/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 352 by schoenebeck, Sat Jan 29 14:24:11 2005 UTC revision 1195 by persson, Thu May 17 17:24:26 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29    #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54    // *************** progress_t ***************
55    // *
56    
57        progress_t::progress_t() {
58            callback    = NULL;
59            custom      = NULL;
60            __range_min = 0.0f;
61            __range_max = 1.0f;
62        }
63    
64        // private helper function to convert progress of a subprocess into the global progress
65        static void __notify_progress(progress_t* pProgress, float subprogress) {
66            if (pProgress && pProgress->callback) {
67                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
68                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69                pProgress->factor         = totalprogress;
70                pProgress->callback(pProgress); // now actually notify about the progress
71            }
72        }
73    
74        // private helper function to divide a progress into subprogresses
75        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76            if (pParentProgress && pParentProgress->callback) {
77                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
78                pSubProgress->callback    = pParentProgress->callback;
79                pSubProgress->custom      = pParentProgress->custom;
80                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82            }
83        }
84    
85    
86    // *************** Internal functions for sample decompression ***************
87    // *
88    
89    namespace {
90    
91        inline int get12lo(const unsigned char* pSrc)
92        {
93            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94            return x & 0x800 ? x - 0x1000 : x;
95        }
96    
97        inline int get12hi(const unsigned char* pSrc)
98        {
99            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100            return x & 0x800 ? x - 0x1000 : x;
101        }
102    
103        inline int16_t get16(const unsigned char* pSrc)
104        {
105            return int16_t(pSrc[0] | pSrc[1] << 8);
106        }
107    
108        inline int get24(const unsigned char* pSrc)
109        {
110            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111            return x & 0x800000 ? x - 0x1000000 : x;
112        }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121        void Decompress16(int compressionmode, const unsigned char* params,
122                          int srcStep, int dstStep,
123                          const unsigned char* pSrc, int16_t* pDst,
124                          unsigned long currentframeoffset,
125                          unsigned long copysamples)
126        {
127            switch (compressionmode) {
128                case 0: // 16 bit uncompressed
129                    pSrc += currentframeoffset * srcStep;
130                    while (copysamples) {
131                        *pDst = get16(pSrc);
132                        pDst += dstStep;
133                        pSrc += srcStep;
134                        copysamples--;
135                    }
136                    break;
137    
138                case 1: // 16 bit compressed to 8 bit
139                    int y  = get16(params);
140                    int dy = get16(params + 2);
141                    while (currentframeoffset) {
142                        dy -= int8_t(*pSrc);
143                        y  -= dy;
144                        pSrc += srcStep;
145                        currentframeoffset--;
146                    }
147                    while (copysamples) {
148                        dy -= int8_t(*pSrc);
149                        y  -= dy;
150                        *pDst = y;
151                        pDst += dstStep;
152                        pSrc += srcStep;
153                        copysamples--;
154                    }
155                    break;
156            }
157        }
158    
159        void Decompress24(int compressionmode, const unsigned char* params,
160                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                          unsigned long currentframeoffset,
162                          unsigned long copysamples, int truncatedBits)
163        {
164            int y, dy, ddy, dddy;
165    
166    #define GET_PARAMS(params)                      \
167            y    = get24(params);                   \
168            dy   = y - get24((params) + 3);         \
169            ddy  = get24((params) + 6);             \
170            dddy = get24((params) + 9)
171    
172    #define SKIP_ONE(x)                             \
173            dddy -= (x);                            \
174            ddy  -= dddy;                           \
175            dy   =  -dy - ddy;                      \
176            y    += dy
177    
178    #define COPY_ONE(x)                             \
179            SKIP_ONE(x);                            \
180            store24(pDst, y << truncatedBits);      \
181            pDst += dstStep
182    
183            switch (compressionmode) {
184                case 2: // 24 bit uncompressed
185                    pSrc += currentframeoffset * 3;
186                    while (copysamples) {
187                        store24(pDst, get24(pSrc) << truncatedBits);
188                        pDst += dstStep;
189                        pSrc += 3;
190                        copysamples--;
191                    }
192                    break;
193    
194                case 3: // 24 bit compressed to 16 bit
195                    GET_PARAMS(params);
196                    while (currentframeoffset) {
197                        SKIP_ONE(get16(pSrc));
198                        pSrc += 2;
199                        currentframeoffset--;
200                    }
201                    while (copysamples) {
202                        COPY_ONE(get16(pSrc));
203                        pSrc += 2;
204                        copysamples--;
205                    }
206                    break;
207    
208                case 4: // 24 bit compressed to 12 bit
209                    GET_PARAMS(params);
210                    while (currentframeoffset > 1) {
211                        SKIP_ONE(get12lo(pSrc));
212                        SKIP_ONE(get12hi(pSrc));
213                        pSrc += 3;
214                        currentframeoffset -= 2;
215                    }
216                    if (currentframeoffset) {
217                        SKIP_ONE(get12lo(pSrc));
218                        currentframeoffset--;
219                        if (copysamples) {
220                            COPY_ONE(get12hi(pSrc));
221                            pSrc += 3;
222                            copysamples--;
223                        }
224                    }
225                    while (copysamples > 1) {
226                        COPY_ONE(get12lo(pSrc));
227                        COPY_ONE(get12hi(pSrc));
228                        pSrc += 3;
229                        copysamples -= 2;
230                    }
231                    if (copysamples) {
232                        COPY_ONE(get12lo(pSrc));
233                    }
234                    break;
235    
236                case 5: // 24 bit compressed to 8 bit
237                    GET_PARAMS(params);
238                    while (currentframeoffset) {
239                        SKIP_ONE(int8_t(*pSrc++));
240                        currentframeoffset--;
241                    }
242                    while (copysamples) {
243                        COPY_ONE(int8_t(*pSrc++));
244                        copysamples--;
245                    }
246                    break;
247            }
248        }
249    
250        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
251        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
253        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
254    }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281  // *************** Sample ***************  // *************** Sample ***************
282  // *  // *
283    
284      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
285      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
286    
287      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
288         *
289         * Load an existing sample or create a new one. A 'wave' list chunk must
290         * be given to this constructor. In case the given 'wave' list chunk
291         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
292         * format and sample data will be loaded from there, otherwise default
293         * values will be used and those chunks will be created when
294         * File::Save() will be called later on.
295         *
296         * @param pFile          - pointer to gig::File where this sample is
297         *                         located (or will be located)
298         * @param waveList       - pointer to 'wave' list chunk which is (or
299         *                         will be) associated with this sample
300         * @param WavePoolOffset - offset of this sample data from wave pool
301         *                         ('wvpl') list chunk
302         * @param fileNo         - number of an extension file where this sample
303         *                         is located, 0 otherwise
304         */
305        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
306            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
307                { CHUNK_ID_INAM, 64 },
308                { 0, 0 }
309            };
310            pInfo->FixedStringLengths = fixedStringLengths;
311          Instances++;          Instances++;
312            FileNo = fileNo;
313    
314          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
315          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
316          SampleGroup = _3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
317                pGroup = pFile->GetGroup(iSampleGroup);
318          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          } else { // '3gix' chunk missing
319          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              // by default assigned to that mandatory "Default Group"
320          Manufacturer      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
321          Product           = smpl->ReadInt32();          }
322          SamplePeriod      = smpl->ReadInt32();  
323          MIDIUnityNote     = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
324          FineTune          = smpl->ReadInt32();          if (pCkSmpl) {
325          smpl->Read(&SMPTEFormat, 1, 4);              Manufacturer  = pCkSmpl->ReadInt32();
326          SMPTEOffset       = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
327          Loops             = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
328          uint32_t manufByt = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
329          LoopID            = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
330          smpl->Read(&LoopType, 1, 4);              pCkSmpl->Read(&SMPTEFormat, 1, 4);
331          LoopStart         = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
332          LoopEnd           = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
333          LoopFraction      = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
334          LoopPlayCount     = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
335                pCkSmpl->Read(&LoopType, 1, 4);
336                LoopStart     = pCkSmpl->ReadInt32();
337                LoopEnd       = pCkSmpl->ReadInt32();
338                LoopFraction  = pCkSmpl->ReadInt32();
339                LoopPlayCount = pCkSmpl->ReadInt32();
340            } else { // 'smpl' chunk missing
341                // use default values
342                Manufacturer  = 0;
343                Product       = 0;
344                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
345                MIDIUnityNote = 64;
346                FineTune      = 0;
347                SMPTEFormat   = smpte_format_no_offset;
348                SMPTEOffset   = 0;
349                Loops         = 0;
350                LoopID        = 0;
351                LoopType      = loop_type_normal;
352                LoopStart     = 0;
353                LoopEnd       = 0;
354                LoopFraction  = 0;
355                LoopPlayCount = 0;
356            }
357    
358          FrameTable                 = NULL;          FrameTable                 = NULL;
359          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 361  namespace gig {
361          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
362          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
363    
364          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
365    
366            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
367            Compressed        = ewav;
368            Dithered          = false;
369            TruncatedBits     = 0;
370          if (Compressed) {          if (Compressed) {
371                uint32_t version = ewav->ReadInt32();
372                if (version == 3 && BitDepth == 24) {
373                    Dithered = ewav->ReadInt32();
374                    ewav->SetPos(Channels == 2 ? 84 : 64);
375                    TruncatedBits = ewav->ReadInt32();
376                }
377              ScanCompressedSample();              ScanCompressedSample();
378          }          }
379    
         if (BitDepth > 24)                throw gig::Exception("Only samples up to 24 bit supported");  
         if (Compressed && Channels == 1)  throw gig::Exception("Mono compressed samples not yet supported");  
         if (Compressed && BitDepth == 24) throw gig::Exception("24 bit compressed samples not yet supported");  
   
380          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
381          if ((Compressed || BitDepth == 24) && !pDecompressionBuffer) {          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
382              pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
383              DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
384          }          }
385          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
386    
387          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
388        }
389    
390        /**
391         * Apply sample and its settings to the respective RIFF chunks. You have
392         * to call File::Save() to make changes persistent.
393         *
394         * Usually there is absolutely no need to call this method explicitly.
395         * It will be called automatically when File::Save() was called.
