/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 27 by schoenebeck, Thu Jan 1 23:46:41 2004 UTC revision 823 by schoenebeck, Fri Dec 23 01:38:50 2005 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file loader library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29    #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54    // *************** dimension_def_t ***************
55    // *
56    
57        dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {
58            dimension  = arg.dimension;
59            bits       = arg.bits;
60            zones      = arg.zones;
61            split_type = arg.split_type;
62            ranges     = arg.ranges;
63            zone_size  = arg.zone_size;
64            if (ranges) {
65                ranges = new range_t[zones];
66                for (int i = 0; i < zones; i++)
67                    ranges[i] = arg.ranges[i];
68            }
69            return *this;
70        }
71    
72    
73    
74    // *************** progress_t ***************
75    // *
76    
77        progress_t::progress_t() {
78            callback    = NULL;
79            custom      = NULL;
80            __range_min = 0.0f;
81            __range_max = 1.0f;
82        }
83    
84        // private helper function to convert progress of a subprocess into the global progress
85        static void __notify_progress(progress_t* pProgress, float subprogress) {
86            if (pProgress && pProgress->callback) {
87                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
88                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
89                pProgress->factor         = totalprogress;
90                pProgress->callback(pProgress); // now actually notify about the progress
91            }
92        }
93    
94        // private helper function to divide a progress into subprogresses
95        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
96            if (pParentProgress && pParentProgress->callback) {
97                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
98                pSubProgress->callback    = pParentProgress->callback;
99                pSubProgress->custom      = pParentProgress->custom;
100                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
101                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
102            }
103        }
104    
105    
106    // *************** Internal functions for sample decompression ***************
107    // *
108    
109    namespace {
110    
111        inline int get12lo(const unsigned char* pSrc)
112        {
113            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
114            return x & 0x800 ? x - 0x1000 : x;
115        }
116    
117        inline int get12hi(const unsigned char* pSrc)
118        {
119            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
120            return x & 0x800 ? x - 0x1000 : x;
121        }
122    
123        inline int16_t get16(const unsigned char* pSrc)
124        {
125            return int16_t(pSrc[0] | pSrc[1] << 8);
126        }
127    
128        inline int get24(const unsigned char* pSrc)
129        {
130            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
131            return x & 0x800000 ? x - 0x1000000 : x;
132        }
133    
134        void Decompress16(int compressionmode, const unsigned char* params,
135                          int srcStep, int dstStep,
136                          const unsigned char* pSrc, int16_t* pDst,
137                          unsigned long currentframeoffset,
138                          unsigned long copysamples)
139        {
140            switch (compressionmode) {
141                case 0: // 16 bit uncompressed
142                    pSrc += currentframeoffset * srcStep;
143                    while (copysamples) {
144                        *pDst = get16(pSrc);
145                        pDst += dstStep;
146                        pSrc += srcStep;
147                        copysamples--;
148                    }
149                    break;
150    
151                case 1: // 16 bit compressed to 8 bit
152                    int y  = get16(params);
153                    int dy = get16(params + 2);
154                    while (currentframeoffset) {
155                        dy -= int8_t(*pSrc);
156                        y  -= dy;
157                        pSrc += srcStep;
158                        currentframeoffset--;
159                    }
160                    while (copysamples) {
161                        dy -= int8_t(*pSrc);
162                        y  -= dy;
163                        *pDst = y;
164                        pDst += dstStep;
165                        pSrc += srcStep;
166                        copysamples--;
167                    }
168                    break;
169            }
170        }
171    
172        void Decompress24(int compressionmode, const unsigned char* params,
173                          int dstStep, const unsigned char* pSrc, int16_t* pDst,
174                          unsigned long currentframeoffset,
175                          unsigned long copysamples, int truncatedBits)
176        {
177            // Note: The 24 bits are truncated to 16 bits for now.
178    
179            int y, dy, ddy, dddy;
180            const int shift = 8 - truncatedBits;
181    
182    #define GET_PARAMS(params)                      \
183            y    = get24(params);                   \
184            dy   = y - get24((params) + 3);         \
185            ddy  = get24((params) + 6);             \
186            dddy = get24((params) + 9)
187    
188    #define SKIP_ONE(x)                             \
189            dddy -= (x);                            \
190            ddy  -= dddy;                           \
191            dy   =  -dy - ddy;                      \
192            y    += dy
193    
194    #define COPY_ONE(x)                             \
195            SKIP_ONE(x);                            \
196            *pDst = y >> shift;                     \
197            pDst += dstStep
198    
199            switch (compressionmode) {
200                case 2: // 24 bit uncompressed
201                    pSrc += currentframeoffset * 3;
202                    while (copysamples) {
203                        *pDst = get24(pSrc) >> shift;
204                        pDst += dstStep;
205                        pSrc += 3;
206                        copysamples--;
207                    }
208                    break;
209    
210                case 3: // 24 bit compressed to 16 bit
211                    GET_PARAMS(params);
212                    while (currentframeoffset) {
213                        SKIP_ONE(get16(pSrc));
214                        pSrc += 2;
215                        currentframeoffset--;
216                    }
217                    while (copysamples) {
218                        COPY_ONE(get16(pSrc));
219                        pSrc += 2;
220                        copysamples--;
221                    }
222                    break;
223    
224                case 4: // 24 bit compressed to 12 bit
225                    GET_PARAMS(params);
226                    while (currentframeoffset > 1) {
227                        SKIP_ONE(get12lo(pSrc));
228                        SKIP_ONE(get12hi(pSrc));
229                        pSrc += 3;
230                        currentframeoffset -= 2;
231                    }
232                    if (currentframeoffset) {
233                        SKIP_ONE(get12lo(pSrc));
234                        currentframeoffset--;
235                        if (copysamples) {
236                            COPY_ONE(get12hi(pSrc));
237                            pSrc += 3;
238                            copysamples--;
239                        }
240                    }
241                    while (copysamples > 1) {
242                        COPY_ONE(get12lo(pSrc));
243                        COPY_ONE(get12hi(pSrc));
244                        pSrc += 3;
245                        copysamples -= 2;
246                    }
247                    if (copysamples) {
248                        COPY_ONE(get12lo(pSrc));
249                    }
250                    break;
251    
252                case 5: // 24 bit compressed to 8 bit
253                    GET_PARAMS(params);
254                    while (currentframeoffset) {
255                        SKIP_ONE(int8_t(*pSrc++));
256                        currentframeoffset--;
257                    }
258                    while (copysamples) {
259                        COPY_ONE(int8_t(*pSrc++));
260                        copysamples--;
261                    }
262                    break;
263            }
264        }
265    
266        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
267        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
268        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
269        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
270    }
271    
272    
273  // *************** Sample ***************  // *************** Sample ***************
274  // *  // *
275    
276      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
277      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
278    
279      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
280         *
281         * Load an existing sample or create a new one. A 'wave' list chunk must
282         * be given to this constructor. In case the given 'wave' list chunk
283         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
284         * format and sample data will be loaded from there, otherwise default
285         * values will be used and those chunks will be created when
286         * File::Save() will be called later on.
287         *
288         * @param pFile          - pointer to gig::File where this sample is
289         *                         located (or will be located)
290         * @param waveList       - pointer to 'wave' list chunk which is (or
291         *                         will be) associated with this sample
292         * @param WavePoolOffset - offset of this sample data from wave pool
293         *                         ('wvpl') list chunk
294         * @param fileNo         - number of an extension file where this sample
295         *                         is located, 0 otherwise
296         */
297        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
298          Instances++;          Instances++;
299            FileNo = fileNo;
300    
301          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
302          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
303          SampleGroup = _3gix->ReadInt16();              SampleGroup = pCk3gix->ReadInt16();
304            } else { // '3gix' chunk missing
305          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              // use default value(s)
306          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              SampleGroup = 0;
307          Manufacturer      = smpl->ReadInt32();          }
308          Product           = smpl->ReadInt32();  
309          SamplePeriod      = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
310          MIDIUnityNote     = smpl->ReadInt32();          if (pCkSmpl) {
311          FineTune          = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
312          smpl->Read(&SMPTEFormat, 1, 4);              Product       = pCkSmpl->ReadInt32();
313          SMPTEOffset       = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
314          Loops             = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
315          uint32_t manufByt = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
316          LoopID            = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
317          smpl->Read(&LoopType, 1, 4);              SMPTEOffset   = pCkSmpl->ReadInt32();
318          LoopStart         = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
319          LoopEnd           = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
320          LoopFraction      = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
321          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
322                LoopStart     = pCkSmpl->ReadInt32();
323                LoopEnd       = pCkSmpl->ReadInt32();
324                LoopFraction  = pCkSmpl->ReadInt32();
325                LoopPlayCount = pCkSmpl->ReadInt32();
326            } else { // 'smpl' chunk missing
327                // use default values
328                Manufacturer  = 0;
329                Product       = 0;
330                SamplePeriod  = 1 / SamplesPerSecond;
331                MIDIUnityNote = 64;
332                FineTune      = 0;
333                SMPTEOffset   = 0;
334                Loops         = 0;
335                LoopID        = 0;
336                LoopStart     = 0;
337                LoopEnd       = 0;
338                LoopFraction  = 0;
339                LoopPlayCount = 0;
340            }
341    
342          FrameTable                 = NULL;          FrameTable                 = NULL;
343          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 345  namespace gig {
345          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
346          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
347    
348          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
349    
350            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
351            Compressed        = ewav;
352            Dithered          = false;
353            TruncatedBits     = 0;
354          if (Compressed) {          if (Compressed) {
355              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
356              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
357                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
358                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
359                    TruncatedBits = ewav->ReadInt32();
360              }              }
361                ScanCompressedSample();
362          }          }
363          FrameOffset = 0; // just for streaming compressed samples  
364            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
365            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
366                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
367                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
368            }
369            FrameOffset = 0; // just for streaming compressed samples
370    
371          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart;
372      }      }
373    
374        /**
375         * Apply sample and its settings to the respective RIFF chunks. You have
376         * to call File::Save() to make changes persistent.
377         *
378         * Usually there is absolutely no need to call this method explicitly.
