/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1081 by schoenebeck, Thu Mar 8 00:17:03 2007 UTC revision 3348 by schoenebeck, Tue Oct 3 15:05:45 2017 UTC
# Line 2  Line 2 
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file access library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 24  Line 24 
24  #include "gig.h"  #include "gig.h"
25    
26  #include "helper.h"  #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30  #include <math.h>  #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
39  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 49  Line 56 
56  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59  namespace gig {  #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
 // *************** progress_t ***************  
 // *  
   
     progress_t::progress_t() {  
         callback    = NULL;  
         custom      = NULL;  
         __range_min = 0.0f;  
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decompression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
# Line 121  namespace { Line 99  namespace {
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 158  namespace { Line 136  namespace {
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
143    
# Line 254  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      /** @brief Constructor.      /** @brief Constructor.
# Line 277  namespace { Line 385  namespace {
385       *                         ('wvpl') list chunk       *                         ('wvpl') list chunk
386       * @param fileNo         - number of an extension file where this sample       * @param fileNo         - number of an extension file where this sample
387       *                         is located, 0 otherwise       *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389       */       */
390      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391          pInfo->UseFixedLengthStrings = true;          : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (pCk3gix) {          if (pCk3gix) {
415              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
# Line 314  namespace { Line 441  namespace {
441              Manufacturer  = 0;              Manufacturer  = 0;
442              Product       = 0;              Product       = 0;
443              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444              MIDIUnityNote = 64;              MIDIUnityNote = 60;
445              FineTune      = 0;              FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447              SMPTEOffset   = 0;              SMPTEOffset   = 0;
448              Loops         = 0;              Loops         = 0;
449              LoopID        = 0;              LoopID        = 0;
450                LoopType      = loop_type_normal;
451              LoopStart     = 0;              LoopStart     = 0;
452              LoopEnd       = 0;              LoopEnd       = 0;
453              LoopFraction  = 0;              LoopFraction  = 0;
# Line 358  namespace { Line 487  namespace {
487      }      }
488    
489      /**      /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554        }
555    
556        /**
557       * Apply sample and its settings to the respective RIFF chunks. You have       * Apply sample and its settings to the respective RIFF chunks. You have
558       * to call File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
559       *       *
560       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
561       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
562       *       *
563         * @param pProgress - callback function for progress notification
564       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565       *                        was provided yet       *                        was provided yet
566       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
567       */       */
568      void Sample::UpdateChunks() {      void Sample::UpdateChunks(progress_t* pProgress) {
569          // first update base class's chunks          // first update base class's chunks
570          DLS::Sample::UpdateChunks();          DLS::Sample::UpdateChunks(pProgress);
571    
572          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
573          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578          // update 'smpl' chunk          // update 'smpl' chunk
579          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
582          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
583          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
584          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
585          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
586          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
587          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
588          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
589    
590          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
591    
592          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
593          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
594          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
595          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
596          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
597          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
598    
599          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
600          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 614  namespace {
614          }          }
615          // update '3gix' chunk          // update '3gix' chunk
616          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
617          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 437  namespace { Line 645  namespace {
645                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
646                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
647                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
651                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 456  namespace { Line 664  namespace {
664    
665                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
666                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
667                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
670                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 472  namespace { Line 680  namespace {
680    
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 515  namespace { Line 723  namespace {
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 574  namespace { Line 782  namespace {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 615  namespace { Line 824  namespace {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828      }      }
829    
830      /** @brief Resize sample.      /** @brief Resize sample.
# Line 639  namespace { Line 849  namespace {
849       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850       * other formats will fail!       * other formats will fail!
851       *       *
852       * @param iNewSize - new sample wave data size in sample points (must be       * @param NewSize - new sample wave data size in sample points (must be
853       *                   greater than zero)       *                  greater than zero)
854       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855       *                         or if \a iNewSize is less than 1       * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
857       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858       *      DLS::Sample::FormatTag, File::Save()       *      DLS::Sample::FormatTag, File::Save()
859       */       */
860      void Sample::Resize(int iNewSize) {      void Sample::Resize(file_offset_t NewSize) {
861          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862          DLS::Sample::Resize(iNewSize);          DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 673  namespace { Line 883  namespace {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 691  namespace { Line 901  namespace {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 707  namespace { Line 917  namespace {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
# Line 746  namespace { Line 956  namespace {
956       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
957       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
958       */       */
959      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
963    
964          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
# Line 786  namespace { Line 996  namespace {
996                                  // reading, swap all sample frames so it reflects                                  // reading, swap all sample frames so it reflects
997                                  // backward playback                                  // backward playback
998    
999                                  unsigned long swapareastart       = totalreadsamples;                                  file_offset_t swapareastart       = totalreadsamples;
1000                                  unsigned long loopoffset          = GetPos() - loop.LoopStart;                                  file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                  file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                  unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                  file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                  SetPos(reverseplaybackend);                                  SetPos(reverseplaybackend);
1005    
# Line 809  namespace { Line 1019  namespace {
1019                                  }                                  }
1020    
1021                                  // reverse the sample frames for backward playback                                  // reverse the sample frames for backward playback
1022                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                              }                              }
1025                          } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1026                          break;                          break;
# Line 836  namespace { Line 1047  namespace {
1047                          // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1048                          // backward playback                          // backward playback
1049    
1050                          unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1051                          unsigned long loopoffset          = GetPos() - loop.LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                    : samplestoread;                                                                                    : samplestoread;
1054                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                          SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1057    
# Line 920  namespace { Line 1131  namespace {
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1136          if (!Compressed) {          if (!Compressed) {
1137              if (BitDepth == 24) {              if (BitDepth == 24) {
# Line 935  namespace { Line 1146  namespace {
1146          else {          else {
1147              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1148              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1149              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 958  namespace { Line 1169  namespace {
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1172                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1173                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174    
1175                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1176    
# Line 1099  namespace { Line 1310  namespace {
1310       *       *
1311       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1312       *       *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1318       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1319       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
1320       * @throws gig::Exception if sample is compressed       * @throws gig::Exception if sample is compressed
1321       * @see DLS::LoadSampleData()       * @see DLS::LoadSampleData()
1322       */       */
1323      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325          return DLS::Sample::Write(pBuffer, SampleCount);  
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349      }      }
1350    
1351      /**      /**
# Line 1126  namespace { Line 1364  namespace {
1364       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1365       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1366       */       */
1367      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368          buffer_t result;          buffer_t result;
1369          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1370                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1373          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1374          return result;          return result;
# Line 1164  namespace { Line 1402  namespace {
1402          return pGroup;          return pGroup;
1403      }      }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1180  namespace { Line 1484  namespace {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1488      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491          Instances++;          Instances++;
1492    
1493          pSample = NULL;          pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1499          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
# Line 1302  namespace { Line 1609  namespace {
1609                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1610              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1611              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1614              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1615              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1352  namespace { Line 1659  namespace {
1659              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1660              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1661              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1662              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1663              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1664              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1665              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1666              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1667              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1369  namespace { Line 1676  namespace {
1676              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1677              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1678              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1679              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1680              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1681              EG2Release                      = 0.0;              EG2Release                      = 60;
1682              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1683              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1684              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1685              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1686              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1687              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1688              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1689              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1690              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1691              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1692              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1693              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1423  namespace { Line 1730  namespace {
1730              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1731              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1732              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1733              memset(DimensionUpperLimits, 0, 8);              memset(DimensionUpperLimits, 127, 8);
1734            }
1735            // format extension for EG behavior options, these will *NOT* work with
1736            // Gigasampler/GigaStudio !
1737            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738            if (lsde) {
1739                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740                for (int i = 0; i < 2; ++i) {
1741                    unsigned char byte = lsde->ReadUint8();
1742                    pEGOpts[i]->AttackCancel     = byte & 1;
1743                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1745                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1746                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1747                }
1748          }          }
1749    
1750          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1752                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1753    
1754          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1755          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1756                                        ReleaseVelocityResponseDepth
1757          // this models a strange behaviour or bug in GSt: two of the                                  );
1758          // velocity response curves for release time are not used even  
1759          // if specified, instead another curve is chosen.          pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760          if ((curveType == curve_type_nonlinear && depth == 0) ||                                                        VCFVelocityDynamicRange,
1761              (curveType == curve_type_special   && depth == 4)) {                                                        VCFVelocityScale,
1762              curveType = curve_type_nonlinear;                                                        VCFCutoffController);
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1763    
1764          curveType = VCFVelocityCurve;          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765          depth = VCFVelocityDynamicRange;          VelocityTable = 0;
1766        }
1767    
1768          // even stranger GSt: two of the velocity response curves for      /*
1769          // filter cutoff are not used, instead another special curve       * Constructs a DimensionRegion by copying all parameters from
1770          // is chosen. This curve is not used anywhere else.       * another DimensionRegion
1771          if ((curveType == curve_type_nonlinear && depth == 0) ||       */
1772              (curveType == curve_type_special   && depth == 4)) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773              curveType = curve_type_special;          Instances++;
1774              depth = 5;          //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775            *this = src; // default memberwise shallow copy of all parameters
1776            pParentList = _3ewl; // restore the chunk pointer
1777    
1778            // deep copy of owned structures
1779            if (src.VelocityTable) {
1780                VelocityTable = new uint8_t[128];
1781                for (int k = 0 ; k < 128 ; k++)
1782                    VelocityTable[k] = src.VelocityTable[k];
1783            }
1784            if (src.pSampleLoops) {
1785                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786                for (int k = 0 ; k < src.SampleLoops ; k++)
1787                    pSampleLoops[k] = src.pSampleLoops[k];
1788          }          }
1789          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
1790                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);      
1791        /**
1792         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793         * and assign it to this object.
1794         *
1795         * Note that all sample pointers referenced by @a orig are simply copied as
1796         * memory address. Thus the respective samples are shared, not duplicated!
1797         *
1798         * @param orig - original DimensionRegion object to be copied from
1799         */
1800        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801            CopyAssign(orig, NULL);
1802        }
1803    
1804        /**
1805         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806         * and assign it to this object.
1807         *
1808         * @param orig - original DimensionRegion object to be copied from
1809         * @param mSamples - crosslink map between the foreign file's samples and
1810         *                   this file's samples
1811         */
1812        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813            // delete all allocated data first
1814            if (VelocityTable) delete [] VelocityTable;
1815            if (pSampleLoops) delete [] pSampleLoops;
1816            
1817            // backup parent list pointer
1818            RIFF::List* p = pParentList;
1819            
1820            gig::Sample* pOriginalSample = pSample;
1821            gig::Region* pOriginalRegion = pRegion;
1822            
1823            //NOTE: copy code copied from assignment constructor above, see comment there as well
1824            
1825            *this = *orig; // default memberwise shallow copy of all parameters
1826            
1827            // restore members that shall not be altered
1828            pParentList = p; // restore the chunk pointer
1829            pRegion = pOriginalRegion;
1830            
1831            // only take the raw sample reference reference if the
1832            // two DimensionRegion objects are part of the same file
1833            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834                pSample = pOriginalSample;
1835            }
1836            
1837            if (mSamples && mSamples->count(orig->pSample)) {
1838                pSample = mSamples->find(orig->pSample)->second;
1839            }
1840    
1841            // deep copy of owned structures
1842            if (orig->VelocityTable) {
1843                VelocityTable = new uint8_t[128];
1844                for (int k = 0 ; k < 128 ; k++)
1845                    VelocityTable[k] = orig->VelocityTable[k];
1846            }
1847            if (orig->pSampleLoops) {
1848                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849                for (int k = 0 ; k < orig->SampleLoops ; k++)
1850                    pSampleLoops[k] = orig->pSampleLoops[k];
1851            }
1852        }
1853    
1854        void DimensionRegion::serialize(Serialization::Archive* archive) {
1855            // in case this class will become backward incompatible one day,
1856            // then set a version and minimum version for this class like:
1857            //archive->setVersion(*this, 2);
1858            //archive->setMinVersion(*this, 1);
1859    
1860            SRLZ(VelocityUpperLimit);
1861            SRLZ(EG1PreAttack);
1862            SRLZ(EG1Attack);
1863            SRLZ(EG1Decay1);
1864            SRLZ(EG1Decay2);
1865            SRLZ(EG1InfiniteSustain);
1866            SRLZ(EG1Sustain);
1867            SRLZ(EG1Release);
1868            SRLZ(EG1Hold);
1869            SRLZ(EG1Controller);
1870            SRLZ(EG1ControllerInvert);
1871            SRLZ(EG1ControllerAttackInfluence);
1872            SRLZ(EG1ControllerDecayInfluence);
1873            SRLZ(EG1ControllerReleaseInfluence);
1874            SRLZ(LFO1Frequency);
1875            SRLZ(LFO1InternalDepth);
1876            SRLZ(LFO1ControlDepth);
1877            SRLZ(LFO1Controller);
1878            SRLZ(LFO1FlipPhase);
1879            SRLZ(LFO1Sync);
1880            SRLZ(EG2PreAttack);
1881            SRLZ(EG2Attack);
1882            SRLZ(EG2Decay1);
1883            SRLZ(EG2Decay2);
1884            SRLZ(EG2InfiniteSustain);
1885            SRLZ(EG2Sustain);
1886            SRLZ(EG2Release);
1887            SRLZ(EG2Controller);
1888            SRLZ(EG2ControllerInvert);
1889            SRLZ(EG2ControllerAttackInfluence);
1890            SRLZ(EG2ControllerDecayInfluence);
1891            SRLZ(EG2ControllerReleaseInfluence);
1892            SRLZ(LFO2Frequency);
1893            SRLZ(LFO2InternalDepth);
1894            SRLZ(LFO2ControlDepth);
1895            SRLZ(LFO2Controller);
1896            SRLZ(LFO2FlipPhase);
1897            SRLZ(LFO2Sync);
1898            SRLZ(EG3Attack);
1899            SRLZ(EG3Depth);
1900            SRLZ(LFO3Frequency);
1901            SRLZ(LFO3InternalDepth);
1902            SRLZ(LFO3ControlDepth);
1903            SRLZ(LFO3Controller);
1904            SRLZ(LFO3Sync);
1905            SRLZ(VCFEnabled);
1906            SRLZ(VCFType);
1907            SRLZ(VCFCutoffController);
1908            SRLZ(VCFCutoffControllerInvert);
1909            SRLZ(VCFCutoff);
1910            SRLZ(VCFVelocityCurve);
1911            SRLZ(VCFVelocityScale);
1912            SRLZ(VCFVelocityDynamicRange);
1913            SRLZ(VCFResonance);
1914            SRLZ(VCFResonanceDynamic);
1915            SRLZ(VCFResonanceController);
1916            SRLZ(VCFKeyboardTracking);
1917            SRLZ(VCFKeyboardTrackingBreakpoint);
1918            SRLZ(VelocityResponseCurve);
1919            SRLZ(VelocityResponseDepth);
1920            SRLZ(VelocityResponseCurveScaling);
1921            SRLZ(ReleaseVelocityResponseCurve);
1922            SRLZ(ReleaseVelocityResponseDepth);
1923            SRLZ(ReleaseTriggerDecay);
1924            SRLZ(Crossfade);
1925            SRLZ(PitchTrack);
1926            SRLZ(DimensionBypass);
1927            SRLZ(Pan);
1928            SRLZ(SelfMask);
1929            SRLZ(AttenuationController);
1930            SRLZ(InvertAttenuationController);
1931            SRLZ(AttenuationControllerThreshold);
1932            SRLZ(ChannelOffset);
1933            SRLZ(SustainDefeat);
1934            SRLZ(MSDecode);
1935            //SRLZ(SampleStartOffset);
1936            SRLZ(SampleAttenuation);
1937            SRLZ(EG1Options);
1938            SRLZ(EG2Options);
1939    
1940            // derived attributes from DLS::Sampler
1941            SRLZ(FineTune);
1942            SRLZ(Gain);
1943        }
1944    
1945        /**
1946         * Updates the respective member variable and updates @c SampleAttenuation
1947         * which depends on this value.
1948         */
1949        void DimensionRegion::SetGain(int32_t gain) {
1950            DLS::Sampler::SetGain(gain);
1951          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
1952      }      }
1953    
1954      /**      /**
# Line 1467  namespace { Line 1957  namespace {
1957       *       *
1958       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
1959       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
1960         *
1961         * @param pProgress - callback function for progress notification
1962       */       */
1963      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964          // first update base class's chunk          // first update base class's chunk
1965          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks(pProgress);
1966    
1967            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969            pData[12] = Crossfade.in_start;
1970            pData[13] = Crossfade.in_end;
1971            pData[14] = Crossfade.out_start;
1972            pData[15] = Crossfade.out_end;
1973    
1974          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1975          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1977          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980            }
1981            pData = (uint8_t*) _3ewa->LoadChunkData();
1982    
1983          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1984    
1985          const uint32_t chunksize = _3ewa->GetSize();          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?          store32(&pData[0], chunksize); // unknown, always chunk size?
