resetCRC(crc);
379    
380          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
382          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
383                pGroup = pFile->GetGroup(iSampleGroup);
384          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
385          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
386          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
387          Product           = smpl->ReadInt32();          }
388          SamplePeriod      = smpl->ReadInt32();  
389          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390          FineTune          = smpl->ReadInt32();          if (pCkSmpl) {
391          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
392          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
393          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
394          uint32_t manufByt = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
395          LoopID            = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
396          smpl->Read(&LoopType, 1, 4);              pCkSmpl->Read(&SMPTEFormat, 1, 4);
397          LoopStart         = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
398          LoopEnd           = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
399          LoopFraction      = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
400          LoopPlayCount     = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
401                pCkSmpl->Read(&LoopType, 1, 4);
402                LoopStart     = pCkSmpl->ReadInt32();
403                LoopEnd       = pCkSmpl->ReadInt32();
404                LoopFraction  = pCkSmpl->ReadInt32();
405                LoopPlayCount = pCkSmpl->ReadInt32();
406            } else { // 'smpl' chunk missing
407                // use default values
408                Manufacturer  = 0;
409                Product       = 0;
410                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411                MIDIUnityNote = 60;
412                FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414                SMPTEOffset   = 0;
415                Loops         = 0;
416                LoopID        = 0;
417                LoopType      = loop_type_normal;
418                LoopStart     = 0;
419                LoopEnd       = 0;
420                LoopFraction  = 0;
421                LoopPlayCount = 0;
422            }
423    
424          FrameTable                 = NULL;          FrameTable                 = NULL;
425          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 427  namespace gig {
427          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
428          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
429    
430          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433            Compressed        = ewav;
434            Dithered          = false;
435            TruncatedBits     = 0;
436          if (Compressed) {          if (Compressed) {
437              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
438              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
439                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
440                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
441                    TruncatedBits = ewav->ReadInt32();
442              }              }
443                ScanCompressedSample();
444          }          }
         FrameOffset = 0; // just for streaming compressed samples  
445    
446          LoopSize = LoopEnd - LoopStart;          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
450            }
451            FrameOffset = 0; // just for streaming compressed samples
452    
453            LoopSize = LoopEnd - LoopStart + 1;
454        }
455    
456        /**
457         * Apply sample and its settings to the respective RIFF chunks. You have
458         * to call File::Save() to make changes persistent.
459         *
460         * Usually there is absolutely no need to call this method explicitly.
461         * It will be called automatically when File::Save() was called.
462         *
463         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464         *                        was provided yet
465         * @throws gig::Exception if there is any invalid sample setting
466         */
467        void Sample::UpdateChunks() {
468            // first update base class's chunks
469            DLS::Sample::UpdateChunks();
470    
471            // make sure 'smpl' chunk exists
472            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473            if (!pCkSmpl) {
474                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475                memset(pCkSmpl->LoadChunkData(), 0, 60);
476            }
477            // update 'smpl' chunk
478            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480            store32(&pData[0], Manufacturer);
481            store32(&pData[4], Product);
482            store32(&pData[8], SamplePeriod);
483            store32(&pData[12], MIDIUnityNote);
484            store32(&pData[16], FineTune);
485            store32(&pData[20], SMPTEFormat);
486            store32(&pData[24], SMPTEOffset);
487            store32(&pData[28], Loops);
488    
489            // we skip 'manufByt' for now (4 bytes)
490    
491            store32(&pData[36], LoopID);
492            store32(&pData[40], LoopType);
493            store32(&pData[44], LoopStart);
494            store32(&pData[48], LoopEnd);
495            store32(&pData[52], LoopFraction);
496            store32(&pData[56], LoopPlayCount);
497    
498            // make sure '3gix' chunk exists
499            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501            // determine appropriate sample group index (to be stored in chunk)
502            uint16_t iSampleGroup = 0; // 0 refers to default sample group
503            File* pFile = static_cast<File*>(pParent);
504            if (pFile->pGroups) {
505                std::list<Group*>::iterator iter = pFile->pGroups->begin();
506                std::list<Group*>::iterator end  = pFile->pGroups->end();
507                for (int i = 0; iter != end; i++, iter++) {
508                    if (*iter == pGroup) {
509                        iSampleGroup = i;
510                        break; // found
511                    }
512                }
513            }
514            // update '3gix' chunk
515            pData = (uint8_t*) pCk3gix->LoadChunkData();
516            store16(&pData[0], iSampleGroup);
517      }      }
518    
519      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 82  namespace gig { Line 522  namespace gig {
522          this->SamplesTotal = 0;          this->SamplesTotal = 0;
523          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
524    
525            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527    
528          // Scanning          // Scanning
529          pCkData->SetPos(0);          pCkData->SetPos(0);
530          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
531              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
532              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
533              this->SamplesTotal += 2048;                  // stored, to save some memory
534              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535                  case 1:   // left channel compressed  
536                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
537                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
538                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540    
541                    if (pCkData->RemainingBytes() <= frameSize) {
542                        SamplesInLastFrame =
543                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545                        SamplesTotal += SamplesInLastFrame;
546                      break;                      break;
547                  case 257: // both channels compressed                  }
548                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
549                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
550                }
551            }
552            else { // Mono
553                for (int i = 0 ; ; i++) {
554                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555    
556                    const int mode = pCkData->ReadUint8();
557                    if (mode > 5) throw gig::Exception("Unknown compression mode");
558                    const unsigned long frameSize = bytesPerFrame[mode];
559    
560                    if (pCkData->RemainingBytes() <= frameSize) {
561                        SamplesInLastFrame =
562                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563                        SamplesTotal += SamplesInLastFrame;
564                      break;                      break;
565                  default: // both channels uncompressed                  }
566                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
567                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
568              }              }
569          }          }
570          pCkData->SetPos(0);          pCkData->SetPos(0);
571    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
572          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
574          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 141  namespace gig { Line 604  namespace gig {
604       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
605       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
606       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
607       *       * @code
608       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
609       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
610         * @endcode
611       *       *
612       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
613       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 189  namespace gig { Line 653  namespace gig {
653       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
654       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
655       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
656       *       * @code
657       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
659       *       * @endcode
660       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
661       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
662       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 213  namespace gig { Line 677  namespace gig {
677          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680            SetPos(0); // reset read position to begin of sample
681          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
682          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 715  namespace gig {
715          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
717          RAMCache.Size   = 0;          RAMCache.Size   = 0;
718            RAMCache.NullExtensionSize = 0;
719        }
720    
721        /** @brief Resize sample.
722         *
723         * Resizes the sample's wave form data, that is the actual size of
724         * sample wave data possible to be written for this sample. This call
725         * will return immediately and just schedule the resize operation. You
726         * should call File::Save() to actually perform the resize operation(s)
727         * "physically" to the file. As this can take a while on large files, it
728         * is recommended to call Resize() first on all samples which have to be
729         * resized and finally to call File::Save() to perform all those resize
730         * operations in one rush.
731         *
732         * The actual size (in bytes) is dependant to the current FrameSize
733         * value. You may want to set FrameSize before calling Resize().
734         *
735         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736         * enlarged samples before calling File::Save() as this might exceed the
737         * current sample's boundary!
738         *
739         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741         * other formats will fail!
742         *
743         * @param iNewSize - new sample wave data size in sample points (must be
744         *                   greater than zero)
745         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746         *                         or if \a iNewSize is less than 1
747         * @throws gig::Exception if existing sample is compressed
748         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749         *      DLS::Sample::FormatTag, File::Save()
750         */
751        void Sample::Resize(int iNewSize) {
752            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753            DLS::Sample::Resize(iNewSize);
754      }      }
755    
756      /**      /**
# Line 323  namespace gig { Line 824  namespace gig {
824       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
825       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
826       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
827       *       * @code
828       * <i>       * gig::playback_state_t playbackstate;
829       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
830       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
831       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
833       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
834       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
835       * The method already handles such cases by itself.       * The method already handles such cases by itself.
836       *       *
837         * <b>Caution:</b> If you are using more than one streaming thread, you
838         * have to use an external decompression buffer for <b>EACH</b>
839         * streaming thread to avoid race conditions and crashes!
840         *
841       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
842       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
843       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
844       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
845         * @param pDimRgn          dimension region with looping information
846         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
847       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
848         * @see                    CreateDecompressionBuffer()
849       */       */
850      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
854    
855          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
856    
857          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858    
859              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861    
862                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
863                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
864    
865                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
866                              // determine the end position within the loop first,                          do {
867                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
868                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869                              // backward playback  
870                                if (!pPlaybackState->reverse) { // forward playback
871                              unsigned long swapareastart       = totalreadsamples;                                  do {
872                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
873                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
875                                        totalreadsamples += readsamples;
876                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
877                                            pPlaybackState->reverse = true;
878                              // read samples for backward playback                                          break;
879                              do {                                      }
880                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
881                                  samplestoreadinloop -= readsamples;                              }
882                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
883    
884                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
885                                    // determine the end position within the loop first,
886                                    // read forward from that 'end' and finally after
887                                    // reading, swap all sample frames so it reflects
888                                    // backward playback
889    
890                                    unsigned long swapareastart       = totalreadsamples;
891                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
892                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
894    
895                                    SetPos(reverseplaybackend);
896    
897                                    // read samples for backward playback
898                                    do {
899                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900                                        samplestoreadinloop -= readsamples;
901                                        samplestoread       -= readsamples;
902                                        totalreadsamples    += readsamples;
903                                    } while (samplestoreadinloop && readsamples);
904    
905                                    SetPos(reverseplaybackend); // pretend we really read backwards
906    
907                                    if (reverseplaybackend == loop.LoopStart) {
908                                        pPlaybackState->loop_cycles_left--;
909                                        pPlaybackState->reverse = false;
910                                    }
911    
912                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
913                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915                              }                              }
916                            } while (samplestoread && readsamples);
917                            break;
918                        }
919    
920                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
921                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
922                          }                          if (!pPlaybackState->reverse) do {
923                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
924                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925                  }                              samplestoread    -= readsamples;
926                                totalreadsamples += readsamples;
927                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
928                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
929                      if (!pPlaybackState->reverse) do {                                  break;
930                          samplestoloopend  = this->LoopEnd - GetPos();                              }
931                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
932    
933                      if (!samplestoread) break;                          if (!samplestoread) break;
934    
935                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
936                      // determine the end position within the loop first,                          // determine the end position within the loop first,
937                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
938                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
939                      // backward playback                          // backward playback
940    
941                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
942                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
943                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944                                                                                : samplestoread;                                                                                    : samplestoread;
945                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946    
947                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
948    
949                      // read samples for backward playback                          // read samples for backward playback
950                      do {                          do {
951                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
952                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
954                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
956                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
957                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
958                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
959                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
960                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
961                          }                              }
962                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
963    
964                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
965    
966                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
967                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968                      break;                          break;
969                  }                      }
970    
971                  default: case loop_type_normal: {                      default: case loop_type_normal: {
972                      do {                          do {
973                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
974                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
976                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
978                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
979                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
980                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
981                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
982                          }                              }
983                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
984                      break;                          break;
985                        }
986                  }                  }
987              }              }
988          }          }
989    
990          // read on without looping          // read on without looping
991          if (samplestoread) do {          if (samplestoread) do {
992              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993              samplestoread    -= readsamples;              samplestoread    -= readsamples;
994              totalreadsamples += readsamples;              totalreadsamples += readsamples;
995          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1008  namespace gig {
1008       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1009       * thus for disk streaming.       * thus for disk streaming.
1010       *       *
1011         * <b>Caution:</b> If you are using more than one streaming thread, you
1012         * have to use an external decompression buffer for <b>EACH</b>
1013         * streaming thread to avoid race conditions and crashes!
1014         *
1015         * For 16 bit samples, the data in the buffer will be int16_t
1016         * (using native endianness). For 24 bit, the buffer will
1017         * contain three bytes per sample, little-endian.
