/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 823 by schoenebeck, Fri Dec 23 01:38:50 2005 UTC revision 3442 by schoenebeck, Sat Dec 22 18:59:29 2018 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2018 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 24  Line 24 
24  #include "gig.h"  #include "gig.h"
25    
26  #include "helper.h"  #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30  #include <math.h>  #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
39  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 49  Line 56 
56  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59  namespace gig {  #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
 // *************** dimension_def_t ***************  
 // *  
   
     dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {  
         dimension  = arg.dimension;  
         bits       = arg.bits;  
         zones      = arg.zones;  
         split_type = arg.split_type;  
         ranges     = arg.ranges;  
         zone_size  = arg.zone_size;  
         if (ranges) {  
             ranges = new range_t[zones];  
             for (int i = 0; i < zones; i++)  
                 ranges[i] = arg.ranges[i];  
         }  
         return *this;  
     }  
   
   
   
 // *************** progress_t ***************  
 // *  
   
     progress_t::progress_t() {  
         callback    = NULL;  
         custom      = NULL;  
         __range_min = 0.0f;  
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decompression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
# Line 131  namespace { Line 89  namespace {
89          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
90      }      }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 170  namespace { Line 135  namespace {
135      }      }
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
142          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
143    
144  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
145          y    = get24(params);                   \          y    = get24(params);                   \
# Line 193  namespace { Line 155  namespace {
155    
156  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
157          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
158          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
159          pDst += dstStep          pDst += dstStep
160    
161          switch (compressionmode) {          switch (compressionmode) {
162              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
163                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
164                  while (copysamples) {                  while (copysamples) {
165                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
166                      pDst += dstStep;                      pDst += dstStep;
167                      pSrc += 3;                      pSrc += 3;
168                      copysamples--;                      copysamples--;
# Line 270  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      /** @brief Constructor.      /** @brief Constructor.
# Line 293  namespace { Line 385  namespace {
385       *                         ('wvpl') list chunk       *                         ('wvpl') list chunk
386       * @param fileNo         - number of an extension file where this sample       * @param fileNo         - number of an extension file where this sample
387       *                         is located, 0 otherwise       *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389       */       */
390      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (pCk3gix) {          if (pCk3gix) {
415              SampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
416                pGroup = pFile->GetGroup(iSampleGroup);
417          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
418              // use default value(s)              // by default assigned to that mandatory "Default Group"
419              SampleGroup = 0;              pGroup = pFile->GetGroup(0);
420          }          }
421    
422          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
# Line 327  namespace { Line 440  namespace {
440              // use default values              // use default values
441              Manufacturer  = 0;              Manufacturer  = 0;
442              Product       = 0;              Product       = 0;
443              SamplePeriod  = 1 / SamplesPerSecond;              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444              MIDIUnityNote = 64;              MIDIUnityNote = 60;
445              FineTune      = 0;              FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447              SMPTEOffset   = 0;              SMPTEOffset   = 0;
448              Loops         = 0;              Loops         = 0;
449              LoopID        = 0;              LoopID        = 0;
450                LoopType      = loop_type_normal;
451              LoopStart     = 0;              LoopStart     = 0;
452              LoopEnd       = 0;              LoopEnd       = 0;
453              LoopFraction  = 0;              LoopFraction  = 0;
# Line 353  namespace { Line 468  namespace {
468          TruncatedBits     = 0;          TruncatedBits     = 0;
469          if (Compressed) {          if (Compressed) {
470              uint32_t version = ewav->ReadInt32();              uint32_t version = ewav->ReadInt32();
471              if (version == 3 && BitDepth == 24) {              if (version > 2 && BitDepth == 24) {
472                  Dithered = ewav->ReadInt32();                  Dithered = ewav->ReadInt32();
473                  ewav->SetPos(Channels == 2 ? 84 : 64);                  ewav->SetPos(Channels == 2 ? 84 : 64);
474                  TruncatedBits = ewav->ReadInt32();                  TruncatedBits = ewav->ReadInt32();
# Line 368  namespace { Line 483  namespace {
483          }          }
484          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
485    
486          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
487        }
488    
489        /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554      }      }
555    
556      /**      /**
# Line 378  namespace { Line 560  namespace {
560       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
561       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
562       *       *
563       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @param pProgress - callback function for progress notification
564         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565       *                        was provided yet       *                        was provided yet
566       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
567       */       */
568      void Sample::UpdateChunks() {      void Sample::UpdateChunks(progress_t* pProgress) {
569          // first update base class's chunks          // first update base class's chunks
570          DLS::Sample::UpdateChunks();          DLS::Sample::UpdateChunks(pProgress);
571    
572          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
573          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578          // update 'smpl' chunk          // update 'smpl' chunk
579          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580          SamplePeriod = 1 / SamplesPerSecond;          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
582          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
583          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
584          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
585          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
586          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
587          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
588          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
589    
590          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
591    
592          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
593          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
594          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
595          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
596          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
597          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
598    
599          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
600          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602            // determine appropriate sample group index (to be stored in chunk)
603            uint16_t iSampleGroup = 0; // 0 refers to default sample group
604            File* pFile = static_cast<File*>(pParent);
605            if (pFile->pGroups) {
606                std::list<Group*>::iterator iter = pFile->pGroups->begin();
607                std::list<Group*>::iterator end  = pFile->pGroups->end();
608                for (int i = 0; iter != end; i++, iter++) {
609                    if (*iter == pGroup) {
610                        iSampleGroup = i;
611                        break; // found
612                    }
613                }
614            }
615          // update '3gix' chunk          // update '3gix' chunk
616          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
617          memcpy(&pData[0], &SampleGroup, 2);          store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 438  namespace { Line 645  namespace {
645                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
646                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
647                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
651                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 457  namespace { Line 664  namespace {
664    
665                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
666                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
667                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
670                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 473  namespace { Line 680  namespace {
680    
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 516  namespace { Line 723  namespace {
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 575  namespace { Line 782  namespace {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 616  namespace { Line 824  namespace {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828      }      }
829    
830      /** @brief Resize sample.      /** @brief Resize sample.
# Line 636  namespace { Line 845  namespace {
845       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
846       * current sample's boundary!       * current sample's boundary!
847       *       *
848       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850       * other formats will fail!       * other formats will fail!
851       *       *
852       * @param iNewSize - new sample wave data size in sample points (must be       * @param NewSize - new sample wave data size in sample points (must be
853       *                   greater than zero)       *                  greater than zero)
854       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855       *                         or if \a iNewSize is less than 1       * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
857       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858       *      DLS::Sample::FormatTag, File::Save()       *      DLS::Sample::FormatTag, File::Save()
859       */       */
860      void Sample::Resize(int iNewSize) {      void Sample::Resize(file_offset_t NewSize) {
861          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862          DLS::Sample::Resize(iNewSize);          DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 674  namespace { Line 883  namespace {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 692  namespace { Line 901  namespace {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 708  namespace { Line 917  namespace {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
# Line 742  namespace { Line 951  namespace {
951       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
952       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
953       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
954         * @param pDimRgn          dimension region with looping information
955       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
956       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
957       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
958       */       */
959      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
963    
964          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
965    
966          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967    
968              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970    
971                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
972                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
973    
974                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
975                              // determine the end position within the loop first,                          do {
976                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
977                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978                              // backward playback  
979                                if (!pPlaybackState->reverse) { // forward playback
980                              unsigned long swapareastart       = totalreadsamples;                                  do {
981                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
982                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
984                                        totalreadsamples += readsamples;
985                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
986                                            pPlaybackState->reverse = true;
987                              // read samples for backward playback                                          break;
988                              do {                                      }
989                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
990                                  samplestoreadinloop -= readsamples;                              }
991                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
992    
993                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
994                                    // determine the end position within the loop first,
995                                    // read forward from that 'end' and finally after
996                                    // reading, swap all sample frames so it reflects
997                                    // backward playback
998    
999                                    file_offset_t swapareastart       = totalreadsamples;
1000                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                    SetPos(reverseplaybackend);
1005    
1006                                    // read samples for backward playback
1007                                    do {
1008                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009                                        samplestoreadinloop -= readsamples;
1010                                        samplestoread       -= readsamples;
1011                                        totalreadsamples    += readsamples;
1012                                    } while (samplestoreadinloop && readsamples);
1013    
1014                                    SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016                                    if (reverseplaybackend == loop.LoopStart) {
1017                                        pPlaybackState->loop_cycles_left--;
1018                                        pPlaybackState->reverse = false;
1019                                    }
1020    
1021                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1022                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                              }                              }
1025                            } while (samplestoread && readsamples);
1026                            break;
1027                        }
1028    
1029                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1030                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1031                          }                          if (!pPlaybackState->reverse) do {
1032                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1033                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034                  }                              samplestoread    -= readsamples;
1035                                totalreadsamples += readsamples;
1036                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1037                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1038                      if (!pPlaybackState->reverse) do {                                  break;
1039                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1040                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1041    
1042                      if (!samplestoread) break;                          if (!samplestoread) break;
1043    
1044                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1045                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1046                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1047                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1048                      // backward playback                          // backward playback
1049    
1050                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1051                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                : samplestoread;                                                                                    : samplestoread;
1054                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1057    
1058                      // read samples for backward playback                          // read samples for backward playback
1059                      do {                          do {
1060                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1061                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1063                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1065                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1066                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1067                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1068                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1069                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1070                          }                              }
1071                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1072    
1073                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1074    
1075                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1076                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077                      break;                          break;
1078                  }                      }
1079    
1080                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1081                      do {                          do {
1082                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1083                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1085                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1087                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1088                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1089                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1090                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1091                          }                              }
1092                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1093                      break;                          break;
1094                        }
1095                  }                  }
1096              }              }
1097          }          }
# Line 904  namespace { Line 1121  namespace {
1121       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1122       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1123       *       *
1124         * For 16 bit samples, the data in the buffer will be int16_t
1125         * (using native endianness). For 24 bit, the buffer will
1126         * contain three bytes per sample, little-endian.
1127         *
1128       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1129       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1130       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1136          if (!Compressed) {          if (!Compressed) {
1137              if (BitDepth == 24) {              if (BitDepth == 24) {
1138                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1139              }              }
1140              else { // 16 bit              else { // 16 bit
1141                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 945  namespace { Line 1146  namespace {
1146          else {          else {
1147              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1148              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1149              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 964  namespace { Line 1165  namespace {
1165    
1166              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1172                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1173                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174    
1175                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1176    
# Line 1045  namespace { Line 1247  namespace {
1247                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1248                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1249    
1250                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1252                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1254                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1255                          }                          }
1256                          else { // Mono                          else { // Mono
1257                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1259                              pDst += copysamples;                              pDst24 += copysamples * 3;
1260                          }                          }
1261                      }                      }
1262                      else { // 16 bit                      else { // 16 bit
# Line 1108  namespace { Line 1310  namespace {
1310       *       *
1311       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1312       *       *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1318       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1319       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
1320       * @throws gig::Exception if sample is compressed       * @throws gig::Exception if sample is compressed
1321       * @see DLS::LoadSampleData()       * @see DLS::LoadSampleData()
1322       */       */
1323      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325          return DLS::Sample::Write(pBuffer, SampleCount);  
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349      }      }
1350    
1351      /**      /**
# Line 1135  namespace { Line 1364  namespace {
1364       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1365       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1366       */       */
1367      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368          buffer_t result;          buffer_t result;
1369          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1370                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1373          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1374          return result;          return result;
# Line 1161  namespace { Line 1390  namespace {
1390          }          }
1391      }      }
1392    
1393        /**
1394         * Returns pointer to the Group this Sample belongs to. In the .gig
1395         * format a sample always belongs to one group. If it wasn't explicitly
1396         * assigned to a certain group, it will be automatically assigned to a
1397         * default group.
1398         *
1399         * @returns Sample's Group (never NULL)
1400         */
1401        Group* Sample::GetGroup() const {
1402            return pGroup;
1403        }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1177  namespace { Line 1484  namespace {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1488      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491          Instances++;          Instances++;
1492    
1493          pSample = NULL;          pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1499          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1503              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
# Line 1299  namespace { Line 1609  namespace {
1609                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1610              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1611              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1614              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1615              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1335  namespace { Line 1645  namespace {
1645                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1646                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1647              }              }
1648                if (_3ewa->RemainingBytes() >= 8) {
1649                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1650                } else {
1651                    memset(DimensionUpperLimits, 0, 8);
1652                }
1653          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1654              // use default values              // use default values
1655              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1344  namespace { Line 1659  namespace {
1659              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1660              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1661              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1662              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1663              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1664              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1665              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1666              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1667              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1361  namespace { Line 1676  namespace {
1676              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1677              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1678              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1679              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1680              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1681              EG2Release                      = 0.0;              EG2Release                      = 60;
1682              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1683              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1684              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1685              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1686              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1687              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1688              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1689              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1690              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1691              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1692              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1693              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1415  namespace { Line 1730  namespace {
1730              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1731              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1732              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1733                memset(DimensionUpperLimits, 127, 8);
1734            }
1735            // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1736            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1737            if (lsde) { // format extension for EG behavior options
1738                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1739                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1740                    unsigned char byte = lsde->ReadUint8();
1741                    pEGOpts[i]->AttackCancel     = byte & 1;
1742                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1743                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1744                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1745                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1746                }
1747          }          }
1748            // format extension for sustain pedal up effect on release trigger samples
1749            if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1750                lsde->SetPos(3);
1751                SustainReleaseTrigger = static_cast<sust_rel_trg_t>(lsde->ReadUint8());
1752            } else SustainReleaseTrigger = sust_rel_trg_none;
1753    
1754          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1755                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1756                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1757    
1758          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1759          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1760                                        ReleaseVelocityResponseDepth
1761          // this models a strange behaviour or bug in GSt: two of the                                  );
1762          // velocity response curves for release time are not used even  
1763          // if specified, instead another curve is chosen.          pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1764          if ((curveType == curve_type_nonlinear && depth == 0) ||                                                        VCFVelocityDynamicRange,
1765              (curveType == curve_type_special   && depth == 4)) {                                                        VCFVelocityScale,
1766              curveType = curve_type_nonlinear;                                                        VCFCutoffController);
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1767    
1768          curveType = VCFVelocityCurve;          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1769          depth = VCFVelocityDynamicRange;          VelocityTable = 0;
1770        }
1771    
1772          // even stranger GSt: two of the velocity response curves for      /*
1773          // filter cutoff are not used, instead another special curve       * Constructs a DimensionRegion by copying all parameters from
1774          // is chosen. This curve is not used anywhere else.       * another DimensionRegion
1775          if ((curveType == curve_type_nonlinear && depth == 0) ||       */
1776              (curveType == curve_type_special   && depth == 4)) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1777              curveType = curve_type_special;          Instances++;
1778              depth = 5;          //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1779            *this = src; // default memberwise shallow copy of all parameters
1780            pParentList = _3ewl; // restore the chunk pointer
1781    
1782            // deep copy of owned structures
1783            if (src.VelocityTable) {
1784                VelocityTable = new uint8_t[128];
1785                for (int k = 0 ; k < 128 ; k++)
1786                    VelocityTable[k] = src.VelocityTable[k];
1787            }
1788            if (src.pSampleLoops) {
1789                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1790                for (int k = 0 ; k < src.SampleLoops ; k++)
1791                    pSampleLoops[k] = src.pSampleLoops[k];
1792          }          }
1793          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
1794                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);      
1795        /**
1796         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1797         * and assign it to this object.
1798         *
1799         * Note that all sample pointers referenced by @a orig are simply copied as
1800         * memory address. Thus the respective samples are shared, not duplicated!
1801         *
1802         * @param orig - original DimensionRegion object to be copied from
1803         */
1804        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1805            CopyAssign(orig, NULL);
1806        }
1807    
1808        /**
1809         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1810         * and assign it to this object.
1811         *
1812         * @param orig - original DimensionRegion object to be copied from
1813         * @param mSamples - crosslink map between the foreign file's samples and
1814         *                   this file's samples
1815         */
1816        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1817            // delete all allocated data first
1818            if (VelocityTable) delete [] VelocityTable;
1819            if (pSampleLoops) delete [] pSampleLoops;
1820            
1821            // backup parent list pointer
1822            RIFF::List* p = pParentList;
1823            
1824            gig::Sample* pOriginalSample = pSample;
1825            gig::Region* pOriginalRegion = pRegion;
1826            
1827            //NOTE: copy code copied from assignment constructor above, see comment there as well
1828            
1829            *this = *orig; // default memberwise shallow copy of all parameters
1830            
1831            // restore members that shall not be altered
1832            pParentList = p; // restore the chunk pointer
1833            pRegion = pOriginalRegion;
1834            
1835            // only take the raw sample reference reference if the
1836            // two DimensionRegion objects are part of the same file
1837            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1838                pSample = pOriginalSample;
1839            }
1840            
1841            if (mSamples && mSamples->count(orig->pSample)) {
1842                pSample = mSamples->find(orig->pSample)->second;
1843            }
1844    
1845            // deep copy of owned structures
1846            if (orig->VelocityTable) {
1847                VelocityTable = new uint8_t[128];
1848                for (int k = 0 ; k < 128 ; k++)
1849                    VelocityTable[k] = orig->VelocityTable[k];
1850            }
1851            if (orig->pSampleLoops) {
1852                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1853                for (int k = 0 ; k < orig->SampleLoops ; k++)
1854                    pSampleLoops[k] = orig->pSampleLoops[k];
1855            }
1856        }
1857    
1858        void DimensionRegion::serialize(Serialization::Archive* archive) {
1859            // in case this class will become backward incompatible one day,
1860            // then set a version and minimum version for this class like:
1861            //archive->setVersion(*this, 2);
1862            //archive->setMinVersion(*this, 1);
1863    
1864            SRLZ(VelocityUpperLimit);
1865            SRLZ(EG1PreAttack);
1866            SRLZ(EG1Attack);
1867            SRLZ(EG1Decay1);
1868            SRLZ(EG1Decay2);
1869            SRLZ(EG1InfiniteSustain);
1870            SRLZ(EG1Sustain);
1871            SRLZ(EG1Release);
1872            SRLZ(EG1Hold);
1873            SRLZ(EG1Controller);
1874            SRLZ(EG1ControllerInvert);
1875            SRLZ(EG1ControllerAttackInfluence);
1876            SRLZ(EG1ControllerDecayInfluence);
1877            SRLZ(EG1ControllerReleaseInfluence);
1878            SRLZ(LFO1Frequency);
1879            SRLZ(LFO1InternalDepth);
1880            SRLZ(LFO1ControlDepth);
1881            SRLZ(LFO1Controller);
1882            SRLZ(LFO1FlipPhase);
1883            SRLZ(LFO1Sync);
1884            SRLZ(EG2PreAttack);
1885            SRLZ(EG2Attack);
1886            SRLZ(EG2Decay1);
1887            SRLZ(EG2Decay2);
1888            SRLZ(EG2InfiniteSustain);
1889            SRLZ(EG2Sustain);
1890            SRLZ(EG2Release);
1891            SRLZ(EG2Controller);
1892            SRLZ(EG2ControllerInvert);
1893            SRLZ(EG2ControllerAttackInfluence);
1894            SRLZ(EG2ControllerDecayInfluence);
1895            SRLZ(EG2ControllerReleaseInfluence);
1896            SRLZ(LFO2Frequency);
1897            SRLZ(LFO2InternalDepth);
1898            SRLZ(LFO2ControlDepth);
1899            SRLZ(LFO2Controller);
1900            SRLZ(LFO2FlipPhase);
1901            SRLZ(LFO2Sync);
1902            SRLZ(EG3Attack);
1903            SRLZ(EG3Depth);
1904            SRLZ(LFO3Frequency);
1905            SRLZ(LFO3InternalDepth);
1906            SRLZ(LFO3ControlDepth);
1907            SRLZ(LFO3Controller);
1908            SRLZ(LFO3Sync);
1909            SRLZ(VCFEnabled);
1910            SRLZ(VCFType);
1911            SRLZ(VCFCutoffController);
1912            SRLZ(VCFCutoffControllerInvert);
1913            SRLZ(VCFCutoff);
1914            SRLZ(VCFVelocityCurve);
1915            SRLZ(VCFVelocityScale);
1916            SRLZ(VCFVelocityDynamicRange);
1917            SRLZ(VCFResonance);
1918            SRLZ(VCFResonanceDynamic);
1919            SRLZ(VCFResonanceController);
1920            SRLZ(VCFKeyboardTracking);
1921            SRLZ(VCFKeyboardTrackingBreakpoint);
1922            SRLZ(VelocityResponseCurve);
1923            SRLZ(VelocityResponseDepth);
1924            SRLZ(VelocityResponseCurveScaling);
1925            SRLZ(ReleaseVelocityResponseCurve);
1926            SRLZ(ReleaseVelocityResponseDepth);
1927            SRLZ(ReleaseTriggerDecay);
1928            SRLZ(Crossfade);
1929            SRLZ(PitchTrack);
1930            SRLZ(DimensionBypass);
1931            SRLZ(Pan);
1932            SRLZ(SelfMask);
1933            SRLZ(AttenuationController);
1934            SRLZ(InvertAttenuationController);
1935            SRLZ(AttenuationControllerThreshold);
1936            SRLZ(ChannelOffset);
1937            SRLZ(SustainDefeat);
1938            SRLZ(MSDecode);
1939            //SRLZ(SampleStartOffset);
1940            SRLZ(SampleAttenuation);
1941            SRLZ(EG1Options);
1942            SRLZ(EG2Options);
1943            SRLZ(SustainReleaseTrigger);
1944    
1945            // derived attributes from DLS::Sampler
1946            SRLZ(FineTune);
1947            SRLZ(Gain);
1948        }
1949    
1950        /**
1951         * Updates the respective member variable and updates @c SampleAttenuation
1952         * which depends on this value.