396         *
397         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
398         *                        was provided yet
399         * @throws gig::Exception if there is any invalid sample setting
400         */
401        void Sample::UpdateChunks() {
402            // first update base class's chunks
403            DLS::Sample::UpdateChunks();
404    
405            // make sure 'smpl' chunk exists
406            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
407            if (!pCkSmpl) {
408                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
409                memset(pCkSmpl->LoadChunkData(), 0, 60);
410            }
411            // update 'smpl' chunk
412            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
413            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
414            store32(&pData[0], Manufacturer);
415            store32(&pData[4], Product);
416            store32(&pData[8], SamplePeriod);
417            store32(&pData[12], MIDIUnityNote);
418            store32(&pData[16], FineTune);
419            store32(&pData[20], SMPTEFormat);
420            store32(&pData[24], SMPTEOffset);
421            store32(&pData[28], Loops);
422    
423            // we skip 'manufByt' for now (4 bytes)
424    
425            store32(&pData[36], LoopID);
426            store32(&pData[40], LoopType);
427            store32(&pData[44], LoopStart);
428            store32(&pData[48], LoopEnd);
429            store32(&pData[52], LoopFraction);
430            store32(&pData[56], LoopPlayCount);
431    
432            // make sure '3gix' chunk exists
433            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
434            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
435            // determine appropriate sample group index (to be stored in chunk)
436            uint16_t iSampleGroup = 0; // 0 refers to default sample group
437            File* pFile = static_cast<File*>(pParent);
438            if (pFile->pGroups) {
439                std::list<Group*>::iterator iter = pFile->pGroups->begin();
440                std::list<Group*>::iterator end  = pFile->pGroups->end();
441                for (int i = 0; iter != end; i++, iter++) {
442                    if (*iter == pGroup) {
443                        iSampleGroup = i;
444                        break; // found
445                    }
446                }
447            }
448            // update '3gix' chunk
449            pData = (uint8_t*) pCk3gix->LoadChunkData();
450            store16(&pData[0], iSampleGroup);
451      }      }
452    
453      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 88  namespace gig { Line 456  namespace gig {
456          this->SamplesTotal = 0;          this->SamplesTotal = 0;
457          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
458    
459            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
460            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
461    
462          // Scanning          // Scanning
463          pCkData->SetPos(0);          pCkData->SetPos(0);
464          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
465              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
466              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
467              this->SamplesTotal += 2048;                  // stored, to save some memory
468              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
469                  case 1:   // left channel compressed  
470                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
471                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
472                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
473                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
474    
475                    if (pCkData->RemainingBytes() <= frameSize) {
476                        SamplesInLastFrame =
477                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
478                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
479                        SamplesTotal += SamplesInLastFrame;
480                      break;                      break;
481                  case 257: // both channels compressed                  }
482                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
483                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
484                }
485            }
486            else { // Mono
487                for (int i = 0 ; ; i++) {
488                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489    
490                    const int mode = pCkData->ReadUint8();
491                    if (mode > 5) throw gig::Exception("Unknown compression mode");
492                    const unsigned long frameSize = bytesPerFrame[mode];
493    
494                    if (pCkData->RemainingBytes() <= frameSize) {
495                        SamplesInLastFrame =
496                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
497                        SamplesTotal += SamplesInLastFrame;
498                      break;                      break;
499                  default: // both channels uncompressed                  }
500                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
501                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
502              }              }
503          }          }
504          pCkData->SetPos(0);          pCkData->SetPos(0);
505    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
506          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
507          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
508          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 147  namespace gig { Line 538  namespace gig {
538       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
539       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
540       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
541       *       * @code
542       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
543       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
544         * @endcode
545       *       *
546       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
547       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 195  namespace gig { Line 587  namespace gig {
587       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
588       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
589       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
590       *       * @code
591       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
592       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
593       *       * @endcode
594       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
595       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
596       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 258  namespace gig { Line 650  namespace gig {
650          RAMCache.Size   = 0;          RAMCache.Size   = 0;
651      }      }
652    
653        /** @brief Resize sample.
654         *
655         * Resizes the sample's wave form data, that is the actual size of
656         * sample wave data possible to be written for this sample. This call
657         * will return immediately and just schedule the resize operation. You
658         * should call File::Save() to actually perform the resize operation(s)
659         * "physically" to the file. As this can take a while on large files, it
660         * is recommended to call Resize() first on all samples which have to be
661         * resized and finally to call File::Save() to perform all those resize
662         * operations in one rush.
663         *
664         * The actual size (in bytes) is dependant to the current FrameSize
665         * value. You may want to set FrameSize before calling Resize().
666         *
667         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
668         * enlarged samples before calling File::Save() as this might exceed the
669         * current sample's boundary!
670         *
671         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
672         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
673         * other formats will fail!
674         *
675         * @param iNewSize - new sample wave data size in sample points (must be
676         *                   greater than zero)
677         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
678         *                         or if \a iNewSize is less than 1
679         * @throws gig::Exception if existing sample is compressed
680         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
681         *      DLS::Sample::FormatTag, File::Save()
682         */
683        void Sample::Resize(int iNewSize) {
684            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
685            DLS::Sample::Resize(iNewSize);
686        }
687    
688      /**      /**
689       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
690       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 329  namespace gig { Line 756  namespace gig {
756       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
757       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
758       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
759       *       * @code
760       * <i>       * gig::playback_state_t playbackstate;
761       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
762       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
763       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
764       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
765       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
766       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
767       * The method already handles such cases by itself.       * The method already handles such cases by itself.
768       *       *
769         * <b>Caution:</b> If you are using more than one streaming thread, you
770         * have to use an external decompression buffer for <b>EACH</b>
771         * streaming thread to avoid race conditions and crashes!
772         *
773       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
774       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
775       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
776       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
777         * @param pDimRgn          dimension region with looping information
778         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
779       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
780         * @see                    CreateDecompressionBuffer()
781       */       */
782      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
783                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
784          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
785          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
786    
787          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
788    
789          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
790    
791              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
792                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
793    
794                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
795                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
796    
797                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
798                              // determine the end position within the loop first,                          do {
799                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
800                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
801                              // backward playback  
802                                if (!pPlaybackState->reverse) { // forward playback
803                              unsigned long swapareastart       = totalreadsamples;                                  do {
804                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
805                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
806                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
807                                        totalreadsamples += readsamples;
808                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
809                                            pPlaybackState->reverse = true;
810                              // read samples for backward playback                                          break;
811                              do {                                      }
812                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
813                                  samplestoreadinloop -= readsamples;                              }
814                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
815    
816                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
817                                    // determine the end position within the loop first,
818                                    // read forward from that 'end' and finally after
819                                    // reading, swap all sample frames so it reflects
820                                    // backward playback
821    
822                                    unsigned long swapareastart       = totalreadsamples;
823                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
824                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
825                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
826    
827                                    SetPos(reverseplaybackend);
828    
829                                    // read samples for backward playback
830                                    do {
831                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
832                                        samplestoreadinloop -= readsamples;
833                                        samplestoread       -= readsamples;
834                                        totalreadsamples    += readsamples;
835                                    } while (samplestoreadinloop && readsamples);
836    
837                                    SetPos(reverseplaybackend); // pretend we really read backwards
838    
839                                    if (reverseplaybackend == loop.LoopStart) {
840                                        pPlaybackState->loop_cycles_left--;
841                                        pPlaybackState->reverse = false;
842                                    }
843    
844                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
845                                  pPlaybackState->loop_cycles_left--;                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
                                 pPlaybackState->reverse = false;  
846                              }                              }
847                            } while (samplestoread && readsamples);
848                            break;
849                        }
850    
851                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
852                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
853                          }                          if (!pPlaybackState->reverse) do {
854                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
855                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
856                  }                              samplestoread    -= readsamples;
857                                totalreadsamples += readsamples;
858                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
859                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
860                      if (!pPlaybackState->reverse) do {                                  break;
861                          samplestoloopend  = this->LoopEnd - GetPos();                              }
862                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
863    
864                      if (!samplestoread) break;                          if (!samplestoread) break;
865    
866                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
867                      // determine the end position within the loop first,                          // determine the end position within the loop first,
868                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
869                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
870                      // backward playback                          // backward playback
871    
872                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
873                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
874                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
875                                                                                : samplestoread;                                                                                    : samplestoread;
876                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
877    
878                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
879    
880                      // read samples for backward playback                          // read samples for backward playback
881                      do {                          do {
882                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
883                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
884                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
885                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
886                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
887                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
888                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
889                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
890                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
891                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
892                          }                              }
893                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
894    
895                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
896    
897                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
898                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
899                      break;                          break;
900                  }                      }
901    
902                  default: case loop_type_normal: {                      default: case loop_type_normal: {
903                      do {                          do {
904                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
905                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
906                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
907                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
908                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
909                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
910                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
911                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
912                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
913                          }                              }
914                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
915                      break;                          break;
916                        }
917                  }                  }
918              }              }
919          }          }
920    
921          // read on without looping          // read on without looping
922          if (samplestoread) do {          if (samplestoread) do {
923              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
924              samplestoread    -= readsamples;              samplestoread    -= readsamples;
925              totalreadsamples += readsamples;              totalreadsamples += readsamples;
926          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 501  namespace gig { Line 939  namespace gig {
939       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
940       * thus for disk streaming.       * thus for disk streaming.
941       *       *
942         * <b>Caution:</b> If you are using more than one streaming thread, you
943         * have to use an external decompression buffer for <b>EACH</b>
944         * streaming thread to avoid race conditions and crashes!
945         *
946         * For 16 bit samples, the data in the buffer will be int16_t
947         * (using native endianness). For 24 bit, the buffer will
948         * contain three bytes per sample, little-endian.
949         *
950       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
951       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
952         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
953       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
954       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
955       */       */
956      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
957          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
958          if (!Compressed) {          if (!Compressed) {
959              if (BitDepth == 24) {              if (BitDepth == 24) {
960                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
961                  int8_t* pSrc = (int8_t*)this->pDecompressionBuffer;              }
962                  int8_t* pDst = (int8_t*)pBuffer;              else { // 16 bit
963                  unsigned long n = pCkData->Read(pSrc, SampleCount, FrameSize);                  // (pCkData->Read does endian correction)
964                  for (int i = SampleCount * (FrameSize / 3) ; i > 0 ; i--) {                  return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
965                      pSrc++;                                       : pCkData->Read(pBuffer, SampleCount, 2);
                     *pDst++ = *pSrc++;  
                     *pDst++ = *pSrc++;  
                 }  
                 return SampleCount;  
             } else {  
                 return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?  