379         * It will be called automatically when File::Save() was called.
380         *
381         * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
382         *                        was provided yet
383         * @throws gig::Exception if there is any invalid sample setting
384         */
385        void Sample::UpdateChunks() {
386            // first update base class's chunks
387            DLS::Sample::UpdateChunks();
388    
389            // make sure 'smpl' chunk exists
390            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
391            if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
392            // update 'smpl' chunk
393            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
394            SamplePeriod = 1 / SamplesPerSecond;
395            memcpy(&pData[0], &Manufacturer, 4);
396            memcpy(&pData[4], &Product, 4);
397            memcpy(&pData[8], &SamplePeriod, 4);
398            memcpy(&pData[12], &MIDIUnityNote, 4);
399            memcpy(&pData[16], &FineTune, 4);
400            memcpy(&pData[20], &SMPTEFormat, 4);
401            memcpy(&pData[24], &SMPTEOffset, 4);
402            memcpy(&pData[28], &Loops, 4);
403    
404            // we skip 'manufByt' for now (4 bytes)
405    
406            memcpy(&pData[36], &LoopID, 4);
407            memcpy(&pData[40], &LoopType, 4);
408            memcpy(&pData[44], &LoopStart, 4);
409            memcpy(&pData[48], &LoopEnd, 4);
410            memcpy(&pData[52], &LoopFraction, 4);
411            memcpy(&pData[56], &LoopPlayCount, 4);
412    
413            // make sure '3gix' chunk exists
414            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
415            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
416            // update '3gix' chunk
417            pData = (uint8_t*) pCk3gix->LoadChunkData();
418            memcpy(&pData[0], &SampleGroup, 2);
419        }
420    
421      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
422      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
423          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
424          this->SamplesTotal = 0;          this->SamplesTotal = 0;
425          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
426    
427            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
428            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
429    
430          // Scanning          // Scanning
431          pCkData->SetPos(0);          pCkData->SetPos(0);
432          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
433              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
434              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
435              this->SamplesTotal += 2048;                  // stored, to save some memory
436              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
437                  case 1:   // left channel compressed  
438                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
439                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
440                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
441                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
442    
443                    if (pCkData->RemainingBytes() <= frameSize) {
444                        SamplesInLastFrame =
445                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
446                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
447                        SamplesTotal += SamplesInLastFrame;
448                      break;                      break;
449                  case 257: // both channels compressed                  }
450                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
451                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
452                }
453            }
454            else { // Mono
455                for (int i = 0 ; ; i++) {
456                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
457    
458                    const int mode = pCkData->ReadUint8();
459                    if (mode > 5) throw gig::Exception("Unknown compression mode");
460                    const unsigned long frameSize = bytesPerFrame[mode];
461    
462                    if (pCkData->RemainingBytes() <= frameSize) {
463                        SamplesInLastFrame =
464                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
465                        SamplesTotal += SamplesInLastFrame;
466                      break;                      break;
467                  default: // both channels uncompressed                  }
468                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
469                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
470              }              }
471          }          }
472          pCkData->SetPos(0);          pCkData->SetPos(0);
473    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
474          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
475          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
476          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 141  namespace gig { Line 506  namespace gig {
506       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
507       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
508       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
509       *       * @code
510       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
511       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
512         * @endcode
513       *       *
514       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
515       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 189  namespace gig { Line 555  namespace gig {
555       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
556       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
557       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
558       *       * @code
559       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
560       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
561       *       * @endcode
562       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
563       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
564       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 252  namespace gig { Line 618  namespace gig {
618          RAMCache.Size   = 0;          RAMCache.Size   = 0;
619      }      }
620    
621        /** @brief Resize sample.
622         *
623         * Resizes the sample's wave form data, that is the actual size of
624         * sample wave data possible to be written for this sample. This call
625         * will return immediately and just schedule the resize operation. You
626         * should call File::Save() to actually perform the resize operation(s)
627         * "physically" to the file. As this can take a while on large files, it
628         * is recommended to call Resize() first on all samples which have to be
629         * resized and finally to call File::Save() to perform all those resize
630         * operations in one rush.
631         *
632         * The actual size (in bytes) is dependant to the current FrameSize
633         * value. You may want to set FrameSize before calling Resize().
634         *
635         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
636         * enlarged samples before calling File::Save() as this might exceed the
637         * current sample's boundary!
638         *
639         * Also note: only WAVE_FORMAT_PCM is currently supported, that is
640         * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
641         * other formats will fail!
642         *
643         * @param iNewSize - new sample wave data size in sample points (must be
644         *                   greater than zero)
645         * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
646         *                         or if \a iNewSize is less than 1
647         * @throws gig::Exception if existing sample is compressed
648         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
649         *      DLS::Sample::FormatTag, File::Save()
650         */
651        void Sample::Resize(int iNewSize) {
652            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
653            DLS::Sample::Resize(iNewSize);
654        }
655    
656      /**      /**
657       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
658       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 323  namespace gig { Line 724  namespace gig {
724       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
725       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
726       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
727       *       * @code
728       * <i>       * gig::playback_state_t playbackstate;
729       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
730       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
731       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
732       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
733       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
734       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
735       * The method already handles such cases by itself.       * The method already handles such cases by itself.
736       *       *
737         * <b>Caution:</b> If you are using more than one streaming thread, you
738         * have to use an external decompression buffer for <b>EACH</b>
739         * streaming thread to avoid race conditions and crashes!
740         *
741       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
742       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
743       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
744       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
745         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
746       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
747         * @see                    CreateDecompressionBuffer()
748       */       */
749      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
750          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
751          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
752    
# Line 359  namespace gig { Line 764  namespace gig {
764                          if (!pPlaybackState->reverse) { // forward playback                          if (!pPlaybackState->reverse) { // forward playback
765                              do {                              do {
766                                  samplestoloopend  = this->LoopEnd - GetPos();                                  samplestoloopend  = this->LoopEnd - GetPos();
767                                  readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                                  readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
768                                  samplestoread    -= readsamples;                                  samplestoread    -= readsamples;
769                                  totalreadsamples += readsamples;                                  totalreadsamples += readsamples;
770                                  if (readsamples == samplestoloopend) {                                  if (readsamples == samplestoloopend) {
# Line 385  namespace gig { Line 790  namespace gig {
790    
791                              // read samples for backward playback                              // read samples for backward playback
792                              do {                              do {
793                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
794                                  samplestoreadinloop -= readsamples;                                  samplestoreadinloop -= readsamples;
795                                  samplestoread       -= readsamples;                                  samplestoread       -= readsamples;
796                                  totalreadsamples    += readsamples;                                  totalreadsamples    += readsamples;
# Line 409  namespace gig { Line 814  namespace gig {
814                      // forward playback (not entered the loop yet)                      // forward playback (not entered the loop yet)
815                      if (!pPlaybackState->reverse) do {                      if (!pPlaybackState->reverse) do {
816                          samplestoloopend  = this->LoopEnd - GetPos();                          samplestoloopend  = this->LoopEnd - GetPos();
817                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
818                          samplestoread    -= readsamples;                          samplestoread    -= readsamples;
819                          totalreadsamples += readsamples;                          totalreadsamples += readsamples;
820                          if (readsamples == samplestoloopend) {                          if (readsamples == samplestoloopend) {
# Line 439  namespace gig { Line 844  namespace gig {
844                          // if not endless loop check if max. number of loop cycles have been passed                          // if not endless loop check if max. number of loop cycles have been passed
845                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
846                          samplestoloopend     = this->LoopEnd - GetPos();                          samplestoloopend     = this->LoopEnd - GetPos();
847                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
848                          samplestoreadinloop -= readsamples;                          samplestoreadinloop -= readsamples;
849                          samplestoread       -= readsamples;                          samplestoread       -= readsamples;
850                          totalreadsamples    += readsamples;                          totalreadsamples    += readsamples;
# Line 461  namespace gig { Line 866  namespace gig {
866                          // if not endless loop check if max. number of loop cycles have been passed                          // if not endless loop check if max. number of loop cycles have been passed
867                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
868                          samplestoloopend  = this->LoopEnd - GetPos();                          samplestoloopend  = this->LoopEnd - GetPos();
869                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
870                          samplestoread    -= readsamples;                          samplestoread    -= readsamples;
871                          totalreadsamples += readsamples;                          totalreadsamples += readsamples;
872                          if (readsamples == samplestoloopend) {                          if (readsamples == samplestoloopend) {
# Line 476  namespace gig { Line 881  namespace gig {
881    
882          // read on without looping          // read on without looping
883          if (samplestoread) do {          if (samplestoread) do {
884              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
885              samplestoread    -= readsamples;              samplestoread    -= readsamples;
886              totalreadsamples += readsamples;              totalreadsamples += readsamples;
887          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 900  namespace gig {
900       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
901       * thus for disk streaming.       * thus for disk streaming.
902       *       *
903         * <b>Caution:</b> If you are using more than one streaming thread, you
904         * have to use an external decompression buffer for <b>EACH</b>
905         * streaming thread to avoid race conditions and crashes!
906         *
907       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
908       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
909         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
910       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
911       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
912       */       */
913      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
914          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
915          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
916          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
917                    // 24 bit sample. For now just truncate to 16 bit.