1953         */
1954        void DimensionRegion::SetGain(int32_t gain) {
1955            DLS::Sampler::SetGain(gain);
1956          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1957      }      }
1958    
# Line 1457  namespace { Line 1962  namespace {
1962       *       *
1963       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
1964       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
1965         *
1966         * @param pProgress - callback function for progress notification
1967       */       */
1968      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1969          // first update base class's chunk          // first update base class's chunk
1970          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks(pProgress);
1971    
1972            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1973            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1974            pData[12] = Crossfade.in_start;
1975            pData[13] = Crossfade.in_end;
1976            pData[14] = Crossfade.out_start;
1977            pData[15] = Crossfade.out_end;
1978    
1979          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1980          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1981          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1982          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1983                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
1984                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
1985            }
1986            pData = (uint8_t*) _3ewa->LoadChunkData();
1987    
1988          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1989    
1990          const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1991          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1992    
1993          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1994          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1995    
1996          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1997          memcpy(&pData[4], &eg3attack, 4);          store32(&pData[8], eg3attack);
1998    
1999          // next 2 bytes unknown          // next 2 bytes unknown
2000    
2001          memcpy(&pData[10], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
2002    
2003          // next 2 bytes unknown          // next 2 bytes unknown
2004    
2005          memcpy(&pData[14], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
2006    
2007          // next 2 bytes unknown          // next 2 bytes unknown
2008    
2009          memcpy(&pData[18], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
2010    
2011          // next 2 bytes unknown          // next 2 bytes unknown
2012    
2013          memcpy(&pData[22], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
2014    
2015          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2016          memcpy(&pData[24], &eg1attack, 4);          store32(&pData[28], eg1attack);
2017    
2018          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2019          memcpy(&pData[28], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
2020    
2021          // next 2 bytes unknown          // next 2 bytes unknown
2022    
2023          memcpy(&pData[34], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
2024    
2025          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2026          memcpy(&pData[36], &eg1release, 4);          store32(&pData[40], eg1release);
2027    
2028          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2029          memcpy(&pData[40], &eg1ctl, 1);          pData[44] = eg1ctl;
2030    
2031          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
2032              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
2033              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2034              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2035              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2036          memcpy(&pData[41], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
2037    
2038          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2039          memcpy(&pData[42], &eg2ctl, 1);          pData[46] = eg2ctl;
2040    
2041          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
2042              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
2043              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2044              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2045              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2046          memcpy(&pData[43], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
2047    
2048          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2049          memcpy(&pData[44], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
2050    
2051          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2052          memcpy(&pData[48], &eg2attack, 4);          store32(&pData[52], eg2attack);
2053    
2054          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2055          memcpy(&pData[52], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
2056    
2057          // next 2 bytes unknown          // next 2 bytes unknown
2058    
2059          memcpy(&pData[58], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
2060    
2061          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2062          memcpy(&pData[60], &eg2release, 4);          store32(&pData[64], eg2release);
2063    
2064          // next 2 bytes unknown          // next 2 bytes unknown
2065    
2066          memcpy(&pData[66], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
2067    
2068          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2069          memcpy(&pData[68], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
2070    
2071          // next 2 bytes unknown          // next 2 bytes unknown
2072    
2073          memcpy(&pData[72], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
2074    
2075          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2076          memcpy(&pData[74], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
2077    
2078          // next 2 bytes unknown          // next 2 bytes unknown
2079    
2080          memcpy(&pData[80], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
2081    
2082          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2083          memcpy(&pData[82], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
2084    
2085          // next 2 bytes unknown          // next 2 bytes unknown
2086    
2087          memcpy(&pData[88], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
2088    
2089          {          {
2090              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1584  namespace { Line 2102  namespace {
2102                  default:                  default:
2103                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2104              }              }
2105              memcpy(&pData[90], &velocityresponse, 1);              pData[96] = velocityresponse;
2106          }          }
2107    
2108          {          {
# Line 1603  namespace { Line 2121  namespace {
2121                  default:                  default:
2122                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2123              }              }
2124              memcpy(&pData[91], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
2125          }          }
2126    
2127          memcpy(&pData[92], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
2128    
2129          memcpy(&pData[93], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
2130    
2131          // next 4 bytes unknown          // next 4 bytes unknown
2132    
2133          memcpy(&pData[98], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
2134    
2135          // next 2 bytes unknown          // next 2 bytes unknown
2136    
# Line 1631  namespace { Line 2149  namespace {
2149                  default:                  default:
2150                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2151              }              }
2152              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
2153          }          }
2154    
2155          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2156          memcpy(&pData[103], &pan, 1);          pData[109] = pan;
2157    
2158          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2159          memcpy(&pData[104], &selfmask, 1);          pData[110] = selfmask;
2160    
2161          // next byte unknown          // next byte unknown
2162    
# Line 1647  namespace { Line 2165  namespace {
2165              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2166              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2167              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2168              memcpy(&pData[106], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
2169          }          }
2170    
2171          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2172          memcpy(&pData[107], &attenctl, 1);          pData[113] = attenctl;
2173    
2174          {          {
2175              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2176              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2177              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2178              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2179              memcpy(&pData[108], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
2180          }          }
2181    
2182          {          {
# Line 1667  namespace { Line 2185  namespace {
2185              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2186              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
2187                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2188              memcpy(&pData[109], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
2189          }          }
2190    
2191          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2192                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2193          memcpy(&pData[110], &eg3depth, 1);          store16(&pData[116], eg3depth);
2194    
2195          // next 2 bytes unknown          // next 2 bytes unknown
2196    
2197          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
2198          memcpy(&pData[113], &channeloffset, 1);          pData[120] = channeloffset;
2199    
2200          {          {
2201              uint8_t regoptions = 0;              uint8_t regoptions = 0;
2202              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
2203              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
2204              memcpy(&pData[114], &regoptions, 1);              pData[121] = regoptions;
2205          }          }
2206    
2207          // next 2 bytes unknown          // next 2 bytes unknown
2208    
2209          memcpy(&pData[117], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
2210    
2211          // next 3 bytes unknown          // next 3 bytes unknown
2212    
2213          memcpy(&pData[121], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2214    
2215          // next 2 bytes unknown          // next 2 bytes unknown
2216    
2217          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2218          memcpy(&pData[124], &eg1hold, 1);          pData[131] = eg1hold;
2219    
2220          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2221                                    (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2222          memcpy(&pData[125], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2223    
2224          memcpy(&pData[126], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2225    
2226          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2227                                      (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2228          memcpy(&pData[127], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2229    
2230          // next byte unknown          // next byte unknown
2231    
2232          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2233                                       (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2234          memcpy(&pData[129], &vcfresonance, 1);          pData[136] = vcfresonance;
2235    
2236          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2237                                        (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2238          memcpy(&pData[130], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2239    
2240          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2241                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2242          memcpy(&pData[131], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2243    
2244          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2245          memcpy(&pData[132], &vcftype, 1);          pData[139] = vcftype;
2246    
2247            if (chunksize >= 148) {
2248                memcpy(&pData[140], DimensionUpperLimits, 8);
2249            }
2250    
2251            // chunk for own format extensions, these will *NOT* work with
2252            // Gigasampler/GigaStudio !
2253            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2254            const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2255            if (!lsde) {
2256                // only add this "LSDE" chunk if either EG options or sustain
2257                // release trigger option deviate from their default behaviour
2258                eg_opt_t defaultOpt;
2259                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2260                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2261                    SustainReleaseTrigger)
2262                {
2263                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2264                    // move LSDE chunk to the end of parent list
2265                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2266                }
2267            }
2268            if (lsde) {
2269                if (lsde->GetNewSize() < lsdeSize)
2270                    lsde->Resize(lsdeSize);
2271                // format extension for EG behavior options
2272                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2273                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2274                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2275                    pData[i] =
2276                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2277                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2278                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2279                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2280                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2281                }
2282                // format extension for effect of sustain pedal up event on release trigger samples
2283                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger);
2284            }
2285        }
2286    
2287        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2288            curve_type_t curveType = releaseVelocityResponseCurve;
2289            uint8_t depth = releaseVelocityResponseDepth;
2290            // this models a strange behaviour or bug in GSt: two of the
2291            // velocity response curves for release time are not used even
2292            // if specified, instead another curve is chosen.
2293            if ((curveType == curve_type_nonlinear && depth == 0) ||
2294                (curveType == curve_type_special   && depth == 4)) {
2295                curveType = curve_type_nonlinear;
2296                depth = 3;
2297            }
2298            return GetVelocityTable(curveType, depth, 0);
2299        }
2300    
2301        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2302                                                        uint8_t vcfVelocityDynamicRange,
2303                                                        uint8_t vcfVelocityScale,
2304                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2305        {
2306            curve_type_t curveType = vcfVelocityCurve;
2307            uint8_t depth = vcfVelocityDynamicRange;
2308            // even stranger GSt: two of the velocity response curves for
2309            // filter cutoff are not used, instead another special curve
2310            // is chosen. This curve is not used anywhere else.
2311            if ((curveType == curve_type_nonlinear && depth == 0) ||
2312                (curveType == curve_type_special   && depth == 4)) {
2313                curveType = curve_type_special;
2314                depth = 5;
2315            }
2316            return GetVelocityTable(curveType, depth,
2317                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2318                                        ? vcfVelocityScale : 0);
2319      }      }
2320    
2321      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2322      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2323      {      {
2324            // sanity check input parameters
2325            // (fallback to some default parameters on ill input)
2326            switch (curveType) {
2327                case curve_type_nonlinear:
2328                case curve_type_linear:
2329                    if (depth > 4) {
2330                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2331                        depth   = 0;
2332                        scaling = 0;
2333                    }
2334                    break;
2335                case curve_type_special:
2336                    if (depth > 5) {
2337                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2338                        depth   = 0;
2339                        scaling = 0;
2340                    }
2341                    break;
2342                case curve_type_unknown:
2343                default:
2344                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2345                    curveType = curve_type_linear;
2346                    depth     = 0;
2347                    scaling   = 0;
2348                    break;
2349            }
2350    
2351          double* table;          double* table;
2352          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2353          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
# Line 1742  namespace { Line 2360  namespace {
2360          return table;          return table;
2361      }      }
2362    
2363        Region* DimensionRegion::GetParent() const {
2364            return pRegion;
2365        }
2366    
2367    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2368    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2369    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2370    //#pragma GCC diagnostic push
2371    //#pragma GCC diagnostic error "-Wswitch"
2372    
2373      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2374          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2375          switch (EncodedController) {          switch (EncodedController) {
# Line 1853  namespace { Line 2481  namespace {
2481                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2482                  break;                  break;
2483    
2484                // format extension (these controllers are so far only supported by
2485                // LinuxSampler & gigedit) they will *NOT* work with
2486                // Gigasampler/GigaStudio !
2487                case _lev_ctrl_CC3_EXT:
2488                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489                    decodedcontroller.controller_number = 3;
2490                    break;
2491                case _lev_ctrl_CC6_EXT:
2492                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493                    decodedcontroller.controller_number = 6;
2494                    break;
2495                case _lev_ctrl_CC7_EXT:
2496                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497                    decodedcontroller.controller_number = 7;
2498                    break;
2499                case _lev_ctrl_CC8_EXT:
2500                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501                    decodedcontroller.controller_number = 8;
2502                    break;
2503                case _lev_ctrl_CC9_EXT:
2504                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505                    decodedcontroller.controller_number = 9;
2506                    break;
2507                case _lev_ctrl_CC10_EXT:
2508                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509                    decodedcontroller.controller_number = 10;
2510                    break;
2511                case _lev_ctrl_CC11_EXT:
2512                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513                    decodedcontroller.controller_number = 11;
2514                    break;
2515                case _lev_ctrl_CC14_EXT:
2516                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517                    decodedcontroller.controller_number = 14;
2518                    break;
2519                case _lev_ctrl_CC15_EXT:
2520                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521                    decodedcontroller.controller_number = 15;
2522                    break;
2523                case _lev_ctrl_CC20_EXT:
2524                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525                    decodedcontroller.controller_number = 20;
2526                    break;
2527                case _lev_ctrl_CC21_EXT:
2528                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529                    decodedcontroller.controller_number = 21;
2530                    break;
2531                case _lev_ctrl_CC22_EXT:
2532                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533                    decodedcontroller.controller_number = 22;
2534                    break;
2535                case _lev_ctrl_CC23_EXT:
2536                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537                    decodedcontroller.controller_number = 23;
2538                    break;
2539                case _lev_ctrl_CC24_EXT:
2540                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541                    decodedcontroller.controller_number = 24;
2542                    break;
2543                case _lev_ctrl_CC25_EXT:
2544                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545                    decodedcontroller.controller_number = 25;
2546                    break;
2547                case _lev_ctrl_CC26_EXT:
2548                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549                    decodedcontroller.controller_number = 26;
2550                    break;
2551                case _lev_ctrl_CC27_EXT:
2552                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553                    decodedcontroller.controller_number = 27;
2554                    break;
2555                case _lev_ctrl_CC28_EXT:
2556                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557                    decodedcontroller.controller_number = 28;
2558                    break;
2559                case _lev_ctrl_CC29_EXT:
2560                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561                    decodedcontroller.controller_number = 29;
2562                    break;
2563                case _lev_ctrl_CC30_EXT:
2564                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565                    decodedcontroller.controller_number = 30;
2566                    break;
2567                case _lev_ctrl_CC31_EXT:
2568                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569                    decodedcontroller.controller_number = 31;
2570                    break;
2571                case _lev_ctrl_CC68_EXT:
2572                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573                    decodedcontroller.controller_number = 68;
2574                    break;
2575                case _lev_ctrl_CC69_EXT:
2576                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577                    decodedcontroller.controller_number = 69;
2578                    break;
2579                case _lev_ctrl_CC70_EXT:
2580                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581                    decodedcontroller.controller_number = 70;
2582                    break;
2583                case _lev_ctrl_CC71_EXT:
2584                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585                    decodedcontroller.controller_number = 71;
2586                    break;
2587                case _lev_ctrl_CC72_EXT:
2588                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589                    decodedcontroller.controller_number = 72;
2590                    break;
2591                case _lev_ctrl_CC73_EXT:
2592                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593                    decodedcontroller.controller_number = 73;
2594                    break;
2595                case _lev_ctrl_CC74_EXT:
2596                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597                    decodedcontroller.controller_number = 74;
2598                    break;
2599                case _lev_ctrl_CC75_EXT:
2600                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601                    decodedcontroller.controller_number = 75;
2602                    break;
2603                case _lev_ctrl_CC76_EXT:
2604                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605                    decodedcontroller.controller_number = 76;
2606                    break;
2607                case _lev_ctrl_CC77_EXT:
2608                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609                    decodedcontroller.controller_number = 77;
2610                    break;
2611                case _lev_ctrl_CC78_EXT:
2612                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613                    decodedcontroller.controller_number = 78;
2614                    break;
2615                case _lev_ctrl_CC79_EXT:
2616                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617                    decodedcontroller.controller_number = 79;
2618                    break;
2619                case _lev_ctrl_CC84_EXT:
2620                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621                    decodedcontroller.controller_number = 84;
2622                    break;
2623                case _lev_ctrl_CC85_EXT:
2624                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625                    decodedcontroller.controller_number = 85;
2626                    break;
2627                case _lev_ctrl_CC86_EXT:
2628                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629                    decodedcontroller.controller_number = 86;
2630                    break;
2631                case _lev_ctrl_CC87_EXT:
2632                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633                    decodedcontroller.controller_number = 87;
2634                    break;
2635                case _lev_ctrl_CC89_EXT:
2636                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637                    decodedcontroller.controller_number = 89;
2638                    break;
2639                case _lev_ctrl_CC90_EXT:
2640                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641                    decodedcontroller.controller_number = 90;
2642                    break;
2643                case _lev_ctrl_CC96_EXT:
2644                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645                    decodedcontroller.controller_number = 96;
2646                    break;
2647                case _lev_ctrl_CC97_EXT:
2648                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649                    decodedcontroller.controller_number = 97;
2650                    break;
2651                case _lev_ctrl_CC102_EXT:
2652                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653                    decodedcontroller.controller_number = 102;
2654                    break;
2655                case _lev_ctrl_CC103_EXT:
2656                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657                    decodedcontroller.controller_number = 103;
2658                    break;
2659                case _lev_ctrl_CC104_EXT:
2660                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661                    decodedcontroller.controller_number = 104;
2662                    break;
2663                case _lev_ctrl_CC105_EXT:
2664                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665                    decodedcontroller.controller_number = 105;
2666                    break;
2667                case _lev_ctrl_CC106_EXT:
2668                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669                    decodedcontroller.controller_number = 106;
2670                    break;
2671                case _lev_ctrl_CC107_EXT:
2672                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673                    decodedcontroller.controller_number = 107;
2674                    break;
2675                case _lev_ctrl_CC108_EXT:
2676                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677                    decodedcontroller.controller_number = 108;
2678                    break;
2679                case _lev_ctrl_CC109_EXT:
2680                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681                    decodedcontroller.controller_number = 109;
2682                    break;
2683                case _lev_ctrl_CC110_EXT:
2684                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685                    decodedcontroller.controller_number = 110;
2686                    break;
2687                case _lev_ctrl_CC111_EXT:
2688                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689                    decodedcontroller.controller_number = 111;
2690                    break;
2691                case _lev_ctrl_CC112_EXT:
2692                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693                    decodedcontroller.controller_number = 112;
2694                    break;
2695                case _lev_ctrl_CC113_EXT:
2696                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697                    decodedcontroller.controller_number = 113;
2698                    break;
2699                case _lev_ctrl_CC114_EXT:
2700                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701                    decodedcontroller.controller_number = 114;
2702                    break;
2703                case _lev_ctrl_CC115_EXT:
2704                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705                    decodedcontroller.controller_number = 115;
2706                    break;
2707                case _lev_ctrl_CC116_EXT:
2708                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709                    decodedcontroller.controller_number = 116;
2710                    break;
2711                case _lev_ctrl_CC117_EXT:
2712                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713                    decodedcontroller.controller_number = 117;
2714                    break;
2715                case _lev_ctrl_CC118_EXT:
2716                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717                    decodedcontroller.controller_number = 118;
2718                    break;
2719                case _lev_ctrl_CC119_EXT:
2720                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721                    decodedcontroller.controller_number = 119;
2722                    break;
2723    
2724              // unknown controller type              // unknown controller type
2725              default:              default:
2726                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2727                    decodedcontroller.controller_number = 0;
2728                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2729                    break;
2730          }          }
2731          return decodedcontroller;          return decodedcontroller;
2732      }      }
2733        
2734    // see above (diagnostic push not supported prior GCC 4.6)
2735    //#pragma GCC diagnostic pop
2736    
2737      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2738          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1946  namespace { Line 2820  namespace {
2820                      case 95:                      case 95:
2821                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2822                          break;                          break;
2823    
2824                        // format extension (these controllers are so far only
2825                        // supported by LinuxSampler & gigedit) they will *NOT*
2826                        // work with Gigasampler/GigaStudio !
