/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 516 by schoenebeck, Sat May 7 21:24:04 2005 UTC revision 3117 by schoenebeck, Sun Apr 16 23:20:30 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26  #include <iostream>  #include "helper.h"
   
 namespace gig {  
   
 // *************** progress_t ***************  
 // *  
27    
28      progress_t::progress_t() {  #include <algorithm>
29          callback    = NULL;  #include <math.h>
30          custom      = NULL;  #include <iostream>
31          __range_min = 0.0f;  #include <assert.h>
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
32    
33      // private helper function to divide a progress into subprogresses  /// libgig's current file format version (for extending the original Giga file
34      static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  /// format with libgig's own custom data / custom features).
35          if (pParentProgress && pParentProgress->callback) {  #define GIG_FILE_EXT_VERSION    2
36              const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
37              pSubProgress->callback    = pParentProgress->callback;  /// Initial size of the sample buffer which is used for decompression of
38              pSubProgress->custom      = pParentProgress->custom;  /// compressed sample wave streams - this value should always be bigger than
39              pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  /// the biggest sample piece expected to be read by the sampler engine,
40              pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  /// otherwise the buffer size will be raised at runtime and thus the buffer
41          }  /// reallocated which is time consuming and unefficient.
42      }  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58    namespace gig {
59    
60  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
61  // *  // *
62    
63  namespace {  namespace {
# Line 87  namespace { Line 85  namespace {
85          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
86      }      }
87    
88        inline void store24(unsigned char* pDst, int x)
89        {
90            pDst[0] = x;
91            pDst[1] = x >> 8;
92            pDst[2] = x >> 16;
93        }
94    
95      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
96                        int srcStep, int dstStep,                        int srcStep, int dstStep,
97                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
98                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
99                        unsigned long copysamples)                        file_offset_t copysamples)
100      {      {
101          switch (compressionmode) {          switch (compressionmode) {
102              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 126  namespace { Line 131  namespace {
131      }      }
132    
133      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
134                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
136                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
137      {      {
138          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
139    
140          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
141          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
142          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
143          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
144          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts an extra step, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
         const int shift = 8 - truncatedBits;  
         const int shift1 = shift + 1;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
145    
146  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
147          ddy -= (x);                             \          dddy -= (x);                            \
148          dy -= ddy;                              \          ddy  -= dddy;                           \
149          y -= dy          dy   =  -dy - ddy;                      \
150            y    += dy
151    
152  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
153          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
154          *pDst = y >> shift1;                    \          store24(pDst, y << truncatedBits);      \
155          pDst += dstStep          pDst += dstStep
156    
157          switch (compressionmode) {          switch (compressionmode) {
158              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
159                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
160                  while (copysamples) {                  while (copysamples) {
161                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
162                      pDst += dstStep;                      pDst += dstStep;
163                      pSrc += 3;                      pSrc += 3;
164                      copysamples--;                      copysamples--;
# Line 237  namespace { Line 228  namespace {
228  }  }
229    
230    
231    
232    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
233    // *
234    
235        static uint32_t* __initCRCTable() {
236            static uint32_t res[256];
237    
238            for (int i = 0 ; i < 256 ; i++) {
239                uint32_t c = i;
240                for (int j = 0 ; j < 8 ; j++) {
241                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242                }
243                res[i] = c;
244            }
245            return res;
246        }
247    
248        static const uint32_t* __CRCTable = __initCRCTable();
249    
250        /**
251         * Initialize a CRC variable.
252         *
253         * @param crc - variable to be initialized
254         */
255        inline static void __resetCRC(uint32_t& crc) {
256            crc = 0xffffffff;
257        }
258    
259        /**
260         * Used to calculate checksums of the sample data in a gig file. The
261         * checksums are stored in the 3crc chunk of the gig file and
262         * automatically updated when a sample is written with Sample::Write().
263         *
264         * One should call __resetCRC() to initialize the CRC variable to be
265         * used before calling this function the first time.
266         *
267         * After initializing the CRC variable one can call this function
268         * arbitrary times, i.e. to split the overall CRC calculation into
269         * steps.
270         *
271         * Once the whole data was processed by __calculateCRC(), one should
272         * call __finalizeCRC() to get the final CRC result.
273         *
274         * @param buf     - pointer to data the CRC shall be calculated of
275         * @param bufSize - size of the data to be processed
276         * @param crc     - variable the CRC sum shall be stored to
277         */
278        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
279            for (size_t i = 0 ; i < bufSize ; i++) {
280                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281            }
282        }
283    
284        /**
285         * Returns the final CRC result.
