/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 241 by schoenebeck, Wed Sep 15 13:49:21 2004 UTC revision 1335 by schoenebeck, Sun Sep 9 21:22:58 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29    #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54    // *************** progress_t ***************
55    // *
56    
57        progress_t::progress_t() {
58            callback    = NULL;
59            custom      = NULL;
60            __range_min = 0.0f;
61            __range_max = 1.0f;
62        }
63    
64        // private helper function to convert progress of a subprocess into the global progress
65        static void __notify_progress(progress_t* pProgress, float subprogress) {
66            if (pProgress && pProgress->callback) {
67                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
68                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69                pProgress->factor         = totalprogress;
70                pProgress->callback(pProgress); // now actually notify about the progress
71            }
72        }
73    
74        // private helper function to divide a progress into subprogresses
75        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76            if (pParentProgress && pParentProgress->callback) {
77                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
78                pSubProgress->callback    = pParentProgress->callback;
79                pSubProgress->custom      = pParentProgress->custom;
80                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82            }
83        }
84    
85    
86    // *************** Internal functions for sample decompression ***************
87    // *
88    
89    namespace {
90    
91        inline int get12lo(const unsigned char* pSrc)
92        {
93            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94            return x & 0x800 ? x - 0x1000 : x;
95        }
96    
97        inline int get12hi(const unsigned char* pSrc)
98        {
99            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100            return x & 0x800 ? x - 0x1000 : x;
101        }
102    
103        inline int16_t get16(const unsigned char* pSrc)
104        {
105            return int16_t(pSrc[0] | pSrc[1] << 8);
106        }
107    
108        inline int get24(const unsigned char* pSrc)
109        {
110            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111            return x & 0x800000 ? x - 0x1000000 : x;
112        }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121        void Decompress16(int compressionmode, const unsigned char* params,
122                          int srcStep, int dstStep,
123                          const unsigned char* pSrc, int16_t* pDst,
124                          unsigned long currentframeoffset,
125                          unsigned long copysamples)
126        {
127            switch (compressionmode) {
128                case 0: // 16 bit uncompressed
129                    pSrc += currentframeoffset * srcStep;
130                    while (copysamples) {
131                        *pDst = get16(pSrc);
132                        pDst += dstStep;
133                        pSrc += srcStep;
134                        copysamples--;
135                    }
136                    break;
137    
138                case 1: // 16 bit compressed to 8 bit
139                    int y  = get16(params);
140                    int dy = get16(params + 2);
141                    while (currentframeoffset) {
142                        dy -= int8_t(*pSrc);
143                        y  -= dy;
144                        pSrc += srcStep;
145                        currentframeoffset--;
146                    }
147                    while (copysamples) {
148                        dy -= int8_t(*pSrc);
149                        y  -= dy;
150                        *pDst = y;
151                        pDst += dstStep;
152                        pSrc += srcStep;
153                        copysamples--;
154                    }
155                    break;
156            }
157        }
158    
159        void Decompress24(int compressionmode, const unsigned char* params,
160                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                          unsigned long currentframeoffset,
162                          unsigned long copysamples, int truncatedBits)
163        {
164            int y, dy, ddy, dddy;
165    
166    #define GET_PARAMS(params)                      \
167            y    = get24(params);                   \
168            dy   = y - get24((params) + 3);         \
169            ddy  = get24((params) + 6);             \
170            dddy = get24((params) + 9)
171    
172    #define SKIP_ONE(x)                             \
173            dddy -= (x);                            \
174            ddy  -= dddy;                           \
175            dy   =  -dy - ddy;                      \
176            y    += dy
177    
178    #define COPY_ONE(x)                             \
179            SKIP_ONE(x);                            \
180            store24(pDst, y << truncatedBits);      \
181            pDst += dstStep
182    
183            switch (compressionmode) {
184                case 2: // 24 bit uncompressed
185                    pSrc += currentframeoffset * 3;
186                    while (copysamples) {
187                        store24(pDst, get24(pSrc) << truncatedBits);
188                        pDst += dstStep;
189                        pSrc += 3;
190                        copysamples--;
191                    }
192                    break;
193    
194                case 3: // 24 bit compressed to 16 bit
195                    GET_PARAMS(params);
196                    while (currentframeoffset) {
197                        SKIP_ONE(get16(pSrc));
198                        pSrc += 2;
199                        currentframeoffset--;
200                    }
201                    while (copysamples) {
202                        COPY_ONE(get16(pSrc));
203                        pSrc += 2;
204                        copysamples--;
205                    }
206                    break;
207    
208                case 4: // 24 bit compressed to 12 bit
209                    GET_PARAMS(params);
210                    while (currentframeoffset > 1) {
211                        SKIP_ONE(get12lo(pSrc));
212                        SKIP_ONE(get12hi(pSrc));
213                        pSrc += 3;
214                        currentframeoffset -= 2;
215                    }
216                    if (currentframeoffset) {
217                        SKIP_ONE(get12lo(pSrc));
218                        currentframeoffset--;
219                        if (copysamples) {
220                            COPY_ONE(get12hi(pSrc));
221                            pSrc += 3;
222                            copysamples--;
223                        }
224                    }
225                    while (copysamples > 1) {
226                        COPY_ONE(get12lo(pSrc));
227                        COPY_ONE(get12hi(pSrc));
228                        pSrc += 3;
229                        copysamples -= 2;
230                    }
231                    if (copysamples) {
232                        COPY_ONE(get12lo(pSrc));
233                    }
234                    break;
235    
236                case 5: // 24 bit compressed to 8 bit
237                    GET_PARAMS(params);
238                    while (currentframeoffset) {
239                        SKIP_ONE(int8_t(*pSrc++));
240                        currentframeoffset--;
241                    }
242                    while (copysamples) {
243                        COPY_ONE(int8_t(*pSrc++));
244                        copysamples--;
245                    }
246                    break;
247            }
248        }
249    
250        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
251        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
253        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
254    }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
304      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
305      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
306    
307      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
308         *
309         * Load an existing sample or create a new one. A 'wave' list chunk must
310         * be given to this constructor. In case the given 'wave' list chunk
311         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312         * format and sample data will be loaded from there, otherwise default
313         * values will be used and those chunks will be created when
314         * File::Save() will be called later on.
315         *
316         * @param pFile          - pointer to gig::File where this sample is
317         *                         located (or will be located)
318         * @param waveList       - pointer to 'wave' list chunk which is (or
319         *                         will be) associated with this sample
320         * @param WavePoolOffset - offset of this sample data from wave pool
321         *                         ('wvpl') list chunk
322         * @param fileNo         - number of an extension file where this sample
323         *                         is located, 0 otherwise
324         */
325        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332            FileNo = fileNo;
333    
334          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
336          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
337                pGroup = pFile->GetGroup(iSampleGroup);
338          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
339          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
340          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
341          Product           = smpl->ReadInt32();          }
342          SamplePeriod      = smpl->ReadInt32();  
343          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344          FineTune          = smpl->ReadInt32();          if (pCkSmpl) {
345          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
346          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
347          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
348          uint32_t manufByt = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
349          LoopID            = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
350          smpl->Read(&LoopType, 1, 4);              pCkSmpl->Read(&SMPTEFormat, 1, 4);
351          LoopStart         = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
352          LoopEnd           = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
353          LoopFraction      = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
354          LoopPlayCount     = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
355                pCkSmpl->Read(&LoopType, 1, 4);
356                LoopStart     = pCkSmpl->ReadInt32();
357                LoopEnd       = pCkSmpl->ReadInt32();
358                LoopFraction  = pCkSmpl->ReadInt32();
359                LoopPlayCount = pCkSmpl->ReadInt32();
360            } else { // 'smpl' chunk missing
361                // use default values
362                Manufacturer  = 0;
363                Product       = 0;
364                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365                MIDIUnityNote = 60;
366                FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368                SMPTEOffset   = 0;
369                Loops         = 0;
370                LoopID        = 0;
371                LoopType      = loop_type_normal;
372                LoopStart     = 0;
373                LoopEnd       = 0;
374                LoopFraction  = 0;
375                LoopPlayCount = 0;
376            }
377    
378          FrameTable                 = NULL;          FrameTable                 = NULL;
379          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 381  namespace gig {
381          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
382          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
383    
384          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385    
386            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387            Compressed        = ewav;
388            Dithered          = false;
389            TruncatedBits     = 0;
390          if (Compressed) {          if (Compressed) {
391              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
392              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
393                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
394                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
395                    TruncatedBits = ewav->ReadInt32();
396              }              }
397                ScanCompressedSample();
398            }
399    
400            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
404          }          }
405          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
406    
407          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
408        }
409    
410        /**
411         * Apply sample and its settings to the respective RIFF chunks. You have
412         * to call File::Save() to make changes persistent.
413         *
414         * Usually there is absolutely no need to call this method explicitly.
415         * It will be called automatically when File::Save() was called.
416         *
417         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418         *                        was provided yet
419         * @throws gig::Exception if there is any invalid sample setting
420         */
421        void Sample::UpdateChunks() {
422            // first update base class's chunks
423            DLS::Sample::UpdateChunks();
424    
425            // make sure 'smpl' chunk exists
426            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427            if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431            // update 'smpl' chunk
432            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434            store32(&pData[0], Manufacturer);
435            store32(&pData[4], Product);
436            store32(&pData[8], SamplePeriod);
437            store32(&pData[12], MIDIUnityNote);
438            store32(&pData[16], FineTune);
439            store32(&pData[20], SMPTEFormat);
440            store32(&pData[24], SMPTEOffset);
441            store32(&pData[28], Loops);
442    
443            // we skip 'manufByt' for now (4 bytes)
444    
445            store32(&pData[36], LoopID);
446            store32(&pData[40], LoopType);
447            store32(&pData[44], LoopStart);
448            store32(&pData[48], LoopEnd);
449            store32(&pData[52], LoopFraction);
450            store32(&pData[56], LoopPlayCount);
451    
452            // make sure '3gix' chunk exists
453            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455            // determine appropriate sample group index (to be stored in chunk)
456            uint16_t iSampleGroup = 0; // 0 refers to default sample group
457            File* pFile = static_cast<File*>(pParent);
458            if (pFile->pGroups) {
459                std::list<Group*>::iterator iter = pFile->pGroups->begin();
460                std::list<Group*>::iterator end  = pFile->pGroups->end();
461                for (int i = 0; iter != end; i++, iter++) {
462                    if (*iter == pGroup) {
463                        iSampleGroup = i;
464                        break; // found
465                    }
466                }
467            }
468            // update '3gix' chunk
469            pData = (uint8_t*) pCk3gix->LoadChunkData();
470            store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 82  namespace gig { Line 476  namespace gig {
476          this->SamplesTotal = 0;          this->SamplesTotal = 0;
477          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
478    
479            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481    
482          // Scanning          // Scanning
483          pCkData->SetPos(0);          pCkData->SetPos(0);
484          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
485              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
486              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
487              this->SamplesTotal += 2048;                  // stored, to save some memory
488              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489                  case 1:   // left channel compressed  
490                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
491                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
492                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494    
495                    if (pCkData->RemainingBytes() <= frameSize) {
496                        SamplesInLastFrame =
497                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499                        SamplesTotal += SamplesInLastFrame;
500                      break;                      break;
501                  case 257: // both channels compressed                  }
502                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
503                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
504                }
505            }
506            else { // Mono
507                for (int i = 0 ; ; i++) {
508                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509    
510                    const int mode = pCkData->ReadUint8();
511                    if (mode > 5) throw gig::Exception("Unknown compression mode");
512                    const unsigned long frameSize = bytesPerFrame[mode];
513    
514                    if (pCkData->RemainingBytes() <= frameSize) {
515                        SamplesInLastFrame =
516                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517                        SamplesTotal += SamplesInLastFrame;
518                      break;                      break;
519                  default: // both channels uncompressed                  }
520                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
521                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
522              }              }
523          }          }
524          pCkData->SetPos(0);          pCkData->SetPos(0);
525    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
526          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
528          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 141  namespace gig { Line 558  namespace gig {
558       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
559       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
560       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
561       *       * @code
562       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
563       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
564         * @endcode
565       *       *
566       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
567       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 189  namespace gig { Line 607  namespace gig {
607       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
608       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
609       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
610       *       * @code
611       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
613       *       * @endcode
614       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
615       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
616       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 252  namespace gig { Line 670  namespace gig {
670          RAMCache.Size   = 0;          RAMCache.Size   = 0;
671      }      }
672    
673        /** @brief Resize sample.