2827                        case 3:
2828                            encodedcontroller = _lev_ctrl_CC3_EXT;
2829                            break;
2830                        case 6:
2831                            encodedcontroller = _lev_ctrl_CC6_EXT;
2832                            break;
2833                        case 7:
2834                            encodedcontroller = _lev_ctrl_CC7_EXT;
2835                            break;
2836                        case 8:
2837                            encodedcontroller = _lev_ctrl_CC8_EXT;
2838                            break;
2839                        case 9:
2840                            encodedcontroller = _lev_ctrl_CC9_EXT;
2841                            break;
2842                        case 10:
2843                            encodedcontroller = _lev_ctrl_CC10_EXT;
2844                            break;
2845                        case 11:
2846                            encodedcontroller = _lev_ctrl_CC11_EXT;
2847                            break;
2848                        case 14:
2849                            encodedcontroller = _lev_ctrl_CC14_EXT;
2850                            break;
2851                        case 15:
2852                            encodedcontroller = _lev_ctrl_CC15_EXT;
2853                            break;
2854                        case 20:
2855                            encodedcontroller = _lev_ctrl_CC20_EXT;
2856                            break;
2857                        case 21:
2858                            encodedcontroller = _lev_ctrl_CC21_EXT;
2859                            break;
2860                        case 22:
2861                            encodedcontroller = _lev_ctrl_CC22_EXT;
2862                            break;
2863                        case 23:
2864                            encodedcontroller = _lev_ctrl_CC23_EXT;
2865                            break;
2866                        case 24:
2867                            encodedcontroller = _lev_ctrl_CC24_EXT;
2868                            break;
2869                        case 25:
2870                            encodedcontroller = _lev_ctrl_CC25_EXT;
2871                            break;
2872                        case 26:
2873                            encodedcontroller = _lev_ctrl_CC26_EXT;
2874                            break;
2875                        case 27:
2876                            encodedcontroller = _lev_ctrl_CC27_EXT;
2877                            break;
2878                        case 28:
2879                            encodedcontroller = _lev_ctrl_CC28_EXT;
2880                            break;
2881                        case 29:
2882                            encodedcontroller = _lev_ctrl_CC29_EXT;
2883                            break;
2884                        case 30:
2885                            encodedcontroller = _lev_ctrl_CC30_EXT;
2886                            break;
2887                        case 31:
2888                            encodedcontroller = _lev_ctrl_CC31_EXT;
2889                            break;
2890                        case 68:
2891                            encodedcontroller = _lev_ctrl_CC68_EXT;
2892                            break;
2893                        case 69:
2894                            encodedcontroller = _lev_ctrl_CC69_EXT;
2895                            break;
2896                        case 70:
2897                            encodedcontroller = _lev_ctrl_CC70_EXT;
2898                            break;
2899                        case 71:
2900                            encodedcontroller = _lev_ctrl_CC71_EXT;
2901                            break;
2902                        case 72:
2903                            encodedcontroller = _lev_ctrl_CC72_EXT;
2904                            break;
2905                        case 73:
2906                            encodedcontroller = _lev_ctrl_CC73_EXT;
2907                            break;
2908                        case 74:
2909                            encodedcontroller = _lev_ctrl_CC74_EXT;
2910                            break;
2911                        case 75:
2912                            encodedcontroller = _lev_ctrl_CC75_EXT;
2913                            break;
2914                        case 76:
2915                            encodedcontroller = _lev_ctrl_CC76_EXT;
2916                            break;
2917                        case 77:
2918                            encodedcontroller = _lev_ctrl_CC77_EXT;
2919                            break;
2920                        case 78:
2921                            encodedcontroller = _lev_ctrl_CC78_EXT;
2922                            break;
2923                        case 79:
2924                            encodedcontroller = _lev_ctrl_CC79_EXT;
2925                            break;
2926                        case 84:
2927                            encodedcontroller = _lev_ctrl_CC84_EXT;
2928                            break;
2929                        case 85:
2930                            encodedcontroller = _lev_ctrl_CC85_EXT;
2931                            break;
2932                        case 86:
2933                            encodedcontroller = _lev_ctrl_CC86_EXT;
2934                            break;
2935                        case 87:
2936                            encodedcontroller = _lev_ctrl_CC87_EXT;
2937                            break;
2938                        case 89:
2939                            encodedcontroller = _lev_ctrl_CC89_EXT;
2940                            break;
2941                        case 90:
2942                            encodedcontroller = _lev_ctrl_CC90_EXT;
2943                            break;
2944                        case 96:
2945                            encodedcontroller = _lev_ctrl_CC96_EXT;
2946                            break;
2947                        case 97:
2948                            encodedcontroller = _lev_ctrl_CC97_EXT;
2949                            break;
2950                        case 102:
2951                            encodedcontroller = _lev_ctrl_CC102_EXT;
2952                            break;
2953                        case 103:
2954                            encodedcontroller = _lev_ctrl_CC103_EXT;
2955                            break;
2956                        case 104:
2957                            encodedcontroller = _lev_ctrl_CC104_EXT;
2958                            break;
2959                        case 105:
2960                            encodedcontroller = _lev_ctrl_CC105_EXT;
2961                            break;
2962                        case 106:
2963                            encodedcontroller = _lev_ctrl_CC106_EXT;
2964                            break;
2965                        case 107:
2966                            encodedcontroller = _lev_ctrl_CC107_EXT;
2967                            break;
2968                        case 108:
2969                            encodedcontroller = _lev_ctrl_CC108_EXT;
2970                            break;
2971                        case 109:
2972                            encodedcontroller = _lev_ctrl_CC109_EXT;
2973                            break;
2974                        case 110:
2975                            encodedcontroller = _lev_ctrl_CC110_EXT;
2976                            break;
2977                        case 111:
2978                            encodedcontroller = _lev_ctrl_CC111_EXT;
2979                            break;
2980                        case 112:
2981                            encodedcontroller = _lev_ctrl_CC112_EXT;
2982                            break;
2983                        case 113:
2984                            encodedcontroller = _lev_ctrl_CC113_EXT;
2985                            break;
2986                        case 114:
2987                            encodedcontroller = _lev_ctrl_CC114_EXT;
2988                            break;
2989                        case 115:
2990                            encodedcontroller = _lev_ctrl_CC115_EXT;
2991                            break;
2992                        case 116:
2993                            encodedcontroller = _lev_ctrl_CC116_EXT;
2994                            break;
2995                        case 117:
2996                            encodedcontroller = _lev_ctrl_CC117_EXT;
2997                            break;
2998                        case 118:
2999                            encodedcontroller = _lev_ctrl_CC118_EXT;
3000                            break;
3001                        case 119:
3002                            encodedcontroller = _lev_ctrl_CC119_EXT;
3003                            break;
3004    
3005                      default:                      default:
3006                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
3007                  }                  }
3008                    break;
3009              default:              default:
3010                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
3011          }          }
# Line 1968  namespace { Line 3025  namespace {
3025              delete pVelocityTables;              delete pVelocityTables;
3026              pVelocityTables = NULL;              pVelocityTables = NULL;
3027          }          }
3028            if (VelocityTable) delete[] VelocityTable;
3029      }      }
3030    
3031      /**      /**
# Line 1993  namespace { Line 3051  namespace {
3051          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
3052      }      }
3053    
3054        /**
3055         * Updates the respective member variable and the lookup table / cache
3056         * that depends on this value.
3057         */
3058        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3059            pVelocityAttenuationTable =
3060                GetVelocityTable(
3061                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3062                );
3063            VelocityResponseCurve = curve;
3064        }
3065    
3066        /**
3067         * Updates the respective member variable and the lookup table / cache
3068         * that depends on this value.
3069         */
3070        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3071            pVelocityAttenuationTable =
3072                GetVelocityTable(
3073                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3074                );
3075            VelocityResponseDepth = depth;
3076        }
3077    
3078        /**
3079         * Updates the respective member variable and the lookup table / cache
3080         * that depends on this value.
3081         */
3082        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3083            pVelocityAttenuationTable =
3084                GetVelocityTable(
3085                    VelocityResponseCurve, VelocityResponseDepth, scaling
3086                );
3087            VelocityResponseCurveScaling = scaling;
3088        }
3089    
3090        /**
3091         * Updates the respective member variable and the lookup table / cache
3092         * that depends on this value.
3093         */
3094        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3095            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3096            ReleaseVelocityResponseCurve = curve;
3097        }
3098    
3099        /**
3100         * Updates the respective member variable and the lookup table / cache
3101         * that depends on this value.
3102         */
3103        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3104            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3105            ReleaseVelocityResponseDepth = depth;
3106        }
3107    
3108        /**
3109         * Updates the respective member variable and the lookup table / cache
3110         * that depends on this value.
3111         */
3112        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3113            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3114            VCFCutoffController = controller;
3115        }
3116    
3117        /**
3118         * Updates the respective member variable and the lookup table / cache
3119         * that depends on this value.
3120         */
3121        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3122            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3123            VCFVelocityCurve = curve;
3124        }
3125    
3126        /**
3127         * Updates the respective member variable and the lookup table / cache
3128         * that depends on this value.
3129         */
3130        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3131            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3132            VCFVelocityDynamicRange = range;
3133        }
3134    
3135        /**
3136         * Updates the respective member variable and the lookup table / cache
3137         * that depends on this value.
3138         */
3139        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3140            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3141            VCFVelocityScale = scaling;
3142        }
3143    
3144      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3145    
3146          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2072  namespace { Line 3220  namespace {
3220          }          }
3221          Layers = 1;          Layers = 1;
3222          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3223          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3224    
3225          // Actual Loading          // Actual Loading
3226    
3227            if (!file->GetAutoLoad()) return;
3228    
3229          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3230    
3231          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2084  namespace { Line 3234  namespace {
3234              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3235                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3236                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3237                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3238                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3239                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3240                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3241                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3242                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3243                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3244                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3245                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3246                  }                  }
3247                  else { // active dimension                  else { // active dimension
3248                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3249                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3250                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3251                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3252                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3253                      Dimensions++;                      Dimensions++;
3254    
3255                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2116  namespace { Line 3257  namespace {
3257                  }                  }
3258                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3259              }              }
3260                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3261    
3262              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3263              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3264                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         UpdateVelocityTable(pDimDef);  
                     }  
                 }  
             }  
3265    
3266              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3267              File* file = (File*) GetParent()->GetParent();              if (file->pVersion && file->pVersion->major > 2)
             if (file->pVersion && file->pVersion->major == 3)  
3268                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3269              else              else
3270                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3271    
3272              // load sample references              // load sample references (if auto loading is enabled)
3273              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3274                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3275                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3276                        if (file->pWavePoolTable && pDimensionRegions[i])
3277                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3278                    }
3279                    GetSample(); // load global region sample reference
3280                }
3281            } else {
3282                DimensionRegions = 0;
3283                for (int i = 0 ; i < 8 ; i++) {
3284                    pDimensionDefinitions[i].dimension  = dimension_none;
3285                    pDimensionDefinitions[i].bits       = 0;
3286                    pDimensionDefinitions[i].zones      = 0;
3287              }              }
3288          }          }
3289    
# Line 2153  namespace { Line 3292  namespace {
3292              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3293              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3294              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3295              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3296              DimensionRegions = 1;              DimensionRegions = 1;
3297          }          }
3298      }      }
# Line 2165  namespace { Line 3304  namespace {
3304       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
3305       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
3306       *       *
3307         * @param pProgress - callback function for progress notification
3308       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3309       */       */
3310      void Region::UpdateChunks() {      void Region::UpdateChunks(progress_t* pProgress) {
3311            // in the gig format we don't care about the Region's sample reference
3312            // but we still have to provide some existing one to not corrupt the
3313            // file, so to avoid the latter we simply always assign the sample of
3314            // the first dimension region of this region
3315            pSample = pDimensionRegions[0]->pSample;
3316    
3317          // first update base class's chunks          // first update base class's chunks
3318          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks(pProgress);
3319    
3320          // update dimension region's chunks          // update dimension region's chunks
3321          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
3322              pDimensionRegions[i]->UpdateChunks();              pDimensionRegions[i]->UpdateChunks(pProgress);
3323          }          }
3324    
3325          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3326          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3327          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  versiongt2 ? 8 : 5;
3328            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3329    
3330          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3331          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3332          if (!_3lnk) {          if (!_3lnk) {
3333              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3334              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3335                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3336    
3337                // move 3prg to last position
3338                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3339          }          }
3340    
3341          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3342          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3343            store32(&pData[0], DimensionRegions);
3344            int shift = 0;
3345          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3346              pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3347              pData[i * 8 + 1] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3348              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3349              pData[i * 8 + 4] = pDimensionDefinitions[i].zones;              pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3350              // next 3 bytes unknown              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3351                // next 3 bytes unknown, always zero?