286         *
287         * @param crc - variable previously passed to __calculateCRC()
288         */
289        inline static void __finalizeCRC(uint32_t& crc) {
290            crc ^= 0xffffffff;
291        }
292    
293    
294    
295    // *************** Other Internal functions  ***************
296    // *
297    
298        static split_type_t __resolveSplitType(dimension_t dimension) {
299            return (
300                dimension == dimension_layer ||
301                dimension == dimension_samplechannel ||
302                dimension == dimension_releasetrigger ||
303                dimension == dimension_keyboard ||
304                dimension == dimension_roundrobin ||
305                dimension == dimension_random ||
306                dimension == dimension_smartmidi ||
307                dimension == dimension_roundrobinkeyboard
308            ) ? split_type_bit : split_type_normal;
309        }
310    
311        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312            return (dimension_definition.split_type == split_type_normal)
313            ? int(128.0 / dimension_definition.zones) : 0;
314        }
315    
316    
317    
318  // *************** Sample ***************  // *************** Sample ***************
319  // *  // *
320    
321      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
322      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
323    
324      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
325         *
326         * Load an existing sample or create a new one. A 'wave' list chunk must
327         * be given to this constructor. In case the given 'wave' list chunk
328         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329         * format and sample data will be loaded from there, otherwise default
330         * values will be used and those chunks will be created when
331         * File::Save() will be called later on.
332         *
333         * @param pFile          - pointer to gig::File where this sample is
334         *                         located (or will be located)
335         * @param waveList       - pointer to 'wave' list chunk which is (or
336         *                         will be) associated with this sample
337         * @param WavePoolOffset - offset of this sample data from wave pool
338         *                         ('wvpl') list chunk
339         * @param fileNo         - number of an extension file where this sample
340         *                         is located, 0 otherwise
341         * @param index          - wave pool index of sample (may be -1 on new sample)
342         */
343        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345        {
346            static const DLS::Info::string_length_t fixedStringLengths[] = {
347                { CHUNK_ID_INAM, 64 },
348                { 0, 0 }
349            };
350            pInfo->SetFixedStringLengths(fixedStringLengths);
351          Instances++;          Instances++;
352            FileNo = fileNo;
353    
354          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
355          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
356          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357            // checksum of the time when the sample was consciously modified by the
358          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
359          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
360          Manufacturer      = smpl->ReadInt32();              try {
361          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
363          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
364          FineTune          = smpl->ReadInt32();          }
365          smpl->Read(&SMPTEFormat, 1, 4);  
366          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367          Loops             = smpl->ReadInt32();          if (pCk3gix) {
368          smpl->ReadInt32(); // manufByt              uint16_t iSampleGroup = pCk3gix->ReadInt16();
369          LoopID            = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
370          smpl->Read(&LoopType, 1, 4);          } else { // '3gix' chunk missing
371          LoopStart         = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
372          LoopEnd           = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
373          LoopFraction      = smpl->ReadInt32();          }
374          LoopPlayCount     = smpl->ReadInt32();  
375            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376            if (pCkSmpl) {
377                Manufacturer  = pCkSmpl->ReadInt32();
378                Product       = pCkSmpl->ReadInt32();
379                SamplePeriod  = pCkSmpl->ReadInt32();
380                MIDIUnityNote = pCkSmpl->ReadInt32();
381                FineTune      = pCkSmpl->ReadInt32();
382                pCkSmpl->Read(&SMPTEFormat, 1, 4);
383                SMPTEOffset   = pCkSmpl->ReadInt32();
384                Loops         = pCkSmpl->ReadInt32();
385                pCkSmpl->ReadInt32(); // manufByt
386                LoopID        = pCkSmpl->ReadInt32();
387                pCkSmpl->Read(&LoopType, 1, 4);
388                LoopStart     = pCkSmpl->ReadInt32();
389                LoopEnd       = pCkSmpl->ReadInt32();
390                LoopFraction  = pCkSmpl->ReadInt32();
391                LoopPlayCount = pCkSmpl->ReadInt32();
392            } else { // 'smpl' chunk missing
393                // use default values
394                Manufacturer  = 0;
395                Product       = 0;
396                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397                MIDIUnityNote = 60;
398                FineTune      = 0;
399                SMPTEFormat   = smpte_format_no_offset;
400                SMPTEOffset   = 0;
401                Loops         = 0;
402                LoopID        = 0;
403                LoopType      = loop_type_normal;
404                LoopStart     = 0;
405                LoopEnd       = 0;
406                LoopFraction  = 0;
407                LoopPlayCount = 0;
408            }
409    
410          FrameTable                 = NULL;          FrameTable                 = NULL;
411          SamplePos                  = 0;          SamplePos                  = 0;
# Line 297  namespace { Line 436  namespace {
436          }          }
437          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
438    
439          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
440        }
441    
442        /**
443         * Make a (semi) deep copy of the Sample object given by @a orig (without
444         * the actual waveform data) and assign it to this object.
445         *
446         * Discussion: copying .gig samples is a bit tricky. It requires three
447         * steps:
448         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449         *    its new sample waveform data size.
450         * 2. Saving the file (done by File::Save()) so that it gains correct size
451         *    and layout for writing the actual wave form data directly to disc
452         *    in next step.