674         *
675         * Resizes the sample's wave form data, that is the actual size of
676         * sample wave data possible to be written for this sample. This call
677         * will return immediately and just schedule the resize operation. You
678         * should call File::Save() to actually perform the resize operation(s)
679         * "physically" to the file. As this can take a while on large files, it
680         * is recommended to call Resize() first on all samples which have to be
681         * resized and finally to call File::Save() to perform all those resize
682         * operations in one rush.
683         *
684         * The actual size (in bytes) is dependant to the current FrameSize
685         * value. You may want to set FrameSize before calling Resize().
686         *
687         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688         * enlarged samples before calling File::Save() as this might exceed the
689         * current sample's boundary!
690         *
691         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693         * other formats will fail!
694         *
695         * @param iNewSize - new sample wave data size in sample points (must be
696         *                   greater than zero)
697         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698         *                         or if \a iNewSize is less than 1
699         * @throws gig::Exception if existing sample is compressed
700         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701         *      DLS::Sample::FormatTag, File::Save()
702         */
703        void Sample::Resize(int iNewSize) {
704            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705            DLS::Sample::Resize(iNewSize);
706        }
707    
708      /**      /**
709       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
710       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 323  namespace gig { Line 776  namespace gig {
776       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
777       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
778       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
779       *       * @code
780       * <i>       * gig::playback_state_t playbackstate;
781       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
782       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
783       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
785       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
786       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
787       * The method already handles such cases by itself.       * The method already handles such cases by itself.
788       *       *
789         * <b>Caution:</b> If you are using more than one streaming thread, you
790         * have to use an external decompression buffer for <b>EACH</b>
791         * streaming thread to avoid race conditions and crashes!
792         *
793       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
794       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
795       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
796       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
797         * @param pDimRgn          dimension region with looping information
798         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
799       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
800         * @see                    CreateDecompressionBuffer()
801       */       */
802      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
806    
807          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
808    
809          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810    
811              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813    
814                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
815                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
816    
817                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
818                              // determine the end position within the loop first,                          do {
819                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
820                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821                              // backward playback  
822                                if (!pPlaybackState->reverse) { // forward playback
823                              unsigned long swapareastart       = totalreadsamples;                                  do {
824                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
825                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
827                                        totalreadsamples += readsamples;
828                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
829                                            pPlaybackState->reverse = true;
830                              // read samples for backward playback                                          break;
831                              do {                                      }
832                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
833                                  samplestoreadinloop -= readsamples;                              }
834                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
835    
836                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
837                                    // determine the end position within the loop first,
838                                    // read forward from that 'end' and finally after
839                                    // reading, swap all sample frames so it reflects
840                                    // backward playback
841    
842                                    unsigned long swapareastart       = totalreadsamples;
843                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
844                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
846    
847                                    SetPos(reverseplaybackend);
848    
849                                    // read samples for backward playback
850                                    do {
851                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852                                        samplestoreadinloop -= readsamples;
853                                        samplestoread       -= readsamples;
854                                        totalreadsamples    += readsamples;
855                                    } while (samplestoreadinloop && readsamples);
856    
857                                    SetPos(reverseplaybackend); // pretend we really read backwards
858    
859                                    if (reverseplaybackend == loop.LoopStart) {
860                                        pPlaybackState->loop_cycles_left--;
861                                        pPlaybackState->reverse = false;
862                                    }
863    
864                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
865                                  pPlaybackState->loop_cycles_left--;                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
                                 pPlaybackState->reverse = false;  
866                              }                              }
867                            } while (samplestoread && readsamples);
868                            break;
869                        }
870    
871                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
872                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
873                          }                          if (!pPlaybackState->reverse) do {
874                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
875                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876                  }                              samplestoread    -= readsamples;
877                                totalreadsamples += readsamples;
878                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
879                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
880                      if (!pPlaybackState->reverse) do {                                  break;
881                          samplestoloopend  = this->LoopEnd - GetPos();                              }
882                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
883    
884                      if (!samplestoread) break;                          if (!samplestoread) break;
885    
886                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
887                      // determine the end position within the loop first,                          // determine the end position within the loop first,
888                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
889                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
890                      // backward playback                          // backward playback
891    
892                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
893                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
894                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895                                                                                : samplestoread;                                                                                    : samplestoread;
896                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897    
898                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
899    
900                      // read samples for backward playback                          // read samples for backward playback
901                      do {                          do {
902                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
903                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
905                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
907                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
908                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
909                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
910                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
911                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
912                          }                              }
913                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
914    
915                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
916    
917                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
918                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919                      break;                          break;
920                  }                      }
921    
922                  default: case loop_type_normal: {                      default: case loop_type_normal: {
923                      do {                          do {
924                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
925                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
927                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
929                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
930                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
931                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
932                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
933                          }                              }
934                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
935                      break;                          break;
936                        }
937                  }                  }
938              }              }
939          }          }
940    
941          // read on without looping          // read on without looping
942          if (samplestoread) do {          if (samplestoread) do {
943              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944              samplestoread    -= readsamples;              samplestoread    -= readsamples;
945              totalreadsamples += readsamples;              totalreadsamples += readsamples;
946          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 959  namespace gig {
959       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960       * thus for disk streaming.       * thus for disk streaming.
961       *       *
962         * <b>Caution:</b> If you are using more than one streaming thread, you
963         * have to use an external decompression buffer for <b>EACH</b>
964         * streaming thread to avoid race conditions and crashes!
965         *
966         * For 16 bit samples, the data in the buffer will be int16_t
967         * (using native endianness). For 24 bit, the buffer will
968         * contain three bytes per sample, little-endian.
969         *
970       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
971       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
972         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
973       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
974       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
975       */       */
976      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
978          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
979          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
980                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981                }
982                else { // 16 bit
983                    // (pCkData->Read does endian correction)
984                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985                                         : pCkData->Read(pBuffer, SampleCount, 2);
986                }
987            }
988            else {
989              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
990              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
991              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
992                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
993                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
994                            copysamples;                            copysamples, skipsamples,
995              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
996              this->FrameOffset = 0;              this->FrameOffset = 0;
997    
998              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999                  // local buffer reallocation - hope this won't happen  
1000                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1001                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1002                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1004                    remainingsamples = SampleCount;
1005                    assumedsize      = GuessSize(SampleCount);
1006              }              }
1007    
1008              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012    
1013              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1014                    unsigned long framesamples = SamplesPerFrame;
1015                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016                  if (remainingbytes < 8194) {  
1017                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1018                          this->SamplePos = this->SamplesTotal;  
1019                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1020                        mode_r = *pSrc++;
1021                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024                        if (remainingbytes < framebytes) { // last frame in sample
1025                            framesamples = SamplesInLastFrame;
1026                            if (mode_l == 4 && (framesamples & 1)) {
1027                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028                            }
1029                            else {
1030                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031                            }
1032                        }
1033                    }
1034                    else {
1035                        framebytes = bytesPerFrame[mode_l] + 1;
1036                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037                        if (remainingbytes < framebytes) {
1038                            framesamples = SamplesInLastFrame;
1039                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
1040                  }                  }
1041    
1042                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1043                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1044                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1045                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1046                            skipsamples = currentframeoffset;
1047                        }
1048                        else {
1049                            copysamples = 0;
1050                            skipsamples = framesamples;
1051                        }
1052                  }                  }
1053                  else {                  else {
1054                        // This frame has enough data for pBuffer, but not
1055                        // all of the frame is needed. Set file position
1056                        // to start of this frame for next call to Read.
1057                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1058                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1059                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1061                      }                  }
1062                      else {                  remainingsamples -= copysamples;
1063    
1064                    if (remainingbytes > framebytes) {
1065                        remainingbytes -= framebytes;
1066                        if (remainingsamples == 0 &&
1067                            currentframeoffset + copysamples == framesamples) {
1068                            // This frame has enough data for pBuffer, and
1069                            // all of the frame is needed. Set file
1070                            // position to start of next frame for next
1071                            // call to Read. FrameOffset is 0.
1072                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1073                      }                      }
1074                  }                  }
1075                    else remainingbytes = 0;
1076    
1077                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1078                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1079                  switch (compressionmode) {                  if (copysamples == 0) {
1080                      case 1: // left channel compressed                      // skip this frame
1081                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1082                          if (!remainingsamples && copysamples == 2048)                  }
1083                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1084                        const unsigned char* const param_l = pSrc;
1085                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1086                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1087                          while (currentframeoffset) {  
1088                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1089                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1090                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1091                              currentframeoffset--;  
1092                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1094                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1096                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1097                          }                          }
1098                          while (copysamples) {                          else { // Mono
1099                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1101                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1102                          }                          }
1103                          break;                      }
1104                      case 257: // both channels compressed                      else { // 16 bit
1105                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1106                          if (!remainingsamples && copysamples == 2048)  
1107                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1108                            if (Channels == 2) { // Stereo
1109                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1110                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1111                          right  = *(int16_t*)pSrc; pSrc+=2;  
1112                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1113                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115                              left   -= dleft;                                           skipsamples, copysamples);
1116                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1117                          }                          }
1118                          while (copysamples) {                          else { // Mono
1119                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1120                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1122                          }                          }
1123                          break;                      }
1124                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1125                  }                  }
1126              }  
1127                    // reload from disk to local buffer if needed
1128                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129                        assumedsize    = GuessSize(remainingsamples);
1130                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134                    }
1135                } // while
1136    
1137              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1138              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1140          }          }
1141      }      }
1142    
1143        /** @brief Write sample wave data.
1144         *
1145         * Writes \a SampleCount number of sample points from the buffer pointed
1146         * by \a pBuffer and increments the position within the sample. Use this
1147         * method to directly write the sample data to disk, i.e. if you don't
1148         * want or cannot load the whole sample data into RAM.
1149         *
1150         * You have to Resize() the sample to the desired size and call
1151         * File::Save() <b>before</b> using Write().
1152         *
1153         * Note: there is currently no support for writing compressed samples.
1154         *
1155         * For 16 bit samples, the data in the source buffer should be
1156         * int16_t (using native endianness). For 24 bit, the buffer
1157         * should contain three bytes per sample, little-endian.
1158         *
1159         * @param pBuffer     - source buffer
1160         * @param SampleCount - number of sample points to write
1161         * @throws DLS::Exception if current sample size is too small
1162         * @throws gig::Exception if sample is compressed
1163         * @see DLS::LoadSampleData()
1164         */
1165        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167    
1168            // if this is the first write in this sample, reset the
1169            // checksum calculator
1170            if (pCkData->GetPos() == 0) {
1171                crc.reset();
1172            }
1173            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174            unsigned long res;
1175            if (BitDepth == 24) {
1176                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177            } else { // 16 bit
1178                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179                                    : pCkData->Write(pBuffer, SampleCount, 2);
1180            }
1181            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182    
1183            // if this is the last write, update the checksum chunk in the
1184            // file
1185            if (pCkData->GetPos() == pCkData->GetSize()) {
1186                File* pFile = static_cast<File*>(GetParent());
1187                pFile->SetSampleChecksum(this, crc.getValue());
1188            }
1189            return res;
1190        }
1191    
1192        /**
1193         * Allocates a decompression buffer for streaming (compressed) samples
1194         * with Sample::Read(). If you are using more than one streaming thread
1195         * in your application you <b>HAVE</b> to create a decompression buffer
1196         * for <b>EACH</b> of your streaming threads and provide it with the
1197         * Sample::Read() call in order to avoid race conditions and crashes.
1198         *
1199         * You should free the memory occupied by the allocated buffer(s) once
1200         * you don't need one of your streaming threads anymore by calling
1201         * DestroyDecompressionBuffer().