3352    
3353                shift += pDimensionDefinitions[i].bits;
3354          }          }
3355    
3356          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3357          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = versiongt2 ? 68 : 44;
3358          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3359              int iWaveIndex = -1;              int iWaveIndex = -1;
3360              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2211  namespace { Line 3367  namespace {
3367                          break;                          break;
3368                      }                      }
3369                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3370              }              }
3371              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3372          }          }
3373      }      }
3374    
# Line 2224  namespace { Line 3379  namespace {
3379              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3380              while (_3ewl) {              while (_3ewl) {
3381                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3382                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3383                      dimensionRegionNr++;                      dimensionRegionNr++;
3384                  }                  }
3385                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2233  namespace { Line 3388  namespace {
3388          }          }
3389      }      }
3390    
3391      void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3392          // get dimension's index          // update KeyRange struct and make sure regions are in correct order
3393          int iDimensionNr = -1;          DLS::Region::SetKeyRange(Low, High);
3394          for (int i = 0; i < Dimensions; i++) {          // update Region key table for fast lookup
3395              if (&pDimensionDefinitions[i] == pDimDef) {          ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3396                  iDimensionNr = i;      }
3397    
3398        void Region::UpdateVelocityTable() {
3399            // get velocity dimension's index
3400            int veldim = -1;
3401            for (int i = 0 ; i < Dimensions ; i++) {
3402                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3403                    veldim = i;
3404                  break;                  break;
3405              }              }
3406          }          }
3407          if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");          if (veldim == -1) return;
3408    
3409          uint8_t bits[8] = { 0 };          int step = 1;
3410          int previousUpperLimit = -1;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3411          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3412              bits[iDimensionNr] = velocityZone;  
3413              DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);          // loop through all dimension regions for all dimensions except the velocity dimension
3414            int dim[8] = { 0 };
3415              pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;          for (int i = 0 ; i < DimensionRegions ; i++) {
3416              pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;              const int end = i + step * pDimensionDefinitions[veldim].zones;
3417              previousUpperLimit = pDimDef->ranges[velocityZone].high;  
3418              // fill velocity table              // create a velocity table for all cases where the velocity zone is zero
3419              for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3420                  VelocityTable[i] = velocityZone;                  pDimensionRegions[i]->VelocityUpperLimit) {
3421                    // create the velocity table
3422                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3423                    if (!table) {
3424                        table = new uint8_t[128];
3425                        pDimensionRegions[i]->VelocityTable = table;
3426                    }
3427                    int tableidx = 0;
3428                    int velocityZone = 0;
3429                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3430                        for (int k = i ; k < end ; k += step) {
3431                            DimensionRegion *d = pDimensionRegions[k];
3432                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3433                            velocityZone++;
3434                        }
3435                    } else { // gig2
3436                        for (int k = i ; k < end ; k += step) {
3437                            DimensionRegion *d = pDimensionRegions[k];
3438                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3439                            velocityZone++;
3440                        }
3441                    }
3442                } else {
3443                    if (pDimensionRegions[i]->VelocityTable) {
3444                        delete[] pDimensionRegions[i]->VelocityTable;
3445                        pDimensionRegions[i]->VelocityTable = 0;
3446                    }
3447              }              }
3448    
3449                // jump to the next case where the velocity zone is zero
3450                int j;
3451                int shift = 0;
3452                for (j = 0 ; j < Dimensions ; j++) {
3453                    if (j == veldim) i += skipveldim; // skip velocity dimension
3454                    else {
3455                        dim[j]++;
3456                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3457                        else {
3458                            // skip unused dimension regions
3459                            dim[j] = 0;
3460                            i += ((1 << pDimensionDefinitions[j].bits) -
3461                                  pDimensionDefinitions[j].zones) << shift;
3462                        }
3463                    }
3464                    shift += pDimensionDefinitions[j].bits;
3465                }
3466                if (j == Dimensions) break;
3467          }          }
3468      }      }
3469    
# Line 2276  namespace { Line 3483  namespace {
3483       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3484       */       */
3485      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3486            // some initial sanity checks of the given dimension definition
3487            if (pDimDef->zones < 2)
3488                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3489            if (pDimDef->bits < 1)
3490                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3491            if (pDimDef->dimension == dimension_samplechannel) {
3492                if (pDimDef->zones != 2)
3493                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3494                if (pDimDef->bits != 1)
3495                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3496            }
3497    
3498          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3499          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3500          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3501          if (Dimensions >= iMaxDimensions)          if (Dimensions >= iMaxDimensions)
3502              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3503          // check if max. amount of dimension bits reached          // check if max. amount of dimension bits reached
# Line 2295  namespace { Line 3514  namespace {
3514              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3515                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3516    
3517            // pos is where the new dimension should be placed, normally
3518            // last in list, except for the samplechannel dimension which
3519            // has to be first in list
3520            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3521            int bitpos = 0;
3522            for (int i = 0 ; i < pos ; i++)
3523                bitpos += pDimensionDefinitions[i].bits;
3524    
3525            // make room for the new dimension
3526            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3527            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3528                for (int j = Dimensions ; j > pos ; j--) {
3529                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3530                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3531                }
3532            }
3533    
3534          // assign definition of new dimension          // assign definition of new dimension
3535          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3536    
3537            // auto correct certain dimension definition fields (where possible)
3538            pDimensionDefinitions[pos].split_type  =
3539                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3540            pDimensionDefinitions[pos].zone_size =
3541                __resolveZoneSize(pDimensionDefinitions[pos]);
3542    
3543            // create new dimension region(s) for this new dimension, and make
3544            // sure that the dimension regions are placed correctly in both the
3545            // RIFF list and the pDimensionRegions array
3546            RIFF::Chunk* moveTo = NULL;
3547            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3548            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3549                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3550                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3551                }
3552                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3553                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3554                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3555                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3556                        // create a new dimension region and copy all parameter values from
3557                        // an existing dimension region
3558                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3559                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3560    
3561                        DimensionRegions++;
3562                    }
3563                }
3564                moveTo = pDimensionRegions[i]->pParentList;
3565            }
3566    
3567          // create new dimension region(s) for this new dimension          // initialize the upper limits for this dimension
3568          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          int mask = (1 << bitpos) - 1;
3569              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values          for (int z = 0 ; z < pDimDef->zones ; z++) {
3570              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3571              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3572              DimensionRegions++;                  pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3573                                      (z << bitpos) |
3574                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3575                }
3576          }          }
3577    
3578          Dimensions++;          Dimensions++;
# Line 2311  namespace { Line 3580  namespace {
3580          // if this is a layer dimension, update 'Layers' attribute          // if this is a layer dimension, update 'Layers' attribute
3581          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3582    
3583          // if this is velocity dimension and got custom defined ranges, update velocity table          UpdateVelocityTable();
         if (pDimDef->dimension  == dimension_velocity &&  
             pDimDef->split_type == split_type_customvelocity) {  
             UpdateVelocityTable(pDimDef);  
         }  
3584      }      }
3585    
3586      /** @brief Delete an existing dimension.      /** @brief Delete an existing dimension.
# Line 2350  namespace { Line 3615  namespace {
3615          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3616              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3617    
3618            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3619    
3620          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3621          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3622          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2358  namespace { Line 3625  namespace {
3625                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3626                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3627                                      iLowerBit;                                      iLowerBit;
3628    
3629                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3630                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3631                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3632                      DimensionRegions--;                      DimensionRegions--;
# Line 2378  namespace { Line 3647  namespace {
3647              }              }
3648          }          }
3649    
3650            // remove the this dimension from the upper limits arrays
3651            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3652                DimensionRegion* d = pDimensionRegions[j];
3653                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3654                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3655                }
3656                d->DimensionUpperLimits[Dimensions - 1] = 127;
3657            }
3658    
3659          // 'remove' dimension definition          // 'remove' dimension definition
3660          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3661              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2385  namespace { Line 3663  namespace {
3663          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3664          pDimensionDefinitions[Dimensions - 1].bits      = 0;          pDimensionDefinitions[Dimensions - 1].bits      = 0;
3665          pDimensionDefinitions[Dimensions - 1].zones     = 0;          pDimensionDefinitions[Dimensions - 1].zones     = 0;
         if (pDimensionDefinitions[Dimensions - 1].ranges) {  
             delete[] pDimensionDefinitions[Dimensions - 1].ranges;  
             pDimensionDefinitions[Dimensions - 1].ranges = NULL;  
         }  
3666    
3667          Dimensions--;          Dimensions--;
3668    
# Line 2396  namespace { Line 3670  namespace {
3670          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3671      }      }
3672    
3673      Region::~Region() {      /** @brief Delete one split zone of a dimension (decrement zone amount).
3674          for (uint i = 0; i < Dimensions; i++) {       *
3675              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;       * Instead of deleting an entire dimensions, this method will only delete
3676         * one particular split zone given by @a zone of the Region's dimension
3677         * given by @a type. So this method will simply decrement the amount of
3678         * zones by one of the dimension in question. To be able to do that, the
3679         * respective dimension must exist on this Region and it must have at least
3680         * 3 zones. All DimensionRegion objects associated with the zone will be
3681         * deleted.
3682         *
3683         * @param type - identifies the dimension where a zone shall be deleted
3684         * @param zone - index of the dimension split zone that shall be deleted
3685         * @throws gig::Exception if requested zone could not be deleted
3686         */
3687        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3688            dimension_def_t* oldDef = GetDimensionDefinition(type);
3689            if (!oldDef)
3690                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3691            if (oldDef->zones <= 2)
3692                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3693            if (zone < 0 || zone >= oldDef->zones)
3694                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3695    
3696            const int newZoneSize = oldDef->zones - 1;
3697    
3698            // create a temporary Region which just acts as a temporary copy
3699            // container and will be deleted at the end of this function and will
3700            // also not be visible through the API during this process
3701            gig::Region* tempRgn = NULL;
3702            {
3703                // adding these temporary chunks is probably not even necessary
3704                Instrument* instr = static_cast<Instrument*>(GetParent());
3705                RIFF::List* pCkInstrument = instr->pCkInstrument;
3706                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3707                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3708                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3709                tempRgn = new Region(instr, rgn);
3710            }
3711    
3712            // copy this region's dimensions (with already the dimension split size
3713            // requested by the arguments of this method call) to the temporary
3714            // region, and don't use Region::CopyAssign() here for this task, since
3715            // it would also alter fast lookup helper variables here and there
3716            dimension_def_t newDef;
3717            for (int i = 0; i < Dimensions; ++i) {
3718                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3719                // is this the dimension requested by the method arguments? ...
3720                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3721                    def.zones = newZoneSize;
3722                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3723                    newDef = def;
3724                }
3725                tempRgn->AddDimension(&def);
3726            }
3727    
3728            // find the dimension index in the tempRegion which is the dimension
3729            // type passed to this method (paranoidly expecting different order)
3730            int tempReducedDimensionIndex = -1;
3731            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3732                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3733                    tempReducedDimensionIndex = d;
3734                    break;
3735                }
3736            }
3737    
3738            // copy dimension regions from this region to the temporary region
3739            for (int iDst = 0; iDst < 256; ++iDst) {
3740                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3741                if (!dstDimRgn) continue;
3742                std::map<dimension_t,int> dimCase;
3743                bool isValidZone = true;
3744                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3745                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3746                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3747                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3748                    baseBits += dstBits;
3749                    // there are also DimensionRegion objects of unused zones, skip them
3750                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3751                        isValidZone = false;
3752                        break;
3753                    }
3754                }
3755                if (!isValidZone) continue;
3756                // a bit paranoid: cope with the chance that the dimensions would
3757                // have different order in source and destination regions
3758                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3759                if (dimCase[type] >= zone) dimCase[type]++;
3760                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3761                dstDimRgn->CopyAssign(srcDimRgn);
3762                // if this is the upper most zone of the dimension passed to this
3763                // method, then correct (raise) its upper limit to 127
3764                if (newDef.split_type == split_type_normal && isLastZone)
3765                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3766            }
3767    
3768            // now tempRegion's dimensions and DimensionRegions basically reflect
3769            // what we wanted to get for this actual Region here, so we now just
3770            // delete and recreate the dimension in question with the new amount
3771            // zones and then copy back from tempRegion      
3772            DeleteDimension(oldDef);
3773            AddDimension(&newDef);
3774            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3775                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3776                if (!srcDimRgn) continue;
3777                std::map<dimension_t,int> dimCase;
3778                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3779                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3780                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3781                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3782                    baseBits += srcBits;
3783                }
3784                // a bit paranoid: cope with the chance that the dimensions would
3785                // have different order in source and destination regions
3786                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3787                if (!dstDimRgn) continue;
3788                dstDimRgn->CopyAssign(srcDimRgn);
3789            }
3790    
3791            // delete temporary region
3792            delete tempRgn;
3793    
3794            UpdateVelocityTable();
3795        }
3796    
3797        /** @brief Divide split zone of a dimension in two (increment zone amount).
3798         *
3799         * This will increment the amount of zones for the dimension (given by
3800         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3801         * in the middle of its zone range in two. So the two zones resulting from
3802         * the zone being splitted, will be an equivalent copy regarding all their
3803         * articulation informations and sample reference. The two zones will only
3804         * differ in their zone's upper limit
3805         * (DimensionRegion::DimensionUpperLimits).
3806         *
3807         * @param type - identifies the dimension where a zone shall be splitted
3808         * @param zone - index of the dimension split zone that shall be splitted
3809         * @throws gig::Exception if requested zone could not be splitted
3810         */
3811        void Region::SplitDimensionZone(dimension_t type, int zone) {
3812            dimension_def_t* oldDef = GetDimensionDefinition(type);
3813            if (!oldDef)
3814                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3815            if (zone < 0 || zone >= oldDef->zones)
3816                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3817    
3818            const int newZoneSize = oldDef->zones + 1;
3819    
3820            // create a temporary Region which just acts as a temporary copy
3821            // container and will be deleted at the end of this function and will
3822            // also not be visible through the API during this process
3823            gig::Region* tempRgn = NULL;
3824            {
3825                // adding these temporary chunks is probably not even necessary
3826                Instrument* instr = static_cast<Instrument*>(GetParent());
3827                RIFF::List* pCkInstrument = instr->pCkInstrument;
3828                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3829                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3830                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3831                tempRgn = new Region(instr, rgn);
3832            }
3833    
3834            // copy this region's dimensions (with already the dimension split size
3835            // requested by the arguments of this method call) to the temporary
3836            // region, and don't use Region::CopyAssign() here for this task, since
3837            // it would also alter fast lookup helper variables here and there
3838            dimension_def_t newDef;
3839            for (int i = 0; i < Dimensions; ++i) {
3840                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3841                // is this the dimension requested by the method arguments? ...
3842                if (def.dimension == type) { // ... if yes, increment zone amount by one
3843                    def.zones = newZoneSize;
3844                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3845                    newDef = def;
3846                }
3847                tempRgn->AddDimension(&def);
3848          }          }
3849    
3850            // find the dimension index in the tempRegion which is the dimension
3851            // type passed to this method (paranoidly expecting different order)
3852            int tempIncreasedDimensionIndex = -1;
3853            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3854                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3855                    tempIncreasedDimensionIndex = d;
3856                    break;
3857                }
3858            }
3859    
3860            // copy dimension regions from this region to the temporary region
3861            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3862                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3863                if (!srcDimRgn) continue;
3864                std::map<dimension_t,int> dimCase;
3865                bool isValidZone = true;
3866                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3867                    const int srcBits = pDimensionDefinitions[d].bits;
3868                    dimCase[pDimensionDefinitions[d].dimension] =
3869                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3870                    // there are also DimensionRegion objects for unused zones, skip them
3871                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3872                        isValidZone = false;
3873                        break;
3874                    }
3875                    baseBits += srcBits;
3876                }
3877                if (!isValidZone) continue;
3878                // a bit paranoid: cope with the chance that the dimensions would
3879                // have different order in source and destination regions            
3880                if (dimCase[type] > zone) dimCase[type]++;
3881                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3882                dstDimRgn->CopyAssign(srcDimRgn);
3883                // if this is the requested zone to be splitted, then also copy
3884                // the source DimensionRegion to the newly created target zone
3885                // and set the old zones upper limit lower
3886                if (dimCase[type] == zone) {
3887                    // lower old zones upper limit
3888                    if (newDef.split_type == split_type_normal) {
3889                        const int high =
3890                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3891                        int low = 0;
3892                        if (zone > 0) {
3893                            std::map<dimension_t,int> lowerCase = dimCase;
3894                            lowerCase[type]--;
3895                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3896                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3897                        }
3898                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3899                    }
3900                    // fill the newly created zone of the divided zone as well
3901                    dimCase[type]++;
3902                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3903                    dstDimRgn->CopyAssign(srcDimRgn);
3904                }
3905            }
3906    
3907            // now tempRegion's dimensions and DimensionRegions basically reflect
3908            // what we wanted to get for this actual Region here, so we now just
3909            // delete and recreate the dimension in question with the new amount
3910            // zones and then copy back from tempRegion      
3911            DeleteDimension(oldDef);
3912            AddDimension(&newDef);
3913            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3914                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3915                if (!srcDimRgn) continue;
3916                std::map<dimension_t,int> dimCase;
3917                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3918                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3919                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3920                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3921                    baseBits += srcBits;
3922                }
3923                // a bit paranoid: cope with the chance that the dimensions would
3924                // have different order in source and destination regions
3925                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3926                if (!dstDimRgn) continue;
3927                dstDimRgn->CopyAssign(srcDimRgn);
3928            }
3929    
3930            // delete temporary region
3931            delete tempRgn;
3932    
3933            UpdateVelocityTable();
3934        }
3935    
3936        /** @brief Change type of an existing dimension.
3937         *
3938         * Alters the dimension type of a dimension already existing on this
3939         * region. If there is currently no dimension on this Region with type
3940         * @a oldType, then this call with throw an Exception. Likewise there are
3941         * cases where the requested dimension type cannot be performed. For example
3942         * if the new dimension type shall be gig::dimension_samplechannel, and the
3943         * current dimension has more than 2 zones. In such cases an Exception is
3944         * thrown as well.
3945         *
3946         * @param oldType - identifies the existing dimension to be changed
3947         * @param newType - to which dimension type it should be changed to
3948         * @throws gig::Exception if requested change cannot be performed
3949         */
3950        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3951            if (oldType == newType) return;
3952            dimension_def_t* def = GetDimensionDefinition(oldType);
3953            if (!def)
3954                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3955            if (newType == dimension_samplechannel && def->zones != 2)
3956                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3957            if (GetDimensionDefinition(newType))
3958                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3959            def->dimension  = newType;
3960            def->split_type = __resolveSplitType(newType);
3961        }
3962    
3963        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3964            uint8_t bits[8] = {};
3965            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3966                 it != DimCase.end(); ++it)
3967            {
3968                for (int d = 0; d < Dimensions; ++d) {
3969                    if (pDimensionDefinitions[d].dimension == it->first) {
3970                        bits[d] = it->second;
3971                        goto nextDimCaseSlice;
3972                    }
3973                }
3974                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3975                nextDimCaseSlice:
3976                ; // noop
3977            }
3978            return GetDimensionRegionByBit(bits);
3979        }
3980    
3981        /**
3982         * Searches in the current Region for a dimension of the given dimension
3983         * type and returns the precise configuration of that dimension in this
3984         * Region.
3985         *
3986         * @param type - dimension type of the sought dimension
3987         * @returns dimension definition or NULL if there is no dimension with
3988         *          sought type in this Region.
3989         */
3990        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3991            for (int i = 0; i < Dimensions; ++i)
3992                if (pDimensionDefinitions[i].dimension == type)
3993                    return &pDimensionDefinitions[i];
3994            return NULL;
3995        }
3996    
3997        Region::~Region() {
3998          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3999              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4000          }          }
# Line 2424  namespace { Line 4019  namespace {
4019       * @see             Dimensions       * @see             Dimensions
4020       */       */
4021      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4022          uint8_t bits[8] = { 0 };          uint8_t bits;
4023            int veldim = -1;
4024            int velbitpos = 0;
4025            int bitpos = 0;
4026            int dimregidx = 0;
4027          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4028              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4029              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
4030                  case split_type_normal:                  veldim = i;
4031                      bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);                  velbitpos = bitpos;
4032                      break;              } else {
4033                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
4034                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
4035                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4036                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4037                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4038                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4039                      break;                              }
4040                            } else {
4041                                // gig2: evenly sized zones
4042                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4043                            }
4044                            break;
4045                        case split_type_bit: // the value is already the sought dimension bit number
4046                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4047                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4048                            break;
4049                    }
4050                    dimregidx |= bits << bitpos;
4051              }              }
4052                bitpos += pDimensionDefinitions[i].bits;
4053          }          }
4054          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4055            if (!dimreg) return NULL;
4056            if (veldim != -1) {
4057                // (dimreg is now the dimension region for the lowest velocity)
4058                if (dimreg->VelocityTable) // custom defined zone ranges
4059                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4060                else // normal split type
4061                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4062    
4063                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4064                dimregidx |= (bits & limiter_mask) << velbitpos;
4065                dimreg = pDimensionRegions[dimregidx & 255];
4066            }
4067            return dimreg;
4068        }
4069    
4070        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4071            uint8_t bits;
4072            int veldim = -1;
4073            int velbitpos = 0;
4074            int bitpos = 0;
4075            int dimregidx = 0;
4076            for (uint i = 0; i < Dimensions; i++) {
4077                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4078                    // the velocity dimension must be handled after the other dimensions
4079                    veldim = i;
4080                    velbitpos = bitpos;
4081                } else {
4082                    switch (pDimensionDefinitions[i].split_type) {
4083                        case split_type_normal:
4084                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4085                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4086                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4087                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4088                                }
4089                            } else {
4090                                // gig2: evenly sized zones
4091                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4092                            }
4093                            break;
4094                        case split_type_bit: // the value is already the sought dimension bit number
4095                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4096                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4097                            break;
4098                    }
4099                    dimregidx |= bits << bitpos;
4100                }
4101                bitpos += pDimensionDefinitions[i].bits;
4102            }
4103            dimregidx &= 255;
4104            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4105            if (!dimreg) return -1;
4106            if (veldim != -1) {
4107                // (dimreg is now the dimension region for the lowest velocity)
4108                if (dimreg->VelocityTable) // custom defined zone ranges
4109                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4110                else // normal split type
4111                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4112    
4113                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4114                dimregidx |= (bits & limiter_mask) << velbitpos;
4115                dimregidx &= 255;
4116            }
4117            return dimregidx;
4118      }      }
4119    
4120      /**      /**
# Line 2480  namespace { Line 4154  namespace {
4154      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4155          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4156          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4157          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4158          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4159          Sample* sample = file->GetFirstSample(pProgress);          // for new files or files >= 2 GB use 64 bit wave pool offsets
4160          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4161              if (sample->ulWavePoolOffset == soughtoffset &&              // use 64 bit wave pool offsets (treating this as large file)
4162                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);              uint64_t soughtoffset =
4163              sample = file->GetNextSample();                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4164                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4165                Sample* sample = file->GetFirstSample(pProgress);
4166                while (sample) {
4167                    if (sample->ullWavePoolOffset == soughtoffset)
4168                        return static_cast<gig::Sample*>(sample);
4169                    sample = file->GetNextSample();
4170                }
4171            } else {
4172                // use extension files and 32 bit wave pool offsets
4173                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4174                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4175                Sample* sample = file->GetFirstSample(pProgress);
4176                while (sample) {
4177                    if (sample->ullWavePoolOffset == soughtoffset &&
4178                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4179                    sample = file->GetNextSample();
4180                }
4181          }          }
4182          return NULL;          return NULL;
4183      }      }
4184        
4185        /**
4186         * Make a (semi) deep copy of the Region object given by @a orig
4187         * and assign it to this object.