453         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454         *
455         * @param orig - original Sample object to be copied from
456         */
457        void Sample::CopyAssignMeta(const Sample* orig) {
458            // handle base classes
459            DLS::Sample::CopyAssignCore(orig);
460            
461            // handle actual own attributes of this class
462            Manufacturer = orig->Manufacturer;
463            Product = orig->Product;
464            SamplePeriod = orig->SamplePeriod;
465            MIDIUnityNote = orig->MIDIUnityNote;
466            FineTune = orig->FineTune;
467            SMPTEFormat = orig->SMPTEFormat;
468            SMPTEOffset = orig->SMPTEOffset;
469            Loops = orig->Loops;
470            LoopID = orig->LoopID;
471            LoopType = orig->LoopType;
472            LoopStart = orig->LoopStart;
473            LoopEnd = orig->LoopEnd;
474            LoopSize = orig->LoopSize;
475            LoopFraction = orig->LoopFraction;
476            LoopPlayCount = orig->LoopPlayCount;
477            
478            // schedule resizing this sample to the given sample's size
479            Resize(orig->GetSize());
480        }
481    
482        /**
483         * Should be called after CopyAssignMeta() and File::Save() sequence.
484         * Read more about it in the discussion of CopyAssignMeta(). This method
485         * copies the actual waveform data by disk streaming.
486         *
487         * @e CAUTION: this method is currently not thread safe! During this
488         * operation the sample must not be used for other purposes by other
489         * threads!
490         *
491         * @param orig - original Sample object to be copied from
492         */
493        void Sample::CopyAssignWave(const Sample* orig) {
494            const int iReadAtOnce = 32*1024;
495            char* buf = new char[iReadAtOnce * orig->FrameSize];
496            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497            file_offset_t restorePos = pOrig->GetPos();
498            pOrig->SetPos(0);
499            SetPos(0);
500            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501                               n = pOrig->Read(buf, iReadAtOnce))
502            {
503                Write(buf, n);
504            }
505            pOrig->SetPos(restorePos);
506            delete [] buf;
507        }
508    
509        /**
510         * Apply sample and its settings to the respective RIFF chunks. You have
511         * to call File::Save() to make changes persistent.
512         *
513         * Usually there is absolutely no need to call this method explicitly.
514         * It will be called automatically when File::Save() was called.
515         *
516         * @param pProgress - callback function for progress notification
517         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518         *                        was provided yet
519         * @throws gig::Exception if there is any invalid sample setting
520         */
521        void Sample::UpdateChunks(progress_t* pProgress) {
522            // first update base class's chunks
523            DLS::Sample::UpdateChunks(pProgress);
524    
525            // make sure 'smpl' chunk exists
526            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527            if (!pCkSmpl) {
528                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529                memset(pCkSmpl->LoadChunkData(), 0, 60);
530            }
531            // update 'smpl' chunk
532            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534            store32(&pData[0], Manufacturer);
535            store32(&pData[4], Product);
536            store32(&pData[8], SamplePeriod);
537            store32(&pData[12], MIDIUnityNote);
538            store32(&pData[16], FineTune);
539            store32(&pData[20], SMPTEFormat);
540            store32(&pData[24], SMPTEOffset);
541            store32(&pData[28], Loops);
542    
543            // we skip 'manufByt' for now (4 bytes)
544    
545            store32(&pData[36], LoopID);
546            store32(&pData[40], LoopType);
547            store32(&pData[44], LoopStart);
548            store32(&pData[48], LoopEnd);
549            store32(&pData[52], LoopFraction);
550            store32(&pData[56], LoopPlayCount);
551    
552            // make sure '3gix' chunk exists
553            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555            // determine appropriate sample group index (to be stored in chunk)
556            uint16_t iSampleGroup = 0; // 0 refers to default sample group
557            File* pFile = static_cast<File*>(pParent);
558            if (pFile->pGroups) {
559                std::list<Group*>::iterator iter = pFile->pGroups->begin();
560                std::list<Group*>::iterator end  = pFile->pGroups->end();
561                for (int i = 0; iter != end; i++, iter++) {
562                    if (*iter == pGroup) {
563                        iSampleGroup = i;
564                        break; // found
565                    }
566                }
567            }
568            // update '3gix' chunk
569            pData = (uint8_t*) pCk3gix->LoadChunkData();
570            store16(&pData[0], iSampleGroup);
571    
572            // if the library user toggled the "Compressed" attribute from true to
573            // false, then the EWAV chunk associated with compressed samples needs
574            // to be deleted
575            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576            if (ewav && !Compressed) {
577                pWaveList->DeleteSubChunk(ewav);
578            }
579      }      }
580    
581      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
583          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
584          this->SamplesTotal = 0;          this->SamplesTotal = 0;
585          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
586    
587          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 320  namespace { Line 598  namespace {
598                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
599                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
600                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602    
603                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
604                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 339  namespace { Line 617  namespace {
617    
618                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
619                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
620                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
621    
622                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
623                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 355  namespace { Line 633  namespace {
633    
634          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
636          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
637          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
638          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
640              FrameTable[i] = *iter;              FrameTable[i] = *iter;
641          }          }
# Line 398  namespace { Line 676  namespace {
676       *                      the cached sample data in bytes       *                      the cached sample data in bytes
677       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
678       */       */
679      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681      }      }
682    
# Line 457  namespace { Line 735  namespace {
735       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
736       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
737       */       */
738      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742            SetPos(0); // reset read position to begin of sample
743          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
744          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 498  namespace { Line 777  namespace {
777          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
779          RAMCache.Size   = 0;          RAMCache.Size   = 0;
780            RAMCache.NullExtensionSize = 0;
781        }
782    
783        /** @brief Resize sample.