1202         *
1203         * @param MaxReadSize - the maximum size (in sample points) you ever
1204         *                      expect to read with one Read() call
1205         * @returns allocated decompression buffer
1206         * @see DestroyDecompressionBuffer()
1207         */
1208        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209            buffer_t result;
1210            const double worstCaseHeaderOverhead =
1211                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213            result.pStart            = new int8_t[result.Size];
1214            result.NullExtensionSize = 0;
1215            return result;
1216        }
1217    
1218        /**
1219         * Free decompression buffer, previously created with
1220         * CreateDecompressionBuffer().
1221         *
1222         * @param DecompressionBuffer - previously allocated decompression
1223         *                              buffer to free
1224         */
1225        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227                delete[] (int8_t*) DecompressionBuffer.pStart;
1228                DecompressionBuffer.pStart = NULL;
1229                DecompressionBuffer.Size   = 0;
1230                DecompressionBuffer.NullExtensionSize = 0;
1231            }
1232        }
1233    
1234        /**
1235         * Returns pointer to the Group this Sample belongs to. In the .gig
1236         * format a sample always belongs to one group. If it wasn't explicitly
1237         * assigned to a certain group, it will be automatically assigned to a
1238         * default group.
1239         *
1240         * @returns Sample's Group (never NULL)
1241         */
1242        Group* Sample::GetGroup() const {
1243            return pGroup;
1244        }
1245    
1246      Sample::~Sample() {      Sample::~Sample() {
1247          Instances--;          Instances--;
1248          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1249                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250                InternalDecompressionBuffer.pStart = NULL;
1251                InternalDecompressionBuffer.Size   = 0;
1252            }
1253          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1254          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255      }      }
# Line 673  namespace gig { Line 1262  namespace gig {
1262      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1263      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264    
1265      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266          Instances++;          Instances++;
1267    
1268          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1269            pRegion = pParent;
1270    
1271            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1272            else memset(&Crossfade, 0, 4);
1273    
1274          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1275    
1276          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1277          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1278          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1279          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1281          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1282          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1283          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1284          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1285          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1286          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1287          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1288          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1289          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1291          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1292          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1293          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1295          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1296          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1297          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1298          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1299          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1300          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1301          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1302          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1303          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1304          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1305          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1306          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1309          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1310          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1311          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1312          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1313          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1314          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1315          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1316          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1317          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1318          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1319          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1320          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1321          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1322          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1323          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1324          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1325          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1326          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1327          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1328              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1329              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1330          }                  VelocityResponseDepth = velocityresponse;
1331          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1332              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1333              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1334          }              } else if (velocityresponse < 15) {
1335          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1336              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1337              VelocityResponseDepth = velocityresponse - 10;              } else {
1338          }                  VelocityResponseCurve = curve_type_unknown;
1339          else {                  VelocityResponseDepth = 0;
1340              VelocityResponseCurve = curve_type_unknown;              }
1341              VelocityResponseDepth = 0;              uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1342          }              if (releasevelocityresponse < 5) {
1343          uint8_t releasevelocityresponse = _3ewa->ReadUint8();                  ReleaseVelocityResponseCurve = curve_type_nonlinear;
1344          if (releasevelocityresponse < 5) {                  ReleaseVelocityResponseDepth = releasevelocityresponse;
1345              ReleaseVelocityResponseCurve = curve_type_nonlinear;              } else if (releasevelocityresponse < 10) {
1346              ReleaseVelocityResponseDepth = releasevelocityresponse;                  ReleaseVelocityResponseCurve = curve_type_linear;
1347          }                  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1348          else if (releasevelocityresponse < 10) {              } else if (releasevelocityresponse < 15) {
1349              ReleaseVelocityResponseCurve = curve_type_linear;                  ReleaseVelocityResponseCurve = curve_type_special;
1350              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1351          }              } else {
1352          else if (releasevelocityresponse < 15) {                  ReleaseVelocityResponseCurve = curve_type_unknown;
1353              ReleaseVelocityResponseCurve = curve_type_special;                  ReleaseVelocityResponseDepth = 0;
1354              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;              }
1355                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1356                AttenuationControllerThreshold = _3ewa->ReadInt8();
1357                _3ewa->ReadInt32(); // unknown
1358                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1359                _3ewa->ReadInt16(); // unknown
1360                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1361                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1362                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1363                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1364                else                                       DimensionBypass = dim_bypass_ctrl_none;
1365                uint8_t pan = _3ewa->ReadUint8();
1366                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1367                SelfMask = _3ewa->ReadInt8() & 0x01;
1368                _3ewa->ReadInt8(); // unknown
1369                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1370                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1371                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1372                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1373                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1374                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1375                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1376                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1377                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1378                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1379                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1380                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1381                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1382                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1383                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1384                                                            : vcf_res_ctrl_none;
1385                uint16_t eg3depth = _3ewa->ReadUint16();
1386                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1387                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1388                _3ewa->ReadInt16(); // unknown
1389                ChannelOffset = _3ewa->ReadUint8() / 4;
1390                uint8_t regoptions = _3ewa->ReadUint8();
1391                MSDecode           = regoptions & 0x01; // bit 0
1392                SustainDefeat      = regoptions & 0x02; // bit 1
1393                _3ewa->ReadInt16(); // unknown
1394                VelocityUpperLimit = _3ewa->ReadInt8();
1395                _3ewa->ReadInt8(); // unknown
1396                _3ewa->ReadInt16(); // unknown
1397                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1398                _3ewa->ReadInt8(); // unknown
1399                _3ewa->ReadInt8(); // unknown
1400                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1401                uint8_t vcfcutoff = _3ewa->ReadUint8();
1402                VCFEnabled = vcfcutoff & 0x80; // bit 7
1403                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1404                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1405                uint8_t vcfvelscale = _3ewa->ReadUint8();
1406                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1407                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1408                _3ewa->ReadInt8(); // unknown
1409                uint8_t vcfresonance = _3ewa->ReadUint8();
1410                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1411                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1412                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1413                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1414                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1415                uint8_t vcfvelocity = _3ewa->ReadUint8();
1416                VCFVelocityDynamicRange = vcfvelocity % 5;
1417                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1418                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1419                if (VCFType == vcf_type_lowpass) {
1420                    if (lfo3ctrl & 0x40) // bit 6
1421                        VCFType = vcf_type_lowpassturbo;
1422                }
1423                if (_3ewa->RemainingBytes() >= 8) {
1424                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1425                } else {
1426                    memset(DimensionUpperLimits, 0, 8);
1427                }
1428            } else { // '3ewa' chunk does not exist yet
1429                // use default values
1430                LFO3Frequency                   = 1.0;
1431                EG3Attack                       = 0.0;
1432                LFO1InternalDepth               = 0;
1433                LFO3InternalDepth               = 0;
1434                LFO1ControlDepth                = 0;
1435                LFO3ControlDepth                = 0;
1436                EG1Attack                       = 0.0;
1437                EG1Decay1                       = 0.005;
1438                EG1Sustain                      = 1000;
1439                EG1Release                      = 0.3;
1440                EG1Controller.type              = eg1_ctrl_t::type_none;
1441                EG1Controller.controller_number = 0;
1442                EG1ControllerInvert             = false;
1443                EG1ControllerAttackInfluence    = 0;
1444                EG1ControllerDecayInfluence     = 0;
1445                EG1ControllerReleaseInfluence   = 0;
1446                EG2Controller.type              = eg2_ctrl_t::type_none;
1447                EG2Controller.controller_number = 0;
1448                EG2ControllerInvert             = false;
1449                EG2ControllerAttackInfluence    = 0;
1450                EG2ControllerDecayInfluence     = 0;
1451                EG2ControllerReleaseInfluence   = 0;
1452                LFO1Frequency                   = 1.0;
1453                EG2Attack                       = 0.0;
1454                EG2Decay1                       = 0.005;
1455                EG2Sustain                      = 1000;
1456                EG2Release                      = 0.3;
1457                LFO2ControlDepth                = 0;
1458                LFO2Frequency                   = 1.0;
1459                LFO2InternalDepth               = 0;
1460                EG1Decay2                       = 0.0;
1461                EG1InfiniteSustain              = true;
1462                EG1PreAttack                    = 0;
1463                EG2Decay2                       = 0.0;
1464                EG2InfiniteSustain              = true;
1465                EG2PreAttack                    = 0;
1466                VelocityResponseCurve           = curve_type_nonlinear;
1467                VelocityResponseDepth           = 3;
1468                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1469                ReleaseVelocityResponseDepth    = 3;
1470                VelocityResponseCurveScaling    = 32;
1471                AttenuationControllerThreshold  = 0;
1472                SampleStartOffset               = 0;
1473                PitchTrack                      = true;
1474                DimensionBypass                 = dim_bypass_ctrl_none;
1475                Pan                             = 0;
1476                SelfMask                        = true;
1477                LFO3Controller                  = lfo3_ctrl_modwheel;
1478                LFO3Sync                        = false;
1479                InvertAttenuationController     = false;
1480                AttenuationController.type      = attenuation_ctrl_t::type_none;
1481                AttenuationController.controller_number = 0;
1482                LFO2Controller                  = lfo2_ctrl_internal;
1483                LFO2FlipPhase                   = false;
1484                LFO2Sync                        = false;
1485                LFO1Controller                  = lfo1_ctrl_internal;
1486                LFO1FlipPhase                   = false;
1487                LFO1Sync                        = false;
1488                VCFResonanceController          = vcf_res_ctrl_none;
1489                EG3Depth                        = 0;
1490                ChannelOffset                   = 0;
1491                MSDecode                        = false;
1492                SustainDefeat                   = false;
1493                VelocityUpperLimit              = 0;
1494                ReleaseTriggerDecay             = 0;
1495                EG1Hold                         = false;
1496                VCFEnabled                      = false;
1497                VCFCutoff                       = 0;
1498                VCFCutoffController             = vcf_cutoff_ctrl_none;
1499                VCFCutoffControllerInvert       = false;
1500                VCFVelocityScale                = 0;
1501                VCFResonance                    = 0;
1502                VCFResonanceDynamic             = false;
1503                VCFKeyboardTracking             = false;
1504                VCFKeyboardTrackingBreakpoint   = 0;
1505                VCFVelocityDynamicRange         = 0x04;
1506                VCFVelocityCurve                = curve_type_linear;
1507                VCFType                         = vcf_type_lowpass;
1508                memset(DimensionUpperLimits, 127, 8);
1509            }
1510    
1511            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1512                                                         VelocityResponseDepth,
1513                                                         VelocityResponseCurveScaling);
1514    
1515            curve_type_t curveType = ReleaseVelocityResponseCurve;
1516            uint8_t depth = ReleaseVelocityResponseDepth;
1517    
1518            // this models a strange behaviour or bug in GSt: two of the
1519            // velocity response curves for release time are not used even
1520            // if specified, instead another curve is chosen.
1521            if ((curveType == curve_type_nonlinear && depth == 0) ||
1522                (curveType == curve_type_special   && depth == 4)) {
1523                curveType = curve_type_nonlinear;
1524                depth = 3;
1525            }
1526            pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1527    
1528            curveType = VCFVelocityCurve;
1529            depth = VCFVelocityDynamicRange;
1530    
1531            // even stranger GSt: two of the velocity response curves for
1532            // filter cutoff are not used, instead another special curve
1533            // is chosen. This curve is not used anywhere else.
1534            if ((curveType == curve_type_nonlinear && depth == 0) ||
1535                (curveType == curve_type_special   && depth == 4)) {
1536                curveType = curve_type_special;
1537                depth = 5;
1538            }
1539            pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1540                                                    VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1541    
1542            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1543            VelocityTable = 0;
1544        }
1545    
1546        /*
1547         * Constructs a DimensionRegion by copying all parameters from
1548         * another DimensionRegion
1549         */
1550        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1551            Instances++;
1552            *this = src; // default memberwise shallow copy of all parameters
1553            pParentList = _3ewl; // restore the chunk pointer
1554    
1555            // deep copy of owned structures
1556            if (src.VelocityTable) {
1557                VelocityTable = new uint8_t[128];
1558                for (int k = 0 ; k < 128 ; k++)
1559                    VelocityTable[k] = src.VelocityTable[k];
1560            }
1561            if (src.pSampleLoops) {
1562                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1563                for (int k = 0 ; k < src.SampleLoops ; k++)
1564                    pSampleLoops[k] = src.pSampleLoops[k];
1565          }          }
1566          else {      }
1567              ReleaseVelocityResponseCurve = curve_type_unknown;  
1568              ReleaseVelocityResponseDepth = 0;      /**
1569         * Apply dimension region settings to the respective RIFF chunks. You
1570         * have to call File::Save() to make changes persistent.