1987    
1988          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1990    
1991          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1993    
1994          // next 2 bytes unknown          // next 2 bytes unknown
1995    
1996          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1997    
1998          // next 2 bytes unknown          // next 2 bytes unknown
1999    
2000          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
2001    
2002          // next 2 bytes unknown          // next 2 bytes unknown
2003    
2004          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
2005    
2006          // next 2 bytes unknown          // next 2 bytes unknown
2007    
2008          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
2009    
2010          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
2012    
2013          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
2015    
2016          // next 2 bytes unknown          // next 2 bytes unknown
2017    
2018          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
2019    
2020          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
2022    
2023          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
2025    
2026          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
2027              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
2028              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
2032    
2033          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
2035    
2036          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
2037              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
2038              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
2042    
2043          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
2045    
2046          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
2048    
2049          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
2051    
2052          // next 2 bytes unknown          // next 2 bytes unknown
2053    
2054          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
2055    
2056          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
2058    
2059          // next 2 bytes unknown          // next 2 bytes unknown
2060    
2061          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
2062    
2063          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
2065    
2066          // next 2 bytes unknown          // next 2 bytes unknown
2067    
2068          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
2069    
2070          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
2072    
2073          // next 2 bytes unknown          // next 2 bytes unknown
2074    
2075          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
2076    
2077          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
2079    
2080          // next 2 bytes unknown          // next 2 bytes unknown
2081    
2082          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
2083    
2084          {          {
2085              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1594  namespace { Line 2097  namespace {
2097                  default:                  default:
2098                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099              }              }
2100              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
2101          }          }
2102    
2103          {          {
# Line 1613  namespace { Line 2116  namespace {
2116                  default:                  default:
2117                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118              }              }
2119              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
2120          }          }
2121    
2122          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
2123    
2124          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
2125    
2126          // next 4 bytes unknown          // next 4 bytes unknown
2127    
2128          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
2129    
2130          // next 2 bytes unknown          // next 2 bytes unknown
2131    
# Line 1641  namespace { Line 2144  namespace {
2144                  default:                  default:
2145                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146              }              }
2147              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
2148          }          }
2149    
2150          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
2152    
2153          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
2155    
2156          // next byte unknown          // next byte unknown
2157    
# Line 1657  namespace { Line 2160  namespace {
2160              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
2164          }          }
2165    
2166          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
2168    
2169          {          {
2170              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2173              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
2175          }          }
2176    
2177          {          {
# Line 1677  namespace { Line 2180  namespace {
2180              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2181              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
2182                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
2184          }          }
2185    
2186          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188          memcpy(&pData[116], &eg3depth, 1);          store16(&pData[116], eg3depth);
2189    
2190          // next 2 bytes unknown          // next 2 bytes unknown
2191    
2192          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
2193          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
2194    
2195          {          {
2196              uint8_t regoptions = 0;              uint8_t regoptions = 0;
2197              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
2198              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
2199              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
2200          }          }
2201    
2202          // next 2 bytes unknown          // next 2 bytes unknown
2203    
2204          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
2205    
2206          // next 3 bytes unknown          // next 3 bytes unknown
2207    
2208          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2209    
2210          // next 2 bytes unknown          // next 2 bytes unknown
2211    
2212          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
2214    
2215          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2216                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2217          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2218    
2219          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2220    
2221          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2224    
2225          // next byte unknown          // next byte unknown
2226    
2227          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2229          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
2230    
2231          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2234    
2235          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2237          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2238    
2239          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
2241    
2242          if (chunksize >= 148) {          if (chunksize >= 148) {
2243              memcpy(&pData[140], DimensionUpperLimits, 8);              memcpy(&pData[140], DimensionUpperLimits, 8);
2244          }          }
2245    
2246            // format extension for EG behavior options, these will *NOT* work with
2247            // Gigasampler/GigaStudio !
2248            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249            if (!lsde) {
2250                // only add this "LSDE" chunk if the EG options do not match the
2251                // default EG behavior
2252                eg_opt_t defaultOpt;
2253                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255                {
2256                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257                    // move LSDE chunk to the end of parent list
2258                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259                }
2260            }
2261            if (lsde) {
2262                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264                for (int i = 0; i < 2; ++i) {
2265                    pData[i] =
2266                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2267                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2269                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2270                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2271                }
2272            }
2273        }
2274    
2275        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276            curve_type_t curveType = releaseVelocityResponseCurve;
2277            uint8_t depth = releaseVelocityResponseDepth;
2278            // this models a strange behaviour or bug in GSt: two of the
2279            // velocity response curves for release time are not used even
2280            // if specified, instead another curve is chosen.
2281            if ((curveType == curve_type_nonlinear && depth == 0) ||
2282                (curveType == curve_type_special   && depth == 4)) {
2283                curveType = curve_type_nonlinear;
2284                depth = 3;
2285            }
2286            return GetVelocityTable(curveType, depth, 0);
2287        }
2288    
2289        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290                                                        uint8_t vcfVelocityDynamicRange,
2291                                                        uint8_t vcfVelocityScale,
2292                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2293        {
2294            curve_type_t curveType = vcfVelocityCurve;
2295            uint8_t depth = vcfVelocityDynamicRange;
2296            // even stranger GSt: two of the velocity response curves for
2297            // filter cutoff are not used, instead another special curve
2298            // is chosen. This curve is not used anywhere else.
2299            if ((curveType == curve_type_nonlinear && depth == 0) ||
2300                (curveType == curve_type_special   && depth == 4)) {
2301                curveType = curve_type_special;
2302                depth = 5;
2303            }
2304            return GetVelocityTable(curveType, depth,
2305                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306                                        ? vcfVelocityScale : 0);
2307      }      }
2308    
2309      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1756  namespace { Line 2321  namespace {
2321          return table;          return table;
2322      }      }
2323    
2324        Region* DimensionRegion::GetParent() const {
2325            return pRegion;
2326        }
2327    
2328    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2329    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2330    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2331    //#pragma GCC diagnostic push
2332    //#pragma GCC diagnostic error "-Wswitch"
2333    
2334      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2335          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2336          switch (EncodedController) {          switch (EncodedController) {
# Line 1867  namespace { Line 2442  namespace {
2442                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2443                  break;                  break;
2444    
2445                // format extension (these controllers are so far only supported by
2446                // LinuxSampler & gigedit) they will *NOT* work with
2447                // Gigasampler/GigaStudio !
2448                case _lev_ctrl_CC3_EXT:
2449                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450                    decodedcontroller.controller_number = 3;
2451                    break;
2452                case _lev_ctrl_CC6_EXT:
2453                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454                    decodedcontroller.controller_number = 6;
2455                    break;
2456                case _lev_ctrl_CC7_EXT:
2457                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458                    decodedcontroller.controller_number = 7;
2459                    break;
2460                case _lev_ctrl_CC8_EXT:
2461                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462                    decodedcontroller.controller_number = 8;
2463                    break;
2464                case _lev_ctrl_CC9_EXT:
2465                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466                    decodedcontroller.controller_number = 9;
2467                    break;
2468                case _lev_ctrl_CC10_EXT:
2469                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470                    decodedcontroller.controller_number = 10;
2471                    break;
2472                case _lev_ctrl_CC11_EXT:
2473                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474                    decodedcontroller.controller_number = 11;
2475                    break;
2476                case _lev_ctrl_CC14_EXT:
2477                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478                    decodedcontroller.controller_number = 14;
2479                    break;
2480                case _lev_ctrl_CC15_EXT:
2481                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482                    decodedcontroller.controller_number = 15;
2483                    break;
2484                case _lev_ctrl_CC20_EXT:
2485                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486                    decodedcontroller.controller_number = 20;
2487                    break;
2488                case _lev_ctrl_CC21_EXT:
2489                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490                    decodedcontroller.controller_number = 21;
2491                    break;
2492                case _lev_ctrl_CC22_EXT:
2493                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494                    decodedcontroller.controller_number = 22;
2495                    break;
2496                case _lev_ctrl_CC23_EXT:
2497                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498                    decodedcontroller.controller_number = 23;
2499                    break;
2500                case _lev_ctrl_CC24_EXT:
2501                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502                    decodedcontroller.controller_number = 24;
2503                    break;
2504                case _lev_ctrl_CC25_EXT:
2505                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2506                    decodedcontroller.controller_number = 25;
2507                    break;
2508                case _lev_ctrl_CC26_EXT:
2509                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2510                    decodedcontroller.controller_number = 26;
2511                    break;
2512                case _lev_ctrl_CC27_EXT:
2513                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2514                    decodedcontroller.controller_number = 27;
2515                    break;
2516                case _lev_ctrl_CC28_EXT:
2517                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2518                    decodedcontroller.controller_number = 28;
2519                    break;
2520                case _lev_ctrl_CC29_EXT:
2521                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2522                    decodedcontroller.controller_number = 29;
2523                    break;
2524                case _lev_ctrl_CC30_EXT:
2525                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2526                    decodedcontroller.controller_number = 30;
2527                    break;
2528                case _lev_ctrl_CC31_EXT:
2529                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2530                    decodedcontroller.controller_number = 31;
2531                    break;
2532                case _lev_ctrl_CC68_EXT:
2533                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2534                    decodedcontroller.controller_number = 68;
2535                    break;
2536                case _lev_ctrl_CC69_EXT:
2537                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2538                    decodedcontroller.controller_number = 69;
2539                    break;
2540                case _lev_ctrl_CC70_EXT:
2541                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2542                    decodedcontroller.controller_number = 70;
2543                    break;
2544                case _lev_ctrl_CC71_EXT:
2545                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2546                    decodedcontroller.controller_number = 71;
2547                    break;
2548                case _lev_ctrl_CC72_EXT:
2549                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2550                    decodedcontroller.controller_number = 72;
2551                    break;
2552                case _lev_ctrl_CC73_EXT:
2553                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2554                    decodedcontroller.controller_number = 73;
2555                    break;
2556                case _lev_ctrl_CC74_EXT:
2557                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2558                    decodedcontroller.controller_number = 74;
2559                    break;
2560                case _lev_ctrl_CC75_EXT:
2561                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2562                    decodedcontroller.controller_number = 75;
2563                    break;
2564                case _lev_ctrl_CC76_EXT:
2565                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2566                    decodedcontroller.controller_number = 76;
2567                    break;
2568                case _lev_ctrl_CC77_EXT:
2569                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2570                    decodedcontroller.controller_number = 77;
2571                    break;
2572                case _lev_ctrl_CC78_EXT:
2573                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2574                    decodedcontroller.controller_number = 78;
2575                    break;
2576                case _lev_ctrl_CC79_EXT:
2577                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2578                    decodedcontroller.controller_number = 79;
2579                    break;
2580                case _lev_ctrl_CC84_EXT:
2581                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2582                    decodedcontroller.controller_number = 84;
2583                    break;
2584                case _lev_ctrl_CC85_EXT:
2585                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2586                    decodedcontroller.controller_number = 85;
2587                    break;
2588                case _lev_ctrl_CC86_EXT:
2589                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2590                    decodedcontroller.controller_number = 86;
2591                    break;
2592                case _lev_ctrl_CC87_EXT:
2593                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2594                    decodedcontroller.controller_number = 87;
2595                    break;
2596                case _lev_ctrl_CC89_EXT:
2597                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2598                    decodedcontroller.controller_number = 89;
2599                    break;
2600                case _lev_ctrl_CC90_EXT:
2601                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2602                    decodedcontroller.controller_number = 90;
2603                    break;
2604                case _lev_ctrl_CC96_EXT:
2605                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2606                    decodedcontroller.controller_number = 96;
2607                    break;
2608                case _lev_ctrl_CC97_EXT:
2609                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2610                    decodedcontroller.controller_number = 97;
2611                    break;
2612                case _lev_ctrl_CC102_EXT:
2613                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2614                    decodedcontroller.controller_number = 102;
2615                    break;
2616                case _lev_ctrl_CC103_EXT:
2617                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2618                    decodedcontroller.controller_number = 103;
2619                    break;
2620                case _lev_ctrl_CC104_EXT:
2621                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2622                    decodedcontroller.controller_number = 104;
2623                    break;
2624                case _lev_ctrl_CC105_EXT:
2625                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2626                    decodedcontroller.controller_number = 105;
2627                    break;
2628                case _lev_ctrl_CC106_EXT:
2629                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2630                    decodedcontroller.controller_number = 106;
2631                    break;
2632                case _lev_ctrl_CC107_EXT:
2633                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2634                    decodedcontroller.controller_number = 107;
2635                    break;
2636                case _lev_ctrl_CC108_EXT:
2637                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2638                    decodedcontroller.controller_number = 108;
2639                    break;
2640                case _lev_ctrl_CC109_EXT:
2641                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2642                    decodedcontroller.controller_number = 109;
2643                    break;
2644                case _lev_ctrl_CC110_EXT:
2645                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2646                    decodedcontroller.controller_number = 110;
2647                    break;
2648                case _lev_ctrl_CC111_EXT:
2649                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2650                    decodedcontroller.controller_number = 111;
2651                    break;
2652                case _lev_ctrl_CC112_EXT:
2653                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2654                    decodedcontroller.controller_number = 112;
2655                    break;
2656                case _lev_ctrl_CC113_EXT:
2657                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2658                    decodedcontroller.controller_number = 113;
2659                    break;
2660                case _lev_ctrl_CC114_EXT:
2661                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2662                    decodedcontroller.controller_number = 114;
2663                    break;
2664                case _lev_ctrl_CC115_EXT:
2665                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2666                    decodedcontroller.controller_number = 115;
2667                    break;
2668                case _lev_ctrl_CC116_EXT:
2669                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2670                    decodedcontroller.controller_number = 116;
2671                    break;
2672                case _lev_ctrl_CC117_EXT:
2673                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2674                    decodedcontroller.controller_number = 117;
2675                    break;
2676                case _lev_ctrl_CC118_EXT:
2677                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2678                    decodedcontroller.controller_number = 118;
2679                    break;
2680                case _lev_ctrl_CC119_EXT:
2681                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2682                    decodedcontroller.controller_number = 119;
2683                    break;
2684    
2685              // unknown controller type              // unknown controller type
2686              default:              default:
2687                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2688                    decodedcontroller.controller_number = 0;
2689                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2690                    break;
2691          }          }
2692          return decodedcontroller;          return decodedcontroller;
2693      }      }
2694        
2695    // see above (diagnostic push not supported prior GCC 4.6)
2696    //#pragma GCC diagnostic pop
2697    
2698      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2699          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1960  namespace { Line 2781  namespace {
2781                      case 95:                      case 95:
2782                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2783                          break;                          break;
2784    
2785                        // format extension (these controllers are so far only
2786                        // supported by LinuxSampler & gigedit) they will *NOT*
2787                        // work with Gigasampler/GigaStudio !