784         *
785         * Resizes the sample's wave form data, that is the actual size of
786         * sample wave data possible to be written for this sample. This call
787         * will return immediately and just schedule the resize operation. You
788         * should call File::Save() to actually perform the resize operation(s)
789         * "physically" to the file. As this can take a while on large files, it
790         * is recommended to call Resize() first on all samples which have to be
791         * resized and finally to call File::Save() to perform all those resize
792         * operations in one rush.
793         *
794         * The actual size (in bytes) is dependant to the current FrameSize
795         * value. You may want to set FrameSize before calling Resize().
796         *
797         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798         * enlarged samples before calling File::Save() as this might exceed the
799         * current sample's boundary!
800         *
801         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803         * other formats will fail!
804         *
805         * @param NewSize - new sample wave data size in sample points (must be
806         *                  greater than zero)
807         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809         * @throws gig::Exception if existing sample is compressed
810         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811         *      DLS::Sample::FormatTag, File::Save()
812         */
813        void Sample::Resize(file_offset_t NewSize) {
814            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815            DLS::Sample::Resize(NewSize);
816      }      }
817    
818      /**      /**
# Line 521  namespace { Line 836  namespace {
836       * @returns            the new sample position       * @returns            the new sample position
837       * @see                Read()       * @see                Read()
838       */       */
839      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840          if (Compressed) {          if (Compressed) {
841              switch (Whence) {              switch (Whence) {
842                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 539  namespace { Line 854  namespace {
854              }              }
855              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856    
857              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
859              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
860              return this->SamplePos;              return this->SamplePos;
861          }          }
862          else { // not compressed          else { // not compressed
863              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
864              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
866                                              : result / this->FrameSize;                                              : result / this->FrameSize;
867          }          }
# Line 555  namespace { Line 870  namespace {
870      /**      /**
871       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
872       */       */
873      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
874          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
875          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
876      }      }
# Line 589  namespace { Line 904  namespace {
904       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
905       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
906       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
907         * @param pDimRgn          dimension region with looping information
908       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
909       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
910       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
911       */       */
912      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
916    
917          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
918    
919          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920    
921              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923    
924                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
925                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
926    
927                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
928                              // determine the end position within the loop first,                          do {
929                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
930                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931                              // backward playback  
932                                if (!pPlaybackState->reverse) { // forward playback
933                              unsigned long swapareastart       = totalreadsamples;                                  do {
934                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
935                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
937                                        totalreadsamples += readsamples;
938                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
939                                            pPlaybackState->reverse = true;
940                              // read samples for backward playback                                          break;
941                              do {                                      }
942                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
943                                  samplestoreadinloop -= readsamples;                              }
944                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
945    
946                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
947                                    // determine the end position within the loop first,
948                                    // read forward from that 'end' and finally after
949                                    // reading, swap all sample frames so it reflects
950                                    // backward playback
951    
952                                    file_offset_t swapareastart       = totalreadsamples;
953                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
954                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
956    
957                                    SetPos(reverseplaybackend);
958    
959                                    // read samples for backward playback
960                                    do {
961                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962                                        samplestoreadinloop -= readsamples;
963                                        samplestoread       -= readsamples;
964                                        totalreadsamples    += readsamples;
965                                    } while (samplestoreadinloop && readsamples);
966    
967                                    SetPos(reverseplaybackend); // pretend we really read backwards
968    
969                                    if (reverseplaybackend == loop.LoopStart) {
970                                        pPlaybackState->loop_cycles_left--;
971                                        pPlaybackState->reverse = false;
972                                    }
973    
974                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
975                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977                              }                              }
978                            } while (samplestoread && readsamples);
979                            break;
980                        }
981    
982                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
983                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
984                          }                          if (!pPlaybackState->reverse) do {
985                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
986                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987                  }                              samplestoread    -= readsamples;
988                                totalreadsamples += readsamples;
989                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
990                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
991                      if (!pPlaybackState->reverse) do {                                  break;
992                          samplestoloopend  = this->LoopEnd - GetPos();                              }
993                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
994    
995                      if (!samplestoread) break;                          if (!samplestoread) break;
996    
997                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
998                      // determine the end position within the loop first,                          // determine the end position within the loop first,
999                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1000                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1001                      // backward playback                          // backward playback
1002    
1003                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1004                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1005                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006                                                                                : samplestoread;                                                                                    : samplestoread;
1007                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008    
1009                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1010    
1011                      // read samples for backward playback                          // read samples for backward playback
1012                      do {                          do {
1013                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1014                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1016                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1018                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1019                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1020                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1021                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1022                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1023                          }                              }
1024                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1025    
1026                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1027    
1028                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1029                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                      break;                          break;
1031                  }                      }
1032    
1033                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1034                      do {                          do {
1035                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1036                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1038                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1040                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1041                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1042                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1043                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1044                          }                              }
1045                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1046                      break;                          break;
1047                        }
1048                  }                  }
1049              }              }
1050          }          }
# Line 751  namespace { Line 1074  namespace {
1074       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1075       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1076       *       *
1077         * For 16 bit samples, the data in the buffer will be int16_t
1078         * (using native endianness). For 24 bit, the buffer will
1079         * contain three bytes per sample, little-endian.
