/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 350 by schoenebeck, Tue Jan 25 21:54:24 2005 UTC revision 2543 by schoenebeck, Sat May 10 02:06:58 2014 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2014 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    
32    /// Initial size of the sample buffer which is used for decompression of
33    /// compressed sample wave streams - this value should always be bigger than
34    /// the biggest sample piece expected to be read by the sampler engine,
35    /// otherwise the buffer size will be raised at runtime and thus the buffer
36    /// reallocated which is time consuming and unefficient.
37    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
38    
39    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
41    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
42    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
43    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
44    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
45    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
46    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
47    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
48    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
50    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
51    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
52    
53  namespace gig {  namespace gig {
54    
55    // *************** progress_t ***************
56    // *
57    
58        progress_t::progress_t() {
59            callback    = NULL;
60            custom      = NULL;
61            __range_min = 0.0f;
62            __range_max = 1.0f;
63        }
64    
65        // private helper function to convert progress of a subprocess into the global progress
66        static void __notify_progress(progress_t* pProgress, float subprogress) {
67            if (pProgress && pProgress->callback) {
68                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
69                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70                pProgress->factor         = totalprogress;
71                pProgress->callback(pProgress); // now actually notify about the progress
72            }
73        }
74    
75        // private helper function to divide a progress into subprogresses
76        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77            if (pParentProgress && pParentProgress->callback) {
78                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
79                pSubProgress->callback    = pParentProgress->callback;
80                pSubProgress->custom      = pParentProgress->custom;
81                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83            }
84        }
85    
86    
87    // *************** Internal functions for sample decompression ***************
88    // *
89    
90    namespace {
91    
92        inline int get12lo(const unsigned char* pSrc)
93        {
94            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95            return x & 0x800 ? x - 0x1000 : x;
96        }
97    
98        inline int get12hi(const unsigned char* pSrc)
99        {
100            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101            return x & 0x800 ? x - 0x1000 : x;
102        }
103    
104        inline int16_t get16(const unsigned char* pSrc)
105        {
106            return int16_t(pSrc[0] | pSrc[1] << 8);
107        }
108    
109        inline int get24(const unsigned char* pSrc)
110        {
111            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112            return x & 0x800000 ? x - 0x1000000 : x;
113        }
114    
115        inline void store24(unsigned char* pDst, int x)
116        {
117            pDst[0] = x;
118            pDst[1] = x >> 8;
119            pDst[2] = x >> 16;
120        }
121    
122        void Decompress16(int compressionmode, const unsigned char* params,
123                          int srcStep, int dstStep,
124                          const unsigned char* pSrc, int16_t* pDst,
125                          unsigned long currentframeoffset,
126                          unsigned long copysamples)
127        {
128            switch (compressionmode) {
129                case 0: // 16 bit uncompressed
130                    pSrc += currentframeoffset * srcStep;
131                    while (copysamples) {
132                        *pDst = get16(pSrc);
133                        pDst += dstStep;
134                        pSrc += srcStep;
135                        copysamples--;
136                    }
137                    break;
138    
139                case 1: // 16 bit compressed to 8 bit
140                    int y  = get16(params);
141                    int dy = get16(params + 2);
142                    while (currentframeoffset) {
143                        dy -= int8_t(*pSrc);
144                        y  -= dy;
145                        pSrc += srcStep;
146                        currentframeoffset--;
147                    }
148                    while (copysamples) {
149                        dy -= int8_t(*pSrc);
150                        y  -= dy;
151                        *pDst = y;
152                        pDst += dstStep;
153                        pSrc += srcStep;
154                        copysamples--;
155                    }
156                    break;
157            }
158        }
159    
160        void Decompress24(int compressionmode, const unsigned char* params,
161                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162                          unsigned long currentframeoffset,
163                          unsigned long copysamples, int truncatedBits)
164        {
165            int y, dy, ddy, dddy;
166    
167    #define GET_PARAMS(params)                      \
168            y    = get24(params);                   \
169            dy   = y - get24((params) + 3);         \
170            ddy  = get24((params) + 6);             \
171            dddy = get24((params) + 9)
172    
173    #define SKIP_ONE(x)                             \
174            dddy -= (x);                            \
175            ddy  -= dddy;                           \
176            dy   =  -dy - ddy;                      \
177            y    += dy
178    
179    #define COPY_ONE(x)                             \
180            SKIP_ONE(x);                            \
181            store24(pDst, y << truncatedBits);      \
182            pDst += dstStep
183    
184            switch (compressionmode) {
185                case 2: // 24 bit uncompressed
186                    pSrc += currentframeoffset * 3;
187                    while (copysamples) {
188                        store24(pDst, get24(pSrc) << truncatedBits);
189                        pDst += dstStep;
190                        pSrc += 3;
191                        copysamples--;
192                    }
193                    break;
194    
195                case 3: // 24 bit compressed to 16 bit
196                    GET_PARAMS(params);
197                    while (currentframeoffset) {
198                        SKIP_ONE(get16(pSrc));
199                        pSrc += 2;
200                        currentframeoffset--;
201                    }
202                    while (copysamples) {
203                        COPY_ONE(get16(pSrc));
204                        pSrc += 2;
205                        copysamples--;
206                    }
207                    break;
208    
209                case 4: // 24 bit compressed to 12 bit
210                    GET_PARAMS(params);
211                    while (currentframeoffset > 1) {
212                        SKIP_ONE(get12lo(pSrc));
213                        SKIP_ONE(get12hi(pSrc));
214                        pSrc += 3;
215                        currentframeoffset -= 2;
216                    }
217                    if (currentframeoffset) {
218                        SKIP_ONE(get12lo(pSrc));
219                        currentframeoffset--;
220                        if (copysamples) {
221                            COPY_ONE(get12hi(pSrc));
222                            pSrc += 3;
223                            copysamples--;
224                        }
225                    }
226                    while (copysamples > 1) {
227                        COPY_ONE(get12lo(pSrc));
228                        COPY_ONE(get12hi(pSrc));
229                        pSrc += 3;
230                        copysamples -= 2;
231                    }
232                    if (copysamples) {
233                        COPY_ONE(get12lo(pSrc));
234                    }
235                    break;
236    
237                case 5: // 24 bit compressed to 8 bit
238                    GET_PARAMS(params);
239                    while (currentframeoffset) {
240                        SKIP_ONE(int8_t(*pSrc++));
241                        currentframeoffset--;
242                    }
243                    while (copysamples) {
244                        COPY_ONE(int8_t(*pSrc++));
245                        copysamples--;
246                    }
247                    break;
248            }
249        }
250    
251        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
252        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
254        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
255    }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
348      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
349      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
350    
351      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
352         *
353         * Load an existing sample or create a new one. A 'wave' list chunk must
354         * be given to this constructor. In case the given 'wave' list chunk
355         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356         * format and sample data will be loaded from there, otherwise default
357         * values will be used and those chunks will be created when
358         * File::Save() will be called later on.
359         *
360         * @param pFile          - pointer to gig::File where this sample is
361         *                         located (or will be located)
362         * @param waveList       - pointer to 'wave' list chunk which is (or
363         *                         will be) associated with this sample
364         * @param WavePoolOffset - offset of this sample data from wave pool
365         *                         ('wvpl') list chunk
366         * @param fileNo         - number of an extension file where this sample
367         *                         is located, 0 otherwise
368         */
369        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370            static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376            FileNo = fileNo;
377    
378            __resetCRC(crc);
379    
380            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381            if (pCk3gix) {
382                uint16_t iSampleGroup = pCk3gix->ReadInt16();
383                pGroup = pFile->GetGroup(iSampleGroup);
384            } else { // '3gix' chunk missing
385                // by default assigned to that mandatory "Default Group"
386                pGroup = pFile->GetGroup(0);
387            }
388    
389          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
391          SampleGroup = _3gix->ReadInt16();              Manufacturer  = pCkSmpl->ReadInt32();
392                Product       = pCkSmpl->ReadInt32();
393          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              SamplePeriod  = pCkSmpl->ReadInt32();
394          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              MIDIUnityNote = pCkSmpl->ReadInt32();
395          Manufacturer      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
396          Product           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
397          SamplePeriod      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
398          MIDIUnityNote     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
399          FineTune          = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
400          smpl->Read(&SMPTEFormat, 1, 4);              LoopID        = pCkSmpl->ReadInt32();
401          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
402          Loops             = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
403          uint32_t manufByt = smpl->ReadInt32();              LoopEnd       = pCkSmpl->ReadInt32();
404          LoopID            = smpl->ReadInt32();              LoopFraction  = pCkSmpl->ReadInt32();
405          smpl->Read(&LoopType, 1, 4);              LoopPlayCount = pCkSmpl->ReadInt32();
406          LoopStart         = smpl->ReadInt32();          } else { // 'smpl' chunk missing
407          LoopEnd           = smpl->ReadInt32();              // use default values
408          LoopFraction      = smpl->ReadInt32();              Manufacturer  = 0;
409          LoopPlayCount     = smpl->ReadInt32();              Product       = 0;
410                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411                MIDIUnityNote = 60;
412                FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414                SMPTEOffset   = 0;
415                Loops         = 0;
416                LoopID        = 0;
417                LoopType      = loop_type_normal;
418                LoopStart     = 0;
419                LoopEnd       = 0;
420                LoopFraction  = 0;
421                LoopPlayCount = 0;
422            }
423    
424          FrameTable                 = NULL;          FrameTable                 = NULL;
425          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 427  namespace gig {
427          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
428          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
429    
430          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433            Compressed        = ewav;
434            Dithered          = false;
435            TruncatedBits     = 0;
436          if (Compressed) {          if (Compressed) {
437                uint32_t version = ewav->ReadInt32();
438                if (version == 3 && BitDepth == 24) {
439                    Dithered = ewav->ReadInt32();
440                    ewav->SetPos(Channels == 2 ? 84 : 64);
441                    TruncatedBits = ewav->ReadInt32();
442                }
443              ScanCompressedSample();              ScanCompressedSample();
444          }          }
445    
         if (BitDepth > 24)                throw gig::Exception("Only samples up to 24 bit supported");  
         if (Compressed && Channels == 1)  throw gig::Exception("Mono compressed samples not yet supported");  
         if (Compressed && BitDepth == 24) throw gig::Exception("24 bit compressed samples not yet supported");  
   
446          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447          if ((Compressed || BitDepth == 24) && !pDecompressionBuffer) {          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448              pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449              DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
450            }
451            FrameOffset = 0; // just for streaming compressed samples
452    
453            LoopSize = LoopEnd - LoopStart + 1;
454        }
455    
456        /**
457         * Make a (semi) deep copy of the Sample object given by @a orig (without
458         * the actual waveform data) and assign it to this object.
459         *
460         * Discussion: copying .gig samples is a bit tricky. It requires three
461         * steps:
462         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463         *    its new sample waveform data size.
464         * 2. Saving the file (done by File::Save()) so that it gains correct size
465         *    and layout for writing the actual wave form data directly to disc
466         *    in next step.
467         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468         *
469         * @param orig - original Sample object to be copied from
470         */
471        void Sample::CopyAssignMeta(const Sample* orig) {
472            // handle base classes
473            DLS::Sample::CopyAssignCore(orig);
474            
475            // handle actual own attributes of this class
476            Manufacturer = orig->Manufacturer;
477            Product = orig->Product;
478            SamplePeriod = orig->SamplePeriod;
479            MIDIUnityNote = orig->MIDIUnityNote;
480            FineTune = orig->FineTune;
481            SMPTEFormat = orig->SMPTEFormat;
482            SMPTEOffset = orig->SMPTEOffset;
483            Loops = orig->Loops;
484            LoopID = orig->LoopID;
485            LoopType = orig->LoopType;
486            LoopStart = orig->LoopStart;
487            LoopEnd = orig->LoopEnd;
488            LoopSize = orig->LoopSize;
489            LoopFraction = orig->LoopFraction;
490            LoopPlayCount = orig->LoopPlayCount;
491            
492            // schedule resizing this sample to the given sample's size
493            Resize(orig->GetSize());
494        }
495    
496        /**
497         * Should be called after CopyAssignMeta() and File::Save() sequence.
498         * Read more about it in the discussion of CopyAssignMeta(). This method
499         * copies the actual waveform data by disk streaming.
500         *
501         * @e CAUTION: this method is currently not thread safe! During this
502         * operation the sample must not be used for other purposes by other
503         * threads!
504         *
505         * @param orig - original Sample object to be copied from
506         */
507        void Sample::CopyAssignWave(const Sample* orig) {
508            const int iReadAtOnce = 32*1024;
509            char* buf = new char[iReadAtOnce * orig->FrameSize];
510            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511            unsigned long restorePos = pOrig->GetPos();
512            pOrig->SetPos(0);
513            SetPos(0);
514            for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515                               n = pOrig->Read(buf, iReadAtOnce))
516            {
517                Write(buf, n);
518          }          }
519          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
520            delete [] buf;
521        }
522    
523          LoopSize = LoopEnd - LoopStart;      /**
524         * Apply sample and its settings to the respective RIFF chunks. You have
525         * to call File::Save() to make changes persistent.
526         *
527         * Usually there is absolutely no need to call this method explicitly.
528         * It will be called automatically when File::Save() was called.
529         *
530         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531         *                        was provided yet
532         * @throws gig::Exception if there is any invalid sample setting
533         */
534        void Sample::UpdateChunks() {
535            // first update base class's chunks
536            DLS::Sample::UpdateChunks();
537    
538            // make sure 'smpl' chunk exists
539            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540            if (!pCkSmpl) {
541                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542                memset(pCkSmpl->LoadChunkData(), 0, 60);
543            }
544            // update 'smpl' chunk
545            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547            store32(&pData[0], Manufacturer);
548            store32(&pData[4], Product);
549            store32(&pData[8], SamplePeriod);
550            store32(&pData[12], MIDIUnityNote);
551            store32(&pData[16], FineTune);
552            store32(&pData[20], SMPTEFormat);
553            store32(&pData[24], SMPTEOffset);
554            store32(&pData[28], Loops);
555    
556            // we skip 'manufByt' for now (4 bytes)
557    
558            store32(&pData[36], LoopID);
559            store32(&pData[40], LoopType);
560            store32(&pData[44], LoopStart);
561            store32(&pData[48], LoopEnd);
562            store32(&pData[52], LoopFraction);
563            store32(&pData[56], LoopPlayCount);
564    
565            // make sure '3gix' chunk exists
566            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568            // determine appropriate sample group index (to be stored in chunk)
569            uint16_t iSampleGroup = 0; // 0 refers to default sample group
570            File* pFile = static_cast<File*>(pParent);
571            if (pFile->pGroups) {
572                std::list<Group*>::iterator iter = pFile->pGroups->begin();
573                std::list<Group*>::iterator end  = pFile->pGroups->end();
574                for (int i = 0; iter != end; i++, iter++) {
575                    if (*iter == pGroup) {
576                        iSampleGroup = i;
577                        break; // found
578                    }
579                }
580            }
581            // update '3gix' chunk
582            pData = (uint8_t*) pCk3gix->LoadChunkData();
583            store16(&pData[0], iSampleGroup);
584    
585            // if the library user toggled the "Compressed" attribute from true to
586            // false, then the EWAV chunk associated with compressed samples needs
587            // to be deleted
588            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
589            if (ewav && !Compressed) {
590                pWaveList->DeleteSubChunk(ewav);
591            }
592      }      }
593    
594      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 88  namespace gig { Line 597  namespace gig {
597          this->SamplesTotal = 0;          this->SamplesTotal = 0;
598          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
599    
600            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
601            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
602    
603          // Scanning          // Scanning
604          pCkData->SetPos(0);          pCkData->SetPos(0);
605          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
606              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
607              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
608              this->SamplesTotal += 2048;                  // stored, to save some memory
609              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
610                  case 1:   // left channel compressed  
611                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
612                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
613                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
614                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
615    
616                    if (pCkData->RemainingBytes() <= frameSize) {
617                        SamplesInLastFrame =
618                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
619                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
620                        SamplesTotal += SamplesInLastFrame;
621                      break;                      break;
622                  case 257: // both channels compressed                  }
623                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
624                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
625                }
626            }
627            else { // Mono
628                for (int i = 0 ; ; i++) {
629                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
630    
631                    const int mode = pCkData->ReadUint8();
632                    if (mode > 5) throw gig::Exception("Unknown compression mode");
633                    const unsigned long frameSize = bytesPerFrame[mode];
634    
635                    if (pCkData->RemainingBytes() <= frameSize) {
636                        SamplesInLastFrame =
637                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
638                        SamplesTotal += SamplesInLastFrame;
639                      break;                      break;
640                  default: // both channels uncompressed                  }
641                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
642                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
643              }              }
644          }          }
645          pCkData->SetPos(0);          pCkData->SetPos(0);
646    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
647          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
648          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
649          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 147  namespace gig { Line 679  namespace gig {
679       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
680       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
681       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
682       *       * @code
683       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
684       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
685         * @endcode
686       *       *
687       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
688       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 195  namespace gig { Line 728  namespace gig {
728       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
729       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
730       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
731       *       * @code
732       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
733       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
734       *       * @endcode
735       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
736       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
737       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 219  namespace gig { Line 752  namespace gig {
752          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
753          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
754          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
755            SetPos(0); // reset read position to begin of sample
756          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
757          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
758          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 256  namespace gig { Line 790  namespace gig {
790          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
791          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
792          RAMCache.Size   = 0;          RAMCache.Size   = 0;
793            RAMCache.NullExtensionSize = 0;
794        }
795    
796        /** @brief Resize sample.