1018         *
1019       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1020       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1021         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1022       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1023       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1024       */       */
1025      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1027          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1028          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1029                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030                }
1031                else { // 16 bit
1032                    // (pCkData->Read does endian correction)
1033                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034                                         : pCkData->Read(pBuffer, SampleCount, 2);
1035                }
1036            }
1037            else {
1038              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1039              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1040              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1041                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1042                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1043                            copysamples;                            copysamples, skipsamples,
1044              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1045              this->FrameOffset = 0;              this->FrameOffset = 0;
1046    
1047              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048                  // local buffer reallocation - hope this won't happen  
1049                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1050                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1051                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1053                    remainingsamples = SampleCount;
1054                    assumedsize      = GuessSize(SampleCount);
1055              }              }
1056    
1057              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061    
1062              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1063                    unsigned long framesamples = SamplesPerFrame;
1064                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065                  if (remainingbytes < 8194) {  
1066                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1067                          this->SamplePos = this->SamplesTotal;  
1068                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1069                        mode_r = *pSrc++;
1070                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073                        if (remainingbytes < framebytes) { // last frame in sample
1074                            framesamples = SamplesInLastFrame;
1075                            if (mode_l == 4 && (framesamples & 1)) {
1076                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077                            }
1078                            else {
1079                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080                            }
1081                        }
1082                    }
1083                    else {
1084                        framebytes = bytesPerFrame[mode_l] + 1;
1085                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086                        if (remainingbytes < framebytes) {
1087                            framesamples = SamplesInLastFrame;
1088                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
1089                  }                  }
1090    
1091                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1092                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1093                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1094                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1095                            skipsamples = currentframeoffset;
1096                        }
1097                        else {
1098                            copysamples = 0;
1099                            skipsamples = framesamples;
1100                        }
1101                  }                  }
1102                  else {                  else {
1103                        // This frame has enough data for pBuffer, but not
1104                        // all of the frame is needed. Set file position
1105                        // to start of this frame for next call to Read.
1106                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1107                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1108                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1110                      }                  }
1111                      else {                  remainingsamples -= copysamples;
1112    
1113                    if (remainingbytes > framebytes) {
1114                        remainingbytes -= framebytes;
1115                        if (remainingsamples == 0 &&
1116                            currentframeoffset + copysamples == framesamples) {
1117                            // This frame has enough data for pBuffer, and
1118                            // all of the frame is needed. Set file
1119                            // position to start of next frame for next
1120                            // call to Read. FrameOffset is 0.
1121                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1122                      }                      }
1123                  }                  }
1124                    else remainingbytes = 0;
1125    
1126                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1127                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1128                  switch (compressionmode) {                  if (copysamples == 0) {
1129                      case 1: // left channel compressed                      // skip this frame
1130                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1131                          if (!remainingsamples && copysamples == 2048)                  }
1132                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1133                        const unsigned char* const param_l = pSrc;
1134                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1135                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1136                          while (currentframeoffset) {  
1137                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1138                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1139                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1140                              currentframeoffset--;  
1141                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1143                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1145                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1146                          }                          }
1147                          while (copysamples) {                          else { // Mono
1148                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1150                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1151                          }                          }
1152                          break;                      }
1153                      case 257: // both channels compressed                      else { // 16 bit
1154                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1155                          if (!remainingsamples && copysamples == 2048)  
1156                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1157                            if (Channels == 2) { // Stereo
1158                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1159                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1160                          right  = *(int16_t*)pSrc; pSrc+=2;  
1161                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1162                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164                              left   -= dleft;                                           skipsamples, copysamples);
1165                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1166                          }                          }
1167                          while (copysamples) {                          else { // Mono
1168                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1169                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1171                          }                          }
1172                          break;                      }
1173                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1174                  }                  }
1175              }  
1176                    // reload from disk to local buffer if needed
1177                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178                        assumedsize    = GuessSize(remainingsamples);
1179                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183                    }
1184                } // while
1185    
1186              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1187              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1189          }          }
1190      }      }
1191    
1192        /** @brief Write sample wave data.
1193         *
1194         * Writes \a SampleCount number of sample points from the buffer pointed
1195         * by \a pBuffer and increments the position within the sample. Use this
1196         * method to directly write the sample data to disk, i.e. if you don't
1197         * want or cannot load the whole sample data into RAM.
1198         *
1199         * You have to Resize() the sample to the desired size and call
1200         * File::Save() <b>before</b> using Write().
1201         *
1202         * Note: there is currently no support for writing compressed samples.
1203         *
1204         * For 16 bit samples, the data in the source buffer should be
1205         * int16_t (using native endianness). For 24 bit, the buffer
1206         * should contain three bytes per sample, little-endian.
1207         *
1208         * @param pBuffer     - source buffer
1209         * @param SampleCount - number of sample points to write
1210         * @throws DLS::Exception if current sample size is too small
1211         * @throws gig::Exception if sample is compressed
1212         * @see DLS::LoadSampleData()
1213         */
1214        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216    
1217            // if this is the first write in this sample, reset the
1218            // checksum calculator
1219            if (pCkData->GetPos() == 0) {
1220                __resetCRC(crc);
1221            }
1222            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223            unsigned long res;
1224            if (BitDepth == 24) {
1225                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226            } else { // 16 bit
1227                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228                                    : pCkData->Write(pBuffer, SampleCount, 2);
1229            }
1230            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231    
1232            // if this is the last write, update the checksum chunk in the
1233            // file
1234            if (pCkData->GetPos() == pCkData->GetSize()) {
1235                File* pFile = static_cast<File*>(GetParent());
1236                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237            }
1238            return res;
1239        }
1240    
1241        /**
1242         * Allocates a decompression buffer for streaming (compressed) samples
1243         * with Sample::Read(). If you are using more than one streaming thread
1244         * in your application you <b>HAVE</b> to create a decompression buffer
1245         * for <b>EACH</b> of your streaming threads and provide it with the
1246         * Sample::Read() call in order to avoid race conditions and crashes.
1247         *
1248         * You should free the memory occupied by the allocated buffer(s) once
1249         * you don't need one of your streaming threads anymore by calling
1250         * DestroyDecompressionBuffer().
1251         *
1252         * @param MaxReadSize - the maximum size (in sample points) you ever
1253         *                      expect to read with one Read() call
1254         * @returns allocated decompression buffer
1255         * @see DestroyDecompressionBuffer()
1256         */
1257        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258            buffer_t result;
1259            const double worstCaseHeaderOverhead =
1260                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262            result.pStart            = new int8_t[result.Size];
1263            result.NullExtensionSize = 0;
1264            return result;
1265        }
1266    
1267        /**
1268         * Free decompression buffer, previously created with
1269         * CreateDecompressionBuffer().
1270         *
1271         * @param DecompressionBuffer - previously allocated decompression
1272         *                              buffer to free
1273         */
1274        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276                delete[] (int8_t*) DecompressionBuffer.pStart;
1277                DecompressionBuffer.pStart = NULL;
1278                DecompressionBuffer.Size   = 0;
1279                DecompressionBuffer.NullExtensionSize = 0;
1280            }
1281        }
1282    
1283        /**
1284         * Returns pointer to the Group this Sample belongs to. In the .gig
1285         * format a sample always belongs to one group. If it wasn't explicitly
1286         * assigned to a certain group, it will be automatically assigned to a
1287         * default group.
1288         *
1289         * @returns Sample's Group (never NULL)
1290         */
1291        Group* Sample::GetGroup() const {
1292            return pGroup;
1293        }
1294    
1295      Sample::~Sample() {      Sample::~Sample() {
1296          Instances--;          Instances--;
1297          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1298                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1299                InternalDecompressionBuffer.pStart = NULL;
1300                InternalDecompressionBuffer.Size   = 0;
1301            }
1302          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1303          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304      }      }
# Line 673  namespace gig { Line 1311  namespace gig {
1311      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1312      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313    
1314      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315          Instances++;          Instances++;
1316    
1317          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1318            pRegion = pParent;
1319    
1320            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321            else memset(&Crossfade, 0, 4);
1322    
1323          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324    
1325          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1327          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1331          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1332          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1333          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1334          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1335          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1336          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1337          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1338          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1341          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1342          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1345          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1346          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1347          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1348          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1349          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1351          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1352          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1353          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1354          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1355          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1359          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1360          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1362          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1363          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1365          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1366          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1367          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1368          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1370          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1371          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1372          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1373          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1375          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1376          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1377              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1378              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1379          }                  VelocityResponseDepth = velocityresponse;
1380          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1381              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1382              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1383          }              } else if (velocityresponse < 15) {
1384          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1385              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1386              VelocityResponseDepth = velocityresponse - 10;              } else {
1387                    VelocityResponseCurve = curve_type_unknown;
1388                    VelocityResponseDepth = 0;
1389                }
1390                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391                if (releasevelocityresponse < 5) {
1392                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1393                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1394                } else if (releasevelocityresponse < 10) {
1395                    ReleaseVelocityResponseCurve = curve_type_linear;
1396                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397                } else if (releasevelocityresponse < 15) {
1398                    ReleaseVelocityResponseCurve = curve_type_special;
1399                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400                } else {
1401                    ReleaseVelocityResponseCurve = curve_type_unknown;
1402                    ReleaseVelocityResponseDepth = 0;
1403                }
1404                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1405                AttenuationControllerThreshold = _3ewa->ReadInt8();
1406                _3ewa->ReadInt32(); // unknown
1407                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408                _3ewa->ReadInt16(); // unknown
1409                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1413                else                                       DimensionBypass = dim_bypass_ctrl_none;
1414                uint8_t pan = _3ewa->ReadUint8();
1415                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416                SelfMask = _3ewa->ReadInt8() & 0x01;
1417                _3ewa->ReadInt8(); // unknown
1418                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1421                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1424                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1426                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1427                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1428                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1429                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1431                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1432                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1433                                                            : vcf_res_ctrl_none;
1434                uint16_t eg3depth = _3ewa->ReadUint16();
1435                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1437                _3ewa->ReadInt16(); // unknown
1438                ChannelOffset = _3ewa->ReadUint8() / 4;
1439                uint8_t regoptions = _3ewa->ReadUint8();
1440                MSDecode           = regoptions & 0x01; // bit 0
1441                SustainDefeat      = regoptions & 0x02; // bit 1
1442                _3ewa->ReadInt16(); // unknown
1443                VelocityUpperLimit = _3ewa->ReadInt8();
1444                _3ewa->ReadInt8(); // unknown
1445                _3ewa->ReadInt16(); // unknown
1446                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447                _3ewa->ReadInt8(); // unknown
1448                _3ewa->ReadInt8(); // unknown
1449                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450                uint8_t vcfcutoff = _3ewa->ReadUint8();
1451                VCFEnabled = vcfcutoff & 0x80; // bit 7
1452                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1453                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454                uint8_t vcfvelscale = _3ewa->ReadUint8();
1455                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457                _3ewa->ReadInt8(); // unknown
1458                uint8_t vcfresonance = _3ewa->ReadUint8();
1459                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1462                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1463                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464                uint8_t vcfvelocity = _3ewa->ReadUint8();
1465                VCFVelocityDynamicRange = vcfvelocity % 5;
1466                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1467                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468                if (VCFType == vcf_type_lowpass) {