1080         *
1081       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1082       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1083       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1084       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1085       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1086       */       */
1087      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1089          if (!Compressed) {          if (!Compressed) {
1090              if (BitDepth == 24) {              if (BitDepth == 24) {
1091                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1092              }              }
1093              else { // 16 bit              else { // 16 bit
1094                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 792  namespace { Line 1099  namespace {
1099          else {          else {
1100              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1101              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1102              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1103                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1104                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1105                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 811  namespace { Line 1118  namespace {
1118    
1119              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123    
1124              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1125                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1126                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127    
1128                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1129    
# Line 892  namespace { Line 1200  namespace {
1200                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1201                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1202    
1203                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1205                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1207                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1208                          }                          }
1209                          else { // Mono                          else { // Mono
1210                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1212                              pDst += copysamples;                              pDst24 += copysamples * 3;
1213                          }                          }
1214                      }                      }
1215                      else { // 16 bit                      else { // 16 bit
# Line 943  namespace { Line 1251  namespace {
1251          }          }
1252      }      }
1253    
1254        /** @brief Write sample wave data.
1255         *
1256         * Writes \a SampleCount number of sample points from the buffer pointed
1257         * by \a pBuffer and increments the position within the sample. Use this
1258         * method to directly write the sample data to disk, i.e. if you don't
1259         * want or cannot load the whole sample data into RAM.
1260         *
1261         * You have to Resize() the sample to the desired size and call
1262         * File::Save() <b>before</b> using Write().
1263         *
1264         * Note: there is currently no support for writing compressed samples.
1265         *
1266         * For 16 bit samples, the data in the source buffer should be
1267         * int16_t (using native endianness). For 24 bit, the buffer
1268         * should contain three bytes per sample, little-endian.
1269         *
1270         * @param pBuffer     - source buffer
1271         * @param SampleCount - number of sample points to write
1272         * @throws DLS::Exception if current sample size is too small
1273         * @throws gig::Exception if sample is compressed
1274         * @see DLS::LoadSampleData()
1275         */
1276        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278    
1279            // if this is the first write in this sample, reset the
1280            // checksum calculator
1281            if (pCkData->GetPos() == 0) {
1282                __resetCRC(crc);
1283            }
1284            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285            file_offset_t res;
1286            if (BitDepth == 24) {
1287                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288            } else { // 16 bit
1289                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290                                    : pCkData->Write(pBuffer, SampleCount, 2);
1291            }
1292            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293    
1294            // if this is the last write, update the checksum chunk in the
1295            // file
1296            if (pCkData->GetPos() == pCkData->GetSize()) {
1297                __finalizeCRC(crc);
1298                File* pFile = static_cast<File*>(GetParent());
1299                pFile->SetSampleChecksum(this, crc);
1300            }
1301            return res;
1302        }
1303    
1304      /**      /**
1305       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1306       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 959  namespace { Line 1317  namespace {
1317       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1318       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1319       */       */
1320      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1321          buffer_t result;          buffer_t result;
1322          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1323                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1324          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1325          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1326          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1327          return result;          return result;
# Line 985  namespace { Line 1343  namespace {
1343          }          }
1344      }      }
1345    
1346        /**
1347         * Returns pointer to the Group this Sample belongs to. In the .gig
1348         * format a sample always belongs to one group. If it wasn't explicitly
1349         * assigned to a certain group, it will be automatically assigned to a
1350         * default group.
1351         *
1352         * @returns Sample's Group (never NULL)
1353         */
1354        Group* Sample::GetGroup() const {
1355            return pGroup;
1356        }
1357    
1358        /**
1359         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1360         * time when this sample's wave form data was modified for the last time
1361         * by calling Write(). This checksum only covers the raw wave form data,
1362         * not any meta informations like i.e. bit depth or loop points. Since
1363         * this method just returns the checksum stored for this sample i.e. when
1364         * the gig file was loaded, this method returns immediately. So it does no
1365         * recalcuation of the checksum with the currently available sample wave
1366         * form data.