1571         *
1572         * Usually there is absolutely no need to call this method explicitly.
1573         * It will be called automatically when File::Save() was called.
1574         */
1575        void DimensionRegion::UpdateChunks() {
1576            // first update base class's chunk
1577            DLS::Sampler::UpdateChunks();
1578    
1579            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1580            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1581            pData[12] = Crossfade.in_start;
1582            pData[13] = Crossfade.in_end;
1583            pData[14] = Crossfade.out_start;
1584            pData[15] = Crossfade.out_end;
1585    
1586            // make sure '3ewa' chunk exists
1587            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1588            if (!_3ewa) {
1589                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1590                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1591                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1592          }          }
1593          VelocityResponseCurveScaling = _3ewa->ReadUint8();          pData = (uint8_t*) _3ewa->LoadChunkData();
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1594    
1595          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // update '3ewa' chunk with DimensionRegion's current settings
1596          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;  
1597          if (pVelocityTables->count(tableKey)) { // if key exists          const uint32_t chunksize = _3ewa->GetNewSize();
1598              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];          store32(&pData[0], chunksize); // unknown, always chunk size?
1599    
1600            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1601            store32(&pData[4], lfo3freq);
1602    
1603            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1604            store32(&pData[8], eg3attack);
1605    
1606            // next 2 bytes unknown
1607    
1608            store16(&pData[14], LFO1InternalDepth);
1609    
1610            // next 2 bytes unknown
1611    
1612            store16(&pData[18], LFO3InternalDepth);
1613    
1614            // next 2 bytes unknown
1615    
1616            store16(&pData[22], LFO1ControlDepth);
1617    
1618            // next 2 bytes unknown
1619    
1620            store16(&pData[26], LFO3ControlDepth);
1621    
1622            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1623            store32(&pData[28], eg1attack);
1624    
1625            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1626            store32(&pData[32], eg1decay1);
1627    
1628            // next 2 bytes unknown
1629    
1630            store16(&pData[38], EG1Sustain);
1631    
1632            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1633            store32(&pData[40], eg1release);
1634    
1635            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1636            pData[44] = eg1ctl;
1637    
1638            const uint8_t eg1ctrloptions =
1639                (EG1ControllerInvert ? 0x01 : 0x00) |
1640                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1641                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1642                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1643            pData[45] = eg1ctrloptions;
1644    
1645            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1646            pData[46] = eg2ctl;
1647    
1648            const uint8_t eg2ctrloptions =
1649                (EG2ControllerInvert ? 0x01 : 0x00) |
1650                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1651                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1652                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1653            pData[47] = eg2ctrloptions;
1654    
1655            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1656            store32(&pData[48], lfo1freq);
1657    
1658            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1659            store32(&pData[52], eg2attack);
1660    
1661            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1662            store32(&pData[56], eg2decay1);
1663    
1664            // next 2 bytes unknown
1665    
1666            store16(&pData[62], EG2Sustain);
1667    
1668            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1669            store32(&pData[64], eg2release);
1670    
1671            // next 2 bytes unknown
1672    
1673            store16(&pData[70], LFO2ControlDepth);
1674    
1675            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1676            store32(&pData[72], lfo2freq);
1677    
1678            // next 2 bytes unknown
1679    
1680            store16(&pData[78], LFO2InternalDepth);
1681    
1682            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1683            store32(&pData[80], eg1decay2);
1684    
1685            // next 2 bytes unknown
1686    
1687            store16(&pData[86], EG1PreAttack);
1688    
1689            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1690            store32(&pData[88], eg2decay2);
1691    
1692            // next 2 bytes unknown
1693    
1694            store16(&pData[94], EG2PreAttack);
1695    
1696            {
1697                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1698                uint8_t velocityresponse = VelocityResponseDepth;
1699                switch (VelocityResponseCurve) {
1700                    case curve_type_nonlinear:
1701                        break;
1702                    case curve_type_linear:
1703                        velocityresponse += 5;
1704                        break;
1705                    case curve_type_special:
1706                        velocityresponse += 10;
1707                        break;
1708                    case curve_type_unknown:
1709                    default:
1710                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1711                }
1712                pData[96] = velocityresponse;
1713          }          }
1714          else {  
1715              pVelocityAttenuationTable = new double[128];          {
1716              switch (VelocityResponseCurve) { // calculate the new table              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1717                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1718                switch (ReleaseVelocityResponseCurve) {
1719                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1720                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1721                  case curve_type_linear:                  case curve_type_linear:
1722                      for (int velocity = 0; velocity < 128; velocity++) {                      releasevelocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1723                      break;                      break;
1724                  case curve_type_special:                  case curve_type_special:
1725                      for (int velocity = 0; velocity < 128; velocity++) {                      releasevelocityresponse += 10;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_SPECIAL(((double)velocity),((double)VelocityResponseDepth),((double)VelocityResponseCurveScaling));  
                         if      (pVelocityAttenuationTable[velocity] > 1.0)   pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 1e-15) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1726                      break;                      break;
1727                  case curve_type_unknown:                  case curve_type_unknown:
1728                  default:                  default:
1729                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1730                }
1731                pData[97] = releasevelocityresponse;
1732            }
1733    
1734            pData[98] = VelocityResponseCurveScaling;
1735    
1736            pData[99] = AttenuationControllerThreshold;
1737    
1738            // next 4 bytes unknown
1739    
1740            store16(&pData[104], SampleStartOffset);
1741    
1742            // next 2 bytes unknown
1743    
1744            {
1745                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1746                switch (DimensionBypass) {
1747                    case dim_bypass_ctrl_94:
1748                        pitchTrackDimensionBypass |= 0x10;
1749                        break;
1750                    case dim_bypass_ctrl_95:
1751                        pitchTrackDimensionBypass |= 0x20;
1752                        break;
1753                    case dim_bypass_ctrl_none:
1754                        //FIXME: should we set anything here?
1755                        break;
1756                    default:
1757                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1758              }              }
1759              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
1760            }
1761    
1762            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1763            pData[109] = pan;
1764    
1765            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1766            pData[110] = selfmask;
1767    
1768            // next byte unknown
1769    
1770            {
1771                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1772                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1773                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1774                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1775                pData[112] = lfo3ctrl;
1776            }
1777    
1778            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1779            pData[113] = attenctl;
1780    
1781            {
1782                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1783                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1784                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1785                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1786                pData[114] = lfo2ctrl;
1787            }
1788    
1789            {
1790                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1791                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1792                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1793                if (VCFResonanceController != vcf_res_ctrl_none)
1794                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1795                pData[115] = lfo1ctrl;
1796            }
1797    
1798            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1799                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1800            pData[116] = eg3depth;
1801    
1802            // next 2 bytes unknown
1803    
1804            const uint8_t channeloffset = ChannelOffset * 4;
1805            pData[120] = channeloffset;
1806    
1807            {
1808                uint8_t regoptions = 0;
1809                if (MSDecode)      regoptions |= 0x01; // bit 0
1810                if (SustainDefeat) regoptions |= 0x02; // bit 1
1811                pData[121] = regoptions;
1812            }
1813    
1814            // next 2 bytes unknown
1815    
1816            pData[124] = VelocityUpperLimit;
1817    
1818            // next 3 bytes unknown
1819    
1820            pData[128] = ReleaseTriggerDecay;
1821    
1822            // next 2 bytes unknown
1823    
1824            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1825            pData[131] = eg1hold;
1826    
1827            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1828                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1829            pData[132] = vcfcutoff;
1830    
1831            pData[133] = VCFCutoffController;
1832    
1833            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1834                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1835            pData[134] = vcfvelscale;
1836    
1837            // next byte unknown
1838    
1839            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1840                                         (VCFResonance & 0x7f); /* lower 7 bits */
1841            pData[136] = vcfresonance;
1842    
1843            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1844                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1845            pData[137] = vcfbreakpoint;
1846    
1847            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1848                                        VCFVelocityCurve * 5;
1849            pData[138] = vcfvelocity;
1850    
1851            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1852            pData[139] = vcftype;
1853    
1854            if (chunksize >= 148) {
1855                memcpy(&pData[140], DimensionUpperLimits, 8);
1856          }          }
1857      }      }
1858    
1859        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1860        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1861        {
1862            double* table;
1863            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1864            if (pVelocityTables->count(tableKey)) { // if key exists
1865                table = (*pVelocityTables)[tableKey];
1866            }
1867            else {
1868                table = CreateVelocityTable(curveType, depth, scaling);
1869                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1870            }
1871            return table;
1872        }
1873    
1874        Region* DimensionRegion::GetParent() const {
1875            return pRegion;
1876        }
1877    
1878      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1879          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
1880          switch (EncodedController) {          switch (EncodedController) {
# Line 988  namespace gig { Line 1993  namespace gig {
1993          return decodedcontroller;          return decodedcontroller;
1994      }      }
1995    
1996        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1997            _lev_ctrl_t encodedcontroller;
1998            switch (DecodedController.type) {
1999                // special controller
2000                case leverage_ctrl_t::type_none:
2001                    encodedcontroller = _lev_ctrl_none;
2002                    break;
2003                case leverage_ctrl_t::type_velocity:
2004                    encodedcontroller = _lev_ctrl_velocity;
2005                    break;
2006                case leverage_ctrl_t::type_channelaftertouch:
2007                    encodedcontroller = _lev_ctrl_channelaftertouch;
2008                    break;
2009    
2010                // ordinary MIDI control change controller
2011                case leverage_ctrl_t::type_controlchange:
2012                    switch (DecodedController.controller_number) {
2013                        case 1:
2014                            encodedcontroller = _lev_ctrl_modwheel;
2015                            break;
2016                        case 2:
2017                            encodedcontroller = _lev_ctrl_breath;
2018                            break;
2019                        case 4:
2020                            encodedcontroller = _lev_ctrl_foot;
2021                            break;
2022                        case 12:
2023                            encodedcontroller = _lev_ctrl_effect1;
2024                            break;
2025                        case 13:
2026                            encodedcontroller = _lev_ctrl_effect2;
2027                            break;
2028                        case 16:
2029                            encodedcontroller = _lev_ctrl_genpurpose1;
2030                            break;
2031                        case 17:
2032                            encodedcontroller = _lev_ctrl_genpurpose2;
2033                            break;
2034                        case 18:
2035                            encodedcontroller = _lev_ctrl_genpurpose3;
2036                            break;
2037                        case 19:
2038                            encodedcontroller = _lev_ctrl_genpurpose4;
2039                            break;
2040                        case 5:
2041                            encodedcontroller = _lev_ctrl_portamentotime;
2042                            break;
2043                        case 64:
2044                            encodedcontroller = _lev_ctrl_sustainpedal;
2045                            break;
2046                        case 65:
2047                            encodedcontroller = _lev_ctrl_portamento;
2048                            break;
2049                        case 66:
2050                            encodedcontroller = _lev_ctrl_sostenutopedal;
2051                            break;
2052                        case 67:
2053                            encodedcontroller = _lev_ctrl_softpedal;
2054                            break;
2055                        case 80:
2056                            encodedcontroller = _lev_ctrl_genpurpose5;
2057                            break;
2058                        case 81:
2059                            encodedcontroller = _lev_ctrl_genpurpose6;
2060                            break;
2061                        case 82:
2062                            encodedcontroller = _lev_ctrl_genpurpose7;
2063                            break;
2064                        case 83:
2065                            encodedcontroller = _lev_ctrl_genpurpose8;
2066                            break;
2067                        case 91:
2068                            encodedcontroller = _lev_ctrl_effect1depth;
2069                            break;
2070                        case 92:
2071                            encodedcontroller = _lev_ctrl_effect2depth;
2072                            break;
2073                        case 93:
2074                            encodedcontroller = _lev_ctrl_effect3depth;
2075                            break;
2076                        case 94:
2077                            encodedcontroller = _lev_ctrl_effect4depth;
2078                            break;
2079                        case 95:
2080                            encodedcontroller = _lev_ctrl_effect5depth;
2081                            break;
2082                        default:
2083                            throw gig::Exception("leverage controller number is not supported by the gig format");
2084                    }
2085                    break;
2086                default:
2087                    throw gig::Exception("Unknown leverage controller type.");
2088            }
2089            return encodedcontroller;
2090        }
2091    
2092      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2093          Instances--;          Instances--;
2094          if (!Instances) {          if (!Instances) {
# Line 1001  namespace gig { Line 2102  namespace gig {
2102              delete pVelocityTables;              delete pVelocityTables;
2103              pVelocityTables = NULL;              pVelocityTables = NULL;
2104          }          }
2105            if (VelocityTable) delete[] VelocityTable;
2106      }      }
2107    
2108      /**      /**
# Line 1018  namespace gig { Line 2120  namespace gig {
2120          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2121      }      }
2122    
2123        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2124            return pVelocityReleaseTable[MIDIKeyVelocity];
2125        }
2126    
2127        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2128            return pVelocityCutoffTable[MIDIKeyVelocity];
2129        }
2130    
2131        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2132    
2133            // line-segment approximations of the 15 velocity curves
2134    
2135            // linear
2136            const int lin0[] = { 1, 1, 127, 127 };
2137            const int lin1[] = { 1, 21, 127, 127 };
2138            const int lin2[] = { 1, 45, 127, 127 };
2139            const int lin3[] = { 1, 74, 127, 127 };
2140            const int lin4[] = { 1, 127, 127, 127 };
2141    
2142            // non-linear
2143            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2144            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2145                                 127, 127 };
2146            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2147                                 127, 127 };
2148            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2149                                 127, 127 };
2150            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2151    
2152            // special
2153            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2154                                 113, 127, 127, 127 };
2155            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2156                                 118, 127, 127, 127 };
2157            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2158                                 85, 90, 91, 127, 127, 127 };
2159            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2160                                 117, 127, 127, 127 };
2161            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2162                                 127, 127 };
2163    
2164            // this is only used by the VCF velocity curve
2165            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2166                                 91, 127, 127, 127 };
2167    
2168            const int* const curves[] = { non0, non1, non2, non3, non4,
2169                                          lin0, lin1, lin2, lin3, lin4,
2170                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2171    
2172            double* const table = new double[128];
2173    
2174            const int* curve = curves[curveType * 5 + depth];
2175            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2176    
2177            table[0] = 0;
2178            for (int x = 1 ; x < 128 ; x++) {
2179    
2180                if (x > curve[2]) curve += 2;
2181                double y = curve[1] + (x - curve[0]) *
2182                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2183                y = y / 127;
2184    
2185                // Scale up for s > 20, down for s < 20. When
2186                // down-scaling, the curve still ends at 1.0.