1469                    if (lfo3ctrl & 0x40) // bit 6
1470                        VCFType = vcf_type_lowpassturbo;
1471                }
1472                if (_3ewa->RemainingBytes() >= 8) {
1473                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1474                } else {
1475                    memset(DimensionUpperLimits, 0, 8);
1476                }
1477            } else { // '3ewa' chunk does not exist yet
1478                // use default values
1479                LFO3Frequency                   = 1.0;
1480                EG3Attack                       = 0.0;
1481                LFO1InternalDepth               = 0;
1482                LFO3InternalDepth               = 0;
1483                LFO1ControlDepth                = 0;
1484                LFO3ControlDepth                = 0;
1485                EG1Attack                       = 0.0;
1486                EG1Decay1                       = 0.005;
1487                EG1Sustain                      = 1000;
1488                EG1Release                      = 0.3;
1489                EG1Controller.type              = eg1_ctrl_t::type_none;
1490                EG1Controller.controller_number = 0;
1491                EG1ControllerInvert             = false;
1492                EG1ControllerAttackInfluence    = 0;
1493                EG1ControllerDecayInfluence     = 0;
1494                EG1ControllerReleaseInfluence   = 0;
1495                EG2Controller.type              = eg2_ctrl_t::type_none;
1496                EG2Controller.controller_number = 0;
1497                EG2ControllerInvert             = false;
1498                EG2ControllerAttackInfluence    = 0;
1499                EG2ControllerDecayInfluence     = 0;
1500                EG2ControllerReleaseInfluence   = 0;
1501                LFO1Frequency                   = 1.0;
1502                EG2Attack                       = 0.0;
1503                EG2Decay1                       = 0.005;
1504                EG2Sustain                      = 1000;
1505                EG2Release                      = 0.3;
1506                LFO2ControlDepth                = 0;
1507                LFO2Frequency                   = 1.0;
1508                LFO2InternalDepth               = 0;
1509                EG1Decay2                       = 0.0;
1510                EG1InfiniteSustain              = true;
1511                EG1PreAttack                    = 0;
1512                EG2Decay2                       = 0.0;
1513                EG2InfiniteSustain              = true;
1514                EG2PreAttack                    = 0;
1515                VelocityResponseCurve           = curve_type_nonlinear;
1516                VelocityResponseDepth           = 3;
1517                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1518                ReleaseVelocityResponseDepth    = 3;
1519                VelocityResponseCurveScaling    = 32;
1520                AttenuationControllerThreshold  = 0;
1521                SampleStartOffset               = 0;
1522                PitchTrack                      = true;
1523                DimensionBypass                 = dim_bypass_ctrl_none;
1524                Pan                             = 0;
1525                SelfMask                        = true;
1526                LFO3Controller                  = lfo3_ctrl_modwheel;
1527                LFO3Sync                        = false;
1528                InvertAttenuationController     = false;
1529                AttenuationController.type      = attenuation_ctrl_t::type_none;
1530                AttenuationController.controller_number = 0;
1531                LFO2Controller                  = lfo2_ctrl_internal;
1532                LFO2FlipPhase                   = false;
1533                LFO2Sync                        = false;
1534                LFO1Controller                  = lfo1_ctrl_internal;
1535                LFO1FlipPhase                   = false;
1536                LFO1Sync                        = false;
1537                VCFResonanceController          = vcf_res_ctrl_none;
1538                EG3Depth                        = 0;
1539                ChannelOffset                   = 0;
1540                MSDecode                        = false;
1541                SustainDefeat                   = false;
1542                VelocityUpperLimit              = 0;
1543                ReleaseTriggerDecay             = 0;
1544                EG1Hold                         = false;
1545                VCFEnabled                      = false;
1546                VCFCutoff                       = 0;
1547                VCFCutoffController             = vcf_cutoff_ctrl_none;
1548                VCFCutoffControllerInvert       = false;
1549                VCFVelocityScale                = 0;
1550                VCFResonance                    = 0;
1551                VCFResonanceDynamic             = false;
1552                VCFKeyboardTracking             = false;
1553                VCFKeyboardTrackingBreakpoint   = 0;
1554                VCFVelocityDynamicRange         = 0x04;
1555                VCFVelocityCurve                = curve_type_linear;
1556                VCFType                         = vcf_type_lowpass;
1557                memset(DimensionUpperLimits, 127, 8);
1558          }          }
1559          else {  
1560              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1562                                                         VelocityResponseCurveScaling);
1563    
1564            pVelocityReleaseTable = GetReleaseVelocityTable(
1565                                        ReleaseVelocityResponseCurve,
1566                                        ReleaseVelocityResponseDepth
1567                                    );
1568    
1569            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570                                                          VCFVelocityDynamicRange,
1571                                                          VCFVelocityScale,
1572                                                          VCFCutoffController);
1573    
1574            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575            VelocityTable = 0;
1576        }
1577    
1578        /*
1579         * Constructs a DimensionRegion by copying all parameters from
1580         * another DimensionRegion
1581         */
1582        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583            Instances++;
1584            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1585            *this = src; // default memberwise shallow copy of all parameters
1586            pParentList = _3ewl; // restore the chunk pointer
1587    
1588            // deep copy of owned structures
1589            if (src.VelocityTable) {
1590                VelocityTable = new uint8_t[128];
1591                for (int k = 0 ; k < 128 ; k++)
1592                    VelocityTable[k] = src.VelocityTable[k];
1593          }          }
1594          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1595          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1596              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1597              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1598          }          }
1599          else {      }
1600              ReleaseVelocityResponseCurve = curve_type_unknown;      
1601              ReleaseVelocityResponseDepth = 0;      /**
1602         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1603         * and assign it to this object.
1604         *
1605         * Note that all sample pointers referenced by @a orig are simply copied as
1606         * memory address. Thus the respective samples are shared, not duplicated!
1607         *
1608         * @param orig - original DimensionRegion object to be copied from
1609         */
1610        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1611            // delete all allocated data first
1612            if (VelocityTable) delete [] VelocityTable;
1613            if (pSampleLoops) delete [] pSampleLoops;
1614            
1615            // backup parent list pointer
1616            RIFF::List* p = pParentList;
1617            
1618            //NOTE: copy code copied from assignment constructor above, see comment there as well
1619            
1620            *this = *orig; // default memberwise shallow copy of all parameters
1621            pParentList = p; // restore the chunk pointer
1622    
1623            // deep copy of owned structures
1624            if (orig->VelocityTable) {
1625                VelocityTable = new uint8_t[128];
1626                for (int k = 0 ; k < 128 ; k++)
1627                    VelocityTable[k] = orig->VelocityTable[k];
1628            }
1629            if (orig->pSampleLoops) {
1630                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1631                for (int k = 0 ; k < orig->SampleLoops ; k++)
1632                    pSampleLoops[k] = orig->pSampleLoops[k];
1633          }          }
1634          VelocityResponseCurveScaling = _3ewa->ReadUint8();      }
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1635    
1636          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet      /**
1637          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;       * Updates the respective member variable and updates @c SampleAttenuation
1638          if (pVelocityTables->count(tableKey)) { // if key exists       * which depends on this value.
1639              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];       */
1640        void DimensionRegion::SetGain(int32_t gain) {
1641            DLS::Sampler::SetGain(gain);
1642            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1643        }
1644    
1645        /**
1646         * Apply dimension region settings to the respective RIFF chunks. You
1647         * have to call File::Save() to make changes persistent.
1648         *
1649         * Usually there is absolutely no need to call this method explicitly.
1650         * It will be called automatically when File::Save() was called.
1651         */
1652        void DimensionRegion::UpdateChunks() {
1653            // first update base class's chunk
1654            DLS::Sampler::UpdateChunks();
1655    
1656            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1657            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1658            pData[12] = Crossfade.in_start;
1659            pData[13] = Crossfade.in_end;
1660            pData[14] = Crossfade.out_start;
1661            pData[15] = Crossfade.out_end;
1662    
1663            // make sure '3ewa' chunk exists
1664            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1665            if (!_3ewa) {
1666                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1667                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1668                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1669          }          }
1670          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1671              pVelocityAttenuationTable = new double[128];  
1672              switch (VelocityResponseCurve) { // calculate the new table          // update '3ewa' chunk with DimensionRegion's current settings
1673    
1674            const uint32_t chunksize = _3ewa->GetNewSize();
1675            store32(&pData[0], chunksize); // unknown, always chunk size?
1676    
1677            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1678            store32(&pData[4], lfo3freq);
1679    
1680            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1681            store32(&pData[8], eg3attack);
1682    
1683            // next 2 bytes unknown
1684    
1685            store16(&pData[14], LFO1InternalDepth);
1686    
1687            // next 2 bytes unknown
1688    
1689            store16(&pData[18], LFO3InternalDepth);
1690    
1691            // next 2 bytes unknown
1692    
1693            store16(&pData[22], LFO1ControlDepth);
1694    
1695            // next 2 bytes unknown
1696    
1697            store16(&pData[26], LFO3ControlDepth);
1698    
1699            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1700            store32(&pData[28], eg1attack);
1701    
1702            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1703            store32(&pData[32], eg1decay1);
1704    
1705            // next 2 bytes unknown
1706    
1707            store16(&pData[38], EG1Sustain);
1708    
1709            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1710            store32(&pData[40], eg1release);
1711    
1712            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1713            pData[44] = eg1ctl;
1714    
1715            const uint8_t eg1ctrloptions =
1716                (EG1ControllerInvert ? 0x01 : 0x00) |
1717                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1718                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1719                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1720            pData[45] = eg1ctrloptions;
1721    
1722            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1723            pData[46] = eg2ctl;
1724    
1725            const uint8_t eg2ctrloptions =
1726                (EG2ControllerInvert ? 0x01 : 0x00) |
1727                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1728                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1729                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1730            pData[47] = eg2ctrloptions;
1731    
1732            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1733            store32(&pData[48], lfo1freq);
1734    
1735            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1736            store32(&pData[52], eg2attack);
1737    
1738            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1739            store32(&pData[56], eg2decay1);
1740    
1741            // next 2 bytes unknown
1742    
1743            store16(&pData[62], EG2Sustain);
1744    
1745            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1746            store32(&pData[64], eg2release);
1747    
1748            // next 2 bytes unknown
1749    
1750            store16(&pData[70], LFO2ControlDepth);
1751    
1752            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1753            store32(&pData[72], lfo2freq);
1754    
1755            // next 2 bytes unknown
1756    
1757            store16(&pData[78], LFO2InternalDepth);
1758    
1759            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1760            store32(&pData[80], eg1decay2);
1761    
1762            // next 2 bytes unknown
1763    
1764            store16(&pData[86], EG1PreAttack);
1765    
1766            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1767            store32(&pData[88], eg2decay2);
1768    
1769            // next 2 bytes unknown
1770    
1771            store16(&pData[94], EG2PreAttack);
1772    
1773            {
1774                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1775                uint8_t velocityresponse = VelocityResponseDepth;
1776                switch (VelocityResponseCurve) {
1777                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1778                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1779                  case curve_type_linear:                  case curve_type_linear:
1780                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1781                      break;                      break;
1782                  case curve_type_special:                  case curve_type_special:
1783                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
1784                          pVelocityAttenuationTable[velocity] =                      break;
1785                              GIG_VELOCITY_TRANSFORM_SPECIAL(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));                  case curve_type_unknown:
1786                          if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;                  default:
1787                          else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1788                      }              }
1789                pData[96] = velocityresponse;
1790            }
1791    
1792            {
1793                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1794                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1795                switch (ReleaseVelocityResponseCurve) {
1796                    case curve_type_nonlinear:
1797                        break;
1798                    case curve_type_linear:
1799                        releasevelocityresponse += 5;
1800                        break;
1801                    case curve_type_special:
1802                        releasevelocityresponse += 10;
1803                      break;                      break;
1804                  case curve_type_unknown:                  case curve_type_unknown:
1805                  default:                  default:
1806                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1807              }              }
1808              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[97] = releasevelocityresponse;
1809            }
1810    
1811            pData[98] = VelocityResponseCurveScaling;
1812    
1813            pData[99] = AttenuationControllerThreshold;
1814    
1815            // next 4 bytes unknown
1816    
1817            store16(&pData[104], SampleStartOffset);
1818    
1819            // next 2 bytes unknown
1820    
1821            {
1822                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1823                switch (DimensionBypass) {
1824                    case dim_bypass_ctrl_94:
1825                        pitchTrackDimensionBypass |= 0x10;
1826                        break;
1827                    case dim_bypass_ctrl_95:
1828                        pitchTrackDimensionBypass |= 0x20;
1829                        break;
1830                    case dim_bypass_ctrl_none:
1831                        //FIXME: should we set anything here?
1832                        break;
1833                    default:
1834                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1835                }
1836                pData[108] = pitchTrackDimensionBypass;
1837            }
1838    
1839            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1840            pData[109] = pan;
1841    
1842            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1843            pData[110] = selfmask;
1844    
1845            // next byte unknown
1846    
1847            {
1848                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1849                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1850                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1851                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1852                pData[112] = lfo3ctrl;
1853            }
1854    
1855            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1856            pData[113] = attenctl;
1857    
1858            {
1859                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1860                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1861                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1862                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1863                pData[114] = lfo2ctrl;
1864            }
1865    
1866            {
1867                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1868                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1869                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1870                if (VCFResonanceController != vcf_res_ctrl_none)
1871                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1872                pData[115] = lfo1ctrl;
1873            }
1874    
1875            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1876                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1877            store16(&pData[116], eg3depth);
1878    
1879            // next 2 bytes unknown
1880    
1881            const uint8_t channeloffset = ChannelOffset * 4;
1882            pData[120] = channeloffset;
1883    
1884            {
1885                uint8_t regoptions = 0;
1886                if (MSDecode)      regoptions |= 0x01; // bit 0
1887                if (SustainDefeat) regoptions |= 0x02; // bit 1
1888                pData[121] = regoptions;
1889            }
1890    
1891            // next 2 bytes unknown
1892    
1893            pData[124] = VelocityUpperLimit;
1894    
1895            // next 3 bytes unknown
1896    
1897            pData[128] = ReleaseTriggerDecay;
1898    
1899            // next 2 bytes unknown
1900    
1901            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1902            pData[131] = eg1hold;
1903    
1904            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1905                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1906            pData[132] = vcfcutoff;
1907    
1908            pData[133] = VCFCutoffController;
1909    
1910            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1911                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1912            pData[134] = vcfvelscale;
1913    
1914            // next byte unknown
1915    
1916            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1917                                         (VCFResonance & 0x7f); /* lower 7 bits */
1918            pData[136] = vcfresonance;
1919    
1920            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1921                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1922            pData[137] = vcfbreakpoint;
1923    
1924            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
1925                                        VCFVelocityCurve * 5;
1926            pData[138] = vcfvelocity;
1927    
1928            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1929            pData[139] = vcftype;
1930    
1931            if (chunksize >= 148) {
1932                memcpy(&pData[140], DimensionUpperLimits, 8);
1933            }
1934        }
1935    
1936        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1937            curve_type_t curveType = releaseVelocityResponseCurve;
1938            uint8_t depth = releaseVelocityResponseDepth;
1939            // this models a strange behaviour or bug in GSt: two of the
1940            // velocity response curves for release time are not used even
1941            // if specified, instead another curve is chosen.