797         *
798         * Resizes the sample's wave form data, that is the actual size of
799         * sample wave data possible to be written for this sample. This call
800         * will return immediately and just schedule the resize operation. You
801         * should call File::Save() to actually perform the resize operation(s)
802         * "physically" to the file. As this can take a while on large files, it
803         * is recommended to call Resize() first on all samples which have to be
804         * resized and finally to call File::Save() to perform all those resize
805         * operations in one rush.
806         *
807         * The actual size (in bytes) is dependant to the current FrameSize
808         * value. You may want to set FrameSize before calling Resize().
809         *
810         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
811         * enlarged samples before calling File::Save() as this might exceed the
812         * current sample's boundary!
813         *
814         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
815         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
816         * other formats will fail!
817         *
818         * @param iNewSize - new sample wave data size in sample points (must be
819         *                   greater than zero)
820         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
821         *                         or if \a iNewSize is less than 1
822         * @throws gig::Exception if existing sample is compressed
823         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
824         *      DLS::Sample::FormatTag, File::Save()
825         */
826        void Sample::Resize(int iNewSize) {
827            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
828            DLS::Sample::Resize(iNewSize);
829      }      }
830    
831      /**      /**
# Line 313  namespace gig { Line 883  namespace gig {
883      /**      /**
884       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
885       */       */
886      unsigned long Sample::GetPos() {      unsigned long Sample::GetPos() const {
887          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
888          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
889      }      }
# Line 329  namespace gig { Line 899  namespace gig {
899       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
900       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
901       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
902       *       * @code
903       * <i>       * gig::playback_state_t playbackstate;
904       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
905       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
906       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
907       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
908       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
909       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
910       * The method already handles such cases by itself.       * The method already handles such cases by itself.
911       *       *
912         * <b>Caution:</b> If you are using more than one streaming thread, you
913         * have to use an external decompression buffer for <b>EACH</b>
914         * streaming thread to avoid race conditions and crashes!
915         *
916       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
917       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
918       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
919       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
920         * @param pDimRgn          dimension region with looping information
921         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
922       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
923         * @see                    CreateDecompressionBuffer()
924       */       */
925      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
926                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
927          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
928          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
929    
930          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
931    
932          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
933    
934              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
935                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
936    
937                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
938                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
939    
940                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
941                              // determine the end position within the loop first,                          do {
942                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
943                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
944                              // backward playback  
945                                if (!pPlaybackState->reverse) { // forward playback
946                              unsigned long swapareastart       = totalreadsamples;                                  do {
947                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
948                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
949                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
950                                        totalreadsamples += readsamples;
951                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
952                                            pPlaybackState->reverse = true;
953                              // read samples for backward playback                                          break;
954                              do {                                      }
955                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
956                                  samplestoreadinloop -= readsamples;                              }
957                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
958    
959                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
960                                    // determine the end position within the loop first,
961                                    // read forward from that 'end' and finally after
962                                    // reading, swap all sample frames so it reflects
963                                    // backward playback
964    
965                                    unsigned long swapareastart       = totalreadsamples;
966                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
967                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
968                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
969    
970                                    SetPos(reverseplaybackend);
971    
972                                    // read samples for backward playback
973                                    do {
974                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
975                                        samplestoreadinloop -= readsamples;
976                                        samplestoread       -= readsamples;
977                                        totalreadsamples    += readsamples;
978                                    } while (samplestoreadinloop && readsamples);
979    
980                                    SetPos(reverseplaybackend); // pretend we really read backwards
981    
982                                    if (reverseplaybackend == loop.LoopStart) {
983                                        pPlaybackState->loop_cycles_left--;
984                                        pPlaybackState->reverse = false;
985                                    }
986    
987                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
988                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
989                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
990                              }                              }
991                            } while (samplestoread && readsamples);
992                            break;
993                        }
994    
995                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
996                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
997                          }                          if (!pPlaybackState->reverse) do {
998                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
999                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1000                  }                              samplestoread    -= readsamples;
1001                                totalreadsamples += readsamples;
1002                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1003                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1004                      if (!pPlaybackState->reverse) do {                                  break;
1005                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1006                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1007    
1008                      if (!samplestoread) break;                          if (!samplestoread) break;
1009    
1010                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1011                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1012                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1013                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1014                      // backward playback                          // backward playback
1015    
1016                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
1017                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
1018                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1019                                                                                : samplestoread;                                                                                    : samplestoread;
1020                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1021    
1022                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1023    
1024                      // read samples for backward playback                          // read samples for backward playback
1025                      do {                          do {
1026                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1027                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1028                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1029                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1030                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1031                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1032                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1033                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1034                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1035                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1036                          }                              }
1037                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1038    
1039                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1040    
1041                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1042                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1043                      break;                          break;
1044                  }                      }
1045    
1046                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1047                      do {                          do {
1048                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1049                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1050                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1051                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1052                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1053                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1054                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1055                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1056                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1057                          }                              }
1058                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1059                      break;                          break;
1060                        }
1061                  }                  }
1062              }              }
1063          }          }
1064    
1065          // read on without looping          // read on without looping
1066          if (samplestoread) do {          if (samplestoread) do {
1067              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1068              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1069              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1070          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 501  namespace gig { Line 1083  namespace gig {
1083       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1084       * thus for disk streaming.       * thus for disk streaming.
1085       *       *
1086         * <b>Caution:</b> If you are using more than one streaming thread, you
1087         * have to use an external decompression buffer for <b>EACH</b>
1088         * streaming thread to avoid race conditions and crashes!
1089         *
1090         * For 16 bit samples, the data in the buffer will be int16_t
1091         * (using native endianness). For 24 bit, the buffer will
1092         * contain three bytes per sample, little-endian.
1093         *
1094       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1095       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1096         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1097       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1098       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1099       */       */
1100      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1101          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1102          if (!Compressed) {          if (!Compressed) {
1103              if (BitDepth == 24) {              if (BitDepth == 24) {
1104                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1105                  int8_t* pSrc = (int8_t*)this->pDecompressionBuffer;              }
1106                  int8_t* pDst = (int8_t*)pBuffer;              else { // 16 bit
1107                  unsigned long n = pCkData->Read(pSrc, SampleCount, FrameSize);                  // (pCkData->Read does endian correction)
1108                  for (int i = SampleCount * (FrameSize / 3) ; i > 0 ; i--) {                  return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1109                      pSrc++;                                       : pCkData->Read(pBuffer, SampleCount, 2);
                     *pDst++ = *pSrc++;  
                     *pDst++ = *pSrc++;  
                 }  
                 return SampleCount;  
             } else {  
                 return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?  
1110              }              }
1111          }          }
1112          else { //FIXME: no support for mono compressed samples yet, are there any?          else {
1113              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1114              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1115              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1116                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1117                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1118                            copysamples;                            copysamples, skipsamples,
1119              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1120              this->FrameOffset = 0;              this->FrameOffset = 0;
1121    
1122              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1123                  // local buffer reallocation - hope this won't happen  
1124                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1125                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1126                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1127                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1128                    remainingsamples = SampleCount;
1129                    assumedsize      = GuessSize(SampleCount);
1130              }              }
1131    
1132              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1133              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1134              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1135              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1136    
1137              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1138                    unsigned long framesamples = SamplesPerFrame;
1139                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1140                  if (remainingbytes < 8194) {  
1141                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1142                          this->SamplePos = this->SamplesTotal;  
1143                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1144                      }                      mode_r = *pSrc++;
1145                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1146                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1147                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1148                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1149                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1150                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1151                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1152                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1153                            else {
1154                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1155                            }
1156                        }
1157                    }
1158                    else {
1159                        framebytes = bytesPerFrame[mode_l] + 1;
1160                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1161                        if (remainingbytes < framebytes) {
1162                            framesamples = SamplesInLastFrame;
1163                        }
1164                  }                  }
1165    
1166                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1167                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1168                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1169                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1170                            skipsamples = currentframeoffset;
1171                        }
1172                        else {
1173                            copysamples = 0;
1174                            skipsamples = framesamples;
1175                        }
1176                  }                  }
1177                  else {                  else {
1178                        // This frame has enough data for pBuffer, but not
1179                        // all of the frame is needed. Set file position
1180                        // to start of this frame for next call to Read.
1181                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1182                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1183                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1185                      }                  }
1186                      else {                  remainingsamples -= copysamples;
1187    
1188                    if (remainingbytes > framebytes) {
1189                        remainingbytes -= framebytes;
1190                        if (remainingsamples == 0 &&
1191                            currentframeoffset + copysamples == framesamples) {
1192                            // This frame has enough data for pBuffer, and
1193                            // all of the frame is needed. Set file
1194                            // position to start of next frame for next
1195                            // call to Read. FrameOffset is 0.
1196                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1197                      }                      }
1198                  }                  }
1199                    else remainingbytes = 0;
1200    
1201                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1202                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1203                  switch (compressionmode) {                  if (copysamples == 0) {
1204                      case 1: // left channel compressed                      // skip this frame
1205                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1206                          if (!remainingsamples && copysamples == 2048)                  }
1207                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1208                        const unsigned char* const param_l = pSrc;
1209                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1210                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1211                          while (currentframeoffset) {  
1212                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1213                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1214                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1215                              currentframeoffset--;  
1216                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1217                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1218                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1219                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1220                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1221                          }                          }
1222                          while (copysamples) {                          else { // Mono
1223                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1224                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1225                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1226                          }                          }
1227                          break;                      }
1228                      case 257: // both channels compressed                      else { // 16 bit
1229                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1230                          if (!remainingsamples && copysamples == 2048)  
1231                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1232                            if (Channels == 2) { // Stereo
1233                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1234                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1235                          right  = *(int16_t*)pSrc; pSrc+=2;  
1236                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1237                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1238                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1239                              left   -= dleft;                                           skipsamples, copysamples);
1240                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1241                          }                          }
1242                          while (copysamples) {                          else { // Mono
1243                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1244                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1245                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1246                          }                          }
1247                          break;                      }
1248                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1249                  }                  }
1250              }  
1251                    // reload from disk to local buffer if needed
1252                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1253                        assumedsize    = GuessSize(remainingsamples);
1254                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1255                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1256                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1257                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1258                    }
1259                } // while
1260    
1261              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1262              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1263              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1264          }          }
1265      }      }
1266    
1267        /** @brief Write sample wave data.
1268         *
1269         * Writes \a SampleCount number of sample points from the buffer pointed
1270         * by \a pBuffer and increments the position within the sample. Use this
1271         * method to directly write the sample data to disk, i.e. if you don't
1272         * want or cannot load the whole sample data into RAM.
1273         *
1274         * You have to Resize() the sample to the desired size and call
1275         * File::Save() <b>before</b> using Write().
1276         *
1277         * Note: there is currently no support for writing compressed samples.
1278         *
1279         * For 16 bit samples, the data in the source buffer should be
1280         * int16_t (using native endianness). For 24 bit, the buffer
1281         * should contain three bytes per sample, little-endian.
1282         *
1283         * @param pBuffer     - source buffer
1284         * @param SampleCount - number of sample points to write
1285         * @throws DLS::Exception if current sample size is too small
1286         * @throws gig::Exception if sample is compressed
1287         * @see DLS::LoadSampleData()
1288         */
1289        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1290            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1291    
1292            // if this is the first write in this sample, reset the
1293            // checksum calculator
1294            if (pCkData->GetPos() == 0) {
1295                __resetCRC(crc);
1296            }
1297            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1298            unsigned long res;
1299            if (BitDepth == 24) {
1300                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1301            } else { // 16 bit
1302                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1303                                    : pCkData->Write(pBuffer, SampleCount, 2);
1304            }
1305            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1306    
1307            // if this is the last write, update the checksum chunk in the
1308            // file
1309            if (pCkData->GetPos() == pCkData->GetSize()) {
1310                File* pFile = static_cast<File*>(GetParent());
1311                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1312            }
1313            return res;
1314        }
1315    
1316        /**
1317         * Allocates a decompression buffer for streaming (compressed) samples
1318         * with Sample::Read(). If you are using more than one streaming thread
1319         * in your application you <b>HAVE</b> to create a decompression buffer
1320         * for <b>EACH</b> of your streaming threads and provide it with the
1321         * Sample::Read() call in order to avoid race conditions and crashes.
1322         *
1323         * You should free the memory occupied by the allocated buffer(s) once
1324         * you don't need one of your streaming threads anymore by calling
1325         * DestroyDecompressionBuffer().
1326         *
1327         * @param MaxReadSize - the maximum size (in sample points) you ever
1328         *                      expect to read with one Read() call
1329         * @returns allocated decompression buffer
1330         * @see DestroyDecompressionBuffer()
1331         */
1332        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1333            buffer_t result;
1334            const double worstCaseHeaderOverhead =
1335                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1336            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1337            result.pStart            = new int8_t[result.Size];
1338            result.NullExtensionSize = 0;
1339            return result;
1340        }
1341    
1342        /**
1343         * Free decompression buffer, previously created with
1344         * CreateDecompressionBuffer().
1345         *
1346         * @param DecompressionBuffer - previously allocated decompression
1347         *                              buffer to free
1348         */
1349        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1350            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1351                delete[] (int8_t*) DecompressionBuffer.pStart;
1352                DecompressionBuffer.pStart = NULL;
1353                DecompressionBuffer.Size   = 0;
1354                DecompressionBuffer.NullExtensionSize = 0;
1355            }
1356        }
1357    
1358        /**
1359         * Returns pointer to the Group this Sample belongs to. In the .gig
1360         * format a sample always belongs to one group. If it wasn't explicitly
1361         * assigned to a certain group, it will be automatically assigned to a
1362         * default group.