966              }              }
967          }          }
968          else { //FIXME: no support for mono compressed samples yet, are there any?          else {
969              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
970              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
971              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
972                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
973                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
974                            copysamples;                            copysamples, skipsamples,
975              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
976              this->FrameOffset = 0;              this->FrameOffset = 0;
977    
978              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
979                  // local buffer reallocation - hope this won't happen  
980                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
981                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
982                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
983                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
984                    remainingsamples = SampleCount;
985                    assumedsize      = GuessSize(SampleCount);
986              }              }
987    
988              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
989              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
990              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
991              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
992    
993              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
994                    unsigned long framesamples = SamplesPerFrame;
995                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
996                  if (remainingbytes < 8194) {  
997                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
998                          this->SamplePos = this->SamplesTotal;  
999                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1000                        mode_r = *pSrc++;
1001                        framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1002                        rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1003                        nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1004                        if (remainingbytes < framebytes) { // last frame in sample
1005                            framesamples = SamplesInLastFrame;
1006                            if (mode_l == 4 && (framesamples & 1)) {
1007                                rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1008                            }
1009                            else {
1010                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1011                            }
1012                        }
1013                    }
1014                    else {
1015                        framebytes = bytesPerFrame[mode_l] + 1;
1016                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1017                        if (remainingbytes < framebytes) {
1018                            framesamples = SamplesInLastFrame;
1019                      }                      }
                     assumedsize    = remainingsamples;  
                     assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                      (assumedsize >> 10) + // 10 bytes header per 2048 sample points  
                                      8194;                 // at least one worst case sample frame  
                     pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
                     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();  
                     remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);  
                     pSrc = (int8_t*) this->pDecompressionBuffer;  
1020                  }                  }
1021    
1022                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1023                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1024                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1025                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1026                            skipsamples = currentframeoffset;
1027                        }
1028                        else {
1029                            copysamples = 0;
1030                            skipsamples = framesamples;
1031                        }
1032                  }                  }
1033                  else {                  else {
1034                        // This frame has enough data for pBuffer, but not
1035                        // all of the frame is needed. Set file position
1036                        // to start of this frame for next call to Read.
1037                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1038                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1039                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1040                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1041                      }                  }
1042                      else {                  remainingsamples -= copysamples;
1043    
1044                    if (remainingbytes > framebytes) {
1045                        remainingbytes -= framebytes;
1046                        if (remainingsamples == 0 &&
1047                            currentframeoffset + copysamples == framesamples) {
1048                            // This frame has enough data for pBuffer, and
1049                            // all of the frame is needed. Set file
1050                            // position to start of next frame for next
1051                            // call to Read. FrameOffset is 0.
1052                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1053                      }                      }
1054                  }                  }
1055                    else remainingbytes = 0;
1056    
1057                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1058                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1059                  switch (compressionmode) {                  if (copysamples == 0) {
1060                      case 1: // left channel compressed                      // skip this frame
1061                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1062                          if (!remainingsamples && copysamples == 2048)                  }
1063                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1064                        const unsigned char* const param_l = pSrc;
1065                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1066                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1067                          while (currentframeoffset) {  
1068                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1069                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1070                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1071                              currentframeoffset--;  
1072                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1073                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1074                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1075                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1076                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1077                          }                          }
1078                          while (copysamples) {                          else { // Mono
1079                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1080                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1081                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1082                          }                          }
1083                          break;                      }
1084                      case 257: // both channels compressed                      else { // 16 bit
1085                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1086                          if (!remainingsamples && copysamples == 2048)  
1087                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1088                            if (Channels == 2) { // Stereo
1089                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1090                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1091                          right  = *(int16_t*)pSrc; pSrc+=2;  
1092                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1093                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1094                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1095                              left   -= dleft;                                           skipsamples, copysamples);
1096                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1097                          }                          }
1098                          while (copysamples) {                          else { // Mono
1099                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1100                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1101                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1102                          }                          }
1103                          break;                      }
1104                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1105                  }                  }
1106              }  
1107                    // reload from disk to local buffer if needed
1108                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1109                        assumedsize    = GuessSize(remainingsamples);
1110                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1111                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1112                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1113                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1114                    }
1115                } // while
1116    
1117              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1118              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1119              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1120          }          }
1121      }      }
1122    
1123        /** @brief Write sample wave data.
1124         *
1125         * Writes \a SampleCount number of sample points from the buffer pointed
1126         * by \a pBuffer and increments the position within the sample. Use this
1127         * method to directly write the sample data to disk, i.e. if you don't
1128         * want or cannot load the whole sample data into RAM.
1129         *
1130         * You have to Resize() the sample to the desired size and call
1131         * File::Save() <b>before</b> using Write().
1132         *
1133         * Note: there is currently no support for writing compressed samples.
1134         *
1135         * @param pBuffer     - source buffer
1136         * @param SampleCount - number of sample points to write
1137         * @throws DLS::Exception if current sample size is too small
1138         * @throws gig::Exception if sample is compressed
1139         * @see DLS::LoadSampleData()
1140         */
1141        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1142            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1143            return DLS::Sample::Write(pBuffer, SampleCount);
1144        }
1145    
1146        /**
1147         * Allocates a decompression buffer for streaming (compressed) samples
1148         * with Sample::Read(). If you are using more than one streaming thread
1149         * in your application you <b>HAVE</b> to create a decompression buffer
1150         * for <b>EACH</b> of your streaming threads and provide it with the
1151         * Sample::Read() call in order to avoid race conditions and crashes.
1152         *
1153         * You should free the memory occupied by the allocated buffer(s) once
1154         * you don't need one of your streaming threads anymore by calling
1155         * DestroyDecompressionBuffer().
1156         *
1157         * @param MaxReadSize - the maximum size (in sample points) you ever
1158         *                      expect to read with one Read() call
1159         * @returns allocated decompression buffer
1160         * @see DestroyDecompressionBuffer()
1161         */
1162        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1163            buffer_t result;
1164            const double worstCaseHeaderOverhead =
1165                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1166            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1167            result.pStart            = new int8_t[result.Size];
1168            result.NullExtensionSize = 0;
1169            return result;
1170        }
1171    
1172        /**
1173         * Free decompression buffer, previously created with
1174         * CreateDecompressionBuffer().
1175         *
1176         * @param DecompressionBuffer - previously allocated decompression
1177         *                              buffer to free
1178         */
1179        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1180            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1181                delete[] (int8_t*) DecompressionBuffer.pStart;
1182                DecompressionBuffer.pStart = NULL;
1183                DecompressionBuffer.Size   = 0;
1184                DecompressionBuffer.NullExtensionSize = 0;
1185            }
1186        }
1187    
1188        /**
1189         * Returns pointer to the Group this Sample belongs to. In the .gig
1190         * format a sample always belongs to one group. If it wasn't explicitly
1191         * assigned to a certain group, it will be automatically assigned to a
1192         * default group.
1193         *
1194         * @returns Sample's Group (never NULL)
1195         */
1196        Group* Sample::GetGroup() const {
1197            return pGroup;
1198        }
1199    
1200      Sample::~Sample() {      Sample::~Sample() {
1201          Instances--;          Instances--;
1202          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1203                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1204                InternalDecompressionBuffer.pStart = NULL;
1205                InternalDecompressionBuffer.Size   = 0;
1206            }
1207          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1208          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1209      }      }
# Line 697  namespace gig { Line 1219  namespace gig {
1219      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1220          Instances++;          Instances++;
1221    
1222            pSample = NULL;
1223    
1224          memcpy(&Crossfade, &SamplerOptions, 4);          memcpy(&Crossfade, &SamplerOptions, 4);
1225          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1226    
1227          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1228          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1229          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1230          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1231          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1232          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1233          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1234          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1235          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1236          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1237          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1238          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1239          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1240          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1241          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1242          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1243          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1244          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1245          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1246          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1247          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1248          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1249          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1250          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1251          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1252          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1253          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1254          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1255          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1256          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1257          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1258          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1259          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1260          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1261          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1262          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1263          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1264          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1265          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1266          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1267          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1268          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1269          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1270          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1271          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1272          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1273          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1274          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1275          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1276          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1277          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1278          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1279              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1280              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1281          }                  VelocityResponseDepth = velocityresponse;
1282          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1283              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1284              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1285          }              } else if (velocityresponse < 15) {
1286          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1287              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1288              VelocityResponseDepth = velocityresponse - 10;              } else {
1289                    VelocityResponseCurve = curve_type_unknown;
1290                    VelocityResponseDepth = 0;
1291                }
1292                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1293                if (releasevelocityresponse < 5) {
1294                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1295                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1296                } else if (releasevelocityresponse < 10) {
1297                    ReleaseVelocityResponseCurve = curve_type_linear;