4188         *
4189         * Note that all sample pointers referenced by @a orig are simply copied as
4190         * memory address. Thus the respective samples are shared, not duplicated!
4191         *
4192         * @param orig - original Region object to be copied from
4193         */
4194        void Region::CopyAssign(const Region* orig) {
4195            CopyAssign(orig, NULL);
4196        }
4197        
4198        /**
4199         * Make a (semi) deep copy of the Region object given by @a orig and
4200         * assign it to this object
4201         *
4202         * @param mSamples - crosslink map between the foreign file's samples and
4203         *                   this file's samples
4204         */
4205        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4206            // handle base classes
4207            DLS::Region::CopyAssign(orig);
4208            
4209            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4210                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4211            }
4212            
4213            // handle own member variables
4214            for (int i = Dimensions - 1; i >= 0; --i) {
4215                DeleteDimension(&pDimensionDefinitions[i]);
4216            }
4217            Layers = 0; // just to be sure
4218            for (int i = 0; i < orig->Dimensions; i++) {
4219                // we need to copy the dim definition here, to avoid the compiler
4220                // complaining about const-ness issue
4221                dimension_def_t def = orig->pDimensionDefinitions[i];
4222                AddDimension(&def);
4223            }
4224            for (int i = 0; i < 256; i++) {
4225                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4226                    pDimensionRegions[i]->CopyAssign(
4227                        orig->pDimensionRegions[i],
4228                        mSamples
4229                    );
4230                }
4231            }
4232            Layers = orig->Layers;
4233        }
4234    
4235    
4236    // *************** MidiRule ***************
4237    // *
4238    
4239        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4240            _3ewg->SetPos(36);
4241            Triggers = _3ewg->ReadUint8();
4242            _3ewg->SetPos(40);
4243            ControllerNumber = _3ewg->ReadUint8();
4244            _3ewg->SetPos(46);
4245            for (int i = 0 ; i < Triggers ; i++) {
4246                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4247                pTriggers[i].Descending = _3ewg->ReadUint8();
4248                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4249                pTriggers[i].Key = _3ewg->ReadUint8();
4250                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4251                pTriggers[i].Velocity = _3ewg->ReadUint8();
4252                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4253                _3ewg->ReadUint8();
4254            }
4255        }
4256    
4257        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4258            ControllerNumber(0),
4259            Triggers(0) {
4260        }
4261    
4262        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4263            pData[32] = 4;
4264            pData[33] = 16;
4265            pData[36] = Triggers;
4266            pData[40] = ControllerNumber;
4267            for (int i = 0 ; i < Triggers ; i++) {
4268                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4269                pData[47 + i * 8] = pTriggers[i].Descending;
4270                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4271                pData[49 + i * 8] = pTriggers[i].Key;
4272                pData[50 + i * 8] = pTriggers[i].NoteOff;
4273                pData[51 + i * 8] = pTriggers[i].Velocity;
4274                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4275            }
4276        }
4277    
4278        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4279            _3ewg->SetPos(36);
4280            LegatoSamples = _3ewg->ReadUint8(); // always 12
4281            _3ewg->SetPos(40);
4282            BypassUseController = _3ewg->ReadUint8();
4283            BypassKey = _3ewg->ReadUint8();
4284            BypassController = _3ewg->ReadUint8();
4285            ThresholdTime = _3ewg->ReadUint16();
4286            _3ewg->ReadInt16();
4287            ReleaseTime = _3ewg->ReadUint16();
4288            _3ewg->ReadInt16();
4289            KeyRange.low = _3ewg->ReadUint8();
4290            KeyRange.high = _3ewg->ReadUint8();
4291            _3ewg->SetPos(64);
4292            ReleaseTriggerKey = _3ewg->ReadUint8();
4293            AltSustain1Key = _3ewg->ReadUint8();
4294            AltSustain2Key = _3ewg->ReadUint8();
4295        }
4296    
4297        MidiRuleLegato::MidiRuleLegato() :
4298            LegatoSamples(12),
4299            BypassUseController(false),
4300            BypassKey(0),
4301            BypassController(1),
4302            ThresholdTime(20),
4303            ReleaseTime(20),
4304            ReleaseTriggerKey(0),
4305            AltSustain1Key(0),
4306            AltSustain2Key(0)
4307        {
4308            KeyRange.low = KeyRange.high = 0;
4309        }
4310    
4311        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4312            pData[32] = 0;
4313            pData[33] = 16;
4314            pData[36] = LegatoSamples;
4315            pData[40] = BypassUseController;
4316            pData[41] = BypassKey;
4317            pData[42] = BypassController;
4318            store16(&pData[43], ThresholdTime);
4319            store16(&pData[47], ReleaseTime);
4320            pData[51] = KeyRange.low;
4321            pData[52] = KeyRange.high;
4322            pData[64] = ReleaseTriggerKey;
4323            pData[65] = AltSustain1Key;
4324            pData[66] = AltSustain2Key;
4325        }
4326    
4327        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4328            _3ewg->SetPos(36);
4329            Articulations = _3ewg->ReadUint8();
4330            int flags = _3ewg->ReadUint8();
4331            Polyphonic = flags & 8;
4332            Chained = flags & 4;
4333            Selector = (flags & 2) ? selector_controller :
4334                (flags & 1) ? selector_key_switch : selector_none;
4335            Patterns = _3ewg->ReadUint8();
4336            _3ewg->ReadUint8(); // chosen row
4337            _3ewg->ReadUint8(); // unknown
4338            _3ewg->ReadUint8(); // unknown
4339            _3ewg->ReadUint8(); // unknown
4340            KeySwitchRange.low = _3ewg->ReadUint8();
4341            KeySwitchRange.high = _3ewg->ReadUint8();
4342            Controller = _3ewg->ReadUint8();
4343            PlayRange.low = _3ewg->ReadUint8();
4344            PlayRange.high = _3ewg->ReadUint8();
4345    
4346            int n = std::min(int(Articulations), 32);
4347            for (int i = 0 ; i < n ; i++) {
4348                _3ewg->ReadString(pArticulations[i], 32);
4349            }
4350            _3ewg->SetPos(1072);
4351            n = std::min(int(Patterns), 32);
4352            for (int i = 0 ; i < n ; i++) {
4353                _3ewg->ReadString(pPatterns[i].Name, 16);
4354                pPatterns[i].Size = _3ewg->ReadUint8();
4355                _3ewg->Read(&pPatterns[i][0], 1, 32);
4356            }
4357        }
4358    
4359        MidiRuleAlternator::MidiRuleAlternator() :
4360            Articulations(0),
4361            Patterns(0),
4362            Selector(selector_none),
4363            Controller(0),
4364            Polyphonic(false),
4365            Chained(false)
4366        {
4367            PlayRange.low = PlayRange.high = 0;
4368            KeySwitchRange.low = KeySwitchRange.high = 0;
4369        }
4370    
4371        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4372            pData[32] = 3;
4373            pData[33] = 16;
4374            pData[36] = Articulations;
4375            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4376                (Selector == selector_controller ? 2 :
4377                 (Selector == selector_key_switch ? 1 : 0));
4378            pData[38] = Patterns;
4379    
4380            pData[43] = KeySwitchRange.low;
4381            pData[44] = KeySwitchRange.high;
4382            pData[45] = Controller;
4383            pData[46] = PlayRange.low;
4384            pData[47] = PlayRange.high;
4385    
4386            char* str = reinterpret_cast<char*>(pData);
4387            int pos = 48;
4388            int n = std::min(int(Articulations), 32);
4389            for (int i = 0 ; i < n ; i++, pos += 32) {
4390                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4391            }
4392    
4393            pos = 1072;
4394            n = std::min(int(Patterns), 32);
4395            for (int i = 0 ; i < n ; i++, pos += 49) {
4396                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4397                pData[pos + 16] = pPatterns[i].Size;
4398                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4399            }
4400        }
4401    
4402    // *************** Script ***************
4403    // *
4404    
4405        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4406            pGroup = group;
4407            pChunk = ckScri;
4408            if (ckScri) { // object is loaded from file ...
4409                // read header
4410                uint32_t headerSize = ckScri->ReadUint32();
4411                Compression = (Compression_t) ckScri->ReadUint32();
4412                Encoding    = (Encoding_t) ckScri->ReadUint32();
4413                Language    = (Language_t) ckScri->ReadUint32();
4414                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4415                crc         = ckScri->ReadUint32();
4416                uint32_t nameSize = ckScri->ReadUint32();
4417                Name.resize(nameSize, ' ');
4418                for (int i = 0; i < nameSize; ++i)
4419                    Name[i] = ckScri->ReadUint8();
4420                // to handle potential future extensions of the header
4421                ckScri->SetPos(sizeof(int32_t) + headerSize);
4422                // read actual script data
4423                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4424                data.resize(scriptSize);
4425                for (int i = 0; i < scriptSize; ++i)
4426                    data[i] = ckScri->ReadUint8();
4427            } else { // this is a new script object, so just initialize it as such ...
4428                Compression = COMPRESSION_NONE;
4429                Encoding = ENCODING_ASCII;
4430                Language = LANGUAGE_NKSP;
4431                Bypass   = false;
4432                crc      = 0;
4433                Name     = "Unnamed Script";
4434            }
4435        }
4436    
4437        Script::~Script() {
4438        }
4439    
4440        /**
4441         * Returns the current script (i.e. as source code) in text format.
4442         */
4443        String Script::GetScriptAsText() {
4444            String s;
4445            s.resize(data.size(), ' ');
4446            memcpy(&s[0], &data[0], data.size());
4447            return s;
4448        }
4449    
4450        /**
4451         * Replaces the current script with the new script source code text given
4452         * by @a text.
4453         *
4454         * @param text - new script source code
4455         */
4456        void Script::SetScriptAsText(const String& text) {
4457            data.resize(text.size());
4458            memcpy(&data[0], &text[0], text.size());
4459        }
4460    
4461        /**
4462         * Apply this script to the respective RIFF chunks. You have to call
4463         * File::Save() to make changes persistent.
4464         *
4465         * Usually there is absolutely no need to call this method explicitly.
4466         * It will be called automatically when File::Save() was called.
4467         *
4468         * @param pProgress - callback function for progress notification
4469         */
4470        void Script::UpdateChunks(progress_t* pProgress) {
4471            // recalculate CRC32 check sum
4472            __resetCRC(crc);
4473            __calculateCRC(&data[0], data.size(), crc);
4474            __finalizeCRC(crc);
4475            // make sure chunk exists and has the required size
4476            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4477            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4478            else pChunk->Resize(chunkSize);
4479            // fill the chunk data to be written to disk
4480            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4481            int pos = 0;
4482            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4483            pos += sizeof(int32_t);
4484            store32(&pData[pos], Compression);
4485            pos += sizeof(int32_t);
4486            store32(&pData[pos], Encoding);
4487            pos += sizeof(int32_t);
4488            store32(&pData[pos], Language);
4489            pos += sizeof(int32_t);
4490            store32(&pData[pos], Bypass ? 1 : 0);
4491            pos += sizeof(int32_t);
4492            store32(&pData[pos], crc);
4493            pos += sizeof(int32_t);
4494            store32(&pData[pos], (uint32_t) Name.size());
4495            pos += sizeof(int32_t);
4496            for (int i = 0; i < Name.size(); ++i, ++pos)
4497                pData[pos] = Name[i];
4498            for (int i = 0; i < data.size(); ++i, ++pos)
4499                pData[pos] = data[i];
4500        }
4501    
4502        /**
4503         * Move this script from its current ScriptGroup to another ScriptGroup
4504         * given by @a pGroup.
4505         *
4506         * @param pGroup - script's new group
4507         */
4508        void Script::SetGroup(ScriptGroup* pGroup) {
4509            if (this->pGroup == pGroup) return;
4510            if (pChunk)
4511                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4512            this->pGroup = pGroup;
4513        }
4514    
4515        /**
4516         * Returns the script group this script currently belongs to. Each script
4517         * is a member of exactly one ScriptGroup.
4518         *
4519         * @returns current script group
4520         */
4521        ScriptGroup* Script::GetGroup() const {
4522            return pGroup;
4523        }
4524    
4525        /**
4526         * Make a (semi) deep copy of the Script object given by @a orig
4527         * and assign it to this object. Note: the ScriptGroup this Script
4528         * object belongs to remains untouched by this call.
4529         *
4530         * @param orig - original Script object to be copied from
4531         */
4532        void Script::CopyAssign(const Script* orig) {
4533            Name        = orig->Name;
4534            Compression = orig->Compression;
4535            Encoding    = orig->Encoding;
4536            Language    = orig->Language;
4537            Bypass      = orig->Bypass;
4538            data        = orig->data;
4539        }
4540    
4541        void Script::RemoveAllScriptReferences() {
4542            File* pFile = pGroup->pFile;
4543            for (int i = 0; pFile->GetInstrument(i); ++i) {
4544                Instrument* instr = pFile->GetInstrument(i);
4545                instr->RemoveScript(this);
4546            }
4547        }
4548    
4549    // *************** ScriptGroup ***************
4550    // *
4551    
4552        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4553            pFile = file;
4554            pList = lstRTIS;
4555            pScripts = NULL;
4556            if (lstRTIS) {
4557                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4558                ::LoadString(ckName, Name);
4559            } else {
4560                Name = "Default Group";
4561            }
4562        }
4563    
4564        ScriptGroup::~ScriptGroup() {
4565            if (pScripts) {
4566                std::list<Script*>::iterator iter = pScripts->begin();
4567                std::list<Script*>::iterator end  = pScripts->end();
4568                while (iter != end) {
4569                    delete *iter;
4570                    ++iter;
4571                }
4572                delete pScripts;
4573            }
4574        }
4575    
4576        /**
4577         * Apply this script group to the respective RIFF chunks. You have to call
4578         * File::Save() to make changes persistent.
4579         *
4580         * Usually there is absolutely no need to call this method explicitly.
4581         * It will be called automatically when File::Save() was called.
4582         *
4583         * @param pProgress - callback function for progress notification
4584         */
4585        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4586            if (pScripts) {
4587                if (!pList)
4588                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4589    
4590                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4591                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4592    
4593                for (std::list<Script*>::iterator it = pScripts->begin();
4594                     it != pScripts->end(); ++it)
4595                {
4596                    (*it)->UpdateChunks(pProgress);
4597                }
4598            }
4599        }
4600    
4601        /** @brief Get instrument script.
4602         *
4603         * Returns the real-time instrument script with the given index.
4604         *
4605         * @param index - number of the sought script (0..n)
4606         * @returns sought script or NULL if there's no such script
4607         */
4608        Script* ScriptGroup::GetScript(uint index) {
4609            if (!pScripts) LoadScripts();
4610            std::list<Script*>::iterator it = pScripts->begin();
4611            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4612                if (i == index) return *it;
4613            return NULL;
4614        }
4615    
4616        /** @brief Add new instrument script.
4617         *
4618         * Adds a new real-time instrument script to the file. The script is not
4619         * actually used / executed unless it is referenced by an instrument to be
4620         * used. This is similar to samples, which you can add to a file, without
4621         * an instrument necessarily actually using it.
4622         *
4623         * You have to call Save() to make this persistent to the file.
4624         *
4625         * @return new empty script object
4626         */
4627        Script* ScriptGroup::AddScript() {
4628            if (!pScripts) LoadScripts();
4629            Script* pScript = new Script(this, NULL);
4630            pScripts->push_back(pScript);
4631            return pScript;
4632        }
4633    
4634        /** @brief Delete an instrument script.
4635         *
4636         * This will delete the given real-time instrument script. References of
4637         * instruments that are using that script will be removed accordingly.
4638         *
4639         * You have to call Save() to make this persistent to the file.