2788                        case 3:
2789                            encodedcontroller = _lev_ctrl_CC3_EXT;
2790                            break;
2791                        case 6:
2792                            encodedcontroller = _lev_ctrl_CC6_EXT;
2793                            break;
2794                        case 7:
2795                            encodedcontroller = _lev_ctrl_CC7_EXT;
2796                            break;
2797                        case 8:
2798                            encodedcontroller = _lev_ctrl_CC8_EXT;
2799                            break;
2800                        case 9:
2801                            encodedcontroller = _lev_ctrl_CC9_EXT;
2802                            break;
2803                        case 10:
2804                            encodedcontroller = _lev_ctrl_CC10_EXT;
2805                            break;
2806                        case 11:
2807                            encodedcontroller = _lev_ctrl_CC11_EXT;
2808                            break;
2809                        case 14:
2810                            encodedcontroller = _lev_ctrl_CC14_EXT;
2811                            break;
2812                        case 15:
2813                            encodedcontroller = _lev_ctrl_CC15_EXT;
2814                            break;
2815                        case 20:
2816                            encodedcontroller = _lev_ctrl_CC20_EXT;
2817                            break;
2818                        case 21:
2819                            encodedcontroller = _lev_ctrl_CC21_EXT;
2820                            break;
2821                        case 22:
2822                            encodedcontroller = _lev_ctrl_CC22_EXT;
2823                            break;
2824                        case 23:
2825                            encodedcontroller = _lev_ctrl_CC23_EXT;
2826                            break;
2827                        case 24:
2828                            encodedcontroller = _lev_ctrl_CC24_EXT;
2829                            break;
2830                        case 25:
2831                            encodedcontroller = _lev_ctrl_CC25_EXT;
2832                            break;
2833                        case 26:
2834                            encodedcontroller = _lev_ctrl_CC26_EXT;
2835                            break;
2836                        case 27:
2837                            encodedcontroller = _lev_ctrl_CC27_EXT;
2838                            break;
2839                        case 28:
2840                            encodedcontroller = _lev_ctrl_CC28_EXT;
2841                            break;
2842                        case 29:
2843                            encodedcontroller = _lev_ctrl_CC29_EXT;
2844                            break;
2845                        case 30:
2846                            encodedcontroller = _lev_ctrl_CC30_EXT;
2847                            break;
2848                        case 31:
2849                            encodedcontroller = _lev_ctrl_CC31_EXT;
2850                            break;
2851                        case 68:
2852                            encodedcontroller = _lev_ctrl_CC68_EXT;
2853                            break;
2854                        case 69:
2855                            encodedcontroller = _lev_ctrl_CC69_EXT;
2856                            break;
2857                        case 70:
2858                            encodedcontroller = _lev_ctrl_CC70_EXT;
2859                            break;
2860                        case 71:
2861                            encodedcontroller = _lev_ctrl_CC71_EXT;
2862                            break;
2863                        case 72:
2864                            encodedcontroller = _lev_ctrl_CC72_EXT;
2865                            break;
2866                        case 73:
2867                            encodedcontroller = _lev_ctrl_CC73_EXT;
2868                            break;
2869                        case 74:
2870                            encodedcontroller = _lev_ctrl_CC74_EXT;
2871                            break;
2872                        case 75:
2873                            encodedcontroller = _lev_ctrl_CC75_EXT;
2874                            break;
2875                        case 76:
2876                            encodedcontroller = _lev_ctrl_CC76_EXT;
2877                            break;
2878                        case 77:
2879                            encodedcontroller = _lev_ctrl_CC77_EXT;
2880                            break;
2881                        case 78:
2882                            encodedcontroller = _lev_ctrl_CC78_EXT;
2883                            break;
2884                        case 79:
2885                            encodedcontroller = _lev_ctrl_CC79_EXT;
2886                            break;
2887                        case 84:
2888                            encodedcontroller = _lev_ctrl_CC84_EXT;
2889                            break;
2890                        case 85:
2891                            encodedcontroller = _lev_ctrl_CC85_EXT;
2892                            break;
2893                        case 86:
2894                            encodedcontroller = _lev_ctrl_CC86_EXT;
2895                            break;
2896                        case 87:
2897                            encodedcontroller = _lev_ctrl_CC87_EXT;
2898                            break;
2899                        case 89:
2900                            encodedcontroller = _lev_ctrl_CC89_EXT;
2901                            break;
2902                        case 90:
2903                            encodedcontroller = _lev_ctrl_CC90_EXT;
2904                            break;
2905                        case 96:
2906                            encodedcontroller = _lev_ctrl_CC96_EXT;
2907                            break;
2908                        case 97:
2909                            encodedcontroller = _lev_ctrl_CC97_EXT;
2910                            break;
2911                        case 102:
2912                            encodedcontroller = _lev_ctrl_CC102_EXT;
2913                            break;
2914                        case 103:
2915                            encodedcontroller = _lev_ctrl_CC103_EXT;
2916                            break;
2917                        case 104:
2918                            encodedcontroller = _lev_ctrl_CC104_EXT;
2919                            break;
2920                        case 105:
2921                            encodedcontroller = _lev_ctrl_CC105_EXT;
2922                            break;
2923                        case 106:
2924                            encodedcontroller = _lev_ctrl_CC106_EXT;
2925                            break;
2926                        case 107:
2927                            encodedcontroller = _lev_ctrl_CC107_EXT;
2928                            break;
2929                        case 108:
2930                            encodedcontroller = _lev_ctrl_CC108_EXT;
2931                            break;
2932                        case 109:
2933                            encodedcontroller = _lev_ctrl_CC109_EXT;
2934                            break;
2935                        case 110:
2936                            encodedcontroller = _lev_ctrl_CC110_EXT;
2937                            break;
2938                        case 111:
2939                            encodedcontroller = _lev_ctrl_CC111_EXT;
2940                            break;
2941                        case 112:
2942                            encodedcontroller = _lev_ctrl_CC112_EXT;
2943                            break;
2944                        case 113:
2945                            encodedcontroller = _lev_ctrl_CC113_EXT;
2946                            break;
2947                        case 114:
2948                            encodedcontroller = _lev_ctrl_CC114_EXT;
2949                            break;
2950                        case 115:
2951                            encodedcontroller = _lev_ctrl_CC115_EXT;
2952                            break;
2953                        case 116:
2954                            encodedcontroller = _lev_ctrl_CC116_EXT;
2955                            break;
2956                        case 117:
2957                            encodedcontroller = _lev_ctrl_CC117_EXT;
2958                            break;
2959                        case 118:
2960                            encodedcontroller = _lev_ctrl_CC118_EXT;
2961                            break;
2962                        case 119:
2963                            encodedcontroller = _lev_ctrl_CC119_EXT;
2964                            break;
2965    
2966                      default:                      default:
2967                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2968                  }                  }
2969                    break;
2970              default:              default:
2971                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2972          }          }
# Line 2008  namespace { Line 3012  namespace {
3012          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
3013      }      }
3014    
3015        /**
3016         * Updates the respective member variable and the lookup table / cache
3017         * that depends on this value.
3018         */
3019        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3020            pVelocityAttenuationTable =
3021                GetVelocityTable(
3022                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3023                );
3024            VelocityResponseCurve = curve;
3025        }
3026    
3027        /**
3028         * Updates the respective member variable and the lookup table / cache
3029         * that depends on this value.
3030         */
3031        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3032            pVelocityAttenuationTable =
3033                GetVelocityTable(
3034                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3035                );
3036            VelocityResponseDepth = depth;
3037        }
3038    
3039        /**
3040         * Updates the respective member variable and the lookup table / cache
3041         * that depends on this value.
3042         */
3043        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3044            pVelocityAttenuationTable =
3045                GetVelocityTable(
3046                    VelocityResponseCurve, VelocityResponseDepth, scaling
3047                );
3048            VelocityResponseCurveScaling = scaling;
3049        }
3050    
3051        /**
3052         * Updates the respective member variable and the lookup table / cache
3053         * that depends on this value.
3054         */
3055        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3056            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3057            ReleaseVelocityResponseCurve = curve;
3058        }
3059    
3060        /**
3061         * Updates the respective member variable and the lookup table / cache
3062         * that depends on this value.
3063         */
3064        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3065            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3066            ReleaseVelocityResponseDepth = depth;
3067        }
3068    
3069        /**
3070         * Updates the respective member variable and the lookup table / cache
3071         * that depends on this value.
3072         */
3073        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3074            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3075            VCFCutoffController = controller;
3076        }
3077    
3078        /**
3079         * Updates the respective member variable and the lookup table / cache
3080         * that depends on this value.
3081         */
3082        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3083            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3084            VCFVelocityCurve = curve;
3085        }
3086    
3087        /**
3088         * Updates the respective member variable and the lookup table / cache
3089         * that depends on this value.
3090         */
3091        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3092            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3093            VCFVelocityDynamicRange = range;
3094        }
3095    
3096        /**
3097         * Updates the respective member variable and the lookup table / cache
3098         * that depends on this value.
3099         */
3100        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3101            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3102            VCFVelocityScale = scaling;
3103        }
3104    
3105      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3106    
3107          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2080  namespace { Line 3174  namespace {
3174  // *  // *
3175    
3176      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
3177          // Initialization          // Initialization
3178          Dimensions = 0;          Dimensions = 0;
3179          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2093  namespace { Line 3185  namespace {
3185    
3186          // Actual Loading          // Actual Loading
3187    
3188            if (!file->GetAutoLoad()) return;
3189    
3190          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3191    
3192          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2101  namespace { Line 3195  namespace {
3195              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3196                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3197                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3198                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3199                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3200                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3201                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3202                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2115  namespace { Line 3209  namespace {
3209                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3210                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3211                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3212                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3213                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random ||  
                                                            dimension == dimension_smartmidi ||  
                                                            dimension == dimension_roundrobinkeyboard) ? split_type_bit  
                                                                                                       : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3214                      Dimensions++;                      Dimensions++;
3215    
3216                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2146  namespace { Line 3230  namespace {
3230              else              else
3231                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3232    
3233              // load sample references              // load sample references (if auto loading is enabled)
3234              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3235                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3236                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3237                        if (file->pWavePoolTable && pDimensionRegions[i])
3238                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3239                    }
3240                    GetSample(); // load global region sample reference
3241                }
3242            } else {
3243                DimensionRegions = 0;
3244                for (int i = 0 ; i < 8 ; i++) {
3245                    pDimensionDefinitions[i].dimension  = dimension_none;
3246                    pDimensionDefinitions[i].bits       = 0;
3247                    pDimensionDefinitions[i].zones      = 0;
3248              }              }
             GetSample(); // load global region sample reference  
3249          }          }
3250    
3251          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2159  namespace { Line 3253  namespace {
3253              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3254              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3255              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3256              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3257              DimensionRegions = 1;              DimensionRegions = 1;
3258          }          }
3259      }      }
# Line 2171  namespace { Line 3265  namespace {
3265       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
3266       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
3267       *       *
3268         * @param pProgress - callback function for progress notification
3269       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3270       */       */
3271      void Region::UpdateChunks() {      void Region::UpdateChunks(progress_t* pProgress) {
3272            // in the gig format we don't care about the Region's sample reference
3273            // but we still have to provide some existing one to not corrupt the
3274            // file, so to avoid the latter we simply always assign the sample of
3275            // the first dimension region of this region
3276            pSample = pDimensionRegions[0]->pSample;
3277    
3278          // first update base class's chunks          // first update base class's chunks
3279          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks(pProgress);
3280    
3281          // update dimension region's chunks          // update dimension region's chunks
3282          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
3283              pDimensionRegions[i]->UpdateChunks();              pDimensionRegions[i]->UpdateChunks(pProgress);
3284          }          }
3285    
3286          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3287          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3288          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
3289            const int iMaxDimensionRegions = version3 ? 256 : 32;
3290    
3291          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3292          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3293          if (!_3lnk) {          if (!_3lnk) {
3294              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
3295              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3296                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3297    
3298                // move 3prg to last position
3299                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3300          }          }
3301    
3302          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3303          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3304          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
3305            int shift = 0;
3306          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3307              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3308              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3309              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3310                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3311              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3312              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
3313    
3314                shift += pDimensionDefinitions[i].bits;
3315          }          }
3316    
3317          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3318          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
3319          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3320              int iWaveIndex = -1;              int iWaveIndex = -1;
3321              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2218  namespace { Line 3328  namespace {
3328                          break;                          break;
3329                      }                      }
3330                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3331              }              }
3332              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3333          }          }
3334      }      }
3335    
# Line 2231  namespace { Line 3340  namespace {
3340              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3341              while (_3ewl) {              while (_3ewl) {
3342                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3343                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3344                      dimensionRegionNr++;                      dimensionRegionNr++;
3345                  }                  }
3346                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2240  namespace { Line 3349  namespace {
3349          }          }
3350      }      }
3351    
3352        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3353            // update KeyRange struct and make sure regions are in correct order
3354            DLS::Region::SetKeyRange(Low, High);
3355            // update Region key table for fast lookup
3356            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3357        }
3358    
3359      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
3360          // get velocity dimension's index          // get velocity dimension's index
3361          int veldim = -1;          int veldim = -1;
# Line 2254  namespace { Line 3370  namespace {
3370          int step = 1;          int step = 1;
3371          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3372          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
         int end = step * pDimensionDefinitions[veldim].zones;  
3373    
3374          // loop through all dimension regions for all dimensions except the velocity dimension          // loop through all dimension regions for all dimensions except the velocity dimension
3375          int dim[8] = { 0 };          int dim[8] = { 0 };
3376          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
3377                const int end = i + step * pDimensionDefinitions[veldim].zones;
3378    
3379                // create a velocity table for all cases where the velocity zone is zero
3380              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3381                  pDimensionRegions[i]->VelocityUpperLimit) {                  pDimensionRegions[i]->VelocityUpperLimit) {
3382                  // create the velocity table                  // create the velocity table
# Line 2290  namespace { Line 3407  namespace {
3407                  }                  }
3408              }              }
3409    
3410                // jump to the next case where the velocity zone is zero
3411              int j;              int j;
3412              int shift = 0;              int shift = 0;
3413              for (j = 0 ; j < Dimensions ; j++) {              for (j = 0 ; j < Dimensions ; j++) {
# Line 2326  namespace { Line 3444  namespace {
3444       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3445       */       */
3446      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3447            // some initial sanity checks of the given dimension definition
3448            if (pDimDef->zones < 2)
3449                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3450            if (pDimDef->bits < 1)
3451                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3452            if (pDimDef->dimension == dimension_samplechannel) {
3453                if (pDimDef->zones != 2)
3454                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3455                if (pDimDef->bits != 1)
3456                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3457            }
3458    
3459          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3460          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3461          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
# Line 2345  namespace { Line 3475  namespace {
3475              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3476                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3477    
3478            // pos is where the new dimension should be placed, normally
3479            // last in list, except for the samplechannel dimension which
3480            // has to be first in list
3481            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3482            int bitpos = 0;
3483            for (int i = 0 ; i < pos ; i++)
3484                bitpos += pDimensionDefinitions[i].bits;
3485    
3486            // make room for the new dimension
3487            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3488            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3489                for (int j = Dimensions ; j > pos ; j--) {
3490                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3491                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3492                }
3493            }
3494    
3495          // assign definition of new dimension          // assign definition of new dimension
3496          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3497    
3498            // auto correct certain dimension definition fields (where possible)
3499            pDimensionDefinitions[pos].split_type  =
3500                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3501            pDimensionDefinitions[pos].zone_size =
3502                __resolveZoneSize(pDimensionDefinitions[pos]);
3503    
3504            // create new dimension region(s) for this new dimension, and make
3505            // sure that the dimension regions are placed correctly in both the
3506            // RIFF list and the pDimensionRegions array
3507            RIFF::Chunk* moveTo = NULL;
3508            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3509            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3510                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3511                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3512                }
3513                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3514                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3515                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3516                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3517                        // create a new dimension region and copy all parameter values from
3518                        // an existing dimension region
3519                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3520                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3521    
3522          // create new dimension region(s) for this new dimension                      DimensionRegions++;
3523          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {                  }
3524              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              }
3525              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              moveTo = pDimensionRegions[i]->pParentList;
3526              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);          }
3527              DimensionRegions++;  
3528            // initialize the upper limits for this dimension
3529            int mask = (1 << bitpos) - 1;
3530            for (int z = 0 ; z < pDimDef->zones ; z++) {
3531                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3532                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3533                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3534                                      (z << bitpos) |
3535                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3536                }
3537          }          }
3538    
3539          Dimensions++;          Dimensions++;
# Line 2396  namespace { Line 3576  namespace {
3576          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3577              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3578    
3579            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3580    
3581          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3582          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3583          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2404  namespace { Line 3586  namespace {
3586                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3587                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3588                                      iLowerBit;                                      iLowerBit;
3589    
3590                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3591                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3592                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3593                      DimensionRegions--;                      DimensionRegions--;
# Line 2424  namespace { Line 3608  namespace {
3608              }              }
3609          }          }
3610    
3611            // remove the this dimension from the upper limits arrays
3612            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3613                DimensionRegion* d = pDimensionRegions[j];
3614                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3615                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3616                }
3617                d->DimensionUpperLimits[Dimensions - 1] = 127;
3618            }
3619    
3620          // 'remove' dimension definition          // 'remove' dimension definition
3621          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3622              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2438  namespace { Line 3631  namespace {
3631          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3632      }      }
3633    
3634        /** @brief Delete one split zone of a dimension (decrement zone amount).
3635         *
3636         * Instead of deleting an entire dimensions, this method will only delete
3637         * one particular split zone given by @a zone of the Region's dimension
3638         * given by @a type. So this method will simply decrement the amount of
3639         * zones by one of the dimension in question. To be able to do that, the
3640         * respective dimension must exist on this Region and it must have at least
3641         * 3 zones. All DimensionRegion objects associated with the zone will be
3642         * deleted.