1363         *
1364         * @returns Sample's Group (never NULL)
1365         */
1366        Group* Sample::GetGroup() const {
1367            return pGroup;
1368        }
1369    
1370      Sample::~Sample() {      Sample::~Sample() {
1371          Instances--;          Instances--;
1372          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1373                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1374                InternalDecompressionBuffer.pStart = NULL;
1375                InternalDecompressionBuffer.Size   = 0;
1376            }
1377          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1378          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1379      }      }
# Line 694  namespace gig { Line 1386  namespace gig {
1386      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1387      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1388    
1389      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1390          Instances++;          Instances++;
1391    
1392          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1393            pRegion = pParent;
1394    
1395            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1396            else memset(&Crossfade, 0, 4);
1397    
1398          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1399    
1400          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1401          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1402          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1403          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1404          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1406          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1407          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1408          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1409          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1410          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1411          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1412          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1413          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1414          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1416          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1417          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1418          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1420          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1421          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1422          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1423          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1424          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1425          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1426          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1427          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1428          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1429          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1430          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1434          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1435          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1436          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1437          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1438          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1439          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1440          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1441          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1442          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1443          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1444          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1445          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1446          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1447          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1448          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1449          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1450          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1451          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1452              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1453              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1454          }                  VelocityResponseDepth = velocityresponse;
1455          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1456              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1457              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1458          }              } else if (velocityresponse < 15) {
1459          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1460              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1461              VelocityResponseDepth = velocityresponse - 10;              } else {
1462                    VelocityResponseCurve = curve_type_unknown;
1463                    VelocityResponseDepth = 0;
1464                }
1465                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1466                if (releasevelocityresponse < 5) {
1467                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1469                } else if (releasevelocityresponse < 10) {
1470                    ReleaseVelocityResponseCurve = curve_type_linear;
1471                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1472                } else if (releasevelocityresponse < 15) {
1473                    ReleaseVelocityResponseCurve = curve_type_special;
1474                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1475                } else {
1476                    ReleaseVelocityResponseCurve = curve_type_unknown;
1477                    ReleaseVelocityResponseDepth = 0;
1478                }
1479                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1480                AttenuationControllerThreshold = _3ewa->ReadInt8();
1481                _3ewa->ReadInt32(); // unknown
1482                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1483                _3ewa->ReadInt16(); // unknown
1484                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1485                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1486                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1487                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1488                else                                       DimensionBypass = dim_bypass_ctrl_none;
1489                uint8_t pan = _3ewa->ReadUint8();
1490                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1491                SelfMask = _3ewa->ReadInt8() & 0x01;
1492                _3ewa->ReadInt8(); // unknown
1493                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1494                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1495                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1496                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1497                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1499                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1500                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1501                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1502                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1503                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1504                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1505                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1506                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1507                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1508                                                            : vcf_res_ctrl_none;
1509                uint16_t eg3depth = _3ewa->ReadUint16();
1510                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1511                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1512                _3ewa->ReadInt16(); // unknown
1513                ChannelOffset = _3ewa->ReadUint8() / 4;
1514                uint8_t regoptions = _3ewa->ReadUint8();
1515                MSDecode           = regoptions & 0x01; // bit 0
1516                SustainDefeat      = regoptions & 0x02; // bit 1
1517                _3ewa->ReadInt16(); // unknown
1518                VelocityUpperLimit = _3ewa->ReadInt8();
1519                _3ewa->ReadInt8(); // unknown
1520                _3ewa->ReadInt16(); // unknown
1521                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1522                _3ewa->ReadInt8(); // unknown
1523                _3ewa->ReadInt8(); // unknown
1524                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1525                uint8_t vcfcutoff = _3ewa->ReadUint8();
1526                VCFEnabled = vcfcutoff & 0x80; // bit 7
1527                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1528                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1529                uint8_t vcfvelscale = _3ewa->ReadUint8();
1530                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1531                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1532                _3ewa->ReadInt8(); // unknown
1533                uint8_t vcfresonance = _3ewa->ReadUint8();
1534                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1535                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1536                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1537                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1538                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1539                uint8_t vcfvelocity = _3ewa->ReadUint8();
1540                VCFVelocityDynamicRange = vcfvelocity % 5;
1541                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1542                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1543                if (VCFType == vcf_type_lowpass) {
1544                    if (lfo3ctrl & 0x40) // bit 6
1545                        VCFType = vcf_type_lowpassturbo;
1546                }
1547                if (_3ewa->RemainingBytes() >= 8) {
1548                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1549                } else {
1550                    memset(DimensionUpperLimits, 0, 8);
1551                }
1552            } else { // '3ewa' chunk does not exist yet
1553                // use default values
1554                LFO3Frequency                   = 1.0;
1555                EG3Attack                       = 0.0;
1556                LFO1InternalDepth               = 0;
1557                LFO3InternalDepth               = 0;
1558                LFO1ControlDepth                = 0;
1559                LFO3ControlDepth                = 0;
1560                EG1Attack                       = 0.0;
1561                EG1Decay1                       = 0.005;
1562                EG1Sustain                      = 1000;
1563                EG1Release                      = 0.3;
1564                EG1Controller.type              = eg1_ctrl_t::type_none;
1565                EG1Controller.controller_number = 0;
1566                EG1ControllerInvert             = false;
1567                EG1ControllerAttackInfluence    = 0;
1568                EG1ControllerDecayInfluence     = 0;
1569                EG1ControllerReleaseInfluence   = 0;
1570                EG2Controller.type              = eg2_ctrl_t::type_none;
1571                EG2Controller.controller_number = 0;
1572                EG2ControllerInvert             = false;
1573                EG2ControllerAttackInfluence    = 0;
1574                EG2ControllerDecayInfluence     = 0;
1575                EG2ControllerReleaseInfluence   = 0;
1576                LFO1Frequency                   = 1.0;
1577                EG2Attack                       = 0.0;
1578                EG2Decay1                       = 0.005;
1579                EG2Sustain                      = 1000;
1580                EG2Release                      = 0.3;
1581                LFO2ControlDepth                = 0;
1582                LFO2Frequency                   = 1.0;
1583                LFO2InternalDepth               = 0;
1584                EG1Decay2                       = 0.0;
1585                EG1InfiniteSustain              = true;
1586                EG1PreAttack                    = 0;
1587                EG2Decay2                       = 0.0;
1588                EG2InfiniteSustain              = true;
1589                EG2PreAttack                    = 0;
1590                VelocityResponseCurve           = curve_type_nonlinear;
1591                VelocityResponseDepth           = 3;
1592                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1593                ReleaseVelocityResponseDepth    = 3;
1594                VelocityResponseCurveScaling    = 32;
1595                AttenuationControllerThreshold  = 0;
1596                SampleStartOffset               = 0;
1597                PitchTrack                      = true;
1598                DimensionBypass                 = dim_bypass_ctrl_none;
1599                Pan                             = 0;
1600                SelfMask                        = true;
1601                LFO3Controller                  = lfo3_ctrl_modwheel;
1602                LFO3Sync                        = false;
1603                InvertAttenuationController     = false;
1604                AttenuationController.type      = attenuation_ctrl_t::type_none;
1605                AttenuationController.controller_number = 0;
1606                LFO2Controller                  = lfo2_ctrl_internal;
1607                LFO2FlipPhase                   = false;
1608                LFO2Sync                        = false;
1609                LFO1Controller                  = lfo1_ctrl_internal;
1610                LFO1FlipPhase                   = false;
1611                LFO1Sync                        = false;
1612                VCFResonanceController          = vcf_res_ctrl_none;
1613                EG3Depth                        = 0;
1614                ChannelOffset                   = 0;
1615                MSDecode                        = false;
1616                SustainDefeat                   = false;
1617                VelocityUpperLimit              = 0;
1618                ReleaseTriggerDecay             = 0;
1619                EG1Hold                         = false;
1620                VCFEnabled                      = false;
1621                VCFCutoff                       = 0;
1622                VCFCutoffController             = vcf_cutoff_ctrl_none;
1623                VCFCutoffControllerInvert       = false;
1624                VCFVelocityScale                = 0;
1625                VCFResonance                    = 0;
1626                VCFResonanceDynamic             = false;
1627                VCFKeyboardTracking             = false;
1628                VCFKeyboardTrackingBreakpoint   = 0;
1629                VCFVelocityDynamicRange         = 0x04;
1630                VCFVelocityCurve                = curve_type_linear;
1631                VCFType                         = vcf_type_lowpass;
1632                memset(DimensionUpperLimits, 127, 8);
1633          }          }
1634          else {  
1635              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1636              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1637                                                         VelocityResponseCurveScaling);
1638    
1639            pVelocityReleaseTable = GetReleaseVelocityTable(
1640                                        ReleaseVelocityResponseCurve,
1641                                        ReleaseVelocityResponseDepth
1642                                    );
1643    
1644            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1645                                                          VCFVelocityDynamicRange,
1646                                                          VCFVelocityScale,
1647                                                          VCFCutoffController);
1648    
1649            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1650            VelocityTable = 0;
1651        }
1652    
1653        /*
1654         * Constructs a DimensionRegion by copying all parameters from
1655         * another DimensionRegion
1656         */
1657        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1658            Instances++;
1659            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1660            *this = src; // default memberwise shallow copy of all parameters
1661            pParentList = _3ewl; // restore the chunk pointer
1662    
1663            // deep copy of owned structures
1664            if (src.VelocityTable) {
1665                VelocityTable = new uint8_t[128];
1666                for (int k = 0 ; k < 128 ; k++)
1667                    VelocityTable[k] = src.VelocityTable[k];
1668          }          }
1669          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1670          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1671              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1672              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1673          }          }
1674          else {      }
1675              ReleaseVelocityResponseCurve = curve_type_unknown;      
1676              ReleaseVelocityResponseDepth = 0;      /**
1677         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1678         * and assign it to this object.
1679         *
1680         * Note that all sample pointers referenced by @a orig are simply copied as
1681         * memory address. Thus the respective samples are shared, not duplicated!
1682         *
1683         * @param orig - original DimensionRegion object to be copied from
1684         */
1685        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1686            CopyAssign(orig, NULL);
1687        }
1688    
1689        /**
1690         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1691         * and assign it to this object.
1692         *
1693         * @param orig - original DimensionRegion object to be copied from
1694         * @param mSamples - crosslink map between the foreign file's samples and
1695         *                   this file's samples
1696         */
1697        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1698            // delete all allocated data first
1699            if (VelocityTable) delete [] VelocityTable;
1700            if (pSampleLoops) delete [] pSampleLoops;
1701            
1702            // backup parent list pointer
1703            RIFF::List* p = pParentList;
1704            
1705            gig::Sample* pOriginalSample = pSample;
1706            gig::Region* pOriginalRegion = pRegion;
1707            
1708            //NOTE: copy code copied from assignment constructor above, see comment there as well
1709            
1710            *this = *orig; // default memberwise shallow copy of all parameters
1711            pParentList = p; // restore the chunk pointer
1712            
1713            // only take the raw sample reference & parent region reference if the
1714            // two DimensionRegion objects are part of the same file
1715            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1716                pRegion = pOriginalRegion;
1717                pSample = pOriginalSample;
1718          }          }
1719          VelocityResponseCurveScaling = _3ewa->ReadUint8();          
1720          AttenuationControllerThreshold = _3ewa->ReadInt8();          if (mSamples && mSamples->count(orig->pSample)) {
1721          _3ewa->ReadInt32(); // unknown              pSample = mSamples->find(orig->pSample)->second;
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
1722          }          }
1723    
1724          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1725          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1726                VelocityTable = new uint8_t[128];
1727                for (int k = 0 ; k < 128 ; k++)
1728                    VelocityTable[k] = orig->VelocityTable[k];
1729            }
1730            if (orig->pSampleLoops) {
1731                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1732                for (int k = 0 ; k < orig->SampleLoops ; k++)
1733                    pSampleLoops[k] = orig->pSampleLoops[k];
1734            }
1735        }
1736    
1737        /**
1738         * Updates the respective member variable and updates @c SampleAttenuation
1739         * which depends on this value.
1740         */
1741        void DimensionRegion::SetGain(int32_t gain) {
1742            DLS::Sampler::SetGain(gain);
1743            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1744        }
1745    
1746        /**
1747         * Apply dimension region settings to the respective RIFF chunks. You
1748         * have to call File::Save() to make changes persistent.
1749         *
1750         * Usually there is absolutely no need to call this method explicitly.
1751         * It will be called automatically when File::Save() was called.
1752         */
1753        void DimensionRegion::UpdateChunks() {
1754            // first update base class's chunk
1755            DLS::Sampler::UpdateChunks();
1756    
1757            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1758            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1759            pData[12] = Crossfade.in_start;
1760            pData[13] = Crossfade.in_end;
1761            pData[14] = Crossfade.out_start;
1762            pData[15] = Crossfade.out_end;
1763    
1764            // make sure '3ewa' chunk exists
1765            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1766            if (!_3ewa) {
1767                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1768                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1769                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1770            }
1771            pData = (uint8_t*) _3ewa->LoadChunkData();
1772    
1773            // update '3ewa' chunk with DimensionRegion's current settings
1774    
1775            const uint32_t chunksize = _3ewa->GetNewSize();
1776            store32(&pData[0], chunksize); // unknown, always chunk size?
1777    
1778            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1779            store32(&pData[4], lfo3freq);
1780    
1781            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1782            store32(&pData[8], eg3attack);
1783    
1784            // next 2 bytes unknown
1785    
1786            store16(&pData[14], LFO1InternalDepth);
1787    
1788            // next 2 bytes unknown
1789    
1790            store16(&pData[18], LFO3InternalDepth);
1791    
1792            // next 2 bytes unknown
1793    
1794            store16(&pData[22], LFO1ControlDepth);
1795    
1796            // next 2 bytes unknown
1797    
1798            store16(&pData[26], LFO3ControlDepth);
1799    
1800            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1801            store32(&pData[28], eg1attack);
1802    
1803            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1804            store32(&pData[32], eg1decay1);
1805    
1806            // next 2 bytes unknown
1807    
1808            store16(&pData[38], EG1Sustain);
1809    
1810            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1811            store32(&pData[40], eg1release);
1812    
1813            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1814            pData[44] = eg1ctl;
1815    
1816            const uint8_t eg1ctrloptions =
1817                (EG1ControllerInvert ? 0x01 : 0x00) |
1818                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1819                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1820                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1821            pData[45] = eg1ctrloptions;
1822    
1823            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1824            pData[46] = eg2ctl;
1825    
1826            const uint8_t eg2ctrloptions =
1827                (EG2ControllerInvert ? 0x01 : 0x00) |
1828                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1829                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1830                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1831            pData[47] = eg2ctrloptions;
1832    
1833            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1834            store32(&pData[48], lfo1freq);
1835    
1836            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1837            store32(&pData[52], eg2attack);
1838    
1839            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1840            store32(&pData[56], eg2decay1);
1841    
1842            // next 2 bytes unknown
1843    
1844            store16(&pData[62], EG2Sustain);
1845    
1846            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1847            store32(&pData[64], eg2release);
1848    
1849            // next 2 bytes unknown
1850    
1851            store16(&pData[70], LFO2ControlDepth);
1852    
1853            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1854            store32(&pData[72], lfo2freq);
1855    
1856            // next 2 bytes unknown
1857    
1858            store16(&pData[78], LFO2InternalDepth);
1859    
1860            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1861            store32(&pData[80], eg1decay2);
1862    
1863            // next 2 bytes unknown
1864    
1865            store16(&pData[86], EG1PreAttack);
1866    
1867            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1868            store32(&pData[88], eg2decay2);
1869    
1870            // next 2 bytes unknown
1871    
1872            store16(&pData[94], EG2PreAttack);
1873    
1874            {
1875                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1876                uint8_t velocityresponse = VelocityResponseDepth;
1877                switch (VelocityResponseCurve) {
1878                    case curve_type_nonlinear:
1879                        break;
1880                    case curve_type_linear:
1881                        velocityresponse += 5;
1882                        break;
1883                    case curve_type_special:
1884                        velocityresponse += 10;
1885                        break;
1886                    case curve_type_unknown:
1887                    default:
1888                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1889                }
1890                pData[96] = velocityresponse;
1891            }
1892    
1893            {
1894                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1895                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1896                switch (ReleaseVelocityResponseCurve) {
1897                    case curve_type_nonlinear:
1898                        break;
1899                    case curve_type_linear:
1900                        releasevelocityresponse += 5;
1901                        break;
1902                    case curve_type_special:
1903                        releasevelocityresponse += 10;
1904                        break;
1905                    case curve_type_unknown:
1906                    default:
1907                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1908                }
1909                pData[97] = releasevelocityresponse;
1910            }
1911    
1912            pData[98] = VelocityResponseCurveScaling;
1913    
1914            pData[99] = AttenuationControllerThreshold;
1915    
1916            // next 4 bytes unknown
1917    
1918            store16(&pData[104], SampleStartOffset);
1919    
1920            // next 2 bytes unknown
1921    
1922            {
1923                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1924                switch (DimensionBypass) {
1925                    case dim_bypass_ctrl_94:
1926                        pitchTrackDimensionBypass |= 0x10;
1927                        break;
1928                    case dim_bypass_ctrl_95:
1929                        pitchTrackDimensionBypass |= 0x20;
1930                        break;
1931                    case dim_bypass_ctrl_none:
1932                        //FIXME: should we set anything here?
1933                        break;
1934                    default:
1935                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1936                }
1937                pData[108] = pitchTrackDimensionBypass;
1938            }
1939    
1940            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1941            pData[109] = pan;
1942    
1943            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1944            pData[110] = selfmask;
1945    
1946            // next byte unknown
1947    
1948            {
1949                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1950                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1951                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1952                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1953                pData[112] = lfo3ctrl;
1954            }
1955    
1956            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1957            pData[113] = attenctl;
1958    
1959            {
1960                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1961                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1962                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1963                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1964                pData[114] = lfo2ctrl;
1965            }
1966    
1967            {
1968                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1969                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1970                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1971                if (VCFResonanceController != vcf_res_ctrl_none)
1972                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1973                pData[115] = lfo1ctrl;
1974            }
1975    
1976            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1977                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1978            store16(&pData[116], eg3depth);
1979    
1980            // next 2 bytes unknown
1981    
1982            const uint8_t channeloffset = ChannelOffset * 4;
1983            pData[120] = channeloffset;
1984    
1985            {
1986                uint8_t regoptions = 0;
1987                if (MSDecode)      regoptions |= 0x01; // bit 0
1988                if (SustainDefeat) regoptions |= 0x02; // bit 1
1989                pData[121] = regoptions;
1990            }
1991    
1992            // next 2 bytes unknown
1993    
1994            pData[124] = VelocityUpperLimit;
1995    
1996            // next 3 bytes unknown
1997    
1998            pData[128] = ReleaseTriggerDecay;
1999    
2000            // next 2 bytes unknown
2001    
2002            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2003            pData[131] = eg1hold;
2004    
2005            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2006                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2007            pData[132] = vcfcutoff;
2008    
2009            pData[133] = VCFCutoffController;
2010    
2011            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2012                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2013            pData[134] = vcfvelscale;
2014    
2015            // next byte unknown
2016    
2017            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2018                                         (VCFResonance & 0x7f); /* lower 7 bits */
2019            pData[136] = vcfresonance;
2020    
2021            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2022                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2023            pData[137] = vcfbreakpoint;
2024    
2025            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2026                                        VCFVelocityCurve * 5;
2027            pData[138] = vcfvelocity;
2028    
2029            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2030            pData[139] = vcftype;
2031    
2032            if (chunksize >= 148) {
2033                memcpy(&pData[140], DimensionUpperLimits, 8);
2034            }
2035        }
2036    
2037        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2038            curve_type_t curveType = releaseVelocityResponseCurve;
2039            uint8_t depth = releaseVelocityResponseDepth;
2040            // this models a strange behaviour or bug in GSt: two of the
2041            // velocity response curves for release time are not used even
2042            // if specified, instead another curve is chosen.
2043            if ((curveType == curve_type_nonlinear && depth == 0) ||
2044                (curveType == curve_type_special   && depth == 4)) {
2045                curveType = curve_type_nonlinear;
2046                depth = 3;
2047            }
2048            return GetVelocityTable(curveType, depth, 0);
2049        }
2050    
2051        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2052                                                        uint8_t vcfVelocityDynamicRange,
2053                                                        uint8_t vcfVelocityScale,
2054                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2055        {
2056            curve_type_t curveType = vcfVelocityCurve;
2057            uint8_t depth = vcfVelocityDynamicRange;
2058            // even stranger GSt: two of the velocity response curves for
2059            // filter cutoff are not used, instead another special curve
2060            // is chosen. This curve is not used anywhere else.