2187                if (s < 20 && y >= 0.5)
2188                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2189                else
2190                    y = y * (s / 20.0);
2191                if (y > 1) y = 1;
2192    
2193                table[x] = y;
2194            }
2195            return table;
2196        }
2197    
2198    
2199  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 2202  namespace gig {
2202      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2203          // Initialization          // Initialization
2204          Dimensions = 0;          Dimensions = 0;
2205          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2206              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2207          }          }
2208            Layers = 1;
2209            File* file = (File*) GetParent()->GetParent();
2210            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2211    
2212          // Actual Loading          // Actual Loading
2213    
# Line 1037  namespace gig { Line 2216  namespace gig {
2216          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2217          if (_3lnk) {          if (_3lnk) {
2218              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2219              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2220                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2221                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2222                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2223                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2224                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2225                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2226                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2227                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2228                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2229                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2230                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2231                  }                  }
2232                  else { // active dimension                  else { // active dimension
2233                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2234                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2235                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2236                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2237                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2238                      Dimensions++;                      Dimensions++;
                 }  
                 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition  
             }  
2239    
2240              // check velocity dimension (if there is one) for custom defined zone ranges                      // if this is a layer dimension, remember the amount of layers
2241              for (uint i = 0; i < Dimensions; i++) {                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
                 dimension_def_t* pDimDef = pDimensionDefinitions + i;  
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         unsigned int bits[5] = {0,0,0,0,0};  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2242                  }                  }
2243                    _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2244              }              }
2245                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2246    
2247                // if there's a velocity dimension and custom velocity zone splits are used,
2248                // update the VelocityTables in the dimension regions
2249                UpdateVelocityTable();
2250    
2251                // jump to start of the wave pool indices (if not already there)
2252                if (file->pVersion && file->pVersion->major == 3)
2253                    _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2254                else
2255                    _3lnk->SetPos(44);
2256    
2257              // load sample references              // load sample references
             _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)  
2258              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2259                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2260                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2261                }
2262                GetSample(); // load global region sample reference
2263            } else {
2264                DimensionRegions = 0;
2265                for (int i = 0 ; i < 8 ; i++) {
2266                    pDimensionDefinitions[i].dimension  = dimension_none;
2267                    pDimensionDefinitions[i].bits       = 0;
2268                    pDimensionDefinitions[i].zones      = 0;
2269                }
2270            }
2271    
2272            // make sure there is at least one dimension region
2273            if (!DimensionRegions) {
2274                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2275                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2276                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2277                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2278                DimensionRegions = 1;
2279            }
2280        }
2281    
2282        /**
2283         * Apply Region settings and all its DimensionRegions to the respective
2284         * RIFF chunks. You have to call File::Save() to make changes persistent.
2285         *
2286         * Usually there is absolutely no need to call this method explicitly.
2287         * It will be called automatically when File::Save() was called.
2288         *
2289         * @throws gig::Exception if samples cannot be dereferenced
2290         */
2291        void Region::UpdateChunks() {
2292            // in the gig format we don't care about the Region's sample reference
2293            // but we still have to provide some existing one to not corrupt the
2294            // file, so to avoid the latter we simply always assign the sample of
2295            // the first dimension region of this region
2296            pSample = pDimensionRegions[0]->pSample;
2297    
2298            // first update base class's chunks
2299            DLS::Region::UpdateChunks();
2300    
2301            // update dimension region's chunks
2302            for (int i = 0; i < DimensionRegions; i++) {
2303                pDimensionRegions[i]->UpdateChunks();
2304            }
2305    
2306            File* pFile = (File*) GetParent()->GetParent();
2307            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2308            const int iMaxDimensions =  version3 ? 8 : 5;
2309            const int iMaxDimensionRegions = version3 ? 256 : 32;
2310    
2311            // make sure '3lnk' chunk exists
2312            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2313            if (!_3lnk) {
2314                const int _3lnkChunkSize = version3 ? 1092 : 172;
2315                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2316                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2317    
2318                // move 3prg to last position
2319                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2320            }
2321    
2322            // update dimension definitions in '3lnk' chunk
2323            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2324            store32(&pData[0], DimensionRegions);
2325            int shift = 0;
2326            for (int i = 0; i < iMaxDimensions; i++) {
2327                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2328                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2329                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2330                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2331                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2332                // next 3 bytes unknown, always zero?
2333    
2334                shift += pDimensionDefinitions[i].bits;
2335            }
2336    
2337            // update wave pool table in '3lnk' chunk
2338            const int iWavePoolOffset = version3 ? 68 : 44;
2339            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2340                int iWaveIndex = -1;
2341                if (i < DimensionRegions) {
2342                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2343                    File::SampleList::iterator iter = pFile->pSamples->begin();
2344                    File::SampleList::iterator end  = pFile->pSamples->end();
2345                    for (int index = 0; iter != end; ++iter, ++index) {
2346                        if (*iter == pDimensionRegions[i]->pSample) {
2347                            iWaveIndex = index;
2348                            break;
2349                        }
2350                    }
2351              }              }
2352                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2353          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2354      }      }
2355    
2356      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1112  namespace gig { Line 2360  namespace gig {
2360              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
2361              while (_3ewl) {              while (_3ewl) {
2362                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2363                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2364                      dimensionRegionNr++;                      dimensionRegionNr++;
2365                  }                  }
2366                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1121  namespace gig { Line 2369  namespace gig {
2369          }          }
2370      }      }
2371    
2372      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2373          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
2374              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
2375            // update Region key table for fast lookup
2376            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2377        }
2378    
2379        void Region::UpdateVelocityTable() {
2380            // get velocity dimension's index
2381            int veldim = -1;
2382            for (int i = 0 ; i < Dimensions ; i++) {
2383                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2384                    veldim = i;
2385                    break;
2386                }
2387            }
2388            if (veldim == -1) return;
2389    
2390            int step = 1;
2391            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2392            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2393            int end = step * pDimensionDefinitions[veldim].zones;
2394    
2395            // loop through all dimension regions for all dimensions except the velocity dimension
2396            int dim[8] = { 0 };
2397            for (int i = 0 ; i < DimensionRegions ; i++) {
2398    
2399                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2400                    pDimensionRegions[i]->VelocityUpperLimit) {
2401                    // create the velocity table
2402                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2403                    if (!table) {
2404                        table = new uint8_t[128];
2405                        pDimensionRegions[i]->VelocityTable = table;
2406                    }
2407                    int tableidx = 0;
2408                    int velocityZone = 0;
2409                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2410                        for (int k = i ; k < end ; k += step) {
2411                            DimensionRegion *d = pDimensionRegions[k];
2412                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2413                            velocityZone++;
2414                        }
2415                    } else { // gig2
2416                        for (int k = i ; k < end ; k += step) {
2417                            DimensionRegion *d = pDimensionRegions[k];
2418                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2419                            velocityZone++;
2420                        }
2421                    }
2422                } else {
2423                    if (pDimensionRegions[i]->VelocityTable) {
2424                        delete[] pDimensionRegions[i]->VelocityTable;
2425                        pDimensionRegions[i]->VelocityTable = 0;
2426                    }
2427                }
2428    
2429                int j;
2430                int shift = 0;
2431                for (j = 0 ; j < Dimensions ; j++) {
2432                    if (j == veldim) i += skipveldim; // skip velocity dimension
2433                    else {
2434                        dim[j]++;
2435                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2436                        else {
2437                            // skip unused dimension regions
2438                            dim[j] = 0;
2439                            i += ((1 << pDimensionDefinitions[j].bits) -
2440                                  pDimensionDefinitions[j].zones) << shift;
2441                        }
2442                    }
2443                    shift += pDimensionDefinitions[j].bits;
2444                }
2445                if (j == Dimensions) break;
2446            }
2447        }
2448    
2449        /** @brief Einstein would have dreamed of it - create a new dimension.
2450         *
2451         * Creates a new dimension with the dimension definition given by
2452         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2453         * There is a hard limit of dimensions and total amount of "bits" all
2454         * dimensions can have. This limit is dependant to what gig file format
2455         * version this file refers to. The gig v2 (and lower) format has a
2456         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2457         * format has a limit of 8.