3643         *
3644         * @param type - identifies the dimension where a zone shall be deleted
3645         * @param zone - index of the dimension split zone that shall be deleted
3646         * @throws gig::Exception if requested zone could not be deleted
3647         */
3648        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3649            dimension_def_t* oldDef = GetDimensionDefinition(type);
3650            if (!oldDef)
3651                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3652            if (oldDef->zones <= 2)
3653                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3654            if (zone < 0 || zone >= oldDef->zones)
3655                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3656    
3657            const int newZoneSize = oldDef->zones - 1;
3658    
3659            // create a temporary Region which just acts as a temporary copy
3660            // container and will be deleted at the end of this function and will
3661            // also not be visible through the API during this process
3662            gig::Region* tempRgn = NULL;
3663            {
3664                // adding these temporary chunks is probably not even necessary
3665                Instrument* instr = static_cast<Instrument*>(GetParent());
3666                RIFF::List* pCkInstrument = instr->pCkInstrument;
3667                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3668                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3669                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3670                tempRgn = new Region(instr, rgn);
3671            }
3672    
3673            // copy this region's dimensions (with already the dimension split size
3674            // requested by the arguments of this method call) to the temporary
3675            // region, and don't use Region::CopyAssign() here for this task, since
3676            // it would also alter fast lookup helper variables here and there
3677            dimension_def_t newDef;
3678            for (int i = 0; i < Dimensions; ++i) {
3679                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3680                // is this the dimension requested by the method arguments? ...
3681                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3682                    def.zones = newZoneSize;
3683                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3684                    newDef = def;
3685                }
3686                tempRgn->AddDimension(&def);
3687            }
3688    
3689            // find the dimension index in the tempRegion which is the dimension
3690            // type passed to this method (paranoidly expecting different order)
3691            int tempReducedDimensionIndex = -1;
3692            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3693                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3694                    tempReducedDimensionIndex = d;
3695                    break;
3696                }
3697            }
3698    
3699            // copy dimension regions from this region to the temporary region
3700            for (int iDst = 0; iDst < 256; ++iDst) {
3701                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3702                if (!dstDimRgn) continue;
3703                std::map<dimension_t,int> dimCase;
3704                bool isValidZone = true;
3705                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3706                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3707                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3708                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3709                    baseBits += dstBits;
3710                    // there are also DimensionRegion objects of unused zones, skip them
3711                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3712                        isValidZone = false;
3713                        break;
3714                    }
3715                }
3716                if (!isValidZone) continue;
3717                // a bit paranoid: cope with the chance that the dimensions would
3718                // have different order in source and destination regions
3719                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3720                if (dimCase[type] >= zone) dimCase[type]++;
3721                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3722                dstDimRgn->CopyAssign(srcDimRgn);
3723                // if this is the upper most zone of the dimension passed to this
3724                // method, then correct (raise) its upper limit to 127
3725                if (newDef.split_type == split_type_normal && isLastZone)
3726                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3727            }
3728    
3729            // now tempRegion's dimensions and DimensionRegions basically reflect
3730            // what we wanted to get for this actual Region here, so we now just
3731            // delete and recreate the dimension in question with the new amount
3732            // zones and then copy back from tempRegion      
3733            DeleteDimension(oldDef);
3734            AddDimension(&newDef);
3735            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3736                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3737                if (!srcDimRgn) continue;
3738                std::map<dimension_t,int> dimCase;
3739                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3740                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3741                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3742                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3743                    baseBits += srcBits;
3744                }
3745                // a bit paranoid: cope with the chance that the dimensions would
3746                // have different order in source and destination regions
3747                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3748                if (!dstDimRgn) continue;
3749                dstDimRgn->CopyAssign(srcDimRgn);
3750            }
3751    
3752            // delete temporary region
3753            delete tempRgn;
3754    
3755            UpdateVelocityTable();
3756        }
3757    
3758        /** @brief Divide split zone of a dimension in two (increment zone amount).
3759         *
3760         * This will increment the amount of zones for the dimension (given by
3761         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3762         * in the middle of its zone range in two. So the two zones resulting from
3763         * the zone being splitted, will be an equivalent copy regarding all their
3764         * articulation informations and sample reference. The two zones will only
3765         * differ in their zone's upper limit
3766         * (DimensionRegion::DimensionUpperLimits).
3767         *
3768         * @param type - identifies the dimension where a zone shall be splitted
3769         * @param zone - index of the dimension split zone that shall be splitted
3770         * @throws gig::Exception if requested zone could not be splitted
3771         */
3772        void Region::SplitDimensionZone(dimension_t type, int zone) {
3773            dimension_def_t* oldDef = GetDimensionDefinition(type);
3774            if (!oldDef)
3775                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3776            if (zone < 0 || zone >= oldDef->zones)
3777                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3778    
3779            const int newZoneSize = oldDef->zones + 1;
3780    
3781            // create a temporary Region which just acts as a temporary copy
3782            // container and will be deleted at the end of this function and will
3783            // also not be visible through the API during this process
3784            gig::Region* tempRgn = NULL;
3785            {
3786                // adding these temporary chunks is probably not even necessary
3787                Instrument* instr = static_cast<Instrument*>(GetParent());
3788                RIFF::List* pCkInstrument = instr->pCkInstrument;
3789                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3790                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3791                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3792                tempRgn = new Region(instr, rgn);
3793            }
3794    
3795            // copy this region's dimensions (with already the dimension split size
3796            // requested by the arguments of this method call) to the temporary
3797            // region, and don't use Region::CopyAssign() here for this task, since
3798            // it would also alter fast lookup helper variables here and there
3799            dimension_def_t newDef;
3800            for (int i = 0; i < Dimensions; ++i) {
3801                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3802                // is this the dimension requested by the method arguments? ...
3803                if (def.dimension == type) { // ... if yes, increment zone amount by one
3804                    def.zones = newZoneSize;
3805                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3806                    newDef = def;
3807                }
3808                tempRgn->AddDimension(&def);
3809            }
3810    
3811            // find the dimension index in the tempRegion which is the dimension
3812            // type passed to this method (paranoidly expecting different order)
3813            int tempIncreasedDimensionIndex = -1;
3814            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3815                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3816                    tempIncreasedDimensionIndex = d;
3817                    break;
3818                }
3819            }
3820    
3821            // copy dimension regions from this region to the temporary region
3822            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3823                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3824                if (!srcDimRgn) continue;
3825                std::map<dimension_t,int> dimCase;
3826                bool isValidZone = true;
3827                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3828                    const int srcBits = pDimensionDefinitions[d].bits;
3829                    dimCase[pDimensionDefinitions[d].dimension] =
3830                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3831                    // there are also DimensionRegion objects for unused zones, skip them
3832                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3833                        isValidZone = false;
3834                        break;
3835                    }
3836                    baseBits += srcBits;
3837                }
3838                if (!isValidZone) continue;
3839                // a bit paranoid: cope with the chance that the dimensions would
3840                // have different order in source and destination regions            
3841                if (dimCase[type] > zone) dimCase[type]++;
3842                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3843                dstDimRgn->CopyAssign(srcDimRgn);
3844                // if this is the requested zone to be splitted, then also copy
3845                // the source DimensionRegion to the newly created target zone
3846                // and set the old zones upper limit lower
3847                if (dimCase[type] == zone) {
3848                    // lower old zones upper limit
3849                    if (newDef.split_type == split_type_normal) {
3850                        const int high =
3851                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3852                        int low = 0;
3853                        if (zone > 0) {
3854                            std::map<dimension_t,int> lowerCase = dimCase;
3855                            lowerCase[type]--;
3856                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3857                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3858                        }
3859                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3860                    }
3861                    // fill the newly created zone of the divided zone as well
3862                    dimCase[type]++;
3863                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3864                    dstDimRgn->CopyAssign(srcDimRgn);
3865                }
3866            }
3867    
3868            // now tempRegion's dimensions and DimensionRegions basically reflect
3869            // what we wanted to get for this actual Region here, so we now just
3870            // delete and recreate the dimension in question with the new amount
3871            // zones and then copy back from tempRegion      
3872            DeleteDimension(oldDef);
3873            AddDimension(&newDef);
3874            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3875                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3876                if (!srcDimRgn) continue;
3877                std::map<dimension_t,int> dimCase;
3878                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3879                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3880                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3881                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3882                    baseBits += srcBits;
3883                }
3884                // a bit paranoid: cope with the chance that the dimensions would
3885                // have different order in source and destination regions
3886                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3887                if (!dstDimRgn) continue;
3888                dstDimRgn->CopyAssign(srcDimRgn);
3889            }
3890    
3891            // delete temporary region
3892            delete tempRgn;
3893    
3894            UpdateVelocityTable();
3895        }
3896    
3897        /** @brief Change type of an existing dimension.
3898         *
3899         * Alters the dimension type of a dimension already existing on this
3900         * region. If there is currently no dimension on this Region with type
3901         * @a oldType, then this call with throw an Exception. Likewise there are
3902         * cases where the requested dimension type cannot be performed. For example
3903         * if the new dimension type shall be gig::dimension_samplechannel, and the
3904         * current dimension has more than 2 zones. In such cases an Exception is
3905         * thrown as well.
3906         *
3907         * @param oldType - identifies the existing dimension to be changed
3908         * @param newType - to which dimension type it should be changed to
3909         * @throws gig::Exception if requested change cannot be performed
3910         */
3911        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3912            if (oldType == newType) return;
3913            dimension_def_t* def = GetDimensionDefinition(oldType);
3914            if (!def)
3915                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3916            if (newType == dimension_samplechannel && def->zones != 2)
3917                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3918            if (GetDimensionDefinition(newType))
3919                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3920            def->dimension  = newType;
3921            def->split_type = __resolveSplitType(newType);
3922        }
3923    
3924        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3925            uint8_t bits[8] = {};
3926            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3927                 it != DimCase.end(); ++it)
3928            {
3929                for (int d = 0; d < Dimensions; ++d) {
3930                    if (pDimensionDefinitions[d].dimension == it->first) {
3931                        bits[d] = it->second;
3932                        goto nextDimCaseSlice;
3933                    }
3934                }
3935                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3936                nextDimCaseSlice:
3937                ; // noop
3938            }
3939            return GetDimensionRegionByBit(bits);
3940        }
3941    
3942        /**
3943         * Searches in the current Region for a dimension of the given dimension
3944         * type and returns the precise configuration of that dimension in this
3945         * Region.
3946         *
3947         * @param type - dimension type of the sought dimension
3948         * @returns dimension definition or NULL if there is no dimension with
3949         *          sought type in this Region.
3950         */
3951        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3952            for (int i = 0; i < Dimensions; ++i)
3953                if (pDimensionDefinitions[i].dimension == type)
3954                    return &pDimensionDefinitions[i];
3955            return NULL;
3956        }
3957    
3958      Region::~Region() {      Region::~Region() {
3959          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3960              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
# Line 2465  namespace { Line 3982  namespace {
3982      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3983          uint8_t bits;          uint8_t bits;
3984          int veldim = -1;          int veldim = -1;
3985          int velbitpos;          int velbitpos = 0;
3986          int bitpos = 0;          int bitpos = 0;
3987          int dimregidx = 0;          int dimregidx = 0;
3988          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
# Line 2495  namespace { Line 4012  namespace {
4012              }              }
4013              bitpos += pDimensionDefinitions[i].bits;              bitpos += pDimensionDefinitions[i].bits;
4014          }          }
4015          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4016            if (!dimreg) return NULL;
4017          if (veldim != -1) {          if (veldim != -1) {
4018              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
4019              if (dimreg->VelocityTable) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
4020                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4021              else // normal split type              else // normal split type
4022                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4023    
4024              dimregidx |= bits << velbitpos;              const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4025              dimreg = pDimensionRegions[dimregidx];              dimregidx |= (bits & limiter_mask) << velbitpos;
4026                dimreg = pDimensionRegions[dimregidx & 255];
4027          }          }
4028          return dimreg;          return dimreg;
4029      }      }
4030    
4031        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4032            uint8_t bits;
4033            int veldim = -1;
4034            int velbitpos = 0;
4035            int bitpos = 0;
4036            int dimregidx = 0;
4037            for (uint i = 0; i < Dimensions; i++) {
4038                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4039                    // the velocity dimension must be handled after the other dimensions
4040                    veldim = i;
4041                    velbitpos = bitpos;
4042                } else {
4043                    switch (pDimensionDefinitions[i].split_type) {
4044                        case split_type_normal:
4045                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4046                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4047                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4048                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4049                                }
4050                            } else {
4051                                // gig2: evenly sized zones
4052                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4053                            }
4054                            break;
4055                        case split_type_bit: // the value is already the sought dimension bit number
4056                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4057                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4058                            break;
4059                    }
4060                    dimregidx |= bits << bitpos;
4061                }
4062                bitpos += pDimensionDefinitions[i].bits;
4063            }
4064            dimregidx &= 255;
4065            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4066            if (!dimreg) return -1;
4067            if (veldim != -1) {
4068                // (dimreg is now the dimension region for the lowest velocity)
4069                if (dimreg->VelocityTable) // custom defined zone ranges
4070                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4071                else // normal split type
4072                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4073    
4074                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4075                dimregidx |= (bits & limiter_mask) << velbitpos;
4076                dimregidx &= 255;
4077            }
4078            return dimregidx;
4079        }
4080    
4081      /**      /**
4082       * Returns the appropriate DimensionRegion for the given dimension bit       * Returns the appropriate DimensionRegion for the given dimension bit
4083       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
# Line 2547  namespace { Line 4116  namespace {
4116          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4117          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4118          if (!file->pWavePoolTable) return NULL;          if (!file->pWavePoolTable) return NULL;
4119          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          // for new files or files >= 2 GB use 64 bit wave pool offsets
4120          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4121          Sample* sample = file->GetFirstSample(pProgress);              // use 64 bit wave pool offsets (treating this as large file)
4122          while (sample) {              uint64_t soughtoffset =
4123              if (sample->ulWavePoolOffset == soughtoffset &&                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4124                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);                  uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4125              sample = file->GetNextSample();              Sample* sample = file->GetFirstSample(pProgress);
4126                while (sample) {
4127                    if (sample->ullWavePoolOffset == soughtoffset)
4128                        return static_cast<gig::Sample*>(sample);
4129                    sample = file->GetNextSample();
4130                }
4131            } else {
4132                // use extension files and 32 bit wave pool offsets
4133                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4134                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4135                Sample* sample = file->GetFirstSample(pProgress);
4136                while (sample) {
4137                    if (sample->ullWavePoolOffset == soughtoffset &&
4138                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4139                    sample = file->GetNextSample();
4140                }
4141            }
4142            return NULL;
4143        }
4144        
4145        /**
4146         * Make a (semi) deep copy of the Region object given by @a orig
4147         * and assign it to this object.
4148         *
4149         * Note that all sample pointers referenced by @a orig are simply copied as
4150         * memory address. Thus the respective samples are shared, not duplicated!