2061            if ((curveType == curve_type_nonlinear && depth == 0) ||
2062                (curveType == curve_type_special   && depth == 4)) {
2063                curveType = curve_type_special;
2064                depth = 5;
2065            }
2066            return GetVelocityTable(curveType, depth,
2067                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2068                                        ? vcfVelocityScale : 0);
2069        }
2070    
2071        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2072        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2073        {
2074            double* table;
2075            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2076          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2077              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2078          }          }
2079          else {          else {
2080              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2081                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2082          }          }
2083            return table;
2084        }
2085    
2086        Region* DimensionRegion::GetParent() const {
2087            return pRegion;
2088      }      }
2089    
2090    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2091    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2092    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2093    //#pragma GCC diagnostic push
2094    //#pragma GCC diagnostic error "-Wswitch"
2095    
2096      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2097          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2098          switch (EncodedController) {          switch (EncodedController) {
# Line 976  namespace gig { Line 2204  namespace gig {
2204                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2205                  break;                  break;
2206    
2207                // format extension (these controllers are so far only supported by
2208                // LinuxSampler & gigedit) they will *NOT* work with
2209                // Gigasampler/GigaStudio !
2210                case _lev_ctrl_CC3_EXT:
2211                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2212                    decodedcontroller.controller_number = 3;
2213                    break;
2214                case _lev_ctrl_CC6_EXT:
2215                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2216                    decodedcontroller.controller_number = 6;
2217                    break;
2218                case _lev_ctrl_CC7_EXT:
2219                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2220                    decodedcontroller.controller_number = 7;
2221                    break;
2222                case _lev_ctrl_CC8_EXT:
2223                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2224                    decodedcontroller.controller_number = 8;
2225                    break;
2226                case _lev_ctrl_CC9_EXT:
2227                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2228                    decodedcontroller.controller_number = 9;
2229                    break;
2230                case _lev_ctrl_CC10_EXT:
2231                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2232                    decodedcontroller.controller_number = 10;
2233                    break;
2234                case _lev_ctrl_CC11_EXT:
2235                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2236                    decodedcontroller.controller_number = 11;
2237                    break;
2238                case _lev_ctrl_CC14_EXT:
2239                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2240                    decodedcontroller.controller_number = 14;
2241                    break;
2242                case _lev_ctrl_CC15_EXT:
2243                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2244                    decodedcontroller.controller_number = 15;
2245                    break;
2246                case _lev_ctrl_CC20_EXT:
2247                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2248                    decodedcontroller.controller_number = 20;
2249                    break;
2250                case _lev_ctrl_CC21_EXT:
2251                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2252                    decodedcontroller.controller_number = 21;
2253                    break;
2254                case _lev_ctrl_CC22_EXT:
2255                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2256                    decodedcontroller.controller_number = 22;
2257                    break;
2258                case _lev_ctrl_CC23_EXT:
2259                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2260                    decodedcontroller.controller_number = 23;
2261                    break;
2262                case _lev_ctrl_CC24_EXT:
2263                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2264                    decodedcontroller.controller_number = 24;
2265                    break;
2266                case _lev_ctrl_CC25_EXT:
2267                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2268                    decodedcontroller.controller_number = 25;
2269                    break;
2270                case _lev_ctrl_CC26_EXT:
2271                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2272                    decodedcontroller.controller_number = 26;
2273                    break;
2274                case _lev_ctrl_CC27_EXT:
2275                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2276                    decodedcontroller.controller_number = 27;
2277                    break;
2278                case _lev_ctrl_CC28_EXT:
2279                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2280                    decodedcontroller.controller_number = 28;
2281                    break;
2282                case _lev_ctrl_CC29_EXT:
2283                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2284                    decodedcontroller.controller_number = 29;
2285                    break;
2286                case _lev_ctrl_CC30_EXT:
2287                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2288                    decodedcontroller.controller_number = 30;
2289                    break;
2290                case _lev_ctrl_CC31_EXT:
2291                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2292                    decodedcontroller.controller_number = 31;
2293                    break;
2294                case _lev_ctrl_CC68_EXT:
2295                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2296                    decodedcontroller.controller_number = 68;
2297                    break;
2298                case _lev_ctrl_CC69_EXT:
2299                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2300                    decodedcontroller.controller_number = 69;
2301                    break;
2302                case _lev_ctrl_CC70_EXT:
2303                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2304                    decodedcontroller.controller_number = 70;
2305                    break;
2306                case _lev_ctrl_CC71_EXT:
2307                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2308                    decodedcontroller.controller_number = 71;
2309                    break;
2310                case _lev_ctrl_CC72_EXT:
2311                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2312                    decodedcontroller.controller_number = 72;
2313                    break;
2314                case _lev_ctrl_CC73_EXT:
2315                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2316                    decodedcontroller.controller_number = 73;
2317                    break;
2318                case _lev_ctrl_CC74_EXT:
2319                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2320                    decodedcontroller.controller_number = 74;
2321                    break;
2322                case _lev_ctrl_CC75_EXT:
2323                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2324                    decodedcontroller.controller_number = 75;
2325                    break;
2326                case _lev_ctrl_CC76_EXT:
2327                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2328                    decodedcontroller.controller_number = 76;
2329                    break;
2330                case _lev_ctrl_CC77_EXT:
2331                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2332                    decodedcontroller.controller_number = 77;
2333                    break;
2334                case _lev_ctrl_CC78_EXT:
2335                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2336                    decodedcontroller.controller_number = 78;
2337                    break;
2338                case _lev_ctrl_CC79_EXT:
2339                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2340                    decodedcontroller.controller_number = 79;
2341                    break;
2342                case _lev_ctrl_CC84_EXT:
2343                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2344                    decodedcontroller.controller_number = 84;
2345                    break;
2346                case _lev_ctrl_CC85_EXT:
2347                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2348                    decodedcontroller.controller_number = 85;
2349                    break;
2350                case _lev_ctrl_CC86_EXT:
2351                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2352                    decodedcontroller.controller_number = 86;
2353                    break;
2354                case _lev_ctrl_CC87_EXT:
2355                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2356                    decodedcontroller.controller_number = 87;
2357                    break;
2358                case _lev_ctrl_CC89_EXT:
2359                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2360                    decodedcontroller.controller_number = 89;
2361                    break;
2362                case _lev_ctrl_CC90_EXT:
2363                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2364                    decodedcontroller.controller_number = 90;
2365                    break;
2366                case _lev_ctrl_CC96_EXT:
2367                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2368                    decodedcontroller.controller_number = 96;
2369                    break;
2370                case _lev_ctrl_CC97_EXT:
2371                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2372                    decodedcontroller.controller_number = 97;
2373                    break;
2374                case _lev_ctrl_CC102_EXT:
2375                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2376                    decodedcontroller.controller_number = 102;
2377                    break;
2378                case _lev_ctrl_CC103_EXT:
2379                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2380                    decodedcontroller.controller_number = 103;
2381                    break;
2382                case _lev_ctrl_CC104_EXT:
2383                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2384                    decodedcontroller.controller_number = 104;
2385                    break;
2386                case _lev_ctrl_CC105_EXT:
2387                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2388                    decodedcontroller.controller_number = 105;
2389                    break;
2390                case _lev_ctrl_CC106_EXT:
2391                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2392                    decodedcontroller.controller_number = 106;
2393                    break;
2394                case _lev_ctrl_CC107_EXT:
2395                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2396                    decodedcontroller.controller_number = 107;
2397                    break;
2398                case _lev_ctrl_CC108_EXT:
2399                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2400                    decodedcontroller.controller_number = 108;
2401                    break;
2402                case _lev_ctrl_CC109_EXT:
2403                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2404                    decodedcontroller.controller_number = 109;
2405                    break;
2406                case _lev_ctrl_CC110_EXT:
2407                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2408                    decodedcontroller.controller_number = 110;
2409                    break;
2410                case _lev_ctrl_CC111_EXT:
2411                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2412                    decodedcontroller.controller_number = 111;
2413                    break;
2414                case _lev_ctrl_CC112_EXT:
2415                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2416                    decodedcontroller.controller_number = 112;
2417                    break;
2418                case _lev_ctrl_CC113_EXT:
2419                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2420                    decodedcontroller.controller_number = 113;
2421                    break;
2422                case _lev_ctrl_CC114_EXT:
2423                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2424                    decodedcontroller.controller_number = 114;
2425                    break;
2426                case _lev_ctrl_CC115_EXT:
2427                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2428                    decodedcontroller.controller_number = 115;
2429                    break;
2430                case _lev_ctrl_CC116_EXT:
2431                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2432                    decodedcontroller.controller_number = 116;
2433                    break;
2434                case _lev_ctrl_CC117_EXT:
2435                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2436                    decodedcontroller.controller_number = 117;
2437                    break;
2438                case _lev_ctrl_CC118_EXT:
2439                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2440                    decodedcontroller.controller_number = 118;
2441                    break;
2442                case _lev_ctrl_CC119_EXT:
2443                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2444                    decodedcontroller.controller_number = 119;
2445                    break;
2446    
2447              // unknown controller type              // unknown controller type
2448              default:              default:
2449                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2450          }          }
2451          return decodedcontroller;          return decodedcontroller;
2452      }      }
2453        
2454    // see above (diagnostic push not supported prior GCC 4.6)
2455    //#pragma GCC diagnostic pop
2456    
2457        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2458            _lev_ctrl_t encodedcontroller;
2459            switch (DecodedController.type) {
2460                // special controller
2461                case leverage_ctrl_t::type_none:
2462                    encodedcontroller = _lev_ctrl_none;
2463                    break;
2464                case leverage_ctrl_t::type_velocity:
2465                    encodedcontroller = _lev_ctrl_velocity;
2466                    break;
2467                case leverage_ctrl_t::type_channelaftertouch:
2468                    encodedcontroller = _lev_ctrl_channelaftertouch;
2469                    break;
2470    
2471                // ordinary MIDI control change controller
2472                case leverage_ctrl_t::type_controlchange:
2473                    switch (DecodedController.controller_number) {
2474                        case 1:
2475                            encodedcontroller = _lev_ctrl_modwheel;
2476                            break;
2477                        case 2:
2478                            encodedcontroller = _lev_ctrl_breath;
2479                            break;
2480                        case 4:
2481                            encodedcontroller = _lev_ctrl_foot;
2482                            break;
2483                        case 12:
2484                            encodedcontroller = _lev_ctrl_effect1;
2485                            break;
2486                        case 13:
2487                            encodedcontroller = _lev_ctrl_effect2;
2488                            break;
2489                        case 16:
2490                            encodedcontroller = _lev_ctrl_genpurpose1;
2491                            break;
2492                        case 17:
2493                            encodedcontroller = _lev_ctrl_genpurpose2;
2494                            break;
2495                        case 18:
2496                            encodedcontroller = _lev_ctrl_genpurpose3;
2497                            break;
2498                        case 19:
2499                            encodedcontroller = _lev_ctrl_genpurpose4;
2500                            break;
2501                        case 5:
2502                            encodedcontroller = _lev_ctrl_portamentotime;
2503                            break;
2504                        case 64:
2505                            encodedcontroller = _lev_ctrl_sustainpedal;
2506                            break;
2507                        case 65:
2508                            encodedcontroller = _lev_ctrl_portamento;
2509                            break;
2510                        case 66:
2511                            encodedcontroller = _lev_ctrl_sostenutopedal;
2512                            break;
2513                        case 67:
2514                            encodedcontroller = _lev_ctrl_softpedal;
2515                            break;
2516                        case 80:
2517                            encodedcontroller = _lev_ctrl_genpurpose5;
2518                            break;
2519                        case 81:
2520                            encodedcontroller = _lev_ctrl_genpurpose6;
2521                            break;
2522                        case 82:
2523                            encodedcontroller = _lev_ctrl_genpurpose7;
2524                            break;
2525                        case 83:
2526                            encodedcontroller = _lev_ctrl_genpurpose8;
2527                            break;
2528                        case 91:
2529                            encodedcontroller = _lev_ctrl_effect1depth;
2530                            break;
2531                        case 92:
2532                            encodedcontroller = _lev_ctrl_effect2depth;
2533                            break;
2534                        case 93:
2535                            encodedcontroller = _lev_ctrl_effect3depth;
2536                            break;
2537                        case 94:
2538                            encodedcontroller = _lev_ctrl_effect4depth;
2539                            break;
2540                        case 95:
2541                            encodedcontroller = _lev_ctrl_effect5depth;
2542                            break;
2543    
2544                        // format extension (these controllers are so far only
2545                        // supported by LinuxSampler & gigedit) they will *NOT*
2546                        // work with Gigasampler/GigaStudio !
2547                        case 3:
2548                            encodedcontroller = _lev_ctrl_CC3_EXT;
2549                            break;
2550                        case 6:
2551                            encodedcontroller = _lev_ctrl_CC6_EXT;
2552                            break;
2553                        case 7:
2554                            encodedcontroller = _lev_ctrl_CC7_EXT;
2555                            break;
2556                        case 8:
2557                            encodedcontroller = _lev_ctrl_CC8_EXT;
2558                            break;
2559                        case 9:
2560                            encodedcontroller = _lev_ctrl_CC9_EXT;
2561                            break;
2562                        case 10:
2563                            encodedcontroller = _lev_ctrl_CC10_EXT;
2564                            break;
2565                        case 11:
2566                            encodedcontroller = _lev_ctrl_CC11_EXT;
2567                            break;
2568                        case 14:
2569                            encodedcontroller = _lev_ctrl_CC14_EXT;
2570                            break;
2571                        case 15:
2572                            encodedcontroller = _lev_ctrl_CC15_EXT;
2573                            break;
2574                        case 20:
2575                            encodedcontroller = _lev_ctrl_CC20_EXT;
2576                            break;
2577                        case 21:
2578                            encodedcontroller = _lev_ctrl_CC21_EXT;
2579                            break;
2580                        case 22:
2581                            encodedcontroller = _lev_ctrl_CC22_EXT;
2582                            break;
2583                        case 23:
2584                            encodedcontroller = _lev_ctrl_CC23_EXT;
2585                            break;
2586                        case 24:
2587                            encodedcontroller = _lev_ctrl_CC24_EXT;
2588                            break;
2589                        case 25:
2590                            encodedcontroller = _lev_ctrl_CC25_EXT;
2591                            break;
2592                        case 26:
2593                            encodedcontroller = _lev_ctrl_CC26_EXT;
2594                            break;
2595                        case 27:
2596                            encodedcontroller = _lev_ctrl_CC27_EXT;
2597                            break;
2598                        case 28:
2599                            encodedcontroller = _lev_ctrl_CC28_EXT;
2600                            break;
2601                        case 29:
2602                            encodedcontroller = _lev_ctrl_CC29_EXT;
2603                            break;
2604                        case 30:
2605                            encodedcontroller = _lev_ctrl_CC30_EXT;
2606                            break;
2607                        case 31:
2608                            encodedcontroller = _lev_ctrl_CC31_EXT;
2609                            break;
2610                        case 68:
2611                            encodedcontroller = _lev_ctrl_CC68_EXT;
2612                            break;
2613                        case 69:
2614                            encodedcontroller = _lev_ctrl_CC69_EXT;
2615                            break;
2616                        case 70:
2617                            encodedcontroller = _lev_ctrl_CC70_EXT;
2618                            break;
2619                        case 71:
2620                            encodedcontroller = _lev_ctrl_CC71_EXT;
2621                            break;
2622                        case 72:
2623                            encodedcontroller = _lev_ctrl_CC72_EXT;
2624                            break;
2625                        case 73:
2626                            encodedcontroller = _lev_ctrl_CC73_EXT;
2627                            break;
2628                        case 74:
2629                            encodedcontroller = _lev_ctrl_CC74_EXT;
2630                            break;
2631                        case 75:
2632                            encodedcontroller = _lev_ctrl_CC75_EXT;
2633                            break;
2634                        case 76:
2635                            encodedcontroller = _lev_ctrl_CC76_EXT;
2636                            break;
2637                        case 77:
2638                            encodedcontroller = _lev_ctrl_CC77_EXT;
2639                            break;
2640                        case 78:
2641                            encodedcontroller = _lev_ctrl_CC78_EXT;
2642                            break;
2643                        case 79:
2644                            encodedcontroller = _lev_ctrl_CC79_EXT;
2645                            break;
2646                        case 84:
2647                            encodedcontroller = _lev_ctrl_CC84_EXT;
2648                            break;
2649                        case 85:
2650                            encodedcontroller = _lev_ctrl_CC85_EXT;
2651                            break;
2652                        case 86:
2653                            encodedcontroller = _lev_ctrl_CC86_EXT;
2654                            break;
2655                        case 87:
2656                            encodedcontroller = _lev_ctrl_CC87_EXT;
2657                            break;
2658                        case 89:
2659                            encodedcontroller = _lev_ctrl_CC89_EXT;
2660                            break;
2661                        case 90:
2662                            encodedcontroller = _lev_ctrl_CC90_EXT;
2663                            break;
2664                        case 96:
2665                            encodedcontroller = _lev_ctrl_CC96_EXT;
2666                            break;
2667                        case 97:
2668                            encodedcontroller = _lev_ctrl_CC97_EXT;
2669                            break;
2670                        case 102:
2671                            encodedcontroller = _lev_ctrl_CC102_EXT;
2672                            break;
2673                        case 103:
2674                            encodedcontroller = _lev_ctrl_CC103_EXT;
2675                            break;
2676                        case 104:
2677                            encodedcontroller = _lev_ctrl_CC104_EXT;
2678                            break;
2679                        case 105:
2680                            encodedcontroller = _lev_ctrl_CC105_EXT;
2681                            break;
2682                        case 106:
2683                            encodedcontroller = _lev_ctrl_CC106_EXT;
2684                            break;
2685                        case 107:
2686                            encodedcontroller = _lev_ctrl_CC107_EXT;
2687                            break;
2688                        case 108:
2689                            encodedcontroller = _lev_ctrl_CC108_EXT;
2690                            break;
2691                        case 109:
2692                            encodedcontroller = _lev_ctrl_CC109_EXT;
2693                            break;
2694                        case 110:
2695                            encodedcontroller = _lev_ctrl_CC110_EXT;
2696                            break;
2697                        case 111:
2698                            encodedcontroller = _lev_ctrl_CC111_EXT;
2699                            break;
2700                        case 112:
2701                            encodedcontroller = _lev_ctrl_CC112_EXT;
2702                            break;
2703                        case 113:
2704                            encodedcontroller = _lev_ctrl_CC113_EXT;
2705                            break;
2706                        case 114:
2707                            encodedcontroller = _lev_ctrl_CC114_EXT;
2708                            break;
2709                        case 115:
2710                            encodedcontroller = _lev_ctrl_CC115_EXT;
2711                            break;
2712                        case 116:
2713                            encodedcontroller = _lev_ctrl_CC116_EXT;
2714                            break;
2715                        case 117:
2716                            encodedcontroller = _lev_ctrl_CC117_EXT;
2717                            break;
2718                        case 118:
2719                            encodedcontroller = _lev_ctrl_CC118_EXT;
2720                            break;
2721                        case 119:
2722                            encodedcontroller = _lev_ctrl_CC119_EXT;
2723                            break;
2724    
2725                        default:
2726                            throw gig::Exception("leverage controller number is not supported by the gig format");
2727                    }
2728                    break;
2729                default:
2730                    throw gig::Exception("Unknown leverage controller type.");
2731            }
2732            return encodedcontroller;
2733        }
2734    
2735      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2736          Instances--;          Instances--;
# Line 996  namespace gig { Line 2745  namespace gig {
2745              delete pVelocityTables;              delete pVelocityTables;
2746              pVelocityTables = NULL;              pVelocityTables = NULL;
2747          }          }
2748            if (VelocityTable) delete[] VelocityTable;
2749      }      }
2750    
2751      /**      /**
# Line 1013  namespace gig { Line 2763  namespace gig {
2763          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2764      }      }
2765    
2766        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2767            return pVelocityReleaseTable[MIDIKeyVelocity];
2768        }
2769    
2770        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2771            return pVelocityCutoffTable[MIDIKeyVelocity];
2772        }
2773    
2774        /**
2775         * Updates the respective member variable and the lookup table / cache
2776         * that depends on this value.