1942            if ((curveType == curve_type_nonlinear && depth == 0) ||
1943                (curveType == curve_type_special   && depth == 4)) {
1944                curveType = curve_type_nonlinear;
1945                depth = 3;
1946            }
1947            return GetVelocityTable(curveType, depth, 0);
1948        }
1949    
1950        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1951                                                        uint8_t vcfVelocityDynamicRange,
1952                                                        uint8_t vcfVelocityScale,
1953                                                        vcf_cutoff_ctrl_t vcfCutoffController)
1954        {
1955            curve_type_t curveType = vcfVelocityCurve;
1956            uint8_t depth = vcfVelocityDynamicRange;
1957            // even stranger GSt: two of the velocity response curves for
1958            // filter cutoff are not used, instead another special curve
1959            // is chosen. This curve is not used anywhere else.
1960            if ((curveType == curve_type_nonlinear && depth == 0) ||
1961                (curveType == curve_type_special   && depth == 4)) {
1962                curveType = curve_type_special;
1963                depth = 5;
1964          }          }
1965            return GetVelocityTable(curveType, depth,
1966                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1967                                        ? vcfVelocityScale : 0);
1968        }
1969    
1970        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1971        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1972        {
1973            double* table;
1974            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1975            if (pVelocityTables->count(tableKey)) { // if key exists
1976                table = (*pVelocityTables)[tableKey];
1977            }
1978            else {
1979                table = CreateVelocityTable(curveType, depth, scaling);
1980                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1981            }
1982            return table;
1983        }
1984    
1985        Region* DimensionRegion::GetParent() const {
1986            return pRegion;
1987      }      }
1988    
1989      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
# Line 988  namespace gig { Line 2104  namespace gig {
2104          return decodedcontroller;          return decodedcontroller;
2105      }      }
2106    
2107        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2108            _lev_ctrl_t encodedcontroller;
2109            switch (DecodedController.type) {
2110                // special controller
2111                case leverage_ctrl_t::type_none:
2112                    encodedcontroller = _lev_ctrl_none;
2113                    break;
2114                case leverage_ctrl_t::type_velocity:
2115                    encodedcontroller = _lev_ctrl_velocity;
2116                    break;
2117                case leverage_ctrl_t::type_channelaftertouch:
2118                    encodedcontroller = _lev_ctrl_channelaftertouch;
2119                    break;
2120    
2121                // ordinary MIDI control change controller
2122                case leverage_ctrl_t::type_controlchange:
2123                    switch (DecodedController.controller_number) {
2124                        case 1:
2125                            encodedcontroller = _lev_ctrl_modwheel;
2126                            break;
2127                        case 2:
2128                            encodedcontroller = _lev_ctrl_breath;
2129                            break;
2130                        case 4:
2131                            encodedcontroller = _lev_ctrl_foot;
2132                            break;
2133                        case 12:
2134                            encodedcontroller = _lev_ctrl_effect1;
2135                            break;
2136                        case 13:
2137                            encodedcontroller = _lev_ctrl_effect2;
2138                            break;
2139                        case 16:
2140                            encodedcontroller = _lev_ctrl_genpurpose1;
2141                            break;
2142                        case 17:
2143                            encodedcontroller = _lev_ctrl_genpurpose2;
2144                            break;
2145                        case 18:
2146                            encodedcontroller = _lev_ctrl_genpurpose3;
2147                            break;
2148                        case 19:
2149                            encodedcontroller = _lev_ctrl_genpurpose4;
2150                            break;
2151                        case 5:
2152                            encodedcontroller = _lev_ctrl_portamentotime;
2153                            break;
2154                        case 64:
2155                            encodedcontroller = _lev_ctrl_sustainpedal;
2156                            break;
2157                        case 65:
2158                            encodedcontroller = _lev_ctrl_portamento;
2159                            break;
2160                        case 66:
2161                            encodedcontroller = _lev_ctrl_sostenutopedal;
2162                            break;
2163                        case 67:
2164                            encodedcontroller = _lev_ctrl_softpedal;
2165                            break;
2166                        case 80:
2167                            encodedcontroller = _lev_ctrl_genpurpose5;
2168                            break;
2169                        case 81:
2170                            encodedcontroller = _lev_ctrl_genpurpose6;
2171                            break;
2172                        case 82:
2173                            encodedcontroller = _lev_ctrl_genpurpose7;
2174                            break;
2175                        case 83:
2176                            encodedcontroller = _lev_ctrl_genpurpose8;
2177                            break;
2178                        case 91:
2179                            encodedcontroller = _lev_ctrl_effect1depth;
2180                            break;
2181                        case 92:
2182                            encodedcontroller = _lev_ctrl_effect2depth;
2183                            break;
2184                        case 93:
2185                            encodedcontroller = _lev_ctrl_effect3depth;
2186                            break;
2187                        case 94:
2188                            encodedcontroller = _lev_ctrl_effect4depth;
2189                            break;
2190                        case 95:
2191                            encodedcontroller = _lev_ctrl_effect5depth;
2192                            break;
2193                        default:
2194                            throw gig::Exception("leverage controller number is not supported by the gig format");
2195                    }
2196                    break;
2197                default:
2198                    throw gig::Exception("Unknown leverage controller type.");
2199            }
2200            return encodedcontroller;
2201        }
2202    
2203      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2204          Instances--;          Instances--;
2205          if (!Instances) {          if (!Instances) {
# Line 1001  namespace gig { Line 2213  namespace gig {
2213              delete pVelocityTables;              delete pVelocityTables;
2214              pVelocityTables = NULL;              pVelocityTables = NULL;
2215          }          }
2216            if (VelocityTable) delete[] VelocityTable;
2217      }      }
2218    
2219      /**      /**
# Line 1018  namespace gig { Line 2231  namespace gig {
2231          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2232      }      }
2233    
2234        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2235            return pVelocityReleaseTable[MIDIKeyVelocity];
2236        }
2237    
2238        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2239            return pVelocityCutoffTable[MIDIKeyVelocity];
2240        }
2241    
2242        /**
2243         * Updates the respective member variable and the lookup table / cache
2244         * that depends on this value.
2245         */
2246        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2247            pVelocityAttenuationTable =
2248                GetVelocityTable(
2249                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2250                );
2251            VelocityResponseCurve = curve;
2252        }
2253    
2254        /**
2255         * Updates the respective member variable and the lookup table / cache
2256         * that depends on this value.
2257         */
2258        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2259            pVelocityAttenuationTable =
2260                GetVelocityTable(
2261                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2262                );
2263            VelocityResponseDepth = depth;
2264        }
2265    
2266        /**
2267         * Updates the respective member variable and the lookup table / cache
2268         * that depends on this value.
2269         */
2270        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2271            pVelocityAttenuationTable =
2272                GetVelocityTable(
2273                    VelocityResponseCurve, VelocityResponseDepth, scaling
2274                );
2275            VelocityResponseCurveScaling = scaling;
2276        }
2277    
2278        /**
2279         * Updates the respective member variable and the lookup table / cache
2280         * that depends on this value.
2281         */
2282        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2283            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2284            ReleaseVelocityResponseCurve = curve;
2285        }
2286    
2287        /**
2288         * Updates the respective member variable and the lookup table / cache
2289         * that depends on this value.
2290         */
2291        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2292            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2293            ReleaseVelocityResponseDepth = depth;
2294        }
2295    
2296        /**
2297         * Updates the respective member variable and the lookup table / cache
2298         * that depends on this value.
2299         */
2300        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2301            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2302            VCFCutoffController = controller;
2303        }
2304    
2305        /**
2306         * Updates the respective member variable and the lookup table / cache
2307         * that depends on this value.
2308         */
2309        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2310            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2311            VCFVelocityCurve = curve;
2312        }
2313    
2314        /**
2315         * Updates the respective member variable and the lookup table / cache
2316         * that depends on this value.
2317         */
2318        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2319            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2320            VCFVelocityDynamicRange = range;
2321        }
2322    
2323        /**
2324         * Updates the respective member variable and the lookup table / cache
2325         * that depends on this value.
2326         */
2327        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2328            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2329            VCFVelocityScale = scaling;
2330        }
2331    
2332        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2333    
2334            // line-segment approximations of the 15 velocity curves
2335    
2336            // linear
2337            const int lin0[] = { 1, 1, 127, 127 };
2338            const int lin1[] = { 1, 21, 127, 127 };
2339            const int lin2[] = { 1, 45, 127, 127 };
2340            const int lin3[] = { 1, 74, 127, 127 };
2341            const int lin4[] = { 1, 127, 127, 127 };
2342    
2343            // non-linear
2344            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2345            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2346                                 127, 127 };
2347            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2348                                 127, 127 };
2349            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2350                                 127, 127 };
2351            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2352    
2353            // special
2354            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2355                                 113, 127, 127, 127 };
2356            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2357                                 118, 127, 127, 127 };
2358            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2359                                 85, 90, 91, 127, 127, 127 };
2360            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2361                                 117, 127, 127, 127 };
2362            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2363                                 127, 127 };
2364    
2365            // this is only used by the VCF velocity curve
2366            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2367                                 91, 127, 127, 127 };
2368    
2369            const int* const curves[] = { non0, non1, non2, non3, non4,
2370                                          lin0, lin1, lin2, lin3, lin4,
2371                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2372    
2373            double* const table = new double[128];
2374    
2375            const int* curve = curves[curveType * 5 + depth];
2376            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2377    
2378            table[0] = 0;
2379            for (int x = 1 ; x < 128 ; x++) {
2380    
2381                if (x > curve[2]) curve += 2;
2382                double y = curve[1] + (x - curve[0]) *
2383                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2384                y = y / 127;
2385    
2386                // Scale up for s > 20, down for s < 20. When
2387                // down-scaling, the curve still ends at 1.0.
2388                if (s < 20 && y >= 0.5)
2389                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2390                else
2391                    y = y * (s / 20.0);
2392                if (y > 1) y = 1;
2393    
2394                table[x] = y;
2395            }
2396            return table;
2397        }
2398    
2399    
2400  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 2403  namespace gig {
2403      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2404          // Initialization          // Initialization
2405          Dimensions = 0;          Dimensions = 0;
2406          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2407              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2408          }          }
2409            Layers = 1;
2410            File* file = (File*) GetParent()->GetParent();
2411            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2412    
2413          // Actual Loading          // Actual Loading
2414    
2415            if (!file->GetAutoLoad()) return;
2416    
2417          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2418    
2419          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2420          if (_3lnk) {          if (_3lnk) {
2421              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2422              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2423                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2424                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2425                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2426                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2427                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2428                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2429                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2430                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2431                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2432                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2433                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2434                  }                  }
2435                  else { // active dimension                  else { // active dimension
2436                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2437                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2438                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2439                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2440                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2441                      Dimensions++;                      Dimensions++;
2442    
2443                        // if this is a layer dimension, remember the amount of layers
2444                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2445                  }                  }
2446                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2447              }              }
2448                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2449    
2450              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2451              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2452                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
2453                  if (pDimDef->dimension == dimension_velocity) {  
2454                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
2455                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
2456                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2457                          pDimDef->ranges     = NULL;              else
2458                      }                  _3lnk->SetPos(44);
2459                      else { // custom defined ranges  
2460                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
2461                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
2462                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
2463                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2464                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2465                  }                  }
2466                    GetSample(); // load global region sample reference
2467              }              }
2468            } else {
2469                DimensionRegions = 0;
2470                for (int i = 0 ; i < 8 ; i++) {
2471                    pDimensionDefinitions[i].dimension  = dimension_none;
2472                    pDimensionDefinitions[i].bits       = 0;
2473                    pDimensionDefinitions[i].zones      = 0;
2474                }
2475            }
2476    
2477            // make sure there is at least one dimension region
2478            if (!DimensionRegions) {
2479                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2480                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2481                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2482                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2483                DimensionRegions = 1;
2484            }
2485        }
2486    
2487        /**
2488         * Apply Region settings and all its DimensionRegions to the respective
2489         * RIFF chunks. You have to call File::Save() to make changes persistent.