2458         *
2459         * @param pDimDef - defintion of the new dimension
2460         * @throws gig::Exception if dimension of the same type exists already
2461         * @throws gig::Exception if amount of dimensions or total amount of
2462         *                        dimension bits limit is violated
2463         */
2464        void Region::AddDimension(dimension_def_t* pDimDef) {
2465            // check if max. amount of dimensions reached
2466            File* file = (File*) GetParent()->GetParent();
2467            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2468            if (Dimensions >= iMaxDimensions)
2469                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2470            // check if max. amount of dimension bits reached
2471            int iCurrentBits = 0;
2472            for (int i = 0; i < Dimensions; i++)
2473                iCurrentBits += pDimensionDefinitions[i].bits;
2474            if (iCurrentBits >= iMaxDimensions)
2475                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2476            const int iNewBits = iCurrentBits + pDimDef->bits;
2477            if (iNewBits > iMaxDimensions)
2478                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2479            // check if there's already a dimensions of the same type
2480            for (int i = 0; i < Dimensions; i++)
2481                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2482                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2483    
2484            // pos is where the new dimension should be placed, normally
2485            // last in list, except for the samplechannel dimension which
2486            // has to be first in list
2487            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2488            int bitpos = 0;
2489            for (int i = 0 ; i < pos ; i++)
2490                bitpos += pDimensionDefinitions[i].bits;
2491    
2492            // make room for the new dimension
2493            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2494            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2495                for (int j = Dimensions ; j > pos ; j--) {
2496                    pDimensionRegions[i]->DimensionUpperLimits[j] =
2497                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2498                }
2499            }
2500    
2501            // assign definition of new dimension
2502            pDimensionDefinitions[pos] = *pDimDef;
2503    
2504            // auto correct certain dimension definition fields (where possible)
2505            pDimensionDefinitions[pos].split_type  =
2506                __resolveSplitType(pDimensionDefinitions[pos].dimension);
2507            pDimensionDefinitions[pos].zone_size =
2508                __resolveZoneSize(pDimensionDefinitions[pos]);
2509    
2510            // create new dimension region(s) for this new dimension, and make
2511            // sure that the dimension regions are placed correctly in both the
2512            // RIFF list and the pDimensionRegions array
2513            RIFF::Chunk* moveTo = NULL;
2514            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2515            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2516                for (int k = 0 ; k < (1 << bitpos) ; k++) {
2517                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2518                }
2519                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2520                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
2521                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2522                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2523                        // create a new dimension region and copy all parameter values from
2524                        // an existing dimension region
2525                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2526                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2527    
2528                        DimensionRegions++;
2529                    }
2530                }
2531                moveTo = pDimensionRegions[i]->pParentList;
2532            }
2533    
2534            // initialize the upper limits for this dimension
2535            int mask = (1 << bitpos) - 1;
2536            for (int z = 0 ; z < pDimDef->zones ; z++) {
2537                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2538                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2539                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2540                                      (z << bitpos) |
2541                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2542                }
2543            }
2544    
2545            Dimensions++;
2546    
2547            // if this is a layer dimension, update 'Layers' attribute
2548            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2549    
2550            UpdateVelocityTable();
2551        }
2552    
2553        /** @brief Delete an existing dimension.
2554         *
2555         * Deletes the dimension given by \a pDimDef and deletes all respective
2556         * dimension regions, that is all dimension regions where the dimension's
2557         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2558         * for example this would delete all dimension regions for the case(s)
2559         * where the sustain pedal is pressed down.
2560         *
2561         * @param pDimDef - dimension to delete
2562         * @throws gig::Exception if given dimension cannot be found
2563         */
2564        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2565            // get dimension's index
2566            int iDimensionNr = -1;
2567            for (int i = 0; i < Dimensions; i++) {
2568                if (&pDimensionDefinitions[i] == pDimDef) {
2569                    iDimensionNr = i;
2570                    break;
2571                }
2572            }
2573            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2574    
2575            // get amount of bits below the dimension to delete
2576            int iLowerBits = 0;
2577            for (int i = 0; i < iDimensionNr; i++)
2578                iLowerBits += pDimensionDefinitions[i].bits;
2579    
2580            // get amount ot bits above the dimension to delete
2581            int iUpperBits = 0;
2582            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2583                iUpperBits += pDimensionDefinitions[i].bits;
2584    
2585            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2586    
2587            // delete dimension regions which belong to the given dimension
2588            // (that is where the dimension's bit > 0)
2589            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2590                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2591                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2592                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2593                                        iObsoleteBit << iLowerBits |
2594                                        iLowerBit;
2595    
2596                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2597                        delete pDimensionRegions[iToDelete];
2598                        pDimensionRegions[iToDelete] = NULL;
2599                        DimensionRegions--;
2600                    }
2601                }
2602            }
2603    
2604            // defrag pDimensionRegions array
2605            // (that is remove the NULL spaces within the pDimensionRegions array)
2606            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2607                if (!pDimensionRegions[iTo]) {
2608                    if (iFrom <= iTo) iFrom = iTo + 1;
2609                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2610                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2611                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2612                        pDimensionRegions[iFrom] = NULL;
2613                    }
2614                }
2615          }          }
2616          for (int i = 0; i < 32; i++) {  
2617            // remove the this dimension from the upper limits arrays
2618            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2619                DimensionRegion* d = pDimensionRegions[j];
2620                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2621                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2622                }
2623                d->DimensionUpperLimits[Dimensions - 1] = 127;
2624            }
2625    
2626            // 'remove' dimension definition
2627            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2628                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2629            }
2630            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2631            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2632            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2633    
2634            Dimensions--;
2635    
2636            // if this was a layer dimension, update 'Layers' attribute
2637            if (pDimDef->dimension == dimension_layer) Layers = 1;
2638        }
2639    
2640        Region::~Region() {
2641            for (int i = 0; i < 256; i++) {
2642              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2643          }          }
2644      }      }
# Line 1143  namespace gig { Line 2656  namespace gig {
2656       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2657       * etc.).       * etc.).
2658       *       *
2659       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2660       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2661       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2662       * @see             Dimensions       * @see             Dimensions
2663       */       */
2664      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2665          uint8_t bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
2666            int veldim = -1;
2667            int velbitpos;
2668            int bitpos = 0;
2669            int dimregidx = 0;
2670          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2671              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2672                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
2673                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
2674                      break;                  velbitpos = bitpos;
2675                  case split_type_customvelocity:              } else {
2676                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
2677                      break;                      case split_type_normal:
2678                  case split_type_bit: // the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2679                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2680                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2681                      break;                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2682                                }
2683                            } else {
2684                                // gig2: evenly sized zones
2685                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2686                            }
2687                            break;
2688                        case split_type_bit: // the value is already the sought dimension bit number
2689                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2690                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2691                            break;
2692                    }
2693                    dimregidx |= bits << bitpos;
2694              }              }
2695                bitpos += pDimensionDefinitions[i].bits;
2696            }
2697            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2698            if (veldim != -1) {
2699                // (dimreg is now the dimension region for the lowest velocity)
2700                if (dimreg->VelocityTable) // custom defined zone ranges
2701                    bits = dimreg->VelocityTable[DimValues[veldim]];
2702                else // normal split type
2703                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2704    
2705                dimregidx |= bits << velbitpos;
2706                dimreg = pDimensionRegions[dimregidx];
2707          }          }
2708          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimreg;
2709      }      }
2710    
2711      /**      /**
# Line 1176  namespace gig { Line 2713  namespace gig {
2713       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2714       * instead of calling this method directly!       * instead of calling this method directly!
2715       *       *
2716       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2717       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2718       *                 bit numbers       *                 bit numbers
2719       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2720       */       */
2721      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2722          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2723                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2724                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2725                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2726                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2727                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2728                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2729      }      }
2730    
2731      /**      /**
# Line 1206  namespace gig { Line 2742  namespace gig {
2742          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2743      }      }
2744    
2745      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2746            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2747          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2748            if (!file->pWavePoolTable) return NULL;
2749          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2750          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2751            Sample* sample = file->GetFirstSample(pProgress);
2752          while (sample) {          while (sample) {
2753              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2754                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2755              sample = file->GetNextSample();              sample = file->GetNextSample();
2756          }          }
2757          return NULL;          return NULL;
# Line 1222  namespace gig { Line 2762  namespace gig {
2762  // *************** Instrument ***************  // *************** Instrument ***************
2763  // *  // *
2764    
2765      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2766            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2767                { CHUNK_ID_INAM, 64 },
2768                { CHUNK_ID_ISFT, 12 },
2769                { 0, 0 }
2770            };
2771            pInfo->FixedStringLengths = fixedStringLengths;
2772    
2773          // Initialization          // Initialization
2774          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2775          RegionIndex = -1;          EffectSend = 0;
2776            Attenuation = 0;
2777            FineTune = 0;
2778            PitchbendRange = 0;
2779            PianoReleaseMode = false;
2780            DimensionKeyRange.low = 0;
2781            DimensionKeyRange.high = 0;
2782    
2783          // Loading          // Loading
2784          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1241  namespace gig { Line 2794  namespace gig {
2794                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2795                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2796              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2797          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2798    
2799            if (!pRegions) pRegions = new RegionList;
2800          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2801          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2802          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2803          RIFF::List* rgn = lrgn->GetFirstSubList();              while (rgn) {
2804          unsigned int iRegion = 0;                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2805          while (rgn) {                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2806              if (rgn->GetListType() == LIST_TYPE_RGN) {                      pRegions->push_back(new Region(this, rgn));
2807                  pRegions[iRegion] = new Region(this, rgn);                  }
2808                  iRegion++;                  rgn = lrgn->GetNextSubList();
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2809              }              }
2810                // Creating Region Key Table for fast lookup
2811                UpdateRegionKeyTable();
2812          }          }
2813    
2814            __notify_progress(pProgress, 1.0f); // notify done
2815      }      }
2816    
2817      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2818          for (uint i = 0; i < Regions; i++) {          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2819              if (pRegions) {          RegionList::iterator iter = pRegions->begin();
2820                  if (pRegions[i]) delete (pRegions[i]);          RegionList::iterator end  = pRegions->end();
2821            for (; iter != end; ++iter) {
2822                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2823                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2824                    RegionKeyTable[iKey] = pRegion;
2825              }              }
             delete[] pRegions;  
2826          }          }
2827      }      }
2828    
2829        Instrument::~Instrument() {
2830        }
2831    
2832        /**
2833         * Apply Instrument with all its Regions to the respective RIFF chunks.
2834         * You have to call File::Save() to make changes persistent.
2835         *
2836         * Usually there is absolutely no need to call this method explicitly.
2837         * It will be called automatically when File::Save() was called.
2838         *
2839         * @throws gig::Exception if samples cannot be dereferenced
2840         */
2841        void Instrument::UpdateChunks() {
2842            // first update base classes' chunks
2843            DLS::Instrument::UpdateChunks();
2844    
2845            // update Regions' chunks
2846            {
2847                RegionList::iterator iter = pRegions->begin();
2848                RegionList::iterator end  = pRegions->end();
2849                for (; iter != end; ++iter)
2850                    (*iter)->UpdateChunks();
2851            }
2852    
2853            // make sure 'lart' RIFF list chunk exists
2854            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2855            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2856            // make sure '3ewg' RIFF chunk exists
2857            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2858            if (!_3ewg)  {
2859                File* pFile = (File*) GetParent();
2860    
2861                // 3ewg is bigger in gig3, as it includes the iMIDI rules
2862                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2863                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2864                memset(_3ewg->LoadChunkData(), 0, size);
2865            }
2866            // update '3ewg' RIFF chunk
2867            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2868            store16(&pData[0], EffectSend);
2869            store32(&pData[2], Attenuation);
2870            store16(&pData[6], FineTune);
2871            store16(&pData[8], PitchbendRange);
2872            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2873                                        DimensionKeyRange.low << 1;
2874            pData[10] = dimkeystart;
2875            pData[11] = DimensionKeyRange.high;
2876        }
2877    
2878      /**      /**
2879       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
2880       *       *
# Line 1283  namespace gig { Line 2883  namespace gig {
2883       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2884       */       */
2885      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2886          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
2887          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2888    
2889          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2890              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2891                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1300  namespace gig { Line 2901  namespace gig {
2901       * @see      GetNextRegion()       * @see      GetNextRegion()
2902       */       */
2903      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2904          if (!Regions) return NULL;          if (!pRegions) return NULL;
2905          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2906          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2907      }      }
2908    
2909      /**      /**
# Line 1314  namespace gig { Line 2915  namespace gig {
2915       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2916       */       */
2917      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2918          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
2919          return pRegions[RegionIndex++];          RegionsIterator++;
2920            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2921        }
2922    
2923        Region* Instrument::AddRegion() {
2924            // create new Region object (and its RIFF chunks)
2925            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2926            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2927            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2928            Region* pNewRegion = new Region(this, rgn);
2929            pRegions->push_back(pNewRegion);
2930            Regions = pRegions->size();
2931            // update Region key table for fast lookup
2932            UpdateRegionKeyTable();
2933            // done
2934            return pNewRegion;
2935        }
2936    
2937        void Instrument::DeleteRegion(Region* pRegion) {
2938            if (!pRegions) return;
2939            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2940            // update Region key table for fast lookup
2941            UpdateRegionKeyTable();
2942        }
2943    
2944    
2945    
2946    // *************** Group ***************
2947    // *
2948    
2949        /** @brief Constructor.