2777         */
2778        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2779            pVelocityAttenuationTable =
2780                GetVelocityTable(
2781                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2782                );
2783            VelocityResponseCurve = curve;
2784        }
2785    
2786        /**
2787         * Updates the respective member variable and the lookup table / cache
2788         * that depends on this value.
2789         */
2790        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2791            pVelocityAttenuationTable =
2792                GetVelocityTable(
2793                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2794                );
2795            VelocityResponseDepth = depth;
2796        }
2797    
2798        /**
2799         * Updates the respective member variable and the lookup table / cache
2800         * that depends on this value.
2801         */
2802        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2803            pVelocityAttenuationTable =
2804                GetVelocityTable(
2805                    VelocityResponseCurve, VelocityResponseDepth, scaling
2806                );
2807            VelocityResponseCurveScaling = scaling;
2808        }
2809    
2810        /**
2811         * Updates the respective member variable and the lookup table / cache
2812         * that depends on this value.
2813         */
2814        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2815            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2816            ReleaseVelocityResponseCurve = curve;
2817        }
2818    
2819        /**
2820         * Updates the respective member variable and the lookup table / cache
2821         * that depends on this value.
2822         */
2823        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2824            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2825            ReleaseVelocityResponseDepth = depth;
2826        }
2827    
2828        /**
2829         * Updates the respective member variable and the lookup table / cache
2830         * that depends on this value.
2831         */
2832        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2833            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2834            VCFCutoffController = controller;
2835        }
2836    
2837        /**
2838         * Updates the respective member variable and the lookup table / cache
2839         * that depends on this value.
2840         */
2841        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2842            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2843            VCFVelocityCurve = curve;
2844        }
2845    
2846        /**
2847         * Updates the respective member variable and the lookup table / cache
2848         * that depends on this value.
2849         */
2850        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2851            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2852            VCFVelocityDynamicRange = range;
2853        }
2854    
2855        /**
2856         * Updates the respective member variable and the lookup table / cache
2857         * that depends on this value.
2858         */
2859        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2860            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2861            VCFVelocityScale = scaling;
2862        }
2863    
2864      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2865    
2866          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1046  namespace gig { Line 2894  namespace gig {
2894          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2895                               127, 127 };                               127, 127 };
2896    
2897            // this is only used by the VCF velocity curve
2898            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2899                                 91, 127, 127, 127 };
2900    
2901          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
2902                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
2903                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
2904    
2905          double* const table = new double[128];          double* const table = new double[128];
2906    
# Line 1092  namespace gig { Line 2944  namespace gig {
2944    
2945          // Actual Loading          // Actual Loading
2946    
2947            if (!file->GetAutoLoad()) return;
2948    
2949          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2950    
2951          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1100  namespace gig { Line 2954  namespace gig {
2954              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2955                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2956                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2957                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2958                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2959                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2960                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2961                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2962                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2963                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2964                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2965                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2966                  }                  }
2967                  else { // active dimension                  else { // active dimension
2968                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2969                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2970                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2971                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2972                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2973                      Dimensions++;                      Dimensions++;
2974    
2975                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
2976                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2977                  }                  }
2978                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2979              }              }
2980                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2981    
2982              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2983              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2984                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2985    
2986              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2987              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2988                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2989              else              else
2990                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2991    
2992              // load sample references              // load sample references (if auto loading is enabled)
2993              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2994                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2995                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2996                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2997                    }
2998                    GetSample(); // load global region sample reference
2999                }
3000            } else {
3001                DimensionRegions = 0;
3002                for (int i = 0 ; i < 8 ; i++) {
3003                    pDimensionDefinitions[i].dimension  = dimension_none;
3004                    pDimensionDefinitions[i].bits       = 0;
3005                    pDimensionDefinitions[i].zones      = 0;
3006                }
3007            }
3008    
3009            // make sure there is at least one dimension region
3010            if (!DimensionRegions) {
3011                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3012                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3013                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3014                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3015                DimensionRegions = 1;
3016            }
3017        }
3018    
3019        /**
3020         * Apply Region settings and all its DimensionRegions to the respective
3021         * RIFF chunks. You have to call File::Save() to make changes persistent.
3022         *
3023         * Usually there is absolutely no need to call this method explicitly.
3024         * It will be called automatically when File::Save() was called.
3025         *
3026         * @throws gig::Exception if samples cannot be dereferenced
3027         */
3028        void Region::UpdateChunks() {
3029            // in the gig format we don't care about the Region's sample reference
3030            // but we still have to provide some existing one to not corrupt the
3031            // file, so to avoid the latter we simply always assign the sample of
3032            // the first dimension region of this region
3033            pSample = pDimensionRegions[0]->pSample;
3034    
3035            // first update base class's chunks
3036            DLS::Region::UpdateChunks();
3037    
3038            // update dimension region's chunks
3039            for (int i = 0; i < DimensionRegions; i++) {
3040                pDimensionRegions[i]->UpdateChunks();
3041            }
3042    
3043            File* pFile = (File*) GetParent()->GetParent();
3044            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3045            const int iMaxDimensions =  version3 ? 8 : 5;
3046            const int iMaxDimensionRegions = version3 ? 256 : 32;
3047    
3048            // make sure '3lnk' chunk exists
3049            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3050            if (!_3lnk) {
3051                const int _3lnkChunkSize = version3 ? 1092 : 172;
3052                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3053                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3054    
3055                // move 3prg to last position
3056                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
3057            }
3058    
3059            // update dimension definitions in '3lnk' chunk
3060            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3061            store32(&pData[0], DimensionRegions);
3062            int shift = 0;
3063            for (int i = 0; i < iMaxDimensions; i++) {
3064                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3065                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3066                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3067                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3068                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3069                // next 3 bytes unknown, always zero?
3070    
3071                shift += pDimensionDefinitions[i].bits;
3072            }
3073    
3074            // update wave pool table in '3lnk' chunk
3075            const int iWavePoolOffset = version3 ? 68 : 44;
3076            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3077                int iWaveIndex = -1;
3078                if (i < DimensionRegions) {
3079                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3080                    File::SampleList::iterator iter = pFile->pSamples->begin();
3081                    File::SampleList::iterator end  = pFile->pSamples->end();
3082                    for (int index = 0; iter != end; ++iter, ++index) {
3083                        if (*iter == pDimensionRegions[i]->pSample) {
3084                            iWaveIndex = index;
3085                            break;
3086                        }
3087                    }
3088              }              }
3089                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3090          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3091      }      }
3092    
3093      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1181  namespace gig { Line 3097  namespace gig {
3097              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3098              while (_3ewl) {              while (_3ewl) {
3099                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3100                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3101                      dimensionRegionNr++;                      dimensionRegionNr++;
3102                  }                  }
3103                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1190  namespace gig { Line 3106  namespace gig {
3106          }          }
3107      }      }
3108    
3109      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3110          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3111              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3112            // update Region key table for fast lookup
3113            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3114        }
3115    
3116        void Region::UpdateVelocityTable() {
3117            // get velocity dimension's index
3118            int veldim = -1;
3119            for (int i = 0 ; i < Dimensions ; i++) {
3120                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3121                    veldim = i;
3122                    break;
3123                }
3124            }
3125            if (veldim == -1) return;
3126    
3127            int step = 1;
3128            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3129            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3130            int end = step * pDimensionDefinitions[veldim].zones;
3131    
3132            // loop through all dimension regions for all dimensions except the velocity dimension
3133            int dim[8] = { 0 };
3134            for (int i = 0 ; i < DimensionRegions ; i++) {
3135    
3136                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3137                    pDimensionRegions[i]->VelocityUpperLimit) {
3138                    // create the velocity table
3139                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3140                    if (!table) {
3141                        table = new uint8_t[128];
3142                        pDimensionRegions[i]->VelocityTable = table;
3143                    }
3144                    int tableidx = 0;
3145                    int velocityZone = 0;
3146                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3147                        for (int k = i ; k < end ; k += step) {
3148                            DimensionRegion *d = pDimensionRegions[k];
3149                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3150                            velocityZone++;
3151                        }
3152                    } else { // gig2
3153                        for (int k = i ; k < end ; k += step) {
3154                            DimensionRegion *d = pDimensionRegions[k];
3155                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3156                            velocityZone++;
3157                        }
3158                    }
3159                } else {
3160                    if (pDimensionRegions[i]->VelocityTable) {
3161                        delete[] pDimensionRegions[i]->VelocityTable;
3162                        pDimensionRegions[i]->VelocityTable = 0;
3163                    }
3164                }
3165    
3166                int j;
3167                int shift = 0;
3168                for (j = 0 ; j < Dimensions ; j++) {
3169                    if (j == veldim) i += skipveldim; // skip velocity dimension
3170                    else {
3171                        dim[j]++;
3172                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3173                        else {
3174                            // skip unused dimension regions
3175                            dim[j] = 0;
3176                            i += ((1 << pDimensionDefinitions[j].bits) -
3177                                  pDimensionDefinitions[j].zones) << shift;
3178                        }
3179                    }
3180                    shift += pDimensionDefinitions[j].bits;
3181                }
3182                if (j == Dimensions) break;
3183            }
3184        }
3185    
3186        /** @brief Einstein would have dreamed of it - create a new dimension.
3187         *
3188         * Creates a new dimension with the dimension definition given by
3189         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3190         * There is a hard limit of dimensions and total amount of "bits" all
3191         * dimensions can have. This limit is dependant to what gig file format
3192         * version this file refers to. The gig v2 (and lower) format has a
3193         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3194         * format has a limit of 8.
3195         *
3196         * @param pDimDef - defintion of the new dimension
3197         * @throws gig::Exception if dimension of the same type exists already
3198         * @throws gig::Exception if amount of dimensions or total amount of
3199         *                        dimension bits limit is violated
3200         */
3201        void Region::AddDimension(dimension_def_t* pDimDef) {
3202            // check if max. amount of dimensions reached
3203            File* file = (File*) GetParent()->GetParent();
3204            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3205            if (Dimensions >= iMaxDimensions)
3206                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3207            // check if max. amount of dimension bits reached
3208            int iCurrentBits = 0;
3209            for (int i = 0; i < Dimensions; i++)
3210                iCurrentBits += pDimensionDefinitions[i].bits;
3211            if (iCurrentBits >= iMaxDimensions)
3212                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3213            const int iNewBits = iCurrentBits + pDimDef->bits;
3214            if (iNewBits > iMaxDimensions)
3215                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3216            // check if there's already a dimensions of the same type
3217            for (int i = 0; i < Dimensions; i++)
3218                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3219                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3220    
3221            // pos is where the new dimension should be placed, normally
3222            // last in list, except for the samplechannel dimension which
3223            // has to be first in list
3224            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3225            int bitpos = 0;
3226            for (int i = 0 ; i < pos ; i++)
3227                bitpos += pDimensionDefinitions[i].bits;
3228    
3229            // make room for the new dimension
3230            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3231            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3232                for (int j = Dimensions ; j > pos ; j--) {
3233                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3234                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3235                }
3236            }
3237    
3238            // assign definition of new dimension
3239            pDimensionDefinitions[pos] = *pDimDef;
3240    
3241            // auto correct certain dimension definition fields (where possible)
3242            pDimensionDefinitions[pos].split_type  =
3243                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3244            pDimensionDefinitions[pos].zone_size =
3245                __resolveZoneSize(pDimensionDefinitions[pos]);
3246    
3247            // create new dimension region(s) for this new dimension, and make
3248            // sure that the dimension regions are placed correctly in both the
3249            // RIFF list and the pDimensionRegions array
3250            RIFF::Chunk* moveTo = NULL;
3251            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3252            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3253                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3254                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3255                }
3256                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3257                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3258                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3259                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3260                        // create a new dimension region and copy all parameter values from
3261                        // an existing dimension region
3262                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3263                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3264    
3265                        DimensionRegions++;
3266                    }
3267                }
3268                moveTo = pDimensionRegions[i]->pParentList;
3269            }
3270    
3271            // initialize the upper limits for this dimension
3272            int mask = (1 << bitpos) - 1;
3273            for (int z = 0 ; z < pDimDef->zones ; z++) {
3274                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3275                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3276                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3277                                      (z << bitpos) |
3278                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3279                }
3280            }
3281    
3282            Dimensions++;
3283    
3284            // if this is a layer dimension, update 'Layers' attribute
3285            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3286    
3287            UpdateVelocityTable();
3288        }
3289    
3290        /** @brief Delete an existing dimension.
3291         *
3292         * Deletes the dimension given by \a pDimDef and deletes all respective
3293         * dimension regions, that is all dimension regions where the dimension's
3294         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3295         * for example this would delete all dimension regions for the case(s)
3296         * where the sustain pedal is pressed down.