2490         *
2491         * Usually there is absolutely no need to call this method explicitly.
2492         * It will be called automatically when File::Save() was called.
2493         *
2494         * @throws gig::Exception if samples cannot be dereferenced
2495         */
2496        void Region::UpdateChunks() {
2497            // in the gig format we don't care about the Region's sample reference
2498            // but we still have to provide some existing one to not corrupt the
2499            // file, so to avoid the latter we simply always assign the sample of
2500            // the first dimension region of this region
2501            pSample = pDimensionRegions[0]->pSample;
2502    
2503            // first update base class's chunks
2504            DLS::Region::UpdateChunks();
2505    
2506            // update dimension region's chunks
2507            for (int i = 0; i < DimensionRegions; i++) {
2508                pDimensionRegions[i]->UpdateChunks();
2509            }
2510    
2511            File* pFile = (File*) GetParent()->GetParent();
2512            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2513            const int iMaxDimensions =  version3 ? 8 : 5;
2514            const int iMaxDimensionRegions = version3 ? 256 : 32;
2515    
2516            // make sure '3lnk' chunk exists
2517            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2518            if (!_3lnk) {
2519                const int _3lnkChunkSize = version3 ? 1092 : 172;
2520                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2521                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2522    
2523              // load sample references              // move 3prg to last position
2524              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)              pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2525              for (uint i = 0; i < DimensionRegions; i++) {          }
2526                  uint32_t wavepoolindex = _3lnk->ReadUint32();  
2527                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);          // update dimension definitions in '3lnk' chunk
2528            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2529            store32(&pData[0], DimensionRegions);
2530            int shift = 0;
2531            for (int i = 0; i < iMaxDimensions; i++) {
2532                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2533                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2534                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2535                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2536                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2537                // next 3 bytes unknown, always zero?
2538    
2539                shift += pDimensionDefinitions[i].bits;
2540            }
2541    
2542            // update wave pool table in '3lnk' chunk
2543            const int iWavePoolOffset = version3 ? 68 : 44;
2544            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2545                int iWaveIndex = -1;
2546                if (i < DimensionRegions) {
2547                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2548                    File::SampleList::iterator iter = pFile->pSamples->begin();
2549                    File::SampleList::iterator end  = pFile->pSamples->end();
2550                    for (int index = 0; iter != end; ++iter, ++index) {
2551                        if (*iter == pDimensionRegions[i]->pSample) {
2552                            iWaveIndex = index;
2553                            break;
2554                        }
2555                    }
2556              }              }
2557                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2558          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2559      }      }
2560    
2561      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1111  namespace gig { Line 2565  namespace gig {
2565              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2566              while (_3ewl) {              while (_3ewl) {
2567                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2568                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2569                      dimensionRegionNr++;                      dimensionRegionNr++;
2570                  }                  }
2571                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1120  namespace gig { Line 2574  namespace gig {
2574          }          }
2575      }      }
2576    
2577      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2578          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
2579              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
2580            // update Region key table for fast lookup
2581            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2582        }
2583    
2584        void Region::UpdateVelocityTable() {
2585            // get velocity dimension's index
2586            int veldim = -1;
2587            for (int i = 0 ; i < Dimensions ; i++) {
2588                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2589                    veldim = i;
2590                    break;
2591                }
2592            }
2593            if (veldim == -1) return;
2594    
2595            int step = 1;
2596            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2597            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2598            int end = step * pDimensionDefinitions[veldim].zones;
2599    
2600            // loop through all dimension regions for all dimensions except the velocity dimension
2601            int dim[8] = { 0 };
2602            for (int i = 0 ; i < DimensionRegions ; i++) {
2603    
2604                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2605                    pDimensionRegions[i]->VelocityUpperLimit) {
2606                    // create the velocity table
2607                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2608                    if (!table) {
2609                        table = new uint8_t[128];
2610                        pDimensionRegions[i]->VelocityTable = table;
2611                    }
2612                    int tableidx = 0;
2613                    int velocityZone = 0;
2614                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2615                        for (int k = i ; k < end ; k += step) {
2616                            DimensionRegion *d = pDimensionRegions[k];
2617                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2618                            velocityZone++;
2619                        }
2620                    } else { // gig2
2621                        for (int k = i ; k < end ; k += step) {
2622                            DimensionRegion *d = pDimensionRegions[k];
2623                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2624                            velocityZone++;
2625                        }
2626                    }
2627                } else {
2628                    if (pDimensionRegions[i]->VelocityTable) {
2629                        delete[] pDimensionRegions[i]->VelocityTable;
2630                        pDimensionRegions[i]->VelocityTable = 0;
2631                    }
2632                }
2633    
2634                int j;
2635                int shift = 0;
2636                for (j = 0 ; j < Dimensions ; j++) {
2637                    if (j == veldim) i += skipveldim; // skip velocity dimension
2638                    else {
2639                        dim[j]++;
2640                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2641                        else {
2642                            // skip unused dimension regions
2643                            dim[j] = 0;
2644                            i += ((1 << pDimensionDefinitions[j].bits) -
2645                                  pDimensionDefinitions[j].zones) << shift;
2646                        }
2647                    }
2648                    shift += pDimensionDefinitions[j].bits;
2649                }
2650                if (j == Dimensions) break;
2651            }
2652        }
2653    
2654        /** @brief Einstein would have dreamed of it - create a new dimension.
2655         *
2656         * Creates a new dimension with the dimension definition given by
2657         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2658         * There is a hard limit of dimensions and total amount of "bits" all
2659         * dimensions can have. This limit is dependant to what gig file format
2660         * version this file refers to. The gig v2 (and lower) format has a
2661         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2662         * format has a limit of 8.
2663         *
2664         * @param pDimDef - defintion of the new dimension
2665         * @throws gig::Exception if dimension of the same type exists already
2666         * @throws gig::Exception if amount of dimensions or total amount of
2667         *                        dimension bits limit is violated
2668         */
2669        void Region::AddDimension(dimension_def_t* pDimDef) {
2670            // check if max. amount of dimensions reached
2671            File* file = (File*) GetParent()->GetParent();
2672            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2673            if (Dimensions >= iMaxDimensions)
2674                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2675            // check if max. amount of dimension bits reached
2676            int iCurrentBits = 0;
2677            for (int i = 0; i < Dimensions; i++)
2678                iCurrentBits += pDimensionDefinitions[i].bits;
2679            if (iCurrentBits >= iMaxDimensions)
2680                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2681            const int iNewBits = iCurrentBits + pDimDef->bits;
2682            if (iNewBits > iMaxDimensions)
2683                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2684            // check if there's already a dimensions of the same type
2685            for (int i = 0; i < Dimensions; i++)
2686                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2687                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2688    
2689            // pos is where the new dimension should be placed, normally
2690            // last in list, except for the samplechannel dimension which
2691            // has to be first in list
2692            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2693            int bitpos = 0;
2694            for (int i = 0 ; i < pos ; i++)
2695                bitpos += pDimensionDefinitions[i].bits;
2696    
2697            // make room for the new dimension
2698            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2699            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2700                for (int j = Dimensions ; j > pos ; j--) {
2701                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2702                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2703                }
2704            }
2705    
2706            // assign definition of new dimension
2707            pDimensionDefinitions[pos] = *pDimDef;
2708    
2709            // auto correct certain dimension definition fields (where possible)
2710            pDimensionDefinitions[pos].split_type  =
2711                __resolveSplitType(pDimensionDefinitions[pos].dimension);
2712            pDimensionDefinitions[pos].zone_size =
2713                __resolveZoneSize(pDimensionDefinitions[pos]);
2714    
2715            // create new dimension region(s) for this new dimension, and make
2716            // sure that the dimension regions are placed correctly in both the
2717            // RIFF list and the pDimensionRegions array
2718            RIFF::Chunk* moveTo = NULL;
2719            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2720            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2721                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2722                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2723                }
2724                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2725                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2726                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2727                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2728                        // create a new dimension region and copy all parameter values from
2729                        // an existing dimension region
2730                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2731                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2732    
2733                        DimensionRegions++;
2734                    }
2735                }
2736                moveTo = pDimensionRegions[i]->pParentList;
2737            }
2738    
2739            // initialize the upper limits for this dimension
2740            int mask = (1 << bitpos) - 1;
2741            for (int z = 0 ; z < pDimDef->zones ; z++) {
2742                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2743                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2744                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2745                                      (z << bitpos) |
2746                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2747                }
2748          }          }
2749          for (int i = 0; i < 32; i++) {  
2750            Dimensions++;
2751    
2752            // if this is a layer dimension, update 'Layers' attribute
2753            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2754    
2755            UpdateVelocityTable();
2756        }
2757    
2758        /** @brief Delete an existing dimension.
2759         *
2760         * Deletes the dimension given by \a pDimDef and deletes all respective
2761         * dimension regions, that is all dimension regions where the dimension's
2762         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2763         * for example this would delete all dimension regions for the case(s)
2764         * where the sustain pedal is pressed down.
2765         *
2766         * @param pDimDef - dimension to delete
2767         * @throws gig::Exception if given dimension cannot be found
2768         */
2769        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2770            // get dimension's index
2771            int iDimensionNr = -1;
2772            for (int i = 0; i < Dimensions; i++) {
2773                if (&pDimensionDefinitions[i] == pDimDef) {
2774                    iDimensionNr = i;
2775                    break;
2776                }
2777            }
2778            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2779    
2780            // get amount of bits below the dimension to delete
2781            int iLowerBits = 0;
2782            for (int i = 0; i < iDimensionNr; i++)
2783                iLowerBits += pDimensionDefinitions[i].bits;
2784    
2785            // get amount ot bits above the dimension to delete
2786            int iUpperBits = 0;
2787            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2788                iUpperBits += pDimensionDefinitions[i].bits;
2789    
2790            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2791    
2792            // delete dimension regions which belong to the given dimension
2793            // (that is where the dimension's bit > 0)
2794            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2795                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2796                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2797                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2798                                        iObsoleteBit << iLowerBits |
2799                                        iLowerBit;
2800    
2801                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2802                        delete pDimensionRegions[iToDelete];
2803                        pDimensionRegions[iToDelete] = NULL;
2804                        DimensionRegions--;
2805                    }
2806                }
2807            }
2808    
2809            // defrag pDimensionRegions array
2810            // (that is remove the NULL spaces within the pDimensionRegions array)
2811            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2812                if (!pDimensionRegions[iTo]) {
2813                    if (iFrom <= iTo) iFrom = iTo + 1;
2814                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2815                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2816                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2817                        pDimensionRegions[iFrom] = NULL;
2818                    }
2819                }
2820            }
2821    
2822            // remove the this dimension from the upper limits arrays
2823            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2824                DimensionRegion* d = pDimensionRegions[j];
2825                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2826                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2827                }
2828                d->DimensionUpperLimits[Dimensions - 1] = 127;
2829            }
2830    
2831            // 'remove' dimension definition
2832            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2833                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2834            }
2835            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2836            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2837            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2838    
2839            Dimensions--;
2840    
2841            // if this was a layer dimension, update 'Layers' attribute
2842            if (pDimDef->dimension == dimension_layer) Layers = 1;
2843        }
2844    
2845        Region::~Region() {
2846            for (int i = 0; i < 256; i++) {
2847              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2848          }          }
2849      }      }
# Line 1142  namespace gig { Line 2861  namespace gig {
2861       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2862       * etc.).       * etc.).