918                    unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
919                    int16_t* pDst = static_cast<int16_t*>(pBuffer);
920                    if (Channels == 2) { // Stereo
921                        unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
922                        pSrc++;
923                        for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
924                            *pDst++ = get16(pSrc);
925                            pSrc += 3;
926                        }
927                        return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
928                    }
929                    else { // Mono
930                        unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
931                        pSrc++;
932                        for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
933                            *pDst++ = get16(pSrc);
934                            pSrc += 3;
935                        }
936                        return pDst - static_cast<int16_t*>(pBuffer);
937                    }
938                }
939                else { // 16 bit
940                    // (pCkData->Read does endian correction)
941                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
942                                         : pCkData->Read(pBuffer, SampleCount, 2);
943                }
944            }
945            else {
946              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
947              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
948              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
949                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
950                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
951                            copysamples;                            copysamples, skipsamples,
952              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
953              this->FrameOffset = 0;              this->FrameOffset = 0;
954    
955              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
956                  // local buffer reallocation - hope this won't happen  
957                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
958                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
959                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
960                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
961                    remainingsamples = SampleCount;
962                    assumedsize      = GuessSize(SampleCount);
963              }              }
964    
965              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
966              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
             int16_t* pDst = (int16_t*) pBuffer;  
967              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
968    
969              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
970                    unsigned long framesamples = SamplesPerFrame;
971                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
972                  if (remainingbytes < 8194) {  
973                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
974                          this->SamplePos = this->SamplesTotal;  
975                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
976                        mode_r = *pSrc++;
977                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
978                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
979                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
980                        if (remainingbytes < framebytes) { // last frame in sample
981                            framesamples = SamplesInLastFrame;
982                            if (mode_l == 4 && (framesamples & 1)) {
983                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
984                            }
985                            else {
986                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
987                            }
988                        }
989                    }
990                    else {
991                        framebytes = bytesPerFrame[mode_l] + 1;
992                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
993                        if (remainingbytes < framebytes) {
994                            framesamples = SamplesInLastFrame;
995                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
996                  }                  }
997    
998                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
999                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1000                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1001                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1002                            skipsamples = currentframeoffset;
1003                        }
1004                        else {
1005                            copysamples = 0;
1006                            skipsamples = framesamples;
1007                        }
1008                  }                  }
1009                  else {                  else {
1010                        // This frame has enough data for pBuffer, but not
1011                        // all of the frame is needed. Set file position
1012                        // to start of this frame for next call to Read.
1013                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1014                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1015                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1016                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1017                      }                  }
1018                      else {                  remainingsamples -= copysamples;
1019    
1020                    if (remainingbytes > framebytes) {
1021                        remainingbytes -= framebytes;
1022                        if (remainingsamples == 0 &&
1023                            currentframeoffset + copysamples == framesamples) {
1024                            // This frame has enough data for pBuffer, and
1025                            // all of the frame is needed. Set file
1026                            // position to start of next frame for next
1027                            // call to Read. FrameOffset is 0.
1028                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1029                      }                      }
1030                  }                  }
1031                    else remainingbytes = 0;
1032    
1033                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1034                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1035                  switch (compressionmode) {                  if (copysamples == 0) {
1036                      case 1: // left channel compressed                      // skip this frame
1037                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1038                          if (!remainingsamples && copysamples == 2048)                  }
1039                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1040                        const unsigned char* const param_l = pSrc;
1041                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1042                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1043                          while (currentframeoffset) {  
1044                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1045                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1046                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1047                              currentframeoffset--;  
1048                          }                              Decompress24(mode_l, param_l, 2, pSrc, pDst,
1049                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1050                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
1051                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1052                              *pDst = left; pDst++;                              pDst += copysamples << 1;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1053                          }                          }
1054                          while (copysamples) {                          else { // Mono
1055                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 1, pSrc, pDst,
1056                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1057                              right  -= dright;                              pDst += copysamples;
                             *pDst = right; pDst++;  
                             copysamples--;  
1058                          }                          }
1059                          break;                      }
1060                      case 257: // both channels compressed                      else { // 16 bit
1061                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1062                          if (!remainingsamples && copysamples == 2048)  
1063                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1064                            if (Channels == 2) { // Stereo
1065                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1066                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1067                          right  = *(int16_t*)pSrc; pSrc+=2;  
1068                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1069                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1070                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1071                              left   -= dleft;                                           skipsamples, copysamples);
1072                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1073                          }                          }
1074                          while (copysamples) {                          else { // Mono
1075                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1076                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1077                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1078                          }                          }
1079                          break;                      }
1080                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1081                  }                  }
1082              }  
1083                    // reload from disk to local buffer if needed
1084                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1085                        assumedsize    = GuessSize(remainingsamples);
1086                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1087                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1088                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1089                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1090                    }
1091                } // while
1092    
1093              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1094              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1095              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1096          }          }
1097      }      }
1098    
1099        /** @brief Write sample wave data.
1100         *
1101         * Writes \a SampleCount number of sample points from the buffer pointed
1102         * by \a pBuffer and increments the position within the sample. Use this
1103         * method to directly write the sample data to disk, i.e. if you don't
1104         * want or cannot load the whole sample data into RAM.
1105         *
1106         * You have to Resize() the sample to the desired size and call
1107         * File::Save() <b>before</b> using Write().
1108         *
1109         * Note: there is currently no support for writing compressed samples.
1110         *
1111         * @param pBuffer     - source buffer
1112         * @param SampleCount - number of sample points to write
1113         * @throws DLS::Exception if current sample size is too small
1114         * @throws gig::Exception if sample is compressed
1115         * @see DLS::LoadSampleData()
1116         */
1117        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1118            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1119            return DLS::Sample::Write(pBuffer, SampleCount);
1120        }
1121    
1122        /**
1123         * Allocates a decompression buffer for streaming (compressed) samples
1124         * with Sample::Read(). If you are using more than one streaming thread
1125         * in your application you <b>HAVE</b> to create a decompression buffer
1126         * for <b>EACH</b> of your streaming threads and provide it with the
1127         * Sample::Read() call in order to avoid race conditions and crashes.
1128         *
1129         * You should free the memory occupied by the allocated buffer(s) once
1130         * you don't need one of your streaming threads anymore by calling
1131         * DestroyDecompressionBuffer().
1132         *
1133         * @param MaxReadSize - the maximum size (in sample points) you ever
1134         *                      expect to read with one Read() call
1135         * @returns allocated decompression buffer
1136         * @see DestroyDecompressionBuffer()
1137         */
1138        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1139            buffer_t result;
1140            const double worstCaseHeaderOverhead =
1141                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1142            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1143            result.pStart            = new int8_t[result.Size];
1144            result.NullExtensionSize = 0;
1145            return result;
1146        }
1147    
1148        /**
1149         * Free decompression buffer, previously created with
1150         * CreateDecompressionBuffer().
1151         *
1152         * @param DecompressionBuffer - previously allocated decompression
1153         *                              buffer to free
1154         */
1155        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1156            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1157                delete[] (int8_t*) DecompressionBuffer.pStart;
1158                DecompressionBuffer.pStart = NULL;
1159                DecompressionBuffer.Size   = 0;
1160                DecompressionBuffer.NullExtensionSize = 0;
1161            }
1162        }
1163    
1164      Sample::~Sample() {      Sample::~Sample() {
1165          Instances--;          Instances--;
1166          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1167                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1168                InternalDecompressionBuffer.pStart = NULL;
1169                InternalDecompressionBuffer.Size   = 0;
1170            }
1171          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1172          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1173      }      }
# Line 676  namespace gig { Line 1183  namespace gig {
1183      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1184          Instances++;          Instances++;
1185    
1186            pSample = NULL;
1187    
1188          memcpy(&Crossfade, &SamplerOptions, 4);          memcpy(&Crossfade, &SamplerOptions, 4);
1189          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1190    
1191          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1192          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1193          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1194          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1195          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1196          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1197          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1198          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1199          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1200          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1201          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1202          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1203          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1204          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1205          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1206          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1207          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1208          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1209          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1210          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1211          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1212          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1213          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1214          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1215          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1216          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1217          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1218          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1219          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1220          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1221          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1223          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1224          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1225          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1226          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1227          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1228          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1229          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1230          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1231          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1232          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1233          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1234          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1235          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1236          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1237          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1238          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1239          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1240          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1241          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1242          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1243              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1244              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1245          }                  VelocityResponseDepth = velocityresponse;
1246          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1247              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1248              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1249          }              } else if (velocityresponse < 15) {
1250          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1251              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1252              VelocityResponseDepth = velocityresponse - 10;              } else {
1253          }                  VelocityResponseCurve = curve_type_unknown;
1254          else {                  VelocityResponseDepth = 0;
1255              VelocityResponseCurve = curve_type_unknown;              }
1256              VelocityResponseDepth = 0;              uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1257          }              if (releasevelocityresponse < 5) {
1258          uint8_t releasevelocityresponse = _3ewa->ReadUint8();                  ReleaseVelocityResponseCurve = curve_type_nonlinear;
1259          if (releasevelocityresponse < 5) {                  ReleaseVelocityResponseDepth = releasevelocityresponse;
1260              ReleaseVelocityResponseCurve = curve_type_nonlinear;              } else if (releasevelocityresponse < 10) {