3297         *
3298         * @param pDimDef - dimension to delete
3299         * @throws gig::Exception if given dimension cannot be found
3300         */
3301        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3302            // get dimension's index
3303            int iDimensionNr = -1;
3304            for (int i = 0; i < Dimensions; i++) {
3305                if (&pDimensionDefinitions[i] == pDimDef) {
3306                    iDimensionNr = i;
3307                    break;
3308                }
3309          }          }
3310            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3311    
3312            // get amount of bits below the dimension to delete
3313            int iLowerBits = 0;
3314            for (int i = 0; i < iDimensionNr; i++)
3315                iLowerBits += pDimensionDefinitions[i].bits;
3316    
3317            // get amount ot bits above the dimension to delete
3318            int iUpperBits = 0;
3319            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3320                iUpperBits += pDimensionDefinitions[i].bits;
3321    
3322            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3323    
3324            // delete dimension regions which belong to the given dimension
3325            // (that is where the dimension's bit > 0)
3326            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3327                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3328                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3329                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3330                                        iObsoleteBit << iLowerBits |
3331                                        iLowerBit;
3332    
3333                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3334                        delete pDimensionRegions[iToDelete];
3335                        pDimensionRegions[iToDelete] = NULL;
3336                        DimensionRegions--;
3337                    }
3338                }
3339            }
3340    
3341            // defrag pDimensionRegions array
3342            // (that is remove the NULL spaces within the pDimensionRegions array)
3343            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3344                if (!pDimensionRegions[iTo]) {
3345                    if (iFrom <= iTo) iFrom = iTo + 1;
3346                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3347                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3348                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3349                        pDimensionRegions[iFrom] = NULL;
3350                    }
3351                }
3352            }
3353    
3354            // remove the this dimension from the upper limits arrays
3355            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3356                DimensionRegion* d = pDimensionRegions[j];
3357                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3358                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3359                }
3360                d->DimensionUpperLimits[Dimensions - 1] = 127;
3361            }
3362    
3363            // 'remove' dimension definition
3364            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3365                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3366            }
3367            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3368            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3369            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3370    
3371            Dimensions--;
3372    
3373            // if this was a layer dimension, update 'Layers' attribute
3374            if (pDimDef->dimension == dimension_layer) Layers = 1;
3375        }
3376    
3377        Region::~Region() {
3378          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3379              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3380          }          }
# Line 1218  namespace gig { Line 3399  namespace gig {
3399       * @see             Dimensions       * @see             Dimensions
3400       */       */
3401      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3402          uint8_t bits[8] = { 0 };          uint8_t bits;
3403            int veldim = -1;
3404            int velbitpos;
3405            int bitpos = 0;
3406            int dimregidx = 0;
3407          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3408              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3409              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3410                  case split_type_normal:                  veldim = i;
3411                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
3412                      break;              } else {
3413                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3414                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3415                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3416                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3417                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3418                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3419                      break;                              }
3420                            } else {
3421                                // gig2: evenly sized zones
3422                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3423                            }
3424                            break;
3425                        case split_type_bit: // the value is already the sought dimension bit number
3426                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3427                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3428                            break;
3429                    }
3430                    dimregidx |= bits << bitpos;
3431              }              }
3432                bitpos += pDimensionDefinitions[i].bits;
3433            }
3434            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3435            if (veldim != -1) {
3436                // (dimreg is now the dimension region for the lowest velocity)
3437                if (dimreg->VelocityTable) // custom defined zone ranges
3438                    bits = dimreg->VelocityTable[DimValues[veldim]];
3439                else // normal split type
3440                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3441    
3442                dimregidx |= bits << velbitpos;
3443                dimreg = pDimensionRegions[dimregidx];
3444          }          }
3445          return GetDimensionRegionByBit(bits);          return dimreg;
3446      }      }
3447    
3448      /**      /**
# Line 1271  namespace gig { Line 3479  namespace gig {
3479          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3480      }      }
3481    
3482      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3483            if ((int32_t)WavePoolTableIndex == -1) return NULL;
3484          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3485            if (!file->pWavePoolTable) return NULL;
3486          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3487          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3488            Sample* sample = file->GetFirstSample(pProgress);
3489          while (sample) {          while (sample) {
3490              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
3491                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3492              sample = file->GetNextSample();              sample = file->GetNextSample();
3493          }          }
3494          return NULL;          return NULL;
3495      }      }
3496        
3497        /**
3498         * Make a (semi) deep copy of the Region object given by @a orig
3499         * and assign it to this object.
3500         *
3501         * Note that all sample pointers referenced by @a orig are simply copied as
3502         * memory address. Thus the respective samples are shared, not duplicated!
3503         *
3504         * @param orig - original Region object to be copied from
3505         */
3506        void Region::CopyAssign(const Region* orig) {
3507            CopyAssign(orig, NULL);
3508        }
3509        
3510        /**
3511         * Make a (semi) deep copy of the Region object given by @a orig and
3512         * assign it to this object
3513         *
3514         * @param mSamples - crosslink map between the foreign file's samples and
3515         *                   this file's samples
3516         */
3517        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3518            // handle base classes
3519            DLS::Region::CopyAssign(orig);
3520            
3521            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3522                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3523            }
3524            
3525            // handle own member variables
3526            for (int i = Dimensions - 1; i >= 0; --i) {
3527                DeleteDimension(&pDimensionDefinitions[i]);
3528            }
3529            Layers = 0; // just to be sure
3530            for (int i = 0; i < orig->Dimensions; i++) {
3531                // we need to copy the dim definition here, to avoid the compiler
3532                // complaining about const-ness issue
3533                dimension_def_t def = orig->pDimensionDefinitions[i];
3534                AddDimension(&def);
3535            }
3536            for (int i = 0; i < 256; i++) {
3537                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3538                    pDimensionRegions[i]->CopyAssign(
3539                        orig->pDimensionRegions[i],
3540                        mSamples
3541                    );
3542                }
3543            }
3544            Layers = orig->Layers;
3545        }
3546    
3547    
3548    // *************** MidiRule ***************
3549    // *
3550    
3551        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3552            _3ewg->SetPos(36);
3553            Triggers = _3ewg->ReadUint8();
3554            _3ewg->SetPos(40);
3555            ControllerNumber = _3ewg->ReadUint8();
3556            _3ewg->SetPos(46);
3557            for (int i = 0 ; i < Triggers ; i++) {
3558                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3559                pTriggers[i].Descending = _3ewg->ReadUint8();
3560                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3561                pTriggers[i].Key = _3ewg->ReadUint8();
3562                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3563                pTriggers[i].Velocity = _3ewg->ReadUint8();
3564                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3565                _3ewg->ReadUint8();
3566            }
3567        }
3568    
3569        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3570            ControllerNumber(0),
3571            Triggers(0) {
3572        }
3573    
3574        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3575            pData[32] = 4;
3576            pData[33] = 16;
3577            pData[36] = Triggers;
3578            pData[40] = ControllerNumber;
3579            for (int i = 0 ; i < Triggers ; i++) {
3580                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3581                pData[47 + i * 8] = pTriggers[i].Descending;
3582                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3583                pData[49 + i * 8] = pTriggers[i].Key;
3584                pData[50 + i * 8] = pTriggers[i].NoteOff;
3585                pData[51 + i * 8] = pTriggers[i].Velocity;
3586                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3587            }
3588        }
3589    
3590        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3591            _3ewg->SetPos(36);
3592            LegatoSamples = _3ewg->ReadUint8(); // always 12
3593            _3ewg->SetPos(40);
3594            BypassUseController = _3ewg->ReadUint8();
3595            BypassKey = _3ewg->ReadUint8();
3596            BypassController = _3ewg->ReadUint8();
3597            ThresholdTime = _3ewg->ReadUint16();
3598            _3ewg->ReadInt16();
3599            ReleaseTime = _3ewg->ReadUint16();
3600            _3ewg->ReadInt16();
3601            KeyRange.low = _3ewg->ReadUint8();
3602            KeyRange.high = _3ewg->ReadUint8();
3603            _3ewg->SetPos(64);
3604            ReleaseTriggerKey = _3ewg->ReadUint8();
3605            AltSustain1Key = _3ewg->ReadUint8();
3606            AltSustain2Key = _3ewg->ReadUint8();
3607        }
3608    
3609        MidiRuleLegato::MidiRuleLegato() :
3610            LegatoSamples(12),
3611            BypassUseController(false),
3612            BypassKey(0),
3613            BypassController(1),
3614            ThresholdTime(20),
3615            ReleaseTime(20),
3616            ReleaseTriggerKey(0),
3617            AltSustain1Key(0),
3618            AltSustain2Key(0)
3619        {
3620            KeyRange.low = KeyRange.high = 0;
3621        }
3622    
3623        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3624            pData[32] = 0;
3625            pData[33] = 16;
3626            pData[36] = LegatoSamples;
3627            pData[40] = BypassUseController;
3628            pData[41] = BypassKey;
3629            pData[42] = BypassController;
3630            store16(&pData[43], ThresholdTime);
3631            store16(&pData[47], ReleaseTime);
3632            pData[51] = KeyRange.low;
3633            pData[52] = KeyRange.high;
3634            pData[64] = ReleaseTriggerKey;
3635            pData[65] = AltSustain1Key;
3636            pData[66] = AltSustain2Key;
3637        }
3638    
3639        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3640            _3ewg->SetPos(36);
3641            Articulations = _3ewg->ReadUint8();
3642            int flags = _3ewg->ReadUint8();
3643            Polyphonic = flags & 8;
3644            Chained = flags & 4;
3645            Selector = (flags & 2) ? selector_controller :
3646                (flags & 1) ? selector_key_switch : selector_none;
3647            Patterns = _3ewg->ReadUint8();
3648            _3ewg->ReadUint8(); // chosen row
3649            _3ewg->ReadUint8(); // unknown
3650            _3ewg->ReadUint8(); // unknown
3651            _3ewg->ReadUint8(); // unknown
3652            KeySwitchRange.low = _3ewg->ReadUint8();
3653            KeySwitchRange.high = _3ewg->ReadUint8();
3654            Controller = _3ewg->ReadUint8();
3655            PlayRange.low = _3ewg->ReadUint8();
3656            PlayRange.high = _3ewg->ReadUint8();
3657    
3658            int n = std::min(int(Articulations), 32);
3659            for (int i = 0 ; i < n ; i++) {
3660                _3ewg->ReadString(pArticulations[i], 32);
3661            }
3662            _3ewg->SetPos(1072);
3663            n = std::min(int(Patterns), 32);
3664            for (int i = 0 ; i < n ; i++) {
3665                _3ewg->ReadString(pPatterns[i].Name, 16);
3666                pPatterns[i].Size = _3ewg->ReadUint8();
3667                _3ewg->Read(&pPatterns[i][0], 1, 32);
3668            }
3669        }
3670    
3671        MidiRuleAlternator::MidiRuleAlternator() :
3672            Articulations(0),
3673            Patterns(0),
3674            Selector(selector_none),
3675            Controller(0),
3676            Polyphonic(false),
3677            Chained(false)
3678        {
3679            PlayRange.low = PlayRange.high = 0;
3680            KeySwitchRange.low = KeySwitchRange.high = 0;
3681        }
3682    
3683        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3684            pData[32] = 3;
3685            pData[33] = 16;
3686            pData[36] = Articulations;
3687            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3688                (Selector == selector_controller ? 2 :
3689                 (Selector == selector_key_switch ? 1 : 0));
3690            pData[38] = Patterns;
3691    
3692            pData[43] = KeySwitchRange.low;
3693            pData[44] = KeySwitchRange.high;
3694            pData[45] = Controller;
3695            pData[46] = PlayRange.low;
3696            pData[47] = PlayRange.high;
3697    
3698            char* str = reinterpret_cast<char*>(pData);
3699            int pos = 48;
3700            int n = std::min(int(Articulations), 32);
3701            for (int i = 0 ; i < n ; i++, pos += 32) {
3702                strncpy(&str[pos], pArticulations[i].c_str(), 32);
3703            }
3704    
3705            pos = 1072;
3706            n = std::min(int(Patterns), 32);
3707            for (int i = 0 ; i < n ; i++, pos += 49) {
3708                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3709                pData[pos + 16] = pPatterns[i].Size;
3710                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3711            }
3712        }
3713    
3714  // *************** Instrument ***************  // *************** Instrument ***************
3715  // *  // *
3716    
3717      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3718            static const DLS::Info::string_length_t fixedStringLengths[] = {
3719                { CHUNK_ID_INAM, 64 },
3720                { CHUNK_ID_ISFT, 12 },
3721                { 0, 0 }
3722            };
3723            pInfo->SetFixedStringLengths(fixedStringLengths);
3724    
3725          // Initialization          // Initialization
3726          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3727          RegionIndex = -1;          EffectSend = 0;
3728            Attenuation = 0;
3729            FineTune = 0;
3730            PitchbendRange = 0;
3731            PianoReleaseMode = false;
3732            DimensionKeyRange.low = 0;
3733            DimensionKeyRange.high = 0;
3734            pMidiRules = new MidiRule*[3];
3735            pMidiRules[0] = NULL;
3736    
3737          // Loading          // Loading
3738          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1305  namespace gig { Line 3747  namespace gig {
3747                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
3748                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
3749                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
3750    
3751                    if (_3ewg->GetSize() > 32) {
3752                        // read MIDI rules
3753                        int i = 0;
3754                        _3ewg->SetPos(32);
3755                        uint8_t id1 = _3ewg->ReadUint8();
3756                        uint8_t id2 = _3ewg->ReadUint8();
3757    
3758                        if (id2 == 16) {
3759                            if (id1 == 4) {
3760                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3761                            } else if (id1 == 0) {
3762                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3763                            } else if (id1 == 3) {
3764                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3765                            } else {
3766                                pMidiRules[i++] = new MidiRuleUnknown;
3767                            }
3768                        }
3769                        else if (id1 != 0 || id2 != 0) {
3770                            pMidiRules[i++] = new MidiRuleUnknown;
3771                        }
3772                        //TODO: all the other types of rules
3773    
3774                        pMidiRules[i] = NULL;
3775                    }
3776                }
3777            }
3778    
3779            if (pFile->GetAutoLoad()) {
3780                if (!pRegions) pRegions = new RegionList;
3781                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3782                if (lrgn) {
3783                    RIFF::List* rgn = lrgn->GetFirstSubList();
3784                    while (rgn) {
3785                        if (rgn->GetListType() == LIST_TYPE_RGN) {
3786                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3787                            pRegions->push_back(new Region(this, rgn));
3788                        }
3789                        rgn = lrgn->GetNextSubList();
3790                    }
3791                    // Creating Region Key Table for fast lookup
3792                    UpdateRegionKeyTable();
3793              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
3794          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
3795    
3796          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          __notify_progress(pProgress, 1.0f); // notify done
3797          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");      }
3798          pRegions = new Region*[Regions];  
3799          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;      void Instrument::UpdateRegionKeyTable() {
3800          RIFF::List* rgn = lrgn->GetFirstSubList();          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3801          unsigned int iRegion = 0;          RegionList::iterator iter = pRegions->begin();
3802          while (rgn) {          RegionList::iterator end  = pRegions->end();
3803              if (rgn->GetListType() == LIST_TYPE_RGN) {          for (; iter != end; ++iter) {
3804                  pRegions[iRegion] = new Region(this, rgn);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3805                  iRegion++;              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3806              }                  RegionKeyTable[iKey] = pRegion;
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
3807              }              }
3808          }          }
3809      }      }
3810    
3811      Instrument::~Instrument() {      Instrument::~Instrument() {
3812          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
3813              if (pRegions) {              delete pMidiRules[i];
3814                  if (pRegions[i]) delete (pRegions[i]);          }
3815            delete[] pMidiRules;
3816        }
3817    
3818        /**
3819         * Apply Instrument with all its Regions to the respective RIFF chunks.
3820         * You have to call File::Save() to make changes persistent.
3821         *
3822         * Usually there is absolutely no need to call this method explicitly.
3823         * It will be called automatically when File::Save() was called.
3824         *
3825         * @throws gig::Exception if samples cannot be dereferenced
3826         */
3827        void Instrument::UpdateChunks() {
3828            // first update base classes' chunks
3829            DLS::Instrument::UpdateChunks();
3830    
3831            // update Regions' chunks
3832            {
3833                RegionList::iterator iter = pRegions->begin();
3834                RegionList::iterator end  = pRegions->end();
3835                for (; iter != end; ++iter)
3836                    (*iter)->UpdateChunks();
3837            }
3838    
3839            // make sure 'lart' RIFF list chunk exists
3840            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3841            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3842            // make sure '3ewg' RIFF chunk exists
3843            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3844            if (!_3ewg)  {
3845                File* pFile = (File*) GetParent();
3846    
3847                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3848                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3849                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3850                memset(_3ewg->LoadChunkData(), 0, size);
3851            }
3852            // update '3ewg' RIFF chunk
3853            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3854            store16(&pData[0], EffectSend);
3855            store32(&pData[2], Attenuation);
3856            store16(&pData[6], FineTune);
3857            store16(&pData[8], PitchbendRange);
3858            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3859                                        DimensionKeyRange.low << 1;
3860            pData[10] = dimkeystart;
3861            pData[11] = DimensionKeyRange.high;
3862    
3863            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3864                pData[32] = 0;
3865                pData[33] = 0;
3866            } else {
3867                for (int i = 0 ; pMidiRules[i] ; i++) {
3868                    pMidiRules[i]->UpdateChunks(pData);
3869              }              }
3870          }          }
         if (pRegions) delete[] pRegions;  
3871      }      }
3872    
3873      /**      /**
# Line 1349  namespace gig { Line 3878  namespace gig {
3878       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3879       */       */
3880      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3881          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3882          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3883    
3884          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3885              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3886                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1366  namespace gig { Line 3896  namespace gig {
3896       * @see      GetNextRegion()       * @see      GetNextRegion()
3897       */       */
3898      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3899          if (!Regions) return NULL;          if (!pRegions) return NULL;
3900          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3901          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3902      }      }
3903    
3904      /**      /**
# Line 1380  namespace gig { Line 3910  namespace gig {
3910       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3911       */       */
3912      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3913          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
3914          return pRegions[RegionIndex++];          RegionsIterator++;
3915            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3916        }
3917    
3918        Region* Instrument::AddRegion() {
3919            // create new Region object (and its RIFF chunks)
3920            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3921            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3922            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3923            Region* pNewRegion = new Region(this, rgn);
3924            pRegions->push_back(pNewRegion);
3925            Regions = pRegions->size();
3926            // update Region key table for fast lookup
3927            UpdateRegionKeyTable();
3928            // done
3929            return pNewRegion;
3930        }
3931    
3932        void Instrument::DeleteRegion(Region* pRegion) {
3933            if (!pRegions) return;
3934            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3935            // update Region key table for fast lookup
3936            UpdateRegionKeyTable();
3937      }      }
3938    
3939        /**
3940         * Returns a MIDI rule of the instrument.