2950         *
2951         * @param file   - pointer to the gig::File object
2952         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2953         *                 NULL if this is a new Group
2954         */
2955        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2956            pFile      = file;
2957            pNameChunk = ck3gnm;
2958            ::LoadString(pNameChunk, Name);
2959        }
2960    
2961        Group::~Group() {
2962            // remove the chunk associated with this group (if any)
2963            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2964        }
2965    
2966        /** @brief Update chunks with current group settings.
2967         *
2968         * Apply current Group field values to the respective chunks. You have
2969         * to call File::Save() to make changes persistent.
2970         *
2971         * Usually there is absolutely no need to call this method explicitly.
2972         * It will be called automatically when File::Save() was called.
2973         */
2974        void Group::UpdateChunks() {
2975            // make sure <3gri> and <3gnl> list chunks exist
2976            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2977            if (!_3gri) {
2978                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2979                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2980            }
2981            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2982            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2983    
2984            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
2985                // v3 has a fixed list of 128 strings, find a free one
2986                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
2987                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
2988                        pNameChunk = ck;
2989                        break;
2990                    }
2991                }
2992            }
2993    
2994            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2995            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2996        }
2997    
2998        /**
2999         * Returns the first Sample of this Group. You have to call this method
3000         * once before you use GetNextSample().
3001         *
3002         * <b>Notice:</b> this method might block for a long time, in case the
3003         * samples of this .gig file were not scanned yet
3004         *
3005         * @returns  pointer address to first Sample or NULL if there is none
3006         *           applied to this Group
3007         * @see      GetNextSample()
3008         */
3009        Sample* Group::GetFirstSample() {
3010            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3011            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3012                if (pSample->GetGroup() == this) return pSample;
3013            }
3014            return NULL;
3015        }
3016    
3017        /**
3018         * Returns the next Sample of the Group. You have to call
3019         * GetFirstSample() once before you can use this method. By calling this
3020         * method multiple times it iterates through the Samples assigned to
3021         * this Group.
3022         *
3023         * @returns  pointer address to the next Sample of this Group or NULL if
3024         *           end reached
3025         * @see      GetFirstSample()
3026         */
3027        Sample* Group::GetNextSample() {
3028            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3029            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3030                if (pSample->GetGroup() == this) return pSample;
3031            }
3032            return NULL;
3033        }
3034    
3035        /**
3036         * Move Sample given by \a pSample from another Group to this Group.
3037         */
3038        void Group::AddSample(Sample* pSample) {
3039            pSample->pGroup = this;
3040        }
3041    
3042        /**
3043         * Move all members of this group to another group (preferably the 1st
3044         * one except this). This method is called explicitly by
3045         * File::DeleteGroup() thus when a Group was deleted. This code was
3046         * intentionally not placed in the destructor!
3047         */
3048        void Group::MoveAll() {
3049            // get "that" other group first
3050            Group* pOtherGroup = NULL;
3051            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3052                if (pOtherGroup != this) break;
3053            }
3054            if (!pOtherGroup) throw Exception(
3055                "Could not move samples to another group, since there is no "
3056                "other Group. This is a bug, report it!"
3057            );
3058            // now move all samples of this group to the other group
3059            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3060                pOtherGroup->AddSample(pSample);
3061            }
3062      }      }
3063    
3064    
# Line 1323  namespace gig { Line 3066  namespace gig {
3066  // *************** File ***************  // *************** File ***************
3067  // *  // *
3068    
3069        // File version 2.0, 1998-06-28
3070        const DLS::version_t File::VERSION_2 = {
3071            0, 2, 19980628 & 0xffff, 19980628 >> 16
3072        };
3073    
3074        // File version 3.0, 2003-03-31
3075        const DLS::version_t File::VERSION_3 = {
3076            0, 3, 20030331 & 0xffff, 20030331 >> 16
3077        };
3078    
3079        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3080            { CHUNK_ID_IARL, 256 },
3081            { CHUNK_ID_IART, 128 },
3082            { CHUNK_ID_ICMS, 128 },
3083            { CHUNK_ID_ICMT, 1024 },
3084            { CHUNK_ID_ICOP, 128 },
3085            { CHUNK_ID_ICRD, 128 },
3086            { CHUNK_ID_IENG, 128 },
3087            { CHUNK_ID_IGNR, 128 },
3088            { CHUNK_ID_IKEY, 128 },
3089            { CHUNK_ID_IMED, 128 },
3090            { CHUNK_ID_INAM, 128 },
3091            { CHUNK_ID_IPRD, 128 },
3092            { CHUNK_ID_ISBJ, 128 },
3093            { CHUNK_ID_ISFT, 128 },
3094            { CHUNK_ID_ISRC, 128 },
3095            { CHUNK_ID_ISRF, 128 },
3096            { CHUNK_ID_ITCH, 128 },
3097            { 0, 0 }
3098        };
3099    
3100        File::File() : DLS::File() {
3101            *pVersion = VERSION_3;
3102            pGroups = NULL;
3103            pInfo->FixedStringLengths = FixedStringLengths;
3104            pInfo->ArchivalLocation = String(256, ' ');
3105    
3106            // add some mandatory chunks to get the file chunks in right
3107            // order (INFO chunk will be moved to first position later)
3108            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3109            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3110            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3111    
3112            GenerateDLSID();
3113        }
3114    
3115      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3116          pSamples     = NULL;          pGroups = NULL;
3117          pInstruments = NULL;          pInfo->FixedStringLengths = FixedStringLengths;
3118      }      }
3119    
3120      Sample* File::GetFirstSample() {      File::~File() {
3121          if (!pSamples) LoadSamples();          if (pGroups) {
3122                std::list<Group*>::iterator iter = pGroups->begin();
3123                std::list<Group*>::iterator end  = pGroups->end();
3124                while (iter != end) {
3125                    delete *iter;
3126                    ++iter;
3127                }
3128                delete pGroups;
3129            }
3130        }
3131    
3132        Sample* File::GetFirstSample(progress_t* pProgress) {
3133            if (!pSamples) LoadSamples(pProgress);
3134          if (!pSamples) return NULL;          if (!pSamples) return NULL;
3135          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
3136          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1341  namespace gig { Line 3142  namespace gig {
3142          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3143      }      }
3144    
3145      void File::LoadSamples() {      /** @brief Add a new sample.
3146          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
3147          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
3148              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
3149              RIFF::List* wave = wvpl->GetFirstSubList();       *
3150              while (wave) {       * @returns pointer to new Sample object
3151                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
3152                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
3153                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
3154                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
3155           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3156           // create new Sample object and its respective 'wave' list chunk
3157           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3158           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3159    
3160           // add mandatory chunks to get the chunks in right order
3161           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3162           wave->AddSubList(LIST_TYPE_INFO);
3163    
3164           pSamples->push_back(pSample);
3165           return pSample;
3166        }
3167    
3168        /** @brief Delete a sample.
3169         *
3170         * This will delete the given Sample object from the gig file. Any
3171         * references to this sample from Regions and DimensionRegions will be
3172         * removed. You have to call Save() to make this persistent to the file.
3173         *
3174         * @param pSample - sample to delete
3175         * @throws gig::Exception if given sample could not be found
3176         */
3177        void File::DeleteSample(Sample* pSample) {
3178            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3179            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3180            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3181            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3182            pSamples->erase(iter);
3183            delete pSample;
3184    
3185            // remove all references to the sample
3186            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3187                 instrument = GetNextInstrument()) {
3188                for (Region* region = instrument->GetFirstRegion() ; region ;
3189                     region = instrument->GetNextRegion()) {
3190    
3191                    if (region->GetSample() == pSample) region->SetSample(NULL);
3192    
3193                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
3194                        gig::DimensionRegion *d = region->pDimensionRegions[i];
3195                        if (d->pSample == pSample) d->pSample = NULL;
3196                  }                  }
                 wave = wvpl->GetNextSubList();  
3197              }              }
3198          }          }
3199          else throw gig::Exception("Mandatory <wvpl> chunk not found.");      }
3200    
3201        void File::LoadSamples() {
3202            LoadSamples(NULL);
3203        }
3204    
3205        void File::LoadSamples(progress_t* pProgress) {
3206            // Groups must be loaded before samples, because samples will try
3207            // to resolve the group they belong to
3208            if (!pGroups) LoadGroups();
3209    
3210            if (!pSamples) pSamples = new SampleList;
3211    
3212            RIFF::File* file = pRIFF;
3213    
3214            // just for progress calculation
3215            int iSampleIndex  = 0;
3216            int iTotalSamples = WavePoolCount;
3217    
3218            // check if samples should be loaded from extension files
3219            int lastFileNo = 0;
3220            for (int i = 0 ; i < WavePoolCount ; i++) {
3221                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3222            }
3223            String name(pRIFF->GetFileName());
3224            int nameLen = name.length();
3225            char suffix[6];
3226            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3227    
3228            for (int fileNo = 0 ; ; ) {
3229                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3230                if (wvpl) {
3231                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3232                    RIFF::List* wave = wvpl->GetFirstSubList();
3233                    while (wave) {
3234                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3235                            // notify current progress
3236                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3237                            __notify_progress(pProgress, subprogress);
3238    
3239                            unsigned long waveFileOffset = wave->GetFilePos();
3240                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3241    
3242                            iSampleIndex++;
3243                        }
3244                        wave = wvpl->GetNextSubList();
3245                    }
3246    
3247                    if (fileNo == lastFileNo) break;
3248    
3249                    // open extension file (*.gx01, *.gx02, ...)
3250                    fileNo++;
3251                    sprintf(suffix, ".gx%02d", fileNo);
3252                    name.replace(nameLen, 5, suffix);
3253                    file = new RIFF::File(name);
3254                    ExtensionFiles.push_back(file);
3255                } else break;
3256            }
3257    
3258            __notify_progress(pProgress, 1.0); // notify done
3259      }      }
3260    
3261      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3262          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3263          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3264          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3265          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3266      }      }
3267    
3268      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3269          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3270          InstrumentsIterator++;          InstrumentsIterator++;
3271          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3272      }      }
3273    
3274      /**      /**
3275       * Returns the instrument with the given index.       * Returns the instrument with the given index.
3276       *       *
3277         * @param index     - number of the sought instrument (0..n)
3278         * @param pProgress - optional: callback function for progress notification
3279       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
3280       */       */
3281      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3282          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
3283                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3284    
3285                // sample loading subtask
3286                progress_t subprogress;
3287                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3288                __notify_progress(&subprogress, 0.0f);
3289                GetFirstSample(&subprogress); // now force all samples to be loaded
3290                __notify_progress(&subprogress, 1.0f);
3291    
3292                // instrument loading subtask
3293                if (pProgress && pProgress->callback) {
3294                    subprogress.__range_min = subprogress.__range_max;
3295                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3296                }
3297                __notify_progress(&subprogress, 0.0f);
3298                LoadInstruments(&subprogress);
3299                __notify_progress(&subprogress, 1.0f);
3300            }
3301          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3302          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3303          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3304              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3305              InstrumentsIterator++;              InstrumentsIterator++;
3306          }          }
3307          return NULL;          return NULL;
3308      }      }
3309    
3310        /** @brief Add a new instrument definition.
3311         *
3312         * This will create a new Instrument object for the gig file. You have
3313         * to call Save() to make this persistent to the file.