1261              ReleaseVelocityResponseDepth = releasevelocityresponse;                  ReleaseVelocityResponseCurve = curve_type_linear;
1262          }                  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1263          else if (releasevelocityresponse < 10) {              } else if (releasevelocityresponse < 15) {
1264              ReleaseVelocityResponseCurve = curve_type_linear;                  ReleaseVelocityResponseCurve = curve_type_special;
1265              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1266          }              } else {
1267          else if (releasevelocityresponse < 15) {                  ReleaseVelocityResponseCurve = curve_type_unknown;
1268              ReleaseVelocityResponseCurve = curve_type_special;                  ReleaseVelocityResponseDepth = 0;
1269              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;              }
1270          }              VelocityResponseCurveScaling = _3ewa->ReadUint8();
1271          else {              AttenuationControllerThreshold = _3ewa->ReadInt8();
1272              ReleaseVelocityResponseCurve = curve_type_unknown;              _3ewa->ReadInt32(); // unknown
1273              ReleaseVelocityResponseDepth = 0;              SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1274                _3ewa->ReadInt16(); // unknown
1275                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1276                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1277                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1278                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1279                else                                       DimensionBypass = dim_bypass_ctrl_none;
1280                uint8_t pan = _3ewa->ReadUint8();
1281                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1282                SelfMask = _3ewa->ReadInt8() & 0x01;
1283                _3ewa->ReadInt8(); // unknown
1284                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1285                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1286                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1287                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1288                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1289                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1290                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1291                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1292                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1293                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1294                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1295                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1296                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1297                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1298                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1299                                                            : vcf_res_ctrl_none;
1300                uint16_t eg3depth = _3ewa->ReadUint16();
1301                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1302                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1303                _3ewa->ReadInt16(); // unknown
1304                ChannelOffset = _3ewa->ReadUint8() / 4;
1305                uint8_t regoptions = _3ewa->ReadUint8();
1306                MSDecode           = regoptions & 0x01; // bit 0
1307                SustainDefeat      = regoptions & 0x02; // bit 1
1308                _3ewa->ReadInt16(); // unknown
1309                VelocityUpperLimit = _3ewa->ReadInt8();
1310                _3ewa->ReadInt8(); // unknown
1311                _3ewa->ReadInt16(); // unknown
1312                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1313                _3ewa->ReadInt8(); // unknown
1314                _3ewa->ReadInt8(); // unknown
1315                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1316                uint8_t vcfcutoff = _3ewa->ReadUint8();
1317                VCFEnabled = vcfcutoff & 0x80; // bit 7
1318                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1319                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1320                uint8_t vcfvelscale = _3ewa->ReadUint8();
1321                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1322                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1323                _3ewa->ReadInt8(); // unknown
1324                uint8_t vcfresonance = _3ewa->ReadUint8();
1325                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1326                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1327                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1328                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1329                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1330                uint8_t vcfvelocity = _3ewa->ReadUint8();
1331                VCFVelocityDynamicRange = vcfvelocity % 5;
1332                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1333                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1334                if (VCFType == vcf_type_lowpass) {
1335                    if (lfo3ctrl & 0x40) // bit 6
1336                        VCFType = vcf_type_lowpassturbo;
1337                }
1338            } else { // '3ewa' chunk does not exist yet
1339                // use default values
1340                LFO3Frequency                   = 1.0;
1341                EG3Attack                       = 0.0;
1342                LFO1InternalDepth               = 0;
1343                LFO3InternalDepth               = 0;
1344                LFO1ControlDepth                = 0;
1345                LFO3ControlDepth                = 0;
1346                EG1Attack                       = 0.0;
1347                EG1Decay1                       = 0.0;
1348                EG1Sustain                      = 0;
1349                EG1Release                      = 0.0;
1350                EG1Controller.type              = eg1_ctrl_t::type_none;
1351                EG1Controller.controller_number = 0;
1352                EG1ControllerInvert             = false;
1353                EG1ControllerAttackInfluence    = 0;
1354                EG1ControllerDecayInfluence     = 0;
1355                EG1ControllerReleaseInfluence   = 0;
1356                EG2Controller.type              = eg2_ctrl_t::type_none;
1357                EG2Controller.controller_number = 0;
1358                EG2ControllerInvert             = false;
1359                EG2ControllerAttackInfluence    = 0;
1360                EG2ControllerDecayInfluence     = 0;
1361                EG2ControllerReleaseInfluence   = 0;
1362                LFO1Frequency                   = 1.0;
1363                EG2Attack                       = 0.0;
1364                EG2Decay1                       = 0.0;
1365                EG2Sustain                      = 0;
1366                EG2Release                      = 0.0;
1367                LFO2ControlDepth                = 0;
1368                LFO2Frequency                   = 1.0;
1369                LFO2InternalDepth               = 0;
1370                EG1Decay2                       = 0.0;
1371                EG1InfiniteSustain              = false;
1372                EG1PreAttack                    = 1000;
1373                EG2Decay2                       = 0.0;
1374                EG2InfiniteSustain              = false;
1375                EG2PreAttack                    = 1000;
1376                VelocityResponseCurve           = curve_type_nonlinear;
1377                VelocityResponseDepth           = 3;
1378                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1379                ReleaseVelocityResponseDepth    = 3;
1380                VelocityResponseCurveScaling    = 32;
1381                AttenuationControllerThreshold  = 0;
1382                SampleStartOffset               = 0;
1383                PitchTrack                      = true;
1384                DimensionBypass                 = dim_bypass_ctrl_none;
1385                Pan                             = 0;
1386                SelfMask                        = true;
1387                LFO3Controller                  = lfo3_ctrl_modwheel;
1388                LFO3Sync                        = false;
1389                InvertAttenuationController     = false;
1390                AttenuationController.type      = attenuation_ctrl_t::type_none;
1391                AttenuationController.controller_number = 0;
1392                LFO2Controller                  = lfo2_ctrl_internal;
1393                LFO2FlipPhase                   = false;
1394                LFO2Sync                        = false;
1395                LFO1Controller                  = lfo1_ctrl_internal;
1396                LFO1FlipPhase                   = false;
1397                LFO1Sync                        = false;
1398                VCFResonanceController          = vcf_res_ctrl_none;
1399                EG3Depth                        = 0;
1400                ChannelOffset                   = 0;
1401                MSDecode                        = false;
1402                SustainDefeat                   = false;
1403                VelocityUpperLimit              = 0;
1404                ReleaseTriggerDecay             = 0;
1405                EG1Hold                         = false;
1406                VCFEnabled                      = false;
1407                VCFCutoff                       = 0;
1408                VCFCutoffController             = vcf_cutoff_ctrl_none;
1409                VCFCutoffControllerInvert       = false;
1410                VCFVelocityScale                = 0;
1411                VCFResonance                    = 0;
1412                VCFResonanceDynamic             = false;
1413                VCFKeyboardTracking             = false;
1414                VCFKeyboardTrackingBreakpoint   = 0;
1415                VCFVelocityDynamicRange         = 0x04;
1416                VCFVelocityCurve                = curve_type_linear;
1417                VCFType                         = vcf_type_lowpass;
1418            }
1419    
1420            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1421                                                         VelocityResponseDepth,
1422                                                         VelocityResponseCurveScaling);
1423    
1424            curve_type_t curveType = ReleaseVelocityResponseCurve;
1425            uint8_t depth = ReleaseVelocityResponseDepth;
1426    
1427            // this models a strange behaviour or bug in GSt: two of the
1428            // velocity response curves for release time are not used even
1429            // if specified, instead another curve is chosen.
1430            if ((curveType == curve_type_nonlinear && depth == 0) ||
1431                (curveType == curve_type_special   && depth == 4)) {
1432                curveType = curve_type_nonlinear;
1433                depth = 3;
1434            }
1435            pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1436    
1437            curveType = VCFVelocityCurve;
1438            depth = VCFVelocityDynamicRange;
1439    
1440            // even stranger GSt: two of the velocity response curves for
1441            // filter cutoff are not used, instead another special curve
1442            // is chosen. This curve is not used anywhere else.
1443            if ((curveType == curve_type_nonlinear && depth == 0) ||
1444                (curveType == curve_type_special   && depth == 4)) {
1445                curveType = curve_type_special;
1446                depth = 5;
1447          }          }
1448          VelocityResponseCurveScaling = _3ewa->ReadUint8();          pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1449          AttenuationControlTreshold   = _3ewa->ReadInt8();                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1450    
1451          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1452          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;      }
1453          if (pVelocityTables->count(tableKey)) { // if key exists  
1454              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];      /**
1455         * Apply dimension region settings to the respective RIFF chunks. You
1456         * have to call File::Save() to make changes persistent.
1457         *
1458         * Usually there is absolutely no need to call this method explicitly.
1459         * It will be called automatically when File::Save() was called.
1460         */
1461        void DimensionRegion::UpdateChunks() {
1462            // first update base class's chunk
1463            DLS::Sampler::UpdateChunks();
1464    
1465            // make sure '3ewa' chunk exists
1466            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1467            if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1468            uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1469    
1470            // update '3ewa' chunk with DimensionRegion's current settings
1471    
1472            const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1473            memcpy(&pData[0], &unknown, 4);
1474    
1475            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1476            memcpy(&pData[4], &lfo3freq, 4);
1477    
1478            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1479            memcpy(&pData[4], &eg3attack, 4);
1480    
1481            // next 2 bytes unknown
1482    
1483            memcpy(&pData[10], &LFO1InternalDepth, 2);
1484    
1485            // next 2 bytes unknown
1486    
1487            memcpy(&pData[14], &LFO3InternalDepth, 2);
1488    
1489            // next 2 bytes unknown
1490    
1491            memcpy(&pData[18], &LFO1ControlDepth, 2);
1492    
1493            // next 2 bytes unknown
1494    
1495            memcpy(&pData[22], &LFO3ControlDepth, 2);
1496    
1497            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1498            memcpy(&pData[24], &eg1attack, 4);
1499    
1500            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1501            memcpy(&pData[28], &eg1decay1, 4);
1502    
1503            // next 2 bytes unknown
1504    
1505            memcpy(&pData[34], &EG1Sustain, 2);
1506    
1507            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1508            memcpy(&pData[36], &eg1release, 4);
1509    
1510            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1511            memcpy(&pData[40], &eg1ctl, 1);
1512    
1513            const uint8_t eg1ctrloptions =
1514                (EG1ControllerInvert) ? 0x01 : 0x00 |
1515                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1516                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1517                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1518            memcpy(&pData[41], &eg1ctrloptions, 1);
1519    
1520            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1521            memcpy(&pData[42], &eg2ctl, 1);
1522    
1523            const uint8_t eg2ctrloptions =
1524                (EG2ControllerInvert) ? 0x01 : 0x00 |
1525                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1526                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1527                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1528            memcpy(&pData[43], &eg2ctrloptions, 1);
1529    
1530            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1531            memcpy(&pData[44], &lfo1freq, 4);
1532    
1533            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1534            memcpy(&pData[48], &eg2attack, 4);
1535    
1536            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1537            memcpy(&pData[52], &eg2decay1, 4);
1538    
1539            // next 2 bytes unknown
1540    
1541            memcpy(&pData[58], &EG2Sustain, 2);
1542    
1543            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1544            memcpy(&pData[60], &eg2release, 4);
1545    
1546            // next 2 bytes unknown
1547    
1548            memcpy(&pData[66], &LFO2ControlDepth, 2);
1549    
1550            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1551            memcpy(&pData[68], &lfo2freq, 4);
1552    
1553            // next 2 bytes unknown
1554    
1555            memcpy(&pData[72], &LFO2InternalDepth, 2);
1556    
1557            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1558            memcpy(&pData[74], &eg1decay2, 4);
1559    
1560            // next 2 bytes unknown
1561    
1562            memcpy(&pData[80], &EG1PreAttack, 2);
1563    
1564            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1565            memcpy(&pData[82], &eg2decay2, 4);
1566    
1567            // next 2 bytes unknown
1568    
1569            memcpy(&pData[88], &EG2PreAttack, 2);
1570    
1571            {
1572                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1573                uint8_t velocityresponse = VelocityResponseDepth;
1574                switch (VelocityResponseCurve) {
1575                    case curve_type_nonlinear:
1576                        break;
1577                    case curve_type_linear:
1578                        velocityresponse += 5;
1579                        break;
1580                    case curve_type_special:
1581                        velocityresponse += 10;
1582                        break;
1583                    case curve_type_unknown:
1584                    default:
1585                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1586                }
1587                memcpy(&pData[90], &velocityresponse, 1);
1588          }          }
1589          else {  
1590              pVelocityAttenuationTable = new double[128];          {
1591              switch (VelocityResponseCurve) { // calculate the new table              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1592                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1593                switch (ReleaseVelocityResponseCurve) {
1594                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1595                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1596                  case curve_type_linear:                  case curve_type_linear:
1597                      for (int velocity = 0; velocity < 128; velocity++) {                      releasevelocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1598                      break;                      break;
1599                  case curve_type_special:                  case curve_type_special:
1600                      for (int velocity = 0; velocity < 128; velocity++) {                      releasevelocityresponse += 10;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1601                      break;                      break;
1602                  case curve_type_unknown:                  case curve_type_unknown:
1603                  default:                  default:
1604                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1605                }
1606                memcpy(&pData[91], &releasevelocityresponse, 1);
1607            }
1608    
1609            memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1610    
1611            memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1612    
1613            // next 4 bytes unknown
1614    
1615            memcpy(&pData[98], &SampleStartOffset, 2);
1616    
1617            // next 2 bytes unknown
1618    
1619            {
1620                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1621                switch (DimensionBypass) {
1622                    case dim_bypass_ctrl_94:
1623                        pitchTrackDimensionBypass |= 0x10;
1624                        break;
1625                    case dim_bypass_ctrl_95:
1626                        pitchTrackDimensionBypass |= 0x20;
1627                        break;
1628                    case dim_bypass_ctrl_none:
1629                        //FIXME: should we set anything here?