3941         *
3942         * The list of MIDI rules, at least in gig v3, always contains at
3943         * most two rules. The second rule can only be the DEF filter
3944         * (which currently isn't supported by libgig).
3945         *
3946         * @param i - MIDI rule number
3947         * @returns   pointer address to MIDI rule number i or NULL if there is none
3948         */
3949        MidiRule* Instrument::GetMidiRule(int i) {
3950            return pMidiRules[i];
3951        }
3952    
3953        /**
3954         * Adds the "controller trigger" MIDI rule to the instrument.
3955         *
3956         * @returns the new MIDI rule
3957         */
3958        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3959            delete pMidiRules[0];
3960            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3961            pMidiRules[0] = r;
3962            pMidiRules[1] = 0;
3963            return r;
3964        }
3965    
3966  // *************** File ***************      /**
3967         * Adds the legato MIDI rule to the instrument.
3968         *
3969         * @returns the new MIDI rule
3970         */
3971        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3972            delete pMidiRules[0];
3973            MidiRuleLegato* r = new MidiRuleLegato;
3974            pMidiRules[0] = r;
3975            pMidiRules[1] = 0;
3976            return r;
3977        }
3978    
3979        /**
3980         * Adds the alternator MIDI rule to the instrument.
3981         *
3982         * @returns the new MIDI rule
3983         */
3984        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3985            delete pMidiRules[0];
3986            MidiRuleAlternator* r = new MidiRuleAlternator;
3987            pMidiRules[0] = r;
3988            pMidiRules[1] = 0;
3989            return r;
3990        }
3991    
3992        /**
3993         * Deletes a MIDI rule from the instrument.
3994         *
3995         * @param i - MIDI rule number
3996         */
3997        void Instrument::DeleteMidiRule(int i) {
3998            delete pMidiRules[i];
3999            pMidiRules[i] = 0;
4000        }
4001    
4002        /**
4003         * Make a (semi) deep copy of the Instrument object given by @a orig
4004         * and assign it to this object.
4005         *
4006         * Note that all sample pointers referenced by @a orig are simply copied as
4007         * memory address. Thus the respective samples are shared, not duplicated!
4008         *
4009         * @param orig - original Instrument object to be copied from
4010         */
4011        void Instrument::CopyAssign(const Instrument* orig) {
4012            CopyAssign(orig, NULL);
4013        }
4014            
4015        /**
4016         * Make a (semi) deep copy of the Instrument object given by @a orig
4017         * and assign it to this object.
4018         *
4019         * @param orig - original Instrument object to be copied from
4020         * @param mSamples - crosslink map between the foreign file's samples and
4021         *                   this file's samples
4022         */
4023        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4024            // handle base class
4025            // (without copying DLS region stuff)
4026            DLS::Instrument::CopyAssignCore(orig);
4027            
4028            // handle own member variables
4029            Attenuation = orig->Attenuation;
4030            EffectSend = orig->EffectSend;
4031            FineTune = orig->FineTune;
4032            PitchbendRange = orig->PitchbendRange;
4033            PianoReleaseMode = orig->PianoReleaseMode;
4034            DimensionKeyRange = orig->DimensionKeyRange;
4035            
4036            // free old midi rules
4037            for (int i = 0 ; pMidiRules[i] ; i++) {
4038                delete pMidiRules[i];
4039            }
4040            //TODO: MIDI rule copying
4041            pMidiRules[0] = NULL;
4042            
4043            // delete all old regions
4044            while (Regions) DeleteRegion(GetFirstRegion());
4045            // create new regions and copy them from original
4046            {
4047                RegionList::const_iterator it = orig->pRegions->begin();
4048                for (int i = 0; i < orig->Regions; ++i, ++it) {
4049                    Region* dstRgn = AddRegion();
4050                    //NOTE: Region does semi-deep copy !
4051                    dstRgn->CopyAssign(
4052                        static_cast<gig::Region*>(*it),
4053                        mSamples
4054                    );
4055                }
4056            }
4057    
4058            UpdateRegionKeyTable();
4059        }
4060    
4061    
4062    // *************** Group ***************
4063  // *  // *
4064    
4065      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      /** @brief Constructor.
4066          pSamples     = NULL;       *
4067          pInstruments = NULL;       * @param file   - pointer to the gig::File object
4068         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4069         *                 NULL if this is a new Group
4070         */
4071        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4072            pFile      = file;
4073            pNameChunk = ck3gnm;
4074            ::LoadString(pNameChunk, Name);
4075      }      }
4076    
4077      File::~File() {      Group::~Group() {
4078          // free samples          // remove the chunk associated with this group (if any)
4079          if (pSamples) {          if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4080              SamplesIterator = pSamples->begin();      }
4081              while (SamplesIterator != pSamples->end() ) {  
4082                  delete (*SamplesIterator);      /** @brief Update chunks with current group settings.
4083                  SamplesIterator++;       *
4084         * Apply current Group field values to the respective chunks. You have
4085         * to call File::Save() to make changes persistent.
4086         *
4087         * Usually there is absolutely no need to call this method explicitly.
4088         * It will be called automatically when File::Save() was called.
4089         */
4090        void Group::UpdateChunks() {
4091            // make sure <3gri> and <3gnl> list chunks exist
4092            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
4093            if (!_3gri) {
4094                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
4095                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4096            }
4097            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4098            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4099    
4100            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
4101                // v3 has a fixed list of 128 strings, find a free one
4102                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
4103                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
4104                        pNameChunk = ck;
4105                        break;
4106                    }
4107              }              }
4108              pSamples->clear();          }
4109    
4110            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
4111            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
4112        }
4113    
4114        /**
4115         * Returns the first Sample of this Group. You have to call this method
4116         * once before you use GetNextSample().
4117         *
4118         * <b>Notice:</b> this method might block for a long time, in case the
4119         * samples of this .gig file were not scanned yet
4120         *
4121         * @returns  pointer address to first Sample or NULL if there is none
4122         *           applied to this Group
4123         * @see      GetNextSample()
4124         */
4125        Sample* Group::GetFirstSample() {
4126            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4127            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
4128                if (pSample->GetGroup() == this) return pSample;
4129          }          }
4130          // free instruments          return NULL;
4131          if (pInstruments) {      }
4132              InstrumentsIterator = pInstruments->begin();  
4133              while (InstrumentsIterator != pInstruments->end() ) {      /**
4134                  delete (*InstrumentsIterator);       * Returns the next Sample of the Group. You have to call
4135                  InstrumentsIterator++;       * GetFirstSample() once before you can use this method. By calling this
4136         * method multiple times it iterates through the Samples assigned to
4137         * this Group.
4138         *
4139         * @returns  pointer address to the next Sample of this Group or NULL if
4140         *           end reached
4141         * @see      GetFirstSample()
4142         */
4143        Sample* Group::GetNextSample() {
4144            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4145            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
4146                if (pSample->GetGroup() == this) return pSample;
4147            }
4148            return NULL;
4149        }
4150    
4151        /**
4152         * Move Sample given by \a pSample from another Group to this Group.
4153         */
4154        void Group::AddSample(Sample* pSample) {
4155            pSample->pGroup = this;
4156        }
4157    
4158        /**
4159         * Move all members of this group to another group (preferably the 1st
4160         * one except this). This method is called explicitly by
4161         * File::DeleteGroup() thus when a Group was deleted. This code was
4162         * intentionally not placed in the destructor!
4163         */
4164        void Group::MoveAll() {
4165            // get "that" other group first
4166            Group* pOtherGroup = NULL;
4167            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
4168                if (pOtherGroup != this) break;
4169            }
4170            if (!pOtherGroup) throw Exception(
4171                "Could not move samples to another group, since there is no "
4172                "other Group. This is a bug, report it!"
4173            );
4174            // now move all samples of this group to the other group
4175            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4176                pOtherGroup->AddSample(pSample);
4177            }
4178        }
4179    
4180    
4181    
4182    // *************** File ***************
4183    // *
4184    
4185        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
4186        const DLS::version_t File::VERSION_2 = {
4187            0, 2, 19980628 & 0xffff, 19980628 >> 16
4188        };
4189    
4190        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
4191        const DLS::version_t File::VERSION_3 = {
4192            0, 3, 20030331 & 0xffff, 20030331 >> 16
4193        };
4194    
4195        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
4196            { CHUNK_ID_IARL, 256 },
4197            { CHUNK_ID_IART, 128 },
4198            { CHUNK_ID_ICMS, 128 },
4199            { CHUNK_ID_ICMT, 1024 },
4200            { CHUNK_ID_ICOP, 128 },
4201            { CHUNK_ID_ICRD, 128 },
4202            { CHUNK_ID_IENG, 128 },
4203            { CHUNK_ID_IGNR, 128 },
4204            { CHUNK_ID_IKEY, 128 },
4205            { CHUNK_ID_IMED, 128 },
4206            { CHUNK_ID_INAM, 128 },
4207            { CHUNK_ID_IPRD, 128 },
4208            { CHUNK_ID_ISBJ, 128 },
4209            { CHUNK_ID_ISFT, 128 },
4210            { CHUNK_ID_ISRC, 128 },
4211            { CHUNK_ID_ISRF, 128 },
4212            { CHUNK_ID_ITCH, 128 },
4213            { 0, 0 }
4214        };
4215    
4216        File::File() : DLS::File() {
4217            bAutoLoad = true;
4218            *pVersion = VERSION_3;
4219            pGroups = NULL;
4220            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4221            pInfo->ArchivalLocation = String(256, ' ');
4222    
4223            // add some mandatory chunks to get the file chunks in right
4224            // order (INFO chunk will be moved to first position later)
4225            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
4226            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
4227            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
4228    
4229            GenerateDLSID();
4230        }
4231    
4232        File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
4233            bAutoLoad = true;
4234            pGroups = NULL;
4235            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4236        }
4237    
4238        File::~File() {
4239            if (pGroups) {
4240                std::list<Group*>::iterator iter = pGroups->begin();
4241                std::list<Group*>::iterator end  = pGroups->end();
4242                while (iter != end) {
4243                    delete *iter;
4244                    ++iter;
4245              }              }
4246              pInstruments->clear();              delete pGroups;
4247          }          }
4248      }      }
4249    
4250      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
4251          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
4252          if (!pSamples) return NULL;          if (!pSamples) return NULL;
4253          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
4254          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1428  namespace gig { Line 4259  namespace gig {
4259          SamplesIterator++;          SamplesIterator++;
4260          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4261      }      }
4262        
4263        /**
4264         * Returns Sample object of @a index.
4265         *
4266         * @returns sample object or NULL if index is out of bounds
4267         */
4268        Sample* File::GetSample(uint index) {
4269            if (!pSamples) LoadSamples();
4270            if (!pSamples) return NULL;
4271            DLS::File::SampleList::iterator it = pSamples->begin();
4272            for (int i = 0; i < index; ++i) {
4273                ++it;
4274                if (it == pSamples->end()) return NULL;
4275            }
4276            if (it == pSamples->end()) return NULL;
4277            return static_cast<gig::Sample*>( *it );
4278        }
4279    
4280      void File::LoadSamples() {      /** @brief Add a new sample.
4281          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
4282          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
4283              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
4284              RIFF::List* wave = wvpl->GetFirstSubList();       *
4285              while (wave) {       * @returns pointer to new Sample object
4286                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
4287                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
4288                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
4289                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
4290           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
4291           // create new Sample object and its respective 'wave' list chunk
4292           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
4293           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
4294    
4295           // add mandatory chunks to get the chunks in right order
4296           wave->AddSubChunk(CHUNK_ID_FMT, 16);
4297           wave->AddSubList(LIST_TYPE_INFO);
4298    
4299           pSamples->push_back(pSample);
4300           return pSample;
4301        }
4302    
4303        /** @brief Delete a sample.
4304         *
4305         * This will delete the given Sample object from the gig file. Any
4306         * references to this sample from Regions and DimensionRegions will be
4307         * removed. You have to call Save() to make this persistent to the file.
4308         *
4309         * @param pSample - sample to delete
4310         * @throws gig::Exception if given sample could not be found
4311         */
4312        void File::DeleteSample(Sample* pSample) {
4313            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
4314            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
4315            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
4316            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
4317            pSamples->erase(iter);
4318            delete pSample;
4319    
4320            SampleList::iterator tmp = SamplesIterator;
4321            // remove all references to the sample
4322            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4323                 instrument = GetNextInstrument()) {
4324                for (Region* region = instrument->GetFirstRegion() ; region ;
4325                     region = instrument->GetNextRegion()) {
4326    
4327                    if (region->GetSample() == pSample) region->SetSample(NULL);
4328    
4329                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
4330                        gig::DimensionRegion *d = region->pDimensionRegions[i];
4331                        if (d->pSample == pSample) d->pSample = NULL;
4332                  }                  }
                 wave = wvpl->GetNextSubList();  
4333              }              }
4334          }          }
4335          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
4336        }
4337    
4338        void File::LoadSamples() {
4339            LoadSamples(NULL);
4340        }
4341    
4342        void File::LoadSamples(progress_t* pProgress) {
4343            // Groups must be loaded before samples, because samples will try
4344            // to resolve the group they belong to
4345            if (!pGroups) LoadGroups();
4346    
4347            if (!pSamples) pSamples = new SampleList;
4348    
4349            RIFF::File* file = pRIFF;
4350    
4351            // just for progress calculation
4352            int iSampleIndex  = 0;
4353            int iTotalSamples = WavePoolCount;
4354    
4355            // check if samples should be loaded from extension files
4356            int lastFileNo = 0;
4357            for (int i = 0 ; i < WavePoolCount ; i++) {
4358                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
4359            }
4360            String name(pRIFF->GetFileName());
4361            int nameLen = name.length();
4362            char suffix[6];
4363            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
4364    
4365            for (int fileNo = 0 ; ; ) {
4366                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
4367                if (wvpl) {
4368                    unsigned long wvplFileOffset = wvpl->GetFilePos();
4369                    RIFF::List* wave = wvpl->GetFirstSubList();
4370                    while (wave) {
4371                        if (wave->GetListType() == LIST_TYPE_WAVE) {
4372                            // notify current progress
4373                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
4374                            __notify_progress(pProgress, subprogress);
4375    
4376                            unsigned long waveFileOffset = wave->GetFilePos();
4377                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
4378    
4379                            iSampleIndex++;
4380                        }
4381                        wave = wvpl->GetNextSubList();
4382                    }
4383    
4384                    if (fileNo == lastFileNo) break;
4385    
4386                    // open extension file (*.gx01, *.gx02, ...)
4387                    fileNo++;
4388                    sprintf(suffix, ".gx%02d", fileNo);
4389                    name.replace(nameLen, 5, suffix);
4390                    file = new RIFF::File(name);
4391                    ExtensionFiles.push_back(file);
4392                } else break;
4393            }
4394    
4395            __notify_progress(pProgress, 1.0); // notify done
4396      }      }
4397    
4398      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
4399          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
4400          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4401          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
4402          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4403      }      }
4404    
4405      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
4406          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4407          InstrumentsIterator++;          InstrumentsIterator++;
4408          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4409      }      }
4410    
4411      /**      /**
4412       * Returns the instrument with the given index.       * Returns the instrument with the given index.
4413       *       *
4414         * @param index     - number of the sought instrument (0..n)
4415         * @param pProgress - optional: callback function for progress notification
4416       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
4417       */       */
4418      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
4419          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
4420                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
4421    
4422                // sample loading subtask
4423                progress_t subprogress;
4424                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
4425                __notify_progress(&subprogress, 0.0f);
4426                if (GetAutoLoad())
4427                    GetFirstSample(&subprogress); // now force all samples to be loaded
4428                __notify_progress(&subprogress, 1.0f);
4429    
4430                // instrument loading subtask
4431                if (pProgress && pProgress->callback) {
4432                    subprogress.__range_min = subprogress.__range_max;
4433                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4434                }
4435                __notify_progress(&subprogress, 0.0f);
4436                LoadInstruments(&subprogress);
4437                __notify_progress(&subprogress, 1.0f);
4438            }
4439          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4440          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
4441          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4442              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4443              InstrumentsIterator++;              InstrumentsIterator++;
4444          }          }
4445          return NULL;          return NULL;
4446      }      }
4447    
4448        /** @brief Add a new instrument definition.
4449         *
4450         * This will create a new Instrument object for the gig file. You have
4451         * to call Save() to make this persistent to the file.