4151         *
4152         * @param orig - original Region object to be copied from
4153         */
4154        void Region::CopyAssign(const Region* orig) {
4155            CopyAssign(orig, NULL);
4156        }
4157        
4158        /**
4159         * Make a (semi) deep copy of the Region object given by @a orig and
4160         * assign it to this object
4161         *
4162         * @param mSamples - crosslink map between the foreign file's samples and
4163         *                   this file's samples
4164         */
4165        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4166            // handle base classes
4167            DLS::Region::CopyAssign(orig);
4168            
4169            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4170                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4171            }
4172            
4173            // handle own member variables
4174            for (int i = Dimensions - 1; i >= 0; --i) {
4175                DeleteDimension(&pDimensionDefinitions[i]);
4176            }
4177            Layers = 0; // just to be sure
4178            for (int i = 0; i < orig->Dimensions; i++) {
4179                // we need to copy the dim definition here, to avoid the compiler
4180                // complaining about const-ness issue
4181                dimension_def_t def = orig->pDimensionDefinitions[i];
4182                AddDimension(&def);
4183            }
4184            for (int i = 0; i < 256; i++) {
4185                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4186                    pDimensionRegions[i]->CopyAssign(
4187                        orig->pDimensionRegions[i],
4188                        mSamples
4189                    );
4190                }
4191            }
4192            Layers = orig->Layers;
4193        }
4194    
4195    
4196    // *************** MidiRule ***************
4197    // *
4198    
4199        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4200            _3ewg->SetPos(36);
4201            Triggers = _3ewg->ReadUint8();
4202            _3ewg->SetPos(40);
4203            ControllerNumber = _3ewg->ReadUint8();
4204            _3ewg->SetPos(46);
4205            for (int i = 0 ; i < Triggers ; i++) {
4206                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4207                pTriggers[i].Descending = _3ewg->ReadUint8();
4208                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4209                pTriggers[i].Key = _3ewg->ReadUint8();
4210                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4211                pTriggers[i].Velocity = _3ewg->ReadUint8();
4212                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4213                _3ewg->ReadUint8();
4214            }
4215        }
4216    
4217        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4218            ControllerNumber(0),
4219            Triggers(0) {
4220        }
4221    
4222        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4223            pData[32] = 4;
4224            pData[33] = 16;
4225            pData[36] = Triggers;
4226            pData[40] = ControllerNumber;
4227            for (int i = 0 ; i < Triggers ; i++) {
4228                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4229                pData[47 + i * 8] = pTriggers[i].Descending;
4230                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4231                pData[49 + i * 8] = pTriggers[i].Key;
4232                pData[50 + i * 8] = pTriggers[i].NoteOff;
4233                pData[51 + i * 8] = pTriggers[i].Velocity;
4234                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4235            }
4236        }
4237    
4238        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4239            _3ewg->SetPos(36);
4240            LegatoSamples = _3ewg->ReadUint8(); // always 12
4241            _3ewg->SetPos(40);
4242            BypassUseController = _3ewg->ReadUint8();
4243            BypassKey = _3ewg->ReadUint8();
4244            BypassController = _3ewg->ReadUint8();
4245            ThresholdTime = _3ewg->ReadUint16();
4246            _3ewg->ReadInt16();
4247            ReleaseTime = _3ewg->ReadUint16();
4248            _3ewg->ReadInt16();
4249            KeyRange.low = _3ewg->ReadUint8();
4250            KeyRange.high = _3ewg->ReadUint8();
4251            _3ewg->SetPos(64);
4252            ReleaseTriggerKey = _3ewg->ReadUint8();
4253            AltSustain1Key = _3ewg->ReadUint8();
4254            AltSustain2Key = _3ewg->ReadUint8();
4255        }
4256    
4257        MidiRuleLegato::MidiRuleLegato() :
4258            LegatoSamples(12),
4259            BypassUseController(false),
4260            BypassKey(0),
4261            BypassController(1),
4262            ThresholdTime(20),
4263            ReleaseTime(20),
4264            ReleaseTriggerKey(0),
4265            AltSustain1Key(0),
4266            AltSustain2Key(0)
4267        {
4268            KeyRange.low = KeyRange.high = 0;
4269        }
4270    
4271        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4272            pData[32] = 0;
4273            pData[33] = 16;
4274            pData[36] = LegatoSamples;
4275            pData[40] = BypassUseController;
4276            pData[41] = BypassKey;
4277            pData[42] = BypassController;
4278            store16(&pData[43], ThresholdTime);
4279            store16(&pData[47], ReleaseTime);
4280            pData[51] = KeyRange.low;
4281            pData[52] = KeyRange.high;
4282            pData[64] = ReleaseTriggerKey;
4283            pData[65] = AltSustain1Key;
4284            pData[66] = AltSustain2Key;
4285        }
4286    
4287        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4288            _3ewg->SetPos(36);
4289            Articulations = _3ewg->ReadUint8();
4290            int flags = _3ewg->ReadUint8();
4291            Polyphonic = flags & 8;
4292            Chained = flags & 4;
4293            Selector = (flags & 2) ? selector_controller :
4294                (flags & 1) ? selector_key_switch : selector_none;
4295            Patterns = _3ewg->ReadUint8();
4296            _3ewg->ReadUint8(); // chosen row
4297            _3ewg->ReadUint8(); // unknown
4298            _3ewg->ReadUint8(); // unknown
4299            _3ewg->ReadUint8(); // unknown
4300            KeySwitchRange.low = _3ewg->ReadUint8();
4301            KeySwitchRange.high = _3ewg->ReadUint8();
4302            Controller = _3ewg->ReadUint8();
4303            PlayRange.low = _3ewg->ReadUint8();
4304            PlayRange.high = _3ewg->ReadUint8();
4305    
4306            int n = std::min(int(Articulations), 32);
4307            for (int i = 0 ; i < n ; i++) {
4308                _3ewg->ReadString(pArticulations[i], 32);
4309            }
4310            _3ewg->SetPos(1072);
4311            n = std::min(int(Patterns), 32);
4312            for (int i = 0 ; i < n ; i++) {
4313                _3ewg->ReadString(pPatterns[i].Name, 16);
4314                pPatterns[i].Size = _3ewg->ReadUint8();
4315                _3ewg->Read(&pPatterns[i][0], 1, 32);
4316            }
4317        }
4318    
4319        MidiRuleAlternator::MidiRuleAlternator() :
4320            Articulations(0),
4321            Patterns(0),
4322            Selector(selector_none),
4323            Controller(0),
4324            Polyphonic(false),
4325            Chained(false)
4326        {
4327            PlayRange.low = PlayRange.high = 0;
4328            KeySwitchRange.low = KeySwitchRange.high = 0;
4329        }
4330    
4331        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4332            pData[32] = 3;
4333            pData[33] = 16;
4334            pData[36] = Articulations;
4335            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4336                (Selector == selector_controller ? 2 :
4337                 (Selector == selector_key_switch ? 1 : 0));
4338            pData[38] = Patterns;
4339    
4340            pData[43] = KeySwitchRange.low;
4341            pData[44] = KeySwitchRange.high;
4342            pData[45] = Controller;
4343            pData[46] = PlayRange.low;
4344            pData[47] = PlayRange.high;
4345    
4346            char* str = reinterpret_cast<char*>(pData);
4347            int pos = 48;
4348            int n = std::min(int(Articulations), 32);
4349            for (int i = 0 ; i < n ; i++, pos += 32) {
4350                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4351            }
4352    
4353            pos = 1072;
4354            n = std::min(int(Patterns), 32);
4355            for (int i = 0 ; i < n ; i++, pos += 49) {
4356                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4357                pData[pos + 16] = pPatterns[i].Size;
4358                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4359            }
4360        }
4361    
4362    // *************** Script ***************
4363    // *
4364    
4365        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4366            pGroup = group;
4367            pChunk = ckScri;
4368            if (ckScri) { // object is loaded from file ...
4369                // read header
4370                uint32_t headerSize = ckScri->ReadUint32();
4371                Compression = (Compression_t) ckScri->ReadUint32();
4372                Encoding    = (Encoding_t) ckScri->ReadUint32();
4373                Language    = (Language_t) ckScri->ReadUint32();
4374                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4375                crc         = ckScri->ReadUint32();
4376                uint32_t nameSize = ckScri->ReadUint32();
4377                Name.resize(nameSize, ' ');
4378                for (int i = 0; i < nameSize; ++i)
4379                    Name[i] = ckScri->ReadUint8();
4380                // to handle potential future extensions of the header
4381                ckScri->SetPos(sizeof(int32_t) + headerSize);
4382                // read actual script data
4383                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4384                data.resize(scriptSize);
4385                for (int i = 0; i < scriptSize; ++i)
4386                    data[i] = ckScri->ReadUint8();
4387            } else { // this is a new script object, so just initialize it as such ...
4388                Compression = COMPRESSION_NONE;
4389                Encoding = ENCODING_ASCII;
4390                Language = LANGUAGE_NKSP;
4391                Bypass   = false;
4392                crc      = 0;
4393                Name     = "Unnamed Script";
4394            }
4395        }
4396    
4397        Script::~Script() {
4398        }
4399    
4400        /**
4401         * Returns the current script (i.e. as source code) in text format.
4402         */
4403        String Script::GetScriptAsText() {
4404            String s;
4405            s.resize(data.size(), ' ');
4406            memcpy(&s[0], &data[0], data.size());
4407            return s;
4408        }
4409    
4410        /**
4411         * Replaces the current script with the new script source code text given
4412         * by @a text.
4413         *
4414         * @param text - new script source code
4415         */
4416        void Script::SetScriptAsText(const String& text) {
4417            data.resize(text.size());
4418            memcpy(&data[0], &text[0], text.size());
4419        }
4420    
4421        /**
4422         * Apply this script to the respective RIFF chunks. You have to call
4423         * File::Save() to make changes persistent.
4424         *
4425         * Usually there is absolutely no need to call this method explicitly.
4426         * It will be called automatically when File::Save() was called.
4427         *
4428         * @param pProgress - callback function for progress notification
4429         */
4430        void Script::UpdateChunks(progress_t* pProgress) {
4431            // recalculate CRC32 check sum
4432            __resetCRC(crc);
4433            __calculateCRC(&data[0], data.size(), crc);
4434            __finalizeCRC(crc);
4435            // make sure chunk exists and has the required size
4436            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4437            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4438            else pChunk->Resize(chunkSize);
4439            // fill the chunk data to be written to disk
4440            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4441            int pos = 0;
4442            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4443            pos += sizeof(int32_t);
4444            store32(&pData[pos], Compression);
4445            pos += sizeof(int32_t);
4446            store32(&pData[pos], Encoding);
4447            pos += sizeof(int32_t);
4448            store32(&pData[pos], Language);
4449            pos += sizeof(int32_t);
4450            store32(&pData[pos], Bypass ? 1 : 0);
4451            pos += sizeof(int32_t);
4452            store32(&pData[pos], crc);
4453            pos += sizeof(int32_t);
4454            store32(&pData[pos], (uint32_t) Name.size());
4455            pos += sizeof(int32_t);
4456            for (int i = 0; i < Name.size(); ++i, ++pos)
4457                pData[pos] = Name[i];
4458            for (int i = 0; i < data.size(); ++i, ++pos)
4459                pData[pos] = data[i];
4460        }
4461    
4462        /**
4463         * Move this script from its current ScriptGroup to another ScriptGroup
4464         * given by @a pGroup.
4465         *
4466         * @param pGroup - script's new group
4467         */
4468        void Script::SetGroup(ScriptGroup* pGroup) {
4469            if (this->pGroup == pGroup) return;
4470            if (pChunk)
4471                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4472            this->pGroup = pGroup;
4473        }
4474    
4475        /**
4476         * Returns the script group this script currently belongs to. Each script
4477         * is a member of exactly one ScriptGroup.
4478         *
4479         * @returns current script group
4480         */
4481        ScriptGroup* Script::GetGroup() const {
4482            return pGroup;
4483        }
4484    
4485        /**
4486         * Make a (semi) deep copy of the Script object given by @a orig
4487         * and assign it to this object. Note: the ScriptGroup this Script
4488         * object belongs to remains untouched by this call.
4489         *
4490         * @param orig - original Script object to be copied from
4491         */
4492        void Script::CopyAssign(const Script* orig) {
4493            Name        = orig->Name;
4494            Compression = orig->Compression;
4495            Encoding    = orig->Encoding;
4496            Language    = orig->Language;
4497            Bypass      = orig->Bypass;
4498            data        = orig->data;
4499        }
4500    
4501        void Script::RemoveAllScriptReferences() {
4502            File* pFile = pGroup->pFile;
4503            for (int i = 0; pFile->GetInstrument(i); ++i) {
4504                Instrument* instr = pFile->GetInstrument(i);
4505                instr->RemoveScript(this);
4506            }
4507        }
4508    
4509    // *************** ScriptGroup ***************
4510    // *
4511    
4512        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4513            pFile = file;
4514            pList = lstRTIS;
4515            pScripts = NULL;
4516            if (lstRTIS) {
4517                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4518                ::LoadString(ckName, Name);
4519            } else {
4520                Name = "Default Group";
4521            }
4522        }
4523    
4524        ScriptGroup::~ScriptGroup() {
4525            if (pScripts) {
4526                std::list<Script*>::iterator iter = pScripts->begin();
4527                std::list<Script*>::iterator end  = pScripts->end();
4528                while (iter != end) {
4529                    delete *iter;
4530                    ++iter;
4531                }
4532                delete pScripts;
4533            }
4534        }
4535    
4536        /**
4537         * Apply this script group to the respective RIFF chunks. You have to call
4538         * File::Save() to make changes persistent.
4539         *
4540         * Usually there is absolutely no need to call this method explicitly.
4541         * It will be called automatically when File::Save() was called.
4542         *
4543         * @param pProgress - callback function for progress notification
4544         */
4545        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4546            if (pScripts) {
4547                if (!pList)
4548                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4549    
4550                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4551                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4552    
4553                for (std::list<Script*>::iterator it = pScripts->begin();
4554                     it != pScripts->end(); ++it)
4555                {
4556                    (*it)->UpdateChunks(pProgress);
4557                }
4558          }          }
4559        }
4560    
4561        /** @brief Get instrument script.
4562         *
4563         * Returns the real-time instrument script with the given index.
4564         *
4565         * @param index - number of the sought script (0..n)
4566         * @returns sought script or NULL if there's no such script
4567         */
4568        Script* ScriptGroup::GetScript(uint index) {
4569            if (!pScripts) LoadScripts();
4570            std::list<Script*>::iterator it = pScripts->begin();
4571            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4572                if (i == index) return *it;
4573          return NULL;          return NULL;
4574      }      }
4575    
4576        /** @brief Add new instrument script.
4577         *
4578         * Adds a new real-time instrument script to the file. The script is not
4579         * actually used / executed unless it is referenced by an instrument to be
4580         * used. This is similar to samples, which you can add to a file, without
4581         * an instrument necessarily actually using it.
4582         *
4583         * You have to call Save() to make this persistent to the file.
4584         *
4585         * @return new empty script object
4586         */
4587        Script* ScriptGroup::AddScript() {
4588            if (!pScripts) LoadScripts();
4589            Script* pScript = new Script(this, NULL);
4590            pScripts->push_back(pScript);
4591            return pScript;
4592        }
4593    
4594        /** @brief Delete an instrument script.
4595         *
4596         * This will delete the given real-time instrument script. References of
4597         * instruments that are using that script will be removed accordingly.
4598         *
4599         * You have to call Save() to make this persistent to the file.