1630                        break;
1631                    default:
1632                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1633              }              }
1634              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1635            }
1636    
1637            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1638            memcpy(&pData[103], &pan, 1);
1639    
1640            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1641            memcpy(&pData[104], &selfmask, 1);
1642    
1643            // next byte unknown
1644    
1645            {
1646                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1647                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1648                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1649                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1650                memcpy(&pData[106], &lfo3ctrl, 1);
1651            }
1652    
1653            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1654            memcpy(&pData[107], &attenctl, 1);
1655    
1656            {
1657                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1658                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1659                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1660                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1661                memcpy(&pData[108], &lfo2ctrl, 1);
1662            }
1663    
1664            {
1665                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1666                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1667                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1668                if (VCFResonanceController != vcf_res_ctrl_none)
1669                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1670                memcpy(&pData[109], &lfo1ctrl, 1);
1671          }          }
1672    
1673            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1674                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1675            memcpy(&pData[110], &eg3depth, 1);
1676    
1677            // next 2 bytes unknown
1678    
1679            const uint8_t channeloffset = ChannelOffset * 4;
1680            memcpy(&pData[113], &channeloffset, 1);
1681    
1682            {
1683                uint8_t regoptions = 0;
1684                if (MSDecode)      regoptions |= 0x01; // bit 0
1685                if (SustainDefeat) regoptions |= 0x02; // bit 1
1686                memcpy(&pData[114], &regoptions, 1);
1687            }
1688    
1689            // next 2 bytes unknown
1690    
1691            memcpy(&pData[117], &VelocityUpperLimit, 1);
1692    
1693            // next 3 bytes unknown
1694    
1695            memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1696    
1697            // next 2 bytes unknown
1698    
1699            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1700            memcpy(&pData[124], &eg1hold, 1);
1701    
1702            const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1703                                      (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */
1704            memcpy(&pData[125], &vcfcutoff, 1);
1705    
1706            memcpy(&pData[126], &VCFCutoffController, 1);
1707    
1708            const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1709                                        (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1710            memcpy(&pData[127], &vcfvelscale, 1);
1711    
1712            // next byte unknown
1713    
1714            const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1715                                         (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1716            memcpy(&pData[129], &vcfresonance, 1);
1717    
1718            const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1719                                          (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1720            memcpy(&pData[130], &vcfbreakpoint, 1);
1721    
1722            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1723                                        VCFVelocityCurve * 5;
1724            memcpy(&pData[131], &vcfvelocity, 1);
1725    
1726            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1727            memcpy(&pData[132], &vcftype, 1);
1728        }
1729    
1730        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1731        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1732        {
1733            double* table;
1734            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1735            if (pVelocityTables->count(tableKey)) { // if key exists
1736                table = (*pVelocityTables)[tableKey];
1737            }
1738            else {
1739                table = CreateVelocityTable(curveType, depth, scaling);
1740                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1741            }
1742            return table;
1743        }
1744    
1745        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1746            leverage_ctrl_t decodedcontroller;
1747            switch (EncodedController) {
1748                // special controller
1749                case _lev_ctrl_none:
1750                    decodedcontroller.type = leverage_ctrl_t::type_none;
1751                    decodedcontroller.controller_number = 0;
1752                    break;
1753                case _lev_ctrl_velocity:
1754                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
1755                    decodedcontroller.controller_number = 0;
1756                    break;
1757                case _lev_ctrl_channelaftertouch:
1758                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1759                    decodedcontroller.controller_number = 0;
1760                    break;
1761    
1762                // ordinary MIDI control change controller
1763                case _lev_ctrl_modwheel:
1764                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1765                    decodedcontroller.controller_number = 1;
1766                    break;
1767                case _lev_ctrl_breath:
1768                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1769                    decodedcontroller.controller_number = 2;
1770                    break;
1771                case _lev_ctrl_foot:
1772                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1773                    decodedcontroller.controller_number = 4;
1774                    break;
1775                case _lev_ctrl_effect1:
1776                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1777                    decodedcontroller.controller_number = 12;
1778                    break;
1779                case _lev_ctrl_effect2:
1780                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1781                    decodedcontroller.controller_number = 13;
1782                    break;
1783                case _lev_ctrl_genpurpose1:
1784                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1785                    decodedcontroller.controller_number = 16;
1786                    break;
1787                case _lev_ctrl_genpurpose2:
1788                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1789                    decodedcontroller.controller_number = 17;
1790                    break;
1791                case _lev_ctrl_genpurpose3:
1792                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1793                    decodedcontroller.controller_number = 18;
1794                    break;
1795                case _lev_ctrl_genpurpose4:
1796                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1797                    decodedcontroller.controller_number = 19;
1798                    break;
1799                case _lev_ctrl_portamentotime:
1800                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1801                    decodedcontroller.controller_number = 5;
1802                    break;
1803                case _lev_ctrl_sustainpedal:
1804                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1805                    decodedcontroller.controller_number = 64;
1806                    break;
1807                case _lev_ctrl_portamento:
1808                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1809                    decodedcontroller.controller_number = 65;
1810                    break;
1811                case _lev_ctrl_sostenutopedal:
1812                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1813                    decodedcontroller.controller_number = 66;
1814                    break;
1815                case _lev_ctrl_softpedal:
1816                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1817                    decodedcontroller.controller_number = 67;
1818                    break;
1819                case _lev_ctrl_genpurpose5:
1820                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1821                    decodedcontroller.controller_number = 80;
1822                    break;
1823                case _lev_ctrl_genpurpose6:
1824                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1825                    decodedcontroller.controller_number = 81;
1826                    break;
1827                case _lev_ctrl_genpurpose7:
1828                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1829                    decodedcontroller.controller_number = 82;
1830                    break;
1831                case _lev_ctrl_genpurpose8:
1832                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1833                    decodedcontroller.controller_number = 83;
1834                    break;
1835                case _lev_ctrl_effect1depth:
1836                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1837                    decodedcontroller.controller_number = 91;
1838                    break;
1839                case _lev_ctrl_effect2depth:
1840                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1841                    decodedcontroller.controller_number = 92;
1842                    break;
1843                case _lev_ctrl_effect3depth:
1844                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1845                    decodedcontroller.controller_number = 93;
1846                    break;
1847                case _lev_ctrl_effect4depth:
1848                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1849                    decodedcontroller.controller_number = 94;
1850                    break;
1851                case _lev_ctrl_effect5depth:
1852                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1853                    decodedcontroller.controller_number = 95;
1854                    break;
1855    
1856                // unknown controller type
1857                default:
1858                    throw gig::Exception("Unknown leverage controller type.");
1859            }
1860            return decodedcontroller;
1861        }
1862    
1863        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1864            _lev_ctrl_t encodedcontroller;
1865            switch (DecodedController.type) {
1866                // special controller
1867                case leverage_ctrl_t::type_none:
1868                    encodedcontroller = _lev_ctrl_none;
1869                    break;
1870                case leverage_ctrl_t::type_velocity:
1871                    encodedcontroller = _lev_ctrl_velocity;
1872                    break;
1873                case leverage_ctrl_t::type_channelaftertouch:
1874                    encodedcontroller = _lev_ctrl_channelaftertouch;
1875                    break;
1876    
1877                // ordinary MIDI control change controller
1878                case leverage_ctrl_t::type_controlchange:
1879                    switch (DecodedController.controller_number) {
1880                        case 1:
1881                            encodedcontroller = _lev_ctrl_modwheel;
1882                            break;
1883                        case 2:
1884                            encodedcontroller = _lev_ctrl_breath;
1885                            break;
1886                        case 4:
1887                            encodedcontroller = _lev_ctrl_foot;
1888                            break;
1889                        case 12:
1890                            encodedcontroller = _lev_ctrl_effect1;
1891                            break;
1892                        case 13:
1893                            encodedcontroller = _lev_ctrl_effect2;
1894                            break;
1895                        case 16:
1896                            encodedcontroller = _lev_ctrl_genpurpose1;
1897                            break;
1898                        case 17:
1899                            encodedcontroller = _lev_ctrl_genpurpose2;
1900                            break;
1901                        case 18:
1902                            encodedcontroller = _lev_ctrl_genpurpose3;
1903                            break;
1904                        case 19:
1905                            encodedcontroller = _lev_ctrl_genpurpose4;
1906                            break;
1907                        case 5:
1908                            encodedcontroller = _lev_ctrl_portamentotime;
1909                            break;
1910                        case 64:
1911                            encodedcontroller = _lev_ctrl_sustainpedal;
1912                            break;
1913                        case 65:
1914                            encodedcontroller = _lev_ctrl_portamento;
1915                            break;
1916                        case 66:
1917                            encodedcontroller = _lev_ctrl_sostenutopedal;
1918                            break;
1919                        case 67:
1920                            encodedcontroller = _lev_ctrl_softpedal;
1921                            break;
1922                        case 80:
1923                            encodedcontroller = _lev_ctrl_genpurpose5;
1924                            break;
1925                        case 81:
1926                            encodedcontroller = _lev_ctrl_genpurpose6;
1927                            break;
1928                        case 82:
1929                            encodedcontroller = _lev_ctrl_genpurpose7;
1930                            break;
1931                        case 83:
1932                            encodedcontroller = _lev_ctrl_genpurpose8;
1933                            break;
1934                        case 91:
1935                            encodedcontroller = _lev_ctrl_effect1depth;
1936                            break;
1937                        case 92:
1938                            encodedcontroller = _lev_ctrl_effect2depth;
1939                            break;
1940                        case 93:
1941                            encodedcontroller = _lev_ctrl_effect3depth;
1942                            break;
1943                        case 94:
1944                            encodedcontroller = _lev_ctrl_effect4depth;
1945                            break;
1946                        case 95:
1947                            encodedcontroller = _lev_ctrl_effect5depth;
1948                            break;
1949                        default:
1950                            throw gig::Exception("leverage controller number is not supported by the gig format");
1951                    }
1952                default:
1953                    throw gig::Exception("Unknown leverage controller type.");
1954            }
1955            return encodedcontroller;
1956      }      }
1957    
1958      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
# Line 893  namespace gig { Line 1978  namespace gig {
1978       * triggered to get the volume with which the sample should be played       * triggered to get the volume with which the sample should be played
1979       * back.       * back.