4452         *
4453         * @returns pointer to new Instrument object
4454         */
4455        Instrument* File::AddInstrument() {
4456           if (!pInstruments) LoadInstruments();
4457           __ensureMandatoryChunksExist();
4458           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4459           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4460    
4461           // add mandatory chunks to get the chunks in right order
4462           lstInstr->AddSubList(LIST_TYPE_INFO);
4463           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4464    
4465           Instrument* pInstrument = new Instrument(this, lstInstr);
4466           pInstrument->GenerateDLSID();
4467    
4468           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4469    
4470           // this string is needed for the gig to be loadable in GSt:
4471           pInstrument->pInfo->Software = "Endless Wave";
4472    
4473           pInstruments->push_back(pInstrument);
4474           return pInstrument;
4475        }
4476        
4477        /** @brief Add a duplicate of an existing instrument.
4478         *
4479         * Duplicates the instrument definition given by @a orig and adds it
4480         * to this file. This allows in an instrument editor application to
4481         * easily create variations of an instrument, which will be stored in
4482         * the same .gig file, sharing i.e. the same samples.
4483         *
4484         * Note that all sample pointers referenced by @a orig are simply copied as
4485         * memory address. Thus the respective samples are shared, not duplicated!
4486         *
4487         * You have to call Save() to make this persistent to the file.
4488         *
4489         * @param orig - original instrument to be copied
4490         * @returns duplicated copy of the given instrument
4491         */
4492        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4493            Instrument* instr = AddInstrument();
4494            instr->CopyAssign(orig);
4495            return instr;
4496        }
4497        
4498        /** @brief Add content of another existing file.
4499         *
4500         * Duplicates the samples, groups and instruments of the original file
4501         * given by @a pFile and adds them to @c this File. In case @c this File is
4502         * a new one that you haven't saved before, then you have to call
4503         * SetFileName() before calling AddContentOf(), because this method will
4504         * automatically save this file during operation, which is required for
4505         * writing the sample waveform data by disk streaming.
4506         *
4507         * @param pFile - original file whose's content shall be copied from
4508         */
4509        void File::AddContentOf(File* pFile) {
4510            static int iCallCount = -1;
4511            iCallCount++;
4512            std::map<Group*,Group*> mGroups;
4513            std::map<Sample*,Sample*> mSamples;
4514            
4515            // clone sample groups
4516            for (int i = 0; pFile->GetGroup(i); ++i) {
4517                Group* g = AddGroup();
4518                g->Name =
4519                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4520                mGroups[pFile->GetGroup(i)] = g;
4521            }
4522            
4523            // clone samples (not waveform data here yet)
4524            for (int i = 0; pFile->GetSample(i); ++i) {
4525                Sample* s = AddSample();
4526                s->CopyAssignMeta(pFile->GetSample(i));
4527                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4528                mSamples[pFile->GetSample(i)] = s;
4529            }
4530            
4531            //BUG: For some reason this method only works with this additional
4532            //     Save() call in between here.
4533            //
4534            // Important: The correct one of the 2 Save() methods has to be called
4535            // here, depending on whether the file is completely new or has been
4536            // saved to disk already, otherwise it will result in data corruption.
4537            if (pRIFF->IsNew())
4538                Save(GetFileName());
4539            else
4540                Save();
4541            
4542            // clone instruments
4543            // (passing the crosslink table here for the cloned samples)
4544            for (int i = 0; pFile->GetInstrument(i); ++i) {
4545                Instrument* instr = AddInstrument();
4546                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4547            }
4548            
4549            // Mandatory: file needs to be saved to disk at this point, so this
4550            // file has the correct size and data layout for writing the samples'
4551            // waveform data to disk.
4552            Save();
4553            
4554            // clone samples' waveform data
4555            // (using direct read & write disk streaming)
4556            for (int i = 0; pFile->GetSample(i); ++i) {
4557                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4558            }
4559        }
4560    
4561        /** @brief Delete an instrument.
4562         *
4563         * This will delete the given Instrument object from the gig file. You
4564         * have to call Save() to make this persistent to the file.
4565         *
4566         * @param pInstrument - instrument to delete
4567         * @throws gig::Exception if given instrument could not be found
4568         */
4569        void File::DeleteInstrument(Instrument* pInstrument) {
4570            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4571            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4572            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4573            pInstruments->erase(iter);
4574            delete pInstrument;
4575        }
4576    
4577      void File::LoadInstruments() {      void File::LoadInstruments() {
4578            LoadInstruments(NULL);
4579        }
4580    
4581        void File::LoadInstruments(progress_t* pProgress) {
4582            if (!pInstruments) pInstruments = new InstrumentList;
4583          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4584          if (lstInstruments) {          if (lstInstruments) {
4585                int iInstrumentIndex = 0;
4586              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4587              while (lstInstr) {              while (lstInstr) {
4588                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
4589                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
4590                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4591                        __notify_progress(pProgress, localProgress);
4592    
4593                        // divide local progress into subprogress for loading current Instrument
4594                        progress_t subprogress;
4595                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4596    
4597                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4598    
4599                        iInstrumentIndex++;
4600                  }                  }
4601                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
4602              }              }
4603                __notify_progress(pProgress, 1.0); // notify done
4604            }
4605        }
4606    
4607        /// Updates the 3crc chunk with the checksum of a sample. The
4608        /// update is done directly to disk, as this method is called
4609        /// after File::Save()
4610        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4611            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4612            if (!_3crc) return;
4613    
4614            // get the index of the sample
4615            int iWaveIndex = -1;
4616            File::SampleList::iterator iter = pSamples->begin();
4617            File::SampleList::iterator end  = pSamples->end();
4618            for (int index = 0; iter != end; ++iter, ++index) {
4619                if (*iter == pSample) {
4620                    iWaveIndex = index;
4621                    break;
4622                }
4623            }
4624            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4625    
4626            // write the CRC-32 checksum to disk
4627            _3crc->SetPos(iWaveIndex * 8);
4628            uint32_t tmp = 1;
4629            _3crc->WriteUint32(&tmp); // unknown, always 1?
4630            _3crc->WriteUint32(&crc);
4631        }
4632    
4633        Group* File::GetFirstGroup() {
4634            if (!pGroups) LoadGroups();
4635            // there must always be at least one group
4636            GroupsIterator = pGroups->begin();
4637            return *GroupsIterator;
4638        }
4639    
4640        Group* File::GetNextGroup() {
4641            if (!pGroups) return NULL;
4642            ++GroupsIterator;
4643            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4644        }
4645    
4646        /**
4647         * Returns the group with the given index.
4648         *
4649         * @param index - number of the sought group (0..n)
4650         * @returns sought group or NULL if there's no such group
4651         */
4652        Group* File::GetGroup(uint index) {
4653            if (!pGroups) LoadGroups();
4654            GroupsIterator = pGroups->begin();
4655            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4656                if (i == index) return *GroupsIterator;
4657                ++GroupsIterator;
4658            }
4659            return NULL;
4660        }
4661    
4662        /**
4663         * Returns the group with the given group name.
4664         *
4665         * Note: group names don't have to be unique in the gig format! So there
4666         * can be multiple groups with the same name. This method will simply
4667         * return the first group found with the given name.
4668         *
4669         * @param name - name of the sought group
4670         * @returns sought group or NULL if there's no group with that name
4671         */
4672        Group* File::GetGroup(String name) {
4673            if (!pGroups) LoadGroups();
4674            GroupsIterator = pGroups->begin();
4675            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
4676                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
4677            return NULL;
4678        }
4679    
4680        Group* File::AddGroup() {
4681            if (!pGroups) LoadGroups();
4682            // there must always be at least one group
4683            __ensureMandatoryChunksExist();
4684            Group* pGroup = new Group(this, NULL);
4685            pGroups->push_back(pGroup);
4686            return pGroup;
4687        }
4688    
4689        /** @brief Delete a group and its samples.
4690         *
4691         * This will delete the given Group object and all the samples that
4692         * belong to this group from the gig file. You have to call Save() to
4693         * make this persistent to the file.
4694         *
4695         * @param pGroup - group to delete
4696         * @throws gig::Exception if given group could not be found
4697         */
4698        void File::DeleteGroup(Group* pGroup) {
4699            if (!pGroups) LoadGroups();
4700            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4701            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4702            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4703            // delete all members of this group
4704            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4705                DeleteSample(pSample);
4706            }
4707            // now delete this group object
4708            pGroups->erase(iter);
4709            delete pGroup;
4710        }
4711    
4712        /** @brief Delete a group.
4713         *
4714         * This will delete the given Group object from the gig file. All the
4715         * samples that belong to this group will not be deleted, but instead
4716         * be moved to another group. You have to call Save() to make this
4717         * persistent to the file.
4718         *
4719         * @param pGroup - group to delete
4720         * @throws gig::Exception if given group could not be found
4721         */
4722        void File::DeleteGroupOnly(Group* pGroup) {
4723            if (!pGroups) LoadGroups();
4724            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4725            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4726            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4727            // move all members of this group to another group
4728            pGroup->MoveAll();
4729            pGroups->erase(iter);
4730            delete pGroup;
4731        }
4732    
4733        void File::LoadGroups() {
4734            if (!pGroups) pGroups = new std::list<Group*>;
4735            // try to read defined groups from file
4736            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4737            if (lst3gri) {
4738                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4739                if (lst3gnl) {
4740                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4741                    while (ck) {
4742                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4743                            if (pVersion && pVersion->major == 3 &&
4744                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4745    
4746                            pGroups->push_back(new Group(this, ck));
4747                        }
4748                        ck = lst3gnl->GetNextSubChunk();
4749                    }
4750                }
4751            }
4752            // if there were no group(s), create at least the mandatory default group
4753            if (!pGroups->size()) {
4754                Group* pGroup = new Group(this, NULL);
4755                pGroup->Name = "Default Group";
4756                pGroups->push_back(pGroup);
4757            }
4758        }
4759    
4760        /**
4761         * Apply all the gig file's current instruments, samples, groups and settings
4762         * to the respective RIFF chunks. You have to call Save() to make changes
4763         * persistent.
4764         *
4765         * Usually there is absolutely no need to call this method explicitly.
4766         * It will be called automatically when File::Save() was called.
4767         *
4768         * @throws Exception - on errors
4769         */
4770        void File::UpdateChunks() {
4771            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4772    
4773            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4774    
4775            // first update base class's chunks
4776            DLS::File::UpdateChunks();
4777    
4778            if (newFile) {
4779                // INFO was added by Resource::UpdateChunks - make sure it
4780                // is placed first in file
4781                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4782                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4783                if (first != info) {
4784                    pRIFF->MoveSubChunk(info, first);
4785                }
4786            }
4787    
4788            // update group's chunks
4789            if (pGroups) {
4790                // make sure '3gri' and '3gnl' list chunks exist
4791                // (before updating the Group chunks)
4792                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4793                if (!_3gri) {
4794                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4795                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4796                }
4797                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4798                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4799    
4800                // v3: make sure the file has 128 3gnm chunks
4801                // (before updating the Group chunks)
4802                if (pVersion && pVersion->major == 3) {
4803                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4804                    for (int i = 0 ; i < 128 ; i++) {
4805                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4806                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4807                    }
4808                }
4809    
4810                std::list<Group*>::iterator iter = pGroups->begin();
4811                std::list<Group*>::iterator end  = pGroups->end();
4812                for (; iter != end; ++iter) {
4813                    (*iter)->UpdateChunks();
4814                }
4815            }
4816    
4817            // update einf chunk
4818    
4819            // The einf chunk contains statistics about the gig file, such
4820            // as the number of regions and samples used by each
4821            // instrument. It is divided in equally sized parts, where the
4822            // first part contains information about the whole gig file,
4823            // and the rest of the parts map to each instrument in the
4824            // file.
4825            //
4826            // At the end of each part there is a bit map of each sample
4827            // in the file, where a set bit means that the sample is used
4828            // by the file/instrument.
4829            //
4830            // Note that there are several fields with unknown use. These
4831            // are set to zero.
4832    
4833            int sublen = pSamples->size() / 8 + 49;
4834            int einfSize = (Instruments + 1) * sublen;
4835    
4836            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4837            if (einf) {
4838                if (einf->GetSize() != einfSize) {
4839                    einf->Resize(einfSize);
4840                    memset(einf->LoadChunkData(), 0, einfSize);
4841                }
4842            } else if (newFile) {
4843                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4844            }
4845            if (einf) {
4846                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4847    
4848                std::map<gig::Sample*,int> sampleMap;
4849                int sampleIdx = 0;
4850                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4851                    sampleMap[pSample] = sampleIdx++;
4852                }
4853    
4854                int totnbusedsamples = 0;
4855                int totnbusedchannels = 0;
4856                int totnbregions = 0;
4857                int totnbdimregions = 0;
4858                int totnbloops = 0;
4859                int instrumentIdx = 0;
4860    
4861                memset(&pData[48], 0, sublen - 48);
4862    
4863                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4864                     instrument = GetNextInstrument()) {
4865                    int nbusedsamples = 0;
4866                    int nbusedchannels = 0;
4867                    int nbdimregions = 0;
4868                    int nbloops = 0;
4869    
4870                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4871    
4872                    for (Region* region = instrument->GetFirstRegion() ; region ;
4873                         region = instrument->GetNextRegion()) {
4874                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
4875                            gig::DimensionRegion *d = region->pDimensionRegions[i];
4876                            if (d->pSample) {
4877                                int sampleIdx = sampleMap[d->pSample];
4878                                int byte = 48 + sampleIdx / 8;
4879                                int bit = 1 << (sampleIdx & 7);
4880                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4881                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4882                                    nbusedsamples++;
4883                                    nbusedchannels += d->pSample->Channels;
4884    
4885                                    if ((pData[byte] & bit) == 0) {
4886                                        pData[byte] |= bit;
4887                                        totnbusedsamples++;
4888                                        totnbusedchannels += d->pSample->Channels;
4889                                    }
4890                                }
4891                            }
4892                            if (d->SampleLoops) nbloops++;
4893                        }
4894                        nbdimregions += region->DimensionRegions;
4895                    }
4896                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4897                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4898                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4899                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4900                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4901                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4902                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4903                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4904                    // next 8 bytes unknown
4905                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4906                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4907                    // next 4 bytes unknown
4908    
4909                    totnbregions += instrument->Regions;
4910                    totnbdimregions += nbdimregions;
4911                    totnbloops += nbloops;
4912                    instrumentIdx++;
4913                }
4914                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4915                // store32(&pData[0], sublen);
4916                store32(&pData[4], totnbusedchannels);
4917                store32(&pData[8], totnbusedsamples);
4918                store32(&pData[12], Instruments);
4919                store32(&pData[16], totnbregions);
4920                store32(&pData[20], totnbdimregions);
4921                store32(&pData[24], totnbloops);
4922                // next 8 bytes unknown
4923                // next 4 bytes unknown, not always 0
4924                store32(&pData[40], pSamples->size());
4925                // next 4 bytes unknown
4926            }
4927    
4928            // update 3crc chunk
4929    
4930            // The 3crc chunk contains CRC-32 checksums for the
4931            // samples. The actual checksum values will be filled in
4932            // later, by Sample::Write.
4933    
4934            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4935            if (_3crc) {
4936                _3crc->Resize(pSamples->size() * 8);
4937            } else if (newFile) {
4938                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4939                _3crc->LoadChunkData();
4940    
4941                // the order of einf and 3crc is not the same in v2 and v3
4942                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4943          }          }
4944          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
4945    
4946        /**
4947         * Enable / disable automatic loading. By default this properyt is
4948         * enabled and all informations are loaded automatically. However
4949         * loading all Regions, DimensionRegions and especially samples might
4950         * take a long time for large .gig files, and sometimes one might only
4951         * be interested in retrieving very superficial informations like the
4952         * amount of instruments and their names. In this case one might disable
4953         * automatic loading to avoid very slow response times.
4954         *
4955         * @e CAUTION: by disabling this property many pointers (i.e. sample
4956         * references) and informations will have invalid or even undefined
4957         * data! This feature is currently only intended for retrieving very
4958         * superficial informations in a very fast way. Don't use it to retrieve
4959         * details like synthesis informations or even to modify .gig files!
4960         */
4961        void File::SetAutoLoad(bool b) {
4962            bAutoLoad = b;
4963        }
4964    
4965        /**
4966         * Returns whether automatic loading is enabled.
4967         * @see SetAutoLoad()
4968         */
4969        bool File::GetAutoLoad() {
4970            return bAutoLoad;
4971      }      }
4972    
4973    
# Line 1502  namespace gig { Line 4982  namespace gig {
4982          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
4983      }      }
4984    
4985    
4986    // *************** functions ***************
4987    // *
4988    
4989        /**
4990         * Returns the name of this C++ library. This is usually "libgig" of
4991         * course. This call is equivalent to RIFF::libraryName() and
4992         * DLS::libraryName().
4993         */
4994        String libraryName() {
4995            return PACKAGE;
4996        }
4997    
4998        /**
4999         * Returns version of this C++ library. This call is equivalent to
5000         * RIFF::libraryVersion() and DLS::libraryVersion().
5001         */
5002        String libraryVersion() {
5003            return VERSION;
5004        }
5005    
5006  } // namespace gig  } // namespace gig

Legend:
Removed from v.350  
changed lines
  Added in v.2543

  ViewVC Help
Powered by ViewVC