4640         *
4641         * @param pScript - script to delete
4642         * @throws gig::Exception if given script could not be found
4643         */
4644        void ScriptGroup::DeleteScript(Script* pScript) {
4645            if (!pScripts) LoadScripts();
4646            std::list<Script*>::iterator iter =
4647                find(pScripts->begin(), pScripts->end(), pScript);
4648            if (iter == pScripts->end())
4649                throw gig::Exception("Could not delete script, could not find given script");
4650            pScripts->erase(iter);
4651            pScript->RemoveAllScriptReferences();
4652            if (pScript->pChunk)
4653                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4654            delete pScript;
4655        }
4656    
4657        void ScriptGroup::LoadScripts() {
4658            if (pScripts) return;
4659            pScripts = new std::list<Script*>;
4660            if (!pList) return;
4661    
4662            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4663                 ck = pList->GetNextSubChunk())
4664            {
4665                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4666                    pScripts->push_back(new Script(this, ck));
4667                }
4668            }
4669        }
4670    
4671  // *************** Instrument ***************  // *************** Instrument ***************
4672  // *  // *
4673    
4674      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4675            static const DLS::Info::string_length_t fixedStringLengths[] = {
4676                { CHUNK_ID_INAM, 64 },
4677                { CHUNK_ID_ISFT, 12 },
4678                { 0, 0 }
4679            };
4680            pInfo->SetFixedStringLengths(fixedStringLengths);
4681    
4682          // Initialization          // Initialization
4683          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4684            EffectSend = 0;
4685            Attenuation = 0;
4686            FineTune = 0;
4687            PitchbendRange = 2;
4688            PianoReleaseMode = false;
4689            DimensionKeyRange.low = 0;
4690            DimensionKeyRange.high = 0;
4691            pMidiRules = new MidiRule*[3];
4692            pMidiRules[0] = NULL;
4693            pScriptRefs = NULL;
4694    
4695          // Loading          // Loading
4696          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2513  namespace { Line 4705  namespace {
4705                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4706                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4707                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4708    
4709                    if (_3ewg->GetSize() > 32) {
4710                        // read MIDI rules
4711                        int i = 0;
4712                        _3ewg->SetPos(32);
4713                        uint8_t id1 = _3ewg->ReadUint8();
4714                        uint8_t id2 = _3ewg->ReadUint8();
4715    
4716                        if (id2 == 16) {
4717                            if (id1 == 4) {
4718                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4719                            } else if (id1 == 0) {
4720                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4721                            } else if (id1 == 3) {
4722                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4723                            } else {
4724                                pMidiRules[i++] = new MidiRuleUnknown;
4725                            }
4726                        }
4727                        else if (id1 != 0 || id2 != 0) {
4728                            pMidiRules[i++] = new MidiRuleUnknown;
4729                        }
4730                        //TODO: all the other types of rules
4731    
4732                        pMidiRules[i] = NULL;
4733                    }
4734              }              }
4735          }          }
4736    
4737          if (!pRegions) pRegions = new RegionList;          if (pFile->GetAutoLoad()) {
4738          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);              if (!pRegions) pRegions = new RegionList;
4739          if (lrgn) {              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4740              RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4741              while (rgn) {                  RIFF::List* rgn = lrgn->GetFirstSubList();
4742                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  while (rgn) {
4743                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4744                      pRegions->push_back(new Region(this, rgn));                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4745                            pRegions->push_back(new Region(this, rgn));
4746                        }
4747                        rgn = lrgn->GetNextSubList();
4748                    }
4749                    // Creating Region Key Table for fast lookup
4750                    UpdateRegionKeyTable();
4751                }
4752            }
4753    
4754            // own gig format extensions
4755            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4756            if (lst3LS) {
4757                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4758                if (ckSCSL) {
4759                    int headerSize = ckSCSL->ReadUint32();
4760                    int slotCount  = ckSCSL->ReadUint32();
4761                    if (slotCount) {
4762                        int slotSize  = ckSCSL->ReadUint32();
4763                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4764                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4765                        for (int i = 0; i < slotCount; ++i) {
4766                            _ScriptPooolEntry e;
4767                            e.fileOffset = ckSCSL->ReadUint32();
4768                            e.bypass     = ckSCSL->ReadUint32() & 1;
4769                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4770                            scriptPoolFileOffsets.push_back(e);
4771                        }
4772                  }                  }
                 rgn = lrgn->GetNextSubList();  
4773              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
4774          }          }
4775    
4776          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4777      }      }
4778    
4779      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
4780            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4781          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
4782          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
4783          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
4784              gig::Region* pRegion = static_cast<gig::Region*>(*iter);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4785              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {              const int low  = std::max(int(pRegion->KeyRange.low), 0);
4786                const int high = std::min(int(pRegion->KeyRange.high), 127);
4787                for (int iKey = low; iKey <= high; iKey++) {
4788                  RegionKeyTable[iKey] = pRegion;                  RegionKeyTable[iKey] = pRegion;
4789              }              }
4790          }          }
4791      }      }
4792    
4793      Instrument::~Instrument() {      Instrument::~Instrument() {
4794            for (int i = 0 ; pMidiRules[i] ; i++) {
4795                delete pMidiRules[i];
4796            }
4797            delete[] pMidiRules;
4798            if (pScriptRefs) delete pScriptRefs;
4799      }      }
4800    
4801      /**      /**
# Line 2555  namespace { Line 4805  namespace {
4805       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
4806       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
4807       *       *
4808         * @param pProgress - callback function for progress notification
4809       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
4810       */       */
4811      void Instrument::UpdateChunks() {      void Instrument::UpdateChunks(progress_t* pProgress) {
4812          // first update base classes' chunks          // first update base classes' chunks
4813          DLS::Instrument::UpdateChunks();          DLS::Instrument::UpdateChunks(pProgress);
4814    
4815          // update Regions' chunks          // update Regions' chunks
4816          {          {
4817              RegionList::iterator iter = pRegions->begin();              RegionList::iterator iter = pRegions->begin();
4818              RegionList::iterator end  = pRegions->end();              RegionList::iterator end  = pRegions->end();
4819              for (; iter != end; ++iter)              for (; iter != end; ++iter)
4820                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
4821          }          }
4822    
4823          // make sure 'lart' RIFF list chunk exists          // make sure 'lart' RIFF list chunk exists
# Line 2574  namespace { Line 4825  namespace {
4825          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4826          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
4827          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4828          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
4829                File* pFile = (File*) GetParent();
4830    
4831                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4832                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4833                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4834                memset(_3ewg->LoadChunkData(), 0, size);
4835            }
4836          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
4837          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4838          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
4839          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
4840          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
4841          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
4842          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4843                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
4844          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
4845          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
4846    
4847            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4848                pData[32] = 0;
4849                pData[33] = 0;
4850            } else {
4851                for (int i = 0 ; pMidiRules[i] ; i++) {
4852                    pMidiRules[i]->UpdateChunks(pData);
4853                }
4854            }
4855    
4856            // own gig format extensions
4857           if (ScriptSlotCount()) {
4858               // make sure we have converted the original loaded script file
4859               // offsets into valid Script object pointers
4860               LoadScripts();
4861    
4862               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4863               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4864               const int slotCount = (int) pScriptRefs->size();
4865               const int headerSize = 3 * sizeof(uint32_t);
4866               const int slotSize  = 2 * sizeof(uint32_t);
4867               const int totalChunkSize = headerSize + slotCount * slotSize;
4868               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4869               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4870               else ckSCSL->Resize(totalChunkSize);
4871               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4872               int pos = 0;
4873               store32(&pData[pos], headerSize);
4874               pos += sizeof(uint32_t);
4875               store32(&pData[pos], slotCount);
4876               pos += sizeof(uint32_t);
4877               store32(&pData[pos], slotSize);
4878               pos += sizeof(uint32_t);
4879               for (int i = 0; i < slotCount; ++i) {
4880                   // arbitrary value, the actual file offset will be updated in
4881                   // UpdateScriptFileOffsets() after the file has been resized
4882                   int bogusFileOffset = 0;
4883                   store32(&pData[pos], bogusFileOffset);
4884                   pos += sizeof(uint32_t);
4885                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4886                   pos += sizeof(uint32_t);
4887               }
4888           } else {
4889               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4890               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4891               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4892           }
4893        }
4894    
4895        void Instrument::UpdateScriptFileOffsets() {
4896           // own gig format extensions
4897           if (pScriptRefs && pScriptRefs->size() > 0) {
4898               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4899               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4900               const int slotCount = (int) pScriptRefs->size();
4901               const int headerSize = 3 * sizeof(uint32_t);
4902               ckSCSL->SetPos(headerSize);
4903               for (int i = 0; i < slotCount; ++i) {
4904                   uint32_t fileOffset = uint32_t(
4905                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4906                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4907                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4908                   );
4909                   ckSCSL->WriteUint32(&fileOffset);
4910                   // jump over flags entry (containing the bypass flag)
4911                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4912               }
4913           }        
4914      }      }
4915    
4916      /**      /**
# Line 2595  namespace { Line 4921  namespace {
4921       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4922       */       */
4923      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4924          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4925          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4926    
4927          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2639  namespace { Line 4965  namespace {
4965          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4966          Region* pNewRegion = new Region(this, rgn);          Region* pNewRegion = new Region(this, rgn);
4967          pRegions->push_back(pNewRegion);          pRegions->push_back(pNewRegion);
4968          Regions = pRegions->size();          Regions = (uint32_t) pRegions->size();
4969          // update Region key table for fast lookup          // update Region key table for fast lookup
4970          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4971          // done          // done
# Line 2653  namespace { Line 4979  namespace {
4979          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4980      }      }
4981    
4982        /**
4983         * Move this instrument at the position before @arg dst.
4984         *
4985         * This method can be used to reorder the sequence of instruments in a
4986         * .gig file. This might be helpful especially on large .gig files which
4987         * contain a large number of instruments within the same .gig file. So
4988         * grouping such instruments to similar ones, can help to keep track of them
4989         * when working with such complex .gig files.
4990         *
4991         * When calling this method, this instrument will be removed from in its
4992         * current position in the instruments list and moved to the requested
4993         * target position provided by @param dst. You may also pass NULL as
4994         * argument to this method, in that case this intrument will be moved to the
4995         * very end of the .gig file's instrument list.
4996         *
4997         * You have to call Save() to make the order change persistent to the .gig
4998         * file.
4999         *
5000         * Currently this method is limited to moving the instrument within the same
5001         * .gig file. Trying to move it to another .gig file by calling this method
5002         * will throw an exception.
5003         *
5004         * @param dst - destination instrument at which this instrument will be
5005         *              moved to, or pass NULL for moving to end of list
5006         * @throw gig::Exception if this instrument and target instrument are not
5007         *                       part of the same file
5008         */
5009        void Instrument::MoveTo(Instrument* dst) {
5010            if (dst && GetParent() != dst->GetParent())
5011                throw Exception(
5012                    "gig::Instrument::MoveTo() can only be used for moving within "
5013                    "the same gig file."
5014                );
5015    
5016            File* pFile = (File*) GetParent();
5017    
5018            // move this instrument within the instrument list
5019            {
5020                File::InstrumentList& list = *pFile->pInstruments;
5021    
5022                File::InstrumentList::iterator itFrom =
5023                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5024    
5025                File::InstrumentList::iterator itTo =
5026                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5027    
5028                list.splice(itTo, list, itFrom);
5029            }
5030    
5031            // move the instrument's actual list RIFF chunk appropriately
5032            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5033            lstCkInstruments->MoveSubChunk(
5034                this->pCkInstrument,
5035                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5036            );
5037        }
5038    
5039        /**
5040         * Returns a MIDI rule of the instrument.
5041         *
5042         * The list of MIDI rules, at least in gig v3, always contains at
5043         * most two rules. The second rule can only be the DEF filter
5044         * (which currently isn't supported by libgig).
5045         *
5046         * @param i - MIDI rule number
5047         * @returns   pointer address to MIDI rule number i or NULL if there is none
5048         */
5049        MidiRule* Instrument::GetMidiRule(int i) {
5050            return pMidiRules[i];
5051        }
5052    
5053        /**
5054         * Adds the "controller trigger" MIDI rule to the instrument.
5055         *
5056         * @returns the new MIDI rule
5057         */
5058        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5059            delete pMidiRules[0];
5060            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5061            pMidiRules[0] = r;
5062            pMidiRules[1] = 0;
5063            return r;
5064        }
5065    
5066        /**
5067         * Adds the legato MIDI rule to the instrument.
5068         *
5069         * @returns the new MIDI rule
5070         */
5071        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5072            delete pMidiRules[0];
5073            MidiRuleLegato* r = new MidiRuleLegato;
5074            pMidiRules[0] = r;
5075            pMidiRules[1] = 0;
5076            return r;
5077        }
5078    
5079        /**
5080         * Adds the alternator MIDI rule to the instrument.
5081         *
5082         * @returns the new MIDI rule
5083         */
5084        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5085            delete pMidiRules[0];
5086            MidiRuleAlternator* r = new MidiRuleAlternator;
5087            pMidiRules[0] = r;
5088            pMidiRules[1] = 0;
5089            return r;
5090        }
5091    
5092        /**
5093         * Deletes a MIDI rule from the instrument.
5094         *
5095         * @param i - MIDI rule number
5096         */
5097        void Instrument::DeleteMidiRule(int i) {
5098            delete pMidiRules[i];
5099            pMidiRules[i] = 0;
5100        }
5101    
5102        void Instrument::LoadScripts() {
5103            if (pScriptRefs) return;
5104            pScriptRefs = new std::vector<_ScriptPooolRef>;
5105            if (scriptPoolFileOffsets.empty()) return;
5106            File* pFile = (File*) GetParent();
5107            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5108                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5109                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5110                    ScriptGroup* group = pFile->GetScriptGroup(i);
5111                    for (uint s = 0; group->GetScript(s); ++s) {
5112                        Script* script = group->GetScript(s);
5113                        if (script->pChunk) {
5114                            uint32_t offset = uint32_t(
5115                                script->pChunk->GetFilePos() -
5116                                script->pChunk->GetPos() -
5117                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5118                            );
5119                            if (offset == soughtOffset)
5120                            {
5121                                _ScriptPooolRef ref;
5122                                ref.script = script;
5123                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5124                                pScriptRefs->push_back(ref);
5125                                break;
5126                            }
5127                        }
5128                    }
5129                }
5130            }
5131            // we don't need that anymore
5132            scriptPoolFileOffsets.clear();
5133        }
5134    
5135        /** @brief Get instrument script (gig format extension).
5136         *
5137         * Returns the real-time instrument script of instrument script slot
5138         * @a index.
5139         *
5140         * @note This is an own format extension which did not exist i.e. in the
5141         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5142         * gigedit.
5143         *
5144         * @param index - instrument script slot index
5145         * @returns script or NULL if index is out of bounds
5146         */
5147        Script* Instrument::GetScriptOfSlot(uint index) {
5148            LoadScripts();
5149            if (index >= pScriptRefs->size()) return NULL;
5150            return pScriptRefs->at(index).script;
5151        }
5152    
5153        /** @brief Add new instrument script slot (gig format extension).
5154         *
5155         * Add the given real-time instrument script reference to this instrument,
5156         * which shall be executed by the sampler for for this instrument. The
5157         * script will be added to the end of the script list of this instrument.
5158         * The positions of the scripts in the Instrument's Script list are
5159         * relevant, because they define in which order they shall be executed by
5160         * the sampler. For this reason it is also legal to add the same script
5161         * twice to an instrument, for example you might have a script called
5162         * "MyFilter" which performs an event filter task, and you might have
5163         * another script called "MyNoteTrigger" which triggers new notes, then you
5164         * might for example have the following list of scripts on the instrument:
5165         *
5166         * 1. Script "MyFilter"
5167         * 2. Script "MyNoteTrigger"
5168         * 3. Script "MyFilter"
5169         *
5170         * Which would make sense, because the 2nd script launched new events, which
5171         * you might need to filter as well.
5172         *
5173         * There are two ways to disable / "bypass" scripts. You can either disable
5174         * a script locally for the respective script slot on an instrument (i.e. by
5175         * passing @c false to the 2nd argument of this method, or by calling
5176         * SetScriptBypassed()). Or you can disable a script globally for all slots
5177         * and all instruments by setting Script::Bypass.
5178         *
5179         * @note This is an own format extension which did not exist i.e. in the
5180         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5181         * gigedit.
5182         *
5183         * @param pScript - script that shall be executed for this instrument
5184         * @param bypass  - if enabled, the sampler shall skip executing this
5185         *                  script (in the respective list position)
5186         * @see SetScriptBypassed()
5187         */
5188        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5189            LoadScripts();
5190            _ScriptPooolRef ref = { pScript, bypass };
5191            pScriptRefs->push_back(ref);
5192        }
5193    
5194        /** @brief Flip two script slots with each other (gig format extension).
5195         *
5196         * Swaps the position of the two given scripts in the Instrument's Script
5197         * list. The positions of the scripts in the Instrument's Script list are
5198         * relevant, because they define in which order they shall be executed by
5199         * the sampler.
5200         *
5201         * @note This is an own format extension which did not exist i.e. in the
5202         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5203         * gigedit.
5204         *
5205         * @param index1 - index of the first script slot to swap
5206         * @param index2 - index of the second script slot to swap
5207         */
5208        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5209            LoadScripts();
5210            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5211                return;
5212            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5213            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5214            (*pScriptRefs)[index2] = tmp;
5215        }
5216    
5217        /** @brief Remove script slot.
5218         *
5219         * Removes the script slot with the given slot index.
5220         *
5221         * @param index - index of script slot to remove
5222         */
5223        void Instrument::RemoveScriptSlot(uint index) {
5224            LoadScripts();
5225            if (index >= pScriptRefs->size()) return;
5226            pScriptRefs->erase( pScriptRefs->begin() + index );
5227        }
5228    
5229        /** @brief Remove reference to given Script (gig format extension).
5230         *
5231         * This will remove all script slots on the instrument which are referencing
5232         * the given script.
5233         *
5234         * @note This is an own format extension which did not exist i.e. in the
5235         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5236         * gigedit.
5237         *
5238         * @param pScript - script reference to remove from this instrument
5239         * @see RemoveScriptSlot()
5240         */
5241        void Instrument::RemoveScript(Script* pScript) {
5242            LoadScripts();
5243            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5244                if ((*pScriptRefs)[i].script == pScript) {
5245                    pScriptRefs->erase( pScriptRefs->begin() + i );
5246                }
5247            }
5248        }
5249    
5250        /** @brief Instrument's amount of script slots.
5251         *
5252         * This method returns the amount of script slots this instrument currently
5253         * uses.
5254         *
5255         * A script slot is a reference of a real-time instrument script to be
5256         * executed by the sampler. The scripts will be executed by the sampler in
5257         * sequence of the slots. One (same) script may be referenced multiple
5258         * times in different slots.
5259         *
5260         * @note This is an own format extension which did not exist i.e. in the
5261         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5262         * gigedit.
5263         */
5264        uint Instrument::ScriptSlotCount() const {
5265            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5266        }
5267    
5268        /** @brief Whether script execution shall be skipped.
5269         *
5270         * Defines locally for the Script reference slot in the Instrument's Script
5271         * list, whether the script shall be skipped by the sampler regarding
5272         * execution.
5273         *
5274         * It is also possible to ignore exeuction of the script globally, for all
5275         * slots and for all instruments by setting Script::Bypass.
5276         *
5277         * @note This is an own format extension which did not exist i.e. in the
5278         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5279         * gigedit.
5280         *
5281         * @param index - index of the script slot on this instrument
5282         * @see Script::Bypass
5283         */
5284        bool Instrument::IsScriptSlotBypassed(uint index) {
5285            if (index >= ScriptSlotCount()) return false;
5286            return pScriptRefs ? pScriptRefs->at(index).bypass
5287                               : scriptPoolFileOffsets.at(index).bypass;
5288            
5289        }
5290    
5291        /** @brief Defines whether execution shall be skipped.
5292         *
5293         * You can call this method to define locally whether or whether not the
5294         * given script slot shall be executed by the sampler.
5295         *
5296         * @note This is an own format extension which did not exist i.e. in the
5297         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5298         * gigedit.
5299         *
5300         * @param index - script slot index on this instrument
5301         * @param bBypass - if true, the script slot will be skipped by the sampler
5302         * @see Script::Bypass
5303         */
5304        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5305            if (index >= ScriptSlotCount()) return;
5306            if (pScriptRefs)
5307                pScriptRefs->at(index).bypass = bBypass;
5308            else
5309                scriptPoolFileOffsets.at(index).bypass = bBypass;
5310        }
5311    
5312        /**
5313         * Make a (semi) deep copy of the Instrument object given by @a orig
5314         * and assign it to this object.