1367         *
1368         * @see VerifyWaveData()
1369         */
1370        uint32_t Sample::GetWaveDataCRC32Checksum() {
1371            return crc;
1372        }
1373    
1374        /**
1375         * Checks the integrity of this sample's raw audio wave data. Whenever a
1376         * Sample's raw wave data is intentionally modified (i.e. by calling
1377         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1378         * is calculated and stored/updated for this sample, along to the sample's
1379         * meta informations.
1380         *
1381         * Now by calling this method the current raw audio wave data is checked
1382         * against the already stored CRC32 check sum in order to check whether the
1383         * sample data had been damaged unintentionally for some reason. Since by
1384         * calling this method always the entire raw audio wave data has to be
1385         * read, verifying all samples this way may take a long time accordingly.
1386         * And that's also the reason why the sample integrity is not checked by
1387         * default whenever a gig file is loaded. So this method must be called
1388         * explicitly to fulfill this task.
1389         *
1390         * @param pActually - (optional) if provided, will be set to the actually
1391         *                    calculated checksum of the current raw wave form data,
1392         *                    you can get the expected checksum instead by calling
1393         *                    GetWaveDataCRC32Checksum()
1394         * @returns true if sample is OK or false if the sample is damaged
1395         * @throws Exception if no checksum had been stored to disk for this
1396         *         sample yet, or on I/O issues
1397         * @see GetWaveDataCRC32Checksum()
1398         */
1399        bool Sample::VerifyWaveData(uint32_t* pActually) {
1400            //File* pFile = static_cast<File*>(GetParent());
1401            uint32_t crc = CalculateWaveDataChecksum();
1402            if (pActually) *pActually = crc;
1403            return crc == this->crc;
1404        }
1405    
1406        uint32_t Sample::CalculateWaveDataChecksum() {
1407            const size_t sz = 20*1024; // 20kB buffer size
1408            std::vector<uint8_t> buffer(sz);
1409            buffer.resize(sz);
1410    
1411            const size_t n = sz / FrameSize;
1412            SetPos(0);
1413            uint32_t crc = 0;
1414            __resetCRC(crc);
1415            while (true) {
1416                file_offset_t nRead = Read(&buffer[0], n);
1417                if (nRead <= 0) break;
1418                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1419            }
1420            __finalizeCRC(crc);
1421            return crc;
1422        }
1423    
1424      Sample::~Sample() {      Sample::~Sample() {
1425          Instances--;          Instances--;
1426          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1001  namespace { Line 1437  namespace {
1437  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1438  // *  // *
1439    
1440      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1441      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1442    
1443      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1444          Instances++;          Instances++;
1445    
1446          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1447            pRegion = pParent;
1448    
1449            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1450            else memset(&Crossfade, 0, 4);
1451    
1452          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1453    
1454          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1455          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1456          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1457          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1459          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1460          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1461          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1462          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1463          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1464          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1465          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1466          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1467          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1469          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1470          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1471          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1472          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1473          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1474          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1475          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1476          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1477          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1478          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1479          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1480          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1481          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1482          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1483          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1484          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1487          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1488          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1489          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1490          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1491          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1492          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1494          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1495          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1496          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1497          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1498          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1499          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1500          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1501          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1502          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1503          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1504          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1505          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1506              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1507              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1508          }                  VelocityResponseDepth = velocityresponse;
1509          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1510              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1511              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1512          }              } else if (velocityresponse < 15) {
1513          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1514              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1515              VelocityResponseDepth = velocityresponse - 10;              } else {
1516                    VelocityResponseCurve = curve_type_unknown;
1517                    VelocityResponseDepth = 0;
1518                }
1519                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1520                if (releasevelocityresponse < 5) {
1521                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1522                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1523                } else if (releasevelocityresponse < 10) {