4600         *
4601         * @param pScript - script to delete
4602         * @throws gig::Exception if given script could not be found
4603         */
4604        void ScriptGroup::DeleteScript(Script* pScript) {
4605            if (!pScripts) LoadScripts();
4606            std::list<Script*>::iterator iter =
4607                find(pScripts->begin(), pScripts->end(), pScript);
4608            if (iter == pScripts->end())
4609                throw gig::Exception("Could not delete script, could not find given script");
4610            pScripts->erase(iter);
4611            pScript->RemoveAllScriptReferences();
4612            if (pScript->pChunk)
4613                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4614            delete pScript;
4615        }
4616    
4617        void ScriptGroup::LoadScripts() {
4618            if (pScripts) return;
4619            pScripts = new std::list<Script*>;
4620            if (!pList) return;
4621    
4622            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4623                 ck = pList->GetNextSubChunk())
4624            {
4625                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4626                    pScripts->push_back(new Script(this, ck));
4627                }
4628            }
4629        }
4630    
4631  // *************** Instrument ***************  // *************** Instrument ***************
4632  // *  // *
4633    
4634      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4635          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
4636                { CHUNK_ID_INAM, 64 },
4637                { CHUNK_ID_ISFT, 12 },
4638                { 0, 0 }
4639            };
4640            pInfo->SetFixedStringLengths(fixedStringLengths);
4641    
4642          // Initialization          // Initialization
4643          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4644            EffectSend = 0;
4645            Attenuation = 0;
4646            FineTune = 0;
4647            PitchbendRange = 2;
4648            PianoReleaseMode = false;
4649            DimensionKeyRange.low = 0;
4650            DimensionKeyRange.high = 0;
4651            pMidiRules = new MidiRule*[3];
4652            pMidiRules[0] = NULL;
4653            pScriptRefs = NULL;
4654    
4655          // Loading          // Loading
4656          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2582  namespace { Line 4665  namespace {
4665                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4666                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4667                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4668    
4669                    if (_3ewg->GetSize() > 32) {
4670                        // read MIDI rules
4671                        int i = 0;
4672                        _3ewg->SetPos(32);
4673                        uint8_t id1 = _3ewg->ReadUint8();
4674                        uint8_t id2 = _3ewg->ReadUint8();
4675    
4676                        if (id2 == 16) {
4677                            if (id1 == 4) {
4678                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4679                            } else if (id1 == 0) {
4680                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4681                            } else if (id1 == 3) {
4682                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4683                            } else {
4684                                pMidiRules[i++] = new MidiRuleUnknown;
4685                            }
4686                        }
4687                        else if (id1 != 0 || id2 != 0) {
4688                            pMidiRules[i++] = new MidiRuleUnknown;
4689                        }
4690                        //TODO: all the other types of rules
4691    
4692                        pMidiRules[i] = NULL;
4693                    }
4694                }
4695            }
4696    
4697            if (pFile->GetAutoLoad()) {
4698                if (!pRegions) pRegions = new RegionList;
4699                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4700                if (lrgn) {
4701                    RIFF::List* rgn = lrgn->GetFirstSubList();
4702                    while (rgn) {
4703                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4704                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4705                            pRegions->push_back(new Region(this, rgn));
4706                        }
4707                        rgn = lrgn->GetNextSubList();
4708                    }
4709                    // Creating Region Key Table for fast lookup
4710                    UpdateRegionKeyTable();
4711              }              }
4712          }          }
4713    
4714          if (!pRegions) pRegions = new RegionList;          // own gig format extensions
4715          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4716          if (lrgn) {          if (lst3LS) {
4717              RIFF::List* rgn = lrgn->GetFirstSubList();              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4718              while (rgn) {              if (ckSCSL) {
4719                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  int headerSize = ckSCSL->ReadUint32();
4720                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                  int slotCount  = ckSCSL->ReadUint32();
4721                      pRegions->push_back(new Region(this, rgn));                  if (slotCount) {
4722                        int slotSize  = ckSCSL->ReadUint32();
4723                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4724                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4725                        for (int i = 0; i < slotCount; ++i) {
4726                            _ScriptPooolEntry e;
4727                            e.fileOffset = ckSCSL->ReadUint32();
4728                            e.bypass     = ckSCSL->ReadUint32() & 1;
4729                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4730                            scriptPoolFileOffsets.push_back(e);
4731                        }
4732                  }                  }
                 rgn = lrgn->GetNextSubList();  
4733              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
4734          }          }
4735    
4736          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4737      }      }
4738    
4739      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
4740            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4741          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
4742          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
4743          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
4744              gig::Region* pRegion = static_cast<gig::Region*>(*iter);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4745              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {              const int low  = std::max(int(pRegion->KeyRange.low), 0);
4746                const int high = std::min(int(pRegion->KeyRange.high), 127);
4747                for (int iKey = low; iKey <= high; iKey++) {
4748                  RegionKeyTable[iKey] = pRegion;                  RegionKeyTable[iKey] = pRegion;
4749              }              }
4750          }          }
4751      }      }
4752    
4753      Instrument::~Instrument() {      Instrument::~Instrument() {
4754            for (int i = 0 ; pMidiRules[i] ; i++) {
4755                delete pMidiRules[i];
4756            }
4757            delete[] pMidiRules;
4758            if (pScriptRefs) delete pScriptRefs;
4759      }      }
4760    
4761      /**      /**
# Line 2624  namespace { Line 4765  namespace {
4765       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
4766       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
4767       *       *
4768         * @param pProgress - callback function for progress notification
4769       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
4770       */       */
4771      void Instrument::UpdateChunks() {      void Instrument::UpdateChunks(progress_t* pProgress) {
4772          // first update base classes' chunks          // first update base classes' chunks
4773          DLS::Instrument::UpdateChunks();          DLS::Instrument::UpdateChunks(pProgress);
4774    
4775          // update Regions' chunks          // update Regions' chunks
4776          {          {
4777              RegionList::iterator iter = pRegions->begin();              RegionList::iterator iter = pRegions->begin();
4778              RegionList::iterator end  = pRegions->end();              RegionList::iterator end  = pRegions->end();
4779              for (; iter != end; ++iter)              for (; iter != end; ++iter)
4780                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
4781          }          }
4782    
4783          // make sure 'lart' RIFF list chunk exists          // make sure 'lart' RIFF list chunk exists
# Line 2643  namespace { Line 4785  namespace {
4785          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4786          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
4787          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4788          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
4789                File* pFile = (File*) GetParent();
4790    
4791                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4792                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4793                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4794                memset(_3ewg->LoadChunkData(), 0, size);
4795            }
4796          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
4797          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4798          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
4799          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
4800          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
4801          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
4802          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4803                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
4804          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
4805          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
4806    
4807            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4808                pData[32] = 0;
4809                pData[33] = 0;
4810            } else {
4811                for (int i = 0 ; pMidiRules[i] ; i++) {
4812                    pMidiRules[i]->UpdateChunks(pData);
4813                }
4814            }
4815    
4816            // own gig format extensions
4817           if (ScriptSlotCount()) {
4818               // make sure we have converted the original loaded script file
4819               // offsets into valid Script object pointers
4820               LoadScripts();
4821    
4822               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4823               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4824               const int slotCount = (int) pScriptRefs->size();
4825               const int headerSize = 3 * sizeof(uint32_t);
4826               const int slotSize  = 2 * sizeof(uint32_t);
4827               const int totalChunkSize = headerSize + slotCount * slotSize;
4828               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4829               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4830               else ckSCSL->Resize(totalChunkSize);
4831               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4832               int pos = 0;
4833               store32(&pData[pos], headerSize);
4834               pos += sizeof(uint32_t);
4835               store32(&pData[pos], slotCount);
4836               pos += sizeof(uint32_t);
4837               store32(&pData[pos], slotSize);
4838               pos += sizeof(uint32_t);
4839               for (int i = 0; i < slotCount; ++i) {
4840                   // arbitrary value, the actual file offset will be updated in
4841                   // UpdateScriptFileOffsets() after the file has been resized
4842                   int bogusFileOffset = 0;
4843                   store32(&pData[pos], bogusFileOffset);
4844                   pos += sizeof(uint32_t);
4845                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4846                   pos += sizeof(uint32_t);
4847               }
4848           } else {
4849               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4850               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4851               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4852           }
4853        }
4854    
4855        void Instrument::UpdateScriptFileOffsets() {
4856           // own gig format extensions
4857           if (pScriptRefs && pScriptRefs->size() > 0) {
4858               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4859               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4860               const int slotCount = (int) pScriptRefs->size();
4861               const int headerSize = 3 * sizeof(uint32_t);
4862               ckSCSL->SetPos(headerSize);
4863               for (int i = 0; i < slotCount; ++i) {
4864                   uint32_t fileOffset = uint32_t(
4865                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4866                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4867                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4868                   );
4869                   ckSCSL->WriteUint32(&fileOffset);
4870                   // jump over flags entry (containing the bypass flag)
4871                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4872               }
4873           }        
4874      }      }
4875    
4876      /**      /**
# Line 2664  namespace { Line 4881  namespace {
4881       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4882       */       */
4883      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4884          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4885          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4886    
4887          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2708  namespace { Line 4925  namespace {
4925          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4926          Region* pNewRegion = new Region(this, rgn);          Region* pNewRegion = new Region(this, rgn);
4927          pRegions->push_back(pNewRegion);          pRegions->push_back(pNewRegion);
4928          Regions = pRegions->size();          Regions = (uint32_t) pRegions->size();
4929          // update Region key table for fast lookup          // update Region key table for fast lookup
4930          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4931          // done          // done
# Line 2722  namespace { Line 4939  namespace {
4939          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4940      }      }
4941    
4942        /**
4943         * Move this instrument at the position before @arg dst.
4944         *
4945         * This method can be used to reorder the sequence of instruments in a
4946         * .gig file. This might be helpful especially on large .gig files which
4947         * contain a large number of instruments within the same .gig file. So
4948         * grouping such instruments to similar ones, can help to keep track of them
4949         * when working with such complex .gig files.
4950         *
4951         * When calling this method, this instrument will be removed from in its
4952         * current position in the instruments list and moved to the requested
4953         * target position provided by @param dst. You may also pass NULL as
4954         * argument to this method, in that case this intrument will be moved to the
4955         * very end of the .gig file's instrument list.
4956         *
4957         * You have to call Save() to make the order change persistent to the .gig
4958         * file.
4959         *
4960         * Currently this method is limited to moving the instrument within the same
4961         * .gig file. Trying to move it to another .gig file by calling this method
4962         * will throw an exception.
4963         *
4964         * @param dst - destination instrument at which this instrument will be
4965         *              moved to, or pass NULL for moving to end of list
4966         * @throw gig::Exception if this instrument and target instrument are not
4967         *                       part of the same file
4968         */
4969        void Instrument::MoveTo(Instrument* dst) {
4970            if (dst && GetParent() != dst->GetParent())
4971                throw Exception(
4972                    "gig::Instrument::MoveTo() can only be used for moving within "
4973                    "the same gig file."
4974                );
4975    
4976            File* pFile = (File*) GetParent();
4977    
4978            // move this instrument within the instrument list
4979            {
4980                File::InstrumentList& list = *pFile->pInstruments;
4981    
4982                File::InstrumentList::iterator itFrom =
4983                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4984    
4985                File::InstrumentList::iterator itTo =
4986                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4987    
4988                list.splice(itTo, list, itFrom);
4989            }
4990    
4991            // move the instrument's actual list RIFF chunk appropriately
4992            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4993            lstCkInstruments->MoveSubChunk(
4994                this->pCkInstrument,
4995                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4996            );
4997        }
4998    
4999        /**
5000         * Returns a MIDI rule of the instrument.
5001         *
5002         * The list of MIDI rules, at least in gig v3, always contains at
5003         * most two rules. The second rule can only be the DEF filter
5004         * (which currently isn't supported by libgig).
5005         *
5006         * @param i - MIDI rule number
5007         * @returns   pointer address to MIDI rule number i or NULL if there is none
5008         */
5009        MidiRule* Instrument::GetMidiRule(int i) {
5010            return pMidiRules[i];
5011        }
5012    
5013        /**
5014         * Adds the "controller trigger" MIDI rule to the instrument.
5015         *
5016         * @returns the new MIDI rule
5017         */
5018        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5019            delete pMidiRules[0];
5020            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5021            pMidiRules[0] = r;
5022            pMidiRules[1] = 0;
5023            return r;
5024        }
5025    
5026        /**
5027         * Adds the legato MIDI rule to the instrument.
5028         *
5029         * @returns the new MIDI rule
5030         */
5031        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5032            delete pMidiRules[0];
5033            MidiRuleLegato* r = new MidiRuleLegato;
5034            pMidiRules[0] = r;
5035            pMidiRules[1] = 0;
5036            return r;
5037        }
5038    
5039        /**
5040         * Adds the alternator MIDI rule to the instrument.
5041         *
5042         * @returns the new MIDI rule
5043         */
5044        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5045            delete pMidiRules[0];
5046            MidiRuleAlternator* r = new MidiRuleAlternator;
5047            pMidiRules[0] = r;
5048            pMidiRules[1] = 0;
5049            return r;
5050        }
5051    
5052        /**
5053         * Deletes a MIDI rule from the instrument.
5054         *
5055         * @param i - MIDI rule number
5056         */
5057        void Instrument::DeleteMidiRule(int i) {
5058            delete pMidiRules[i];
5059            pMidiRules[i] = 0;
5060        }
5061    
5062        void Instrument::LoadScripts() {
5063            if (pScriptRefs) return;
5064            pScriptRefs = new std::vector<_ScriptPooolRef>;
5065            if (scriptPoolFileOffsets.empty()) return;
5066            File* pFile = (File*) GetParent();
5067            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5068                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5069                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5070                    ScriptGroup* group = pFile->GetScriptGroup(i);
5071                    for (uint s = 0; group->GetScript(s); ++s) {
5072                        Script* script = group->GetScript(s);
5073                        if (script->pChunk) {
5074                            uint32_t offset = uint32_t(
5075                                script->pChunk->GetFilePos() -
5076                                script->pChunk->GetPos() -
5077                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5078                            );
5079                            if (offset == soughtOffset)
5080                            {
5081                                _ScriptPooolRef ref;
5082                                ref.script = script;
5083                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5084                                pScriptRefs->push_back(ref);
5085                                break;
5086                            }
5087                        }
5088                    }
5089                }
5090            }
5091            // we don't need that anymore
5092            scriptPoolFileOffsets.clear();
5093        }
5094    
5095        /** @brief Get instrument script (gig format extension).
5096         *
5097         * Returns the real-time instrument script of instrument script slot
5098         * @a index.
5099         *
5100         * @note This is an own format extension which did not exist i.e. in the
5101         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5102         * gigedit.
5103         *
5104         * @param index - instrument script slot index
5105         * @returns script or NULL if index is out of bounds
5106         */
5107        Script* Instrument::GetScriptOfSlot(uint index) {
5108            LoadScripts();
5109            if (index >= pScriptRefs->size()) return NULL;
5110            return pScriptRefs->at(index).script;
5111        }
5112    
5113        /** @brief Add new instrument script slot (gig format extension).
5114         *
5115         * Add the given real-time instrument script reference to this instrument,
5116         * which shall be executed by the sampler for for this instrument. The
5117         * script will be added to the end of the script list of this instrument.
5118         * The positions of the scripts in the Instrument's Script list are
5119         * relevant, because they define in which order they shall be executed by
5120         * the sampler. For this reason it is also legal to add the same script
5121         * twice to an instrument, for example you might have a script called
5122         * "MyFilter" which performs an event filter task, and you might have
5123         * another script called "MyNoteTrigger" which triggers new notes, then you
5124         * might for example have the following list of scripts on the instrument:
5125         *
5126         * 1. Script "MyFilter"
5127         * 2. Script "MyNoteTrigger"
5128         * 3. Script "MyFilter"
5129         *
5130         * Which would make sense, because the 2nd script launched new events, which
5131         * you might need to filter as well.
5132         *
5133         * There are two ways to disable / "bypass" scripts. You can either disable
5134         * a script locally for the respective script slot on an instrument (i.e. by
5135         * passing @c false to the 2nd argument of this method, or by calling
5136         * SetScriptBypassed()). Or you can disable a script globally for all slots
5137         * and all instruments by setting Script::Bypass.
5138         *
5139         * @note This is an own format extension which did not exist i.e. in the
5140         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5141         * gigedit.
5142         *
5143         * @param pScript - script that shall be executed for this instrument
5144         * @param bypass  - if enabled, the sampler shall skip executing this
5145         *                  script (in the respective list position)
5146         * @see SetScriptBypassed()
5147         */
5148        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5149            LoadScripts();
5150            _ScriptPooolRef ref = { pScript, bypass };
5151            pScriptRefs->push_back(ref);
5152        }
5153    
5154        /** @brief Flip two script slots with each other (gig format extension).
5155         *
5156         * Swaps the position of the two given scripts in the Instrument's Script
5157         * list. The positions of the scripts in the Instrument's Script list are
5158         * relevant, because they define in which order they shall be executed by
5159         * the sampler.
5160         *
5161         * @note This is an own format extension which did not exist i.e. in the
5162         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5163         * gigedit.
5164         *
5165         * @param index1 - index of the first script slot to swap
5166         * @param index2 - index of the second script slot to swap
5167         */
5168        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5169            LoadScripts();
5170            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5171                return;
5172            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5173            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5174            (*pScriptRefs)[index2] = tmp;
5175        }
5176    
5177        /** @brief Remove script slot.
5178         *
5179         * Removes the script slot with the given slot index.
5180         *
5181         * @param index - index of script slot to remove
5182         */
5183        void Instrument::RemoveScriptSlot(uint index) {
5184            LoadScripts();
5185            if (index >= pScriptRefs->size()) return;
5186            pScriptRefs->erase( pScriptRefs->begin() + index );
5187        }
5188    
5189        /** @brief Remove reference to given Script (gig format extension).
5190         *
5191         * This will remove all script slots on the instrument which are referencing
5192         * the given script.
5193         *
5194         * @note This is an own format extension which did not exist i.e. in the
5195         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5196         * gigedit.
5197         *
5198         * @param pScript - script reference to remove from this instrument
5199         * @see RemoveScriptSlot()
5200         */
5201        void Instrument::RemoveScript(Script* pScript) {
5202            LoadScripts();
5203            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5204                if ((*pScriptRefs)[i].script == pScript) {
5205                    pScriptRefs->erase( pScriptRefs->begin() + i );
5206                }
5207            }
5208        }
5209    
5210        /** @brief Instrument's amount of script slots.
5211         *
5212         * This method returns the amount of script slots this instrument currently
5213         * uses.
5214         *
5215         * A script slot is a reference of a real-time instrument script to be
5216         * executed by the sampler. The scripts will be executed by the sampler in
5217         * sequence of the slots. One (same) script may be referenced multiple
5218         * times in different slots.
5219         *
5220         * @note This is an own format extension which did not exist i.e. in the
5221         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5222         * gigedit.
5223         */
5224        uint Instrument::ScriptSlotCount() const {
5225            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5226        }
5227    
5228        /** @brief Whether script execution shall be skipped.