5315         *
5316         * Note that all sample pointers referenced by @a orig are simply copied as
5317         * memory address. Thus the respective samples are shared, not duplicated!
5318         *
5319         * @param orig - original Instrument object to be copied from
5320         */
5321        void Instrument::CopyAssign(const Instrument* orig) {
5322            CopyAssign(orig, NULL);
5323        }
5324            
5325        /**
5326         * Make a (semi) deep copy of the Instrument object given by @a orig
5327         * and assign it to this object.
5328         *
5329         * @param orig - original Instrument object to be copied from
5330         * @param mSamples - crosslink map between the foreign file's samples and
5331         *                   this file's samples
5332         */
5333        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5334            // handle base class
5335            // (without copying DLS region stuff)
5336            DLS::Instrument::CopyAssignCore(orig);
5337            
5338            // handle own member variables
5339            Attenuation = orig->Attenuation;
5340            EffectSend = orig->EffectSend;
5341            FineTune = orig->FineTune;
5342            PitchbendRange = orig->PitchbendRange;
5343            PianoReleaseMode = orig->PianoReleaseMode;
5344            DimensionKeyRange = orig->DimensionKeyRange;
5345            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5346            pScriptRefs = orig->pScriptRefs;
5347            
5348            // free old midi rules
5349            for (int i = 0 ; pMidiRules[i] ; i++) {
5350                delete pMidiRules[i];
5351            }
5352            //TODO: MIDI rule copying
5353            pMidiRules[0] = NULL;
5354            
5355            // delete all old regions
5356            while (Regions) DeleteRegion(GetFirstRegion());
5357            // create new regions and copy them from original
5358            {
5359                RegionList::const_iterator it = orig->pRegions->begin();
5360                for (int i = 0; i < orig->Regions; ++i, ++it) {
5361                    Region* dstRgn = AddRegion();
5362                    //NOTE: Region does semi-deep copy !
5363                    dstRgn->CopyAssign(
5364                        static_cast<gig::Region*>(*it),
5365                        mSamples
5366                    );
5367                }
5368            }
5369    
5370            UpdateRegionKeyTable();
5371        }
5372    
5373    
5374    // *************** Group ***************
5375    // *
5376    
5377        /** @brief Constructor.
5378         *
5379         * @param file   - pointer to the gig::File object
5380         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5381         *                 NULL if this is a new Group
5382         */
5383        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5384            pFile      = file;
5385            pNameChunk = ck3gnm;
5386            ::LoadString(pNameChunk, Name);
5387        }
5388    
5389        Group::~Group() {
5390            // remove the chunk associated with this group (if any)
5391            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5392        }
5393    
5394        /** @brief Update chunks with current group settings.
5395         *
5396         * Apply current Group field values to the respective chunks. You have
5397         * to call File::Save() to make changes persistent.
5398         *
5399         * Usually there is absolutely no need to call this method explicitly.
5400         * It will be called automatically when File::Save() was called.
5401         *
5402         * @param pProgress - callback function for progress notification
5403         */
5404        void Group::UpdateChunks(progress_t* pProgress) {
5405            // make sure <3gri> and <3gnl> list chunks exist
5406            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5407            if (!_3gri) {
5408                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5409                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5410            }
5411            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5412            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5413    
5414            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5415                // v3 has a fixed list of 128 strings, find a free one
5416                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5417                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5418                        pNameChunk = ck;
5419                        break;
5420                    }
5421                }
5422            }
5423    
5424            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5425            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5426        }
5427    
5428        /**
5429         * Returns the first Sample of this Group. You have to call this method
5430         * once before you use GetNextSample().
5431         *
5432         * <b>Notice:</b> this method might block for a long time, in case the
5433         * samples of this .gig file were not scanned yet
5434         *
5435         * @returns  pointer address to first Sample or NULL if there is none
5436         *           applied to this Group
5437         * @see      GetNextSample()
5438         */
5439        Sample* Group::GetFirstSample() {
5440            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5441            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5442                if (pSample->GetGroup() == this) return pSample;
5443            }
5444            return NULL;
5445        }
5446    
5447        /**
5448         * Returns the next Sample of the Group. You have to call
5449         * GetFirstSample() once before you can use this method. By calling this
5450         * method multiple times it iterates through the Samples assigned to
5451         * this Group.
5452         *
5453         * @returns  pointer address to the next Sample of this Group or NULL if
5454         *           end reached
5455         * @see      GetFirstSample()
5456         */
5457        Sample* Group::GetNextSample() {
5458            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5459            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5460                if (pSample->GetGroup() == this) return pSample;
5461            }
5462            return NULL;
5463        }
5464    
5465        /**
5466         * Move Sample given by \a pSample from another Group to this Group.
5467         */
5468        void Group::AddSample(Sample* pSample) {
5469            pSample->pGroup = this;
5470        }
5471    
5472        /**
5473         * Move all members of this group to another group (preferably the 1st
5474         * one except this). This method is called explicitly by
5475         * File::DeleteGroup() thus when a Group was deleted. This code was
5476         * intentionally not placed in the destructor!
5477         */
5478        void Group::MoveAll() {
5479            // get "that" other group first
5480            Group* pOtherGroup = NULL;
5481            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5482                if (pOtherGroup != this) break;
5483            }
5484            if (!pOtherGroup) throw Exception(
5485                "Could not move samples to another group, since there is no "
5486                "other Group. This is a bug, report it!"
5487            );
5488            // now move all samples of this group to the other group
5489            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5490                pOtherGroup->AddSample(pSample);
5491            }
5492        }
5493    
5494    
5495    
5496  // *************** File ***************  // *************** File ***************
5497  // *  // *
5498    
5499        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5500        const DLS::version_t File::VERSION_2 = {
5501            0, 2, 19980628 & 0xffff, 19980628 >> 16
5502        };
5503    
5504        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5505        const DLS::version_t File::VERSION_3 = {
5506            0, 3, 20030331 & 0xffff, 20030331 >> 16
5507        };
5508    
5509        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5510        const DLS::version_t File::VERSION_4 = {
5511            0, 4, 20071012 & 0xffff, 20071012 >> 16
5512        };
5513    
5514        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5515            { CHUNK_ID_IARL, 256 },
5516            { CHUNK_ID_IART, 128 },
5517            { CHUNK_ID_ICMS, 128 },
5518            { CHUNK_ID_ICMT, 1024 },
5519            { CHUNK_ID_ICOP, 128 },
5520            { CHUNK_ID_ICRD, 128 },
5521            { CHUNK_ID_IENG, 128 },
5522            { CHUNK_ID_IGNR, 128 },
5523            { CHUNK_ID_IKEY, 128 },
5524            { CHUNK_ID_IMED, 128 },
5525            { CHUNK_ID_INAM, 128 },
5526            { CHUNK_ID_IPRD, 128 },
5527            { CHUNK_ID_ISBJ, 128 },
5528            { CHUNK_ID_ISFT, 128 },
5529            { CHUNK_ID_ISRC, 128 },
5530            { CHUNK_ID_ISRF, 128 },
5531            { CHUNK_ID_ITCH, 128 },
5532            { 0, 0 }
5533        };
5534    
5535      File::File() : DLS::File() {      File::File() : DLS::File() {
5536            bAutoLoad = true;
5537            *pVersion = VERSION_3;
5538            pGroups = NULL;
5539            pScriptGroups = NULL;
5540            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5541            pInfo->ArchivalLocation = String(256, ' ');
5542    
5543            // add some mandatory chunks to get the file chunks in right
5544            // order (INFO chunk will be moved to first position later)
5545            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5546            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5547            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5548    
5549            GenerateDLSID();
5550      }      }
5551    
5552      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5553            bAutoLoad = true;
5554            pGroups = NULL;
5555            pScriptGroups = NULL;
5556            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5557      }      }
5558    
5559      File::~File() {      File::~File() {
5560          // free extension files          if (pGroups) {
5561          for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)              std::list<Group*>::iterator iter = pGroups->begin();
5562              delete *i;              std::list<Group*>::iterator end  = pGroups->end();
5563                while (iter != end) {
5564                    delete *iter;
5565                    ++iter;
5566                }
5567                delete pGroups;
5568            }
5569            if (pScriptGroups) {
5570                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5571                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5572                while (iter != end) {
5573                    delete *iter;
5574                    ++iter;
5575                }
5576                delete pScriptGroups;
5577            }
5578      }      }
5579    
5580      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2682  namespace { Line 5589  namespace {
5589          SamplesIterator++;          SamplesIterator++;
5590          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5591      }      }
5592        
5593        /**
5594         * Returns Sample object of @a index.
5595         *
5596         * @returns sample object or NULL if index is out of bounds
5597         */
5598        Sample* File::GetSample(uint index) {
5599            if (!pSamples) LoadSamples();
5600            if (!pSamples) return NULL;
5601            DLS::File::SampleList::iterator it = pSamples->begin();
5602            for (int i = 0; i < index; ++i) {
5603                ++it;
5604                if (it == pSamples->end()) return NULL;
5605            }
5606            if (it == pSamples->end()) return NULL;
5607            return static_cast<gig::Sample*>( *it );
5608        }
5609    
5610        /**
5611         * Returns the total amount of samples of this gig file.
5612         *
5613         * Note that this method might block for a long time in case it is required
5614         * to load the sample info for the first time.
5615         *
5616         * @returns total amount of samples
5617         */
5618        size_t File::CountSamples() {
5619            if (!pSamples) LoadSamples();
5620            if (!pSamples) return 0;
5621            return pSamples->size();
5622        }
5623    
5624      /** @brief Add a new sample.      /** @brief Add a new sample.
5625       *       *
# Line 2697  namespace { Line 5635  namespace {
5635         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
5636         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5637         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5638    
5639           // add mandatory chunks to get the chunks in right order
5640           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5641           wave->AddSubList(LIST_TYPE_INFO);
5642    
5643         pSamples->push_back(pSample);         pSamples->push_back(pSample);
5644         return pSample;         return pSample;
5645      }      }
5646    
5647      /** @brief Delete a sample.      /** @brief Delete a sample.
5648       *       *
5649       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
5650       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
5651         * removed. You have to call Save() to make this persistent to the file.
5652       *       *
5653       * @param pSample - sample to delete       * @param pSample - sample to delete
5654       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2713  namespace { Line 5657  namespace {
5657          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5658          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5659          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5660            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5661          pSamples->erase(iter);          pSamples->erase(iter);
5662          delete pSample;          delete pSample;
5663    
5664            SampleList::iterator tmp = SamplesIterator;
5665            // remove all references to the sample
5666            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5667                 instrument = GetNextInstrument()) {
5668                for (Region* region = instrument->GetFirstRegion() ; region ;
5669                     region = instrument->GetNextRegion()) {
5670    
5671                    if (region->GetSample() == pSample) region->SetSample(NULL);
5672    
5673                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5674                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5675                        if (d->pSample == pSample) d->pSample = NULL;
5676                    }
5677                }
5678            }
5679            SamplesIterator = tmp; // restore iterator
5680      }      }
5681    
5682      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2722  namespace { Line 5684  namespace {
5684      }      }
5685    
5686      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5687            // Groups must be loaded before samples, because samples will try
5688            // to resolve the group they belong to
5689            if (!pGroups) LoadGroups();
5690    
5691          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
5692    
5693          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
# Line 2731  namespace { Line 5697  namespace {
5697          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5698    
5699          // check if samples should be loaded from extension files          // check if samples should be loaded from extension files
5700            // (only for old gig files < 2 GB)
5701          int lastFileNo = 0;          int lastFileNo = 0;
5702          for (int i = 0 ; i < WavePoolCount ; i++) {          if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5703              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              for (int i = 0 ; i < WavePoolCount ; i++) {
5704                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5705                }
5706          }          }
5707          String name(pRIFF->GetFileName());          String name(pRIFF->GetFileName());
5708          int nameLen = name.length();          int nameLen = (int) name.length();
5709          char suffix[6];          char suffix[6];
5710          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5711    
5712          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
5713              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5714              if (wvpl) {              if (wvpl) {
5715                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos();
5716                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5717                  while (wave) {                  while (wave) {
5718                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
# Line 2751  namespace { Line 5720  namespace {
5720                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5721                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
5722    
5723                          unsigned long waveFileOffset = wave->GetFilePos();                          file_offset_t waveFileOffset = wave->GetFilePos();
5724                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5725    
5726                          iSampleIndex++;                          iSampleIndex++;
5727                      }                      }
# Line 2787  namespace { Line 5756  namespace {
5756      }      }
5757    
5758      /**      /**
5759         * Returns the total amount of instruments of this gig file.
5760         *
5761         * Note that this method might block for a long time in case it is required
5762         * to load the instruments info for the first time.
5763         *
5764         * @returns total amount of instruments
5765         */
5766        size_t File::CountInstruments() {
5767            if (!pInstruments) LoadInstruments();
5768            if (!pInstruments) return 0;
5769            return pInstruments->size();
5770        }
5771    
5772        /**
5773       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5774       *       *
5775       * @param index     - number of the sought instrument (0..n)       * @param index     - number of the sought instrument (0..n)
# Line 2801  namespace { Line 5784  namespace {
5784              progress_t subprogress;              progress_t subprogress;
5785              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5786              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5787              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5788                    GetFirstSample(&subprogress); // now force all samples to be loaded
5789              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5790    
5791              // instrument loading subtask              // instrument loading subtask
# Line 2834  namespace { Line 5818  namespace {
5818         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
5819         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5820         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5821    
5822           // add mandatory chunks to get the chunks in right order
5823           lstInstr->AddSubList(LIST_TYPE_INFO);
5824           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5825    
5826         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
5827           pInstrument->GenerateDLSID();
5828    
5829           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5830    
5831           // this string is needed for the gig to be loadable in GSt:
5832           pInstrument->pInfo->Software = "Endless Wave";
5833    
5834         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
5835         return pInstrument;         return pInstrument;
5836      }      }
5837        
5838        /** @brief Add a duplicate of an existing instrument.
5839         *
5840         * Duplicates the instrument definition given by @a orig and adds it
5841         * to this file. This allows in an instrument editor application to
5842         * easily create variations of an instrument, which will be stored in
5843         * the same .gig file, sharing i.e. the same samples.
5844         *
5845         * Note that all sample pointers referenced by @a orig are simply copied as
5846         * memory address. Thus the respective samples are shared, not duplicated!
5847         *
5848         * You have to call Save() to make this persistent to the file.
5849         *
5850         * @param orig - original instrument to be copied
5851         * @returns duplicated copy of the given instrument
5852         */
5853        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5854            Instrument* instr = AddInstrument();
5855            instr->CopyAssign(orig);
5856            return instr;
5857        }
5858        
5859        /** @brief Add content of another existing file.
5860         *
5861         * Duplicates the samples, groups and instruments of the original file
5862         * given by @a pFile and adds them to @c this File. In case @c this File is
5863         * a new one that you haven't saved before, then you have to call
5864         * SetFileName() before calling AddContentOf(), because this method will
5865         * automatically save this file during operation, which is required for
5866         * writing the sample waveform data by disk streaming.
5867         *
5868         * @param pFile - original file whose's content shall be copied from
5869         */
5870        void File::AddContentOf(File* pFile) {
5871            static int iCallCount = -1;
5872            iCallCount++;
5873            std::map<Group*,Group*> mGroups;
5874            std::map<Sample*,Sample*> mSamples;
5875            
5876            // clone sample groups
5877            for (int i = 0; pFile->GetGroup(i); ++i) {
5878                Group* g = AddGroup();
5879                g->Name =
5880                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5881                mGroups[pFile->GetGroup(i)] = g;
5882            }
5883            
5884            // clone samples (not waveform data here yet)
5885            for (int i = 0; pFile->GetSample(i); ++i) {
5886                Sample* s = AddSample();
5887                s->CopyAssignMeta(pFile->GetSample(i));
5888                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5889                mSamples[pFile->GetSample(i)] = s;
5890            }
5891    
5892            // clone script groups and their scripts
5893            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5894                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5895                ScriptGroup* dg = AddScriptGroup();
5896                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5897                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5898                    Script* ss = sg->GetScript(iScript);
5899                    Script* ds = dg->AddScript();
5900                    ds->CopyAssign(ss);
5901                }
5902            }
5903    
5904            //BUG: For some reason this method only works with this additional
5905            //     Save() call in between here.
5906            //
5907            // Important: The correct one of the 2 Save() methods has to be called
5908            // here, depending on whether the file is completely new or has been
5909            // saved to disk already, otherwise it will result in data corruption.
5910            if (pRIFF->IsNew())
5911                Save(GetFileName());
5912            else
5913                Save();
5914            
5915            // clone instruments
5916            // (passing the crosslink table here for the cloned samples)
5917            for (int i = 0; pFile->GetInstrument(i); ++i) {
5918                Instrument* instr = AddInstrument();
5919                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5920            }
5921            
5922            // Mandatory: file needs to be saved to disk at this point, so this
5923            // file has the correct size and data layout for writing the samples'
5924            // waveform data to disk.
5925            Save();
5926            
5927            // clone samples' waveform data
5928            // (using direct read & write disk streaming)
5929            for (int i = 0; pFile->GetSample(i); ++i) {
5930                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5931            }
5932        }
5933    
5934      /** @brief Delete an instrument.      /** @brief Delete an instrument.
5935       *       *
# Line 2845  namespace { Line 5937  namespace {
5937       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
5938       *       *
5939       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
5940       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
5941       */       */
5942      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
5943          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 2885  namespace { Line 5977  namespace {
5977          }          }
5978      }      }
5979    
5980        /// Updates the 3crc chunk with the checksum of a sample. The
5981        /// update is done directly to disk, as this method is called
5982        /// after File::Save()
5983        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5984            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5985            if (!_3crc) return;
5986    
5987            // get the index of the sample
5988            int iWaveIndex = GetWaveTableIndexOf(pSample);
5989            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5990    
5991            // write the CRC-32 checksum to disk
5992            _3crc->SetPos(iWaveIndex * 8);
5993            uint32_t one = 1;
5994            _3crc->WriteUint32(&one); // always 1
5995            _3crc->WriteUint32(&crc);
5996        }
5997    
5998        uint32_t File::GetSampleChecksum(Sample* pSample) {
5999            // get the index of the sample
6000            int iWaveIndex = GetWaveTableIndexOf(pSample);
6001            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6002    
6003            return GetSampleChecksumByIndex(iWaveIndex);
6004        }
6005    
6006        uint32_t File::GetSampleChecksumByIndex(int index) {
6007            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6008    
6009            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6010            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6011            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6012            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6013    
6014            // read the CRC-32 checksum directly from disk
6015            size_t pos = index * 8;
6016            if (pos + 8 > _3crc->GetNewSize())
6017                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6018    
6019            uint32_t one = load32(&pData[pos]); // always 1
6020            if (one != 1)
6021                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6022    
6023            return load32(&pData[pos+4]);
6024        }
6025    
6026        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6027            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6028            File::SampleList::iterator iter = pSamples->begin();
6029            File::SampleList::iterator end  = pSamples->end();
6030            for (int index = 0; iter != end; ++iter, ++index)
6031                if (*iter == pSample)
6032                    return index;
6033            return -1;
6034        }
6035    
6036        /**
6037         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6038         * the CRC32 check sums of all samples' raw wave data.