1298                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1299                } else if (releasevelocityresponse < 15) {
1300                    ReleaseVelocityResponseCurve = curve_type_special;
1301                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1302                } else {
1303                    ReleaseVelocityResponseCurve = curve_type_unknown;
1304                    ReleaseVelocityResponseDepth = 0;
1305                }
1306                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1307                AttenuationControllerThreshold = _3ewa->ReadInt8();
1308                _3ewa->ReadInt32(); // unknown
1309                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1310                _3ewa->ReadInt16(); // unknown
1311                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1312                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1313                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1314                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1315                else                                       DimensionBypass = dim_bypass_ctrl_none;
1316                uint8_t pan = _3ewa->ReadUint8();
1317                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1318                SelfMask = _3ewa->ReadInt8() & 0x01;
1319                _3ewa->ReadInt8(); // unknown
1320                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1321                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1322                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1323                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1324                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1325                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1326                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1327                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1328                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1329                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1330                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1331                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1332                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1333                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1334                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1335                                                            : vcf_res_ctrl_none;
1336                uint16_t eg3depth = _3ewa->ReadUint16();
1337                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1338                                            : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1339                _3ewa->ReadInt16(); // unknown
1340                ChannelOffset = _3ewa->ReadUint8() / 4;
1341                uint8_t regoptions = _3ewa->ReadUint8();
1342                MSDecode           = regoptions & 0x01; // bit 0
1343                SustainDefeat      = regoptions & 0x02; // bit 1
1344                _3ewa->ReadInt16(); // unknown
1345                VelocityUpperLimit = _3ewa->ReadInt8();
1346                _3ewa->ReadInt8(); // unknown
1347                _3ewa->ReadInt16(); // unknown
1348                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1349                _3ewa->ReadInt8(); // unknown
1350                _3ewa->ReadInt8(); // unknown
1351                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1352                uint8_t vcfcutoff = _3ewa->ReadUint8();
1353                VCFEnabled = vcfcutoff & 0x80; // bit 7
1354                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1355                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1356                uint8_t vcfvelscale = _3ewa->ReadUint8();
1357                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1358                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1359                _3ewa->ReadInt8(); // unknown
1360                uint8_t vcfresonance = _3ewa->ReadUint8();
1361                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1362                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1363                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1364                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1365                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1366                uint8_t vcfvelocity = _3ewa->ReadUint8();
1367                VCFVelocityDynamicRange = vcfvelocity % 5;
1368                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1369                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1370                if (VCFType == vcf_type_lowpass) {
1371                    if (lfo3ctrl & 0x40) // bit 6
1372                        VCFType = vcf_type_lowpassturbo;
1373                }
1374                if (_3ewa->RemainingBytes() >= 8) {
1375                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1376                } else {
1377                    memset(DimensionUpperLimits, 0, 8);
1378                }
1379            } else { // '3ewa' chunk does not exist yet
1380                // use default values
1381                LFO3Frequency                   = 1.0;
1382                EG3Attack                       = 0.0;
1383                LFO1InternalDepth               = 0;
1384                LFO3InternalDepth               = 0;
1385                LFO1ControlDepth                = 0;
1386                LFO3ControlDepth                = 0;
1387                EG1Attack                       = 0.0;
1388                EG1Decay1                       = 0.0;
1389                EG1Sustain                      = 0;
1390                EG1Release                      = 0.0;
1391                EG1Controller.type              = eg1_ctrl_t::type_none;
1392                EG1Controller.controller_number = 0;
1393                EG1ControllerInvert             = false;
1394                EG1ControllerAttackInfluence    = 0;
1395                EG1ControllerDecayInfluence     = 0;
1396                EG1ControllerReleaseInfluence   = 0;
1397                EG2Controller.type              = eg2_ctrl_t::type_none;
1398                EG2Controller.controller_number = 0;
1399                EG2ControllerInvert             = false;
1400                EG2ControllerAttackInfluence    = 0;
1401                EG2ControllerDecayInfluence     = 0;
1402                EG2ControllerReleaseInfluence   = 0;
1403                LFO1Frequency                   = 1.0;
1404                EG2Attack                       = 0.0;
1405                EG2Decay1                       = 0.0;
1406                EG2Sustain                      = 0;
1407                EG2Release                      = 0.0;
1408                LFO2ControlDepth                = 0;
1409                LFO2Frequency                   = 1.0;
1410                LFO2InternalDepth               = 0;
1411                EG1Decay2                       = 0.0;
1412                EG1InfiniteSustain              = false;
1413                EG1PreAttack                    = 1000;
1414                EG2Decay2                       = 0.0;
1415                EG2InfiniteSustain              = false;
1416                EG2PreAttack                    = 1000;
1417                VelocityResponseCurve           = curve_type_nonlinear;
1418                VelocityResponseDepth           = 3;
1419                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1420                ReleaseVelocityResponseDepth    = 3;
1421                VelocityResponseCurveScaling    = 32;
1422                AttenuationControllerThreshold  = 0;
1423                SampleStartOffset               = 0;
1424                PitchTrack                      = true;
1425                DimensionBypass                 = dim_bypass_ctrl_none;
1426                Pan                             = 0;
1427                SelfMask                        = true;
1428                LFO3Controller                  = lfo3_ctrl_modwheel;
1429                LFO3Sync                        = false;
1430                InvertAttenuationController     = false;
1431                AttenuationController.type      = attenuation_ctrl_t::type_none;
1432                AttenuationController.controller_number = 0;
1433                LFO2Controller                  = lfo2_ctrl_internal;
1434                LFO2FlipPhase                   = false;
1435                LFO2Sync                        = false;
1436                LFO1Controller                  = lfo1_ctrl_internal;
1437                LFO1FlipPhase                   = false;
1438                LFO1Sync                        = false;
1439                VCFResonanceController          = vcf_res_ctrl_none;
1440                EG3Depth                        = 0;
1441                ChannelOffset                   = 0;
1442                MSDecode                        = false;
1443                SustainDefeat                   = false;
1444                VelocityUpperLimit              = 0;
1445                ReleaseTriggerDecay             = 0;
1446                EG1Hold                         = false;
1447                VCFEnabled                      = false;
1448                VCFCutoff                       = 0;
1449                VCFCutoffController             = vcf_cutoff_ctrl_none;
1450                VCFCutoffControllerInvert       = false;
1451                VCFVelocityScale                = 0;
1452                VCFResonance                    = 0;
1453                VCFResonanceDynamic             = false;
1454                VCFKeyboardTracking             = false;
1455                VCFKeyboardTrackingBreakpoint   = 0;
1456                VCFVelocityDynamicRange         = 0x04;
1457                VCFVelocityCurve                = curve_type_linear;
1458                VCFType                         = vcf_type_lowpass;
1459                memset(DimensionUpperLimits, 0, 8);
1460            }
1461    
1462            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1463                                                         VelocityResponseDepth,
1464                                                         VelocityResponseCurveScaling);
1465    
1466            curve_type_t curveType = ReleaseVelocityResponseCurve;
1467            uint8_t depth = ReleaseVelocityResponseDepth;
1468    
1469            // this models a strange behaviour or bug in GSt: two of the
1470            // velocity response curves for release time are not used even
1471            // if specified, instead another curve is chosen.
1472            if ((curveType == curve_type_nonlinear && depth == 0) ||
1473                (curveType == curve_type_special   && depth == 4)) {
1474                curveType = curve_type_nonlinear;
1475                depth = 3;
1476            }
1477            pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1478    
1479            curveType = VCFVelocityCurve;
1480            depth = VCFVelocityDynamicRange;
1481    
1482            // even stranger GSt: two of the velocity response curves for
1483            // filter cutoff are not used, instead another special curve
1484            // is chosen. This curve is not used anywhere else.
1485            if ((curveType == curve_type_nonlinear && depth == 0) ||
1486                (curveType == curve_type_special   && depth == 4)) {
1487                curveType = curve_type_special;
1488                depth = 5;
1489          }          }
1490          else {          pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1491              VelocityResponseCurve = curve_type_unknown;                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1492              VelocityResponseDepth = 0;  
1493            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1494            VelocityTable = 0;
1495        }
1496    
1497        /**
1498         * Apply dimension region settings to the respective RIFF chunks. You
1499         * have to call File::Save() to make changes persistent.
1500         *
1501         * Usually there is absolutely no need to call this method explicitly.
1502         * It will be called automatically when File::Save() was called.
1503         */
1504        void DimensionRegion::UpdateChunks() {
1505            // first update base class's chunk
1506            DLS::Sampler::UpdateChunks();
1507    
1508            // make sure '3ewa' chunk exists
1509            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1510            if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1511            uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1512    
1513            // update '3ewa' chunk with DimensionRegion's current settings
1514    
1515            const uint32_t chunksize = _3ewa->GetNewSize();
1516            store32(&pData[0], chunksize); // unknown, always chunk size?
1517    
1518            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1519            store32(&pData[4], lfo3freq);
1520    
1521            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1522            store32(&pData[8], eg3attack);
1523    
1524            // next 2 bytes unknown
1525    
1526            store16(&pData[14], LFO1InternalDepth);
1527    
1528            // next 2 bytes unknown
1529    
1530            store16(&pData[18], LFO3InternalDepth);
1531    
1532            // next 2 bytes unknown
1533    
1534            store16(&pData[22], LFO1ControlDepth);
1535    
1536            // next 2 bytes unknown
1537    
1538            store16(&pData[26], LFO3ControlDepth);
1539    
1540            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1541            store32(&pData[28], eg1attack);
1542    
1543            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1544            store32(&pData[32], eg1decay1);
1545    
1546            // next 2 bytes unknown
1547    
1548            store16(&pData[38], EG1Sustain);
1549    
1550            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1551            store32(&pData[40], eg1release);
1552    
1553            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1554            pData[44] = eg1ctl;
1555    
1556            const uint8_t eg1ctrloptions =
1557                (EG1ControllerInvert) ? 0x01 : 0x00 |
1558                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1559                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1560                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1561            pData[45] = eg1ctrloptions;
1562    
1563            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1564            pData[46] = eg2ctl;
1565    
1566            const uint8_t eg2ctrloptions =
1567                (EG2ControllerInvert) ? 0x01 : 0x00 |
1568                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1569                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1570                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1571            pData[47] = eg2ctrloptions;
1572    
1573            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1574            store32(&pData[48], lfo1freq);
1575    
1576            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1577            store32(&pData[52], eg2attack);
1578    
1579            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1580            store32(&pData[56], eg2decay1);
1581    
1582            // next 2 bytes unknown
1583    
1584            store16(&pData[62], EG2Sustain);
1585    
1586            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1587            store32(&pData[64], eg2release);
1588    
1589            // next 2 bytes unknown
1590    
1591            store16(&pData[70], LFO2ControlDepth);
1592    
1593            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1594            store32(&pData[72], lfo2freq);
1595    
1596            // next 2 bytes unknown
1597    
1598            store16(&pData[78], LFO2InternalDepth);
1599    
1600            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1601            store32(&pData[80], eg1decay2);
1602    
1603            // next 2 bytes unknown
1604    
1605            store16(&pData[86], EG1PreAttack);
1606    
1607            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1608            store32(&pData[88], eg2decay2);
1609    
1610            // next 2 bytes unknown
1611    
1612            store16(&pData[94], EG2PreAttack);
1613    
1614            {
1615                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1616                uint8_t velocityresponse = VelocityResponseDepth;
1617                switch (VelocityResponseCurve) {
1618                    case curve_type_nonlinear:
1619                        break;
1620                    case curve_type_linear:
1621                        velocityresponse += 5;
1622                        break;
1623                    case curve_type_special:
1624                        velocityresponse += 10;
1625                        break;
1626                    case curve_type_unknown:
1627                    default:
1628                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1629                }
1630                pData[96] = velocityresponse;
1631          }          }
1632          uint8_t releasevelocityresponse = _3ewa->ReadUint8();  
1633          if (releasevelocityresponse < 5) {          {
1634              ReleaseVelocityResponseCurve = curve_type_nonlinear;              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1635              ReleaseVelocityResponseDepth = releasevelocityresponse;              uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1636          }              switch (ReleaseVelocityResponseCurve) {
1637          else if (releasevelocityresponse < 10) {                  case curve_type_nonlinear:
1638              ReleaseVelocityResponseCurve = curve_type_linear;                      break;
1639              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  case curve_type_linear:
1640          }                      releasevelocityresponse += 5;
1641          else if (releasevelocityresponse < 15) {                      break;
1642              ReleaseVelocityResponseCurve = curve_type_special;                  case curve_type_special:
1643              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;                      releasevelocityresponse += 10;
1644                        break;
1645                    case curve_type_unknown:
1646                    default:
1647                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1648                }
1649                pData[97] = releasevelocityresponse;
1650          }          }
1651          else {  
1652              ReleaseVelocityResponseCurve = curve_type_unknown;          pData[98] = VelocityResponseCurveScaling;
1653              ReleaseVelocityResponseDepth = 0;  
1654            pData[99] = AttenuationControllerThreshold;
1655    
1656            // next 4 bytes unknown
1657    
1658            store16(&pData[104], SampleStartOffset);
1659    
1660            // next 2 bytes unknown
1661    
1662            {
1663                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1664                switch (DimensionBypass) {
1665                    case dim_bypass_ctrl_94:
1666                        pitchTrackDimensionBypass |= 0x10;
1667                        break;
1668                    case dim_bypass_ctrl_95:
1669                        pitchTrackDimensionBypass |= 0x20;
1670                        break;
1671                    case dim_bypass_ctrl_none:
1672                        //FIXME: should we set anything here?