2863       *       *
2864       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2865       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2866       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2867       * @see             Dimensions       * @see             Dimensions
2868       */       */
2869      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2870          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
2871            int veldim = -1;
2872            int velbitpos;
2873            int bitpos = 0;
2874            int dimregidx = 0;
2875          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2876              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2877                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
2878                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
2879                      break;                  velbitpos = bitpos;
2880                  case split_type_customvelocity:              } else {
2881                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
2882                      break;                      case split_type_normal:
2883                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2884                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2885                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2886                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2887                                }
2888                            } else {
2889                                // gig2: evenly sized zones
2890                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2891                            }
2892                            break;
2893                        case split_type_bit: // the value is already the sought dimension bit number
2894                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2895                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2896                            break;
2897                    }
2898                    dimregidx |= bits << bitpos;
2899              }              }
2900                bitpos += pDimensionDefinitions[i].bits;
2901            }
2902            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2903            if (veldim != -1) {
2904                // (dimreg is now the dimension region for the lowest velocity)
2905                if (dimreg->VelocityTable) // custom defined zone ranges
2906                    bits = dimreg->VelocityTable[DimValues[veldim]];
2907                else // normal split type
2908                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2909    
2910                dimregidx |= bits << velbitpos;
2911                dimreg = pDimensionRegions[dimregidx];
2912          }          }
2913          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimreg;
2914      }      }
2915    
2916      /**      /**
# Line 1172  namespace gig { Line 2918  namespace gig {
2918       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2919       * instead of calling this method directly!       * instead of calling this method directly!
2920       *       *
2921       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2922       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2923       *                 bit numbers       *                 bit numbers
2924       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2925       */       */
2926      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2927          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2928                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2929                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2930                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2931                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2932                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2933                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2934      }      }
2935    
2936      /**      /**
# Line 1202  namespace gig { Line 2947  namespace gig {
2947          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2948      }      }
2949    
2950      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2951            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2952          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2953            if (!file->pWavePoolTable) return NULL;
2954          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2955          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2956            Sample* sample = file->GetFirstSample(pProgress);
2957          while (sample) {          while (sample) {
2958              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2959                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2960              sample = file->GetNextSample();              sample = file->GetNextSample();
2961          }          }
2962          return NULL;          return NULL;
2963      }      }
2964        
2965        /**
2966         * Make a (semi) deep copy of the Region object given by @a orig
2967         * and assign it to this object.
2968         *
2969         * Note that all sample pointers referenced by @a orig are simply copied as
2970         * memory address. Thus the respective samples are shared, not duplicated!
2971         *
2972         * @param orig - original Region object to be copied from
2973         */
2974        void Region::CopyAssign(const Region* orig) {
2975            // handle base classes
2976            DLS::Region::CopyAssign(orig);
2977            
2978            // handle own member variables
2979            for (int i = Dimensions - 1; i >= 0; --i) {
2980                DeleteDimension(&pDimensionDefinitions[i]);
2981            }
2982            Layers = 0; // just to be sure
2983            for (int i = 0; i < orig->Dimensions; i++) {
2984                // we need to copy the dim definition here, to avoid the compiler
2985                // complaining about const-ness issue
2986                dimension_def_t def = orig->pDimensionDefinitions[i];
2987                AddDimension(&def);
2988            }
2989            for (int i = 0; i < 256; i++) {
2990                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
2991                    pDimensionRegions[i]->CopyAssign(
2992                        orig->pDimensionRegions[i]
2993                    );
2994                }
2995            }
2996            Layers = orig->Layers;
2997        }
2998    
2999    
3000    // *************** MidiRule ***************
3001    // *
3002    
3003    MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3004        _3ewg->SetPos(36);
3005        Triggers = _3ewg->ReadUint8();
3006        _3ewg->SetPos(40);
3007        ControllerNumber = _3ewg->ReadUint8();
3008        _3ewg->SetPos(46);
3009        for (int i = 0 ; i < Triggers ; i++) {
3010            pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3011            pTriggers[i].Descending = _3ewg->ReadUint8();
3012            pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3013            pTriggers[i].Key = _3ewg->ReadUint8();
3014            pTriggers[i].NoteOff = _3ewg->ReadUint8();
3015            pTriggers[i].Velocity = _3ewg->ReadUint8();
3016            pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3017            _3ewg->ReadUint8();
3018        }
3019    }
3020    
3021    
3022  // *************** Instrument ***************  // *************** Instrument ***************
3023  // *  // *
3024    
3025      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3026            static const DLS::Info::string_length_t fixedStringLengths[] = {
3027                { CHUNK_ID_INAM, 64 },
3028                { CHUNK_ID_ISFT, 12 },
3029                { 0, 0 }
3030            };
3031            pInfo->SetFixedStringLengths(fixedStringLengths);
3032    
3033          // Initialization          // Initialization
3034          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3035          RegionIndex = -1;          EffectSend = 0;
3036            Attenuation = 0;
3037            FineTune = 0;
3038            PitchbendRange = 0;
3039            PianoReleaseMode = false;
3040            DimensionKeyRange.low = 0;
3041            DimensionKeyRange.high = 0;
3042            pMidiRules = new MidiRule*[3];
3043            pMidiRules[0] = NULL;
3044    
3045          // Loading          // Loading
3046          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1236  namespace gig { Line 3055  namespace gig {
3055                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
3056                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
3057                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
3058    
3059                    if (_3ewg->GetSize() > 32) {
3060                        // read MIDI rules
3061                        int i = 0;
3062                        _3ewg->SetPos(32);
3063                        uint8_t id1 = _3ewg->ReadUint8();
3064                        uint8_t id2 = _3ewg->ReadUint8();
3065    
3066                        if (id1 == 4 && id2 == 16) {
3067                            pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3068                        }
3069                        //TODO: all the other types of rules
3070    
3071                        pMidiRules[i] = NULL;
3072                    }
3073              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
3074          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
3075    
3076          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
3077          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
3078          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3079          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
3080          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
3081          while (rgn) {                  while (rgn) {
3082              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3083                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3084                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
3085              }                      }
3086              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
3087          }                  }
3088                    // Creating Region Key Table for fast lookup
3089          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
3090              }              }
3091          }          }
3092    
3093            __notify_progress(pProgress, 1.0f); // notify done
3094      }      }
3095    
3096      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
3097          for (uint i = 0; i < Regions; i++) {          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3098              if (pRegions) {          RegionList::iterator iter = pRegions->begin();
3099                  if (pRegions[i]) delete (pRegions[i]);          RegionList::iterator end  = pRegions->end();
3100            for (; iter != end; ++iter) {
3101                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3102                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3103                    RegionKeyTable[iKey] = pRegion;
3104              }              }
             delete[] pRegions;  
3105          }          }
3106      }      }
3107    
3108        Instrument::~Instrument() {
3109            for (int i = 0 ; pMidiRules[i] ; i++) {
3110                delete pMidiRules[i];
3111            }
3112            delete[] pMidiRules;
3113        }
3114    
3115        /**
3116         * Apply Instrument with all its Regions to the respective RIFF chunks.
3117         * You have to call File::Save() to make changes persistent.
3118         *
3119         * Usually there is absolutely no need to call this method explicitly.
3120         * It will be called automatically when File::Save() was called.
3121         *
3122         * @throws gig::Exception if samples cannot be dereferenced
3123         */
3124        void Instrument::UpdateChunks() {
3125            // first update base classes' chunks
3126            DLS::Instrument::UpdateChunks();
3127    
3128            // update Regions' chunks
3129            {
3130                RegionList::iterator iter = pRegions->begin();
3131                RegionList::iterator end  = pRegions->end();
3132                for (; iter != end; ++iter)
3133                    (*iter)->UpdateChunks();
3134            }
3135    
3136            // make sure 'lart' RIFF list chunk exists
3137            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3138            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3139            // make sure '3ewg' RIFF chunk exists
3140            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3141            if (!_3ewg)  {
3142                File* pFile = (File*) GetParent();
3143    
3144                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3145                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3146                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3147                memset(_3ewg->LoadChunkData(), 0, size);
3148            }
3149            // update '3ewg' RIFF chunk
3150            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3151            store16(&pData[0], EffectSend);
3152            store32(&pData[2], Attenuation);
3153            store16(&pData[6], FineTune);
3154            store16(&pData[8], PitchbendRange);
3155            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3156                                        DimensionKeyRange.low << 1;
3157            pData[10] = dimkeystart;
3158            pData[11] = DimensionKeyRange.high;
3159        }
3160    
3161      /**      /**
3162       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
3163       *       *
# Line 1279  namespace gig { Line 3166  namespace gig {
3166       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3167       */       */
3168      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3169          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3170          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3171    
3172          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3173              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3174                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1296  namespace gig { Line 3184  namespace gig {
3184       * @see      GetNextRegion()       * @see      GetNextRegion()
3185       */       */
3186      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3187          if (!Regions) return NULL;          if (!pRegions) return NULL;
3188          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3189          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3190      }      }
3191    
3192      /**      /**
# Line 1310  namespace gig { Line 3198  namespace gig {
3198       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3199       */       */
3200      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3201          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
3202          return pRegions[RegionIndex++];          RegionsIterator++;
3203            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3204        }
3205    
3206        Region* Instrument::AddRegion() {
3207            // create new Region object (and its RIFF chunks)
3208            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3209            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3210            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3211            Region* pNewRegion = new Region(this, rgn);
3212            pRegions->push_back(pNewRegion);
3213            Regions = pRegions->size();
3214            // update Region key table for fast lookup
3215            UpdateRegionKeyTable();
3216            // done
3217            return pNewRegion;
3218        }
3219    
3220        void Instrument::DeleteRegion(Region* pRegion) {
3221            if (!pRegions) return;
3222            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3223            // update Region key table for fast lookup
3224            UpdateRegionKeyTable();
3225        }
3226    
3227        /**
3228         * Returns a MIDI rule of the instrument.
3229         *
3230         * The list of MIDI rules, at least in gig v3, always contains at
3231         * most two rules. The second rule can only be the DEF filter
3232         * (which currently isn't supported by libgig).
3233         *
3234         * @param i - MIDI rule number
3235         * @returns   pointer address to MIDI rule number i or NULL if there is none
3236         */
3237        MidiRule* Instrument::GetMidiRule(int i) {
3238            return pMidiRules[i];
3239        }
3240        
3241        /**
3242         * Make a (semi) deep copy of the Instrument object given by @a orig
3243         * and assign it to this object.
3244         *
3245         * Note that all sample pointers referenced by @a orig are simply copied as
3246         * memory address. Thus the respective samples are shared, not duplicated!
3247         *
3248         * @param orig - original Instrument object to be copied from
3249         */
3250        void Instrument::CopyAssign(const Instrument* orig) {
3251            // handle base class
3252            // (without copying DLS region stuff)
3253            DLS::Instrument::CopyAssignCore(orig);
3254            
3255            // handle own member variables
3256            Attenuation = orig->Attenuation;
3257            EffectSend = orig->EffectSend;
3258            FineTune = orig->FineTune;
3259            PitchbendRange = orig->PitchbendRange;
3260            PianoReleaseMode = orig->PianoReleaseMode;
3261            DimensionKeyRange = orig->DimensionKeyRange;
3262            
3263            // free old midi rules
3264            for (int i = 0 ; pMidiRules[i] ; i++) {
3265                delete pMidiRules[i];
3266            }
3267            //TODO: MIDI rule copying
3268            pMidiRules[0] = NULL;
3269            
3270            // delete all old regions
3271            while (Regions) DeleteRegion(GetFirstRegion());
3272            // create new regions and copy them from original
3273            {
3274                RegionList::const_iterator it = orig->pRegions->begin();
3275                for (int i = 0; i < orig->Regions; ++i, ++it) {
3276                    Region* dstRgn = AddRegion();
3277                    //NOTE: Region does semi-deep copy !
3278                    dstRgn->CopyAssign(
3279                        static_cast<gig::Region*>(*it)
3280                    );
3281                }
3282            }
3283    
3284            UpdateRegionKeyTable();
3285        }
3286    
3287    
3288    // *************** Group ***************
3289    // *
3290    
3291        /** @brief Constructor.
3292         *
3293         * @param file   - pointer to the gig::File object
3294         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3295         *                 NULL if this is a new Group
3296         */
3297        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3298            pFile      = file;
3299            pNameChunk = ck3gnm;
3300            ::LoadString(pNameChunk, Name);
3301        }
3302    
3303        Group::~Group() {
3304            // remove the chunk associated with this group (if any)
3305            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3306        }
3307    
3308        /** @brief Update chunks with current group settings.
3309         *
3310         * Apply current Group field values to the respective chunks. You have
3311         * to call File::Save() to make changes persistent.