6039         *
6040         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6041         */
6042        bool File::VerifySampleChecksumTable() {
6043            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6044            if (!_3crc) return false;
6045            if (_3crc->GetNewSize() <= 0) return false;
6046            if (_3crc->GetNewSize() % 8) return false;
6047            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6048            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6049    
6050            const file_offset_t n = _3crc->GetNewSize() / 8;
6051    
6052            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6053            if (!pData) return false;
6054    
6055            for (file_offset_t i = 0; i < n; ++i) {
6056                uint32_t one = pData[i*2];
6057                if (one != 1) return false;
6058            }
6059    
6060            return true;
6061        }
6062    
6063        /**
6064         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6065         * file's checksum table with those new checksums. This might usually
6066         * just be necessary if the checksum table was damaged.
6067         *
6068         * @e IMPORTANT: The current implementation of this method only works
6069         * with files that have not been modified since it was loaded, because
6070         * it expects that no externally caused file structure changes are
6071         * required!
6072         *
6073         * Due to the expectation above, this method is currently protected
6074         * and actually only used by the command line tool "gigdump" yet.
6075         *
6076         * @returns true if Save() is required to be called after this call,
6077         *          false if no further action is required
6078         */
6079        bool File::RebuildSampleChecksumTable() {
6080            // make sure sample chunks were scanned
6081            if (!pSamples) GetFirstSample();
6082    
6083            bool bRequiresSave = false;
6084    
6085            // make sure "3CRC" chunk exists with required size
6086            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6087            if (!_3crc) {
6088                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6089                // the order of einf and 3crc is not the same in v2 and v3
6090                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6091                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6092                bRequiresSave = true;
6093            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6094                _3crc->Resize(pSamples->size() * 8);
6095                bRequiresSave = true;
6096            }
6097    
6098            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6099                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6100                {
6101                    File::SampleList::iterator iter = pSamples->begin();
6102                    File::SampleList::iterator end  = pSamples->end();
6103                    for (; iter != end; ++iter) {
6104                        gig::Sample* pSample = (gig::Sample*) *iter;
6105                        int index = GetWaveTableIndexOf(pSample);
6106                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6107                        pData[index*2]   = 1; // always 1
6108                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6109                    }
6110                }
6111            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6112                // make sure file is in write mode
6113                pRIFF->SetMode(RIFF::stream_mode_read_write);
6114                {
6115                    File::SampleList::iterator iter = pSamples->begin();
6116                    File::SampleList::iterator end  = pSamples->end();
6117                    for (; iter != end; ++iter) {
6118                        gig::Sample* pSample = (gig::Sample*) *iter;
6119                        int index = GetWaveTableIndexOf(pSample);
6120                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6121                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6122                        SetSampleChecksum(pSample, pSample->crc);
6123                    }
6124                }
6125            }
6126    
6127            return bRequiresSave;
6128        }
6129    
6130        Group* File::GetFirstGroup() {
6131            if (!pGroups) LoadGroups();
6132            // there must always be at least one group
6133            GroupsIterator = pGroups->begin();
6134            return *GroupsIterator;
6135        }
6136    
6137        Group* File::GetNextGroup() {
6138            if (!pGroups) return NULL;
6139            ++GroupsIterator;
6140            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6141        }
6142    
6143        /**
6144         * Returns the group with the given index.
6145         *
6146         * @param index - number of the sought group (0..n)
6147         * @returns sought group or NULL if there's no such group
6148         */
6149        Group* File::GetGroup(uint index) {
6150            if (!pGroups) LoadGroups();
6151            GroupsIterator = pGroups->begin();
6152            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6153                if (i == index) return *GroupsIterator;
6154                ++GroupsIterator;
6155            }
6156            return NULL;
6157        }
6158    
6159        /**
6160         * Returns the group with the given group name.
6161         *
6162         * Note: group names don't have to be unique in the gig format! So there
6163         * can be multiple groups with the same name. This method will simply
6164         * return the first group found with the given name.
6165         *
6166         * @param name - name of the sought group
6167         * @returns sought group or NULL if there's no group with that name
6168         */
6169        Group* File::GetGroup(String name) {
6170            if (!pGroups) LoadGroups();
6171            GroupsIterator = pGroups->begin();
6172            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6173                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6174            return NULL;
6175        }
6176    
6177        Group* File::AddGroup() {
6178            if (!pGroups) LoadGroups();
6179            // there must always be at least one group
6180            __ensureMandatoryChunksExist();
6181            Group* pGroup = new Group(this, NULL);
6182            pGroups->push_back(pGroup);
6183            return pGroup;
6184        }
6185    
6186        /** @brief Delete a group and its samples.
6187         *
6188         * This will delete the given Group object and all the samples that
6189         * belong to this group from the gig file. You have to call Save() to
6190         * make this persistent to the file.
6191         *
6192         * @param pGroup - group to delete
6193         * @throws gig::Exception if given group could not be found
6194         */
6195        void File::DeleteGroup(Group* pGroup) {
6196            if (!pGroups) LoadGroups();
6197            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6198            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6199            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6200            // delete all members of this group
6201            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6202                DeleteSample(pSample);
6203            }
6204            // now delete this group object
6205            pGroups->erase(iter);
6206            delete pGroup;
6207        }
6208    
6209        /** @brief Delete a group.
6210         *
6211         * This will delete the given Group object from the gig file. All the
6212         * samples that belong to this group will not be deleted, but instead
6213         * be moved to another group. You have to call Save() to make this
6214         * persistent to the file.
6215         *
6216         * @param pGroup - group to delete
6217         * @throws gig::Exception if given group could not be found
6218         */
6219        void File::DeleteGroupOnly(Group* pGroup) {
6220            if (!pGroups) LoadGroups();
6221            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6222            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6223            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6224            // move all members of this group to another group
6225            pGroup->MoveAll();
6226            pGroups->erase(iter);
6227            delete pGroup;
6228        }
6229    
6230        void File::LoadGroups() {
6231            if (!pGroups) pGroups = new std::list<Group*>;
6232            // try to read defined groups from file
6233            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6234            if (lst3gri) {
6235                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6236                if (lst3gnl) {
6237                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6238                    while (ck) {
6239                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6240                            if (pVersion && pVersion->major > 2 &&
6241                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6242    
6243                            pGroups->push_back(new Group(this, ck));
6244                        }
6245                        ck = lst3gnl->GetNextSubChunk();
6246                    }
6247                }
6248            }
6249            // if there were no group(s), create at least the mandatory default group
6250            if (!pGroups->size()) {
6251                Group* pGroup = new Group(this, NULL);
6252                pGroup->Name = "Default Group";
6253                pGroups->push_back(pGroup);
6254            }
6255        }
6256    
6257        /** @brief Get instrument script group (by index).
6258         *
6259         * Returns the real-time instrument script group with the given index.
6260         *
6261         * @param index - number of the sought group (0..n)
6262         * @returns sought script group or NULL if there's no such group
6263         */
6264        ScriptGroup* File::GetScriptGroup(uint index) {
6265            if (!pScriptGroups) LoadScriptGroups();
6266            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6267            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6268                if (i == index) return *it;
6269            return NULL;
6270        }
6271    
6272        /** @brief Get instrument script group (by name).
6273         *
6274         * Returns the first real-time instrument script group found with the given
6275         * group name. Note that group names may not necessarily be unique.
6276         *
6277         * @param name - name of the sought script group
6278         * @returns sought script group or NULL if there's no such group
6279         */
6280        ScriptGroup* File::GetScriptGroup(const String& name) {
6281            if (!pScriptGroups) LoadScriptGroups();
6282            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6283            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6284                if ((*it)->Name == name) return *it;
6285            return NULL;
6286        }
6287    
6288        /** @brief Add new instrument script group.
6289         *
6290         * Adds a new, empty real-time instrument script group to the file.
6291         *
6292         * You have to call Save() to make this persistent to the file.
6293         *
6294         * @return new empty script group
6295         */
6296        ScriptGroup* File::AddScriptGroup() {
6297            if (!pScriptGroups) LoadScriptGroups();
6298            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6299            pScriptGroups->push_back(pScriptGroup);
6300            return pScriptGroup;
6301        }
6302    
6303        /** @brief Delete an instrument script group.
6304         *
6305         * This will delete the given real-time instrument script group and all its
6306         * instrument scripts it contains. References inside instruments that are
6307         * using the deleted scripts will be removed from the respective instruments
6308         * accordingly.
6309         *
6310         * You have to call Save() to make this persistent to the file.
6311         *
6312         * @param pScriptGroup - script group to delete
6313         * @throws gig::Exception if given script group could not be found
6314         */
6315        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6316            if (!pScriptGroups) LoadScriptGroups();
6317            std::list<ScriptGroup*>::iterator iter =
6318                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6319            if (iter == pScriptGroups->end())
6320                throw gig::Exception("Could not delete script group, could not find given script group");
6321            pScriptGroups->erase(iter);
6322            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6323                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6324            if (pScriptGroup->pList)
6325                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6326            delete pScriptGroup;
6327        }
6328    
6329        void File::LoadScriptGroups() {
6330            if (pScriptGroups) return;
6331            pScriptGroups = new std::list<ScriptGroup*>;
6332            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6333            if (lstLS) {
6334                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6335                     lst = lstLS->GetNextSubList())
6336                {
6337                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6338                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6339                    }
6340                }
6341            }
6342        }
6343    
6344        /**
6345         * Apply all the gig file's current instruments, samples, groups and settings
6346         * to the respective RIFF chunks. You have to call Save() to make changes
6347         * persistent.
6348         *
6349         * Usually there is absolutely no need to call this method explicitly.
6350         * It will be called automatically when File::Save() was called.
6351         *
6352         * @param pProgress - callback function for progress notification
6353         * @throws Exception - on errors
6354         */
6355        void File::UpdateChunks(progress_t* pProgress) {
6356            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6357    
6358            // update own gig format extension chunks
6359            // (not part of the GigaStudio 4 format)
6360            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6361            if (!lst3LS) {
6362                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6363            }
6364            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6365            // location of <3LS > is irrelevant, however it should be located
6366            // before  the actual wave data
6367            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6368            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6369    
6370            // This must be performed before writing the chunks for instruments,
6371            // because the instruments' script slots will write the file offsets
6372            // of the respective instrument script chunk as reference.
6373            if (pScriptGroups) {
6374                // Update instrument script (group) chunks.
6375                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6376                     it != pScriptGroups->end(); ++it)
6377                {
6378                    (*it)->UpdateChunks(pProgress);
6379                }
6380            }
6381    
6382            // in case no libgig custom format data was added, then remove the
6383            // custom "3LS " chunk again
6384            if (!lst3LS->CountSubChunks()) {
6385                pRIFF->DeleteSubChunk(lst3LS);
6386                lst3LS = NULL;
6387            }
6388    
6389            // first update base class's chunks
6390            DLS::File::UpdateChunks(pProgress);
6391    
6392            if (newFile) {
6393                // INFO was added by Resource::UpdateChunks - make sure it
6394                // is placed first in file
6395                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6396                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6397                if (first != info) {
6398                    pRIFF->MoveSubChunk(info, first);
6399                }
6400            }
6401    
6402            // update group's chunks
6403            if (pGroups) {
6404                // make sure '3gri' and '3gnl' list chunks exist
6405                // (before updating the Group chunks)
6406                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6407                if (!_3gri) {
6408                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6409                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6410                }
6411                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6412                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6413    
6414                // v3: make sure the file has 128 3gnm chunks
6415                // (before updating the Group chunks)
6416                if (pVersion && pVersion->major > 2) {
6417                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6418                    for (int i = 0 ; i < 128 ; i++) {
6419                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6420                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6421                    }
6422                }
6423    
6424                std::list<Group*>::iterator iter = pGroups->begin();
6425                std::list<Group*>::iterator end  = pGroups->end();
6426                for (; iter != end; ++iter) {
6427                    (*iter)->UpdateChunks(pProgress);
6428                }
6429            }
6430    
6431            // update einf chunk
6432    
6433            // The einf chunk contains statistics about the gig file, such
6434            // as the number of regions and samples used by each
6435            // instrument. It is divided in equally sized parts, where the
6436            // first part contains information about the whole gig file,
6437            // and the rest of the parts map to each instrument in the
6438            // file.
6439            //
6440            // At the end of each part there is a bit map of each sample
6441            // in the file, where a set bit means that the sample is used
6442            // by the file/instrument.
6443            //
6444            // Note that there are several fields with unknown use. These
6445            // are set to zero.
6446    
6447            int sublen = int(pSamples->size() / 8 + 49);
6448            int einfSize = (Instruments + 1) * sublen;
6449    
6450            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6451            if (einf) {
6452                if (einf->GetSize() != einfSize) {
6453                    einf->Resize(einfSize);
6454                    memset(einf->LoadChunkData(), 0, einfSize);
6455                }
6456            } else if (newFile) {
6457                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6458            }
6459            if (einf) {
6460                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6461    
6462                std::map<gig::Sample*,int> sampleMap;
6463                int sampleIdx = 0;
6464                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6465                    sampleMap[pSample] = sampleIdx++;
6466                }
6467    
6468                int totnbusedsamples = 0;
6469                int totnbusedchannels = 0;
6470                int totnbregions = 0;
6471                int totnbdimregions = 0;
6472                int totnbloops = 0;
6473                int instrumentIdx = 0;
6474    
6475                memset(&pData[48], 0, sublen - 48);
6476    
6477                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6478                     instrument = GetNextInstrument()) {
6479                    int nbusedsamples = 0;
6480                    int nbusedchannels = 0;
6481                    int nbdimregions = 0;
6482                    int nbloops = 0;
6483    
6484                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6485    
6486                    for (Region* region = instrument->GetFirstRegion() ; region ;
6487                         region = instrument->GetNextRegion()) {
6488                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6489                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6490                            if (d->pSample) {
6491                                int sampleIdx = sampleMap[d->pSample];
6492                                int byte = 48 + sampleIdx / 8;
6493                                int bit = 1 << (sampleIdx & 7);
6494                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6495                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6496                                    nbusedsamples++;
6497                                    nbusedchannels += d->pSample->Channels;
6498    
6499                                    if ((pData[byte] & bit) == 0) {
6500                                        pData[byte] |= bit;
6501                                        totnbusedsamples++;
6502                                        totnbusedchannels += d->pSample->Channels;
6503                                    }
6504                                }
6505                            }
6506                            if (d->SampleLoops) nbloops++;
6507                        }
6508                        nbdimregions += region->DimensionRegions;
6509                    }
6510                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6511                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6512                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6513                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6514                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6515                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6516                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6517                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6518                    // next 8 bytes unknown
6519                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6520                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6521                    // next 4 bytes unknown
6522    
6523                    totnbregions += instrument->Regions;
6524                    totnbdimregions += nbdimregions;
6525                    totnbloops += nbloops;
6526                    instrumentIdx++;
6527                }
6528                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6529                // store32(&pData[0], sublen);
6530                store32(&pData[4], totnbusedchannels);
6531                store32(&pData[8], totnbusedsamples);
6532                store32(&pData[12], Instruments);
6533                store32(&pData[16], totnbregions);
6534                store32(&pData[20], totnbdimregions);
6535                store32(&pData[24], totnbloops);
6536                // next 8 bytes unknown
6537                // next 4 bytes unknown, not always 0
6538                store32(&pData[40], (uint32_t) pSamples->size());
6539                // next 4 bytes unknown
6540            }
6541    
6542            // update 3crc chunk
6543    
6544            // The 3crc chunk contains CRC-32 checksums for the
6545            // samples. When saving a gig file to disk, we first update the 3CRC
6546            // chunk here (in RAM) with the old crc values which we read from the
6547            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6548            // member variable). This step is required, because samples might have
6549            // been deleted by the user since the file was opened, which in turn
6550            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6551            // If a sample was conciously modified by the user (that is if
6552            // Sample::Write() was called later on) then Sample::Write() will just
6553            // update the respective individual checksum(s) directly on disk and
6554            // leaves all other sample checksums untouched.
6555    
6556            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6557            if (_3crc) {
6558                _3crc->Resize(pSamples->size() * 8);
6559            } else /*if (newFile)*/ {
6560                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6561                // the order of einf and 3crc is not the same in v2 and v3
6562                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6563            }
6564            { // must be performed in RAM here ...
6565                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6566                if (pData) {
6567                    File::SampleList::iterator iter = pSamples->begin();
6568                    File::SampleList::iterator end  = pSamples->end();
6569                    for (int index = 0; iter != end; ++iter, ++index) {
6570                        gig::Sample* pSample = (gig::Sample*) *iter;
6571                        pData[index*2]   = 1; // always 1
6572                        pData[index*2+1] = pSample->crc;
6573                    }
6574                }
6575            }
6576        }
6577        
6578        void File::UpdateFileOffsets() {
6579            DLS::File::UpdateFileOffsets();
6580    
6581            for (Instrument* instrument = GetFirstInstrument(); instrument;
6582                 instrument = GetNextInstrument())
6583            {
6584                instrument->UpdateScriptFileOffsets();
6585            }
6586        }
6587    
6588        /**
6589         * Enable / disable automatic loading. By default this properyt is
6590         * enabled and all informations are loaded automatically. However
6591         * loading all Regions, DimensionRegions and especially samples might
6592         * take a long time for large .gig files, and sometimes one might only
6593         * be interested in retrieving very superficial informations like the
6594         * amount of instruments and their names. In this case one might disable
6595         * automatic loading to avoid very slow response times.
6596         *
6597         * @e CAUTION: by disabling this property many pointers (i.e. sample
6598         * references) and informations will have invalid or even undefined
6599         * data! This feature is currently only intended for retrieving very
6600         * superficial informations in a very fast way. Don't use it to retrieve
6601         * details like synthesis informations or even to modify .gig files!
6602         */
6603        void File::SetAutoLoad(bool b) {
6604            bAutoLoad = b;
6605        }
6606    
6607        /**
6608         * Returns whether automatic loading is enabled.
6609         * @see SetAutoLoad()
6610         */
6611        bool File::GetAutoLoad() {
6612            return bAutoLoad;
6613        }
6614    
6615    
6616    
6617  // *************** Exception ***************  // *************** Exception ***************
6618  // *  // *
6619    
6620      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6621        }
6622    
6623        Exception::Exception(String format, ...) : DLS::Exception() {
6624            va_list arg;
6625            va_start(arg, format);
6626            Message = assemble(format, arg);
6627            va_end(arg);
6628        }
6629    
6630        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6631            Message = assemble(format, arg);
6632      }      }
6633    
6634      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.823  
changed lines
  Added in v.3442

  ViewVC Help
Powered by ViewVC