1524                    ReleaseVelocityResponseCurve = curve_type_linear;
1525                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1526                } else if (releasevelocityresponse < 15) {
1527                    ReleaseVelocityResponseCurve = curve_type_special;
1528                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1529                } else {
1530                    ReleaseVelocityResponseCurve = curve_type_unknown;
1531                    ReleaseVelocityResponseDepth = 0;
1532                }
1533                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1534                AttenuationControllerThreshold = _3ewa->ReadInt8();
1535                _3ewa->ReadInt32(); // unknown
1536                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1537                _3ewa->ReadInt16(); // unknown
1538                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1539                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1540                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1541                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1542                else                                       DimensionBypass = dim_bypass_ctrl_none;
1543                uint8_t pan = _3ewa->ReadUint8();
1544                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1545                SelfMask = _3ewa->ReadInt8() & 0x01;
1546                _3ewa->ReadInt8(); // unknown
1547                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1548                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1549                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1550                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1551                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1552                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1553                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1554                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1555                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1556                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1557                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1558                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1559                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1560                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1561                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1562                                                            : vcf_res_ctrl_none;
1563                uint16_t eg3depth = _3ewa->ReadUint16();
1564                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1565                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1566                _3ewa->ReadInt16(); // unknown
1567                ChannelOffset = _3ewa->ReadUint8() / 4;
1568                uint8_t regoptions = _3ewa->ReadUint8();
1569                MSDecode           = regoptions & 0x01; // bit 0
1570                SustainDefeat      = regoptions & 0x02; // bit 1
1571                _3ewa->ReadInt16(); // unknown
1572                VelocityUpperLimit = _3ewa->ReadInt8();
1573                _3ewa->ReadInt8(); // unknown
1574                _3ewa->ReadInt16(); // unknown
1575                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1576                _3ewa->ReadInt8(); // unknown
1577                _3ewa->ReadInt8(); // unknown
1578                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1579                uint8_t vcfcutoff = _3ewa->ReadUint8();
1580                VCFEnabled = vcfcutoff & 0x80; // bit 7
1581                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1582                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1583                uint8_t vcfvelscale = _3ewa->ReadUint8();
1584                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1585                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1586                _3ewa->ReadInt8(); // unknown
1587                uint8_t vcfresonance = _3ewa->ReadUint8();
1588                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1589                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1590                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1591                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1592                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1593                uint8_t vcfvelocity = _3ewa->ReadUint8();
1594                VCFVelocityDynamicRange = vcfvelocity % 5;
1595                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1596                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1597                if (VCFType == vcf_type_lowpass) {
1598                    if (lfo3ctrl & 0x40) // bit 6
1599                        VCFType = vcf_type_lowpassturbo;
1600                }
1601                if (_3ewa->RemainingBytes() >= 8) {
1602                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1603                } else {
1604                    memset(DimensionUpperLimits, 0, 8);
1605                }
1606            } else { // '3ewa' chunk does not exist yet
1607                // use default values
1608                LFO3Frequency                   = 1.0;
1609                EG3Attack                       = 0.0;
1610                LFO1InternalDepth               = 0;
1611                LFO3InternalDepth               = 0;
1612                LFO1ControlDepth                = 0;
1613                LFO3ControlDepth                = 0;
1614                EG1Attack                       = 0.0;
1615                EG1Decay1                       = 0.005;
1616                EG1Sustain                      = 1000;
1617                EG1Release                      = 0.3;
1618                EG1Controller.type              = eg1_ctrl_t::type_none;
1619                EG1Controller.controller_number = 0;
1620                EG1ControllerInvert             = false;
1621                EG1ControllerAttackInfluence    = 0;
1622                EG1ControllerDecayInfluence     = 0;
1623                EG1ControllerReleaseInfluence   = 0;
1624                EG2Controller.type              = eg2_ctrl_t::type_none;
1625                EG2Controller.controller_number = 0;
1626                EG2ControllerInvert             = false;
1627                EG2ControllerAttackInfluence    = 0;
1628                EG2ControllerDecayInfluence     = 0;
1629                EG2ControllerReleaseInfluence   = 0;
1630                LFO1Frequency                   = 1.0;
1631                EG2Attack                       = 0.0;
1632                EG2Decay1                       = 0.005;
1633                EG2Sustain                      = 1000;
1634                EG2Release                      = 60;
1635                LFO2ControlDepth                = 0;
1636                LFO2Frequency                   = 1.0;
1637                LFO2InternalDepth               = 0;
1638                EG1Decay2                       = 0.0;
1639                EG1InfiniteSustain              = true;
1640                EG1PreAttack                    = 0;
1641                EG2Decay2                       = 0.0;
1642                EG2InfiniteSustain              = true;
1643                EG2PreAttack                    = 0;
1644                VelocityResponseCurve           = curve_type_nonlinear;
1645                VelocityResponseDepth           = 3;
1646                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1647                ReleaseVelocityResponseDepth    = 3;
1648                VelocityResponseCurveScaling    = 32;
1649                AttenuationControllerThreshold  = 0;
1650                SampleStartOffset               = 0;
1651                PitchTrack                      = true;