5229         *
5230         * Defines locally for the Script reference slot in the Instrument's Script
5231         * list, whether the script shall be skipped by the sampler regarding
5232         * execution.
5233         *
5234         * It is also possible to ignore exeuction of the script globally, for all
5235         * slots and for all instruments by setting Script::Bypass.
5236         *
5237         * @note This is an own format extension which did not exist i.e. in the
5238         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5239         * gigedit.
5240         *
5241         * @param index - index of the script slot on this instrument
5242         * @see Script::Bypass
5243         */
5244        bool Instrument::IsScriptSlotBypassed(uint index) {
5245            if (index >= ScriptSlotCount()) return false;
5246            return pScriptRefs ? pScriptRefs->at(index).bypass
5247                               : scriptPoolFileOffsets.at(index).bypass;
5248            
5249        }
5250    
5251        /** @brief Defines whether execution shall be skipped.
5252         *
5253         * You can call this method to define locally whether or whether not the
5254         * given script slot shall be executed by the sampler.
5255         *
5256         * @note This is an own format extension which did not exist i.e. in the
5257         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5258         * gigedit.
5259         *
5260         * @param index - script slot index on this instrument
5261         * @param bBypass - if true, the script slot will be skipped by the sampler
5262         * @see Script::Bypass
5263         */
5264        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5265            if (index >= ScriptSlotCount()) return;
5266            if (pScriptRefs)
5267                pScriptRefs->at(index).bypass = bBypass;
5268            else
5269                scriptPoolFileOffsets.at(index).bypass = bBypass;
5270        }
5271    
5272        /**
5273         * Make a (semi) deep copy of the Instrument object given by @a orig
5274         * and assign it to this object.
5275         *
5276         * Note that all sample pointers referenced by @a orig are simply copied as
5277         * memory address. Thus the respective samples are shared, not duplicated!
5278         *
5279         * @param orig - original Instrument object to be copied from
5280         */
5281        void Instrument::CopyAssign(const Instrument* orig) {
5282            CopyAssign(orig, NULL);
5283        }
5284            
5285        /**
5286         * Make a (semi) deep copy of the Instrument object given by @a orig
5287         * and assign it to this object.
5288         *
5289         * @param orig - original Instrument object to be copied from
5290         * @param mSamples - crosslink map between the foreign file's samples and
5291         *                   this file's samples
5292         */
5293        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5294            // handle base class
5295            // (without copying DLS region stuff)
5296            DLS::Instrument::CopyAssignCore(orig);
5297            
5298            // handle own member variables
5299            Attenuation = orig->Attenuation;
5300            EffectSend = orig->EffectSend;
5301            FineTune = orig->FineTune;
5302            PitchbendRange = orig->PitchbendRange;
5303            PianoReleaseMode = orig->PianoReleaseMode;
5304            DimensionKeyRange = orig->DimensionKeyRange;
5305            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5306            pScriptRefs = orig->pScriptRefs;
5307            
5308            // free old midi rules
5309            for (int i = 0 ; pMidiRules[i] ; i++) {
5310                delete pMidiRules[i];
5311            }
5312            //TODO: MIDI rule copying
5313            pMidiRules[0] = NULL;
5314            
5315            // delete all old regions
5316            while (Regions) DeleteRegion(GetFirstRegion());
5317            // create new regions and copy them from original
5318            {
5319                RegionList::const_iterator it = orig->pRegions->begin();
5320                for (int i = 0; i < orig->Regions; ++i, ++it) {
5321                    Region* dstRgn = AddRegion();
5322                    //NOTE: Region does semi-deep copy !
5323                    dstRgn->CopyAssign(
5324                        static_cast<gig::Region*>(*it),
5325                        mSamples
5326                    );
5327                }
5328            }
5329    
5330            UpdateRegionKeyTable();
5331        }
5332    
5333    
5334  // *************** Group ***************  // *************** Group ***************
# Line 2740  namespace { Line 5347  namespace {
5347      }      }
5348    
5349      Group::~Group() {      Group::~Group() {
5350            // remove the chunk associated with this group (if any)
5351            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5352      }      }
5353    
5354      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
5355       *       *
5356       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
5357       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
5358         *
5359         * Usually there is absolutely no need to call this method explicitly.
5360         * It will be called automatically when File::Save() was called.
5361         *
5362         * @param pProgress - callback function for progress notification
5363       */       */
5364      void Group::UpdateChunks() {      void Group::UpdateChunks(progress_t* pProgress) {
5365          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
5366          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5367          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
5368                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5369                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5370            }
5371          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5372          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5373    
5374            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5375                // v3 has a fixed list of 128 strings, find a free one
5376                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5377                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5378                        pNameChunk = ck;
5379                        break;
5380                    }
5381                }
5382            }
5383    
5384          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5385          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5386      }      }
# Line 2828  namespace { Line 5456  namespace {
5456  // *************** File ***************  // *************** File ***************
5457  // *  // *
5458    
5459        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5460        const DLS::version_t File::VERSION_2 = {
5461            0, 2, 19980628 & 0xffff, 19980628 >> 16
5462        };
5463    
5464        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5465        const DLS::version_t File::VERSION_3 = {
5466            0, 3, 20030331 & 0xffff, 20030331 >> 16
5467        };
5468    
5469        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5470            { CHUNK_ID_IARL, 256 },
5471            { CHUNK_ID_IART, 128 },
5472            { CHUNK_ID_ICMS, 128 },
5473            { CHUNK_ID_ICMT, 1024 },
5474            { CHUNK_ID_ICOP, 128 },
5475            { CHUNK_ID_ICRD, 128 },
5476            { CHUNK_ID_IENG, 128 },
5477            { CHUNK_ID_IGNR, 128 },
5478            { CHUNK_ID_IKEY, 128 },
5479            { CHUNK_ID_IMED, 128 },
5480            { CHUNK_ID_INAM, 128 },
5481            { CHUNK_ID_IPRD, 128 },
5482            { CHUNK_ID_ISBJ, 128 },
5483            { CHUNK_ID_ISFT, 128 },
5484            { CHUNK_ID_ISRC, 128 },
5485            { CHUNK_ID_ISRF, 128 },
5486            { CHUNK_ID_ITCH, 128 },
5487            { 0, 0 }
5488        };
5489    
5490      File::File() : DLS::File() {      File::File() : DLS::File() {
5491            bAutoLoad = true;
5492            *pVersion = VERSION_3;
5493          pGroups = NULL;          pGroups = NULL;
5494          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5495            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5496            pInfo->ArchivalLocation = String(256, ' ');
5497    
5498            // add some mandatory chunks to get the file chunks in right
5499            // order (INFO chunk will be moved to first position later)
5500            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5501            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5502            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5503    
5504            GenerateDLSID();
5505      }      }
5506    
5507      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5508            bAutoLoad = true;
5509          pGroups = NULL;          pGroups = NULL;
5510          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
5511            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5512      }      }
5513    
5514      File::~File() {      File::~File() {
# Line 2848  namespace { Line 5521  namespace {
5521              }              }
5522              delete pGroups;              delete pGroups;
5523          }          }
5524            if (pScriptGroups) {
5525                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5526                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5527                while (iter != end) {
5528                    delete *iter;
5529                    ++iter;
5530                }
5531                delete pScriptGroups;
5532            }
5533      }      }
5534    
5535      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2862  namespace { Line 5544  namespace {
5544          SamplesIterator++;          SamplesIterator++;
5545          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5546      }      }
5547        
5548        /**
5549         * Returns Sample object of @a index.
5550         *
5551         * @returns sample object or NULL if index is out of bounds
5552         */
5553        Sample* File::GetSample(uint index) {
5554            if (!pSamples) LoadSamples();
5555            if (!pSamples) return NULL;
5556            DLS::File::SampleList::iterator it = pSamples->begin();
5557            for (int i = 0; i < index; ++i) {
5558                ++it;
5559                if (it == pSamples->end()) return NULL;
5560            }
5561            if (it == pSamples->end()) return NULL;
5562            return static_cast<gig::Sample*>( *it );
5563        }
5564    
5565      /** @brief Add a new sample.      /** @brief Add a new sample.
5566       *       *
# Line 2877  namespace { Line 5576  namespace {
5576         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
5577         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5578         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5579    
5580           // add mandatory chunks to get the chunks in right order
5581           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5582           wave->AddSubList(LIST_TYPE_INFO);
5583    
5584         pSamples->push_back(pSample);         pSamples->push_back(pSample);
5585         return pSample;         return pSample;
5586      }      }
5587    
5588      /** @brief Delete a sample.      /** @brief Delete a sample.
5589       *       *
5590       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
5591       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
5592         * removed. You have to call Save() to make this persistent to the file.
5593       *       *
5594       * @param pSample - sample to delete       * @param pSample - sample to delete
5595       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2893  namespace { Line 5598  namespace {
5598          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5599          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5600          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5601            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5602          pSamples->erase(iter);          pSamples->erase(iter);
5603          delete pSample;          delete pSample;
5604    
5605            SampleList::iterator tmp = SamplesIterator;
5606            // remove all references to the sample
5607            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5608                 instrument = GetNextInstrument()) {
5609                for (Region* region = instrument->GetFirstRegion() ; region ;
5610                     region = instrument->GetNextRegion()) {
5611    
5612                    if (region->GetSample() == pSample) region->SetSample(NULL);
5613    
5614                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5615                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5616                        if (d->pSample == pSample) d->pSample = NULL;
5617                    }
5618                }
5619            }
5620            SamplesIterator = tmp; // restore iterator
5621      }      }
5622    
5623      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2904  namespace { Line 5627  namespace {
5627      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5628          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
5629          // to resolve the group they belong to          // to resolve the group they belong to
5630          LoadGroups();          if (!pGroups) LoadGroups();
5631    
5632          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
5633    
# Line 2915  namespace { Line 5638  namespace {
5638          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5639    
5640          // check if samples should be loaded from extension files          // check if samples should be loaded from extension files
5641            // (only for old gig files < 2 GB)
5642          int lastFileNo = 0;          int lastFileNo = 0;
5643          for (int i = 0 ; i < WavePoolCount ; i++) {          if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5644              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              for (int i = 0 ; i < WavePoolCount ; i++) {
5645                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5646                }
5647          }          }
5648          String name(pRIFF->GetFileName());          String name(pRIFF->GetFileName());
5649          int nameLen = name.length();          int nameLen = (int) name.length();
5650          char suffix[6];          char suffix[6];
5651          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5652    
5653          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
5654              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5655              if (wvpl) {              if (wvpl) {
5656                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos();
5657                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5658                  while (wave) {                  while (wave) {
5659                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
# Line 2935  namespace { Line 5661  namespace {
5661                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5662                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
5663    
5664                          unsigned long waveFileOffset = wave->GetFilePos();                          file_offset_t waveFileOffset = wave->GetFilePos();
5665                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5666    
5667                          iSampleIndex++;                          iSampleIndex++;
5668                      }                      }
# Line 2985  namespace { Line 5711  namespace {
5711              progress_t subprogress;              progress_t subprogress;
5712              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5713              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5714              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5715                    GetFirstSample(&subprogress); // now force all samples to be loaded
5716              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5717    
5718              // instrument loading subtask              // instrument loading subtask
# Line 3018  namespace { Line 5745  namespace {
5745         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
5746         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5747         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5748    
5749           // add mandatory chunks to get the chunks in right order
5750           lstInstr->AddSubList(LIST_TYPE_INFO);
5751           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5752    
5753         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
5754           pInstrument->GenerateDLSID();
5755    
5756           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5757    
5758           // this string is needed for the gig to be loadable in GSt:
5759           pInstrument->pInfo->Software = "Endless Wave";
5760    
5761         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
5762         return pInstrument;         return pInstrument;
5763      }      }
5764        
5765        /** @brief Add a duplicate of an existing instrument.
5766         *
5767         * Duplicates the instrument definition given by @a orig and adds it
5768         * to this file. This allows in an instrument editor application to
5769         * easily create variations of an instrument, which will be stored in
5770         * the same .gig file, sharing i.e. the same samples.
5771         *
5772         * Note that all sample pointers referenced by @a orig are simply copied as
5773         * memory address. Thus the respective samples are shared, not duplicated!
5774         *
5775         * You have to call Save() to make this persistent to the file.
5776         *
5777         * @param orig - original instrument to be copied
5778         * @returns duplicated copy of the given instrument
5779         */
5780        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5781            Instrument* instr = AddInstrument();
5782            instr->CopyAssign(orig);
5783            return instr;
5784        }
5785        
5786        /** @brief Add content of another existing file.
5787         *
5788         * Duplicates the samples, groups and instruments of the original file
5789         * given by @a pFile and adds them to @c this File. In case @c this File is
5790         * a new one that you haven't saved before, then you have to call
5791         * SetFileName() before calling AddContentOf(), because this method will
5792         * automatically save this file during operation, which is required for
5793         * writing the sample waveform data by disk streaming.
5794         *
5795         * @param pFile - original file whose's content shall be copied from
5796         */
5797        void File::AddContentOf(File* pFile) {
5798            static int iCallCount = -1;
5799            iCallCount++;
5800            std::map<Group*,Group*> mGroups;
5801            std::map<Sample*,Sample*> mSamples;
5802            
5803            // clone sample groups
5804            for (int i = 0; pFile->GetGroup(i); ++i) {
5805                Group* g = AddGroup();
5806                g->Name =
5807                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5808                mGroups[pFile->GetGroup(i)] = g;
5809            }
5810            
5811            // clone samples (not waveform data here yet)
5812            for (int i = 0; pFile->GetSample(i); ++i) {
5813                Sample* s = AddSample();
5814                s->CopyAssignMeta(pFile->GetSample(i));
5815                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5816                mSamples[pFile->GetSample(i)] = s;
5817            }
5818    
5819            // clone script groups and their scripts
5820            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5821                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5822                ScriptGroup* dg = AddScriptGroup();
5823                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5824                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5825                    Script* ss = sg->GetScript(iScript);
5826                    Script* ds = dg->AddScript();
5827                    ds->CopyAssign(ss);
5828                }
5829            }
5830    
5831            //BUG: For some reason this method only works with this additional
5832            //     Save() call in between here.
5833            //
5834            // Important: The correct one of the 2 Save() methods has to be called
5835            // here, depending on whether the file is completely new or has been
5836            // saved to disk already, otherwise it will result in data corruption.
5837            if (pRIFF->IsNew())
5838                Save(GetFileName());
5839            else
5840                Save();
5841            
5842            // clone instruments
5843            // (passing the crosslink table here for the cloned samples)
5844            for (int i = 0; pFile->GetInstrument(i); ++i) {
5845                Instrument* instr = AddInstrument();
5846                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5847            }
5848            
5849            // Mandatory: file needs to be saved to disk at this point, so this
5850            // file has the correct size and data layout for writing the samples'
5851            // waveform data to disk.
5852            Save();
5853            
5854            // clone samples' waveform data
5855            // (using direct read & write disk streaming)
5856            for (int i = 0; pFile->GetSample(i); ++i) {
5857                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5858            }
5859        }
5860    
5861      /** @brief Delete an instrument.      /** @brief Delete an instrument.
5862       *       *
# Line 3069  namespace { Line 5904  namespace {
5904          }          }
5905      }      }
5906    
5907        /// Updates the 3crc chunk with the checksum of a sample. The
5908        /// update is done directly to disk, as this method is called
5909        /// after File::Save()
5910        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5911            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5912            if (!_3crc) return;
5913    
5914            // get the index of the sample
5915            int iWaveIndex = GetWaveTableIndexOf(pSample);
5916            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5917    
5918            // write the CRC-32 checksum to disk
5919            _3crc->SetPos(iWaveIndex * 8);
5920            uint32_t one = 1;
5921            _3crc->WriteUint32(&one); // always 1
5922            _3crc->WriteUint32(&crc);
5923        }
5924    
5925        uint32_t File::GetSampleChecksum(Sample* pSample) {
5926            // get the index of the sample
5927            int iWaveIndex = GetWaveTableIndexOf(pSample);
5928            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5929    
5930            return GetSampleChecksumByIndex(iWaveIndex);
5931        }
5932    
5933        uint32_t File::GetSampleChecksumByIndex(int index) {
5934            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5935    
5936            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5937            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5938            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5939            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5940    
5941            // read the CRC-32 checksum directly from disk
5942            size_t pos = index * 8;
5943            if (pos + 8 > _3crc->GetNewSize())
5944                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5945    
5946            uint32_t one = load32(&pData[pos]); // always 1
5947            if (one != 1)
5948                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5949    
5950            return load32(&pData[pos+4]);
5951        }
5952    
5953        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5954            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5955            File::SampleList::iterator iter = pSamples->begin();
5956            File::SampleList::iterator end  = pSamples->end();
5957            for (int index = 0; iter != end; ++iter, ++index)
5958                if (*iter == pSample)
5959                    return index;
5960            return -1;
5961        }
5962    
5963        /**
5964         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5965         * the CRC32 check sums of all samples' raw wave data.