1980       *       *
1981       * @param    MIDI velocity value of the triggered key (between 0 and 127)       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
1982       * @returns  amplitude factor (between 0.0 and 1.0)       * @returns                amplitude factor (between 0.0 and 1.0)
1983       */       */
1984      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1985          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
1986      }      }
1987    
1988        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1989            return pVelocityReleaseTable[MIDIKeyVelocity];
1990        }
1991    
1992        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1993            return pVelocityCutoffTable[MIDIKeyVelocity];
1994        }
1995    
1996        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1997    
1998            // line-segment approximations of the 15 velocity curves
1999    
2000            // linear
2001            const int lin0[] = { 1, 1, 127, 127 };
2002            const int lin1[] = { 1, 21, 127, 127 };
2003            const int lin2[] = { 1, 45, 127, 127 };
2004            const int lin3[] = { 1, 74, 127, 127 };
2005            const int lin4[] = { 1, 127, 127, 127 };
2006    
2007            // non-linear
2008            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2009            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2010                                 127, 127 };
2011            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2012                                 127, 127 };
2013            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2014                                 127, 127 };
2015            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2016    
2017            // special
2018            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2019                                 113, 127, 127, 127 };
2020            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2021                                 118, 127, 127, 127 };
2022            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2023                                 85, 90, 91, 127, 127, 127 };
2024            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2025                                 117, 127, 127, 127 };
2026            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2027                                 127, 127 };
2028    
2029            // this is only used by the VCF velocity curve
2030            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2031                                 91, 127, 127, 127 };
2032    
2033            const int* const curves[] = { non0, non1, non2, non3, non4,
2034                                          lin0, lin1, lin2, lin3, lin4,
2035                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2036    
2037            double* const table = new double[128];
2038    
2039            const int* curve = curves[curveType * 5 + depth];
2040            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2041    
2042            table[0] = 0;
2043            for (int x = 1 ; x < 128 ; x++) {
2044    
2045                if (x > curve[2]) curve += 2;
2046                double y = curve[1] + (x - curve[0]) *
2047                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2048                y = y / 127;
2049    
2050                // Scale up for s > 20, down for s < 20. When
2051                // down-scaling, the curve still ends at 1.0.
2052                if (s < 20 && y >= 0.5)
2053                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2054                else
2055                    y = y * (s / 20.0);
2056                if (y > 1) y = 1;
2057    
2058                table[x] = y;
2059            }
2060            return table;
2061        }
2062    
2063    
2064  // *************** Region ***************  // *************** Region ***************
# Line 908  namespace gig { Line 2067  namespace gig {
2067      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2068          // Initialization          // Initialization
2069          Dimensions = 0;          Dimensions = 0;
2070          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2071              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2072          }          }
2073            Layers = 1;
2074            File* file = (File*) GetParent()->GetParent();
2075            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2076    
2077          // Actual Loading          // Actual Loading
2078    
# Line 919  namespace gig { Line 2081  namespace gig {
2081          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2082          if (_3lnk) {          if (_3lnk) {
2083              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2084              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2085                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2086                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2087                    _3lnk->ReadUint8(); // probably the position of the dimension
2088                    _3lnk->ReadUint8(); // unknown
2089                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2090                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2091                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2092                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
# Line 933  namespace gig { Line 2098  namespace gig {
2098                  else { // active dimension                  else { // active dimension
2099                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2100                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2101                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2102                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2103                                                             dimension == dimension_samplechannel) ? split_type_bit                                                             dimension == dimension_samplechannel ||
2104                                                                                                   : split_type_normal;                                                             dimension == dimension_releasetrigger ||
2105                                                               dimension == dimension_roundrobin ||
2106                                                               dimension == dimension_random) ? split_type_bit
2107                                                                                              : split_type_normal;
2108                      pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point                      pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
2109                      pDimensionDefinitions[i].zone_size  =                      pDimensionDefinitions[i].zone_size  =
2110                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2111                                                                                     : 0;                                                                                     : 0;
2112                      Dimensions++;                      Dimensions++;
2113    
2114                        // if this is a layer dimension, remember the amount of layers
2115                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2116                  }                  }
2117                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2118              }              }
2119    
2120              // check velocity dimension (if there is one) for custom defined zone ranges              // check velocity dimension (if there is one) for custom defined zone ranges
# Line 958  namespace gig { Line 2129  namespace gig {
2129                      else { // custom defined ranges                      else { // custom defined ranges
2130                          pDimDef->split_type = split_type_customvelocity;                          pDimDef->split_type = split_type_customvelocity;
2131                          pDimDef->ranges     = new range_t[pDimDef->zones];                          pDimDef->ranges     = new range_t[pDimDef->zones];
2132                          unsigned int bits[5] = {0,0,0,0,0};                          UpdateVelocityTable(pDimDef);
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
2133                      }                      }
2134                  }                  }
2135              }              }
2136    
2137                // jump to start of the wave pool indices (if not already there)
2138                File* file = (File*) GetParent()->GetParent();
2139                if (file->pVersion && file->pVersion->major == 3)
2140                    _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2141                else
2142                    _3lnk->SetPos(44);
2143    
2144              // load sample references              // load sample references
             _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)  
2145              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2146                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2147                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2148              }              }
2149          }          }
2150          else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2151            // make sure there is at least one dimension region
2152            if (!DimensionRegions) {
2153                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2154                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2155                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2156                pDimensionRegions[0] = new DimensionRegion(_3ewl);
2157                DimensionRegions = 1;
2158            }
2159        }
2160    
2161        /**
2162         * Apply Region settings and all its DimensionRegions to the respective
2163         * RIFF chunks. You have to call File::Save() to make changes persistent.
2164         *
2165         * Usually there is absolutely no need to call this method explicitly.
2166         * It will be called automatically when File::Save() was called.
2167         *
2168         * @throws gig::Exception if samples cannot be dereferenced
2169         */
2170        void Region::UpdateChunks() {
2171            // first update base class's chunks
2172            DLS::Region::UpdateChunks();
2173    
2174            // update dimension region's chunks
2175            for (int i = 0; i < DimensionRegions; i++) {
2176                pDimensionRegions[i]->UpdateChunks();
2177            }
2178    
2179            File* pFile = (File*) GetParent()->GetParent();
2180            const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2181            const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2182    
2183            // make sure '3lnk' chunk exists
2184            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2185            if (!_3lnk) {
2186                const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2187                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2188            }
2189    
2190            // update dimension definitions in '3lnk' chunk
2191            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2192            for (int i = 0; i < iMaxDimensions; i++) {
2193                pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;
2194                pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2195                // next 2 bytes unknown
2196                pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2197                // next 3 bytes unknown
2198            }
2199    
2200            // update wave pool table in '3lnk' chunk
2201            const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2202            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2203                int iWaveIndex = -1;
2204                if (i < DimensionRegions) {
2205                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2206                    File::SampleList::iterator iter = pFile->pSamples->begin();
2207                    File::SampleList::iterator end  = pFile->pSamples->end();
2208                    for (int index = 0; iter != end; ++iter, ++index) {
2209                        if (*iter == pDimensionRegions[i]->pSample) {
2210                            iWaveIndex = index;
2211                            break;
2212                        }
2213                    }
2214                    if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2215                }
2216                memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2217            }
2218      }      }
2219    
2220      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1002  namespace gig { Line 2233  namespace gig {
2233          }          }
2234      }      }
2235    
2236        void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {
2237            // get dimension's index
2238            int iDimensionNr = -1;
2239            for (int i = 0; i < Dimensions; i++) {
2240                if (&pDimensionDefinitions[i] == pDimDef) {
2241                    iDimensionNr = i;
2242                    break;
2243                }
2244            }
2245            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2246    
2247            uint8_t bits[8] = { 0 };
2248            int previousUpperLimit = -1;
2249            for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
2250                bits[iDimensionNr] = velocityZone;
2251                DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
2252    
2253                pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;
2254                pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
2255                previousUpperLimit = pDimDef->ranges[velocityZone].high;
2256                // fill velocity table
2257                for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
2258                    VelocityTable[i] = velocityZone;
2259                }
2260            }
2261        }
2262    
2263        /** @brief Einstein would have dreamed of it - create a new dimension.