1673                        break;
1674                    default:
1675                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1676                }
1677                pData[108] = pitchTrackDimensionBypass;
1678            }
1679    
1680            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1681            pData[109] = pan;
1682    
1683            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1684            pData[110] = selfmask;
1685    
1686            // next byte unknown
1687    
1688            {
1689                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1690                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1691                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1692                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1693                pData[112] = lfo3ctrl;
1694            }
1695    
1696            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1697            pData[113] = attenctl;
1698    
1699            {
1700                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1701                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1702                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1703                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1704                pData[114] = lfo2ctrl;
1705          }          }
1706          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
1707          AttenuationControllerThreshold = _3ewa->ReadInt8();          {
1708          _3ewa->ReadInt32(); // unknown              uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1709          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();              if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1710          _3ewa->ReadInt16(); // unknown              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1711          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();              if (VCFResonanceController != vcf_res_ctrl_none)
1712          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1713          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;              pData[115] = lfo1ctrl;
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
1714          }          }
1715    
1716          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1717          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1718            pData[116] = eg3depth;
1719    
1720            // next 2 bytes unknown
1721    
1722            const uint8_t channeloffset = ChannelOffset * 4;
1723            pData[120] = channeloffset;
1724    
1725            {
1726                uint8_t regoptions = 0;
1727                if (MSDecode)      regoptions |= 0x01; // bit 0
1728                if (SustainDefeat) regoptions |= 0x02; // bit 1
1729                pData[121] = regoptions;
1730            }
1731    
1732            // next 2 bytes unknown
1733    
1734            pData[124] = VelocityUpperLimit;
1735    
1736            // next 3 bytes unknown
1737    
1738            pData[128] = ReleaseTriggerDecay;
1739    
1740            // next 2 bytes unknown
1741    
1742            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1743            pData[131] = eg1hold;
1744    
1745            const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1746                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1747            pData[132] = vcfcutoff;
1748    
1749            pData[133] = VCFCutoffController;
1750    
1751            const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1752                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
1753            pData[134] = vcfvelscale;
1754    
1755            // next byte unknown
1756    
1757            const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1758                                         (VCFResonance & 0x7f); /* lower 7 bits */
1759            pData[136] = vcfresonance;
1760    
1761            const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1762                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1763            pData[137] = vcfbreakpoint;
1764    
1765            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1766                                        VCFVelocityCurve * 5;
1767            pData[138] = vcfvelocity;
1768    
1769            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1770            pData[139] = vcftype;
1771    
1772            if (chunksize >= 148) {
1773                memcpy(&pData[140], DimensionUpperLimits, 8);
1774            }
1775        }
1776    
1777        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1778        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1779        {
1780            double* table;
1781            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1782          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
1783              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
1784          }          }
1785          else {          else {
1786              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
1787                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
1788          }          }
1789            return table;
1790      }      }
1791    
1792      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
# Line 983  namespace gig { Line 1907  namespace gig {
1907          return decodedcontroller;          return decodedcontroller;
1908      }      }
1909    
1910        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1911            _lev_ctrl_t encodedcontroller;
1912            switch (DecodedController.type) {
1913                // special controller
1914                case leverage_ctrl_t::type_none:
1915                    encodedcontroller = _lev_ctrl_none;
1916                    break;
1917                case leverage_ctrl_t::type_velocity:
1918                    encodedcontroller = _lev_ctrl_velocity;
1919                    break;
1920                case leverage_ctrl_t::type_channelaftertouch:
1921                    encodedcontroller = _lev_ctrl_channelaftertouch;
1922                    break;
1923    
1924                // ordinary MIDI control change controller
1925                case leverage_ctrl_t::type_controlchange:
1926                    switch (DecodedController.controller_number) {
1927                        case 1:
1928                            encodedcontroller = _lev_ctrl_modwheel;
1929                            break;
1930                        case 2:
1931                            encodedcontroller = _lev_ctrl_breath;
1932                            break;
1933                        case 4:
1934                            encodedcontroller = _lev_ctrl_foot;
1935                            break;
1936                        case 12:
1937                            encodedcontroller = _lev_ctrl_effect1;
1938                            break;
1939                        case 13:
1940                            encodedcontroller = _lev_ctrl_effect2;
1941                            break;
1942                        case 16:
1943                            encodedcontroller = _lev_ctrl_genpurpose1;
1944                            break;
1945                        case 17:
1946                            encodedcontroller = _lev_ctrl_genpurpose2;
1947                            break;
1948                        case 18:
1949                            encodedcontroller = _lev_ctrl_genpurpose3;
1950                            break;
1951                        case 19:
1952                            encodedcontroller = _lev_ctrl_genpurpose4;
1953                            break;
1954                        case 5:
1955                            encodedcontroller = _lev_ctrl_portamentotime;
1956                            break;
1957                        case 64:
1958                            encodedcontroller = _lev_ctrl_sustainpedal;
1959                            break;
1960                        case 65:
1961                            encodedcontroller = _lev_ctrl_portamento;
1962                            break;
1963                        case 66:
1964                            encodedcontroller = _lev_ctrl_sostenutopedal;
1965                            break;
1966                        case 67:
1967                            encodedcontroller = _lev_ctrl_softpedal;
1968                            break;
1969                        case 80:
1970                            encodedcontroller = _lev_ctrl_genpurpose5;
1971                            break;
1972                        case 81:
1973                            encodedcontroller = _lev_ctrl_genpurpose6;
1974                            break;
1975                        case 82:
1976                            encodedcontroller = _lev_ctrl_genpurpose7;
1977                            break;
1978                        case 83:
1979                            encodedcontroller = _lev_ctrl_genpurpose8;
1980                            break;
1981                        case 91:
1982                            encodedcontroller = _lev_ctrl_effect1depth;
1983                            break;
1984                        case 92:
1985                            encodedcontroller = _lev_ctrl_effect2depth;
1986                            break;
1987                        case 93:
1988                            encodedcontroller = _lev_ctrl_effect3depth;
1989                            break;
1990                        case 94:
1991                            encodedcontroller = _lev_ctrl_effect4depth;
1992                            break;
1993                        case 95:
1994                            encodedcontroller = _lev_ctrl_effect5depth;
1995                            break;
1996                        default:
1997                            throw gig::Exception("leverage controller number is not supported by the gig format");
1998                    }
1999                    break;
2000                default:
2001                    throw gig::Exception("Unknown leverage controller type.");
2002            }
2003            return encodedcontroller;
2004        }
2005    
2006      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2007          Instances--;          Instances--;
2008          if (!Instances) {          if (!Instances) {
# Line 996  namespace gig { Line 2016  namespace gig {
2016              delete pVelocityTables;              delete pVelocityTables;
2017              pVelocityTables = NULL;              pVelocityTables = NULL;
2018          }          }
2019            if (VelocityTable) delete[] VelocityTable;
2020      }      }
2021    
2022      /**      /**
# Line 1013  namespace gig { Line 2034  namespace gig {
2034          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2035      }      }
2036    
2037        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2038            return pVelocityReleaseTable[MIDIKeyVelocity];
2039        }
2040    
2041        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2042            return pVelocityCutoffTable[MIDIKeyVelocity];
2043        }
2044    
2045      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2046    
2047          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1046  namespace gig { Line 2075  namespace gig {
2075          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2076                               127, 127 };                               127, 127 };
2077    
2078            // this is only used by the VCF velocity curve
2079            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2080                                 91, 127, 127, 127 };
2081    
2082          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
2083                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
2084                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
2085    
2086          double* const table = new double[128];          double* const table = new double[128];
2087    
# Line 1100  namespace gig { Line 2133  namespace gig {
2133              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2134                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2135                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2136                    _3lnk->ReadUint8(); // probably the position of the dimension
2137                    _3lnk->ReadUint8(); // unknown
2138                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2139                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2140                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2141                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2142                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2143                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2144                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2145                  }                  }
2146                  else { // active dimension                  else { // active dimension
2147                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2148                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2149                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2150                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2151                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger) ? split_type_bit  
                                                                                                   : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2152                      Dimensions++;                      Dimensions++;
2153    
2154                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
2155                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2156                  }                  }
2157                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2158              }              }
2159                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2160    
2161              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2162              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2163                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2164    
2165              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2166              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2167                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2168              else              else
# Line 1168  namespace gig { Line 2171  namespace gig {
2171              // load sample references              // load sample references
2172              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2173                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2174                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2175                }
2176                GetSample(); // load global region sample reference
2177            } else {
2178                DimensionRegions = 0;
2179                for (int i = 0 ; i < 8 ; i++) {
2180                    pDimensionDefinitions[i].dimension  = dimension_none;
2181                    pDimensionDefinitions[i].bits       = 0;
2182                    pDimensionDefinitions[i].zones      = 0;
2183                }
2184            }
2185    
2186            // make sure there is at least one dimension region
2187            if (!DimensionRegions) {
2188                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2189                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2190                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2191                pDimensionRegions[0] = new DimensionRegion(_3ewl);
2192                DimensionRegions = 1;
2193            }
2194        }
2195    
2196        /**
2197         * Apply Region settings and all its DimensionRegions to the respective
2198         * RIFF chunks. You have to call File::Save() to make changes persistent.
2199         *
2200         * Usually there is absolutely no need to call this method explicitly.
2201         * It will be called automatically when File::Save() was called.