3314         *
3315         * @returns pointer to new Instrument object
3316         */
3317        Instrument* File::AddInstrument() {
3318           if (!pInstruments) LoadInstruments();
3319           __ensureMandatoryChunksExist();
3320           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3321           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3322    
3323           // add mandatory chunks to get the chunks in right order
3324           lstInstr->AddSubList(LIST_TYPE_INFO);
3325           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3326    
3327           Instrument* pInstrument = new Instrument(this, lstInstr);
3328           pInstrument->GenerateDLSID();
3329    
3330           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3331    
3332           // this string is needed for the gig to be loadable in GSt:
3333           pInstrument->pInfo->Software = "Endless Wave";
3334    
3335           pInstruments->push_back(pInstrument);
3336           return pInstrument;
3337        }
3338    
3339        /** @brief Delete an instrument.
3340         *
3341         * This will delete the given Instrument object from the gig file. You
3342         * have to call Save() to make this persistent to the file.
3343         *
3344         * @param pInstrument - instrument to delete
3345         * @throws gig::Exception if given instrument could not be found
3346         */
3347        void File::DeleteInstrument(Instrument* pInstrument) {
3348            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3349            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3350            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3351            pInstruments->erase(iter);
3352            delete pInstrument;
3353        }
3354    
3355      void File::LoadInstruments() {      void File::LoadInstruments() {
3356            LoadInstruments(NULL);
3357        }
3358    
3359        void File::LoadInstruments(progress_t* pProgress) {
3360            if (!pInstruments) pInstruments = new InstrumentList;
3361          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3362          if (lstInstruments) {          if (lstInstruments) {
3363                int iInstrumentIndex = 0;
3364              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3365              while (lstInstr) {              while (lstInstr) {
3366                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3367                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3368                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3369                        __notify_progress(pProgress, localProgress);
3370    
3371                        // divide local progress into subprogress for loading current Instrument
3372                        progress_t subprogress;
3373                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3374    
3375                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3376    
3377                        iInstrumentIndex++;
3378                  }                  }
3379                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3380              }              }
3381                __notify_progress(pProgress, 1.0); // notify done
3382            }
3383        }
3384    
3385        /// Updates the 3crc chunk with the checksum of a sample. The
3386        /// update is done directly to disk, as this method is called
3387        /// after File::Save()
3388        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3389            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3390            if (!_3crc) return;
3391    
3392            // get the index of the sample
3393            int iWaveIndex = -1;
3394            File::SampleList::iterator iter = pSamples->begin();
3395            File::SampleList::iterator end  = pSamples->end();
3396            for (int index = 0; iter != end; ++iter, ++index) {
3397                if (*iter == pSample) {
3398                    iWaveIndex = index;
3399                    break;
3400                }
3401            }
3402            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3403    
3404            // write the CRC-32 checksum to disk
3405            _3crc->SetPos(iWaveIndex * 8);
3406            uint32_t tmp = 1;
3407            _3crc->WriteUint32(&tmp); // unknown, always 1?
3408            _3crc->WriteUint32(&crc);
3409        }
3410    
3411        Group* File::GetFirstGroup() {
3412            if (!pGroups) LoadGroups();
3413            // there must always be at least one group
3414            GroupsIterator = pGroups->begin();
3415            return *GroupsIterator;
3416        }
3417    
3418        Group* File::GetNextGroup() {
3419            if (!pGroups) return NULL;
3420            ++GroupsIterator;
3421            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3422        }
3423    
3424        /**
3425         * Returns the group with the given index.
3426         *
3427         * @param index - number of the sought group (0..n)
3428         * @returns sought group or NULL if there's no such group
3429         */
3430        Group* File::GetGroup(uint index) {
3431            if (!pGroups) LoadGroups();
3432            GroupsIterator = pGroups->begin();
3433            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3434                if (i == index) return *GroupsIterator;
3435                ++GroupsIterator;
3436            }
3437            return NULL;
3438        }
3439    
3440        Group* File::AddGroup() {
3441            if (!pGroups) LoadGroups();
3442            // there must always be at least one group
3443            __ensureMandatoryChunksExist();
3444            Group* pGroup = new Group(this, NULL);
3445            pGroups->push_back(pGroup);
3446            return pGroup;
3447        }
3448    
3449        /** @brief Delete a group and its samples.
3450         *
3451         * This will delete the given Group object and all the samples that
3452         * belong to this group from the gig file. You have to call Save() to
3453         * make this persistent to the file.
3454         *
3455         * @param pGroup - group to delete
3456         * @throws gig::Exception if given group could not be found
3457         */
3458        void File::DeleteGroup(Group* pGroup) {
3459            if (!pGroups) LoadGroups();
3460            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3461            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3462            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3463            // delete all members of this group
3464            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3465                DeleteSample(pSample);
3466            }
3467            // now delete this group object
3468            pGroups->erase(iter);
3469            delete pGroup;
3470        }
3471    
3472        /** @brief Delete a group.
3473         *
3474         * This will delete the given Group object from the gig file. All the
3475         * samples that belong to this group will not be deleted, but instead
3476         * be moved to another group. You have to call Save() to make this
3477         * persistent to the file.
3478         *
3479         * @param pGroup - group to delete
3480         * @throws gig::Exception if given group could not be found
3481         */
3482        void File::DeleteGroupOnly(Group* pGroup) {
3483            if (!pGroups) LoadGroups();
3484            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3485            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3486            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3487            // move all members of this group to another group
3488            pGroup->MoveAll();
3489            pGroups->erase(iter);
3490            delete pGroup;
3491        }
3492    
3493        void File::LoadGroups() {
3494            if (!pGroups) pGroups = new std::list<Group*>;
3495            // try to read defined groups from file
3496            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3497            if (lst3gri) {
3498                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3499                if (lst3gnl) {
3500                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3501                    while (ck) {
3502                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3503                            if (pVersion && pVersion->major == 3 &&
3504                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3505    
3506                            pGroups->push_back(new Group(this, ck));
3507                        }
3508                        ck = lst3gnl->GetNextSubChunk();
3509                    }
3510                }
3511            }
3512            // if there were no group(s), create at least the mandatory default group
3513            if (!pGroups->size()) {
3514                Group* pGroup = new Group(this, NULL);
3515                pGroup->Name = "Default Group";
3516                pGroups->push_back(pGroup);
3517            }
3518        }
3519    
3520        /**
3521         * Apply all the gig file's current instruments, samples, groups and settings
3522         * to the respective RIFF chunks. You have to call Save() to make changes
3523         * persistent.
3524         *
3525         * Usually there is absolutely no need to call this method explicitly.
3526         * It will be called automatically when File::Save() was called.
3527         *
3528         * @throws Exception - on errors
3529         */
3530        void File::UpdateChunks() {
3531            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3532    
3533            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3534    
3535            // first update base class's chunks
3536            DLS::File::UpdateChunks();
3537    
3538            if (newFile) {
3539                // INFO was added by Resource::UpdateChunks - make sure it
3540                // is placed first in file
3541                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3542                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3543                if (first != info) {
3544                    pRIFF->MoveSubChunk(info, first);
3545                }
3546            }
3547    
3548            // update group's chunks
3549            if (pGroups) {
3550                std::list<Group*>::iterator iter = pGroups->begin();
3551                std::list<Group*>::iterator end  = pGroups->end();
3552                for (; iter != end; ++iter) {
3553                    (*iter)->UpdateChunks();
3554                }
3555    
3556                // v3: make sure the file has 128 3gnm chunks
3557                if (pVersion && pVersion->major == 3) {
3558                    RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3559                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3560                    for (int i = 0 ; i < 128 ; i++) {
3561                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3562                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3563                    }
3564                }
3565            }
3566    
3567            // update einf chunk
3568    
3569            // The einf chunk contains statistics about the gig file, such
3570            // as the number of regions and samples used by each
3571            // instrument. It is divided in equally sized parts, where the
3572            // first part contains information about the whole gig file,
3573            // and the rest of the parts map to each instrument in the
3574            // file.
3575            //
3576            // At the end of each part there is a bit map of each sample
3577            // in the file, where a set bit means that the sample is used
3578            // by the file/instrument.
3579            //
3580            // Note that there are several fields with unknown use. These
3581            // are set to zero.
3582    
3583            int sublen = pSamples->size() / 8 + 49;
3584            int einfSize = (Instruments + 1) * sublen;
3585    
3586            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3587            if (einf) {
3588                if (einf->GetSize() != einfSize) {
3589                    einf->Resize(einfSize);
3590                    memset(einf->LoadChunkData(), 0, einfSize);
3591                }
3592            } else if (newFile) {
3593                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3594            }
3595            if (einf) {
3596                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3597    
3598                std::map<gig::Sample*,int> sampleMap;
3599                int sampleIdx = 0;
3600                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3601                    sampleMap[pSample] = sampleIdx++;
3602                }
3603    
3604                int totnbusedsamples = 0;
3605                int totnbusedchannels = 0;
3606                int totnbregions = 0;
3607                int totnbdimregions = 0;
3608                int totnbloops = 0;
3609                int instrumentIdx = 0;
3610    
3611                memset(&pData[48], 0, sublen - 48);
3612    
3613                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3614                     instrument = GetNextInstrument()) {
3615                    int nbusedsamples = 0;
3616                    int nbusedchannels = 0;
3617                    int nbdimregions = 0;
3618                    int nbloops = 0;
3619    
3620                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3621    
3622                    for (Region* region = instrument->GetFirstRegion() ; region ;
3623                         region = instrument->GetNextRegion()) {
3624                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3625                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3626                            if (d->pSample) {
3627                                int sampleIdx = sampleMap[d->pSample];
3628                                int byte = 48 + sampleIdx / 8;
3629                                int bit = 1 << (sampleIdx & 7);
3630                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3631                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3632                                    nbusedsamples++;
3633                                    nbusedchannels += d->pSample->Channels;
3634    
3635                                    if ((pData[byte] & bit) == 0) {
3636                                        pData[byte] |= bit;
3637                                        totnbusedsamples++;
3638                                        totnbusedchannels += d->pSample->Channels;
3639                                    }
3640                                }
3641                            }
3642                            if (d->SampleLoops) nbloops++;
3643                        }
3644                        nbdimregions += region->DimensionRegions;
3645                    }
3646                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3647                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3648                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3649                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3650                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3651                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3652                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3653                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3654                    // next 8 bytes unknown
3655                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3656                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3657                    // next 4 bytes unknown
3658    
3659                    totnbregions += instrument->Regions;
3660                    totnbdimregions += nbdimregions;
3661                    totnbloops += nbloops;
3662                    instrumentIdx++;
3663                }
3664                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3665                // store32(&pData[0], sublen);
3666                store32(&pData[4], totnbusedchannels);
3667                store32(&pData[8], totnbusedsamples);
3668                store32(&pData[12], Instruments);
3669                store32(&pData[16], totnbregions);
3670                store32(&pData[20], totnbdimregions);
3671                store32(&pData[24], totnbloops);
3672                // next 8 bytes unknown
3673                // next 4 bytes unknown, not always 0
3674                store32(&pData[40], pSamples->size());
3675                // next 4 bytes unknown
3676            }
3677    
3678            // update 3crc chunk
3679    
3680            // The 3crc chunk contains CRC-32 checksums for the
3681            // samples. The actual checksum values will be filled in
3682            // later, by Sample::Write.
3683    
3684            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3685            if (_3crc) {
3686                _3crc->Resize(pSamples->size() * 8);
3687            } else if (newFile) {
3688                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3689                _3crc->LoadChunkData();
3690    
3691                // the order of einf and 3crc is not the same in v2 and v3
3692                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3693          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
3694      }      }
3695    
3696    
# Line 1414  namespace gig { Line 3705  namespace gig {
3705          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
3706      }      }
3707    
3708    
3709    // *************** functions ***************
3710    // *
3711    
3712        /**
3713         * Returns the name of this C++ library. This is usually "libgig" of
3714         * course. This call is equivalent to RIFF::libraryName() and
3715         * DLS::libraryName().
3716         */
3717        String libraryName() {
3718            return PACKAGE;
3719        }
3720    
3721        /**
3722         * Returns version of this C++ library. This call is equivalent to
3723         * RIFF::libraryVersion() and DLS::libraryVersion().
3724         */
3725        String libraryVersion() {
3726            return VERSION;
3727        }
3728    
3729  } // namespace gig  } // namespace gig

Legend:
Removed from v.241  
changed lines
  Added in v.1335

  ViewVC Help
Powered by ViewVC