2264         *
2265         * Creates a new dimension with the dimension definition given by
2266         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2267         * There is a hard limit of dimensions and total amount of "bits" all
2268         * dimensions can have. This limit is dependant to what gig file format
2269         * version this file refers to. The gig v2 (and lower) format has a
2270         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2271         * format has a limit of 8.
2272         *
2273         * @param pDimDef - defintion of the new dimension
2274         * @throws gig::Exception if dimension of the same type exists already
2275         * @throws gig::Exception if amount of dimensions or total amount of
2276         *                        dimension bits limit is violated
2277         */
2278        void Region::AddDimension(dimension_def_t* pDimDef) {
2279            // check if max. amount of dimensions reached
2280            File* file = (File*) GetParent()->GetParent();
2281            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2282            if (Dimensions >= iMaxDimensions)
2283                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2284            // check if max. amount of dimension bits reached
2285            int iCurrentBits = 0;
2286            for (int i = 0; i < Dimensions; i++)
2287                iCurrentBits += pDimensionDefinitions[i].bits;
2288            if (iCurrentBits >= iMaxDimensions)
2289                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2290            const int iNewBits = iCurrentBits + pDimDef->bits;
2291            if (iNewBits > iMaxDimensions)
2292                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2293            // check if there's already a dimensions of the same type
2294            for (int i = 0; i < Dimensions; i++)
2295                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2296                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2297    
2298            // assign definition of new dimension
2299            pDimensionDefinitions[Dimensions] = *pDimDef;
2300    
2301            // create new dimension region(s) for this new dimension
2302            for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2303                //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2304                RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2305                pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2306                DimensionRegions++;
2307            }
2308    
2309            Dimensions++;
2310    
2311            // if this is a layer dimension, update 'Layers' attribute
2312            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2313    
2314            // if this is velocity dimension and got custom defined ranges, update velocity table
2315            if (pDimDef->dimension  == dimension_velocity &&
2316                pDimDef->split_type == split_type_customvelocity) {
2317                UpdateVelocityTable(pDimDef);
2318            }
2319        }
2320    
2321        /** @brief Delete an existing dimension.
2322         *
2323         * Deletes the dimension given by \a pDimDef and deletes all respective
2324         * dimension regions, that is all dimension regions where the dimension's
2325         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2326         * for example this would delete all dimension regions for the case(s)
2327         * where the sustain pedal is pressed down.
2328         *
2329         * @param pDimDef - dimension to delete
2330         * @throws gig::Exception if given dimension cannot be found
2331         */
2332        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2333            // get dimension's index
2334            int iDimensionNr = -1;
2335            for (int i = 0; i < Dimensions; i++) {
2336                if (&pDimensionDefinitions[i] == pDimDef) {
2337                    iDimensionNr = i;
2338                    break;
2339                }
2340            }
2341            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2342    
2343            // get amount of bits below the dimension to delete
2344            int iLowerBits = 0;
2345            for (int i = 0; i < iDimensionNr; i++)
2346                iLowerBits += pDimensionDefinitions[i].bits;
2347    
2348            // get amount ot bits above the dimension to delete
2349            int iUpperBits = 0;
2350            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2351                iUpperBits += pDimensionDefinitions[i].bits;
2352    
2353            // delete dimension regions which belong to the given dimension
2354            // (that is where the dimension's bit > 0)
2355            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2356                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2357                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2358                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2359                                        iObsoleteBit << iLowerBits |
2360                                        iLowerBit;
2361                        delete pDimensionRegions[iToDelete];
2362                        pDimensionRegions[iToDelete] = NULL;
2363                        DimensionRegions--;
2364                    }
2365                }
2366            }
2367    
2368            // defrag pDimensionRegions array
2369            // (that is remove the NULL spaces within the pDimensionRegions array)
2370            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2371                if (!pDimensionRegions[iTo]) {
2372                    if (iFrom <= iTo) iFrom = iTo + 1;
2373                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2374                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2375                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2376                        pDimensionRegions[iFrom] = NULL;
2377                    }
2378                }
2379            }
2380    
2381            // 'remove' dimension definition
2382            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2383                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2384            }
2385            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2386            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2387            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2388            if (pDimensionDefinitions[Dimensions - 1].ranges) {
2389                delete[] pDimensionDefinitions[Dimensions - 1].ranges;
2390                pDimensionDefinitions[Dimensions - 1].ranges = NULL;
2391            }
2392    
2393            Dimensions--;
2394    
2395            // if this was a layer dimension, update 'Layers' attribute
2396            if (pDimDef->dimension == dimension_layer) Layers = 1;
2397        }
2398    
2399      Region::~Region() {      Region::~Region() {
2400          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2401              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
2402          }          }
2403          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2404              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2405          }          }
2406      }      }
# Line 1024  namespace gig { Line 2418  namespace gig {
2418       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2419       * etc.).       * etc.).
2420       *       *
2421       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
2422       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
2423       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
2424       * @see             Dimensions       * @see             Dimensions
2425       */       */
2426      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2427          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits[8] = { 0 };
2428          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2429                bits[i] = DimValues[i];
2430              switch (pDimensionDefinitions[i].split_type) {              switch (pDimensionDefinitions[i].split_type) {
2431                  case split_type_normal:                  case split_type_normal:
2432                      bits[i] /= pDimensionDefinitions[i].zone_size;                      bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);
2433                      break;                      break;
2434                  case split_type_customvelocity:                  case split_type_customvelocity:
2435                      bits[i] = VelocityTable[bits[i]];                      bits[i] = VelocityTable[bits[i]];
2436                      break;                      break;
2437                  // else the value is already the sought dimension bit number                  case split_type_bit: // the value is already the sought dimension bit number
2438                        const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2439                        bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
2440                        break;
2441              }              }
2442          }          }
2443          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return GetDimensionRegionByBit(bits);
2444      }      }
2445    
2446      /**      /**
# Line 1054  namespace gig { Line 2448  namespace gig {
2448       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2449       * instead of calling this method directly!       * instead of calling this method directly!
2450       *       *
2451       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
2452       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
2453       *                 bit numbers       *                 bit numbers
2454       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
2455       */       */
2456      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2457          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2458                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
2459                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
2460                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
2461                                                      << pDimensionDefinitions[2].bits | DimBits[2])
2462                                                      << pDimensionDefinitions[1].bits | DimBits[1])
2463                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
2464      }      }
2465    
2466      /**      /**
# Line 1084  namespace gig { Line 2477  namespace gig {
2477          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2478      }      }
2479    
2480      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2481            if ((int32_t)WavePoolTableIndex == -1) return NULL;
2482          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2483          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2484          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2485            Sample* sample = file->GetFirstSample(pProgress);
2486          while (sample) {          while (sample) {
2487              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2488                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2489              sample = file->GetNextSample();              sample = file->GetNextSample();
2490          }          }
2491          return NULL;          return NULL;
# Line 1100  namespace gig { Line 2496  namespace gig {
2496  // *************** Instrument ***************  // *************** Instrument ***************
2497  // *  // *
2498    
2499      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2500          // Initialization          // Initialization
2501          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
         RegionIndex = -1;  
2502    
2503          // Loading          // Loading
2504          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1119  namespace gig { Line 2514  namespace gig {
2514                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2515                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2516              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2517          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2518    
2519            if (!pRegions) pRegions = new RegionList;
2520          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2521          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2522          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2523          RIFF::List* rgn = lrgn->GetFirstSubList();              while (rgn) {
2524          unsigned int iRegion = 0;                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2525          while (rgn) {                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2526              if (rgn->GetListType() == LIST_TYPE_RGN) {                      pRegions->push_back(new Region(this, rgn));
2527                  pRegions[iRegion] = new Region(this, rgn);                  }
2528                  iRegion++;                  rgn = lrgn->GetNextSubList();
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2529              }              }
2530                // Creating Region Key Table for fast lookup
2531                UpdateRegionKeyTable();
2532          }          }
2533    
2534            __notify_progress(pProgress, 1.0f); // notify done
2535      }      }
2536    
2537      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2538          for (uint i = 0; i < Regions; i++) {          RegionList::iterator iter = pRegions->begin();
2539              if (pRegions) {          RegionList::iterator end  = pRegions->end();
2540                  if (pRegions[i]) delete (pRegions[i]);          for (; iter != end; ++iter) {
2541                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2542                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2543                    RegionKeyTable[iKey] = pRegion;
2544              }              }
             delete[] pRegions;  
2545          }          }
2546      }      }
2547    
2548        Instrument::~Instrument() {
2549        }
2550    
2551        /**
2552         * Apply Instrument with all its Regions to the respective RIFF chunks.
2553         * You have to call File::Save() to make changes persistent.
2554         *
2555         * Usually there is absolutely no need to call this method explicitly.
2556         * It will be called automatically when File::Save() was called.
2557         *
2558         * @throws gig::Exception if samples cannot be dereferenced
2559         */
2560        void Instrument::UpdateChunks() {
2561            // first update base classes' chunks
2562            DLS::Instrument::UpdateChunks();
2563    
2564            // update Regions' chunks
2565            {
2566                RegionList::iterator iter = pRegions->begin();
2567                RegionList::iterator end  = pRegions->end();
2568                for (; iter != end; ++iter)
2569                    (*iter)->UpdateChunks();
2570            }
2571    
2572            // make sure 'lart' RIFF list chunk exists
2573            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2574            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2575            // make sure '3ewg' RIFF chunk exists
2576            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2577            if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2578            // update '3ewg' RIFF chunk
2579            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2580            memcpy(&pData[0], &EffectSend, 2);
2581            memcpy(&pData[2], &Attenuation, 4);
2582            memcpy(&pData[6], &FineTune, 2);
2583            memcpy(&pData[8], &PitchbendRange, 2);
2584            const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2585                                        DimensionKeyRange.low << 1;
2586            memcpy(&pData[10], &dimkeystart, 1);
2587            memcpy(&pData[11], &DimensionKeyRange.high, 1);
2588        }
2589    
2590      /**      /**
2591       * Returns the appropriate Region for a triggered note.       * Returns the appropriate Region for a triggered note.