2202         *
2203         * @throws gig::Exception if samples cannot be dereferenced
2204         */
2205        void Region::UpdateChunks() {
2206            // in the gig format we don't care about the Region's sample reference
2207            // but we still have to provide some existing one to not corrupt the
2208            // file, so to avoid the latter we simply always assign the sample of
2209            // the first dimension region of this region
2210            pSample = pDimensionRegions[0]->pSample;
2211    
2212            // first update base class's chunks
2213            DLS::Region::UpdateChunks();
2214    
2215            // update dimension region's chunks
2216            for (int i = 0; i < DimensionRegions; i++) {
2217                pDimensionRegions[i]->UpdateChunks();
2218            }
2219    
2220            File* pFile = (File*) GetParent()->GetParent();
2221            const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2222            const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2223    
2224            // make sure '3lnk' chunk exists
2225            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2226            if (!_3lnk) {
2227                const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2228                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2229                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2230    
2231                // move 3prg to last position
2232                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2233            }
2234    
2235            // update dimension definitions in '3lnk' chunk
2236            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2237            store32(&pData[0], DimensionRegions);
2238            for (int i = 0; i < iMaxDimensions; i++) {
2239                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2240                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2241                // next 2 bytes unknown
2242                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2243                // next 3 bytes unknown
2244            }
2245    
2246            // update wave pool table in '3lnk' chunk
2247            const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2248            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2249                int iWaveIndex = -1;
2250                if (i < DimensionRegions) {
2251                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2252                    File::SampleList::iterator iter = pFile->pSamples->begin();
2253                    File::SampleList::iterator end  = pFile->pSamples->end();
2254                    for (int index = 0; iter != end; ++iter, ++index) {
2255                        if (*iter == pDimensionRegions[i]->pSample) {
2256                            iWaveIndex = index;
2257                            break;
2258                        }
2259                    }
2260                    if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2261              }              }
2262                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2263          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2264      }      }
2265    
2266      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1190  namespace gig { Line 2279  namespace gig {
2279          }          }
2280      }      }
2281    
2282      Region::~Region() {      void Region::UpdateVelocityTable() {
2283          for (uint i = 0; i < Dimensions; i++) {          // get velocity dimension's index
2284              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          int veldim = -1;
2285            for (int i = 0 ; i < Dimensions ; i++) {
2286                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2287                    veldim = i;
2288                    break;
2289                }
2290          }          }
2291            if (veldim == -1) return;
2292    
2293            int step = 1;
2294            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2295            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2296            int end = step * pDimensionDefinitions[veldim].zones;
2297    
2298            // loop through all dimension regions for all dimensions except the velocity dimension
2299            int dim[8] = { 0 };
2300            for (int i = 0 ; i < DimensionRegions ; i++) {
2301    
2302                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2303                    pDimensionRegions[i]->VelocityUpperLimit) {
2304                    // create the velocity table
2305                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2306                    if (!table) {
2307                        table = new uint8_t[128];
2308                        pDimensionRegions[i]->VelocityTable = table;
2309                    }
2310                    int tableidx = 0;
2311                    int velocityZone = 0;
2312                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2313                        for (int k = i ; k < end ; k += step) {
2314                            DimensionRegion *d = pDimensionRegions[k];
2315                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2316                            velocityZone++;
2317                        }
2318                    } else { // gig2
2319                        for (int k = i ; k < end ; k += step) {
2320                            DimensionRegion *d = pDimensionRegions[k];
2321                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2322                            velocityZone++;
2323                        }
2324                    }
2325                } else {
2326                    if (pDimensionRegions[i]->VelocityTable) {
2327                        delete[] pDimensionRegions[i]->VelocityTable;
2328                        pDimensionRegions[i]->VelocityTable = 0;
2329                    }
2330                }
2331    
2332                int j;
2333                int shift = 0;
2334                for (j = 0 ; j < Dimensions ; j++) {
2335                    if (j == veldim) i += skipveldim; // skip velocity dimension
2336                    else {
2337                        dim[j]++;
2338                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2339                        else {
2340                            // skip unused dimension regions
2341                            dim[j] = 0;
2342                            i += ((1 << pDimensionDefinitions[j].bits) -
2343                                  pDimensionDefinitions[j].zones) << shift;
2344                        }
2345                    }
2346                    shift += pDimensionDefinitions[j].bits;
2347                }
2348                if (j == Dimensions) break;
2349            }
2350        }
2351    
2352        /** @brief Einstein would have dreamed of it - create a new dimension.
2353         *
2354         * Creates a new dimension with the dimension definition given by
2355         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2356         * There is a hard limit of dimensions and total amount of "bits" all
2357         * dimensions can have. This limit is dependant to what gig file format
2358         * version this file refers to. The gig v2 (and lower) format has a
2359         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2360         * format has a limit of 8.
2361         *
2362         * @param pDimDef - defintion of the new dimension
2363         * @throws gig::Exception if dimension of the same type exists already
2364         * @throws gig::Exception if amount of dimensions or total amount of
2365         *                        dimension bits limit is violated
2366         */
2367        void Region::AddDimension(dimension_def_t* pDimDef) {
2368            // check if max. amount of dimensions reached
2369            File* file = (File*) GetParent()->GetParent();
2370            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2371            if (Dimensions >= iMaxDimensions)
2372                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2373            // check if max. amount of dimension bits reached
2374            int iCurrentBits = 0;
2375            for (int i = 0; i < Dimensions; i++)
2376                iCurrentBits += pDimensionDefinitions[i].bits;
2377            if (iCurrentBits >= iMaxDimensions)
2378                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2379            const int iNewBits = iCurrentBits + pDimDef->bits;
2380            if (iNewBits > iMaxDimensions)
2381                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2382            // check if there's already a dimensions of the same type
2383            for (int i = 0; i < Dimensions; i++)
2384                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2385                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2386    
2387            // assign definition of new dimension
2388            pDimensionDefinitions[Dimensions] = *pDimDef;
2389    
2390            // auto correct certain dimension definition fields (where possible)
2391            pDimensionDefinitions[Dimensions].split_type  =
2392                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2393            pDimensionDefinitions[Dimensions].zone_size =
2394                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2395    
2396            // create new dimension region(s) for this new dimension
2397            for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2398                //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2399                RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2400                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2401                pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2402                DimensionRegions++;
2403            }
2404    
2405            Dimensions++;
2406    
2407            // if this is a layer dimension, update 'Layers' attribute
2408            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2409    
2410            UpdateVelocityTable();
2411        }
2412    
2413        /** @brief Delete an existing dimension.
2414         *
2415         * Deletes the dimension given by \a pDimDef and deletes all respective
2416         * dimension regions, that is all dimension regions where the dimension's
2417         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2418         * for example this would delete all dimension regions for the case(s)
2419         * where the sustain pedal is pressed down.
2420         *
2421         * @param pDimDef - dimension to delete
2422         * @throws gig::Exception if given dimension cannot be found
2423         */
2424        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2425            // get dimension's index
2426            int iDimensionNr = -1;
2427            for (int i = 0; i < Dimensions; i++) {
2428                if (&pDimensionDefinitions[i] == pDimDef) {
2429                    iDimensionNr = i;
2430                    break;
2431                }
2432            }
2433            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2434    
2435            // get amount of bits below the dimension to delete
2436            int iLowerBits = 0;
2437            for (int i = 0; i < iDimensionNr; i++)
2438                iLowerBits += pDimensionDefinitions[i].bits;
2439    
2440            // get amount ot bits above the dimension to delete
2441            int iUpperBits = 0;
2442            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2443                iUpperBits += pDimensionDefinitions[i].bits;
2444    
2445            // delete dimension regions which belong to the given dimension
2446            // (that is where the dimension's bit > 0)
2447            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2448                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2449                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2450                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2451                                        iObsoleteBit << iLowerBits |
2452                                        iLowerBit;
2453                        delete pDimensionRegions[iToDelete];
2454                        pDimensionRegions[iToDelete] = NULL;
2455                        DimensionRegions--;
2456                    }
2457                }
2458            }
2459    
2460            // defrag pDimensionRegions array
2461            // (that is remove the NULL spaces within the pDimensionRegions array)
2462            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2463                if (!pDimensionRegions[iTo]) {
2464                    if (iFrom <= iTo) iFrom = iTo + 1;
2465                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2466                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2467                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2468                        pDimensionRegions[iFrom] = NULL;
2469                    }
2470                }
2471            }
2472    
2473            // 'remove' dimension definition
2474            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2475                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2476            }
2477            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2478            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2479            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2480    
2481            Dimensions--;
2482    
2483            // if this was a layer dimension, update 'Layers' attribute
2484            if (pDimDef->dimension == dimension_layer) Layers = 1;
2485        }
2486    
2487        Region::~Region() {
2488          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
2489              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2490          }          }
# Line 1218  namespace gig { Line 2509  namespace gig {
2509       * @see             Dimensions       * @see             Dimensions
2510       */       */
2511      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2512          uint8_t bits[8] = { 0 };          uint8_t bits;
2513            int veldim = -1;
2514            int velbitpos;
2515            int bitpos = 0;
2516            int dimregidx = 0;
2517          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2518              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2519              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
2520                  case split_type_normal:                  veldim = i;
2521                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
2522                      break;              } else {
2523                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
2524                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
2525                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2526                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2527                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2528                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2529                      break;                              }
2530                            } else {
2531                                // gig2: evenly sized zones
2532                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2533                            }
2534                            break;
2535                        case split_type_bit: // the value is already the sought dimension bit number
2536                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2537                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2538                            break;
2539                    }
2540                    dimregidx |= bits << bitpos;
2541              }              }
2542                bitpos += pDimensionDefinitions[i].bits;
2543            }
2544            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2545            if (veldim != -1) {
2546                // (dimreg is now the dimension region for the lowest velocity)
2547                if (dimreg->VelocityTable) // custom defined zone ranges
2548                    bits = dimreg->VelocityTable[DimValues[veldim]];
2549                else // normal split type
2550                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2551    
2552                dimregidx |= bits << velbitpos;
2553                dimreg = pDimensionRegions[dimregidx];
2554          }          }
2555          return GetDimensionRegionByBit(bits);          return dimreg;
2556      }      }
2557    
2558      /**      /**
# Line 1271  namespace gig { Line 2589  namespace gig {
2589          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2590      }      }
2591    
2592      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2593          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
2594          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2595            if (!file->pWavePoolTable) return NULL;
2596          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2597          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2598            Sample* sample = file->GetFirstSample(pProgress);
2599          while (sample) {          while (sample) {
2600              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
2601                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2602              sample = file->GetNextSample();              sample = file->GetNextSample();
2603          }          }
2604          return NULL;          return NULL;
# Line 1288  namespace gig { Line 2609  namespace gig {
2609  // *************** Instrument ***************  // *************** Instrument ***************
2610  // *  // *
2611    
2612      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2613            static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2614                { CHUNK_ID_INAM, 64 },
2615                { CHUNK_ID_ISFT, 12 },
2616                { 0, 0 }
2617            };
2618            pInfo->FixedStringLengths = fixedStringLengths;
2619    
2620          // Initialization          // Initialization
2621          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2622          RegionIndex = -1;          EffectSend = 0;
2623            Attenuation = 0;
2624            FineTune = 0;
2625            PitchbendRange = 0;
2626            PianoReleaseMode = false;
2627            DimensionKeyRange.low = 0;
2628            DimensionKeyRange.high = 0;
2629    
2630          // Loading          // Loading
2631          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1307  namespace gig { Line 2641  namespace gig {
2641                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2642                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2643              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2644          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2645    
2646            if (!pRegions) pRegions = new RegionList;
2647          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2648          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2649          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2650          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              while (rgn) {
2651          RIFF::List* rgn = lrgn->GetFirstSubList();                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2652          unsigned int iRegion = 0;                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2653          while (rgn) {                      pRegions->push_back(new Region(this, rgn));
2654              if (rgn->GetListType() == LIST_TYPE_RGN) {                  }
2655                  pRegions[iRegion] = new Region(this, rgn);                  rgn = lrgn->GetNextSubList();
                 iRegion++;  
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2656              }              }
2657                // Creating Region Key Table for fast lookup
2658                UpdateRegionKeyTable();
2659          }          }
2660    
2661            __notify_progress(pProgress, 1.0f); // notify done
2662      }      }
2663    
2664      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2665          for (uint i = 0; i < Regions; i++) {          RegionList::iterator iter = pRegions->begin();
2666              if (pRegions) {          RegionList::iterator end  = pRegions->end();
2667                  if (pRegions[i]) delete (pRegions[i]);          for (; iter != end; ++iter) {
2668                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2669                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2670                    RegionKeyTable[iKey] = pRegion;
2671              }              }
2672          }          }
2673          if (pRegions) delete[] pRegions;      }
2674    
2675        Instrument::~Instrument() {
2676        }
2677    
2678        /**
2679         * Apply Instrument with all its Regions to the respective RIFF chunks.