3312         *
3313         * Usually there is absolutely no need to call this method explicitly.
3314         * It will be called automatically when File::Save() was called.
3315         */
3316        void Group::UpdateChunks() {
3317            // make sure <3gri> and <3gnl> list chunks exist
3318            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3319            if (!_3gri) {
3320                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3321                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3322            }
3323            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3324            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3325    
3326            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3327                // v3 has a fixed list of 128 strings, find a free one
3328                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3329                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3330                        pNameChunk = ck;
3331                        break;
3332                    }
3333                }
3334            }
3335    
3336            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3337            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3338        }
3339    
3340        /**
3341         * Returns the first Sample of this Group. You have to call this method
3342         * once before you use GetNextSample().
3343         *
3344         * <b>Notice:</b> this method might block for a long time, in case the
3345         * samples of this .gig file were not scanned yet
3346         *
3347         * @returns  pointer address to first Sample or NULL if there is none
3348         *           applied to this Group
3349         * @see      GetNextSample()
3350         */
3351        Sample* Group::GetFirstSample() {
3352            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3353            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3354                if (pSample->GetGroup() == this) return pSample;
3355            }
3356            return NULL;
3357        }
3358    
3359        /**
3360         * Returns the next Sample of the Group. You have to call
3361         * GetFirstSample() once before you can use this method. By calling this
3362         * method multiple times it iterates through the Samples assigned to
3363         * this Group.
3364         *
3365         * @returns  pointer address to the next Sample of this Group or NULL if
3366         *           end reached
3367         * @see      GetFirstSample()
3368         */
3369        Sample* Group::GetNextSample() {
3370            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3371            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3372                if (pSample->GetGroup() == this) return pSample;
3373            }
3374            return NULL;
3375        }
3376    
3377        /**
3378         * Move Sample given by \a pSample from another Group to this Group.
3379         */
3380        void Group::AddSample(Sample* pSample) {
3381            pSample->pGroup = this;
3382        }
3383    
3384        /**
3385         * Move all members of this group to another group (preferably the 1st
3386         * one except this). This method is called explicitly by
3387         * File::DeleteGroup() thus when a Group was deleted. This code was
3388         * intentionally not placed in the destructor!
3389         */
3390        void Group::MoveAll() {
3391            // get "that" other group first
3392            Group* pOtherGroup = NULL;
3393            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3394                if (pOtherGroup != this) break;
3395            }
3396            if (!pOtherGroup) throw Exception(
3397                "Could not move samples to another group, since there is no "
3398                "other Group. This is a bug, report it!"
3399            );
3400            // now move all samples of this group to the other group
3401            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3402                pOtherGroup->AddSample(pSample);
3403            }
3404      }      }
3405    
3406    
# Line 1319  namespace gig { Line 3408  namespace gig {
3408  // *************** File ***************  // *************** File ***************
3409  // *  // *
3410    
3411        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3412        const DLS::version_t File::VERSION_2 = {
3413            0, 2, 19980628 & 0xffff, 19980628 >> 16
3414        };
3415    
3416        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3417        const DLS::version_t File::VERSION_3 = {
3418            0, 3, 20030331 & 0xffff, 20030331 >> 16
3419        };
3420    
3421        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3422            { CHUNK_ID_IARL, 256 },
3423            { CHUNK_ID_IART, 128 },
3424            { CHUNK_ID_ICMS, 128 },
3425            { CHUNK_ID_ICMT, 1024 },
3426            { CHUNK_ID_ICOP, 128 },
3427            { CHUNK_ID_ICRD, 128 },
3428            { CHUNK_ID_IENG, 128 },
3429            { CHUNK_ID_IGNR, 128 },
3430            { CHUNK_ID_IKEY, 128 },
3431            { CHUNK_ID_IMED, 128 },
3432            { CHUNK_ID_INAM, 128 },
3433            { CHUNK_ID_IPRD, 128 },
3434            { CHUNK_ID_ISBJ, 128 },
3435            { CHUNK_ID_ISFT, 128 },
3436            { CHUNK_ID_ISRC, 128 },
3437            { CHUNK_ID_ISRF, 128 },
3438            { CHUNK_ID_ITCH, 128 },
3439            { 0, 0 }
3440        };
3441    
3442        File::File() : DLS::File() {
3443            bAutoLoad = true;
3444            *pVersion = VERSION_3;
3445            pGroups = NULL;
3446            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3447            pInfo->ArchivalLocation = String(256, ' ');
3448    
3449            // add some mandatory chunks to get the file chunks in right
3450            // order (INFO chunk will be moved to first position later)
3451            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3452            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3453            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3454    
3455            GenerateDLSID();
3456        }
3457    
3458      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3459          pSamples     = NULL;          bAutoLoad = true;
3460          pInstruments = NULL;          pGroups = NULL;
3461            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3462      }      }
3463    
3464      Sample* File::GetFirstSample() {      File::~File() {
3465          if (!pSamples) LoadSamples();          if (pGroups) {
3466                std::list<Group*>::iterator iter = pGroups->begin();
3467                std::list<Group*>::iterator end  = pGroups->end();
3468                while (iter != end) {
3469                    delete *iter;
3470                    ++iter;
3471                }
3472                delete pGroups;
3473            }
3474        }
3475    
3476        Sample* File::GetFirstSample(progress_t* pProgress) {
3477            if (!pSamples) LoadSamples(pProgress);
3478          if (!pSamples) return NULL;          if (!pSamples) return NULL;
3479          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
3480          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1337  namespace gig { Line 3486  namespace gig {
3486          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3487      }      }
3488    
3489      void File::LoadSamples() {      /** @brief Add a new sample.
3490          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
3491          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
3492              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
3493              RIFF::List* wave = wvpl->GetFirstSubList();       *
3494              while (wave) {       * @returns pointer to new Sample object
3495                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
3496                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
3497                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
3498                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
3499           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3500           // create new Sample object and its respective 'wave' list chunk
3501           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3502           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3503    
3504           // add mandatory chunks to get the chunks in right order
3505           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3506           wave->AddSubList(LIST_TYPE_INFO);
3507    
3508           pSamples->push_back(pSample);
3509           return pSample;
3510        }
3511    
3512        /** @brief Delete a sample.
3513         *
3514         * This will delete the given Sample object from the gig file. Any
3515         * references to this sample from Regions and DimensionRegions will be
3516         * removed. You have to call Save() to make this persistent to the file.
3517         *
3518         * @param pSample - sample to delete
3519         * @throws gig::Exception if given sample could not be found
3520         */
3521        void File::DeleteSample(Sample* pSample) {
3522            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3523            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3524            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3525            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3526            pSamples->erase(iter);
3527            delete pSample;
3528    
3529            SampleList::iterator tmp = SamplesIterator;
3530            // remove all references to the sample
3531            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3532                 instrument = GetNextInstrument()) {
3533                for (Region* region = instrument->GetFirstRegion() ; region ;
3534                     region = instrument->GetNextRegion()) {
3535    
3536                    if (region->GetSample() == pSample) region->SetSample(NULL);
3537    
3538                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3539                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3540                        if (d->pSample == pSample) d->pSample = NULL;
3541                  }                  }
                 wave = wvpl->GetNextSubList();  
3542              }              }
3543          }          }
3544          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
3545        }
3546    
3547        void File::LoadSamples() {
3548            LoadSamples(NULL);
3549        }
3550    
3551        void File::LoadSamples(progress_t* pProgress) {
3552            // Groups must be loaded before samples, because samples will try
3553            // to resolve the group they belong to
3554            if (!pGroups) LoadGroups();
3555    
3556            if (!pSamples) pSamples = new SampleList;
3557    
3558            RIFF::File* file = pRIFF;
3559    
3560            // just for progress calculation
3561            int iSampleIndex  = 0;
3562            int iTotalSamples = WavePoolCount;
3563    
3564            // check if samples should be loaded from extension files
3565            int lastFileNo = 0;
3566            for (int i = 0 ; i < WavePoolCount ; i++) {
3567                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3568            }
3569            String name(pRIFF->GetFileName());
3570            int nameLen = name.length();
3571            char suffix[6];
3572            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3573    
3574            for (int fileNo = 0 ; ; ) {
3575                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3576                if (wvpl) {
3577                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3578                    RIFF::List* wave = wvpl->GetFirstSubList();
3579                    while (wave) {
3580                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3581                            // notify current progress
3582                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3583                            __notify_progress(pProgress, subprogress);
3584    
3585                            unsigned long waveFileOffset = wave->GetFilePos();
3586                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3587    
3588                            iSampleIndex++;
3589                        }
3590                        wave = wvpl->GetNextSubList();
3591                    }
3592    
3593                    if (fileNo == lastFileNo) break;
3594    
3595                    // open extension file (*.gx01, *.gx02, ...)
3596                    fileNo++;
3597                    sprintf(suffix, ".gx%02d", fileNo);
3598                    name.replace(nameLen, 5, suffix);
3599                    file = new RIFF::File(name);
3600                    ExtensionFiles.push_back(file);
3601                } else break;
3602            }
3603    
3604            __notify_progress(pProgress, 1.0); // notify done
3605      }      }
3606    
3607      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3608          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3609          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3610          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3611          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3612      }      }
3613    
3614      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3615          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3616          InstrumentsIterator++;          InstrumentsIterator++;
3617          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3618      }      }
3619    
3620      /**      /**
3621       * Returns the instrument with the given index.       * Returns the instrument with the given index.
3622       *       *
3623         * @param index     - number of the sought instrument (0..n)
3624         * @param pProgress - optional: callback function for progress notification
3625       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
3626       */       */
3627      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3628          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
3629                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3630    
3631                // sample loading subtask
3632                progress_t subprogress;
3633                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3634                __notify_progress(&subprogress, 0.0f);
3635                if (GetAutoLoad())
3636                    GetFirstSample(&subprogress); // now force all samples to be loaded
3637                __notify_progress(&subprogress, 1.0f);
3638    
3639                // instrument loading subtask
3640                if (pProgress && pProgress->callback) {
3641                    subprogress.__range_min = subprogress.__range_max;
3642                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3643                }
3644                __notify_progress(&subprogress, 0.0f);
3645                LoadInstruments(&subprogress);
3646                __notify_progress(&subprogress, 1.0f);
3647            }
3648          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3649          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3650          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3651              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3652              InstrumentsIterator++;              InstrumentsIterator++;
3653          }          }
3654          return NULL;          return NULL;
3655      }      }
3656    
3657        /** @brief Add a new instrument definition.
3658         *
3659         * This will create a new Instrument object for the gig file. You have
3660         * to call Save() to make this persistent to the file.
3661         *
3662         * @returns pointer to new Instrument object
3663         */
3664        Instrument* File::AddInstrument() {
3665           if (!pInstruments) LoadInstruments();
3666           __ensureMandatoryChunksExist();
3667           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3668           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3669    
3670           // add mandatory chunks to get the chunks in right order
3671           lstInstr->AddSubList(LIST_TYPE_INFO);
3672           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3673    
3674           Instrument* pInstrument = new Instrument(this, lstInstr);
3675           pInstrument->GenerateDLSID();
3676    
3677           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3678    
3679           // this string is needed for the gig to be loadable in GSt:
3680           pInstrument->pInfo->Software = "Endless Wave";
3681    
3682           pInstruments->push_back(pInstrument);
3683           return pInstrument;
3684        }
3685        
3686        /** @brief Add a duplicate of an existing instrument.
3687         *
3688         * Duplicates the instrument definition given by @a orig and adds it
3689         * to this file. This allows in an instrument editor application to
3690         * easily create variations of an instrument, which will be stored in
3691         * the same .gig file, sharing i.e. the same samples.
3692         *
3693         * Note that all sample pointers referenced by @a orig are simply copied as
3694         * memory address. Thus the respective samples are shared, not duplicated!
3695         *
3696         * You have to call Save() to make this persistent to the file.
3697         *
3698         * @param orig - original instrument to be copied
3699         * @returns duplicated copy of the given instrument
3700         */
3701        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
3702            Instrument* instr = AddInstrument();
3703            instr->CopyAssign(orig);
3704            return instr;
3705        }
3706    
3707        /** @brief Delete an instrument.
3708         *
3709         * This will delete the given Instrument object from the gig file. You
3710         * have to call Save() to make this persistent to the file.