2592       *       *
# Line 1161  namespace gig { Line 2595  namespace gig {
2595       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2596       */       */
2597      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2598          if (!pRegions || Key > 127) return NULL;          if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2599          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2600    
2601          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2602              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2603                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1178  namespace gig { Line 2613  namespace gig {
2613       * @see      GetNextRegion()       * @see      GetNextRegion()
2614       */       */
2615      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2616          if (!Regions) return NULL;          if (!pRegions) return NULL;
2617          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2618          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2619      }      }
2620    
2621      /**      /**
# Line 1192  namespace gig { Line 2627  namespace gig {
2627       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2628       */       */
2629      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2630          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
2631          return pRegions[RegionIndex++];          RegionsIterator++;
2632            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2633        }
2634    
2635        Region* Instrument::AddRegion() {
2636            // create new Region object (and its RIFF chunks)
2637            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2638            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2639            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2640            Region* pNewRegion = new Region(this, rgn);
2641            pRegions->push_back(pNewRegion);
2642            Regions = pRegions->size();
2643            // update Region key table for fast lookup
2644            UpdateRegionKeyTable();
2645            // done
2646            return pNewRegion;
2647        }
2648    
2649        void Instrument::DeleteRegion(Region* pRegion) {
2650            if (!pRegions) return;
2651            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2652            // update Region key table for fast lookup
2653            UpdateRegionKeyTable();
2654      }      }
2655    
2656    
# Line 1201  namespace gig { Line 2658  namespace gig {
2658  // *************** File ***************  // *************** File ***************
2659  // *  // *
2660    
2661        File::File() : DLS::File() {
2662        }
2663    
2664      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
         pSamples     = NULL;  
         pInstruments = NULL;  
2665      }      }
2666    
2667      Sample* File::GetFirstSample() {      File::~File() {
2668          if (!pSamples) LoadSamples();          // free extension files
2669            for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
2670                delete *i;
2671        }
2672    
2673        Sample* File::GetFirstSample(progress_t* pProgress) {
2674            if (!pSamples) LoadSamples(pProgress);
2675          if (!pSamples) return NULL;          if (!pSamples) return NULL;
2676          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
2677          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1219  namespace gig { Line 2683  namespace gig {
2683          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2684      }      }
2685    
2686        /** @brief Add a new sample.
2687         *
2688         * This will create a new Sample object for the gig file. You have to
2689         * call Save() to make this persistent to the file.
2690         *
2691         * @returns pointer to new Sample object
2692         */
2693        Sample* File::AddSample() {
2694           if (!pSamples) LoadSamples();
2695           __ensureMandatoryChunksExist();
2696           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2697           // create new Sample object and its respective 'wave' list chunk
2698           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2699           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2700           pSamples->push_back(pSample);
2701           return pSample;
2702        }
2703    
2704        /** @brief Delete a sample.
2705         *
2706         * This will delete the given Sample object from the gig file. You have
2707         * to call Save() to make this persistent to the file.
2708         *
2709         * @param pSample - sample to delete
2710         * @throws gig::Exception if given sample could not be found
2711         */
2712        void File::DeleteSample(Sample* pSample) {
2713            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2714            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2715            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2716            pSamples->erase(iter);
2717            delete pSample;
2718        }
2719    
2720      void File::LoadSamples() {      void File::LoadSamples() {
2721          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
2722          if (wvpl) {      }
2723              unsigned long wvplFileOffset = wvpl->GetFilePos();  
2724              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
2725              while (wave) {          if (!pSamples) pSamples = new SampleList;
2726                  if (wave->GetListType() == LIST_TYPE_WAVE) {  
2727                      if (!pSamples) pSamples = new SampleList;          RIFF::File* file = pRIFF;
2728                      unsigned long waveFileOffset = wave->GetFilePos();  
2729                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          // just for progress calculation
2730            int iSampleIndex  = 0;
2731            int iTotalSamples = WavePoolCount;
2732    
2733            // check if samples should be loaded from extension files
2734            int lastFileNo = 0;
2735            for (int i = 0 ; i < WavePoolCount ; i++) {
2736                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2737            }
2738            String name(pRIFF->GetFileName());
2739            int nameLen = name.length();
2740            char suffix[6];
2741            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2742    
2743            for (int fileNo = 0 ; ; ) {
2744                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2745                if (wvpl) {
2746                    unsigned long wvplFileOffset = wvpl->GetFilePos();
2747                    RIFF::List* wave = wvpl->GetFirstSubList();
2748                    while (wave) {
2749                        if (wave->GetListType() == LIST_TYPE_WAVE) {
2750                            // notify current progress
2751                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2752                            __notify_progress(pProgress, subprogress);
2753    
2754                            unsigned long waveFileOffset = wave->GetFilePos();
2755                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2756    
2757                            iSampleIndex++;
2758                        }
2759                        wave = wvpl->GetNextSubList();
2760                  }                  }
2761                  wave = wvpl->GetNextSubList();  
2762              }                  if (fileNo == lastFileNo) break;
2763    
2764                    // open extension file (*.gx01, *.gx02, ...)
2765                    fileNo++;
2766                    sprintf(suffix, ".gx%02d", fileNo);
2767                    name.replace(nameLen, 5, suffix);
2768                    file = new RIFF::File(name);
2769                    ExtensionFiles.push_back(file);
2770                } else break;
2771          }          }
2772          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
2773            __notify_progress(pProgress, 1.0); // notify done
2774      }      }
2775    
2776      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
2777          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
2778          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2779          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
2780          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2781      }      }
2782    
2783      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
2784          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2785          InstrumentsIterator++;          InstrumentsIterator++;
2786          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2787      }      }
2788    
2789      /**      /**
2790       * Returns the instrument with the given index.       * Returns the instrument with the given index.
2791       *       *
2792         * @param index     - number of the sought instrument (0..n)
2793         * @param pProgress - optional: callback function for progress notification
2794       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
2795       */       */
2796      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2797          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
2798                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2799    
2800                // sample loading subtask
2801                progress_t subprogress;
2802                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2803                __notify_progress(&subprogress, 0.0f);
2804                GetFirstSample(&subprogress); // now force all samples to be loaded
2805                __notify_progress(&subprogress, 1.0f);
2806    
2807                // instrument loading subtask
2808                if (pProgress && pProgress->callback) {
2809                    subprogress.__range_min = subprogress.__range_max;
2810                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2811                }
2812                __notify_progress(&subprogress, 0.0f);
2813                LoadInstruments(&subprogress);
2814                __notify_progress(&subprogress, 1.0f);
2815            }
2816          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2817          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
2818          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2819              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2820              InstrumentsIterator++;              InstrumentsIterator++;
2821          }          }
2822          return NULL;          return NULL;
2823      }      }
2824    
2825        /** @brief Add a new instrument definition.
2826         *
2827         * This will create a new Instrument object for the gig file. You have
2828         * to call Save() to make this persistent to the file.
2829         *
2830         * @returns pointer to new Instrument object
2831         */
2832        Instrument* File::AddInstrument() {
2833           if (!pInstruments) LoadInstruments();
2834           __ensureMandatoryChunksExist();
2835           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2836           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2837           Instrument* pInstrument = new Instrument(this, lstInstr);
2838           pInstruments->push_back(pInstrument);
2839           return pInstrument;
2840        }
2841    
2842        /** @brief Delete an instrument.
2843         *
2844         * This will delete the given Instrument object from the gig file. You
2845         * have to call Save() to make this persistent to the file.
2846         *
2847         * @param pInstrument - instrument to delete
2848         * @throws gig::Excption if given instrument could not be found
2849         */
2850        void File::DeleteInstrument(Instrument* pInstrument) {
2851            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2852            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2853            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2854            pInstruments->erase(iter);
2855            delete pInstrument;
2856        }
2857    
2858      void File::LoadInstruments() {      void File::LoadInstruments() {
2859            LoadInstruments(NULL);
2860        }
2861    
2862        void File::LoadInstruments(progress_t* pProgress) {
2863            if (!pInstruments) pInstruments = new InstrumentList;
2864          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2865          if (lstInstruments) {          if (lstInstruments) {
2866                int iInstrumentIndex = 0;
2867              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2868              while (lstInstr) {              while (lstInstr) {
2869                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
2870                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
2871                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2872                        __notify_progress(pProgress, localProgress);
2873    
2874                        // divide local progress into subprogress for loading current Instrument
2875                        progress_t subprogress;
2876                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2877    
2878                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2879    
2880                        iInstrumentIndex++;
2881                  }                  }
2882                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
2883              }              }
2884                __notify_progress(pProgress, 1.0); // notify done
2885          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
2886      }      }
2887    
2888    
# Line 1292  namespace gig { Line 2897  namespace gig {
2897          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
2898      }      }
2899    
2900    
2901    // *************** functions ***************
2902    // *
2903    
2904        /**
2905         * Returns the name of this C++ library. This is usually "libgig" of
2906         * course. This call is equivalent to RIFF::libraryName() and
2907         * DLS::libraryName().
2908         */
2909        String libraryName() {
2910            return PACKAGE;
2911        }
2912    
2913        /**
2914         * Returns version of this C++ library. This call is equivalent to
2915         * RIFF::libraryVersion() and DLS::libraryVersion().
2916         */
2917        String libraryVersion() {
2918            return VERSION;
2919        }
2920    
2921  } // namespace gig  } // namespace gig

Legend:
Removed from v.27  
changed lines
  Added in v.823

  ViewVC Help
Powered by ViewVC