2680         * You have to call File::Save() to make changes persistent.
2681         *
2682         * Usually there is absolutely no need to call this method explicitly.
2683         * It will be called automatically when File::Save() was called.
2684         *
2685         * @throws gig::Exception if samples cannot be dereferenced
2686         */
2687        void Instrument::UpdateChunks() {
2688            // first update base classes' chunks
2689            DLS::Instrument::UpdateChunks();
2690    
2691            // update Regions' chunks
2692            {
2693                RegionList::iterator iter = pRegions->begin();
2694                RegionList::iterator end  = pRegions->end();
2695                for (; iter != end; ++iter)
2696                    (*iter)->UpdateChunks();
2697            }
2698    
2699            // make sure 'lart' RIFF list chunk exists
2700            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2701            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2702            // make sure '3ewg' RIFF chunk exists
2703            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2704            if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2705            // update '3ewg' RIFF chunk
2706            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2707            store16(&pData[0], EffectSend);
2708            store32(&pData[2], Attenuation);
2709            store16(&pData[6], FineTune);
2710            store16(&pData[8], PitchbendRange);
2711            const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2712                                        DimensionKeyRange.low << 1;
2713            pData[10] = dimkeystart;
2714            pData[11] = DimensionKeyRange.high;
2715      }      }
2716    
2717      /**      /**
# Line 1350  namespace gig { Line 2722  namespace gig {
2722       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2723       */       */
2724      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2725          if (!pRegions || Key > 127) return NULL;          if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2726          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2727    
2728          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2729              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2730                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1367  namespace gig { Line 2740  namespace gig {
2740       * @see      GetNextRegion()       * @see      GetNextRegion()
2741       */       */
2742      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2743          if (!Regions) return NULL;          if (!pRegions) return NULL;
2744          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2745          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2746      }      }
2747    
2748      /**      /**
# Line 1381  namespace gig { Line 2754  namespace gig {
2754       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2755       */       */
2756      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2757          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
2758          return pRegions[RegionIndex++];          RegionsIterator++;
2759            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2760        }
2761    
2762        Region* Instrument::AddRegion() {
2763            // create new Region object (and its RIFF chunks)
2764            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2765            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2766            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2767            Region* pNewRegion = new Region(this, rgn);
2768            pRegions->push_back(pNewRegion);
2769            Regions = pRegions->size();
2770            // update Region key table for fast lookup
2771            UpdateRegionKeyTable();
2772            // done
2773            return pNewRegion;
2774        }
2775    
2776        void Instrument::DeleteRegion(Region* pRegion) {
2777            if (!pRegions) return;
2778            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2779            // update Region key table for fast lookup
2780            UpdateRegionKeyTable();
2781        }
2782    
2783    
2784    
2785    // *************** Group ***************
2786    // *
2787    
2788        /** @brief Constructor.
2789         *
2790         * @param file   - pointer to the gig::File object
2791         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2792         *                 NULL if this is a new Group
2793         */
2794        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2795            pFile      = file;
2796            pNameChunk = ck3gnm;
2797            ::LoadString(pNameChunk, Name);
2798        }
2799    
2800        Group::~Group() {
2801            // remove the chunk associated with this group (if any)
2802            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2803        }
2804    
2805        /** @brief Update chunks with current group settings.
2806         *
2807         * Apply current Group field values to the respective chunks. You have
2808         * to call File::Save() to make changes persistent.
2809         *
2810         * Usually there is absolutely no need to call this method explicitly.
2811         * It will be called automatically when File::Save() was called.
2812         */
2813        void Group::UpdateChunks() {
2814            // make sure <3gri> and <3gnl> list chunks exist
2815            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2816            if (!_3gri) {
2817                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2818                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2819            }
2820            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2821            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2822            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2823            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2824        }
2825    
2826        /**
2827         * Returns the first Sample of this Group. You have to call this method
2828         * once before you use GetNextSample().
2829         *
2830         * <b>Notice:</b> this method might block for a long time, in case the
2831         * samples of this .gig file were not scanned yet
2832         *
2833         * @returns  pointer address to first Sample or NULL if there is none
2834         *           applied to this Group
2835         * @see      GetNextSample()
2836         */
2837        Sample* Group::GetFirstSample() {
2838            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2839            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2840                if (pSample->GetGroup() == this) return pSample;
2841            }
2842            return NULL;
2843        }
2844    
2845        /**
2846         * Returns the next Sample of the Group. You have to call
2847         * GetFirstSample() once before you can use this method. By calling this
2848         * method multiple times it iterates through the Samples assigned to
2849         * this Group.
2850         *
2851         * @returns  pointer address to the next Sample of this Group or NULL if
2852         *           end reached
2853         * @see      GetFirstSample()
2854         */
2855        Sample* Group::GetNextSample() {
2856            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2857            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2858                if (pSample->GetGroup() == this) return pSample;
2859            }
2860            return NULL;
2861        }
2862    
2863        /**
2864         * Move Sample given by \a pSample from another Group to this Group.
2865         */
2866        void Group::AddSample(Sample* pSample) {
2867            pSample->pGroup = this;
2868        }
2869    
2870        /**
2871         * Move all members of this group to another group (preferably the 1st
2872         * one except this). This method is called explicitly by
2873         * File::DeleteGroup() thus when a Group was deleted. This code was
2874         * intentionally not placed in the destructor!
2875         */
2876        void Group::MoveAll() {
2877            // get "that" other group first
2878            Group* pOtherGroup = NULL;
2879            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2880                if (pOtherGroup != this) break;
2881            }
2882            if (!pOtherGroup) throw Exception(
2883                "Could not move samples to another group, since there is no "
2884                "other Group. This is a bug, report it!"
2885            );
2886            // now move all samples of this group to the other group
2887            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2888                pOtherGroup->AddSample(pSample);
2889            }
2890      }      }
2891    
2892    
# Line 1390  namespace gig { Line 2894  namespace gig {
2894  // *************** File ***************  // *************** File ***************
2895  // *  // *
2896    
2897        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2898            { CHUNK_ID_IARL, 256 },
2899            { CHUNK_ID_IART, 128 },
2900            { CHUNK_ID_ICMS, 128 },
2901            { CHUNK_ID_ICMT, 1024 },
2902            { CHUNK_ID_ICOP, 128 },
2903            { CHUNK_ID_ICRD, 128 },
2904            { CHUNK_ID_IENG, 128 },
2905            { CHUNK_ID_IGNR, 128 },
2906            { CHUNK_ID_IKEY, 128 },
2907            { CHUNK_ID_IMED, 128 },
2908            { CHUNK_ID_INAM, 128 },
2909            { CHUNK_ID_IPRD, 128 },
2910            { CHUNK_ID_ISBJ, 128 },
2911            { CHUNK_ID_ISFT, 128 },
2912            { CHUNK_ID_ISRC, 128 },
2913            { CHUNK_ID_ISRF, 128 },
2914            { CHUNK_ID_ITCH, 128 },
2915            { 0, 0 }
2916        };
2917    
2918        File::File() : DLS::File() {
2919            pGroups = NULL;
2920            pInfo->FixedStringLengths = FixedStringLengths;
2921            pInfo->ArchivalLocation = String(256, ' ');
2922    
2923            // add some mandatory chunks to get the file chunks in right
2924            // order (INFO chunk will be moved to first position later)
2925            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2926            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2927        }
2928    
2929      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2930          pSamples     = NULL;          pGroups = NULL;
2931          pInstruments = NULL;          pInfo->FixedStringLengths = FixedStringLengths;
2932      }      }
2933    
2934      File::~File() {      File::~File() {
2935          // free samples          if (pGroups) {
2936          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
2937              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
2938              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
2939                  delete (*SamplesIterator);                  delete *iter;
2940                  SamplesIterator++;                  ++iter;
2941              }              }
2942              pSamples->clear();              delete pGroups;
   
         }  
         // free instruments  
         if (pInstruments) {  
             InstrumentsIterator = pInstruments->begin();  
             while (InstrumentsIterator != pInstruments->end() ) {  
                 delete (*InstrumentsIterator);  
                 InstrumentsIterator++;  
             }  
             pInstruments->clear();  
2943          }          }
2944      }      }
2945    
2946      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
2947          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
2948          if (!pSamples) return NULL;          if (!pSamples) return NULL;
2949          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
2950          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1430  namespace gig { Line 2956  namespace gig {
2956          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2957      }      }
2958    
2959        /** @brief Add a new sample.
2960         *
2961         * This will create a new Sample object for the gig file. You have to
2962         * call Save() to make this persistent to the file.
2963         *
2964         * @returns pointer to new Sample object
2965         */
2966        Sample* File::AddSample() {
2967           if (!pSamples) LoadSamples();
2968           __ensureMandatoryChunksExist();
2969           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2970           // create new Sample object and its respective 'wave' list chunk
2971           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2972           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2973    
2974           // add mandatory chunks to get the chunks in right order
2975           wave->AddSubChunk(CHUNK_ID_FMT, 16);
2976           wave->AddSubList(LIST_TYPE_INFO);
2977    
2978           pSamples->push_back(pSample);
2979           return pSample;
2980        }
2981    
2982        /** @brief Delete a sample.
2983         *
2984         * This will delete the given Sample object from the gig file. You have
2985         * to call Save() to make this persistent to the file.