3711         *
3712         * @param pInstrument - instrument to delete
3713         * @throws gig::Exception if given instrument could not be found
3714         */
3715        void File::DeleteInstrument(Instrument* pInstrument) {
3716            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3717            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3718            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3719            pInstruments->erase(iter);
3720            delete pInstrument;
3721        }
3722    
3723      void File::LoadInstruments() {      void File::LoadInstruments() {
3724            LoadInstruments(NULL);
3725        }
3726    
3727        void File::LoadInstruments(progress_t* pProgress) {
3728            if (!pInstruments) pInstruments = new InstrumentList;
3729          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3730          if (lstInstruments) {          if (lstInstruments) {
3731                int iInstrumentIndex = 0;
3732              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3733              while (lstInstr) {              while (lstInstr) {
3734                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3735                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3736                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3737                        __notify_progress(pProgress, localProgress);
3738    
3739                        // divide local progress into subprogress for loading current Instrument
3740                        progress_t subprogress;
3741                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3742    
3743                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3744    
3745                        iInstrumentIndex++;
3746                  }                  }
3747                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3748              }              }
3749                __notify_progress(pProgress, 1.0); // notify done
3750            }
3751        }
3752    
3753        /// Updates the 3crc chunk with the checksum of a sample. The
3754        /// update is done directly to disk, as this method is called
3755        /// after File::Save()
3756        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3757            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3758            if (!_3crc) return;
3759    
3760            // get the index of the sample
3761            int iWaveIndex = -1;
3762            File::SampleList::iterator iter = pSamples->begin();
3763            File::SampleList::iterator end  = pSamples->end();
3764            for (int index = 0; iter != end; ++iter, ++index) {
3765                if (*iter == pSample) {
3766                    iWaveIndex = index;
3767                    break;
3768                }
3769            }
3770            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3771    
3772            // write the CRC-32 checksum to disk
3773            _3crc->SetPos(iWaveIndex * 8);
3774            uint32_t tmp = 1;
3775            _3crc->WriteUint32(&tmp); // unknown, always 1?
3776            _3crc->WriteUint32(&crc);
3777        }
3778    
3779        Group* File::GetFirstGroup() {
3780            if (!pGroups) LoadGroups();
3781            // there must always be at least one group
3782            GroupsIterator = pGroups->begin();
3783            return *GroupsIterator;
3784        }
3785    
3786        Group* File::GetNextGroup() {
3787            if (!pGroups) return NULL;
3788            ++GroupsIterator;
3789            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3790        }
3791    
3792        /**
3793         * Returns the group with the given index.
3794         *
3795         * @param index - number of the sought group (0..n)
3796         * @returns sought group or NULL if there's no such group
3797         */
3798        Group* File::GetGroup(uint index) {
3799            if (!pGroups) LoadGroups();
3800            GroupsIterator = pGroups->begin();
3801            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3802                if (i == index) return *GroupsIterator;
3803                ++GroupsIterator;
3804            }
3805            return NULL;
3806        }
3807    
3808        Group* File::AddGroup() {
3809            if (!pGroups) LoadGroups();
3810            // there must always be at least one group
3811            __ensureMandatoryChunksExist();
3812            Group* pGroup = new Group(this, NULL);
3813            pGroups->push_back(pGroup);
3814            return pGroup;
3815        }
3816    
3817        /** @brief Delete a group and its samples.
3818         *
3819         * This will delete the given Group object and all the samples that
3820         * belong to this group from the gig file. You have to call Save() to
3821         * make this persistent to the file.
3822         *
3823         * @param pGroup - group to delete
3824         * @throws gig::Exception if given group could not be found
3825         */
3826        void File::DeleteGroup(Group* pGroup) {
3827            if (!pGroups) LoadGroups();
3828            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3829            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3830            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3831            // delete all members of this group
3832            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3833                DeleteSample(pSample);
3834            }
3835            // now delete this group object
3836            pGroups->erase(iter);
3837            delete pGroup;
3838        }
3839    
3840        /** @brief Delete a group.
3841         *
3842         * This will delete the given Group object from the gig file. All the
3843         * samples that belong to this group will not be deleted, but instead
3844         * be moved to another group. You have to call Save() to make this
3845         * persistent to the file.
3846         *
3847         * @param pGroup - group to delete
3848         * @throws gig::Exception if given group could not be found
3849         */
3850        void File::DeleteGroupOnly(Group* pGroup) {
3851            if (!pGroups) LoadGroups();
3852            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3853            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3854            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3855            // move all members of this group to another group
3856            pGroup->MoveAll();
3857            pGroups->erase(iter);
3858            delete pGroup;
3859        }
3860    
3861        void File::LoadGroups() {
3862            if (!pGroups) pGroups = new std::list<Group*>;
3863            // try to read defined groups from file
3864            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3865            if (lst3gri) {
3866                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3867                if (lst3gnl) {
3868                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3869                    while (ck) {
3870                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3871                            if (pVersion && pVersion->major == 3 &&
3872                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3873    
3874                            pGroups->push_back(new Group(this, ck));
3875                        }
3876                        ck = lst3gnl->GetNextSubChunk();
3877                    }
3878                }
3879            }
3880            // if there were no group(s), create at least the mandatory default group
3881            if (!pGroups->size()) {
3882                Group* pGroup = new Group(this, NULL);
3883                pGroup->Name = "Default Group";
3884                pGroups->push_back(pGroup);
3885            }
3886        }
3887    
3888        /**
3889         * Apply all the gig file's current instruments, samples, groups and settings
3890         * to the respective RIFF chunks. You have to call Save() to make changes
3891         * persistent.
3892         *
3893         * Usually there is absolutely no need to call this method explicitly.
3894         * It will be called automatically when File::Save() was called.
3895         *
3896         * @throws Exception - on errors
3897         */
3898        void File::UpdateChunks() {
3899            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3900    
3901            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3902    
3903            // first update base class's chunks
3904            DLS::File::UpdateChunks();
3905    
3906            if (newFile) {
3907                // INFO was added by Resource::UpdateChunks - make sure it
3908                // is placed first in file
3909                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3910                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3911                if (first != info) {
3912                    pRIFF->MoveSubChunk(info, first);
3913                }
3914            }
3915    
3916            // update group's chunks
3917            if (pGroups) {
3918                std::list<Group*>::iterator iter = pGroups->begin();
3919                std::list<Group*>::iterator end  = pGroups->end();
3920                for (; iter != end; ++iter) {
3921                    (*iter)->UpdateChunks();
3922                }
3923    
3924                // v3: make sure the file has 128 3gnm chunks
3925                if (pVersion && pVersion->major == 3) {
3926                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3927                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3928                    for (int i = 0 ; i < 128 ; i++) {
3929                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3930                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3931                    }
3932                }
3933            }
3934    
3935            // update einf chunk
3936    
3937            // The einf chunk contains statistics about the gig file, such
3938            // as the number of regions and samples used by each
3939            // instrument. It is divided in equally sized parts, where the
3940            // first part contains information about the whole gig file,
3941            // and the rest of the parts map to each instrument in the
3942            // file.
3943            //
3944            // At the end of each part there is a bit map of each sample
3945            // in the file, where a set bit means that the sample is used
3946            // by the file/instrument.
3947            //
3948            // Note that there are several fields with unknown use. These
3949            // are set to zero.
3950    
3951            int sublen = pSamples->size() / 8 + 49;
3952            int einfSize = (Instruments + 1) * sublen;
3953    
3954            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3955            if (einf) {
3956                if (einf->GetSize() != einfSize) {
3957                    einf->Resize(einfSize);
3958                    memset(einf->LoadChunkData(), 0, einfSize);
3959                }
3960            } else if (newFile) {
3961                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3962            }
3963            if (einf) {
3964                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3965    
3966                std::map<gig::Sample*,int> sampleMap;
3967                int sampleIdx = 0;
3968                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3969                    sampleMap[pSample] = sampleIdx++;
3970                }
3971    
3972                int totnbusedsamples = 0;
3973                int totnbusedchannels = 0;
3974                int totnbregions = 0;
3975                int totnbdimregions = 0;
3976                int totnbloops = 0;
3977                int instrumentIdx = 0;
3978    
3979                memset(&pData[48], 0, sublen - 48);
3980    
3981                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3982                     instrument = GetNextInstrument()) {
3983                    int nbusedsamples = 0;
3984                    int nbusedchannels = 0;
3985                    int nbdimregions = 0;
3986                    int nbloops = 0;
3987    
3988                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3989    
3990                    for (Region* region = instrument->GetFirstRegion() ; region ;
3991                         region = instrument->GetNextRegion()) {
3992                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3993                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3994                            if (d->pSample) {
3995                                int sampleIdx = sampleMap[d->pSample];
3996                                int byte = 48 + sampleIdx / 8;
3997                                int bit = 1 << (sampleIdx & 7);
3998                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3999                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4000                                    nbusedsamples++;
4001                                    nbusedchannels += d->pSample->Channels;
4002    
4003                                    if ((pData[byte] & bit) == 0) {
4004                                        pData[byte] |= bit;
4005                                        totnbusedsamples++;
4006                                        totnbusedchannels += d->pSample->Channels;
4007                                    }
4008                                }
4009                            }
4010                            if (d->SampleLoops) nbloops++;
4011                        }
4012                        nbdimregions += region->DimensionRegions;
4013                    }
4014                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4015                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4016                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4017                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4018                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4019                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4020                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4021                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4022                    // next 8 bytes unknown
4023                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4024                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4025                    // next 4 bytes unknown
4026    
4027                    totnbregions += instrument->Regions;
4028                    totnbdimregions += nbdimregions;
4029                    totnbloops += nbloops;
4030                    instrumentIdx++;
4031                }
4032                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4033                // store32(&pData[0], sublen);
4034                store32(&pData[4], totnbusedchannels);
4035                store32(&pData[8], totnbusedsamples);
4036                store32(&pData[12], Instruments);
4037                store32(&pData[16], totnbregions);
4038                store32(&pData[20], totnbdimregions);
4039                store32(&pData[24], totnbloops);
4040                // next 8 bytes unknown
4041                // next 4 bytes unknown, not always 0
4042                store32(&pData[40], pSamples->size());
4043                // next 4 bytes unknown
4044            }
4045    
4046            // update 3crc chunk
4047    
4048            // The 3crc chunk contains CRC-32 checksums for the
4049            // samples. The actual checksum values will be filled in
4050            // later, by Sample::Write.
4051    
4052            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4053            if (_3crc) {
4054                _3crc->Resize(pSamples->size() * 8);
4055            } else if (newFile) {
4056                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4057                _3crc->LoadChunkData();
4058    
4059                // the order of einf and 3crc is not the same in v2 and v3
4060                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4061          }          }
4062          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
4063    
4064        /**
4065         * Enable / disable automatic loading. By default this properyt is
4066         * enabled and all informations are loaded automatically. However
4067         * loading all Regions, DimensionRegions and especially samples might
4068         * take a long time for large .gig files, and sometimes one might only
4069         * be interested in retrieving very superficial informations like the
4070         * amount of instruments and their names. In this case one might disable
4071         * automatic loading to avoid very slow response times.
4072         *
4073         * @e CAUTION: by disabling this property many pointers (i.e. sample
4074         * references) and informations will have invalid or even undefined
4075         * data! This feature is currently only intended for retrieving very
4076         * superficial informations in a very fast way. Don't use it to retrieve
4077         * details like synthesis informations or even to modify .gig files!
4078         */
4079        void File::SetAutoLoad(bool b) {
4080            bAutoLoad = b;
4081        }
4082    
4083        /**
4084         * Returns whether automatic loading is enabled.
4085         * @see SetAutoLoad()
4086         */
4087        bool File::GetAutoLoad() {
4088            return bAutoLoad;
4089      }      }
4090    
4091    
# Line 1410  namespace gig { Line 4100  namespace gig {
4100          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
4101      }      }
4102    
4103    
4104    // *************** functions ***************
4105    // *
4106    
4107        /**
4108         * Returns the name of this C++ library. This is usually "libgig" of
4109         * course. This call is equivalent to RIFF::libraryName() and
4110         * DLS::libraryName().
4111         */
4112        String libraryName() {
4113            return PACKAGE;
4114        }
4115    
4116        /**
4117         * Returns version of this C++ library. This call is equivalent to
4118         * RIFF::libraryVersion() and DLS::libraryVersion().
4119         */
4120        String libraryVersion() {
4121            return VERSION;
4122        }
4123    
4124  } // namespace gig  } // namespace gig

Legend:
Removed from v.231  
changed lines
  Added in v.2394

  ViewVC Help
Powered by ViewVC