5966         *
5967         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5968         */
5969        bool File::VerifySampleChecksumTable() {
5970            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5971            if (!_3crc) return false;
5972            if (_3crc->GetNewSize() <= 0) return false;
5973            if (_3crc->GetNewSize() % 8) return false;
5974            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5975            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5976    
5977            const file_offset_t n = _3crc->GetNewSize() / 8;
5978    
5979            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5980            if (!pData) return false;
5981    
5982            for (file_offset_t i = 0; i < n; ++i) {
5983                uint32_t one = pData[i*2];
5984                if (one != 1) return false;
5985            }
5986    
5987            return true;
5988        }
5989    
5990        /**
5991         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5992         * file's checksum table with those new checksums. This might usually
5993         * just be necessary if the checksum table was damaged.
5994         *
5995         * @e IMPORTANT: The current implementation of this method only works
5996         * with files that have not been modified since it was loaded, because
5997         * it expects that no externally caused file structure changes are
5998         * required!
5999         *
6000         * Due to the expectation above, this method is currently protected
6001         * and actually only used by the command line tool "gigdump" yet.
6002         *
6003         * @returns true if Save() is required to be called after this call,
6004         *          false if no further action is required
6005         */
6006        bool File::RebuildSampleChecksumTable() {
6007            // make sure sample chunks were scanned
6008            if (!pSamples) GetFirstSample();
6009    
6010            bool bRequiresSave = false;
6011    
6012            // make sure "3CRC" chunk exists with required size
6013            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6014            if (!_3crc) {
6015                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6016                // the order of einf and 3crc is not the same in v2 and v3
6017                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6018                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6019                bRequiresSave = true;
6020            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6021                _3crc->Resize(pSamples->size() * 8);
6022                bRequiresSave = true;
6023            }
6024    
6025            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6026                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6027                {
6028                    File::SampleList::iterator iter = pSamples->begin();
6029                    File::SampleList::iterator end  = pSamples->end();
6030                    for (; iter != end; ++iter) {
6031                        gig::Sample* pSample = (gig::Sample*) *iter;
6032                        int index = GetWaveTableIndexOf(pSample);
6033                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6034                        pData[index*2]   = 1; // always 1
6035                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6036                    }
6037                }
6038            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6039                // make sure file is in write mode
6040                pRIFF->SetMode(RIFF::stream_mode_read_write);
6041                {
6042                    File::SampleList::iterator iter = pSamples->begin();
6043                    File::SampleList::iterator end  = pSamples->end();
6044                    for (; iter != end; ++iter) {
6045                        gig::Sample* pSample = (gig::Sample*) *iter;
6046                        int index = GetWaveTableIndexOf(pSample);
6047                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6048                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6049                        SetSampleChecksum(pSample, pSample->crc);
6050                    }
6051                }
6052            }
6053    
6054            return bRequiresSave;
6055        }
6056    
6057      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
6058          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6059          // there must always be at least one group          // there must always be at least one group
# Line 3098  namespace { Line 6083  namespace {
6083          return NULL;          return NULL;
6084      }      }
6085    
6086        /**
6087         * Returns the group with the given group name.
6088         *
6089         * Note: group names don't have to be unique in the gig format! So there
6090         * can be multiple groups with the same name. This method will simply
6091         * return the first group found with the given name.
6092         *
6093         * @param name - name of the sought group
6094         * @returns sought group or NULL if there's no group with that name
6095         */
6096        Group* File::GetGroup(String name) {
6097            if (!pGroups) LoadGroups();
6098            GroupsIterator = pGroups->begin();
6099            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6100                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6101            return NULL;
6102        }
6103    
6104      Group* File::AddGroup() {      Group* File::AddGroup() {
6105          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6106          // there must always be at least one group          // there must always be at least one group
# Line 3161  namespace { Line 6164  namespace {
6164                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6165                  while (ck) {                  while (ck) {
6166                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6167                            if (pVersion && pVersion->major == 3 &&
6168                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6169    
6170                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
6171                      }                      }
6172                      ck = lst3gnl->GetNextSubChunk();                      ck = lst3gnl->GetNextSubChunk();
# Line 3175  namespace { Line 6181  namespace {
6181          }          }
6182      }      }
6183    
6184        /** @brief Get instrument script group (by index).
6185         *
6186         * Returns the real-time instrument script group with the given index.
6187         *
6188         * @param index - number of the sought group (0..n)
6189         * @returns sought script group or NULL if there's no such group
6190         */
6191        ScriptGroup* File::GetScriptGroup(uint index) {
6192            if (!pScriptGroups) LoadScriptGroups();
6193            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6194            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6195                if (i == index) return *it;
6196            return NULL;
6197        }
6198    
6199        /** @brief Get instrument script group (by name).
6200         *
6201         * Returns the first real-time instrument script group found with the given
6202         * group name. Note that group names may not necessarily be unique.
6203         *
6204         * @param name - name of the sought script group
6205         * @returns sought script group or NULL if there's no such group
6206         */
6207        ScriptGroup* File::GetScriptGroup(const String& name) {
6208            if (!pScriptGroups) LoadScriptGroups();
6209            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6210            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6211                if ((*it)->Name == name) return *it;
6212            return NULL;
6213        }
6214    
6215        /** @brief Add new instrument script group.
6216         *
6217         * Adds a new, empty real-time instrument script group to the file.
6218         *
6219         * You have to call Save() to make this persistent to the file.
6220         *
6221         * @return new empty script group
6222         */
6223        ScriptGroup* File::AddScriptGroup() {
6224            if (!pScriptGroups) LoadScriptGroups();
6225            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6226            pScriptGroups->push_back(pScriptGroup);
6227            return pScriptGroup;
6228        }
6229    
6230        /** @brief Delete an instrument script group.
6231         *
6232         * This will delete the given real-time instrument script group and all its
6233         * instrument scripts it contains. References inside instruments that are
6234         * using the deleted scripts will be removed from the respective instruments
6235         * accordingly.
6236         *
6237         * You have to call Save() to make this persistent to the file.
6238         *
6239         * @param pScriptGroup - script group to delete
6240         * @throws gig::Exception if given script group could not be found
6241         */
6242        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6243            if (!pScriptGroups) LoadScriptGroups();
6244            std::list<ScriptGroup*>::iterator iter =
6245                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6246            if (iter == pScriptGroups->end())
6247                throw gig::Exception("Could not delete script group, could not find given script group");
6248            pScriptGroups->erase(iter);
6249            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6250                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6251            if (pScriptGroup->pList)
6252                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6253            delete pScriptGroup;
6254        }
6255    
6256        void File::LoadScriptGroups() {
6257            if (pScriptGroups) return;
6258            pScriptGroups = new std::list<ScriptGroup*>;
6259            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6260            if (lstLS) {
6261                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6262                     lst = lstLS->GetNextSubList())
6263                {
6264                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6265                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6266                    }
6267                }
6268            }
6269        }
6270    
6271        /**
6272         * Apply all the gig file's current instruments, samples, groups and settings
6273         * to the respective RIFF chunks. You have to call Save() to make changes
6274         * persistent.
6275         *
6276         * Usually there is absolutely no need to call this method explicitly.
6277         * It will be called automatically when File::Save() was called.
6278         *
6279         * @param pProgress - callback function for progress notification
6280         * @throws Exception - on errors
6281         */
6282        void File::UpdateChunks(progress_t* pProgress) {
6283            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6284    
6285            // update own gig format extension chunks
6286            // (not part of the GigaStudio 4 format)
6287            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6288            if (!lst3LS) {
6289                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6290            }
6291            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6292            // location of <3LS > is irrelevant, however it should be located
6293            // before  the actual wave data
6294            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6295            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6296    
6297            // This must be performed before writing the chunks for instruments,
6298            // because the instruments' script slots will write the file offsets
6299            // of the respective instrument script chunk as reference.
6300            if (pScriptGroups) {
6301                // Update instrument script (group) chunks.
6302                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6303                     it != pScriptGroups->end(); ++it)
6304                {
6305                    (*it)->UpdateChunks(pProgress);
6306                }
6307            }
6308    
6309            // in case no libgig custom format data was added, then remove the
6310            // custom "3LS " chunk again
6311            if (!lst3LS->CountSubChunks()) {
6312                pRIFF->DeleteSubChunk(lst3LS);
6313                lst3LS = NULL;
6314            }
6315    
6316            // first update base class's chunks
6317            DLS::File::UpdateChunks(pProgress);
6318    
6319            if (newFile) {
6320                // INFO was added by Resource::UpdateChunks - make sure it
6321                // is placed first in file
6322                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6323                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6324                if (first != info) {
6325                    pRIFF->MoveSubChunk(info, first);
6326                }
6327            }
6328    
6329            // update group's chunks
6330            if (pGroups) {
6331                // make sure '3gri' and '3gnl' list chunks exist
6332                // (before updating the Group chunks)
6333                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6334                if (!_3gri) {
6335                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6336                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6337                }
6338                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6339                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6340    
6341                // v3: make sure the file has 128 3gnm chunks
6342                // (before updating the Group chunks)
6343                if (pVersion && pVersion->major == 3) {
6344                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6345                    for (int i = 0 ; i < 128 ; i++) {
6346                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6347                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6348                    }
6349                }
6350    
6351                std::list<Group*>::iterator iter = pGroups->begin();
6352                std::list<Group*>::iterator end  = pGroups->end();
6353                for (; iter != end; ++iter) {
6354                    (*iter)->UpdateChunks(pProgress);
6355                }
6356            }
6357    
6358            // update einf chunk
6359    
6360            // The einf chunk contains statistics about the gig file, such
6361            // as the number of regions and samples used by each
6362            // instrument. It is divided in equally sized parts, where the
6363            // first part contains information about the whole gig file,
6364            // and the rest of the parts map to each instrument in the
6365            // file.
6366            //
6367            // At the end of each part there is a bit map of each sample
6368            // in the file, where a set bit means that the sample is used
6369            // by the file/instrument.
6370            //
6371            // Note that there are several fields with unknown use. These
6372            // are set to zero.
6373    
6374            int sublen = int(pSamples->size() / 8 + 49);
6375            int einfSize = (Instruments + 1) * sublen;
6376    
6377            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6378            if (einf) {
6379                if (einf->GetSize() != einfSize) {
6380                    einf->Resize(einfSize);
6381                    memset(einf->LoadChunkData(), 0, einfSize);
6382                }
6383            } else if (newFile) {
6384                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6385            }
6386            if (einf) {
6387                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6388    
6389                std::map<gig::Sample*,int> sampleMap;
6390                int sampleIdx = 0;
6391                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6392                    sampleMap[pSample] = sampleIdx++;
6393                }
6394    
6395                int totnbusedsamples = 0;
6396                int totnbusedchannels = 0;
6397                int totnbregions = 0;
6398                int totnbdimregions = 0;
6399                int totnbloops = 0;
6400                int instrumentIdx = 0;
6401    
6402                memset(&pData[48], 0, sublen - 48);
6403    
6404                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6405                     instrument = GetNextInstrument()) {
6406                    int nbusedsamples = 0;
6407                    int nbusedchannels = 0;
6408                    int nbdimregions = 0;
6409                    int nbloops = 0;
6410    
6411                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6412    
6413                    for (Region* region = instrument->GetFirstRegion() ; region ;
6414                         region = instrument->GetNextRegion()) {
6415                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6416                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6417                            if (d->pSample) {
6418                                int sampleIdx = sampleMap[d->pSample];
6419                                int byte = 48 + sampleIdx / 8;
6420                                int bit = 1 << (sampleIdx & 7);
6421                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6422                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6423                                    nbusedsamples++;
6424                                    nbusedchannels += d->pSample->Channels;
6425    
6426                                    if ((pData[byte] & bit) == 0) {
6427                                        pData[byte] |= bit;
6428                                        totnbusedsamples++;
6429                                        totnbusedchannels += d->pSample->Channels;
6430                                    }
6431                                }
6432                            }
6433                            if (d->SampleLoops) nbloops++;
6434                        }
6435                        nbdimregions += region->DimensionRegions;
6436                    }
6437                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6438                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6439                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6440                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6441                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6442                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6443                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6444                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6445                    // next 8 bytes unknown
6446                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6447                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6448                    // next 4 bytes unknown
6449    
6450                    totnbregions += instrument->Regions;
6451                    totnbdimregions += nbdimregions;
6452                    totnbloops += nbloops;
6453                    instrumentIdx++;
6454                }
6455                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6456                // store32(&pData[0], sublen);
6457                store32(&pData[4], totnbusedchannels);
6458                store32(&pData[8], totnbusedsamples);
6459                store32(&pData[12], Instruments);
6460                store32(&pData[16], totnbregions);
6461                store32(&pData[20], totnbdimregions);
6462                store32(&pData[24], totnbloops);
6463                // next 8 bytes unknown
6464                // next 4 bytes unknown, not always 0
6465                store32(&pData[40], (uint32_t) pSamples->size());
6466                // next 4 bytes unknown
6467            }
6468    
6469            // update 3crc chunk
6470    
6471            // The 3crc chunk contains CRC-32 checksums for the
6472            // samples. When saving a gig file to disk, we first update the 3CRC
6473            // chunk here (in RAM) with the old crc values which we read from the
6474            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6475            // member variable). This step is required, because samples might have
6476            // been deleted by the user since the file was opened, which in turn
6477            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6478            // If a sample was conciously modified by the user (that is if
6479            // Sample::Write() was called later on) then Sample::Write() will just
6480            // update the respective individual checksum(s) directly on disk and
6481            // leaves all other sample checksums untouched.
6482    
6483            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6484            if (_3crc) {
6485                _3crc->Resize(pSamples->size() * 8);
6486            } else /*if (newFile)*/ {
6487                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6488                // the order of einf and 3crc is not the same in v2 and v3
6489                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6490            }
6491            { // must be performed in RAM here ...
6492                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6493                if (pData) {
6494                    File::SampleList::iterator iter = pSamples->begin();
6495                    File::SampleList::iterator end  = pSamples->end();
6496                    for (int index = 0; iter != end; ++iter, ++index) {
6497                        gig::Sample* pSample = (gig::Sample*) *iter;
6498                        pData[index*2]   = 1; // always 1
6499                        pData[index*2+1] = pSample->crc;
6500                    }
6501                }
6502            }
6503        }
6504        
6505        void File::UpdateFileOffsets() {
6506            DLS::File::UpdateFileOffsets();
6507    
6508            for (Instrument* instrument = GetFirstInstrument(); instrument;
6509                 instrument = GetNextInstrument())
6510            {
6511                instrument->UpdateScriptFileOffsets();
6512            }
6513        }
6514    
6515        /**
6516         * Enable / disable automatic loading. By default this properyt is
6517         * enabled and all informations are loaded automatically. However
6518         * loading all Regions, DimensionRegions and especially samples might
6519         * take a long time for large .gig files, and sometimes one might only
6520         * be interested in retrieving very superficial informations like the
6521         * amount of instruments and their names. In this case one might disable
6522         * automatic loading to avoid very slow response times.
6523         *
6524         * @e CAUTION: by disabling this property many pointers (i.e. sample
6525         * references) and informations will have invalid or even undefined
6526         * data! This feature is currently only intended for retrieving very
6527         * superficial informations in a very fast way. Don't use it to retrieve
6528         * details like synthesis informations or even to modify .gig files!
6529         */
6530        void File::SetAutoLoad(bool b) {
6531            bAutoLoad = b;
6532        }
6533    
6534        /**
6535         * Returns whether automatic loading is enabled.
6536         * @see SetAutoLoad()
6537         */
6538        bool File::GetAutoLoad() {
6539            return bAutoLoad;
6540        }
6541    
6542    
6543    
6544  // *************** Exception ***************  // *************** Exception ***************
6545  // *  // *
6546    
6547      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6548        }
6549    
6550        Exception::Exception(String format, ...) : DLS::Exception() {
6551            va_list arg;
6552            va_start(arg, format);
6553            Message = assemble(format, arg);
6554            va_end(arg);
6555        }
6556    
6557        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6558            Message = assemble(format, arg);
6559      }      }
6560    
6561      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.1081  
changed lines
  Added in v.3348

  ViewVC Help
Powered by ViewVC