2986         *
2987         * @param pSample - sample to delete
2988         * @throws gig::Exception if given sample could not be found
2989         */
2990        void File::DeleteSample(Sample* pSample) {
2991            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2992            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2993            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2994            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2995            pSamples->erase(iter);
2996            delete pSample;
2997        }
2998    
2999      void File::LoadSamples() {      void File::LoadSamples() {
3000          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
3001          if (wvpl) {      }
3002              unsigned long wvplFileOffset = wvpl->GetFilePos();  
3003              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
3004              while (wave) {          // Groups must be loaded before samples, because samples will try
3005                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
3006                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
3007                      unsigned long waveFileOffset = wave->GetFilePos();  
3008                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
3009    
3010            RIFF::File* file = pRIFF;
3011    
3012            // just for progress calculation
3013            int iSampleIndex  = 0;
3014            int iTotalSamples = WavePoolCount;
3015    
3016            // check if samples should be loaded from extension files
3017            int lastFileNo = 0;
3018            for (int i = 0 ; i < WavePoolCount ; i++) {
3019                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3020            }
3021            String name(pRIFF->GetFileName());
3022            int nameLen = name.length();
3023            char suffix[6];
3024            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3025    
3026            for (int fileNo = 0 ; ; ) {
3027                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3028                if (wvpl) {
3029                    unsigned long wvplFileOffset = wvpl->GetFilePos();
3030                    RIFF::List* wave = wvpl->GetFirstSubList();
3031                    while (wave) {
3032                        if (wave->GetListType() == LIST_TYPE_WAVE) {
3033                            // notify current progress
3034                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3035                            __notify_progress(pProgress, subprogress);
3036    
3037                            unsigned long waveFileOffset = wave->GetFilePos();
3038                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3039    
3040                            iSampleIndex++;
3041                        }
3042                        wave = wvpl->GetNextSubList();
3043                  }                  }
3044                  wave = wvpl->GetNextSubList();  
3045              }                  if (fileNo == lastFileNo) break;
3046    
3047                    // open extension file (*.gx01, *.gx02, ...)
3048                    fileNo++;
3049                    sprintf(suffix, ".gx%02d", fileNo);
3050                    name.replace(nameLen, 5, suffix);
3051                    file = new RIFF::File(name);
3052                    ExtensionFiles.push_back(file);
3053                } else break;
3054          }          }
3055          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
3056            __notify_progress(pProgress, 1.0); // notify done
3057      }      }
3058    
3059      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
3060          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
3061          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3062          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3063          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3064      }      }
3065    
3066      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
3067          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3068          InstrumentsIterator++;          InstrumentsIterator++;
3069          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3070      }      }
3071    
3072      /**      /**
3073       * Returns the instrument with the given index.       * Returns the instrument with the given index.
3074       *       *
3075         * @param index     - number of the sought instrument (0..n)
3076         * @param pProgress - optional: callback function for progress notification
3077       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
3078       */       */
3079      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3080          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
3081                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3082    
3083                // sample loading subtask
3084                progress_t subprogress;
3085                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3086                __notify_progress(&subprogress, 0.0f);
3087                GetFirstSample(&subprogress); // now force all samples to be loaded
3088                __notify_progress(&subprogress, 1.0f);
3089    
3090                // instrument loading subtask
3091                if (pProgress && pProgress->callback) {
3092                    subprogress.__range_min = subprogress.__range_max;
3093                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3094                }
3095                __notify_progress(&subprogress, 0.0f);
3096                LoadInstruments(&subprogress);
3097                __notify_progress(&subprogress, 1.0f);
3098            }
3099          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
3100          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
3101          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3102              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3103              InstrumentsIterator++;              InstrumentsIterator++;
3104          }          }
3105          return NULL;          return NULL;
3106      }      }
3107    
3108        /** @brief Add a new instrument definition.
3109         *
3110         * This will create a new Instrument object for the gig file. You have
3111         * to call Save() to make this persistent to the file.
3112         *
3113         * @returns pointer to new Instrument object
3114         */
3115        Instrument* File::AddInstrument() {
3116           if (!pInstruments) LoadInstruments();
3117           __ensureMandatoryChunksExist();
3118           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3119           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3120    
3121           // add mandatory chunks to get the chunks in right order
3122           lstInstr->AddSubList(LIST_TYPE_INFO);
3123    
3124           Instrument* pInstrument = new Instrument(this, lstInstr);
3125    
3126           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3127    
3128           // this string is needed for the gig to be loadable in GSt:
3129           pInstrument->pInfo->Software = "Endless Wave";
3130    
3131           pInstruments->push_back(pInstrument);
3132           return pInstrument;
3133        }
3134    
3135        /** @brief Delete an instrument.
3136         *
3137         * This will delete the given Instrument object from the gig file. You
3138         * have to call Save() to make this persistent to the file.
3139         *
3140         * @param pInstrument - instrument to delete
3141         * @throws gig::Exception if given instrument could not be found
3142         */
3143        void File::DeleteInstrument(Instrument* pInstrument) {
3144            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3145            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3146            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3147            pInstruments->erase(iter);
3148            delete pInstrument;
3149        }
3150    
3151      void File::LoadInstruments() {      void File::LoadInstruments() {
3152            LoadInstruments(NULL);
3153        }
3154    
3155        void File::LoadInstruments(progress_t* pProgress) {
3156            if (!pInstruments) pInstruments = new InstrumentList;
3157          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3158          if (lstInstruments) {          if (lstInstruments) {
3159                int iInstrumentIndex = 0;
3160              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3161              while (lstInstr) {              while (lstInstr) {
3162                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3163                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
3164                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3165                        __notify_progress(pProgress, localProgress);
3166    
3167                        // divide local progress into subprogress for loading current Instrument
3168                        progress_t subprogress;
3169                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3170    
3171                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3172    
3173                        iInstrumentIndex++;
3174                  }                  }
3175                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
3176              }              }
3177                __notify_progress(pProgress, 1.0); // notify done
3178            }
3179        }
3180    
3181        Group* File::GetFirstGroup() {
3182            if (!pGroups) LoadGroups();
3183            // there must always be at least one group
3184            GroupsIterator = pGroups->begin();
3185            return *GroupsIterator;
3186        }
3187    
3188        Group* File::GetNextGroup() {
3189            if (!pGroups) return NULL;
3190            ++GroupsIterator;
3191            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3192        }
3193    
3194        /**
3195         * Returns the group with the given index.
3196         *
3197         * @param index - number of the sought group (0..n)
3198         * @returns sought group or NULL if there's no such group
3199         */
3200        Group* File::GetGroup(uint index) {
3201            if (!pGroups) LoadGroups();
3202            GroupsIterator = pGroups->begin();
3203            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3204                if (i == index) return *GroupsIterator;
3205                ++GroupsIterator;
3206            }
3207            return NULL;
3208        }
3209    
3210        Group* File::AddGroup() {
3211            if (!pGroups) LoadGroups();
3212            // there must always be at least one group
3213            __ensureMandatoryChunksExist();
3214            Group* pGroup = new Group(this, NULL);
3215            pGroups->push_back(pGroup);
3216            return pGroup;
3217        }
3218    
3219        /** @brief Delete a group and its samples.
3220         *
3221         * This will delete the given Group object and all the samples that
3222         * belong to this group from the gig file. You have to call Save() to
3223         * make this persistent to the file.
3224         *
3225         * @param pGroup - group to delete
3226         * @throws gig::Exception if given group could not be found
3227         */
3228        void File::DeleteGroup(Group* pGroup) {
3229            if (!pGroups) LoadGroups();
3230            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3231            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3232            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3233            // delete all members of this group
3234            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3235                DeleteSample(pSample);
3236            }
3237            // now delete this group object
3238            pGroups->erase(iter);
3239            delete pGroup;
3240        }
3241    
3242        /** @brief Delete a group.
3243         *
3244         * This will delete the given Group object from the gig file. All the
3245         * samples that belong to this group will not be deleted, but instead
3246         * be moved to another group. You have to call Save() to make this
3247         * persistent to the file.
3248         *
3249         * @param pGroup - group to delete
3250         * @throws gig::Exception if given group could not be found
3251         */
3252        void File::DeleteGroupOnly(Group* pGroup) {
3253            if (!pGroups) LoadGroups();
3254            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3255            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3256            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3257            // move all members of this group to another group
3258            pGroup->MoveAll();
3259            pGroups->erase(iter);
3260            delete pGroup;
3261        }
3262    
3263        void File::LoadGroups() {
3264            if (!pGroups) pGroups = new std::list<Group*>;
3265            // try to read defined groups from file
3266            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3267            if (lst3gri) {
3268                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3269                if (lst3gnl) {
3270                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3271                    while (ck) {
3272                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3273                            pGroups->push_back(new Group(this, ck));
3274                        }
3275                        ck = lst3gnl->GetNextSubChunk();
3276                    }
3277                }
3278            }
3279            // if there were no group(s), create at least the mandatory default group
3280            if (!pGroups->size()) {
3281                Group* pGroup = new Group(this, NULL);
3282                pGroup->Name = "Default Group";
3283                pGroups->push_back(pGroup);
3284            }
3285        }
3286    
3287        /**
3288         * Apply all the gig file's current instruments, samples, groups and settings
3289         * to the respective RIFF chunks. You have to call Save() to make changes
3290         * persistent.
3291         *
3292         * Usually there is absolutely no need to call this method explicitly.
3293         * It will be called automatically when File::Save() was called.
3294         *
3295         * @throws Exception - on errors
3296         */
3297        void File::UpdateChunks() {
3298            RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3299    
3300            // first update base class's chunks
3301            DLS::File::UpdateChunks();
3302    
3303            if (!info) {
3304                // INFO was added by Resource::UpdateChunks - make sure it
3305                // is placed first in file
3306                info = pRIFF->GetSubList(LIST_TYPE_INFO);
3307                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3308                if (first != info) {
3309                    pRIFF->MoveSubChunk(info, first);
3310                }
3311            }
3312    
3313            // update group's chunks
3314            if (pGroups) {
3315                std::list<Group*>::iterator iter = pGroups->begin();
3316                std::list<Group*>::iterator end  = pGroups->end();
3317                for (; iter != end; ++iter) {
3318                    (*iter)->UpdateChunks();
3319                }
3320          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
3321      }      }
3322    
3323    
# Line 1503  namespace gig { Line 3332  namespace gig {
3332          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
3333      }      }
3334    
3335    
3336    // *************** functions ***************
3337    // *
3338    
3339        /**
3340         * Returns the name of this C++ library. This is usually "libgig" of
3341         * course. This call is equivalent to RIFF::libraryName() and
3342         * DLS::libraryName().
3343         */
3344        String libraryName() {
3345            return PACKAGE;
3346        }
3347    
3348        /**
3349         * Returns version of this C++ library. This call is equivalent to
3350         * RIFF::libraryVersion() and DLS::libraryVersion().
3351         */
3352        String libraryVersion() {
3353            return VERSION;
3354        }
3355    
3356  } // namespace gig  } // namespace gig

Legend:
Removed from v.352  
changed lines
  Added in v.1195

  ViewVC Help
Powered by ViewVC