1652                DimensionBypass                 = dim_bypass_ctrl_none;
1653                Pan                             = 0;
1654                SelfMask                        = true;
1655                LFO3Controller                  = lfo3_ctrl_modwheel;
1656                LFO3Sync                        = false;
1657                InvertAttenuationController     = false;
1658                AttenuationController.type      = attenuation_ctrl_t::type_none;
1659                AttenuationController.controller_number = 0;
1660                LFO2Controller                  = lfo2_ctrl_internal;
1661                LFO2FlipPhase                   = false;
1662                LFO2Sync                        = false;
1663                LFO1Controller                  = lfo1_ctrl_internal;
1664                LFO1FlipPhase                   = false;
1665                LFO1Sync                        = false;
1666                VCFResonanceController          = vcf_res_ctrl_none;
1667                EG3Depth                        = 0;
1668                ChannelOffset                   = 0;
1669                MSDecode                        = false;
1670                SustainDefeat                   = false;
1671                VelocityUpperLimit              = 0;
1672                ReleaseTriggerDecay             = 0;
1673                EG1Hold                         = false;
1674                VCFEnabled                      = false;
1675                VCFCutoff                       = 0;
1676                VCFCutoffController             = vcf_cutoff_ctrl_none;
1677                VCFCutoffControllerInvert       = false;
1678                VCFVelocityScale                = 0;
1679                VCFResonance                    = 0;
1680                VCFResonanceDynamic             = false;
1681                VCFKeyboardTracking             = false;
1682                VCFKeyboardTrackingBreakpoint   = 0;
1683                VCFVelocityDynamicRange         = 0x04;
1684                VCFVelocityCurve                = curve_type_linear;
1685                VCFType                         = vcf_type_lowpass;
1686                memset(DimensionUpperLimits, 127, 8);
1687            }
1688    
1689            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1690                                                         VelocityResponseDepth,
1691                                                         VelocityResponseCurveScaling);
1692    
1693            pVelocityReleaseTable = GetReleaseVelocityTable(
1694                                        ReleaseVelocityResponseCurve,
1695                                        ReleaseVelocityResponseDepth
1696                                    );
1697    
1698            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1699                                                          VCFVelocityDynamicRange,
1700                                                          VCFVelocityScale,
1701                                                          VCFCutoffController);
1702    
1703            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1704            VelocityTable = 0;
1705        }
1706    
1707        /*
1708         * Constructs a DimensionRegion by copying all parameters from
1709         * another DimensionRegion
1710         */
1711        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1712            Instances++;
1713            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1714            *this = src; // default memberwise shallow copy of all parameters
1715            pParentList = _3ewl; // restore the chunk pointer
1716    
1717            // deep copy of owned structures
1718            if (src.VelocityTable) {
1719                VelocityTable = new uint8_t[128];
1720                for (int k = 0 ; k < 128 ; k++)
1721                    VelocityTable[k] = src.VelocityTable[k];
1722            }
1723            if (src.pSampleLoops) {
1724                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1725                for (int k = 0 ; k < src.SampleLoops ; k++)
1726                    pSampleLoops[k] = src.pSampleLoops[k];
1727          }          }
1728          else {      }
1729              VelocityResponseCurve = curve_type_unknown;      
1730              VelocityResponseDepth = 0;      /**
1731         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1732         * and assign it to this object.
1733         *
1734         * Note that all sample pointers referenced by @a orig are simply copied as
1735         * memory address. Thus the respective samples are shared, not duplicated!
1736         *
1737         * @param orig - original DimensionRegion object to be copied from
1738         */
1739        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1740            CopyAssign(orig, NULL);
1741        }
1742    
1743        /**
1744         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1745         * and assign it to this object.
1746         *
1747         * @param orig - original DimensionRegion object to be copied from
1748         * @param mSamples - crosslink map between the foreign file's samples and
1749         *                   this file's samples
1750         */
1751        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1752            // delete all allocated data first
1753            if (VelocityTable) delete [] VelocityTable;
1754            if (pSampleLoops) delete [] pSampleLoops;
1755            
1756            // backup parent list pointer
1757            RIFF::List* p = pParentList;
1758            
1759            gig::Sample* pOriginalSample = pSample;
1760            gig::Region* pOriginalRegion = pRegion;
1761            
1762            //NOTE: copy code copied from assignment constructor above, see comment there as well
1763            
1764            *this = *orig; // default memberwise shallow copy of all parameters
1765            
1766            // restore members that shall not be altered
1767            pParentList = p; // restore the chunk pointer
1768            pRegion = pOriginalRegion;
1769            
1770            // only take the raw sample reference reference if the
1771            // two DimensionRegion objects are part of the same file
1772            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1773                pSample = pOriginalSample;
1774            }
1775            
1776            if (mSamples && mSamples->count(orig->pSample)) {
1777                pSample = mSamples->find(orig->pSample)->second;
1778            }
1779    
1780            // deep copy of owned structures
1781            if (orig->VelocityTable) {
1782                VelocityTable = new uint8_t[128];
1783                for (int k = 0 ; k < 128 ; k++)
1784                    VelocityTable[k] = orig->VelocityTable[k];
1785            }
1786            if (orig->pSampleLoops) {
1787                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1788                for (int k = 0 ; k < orig->SampleLoops ; k++)
1789                    pSampleLoops[k] = orig->pSampleLoops[k];
1790          }          }
1791          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1792          if (releasevelocityresponse < 5) {  
1793              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1794              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Updates the respective member variable and updates @c SampleAttenuation
1795          }       * which depends on this value.
1796          else if (releasevelocityresponse < 10) {       */
1797              ReleaseVelocityResponseCurve = curve_type_linear;      void DimensionRegion::SetGain(int32_t gain) {
1798              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          DLS::Sampler::SetGain(gain);
1799          }          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1800          else if (releasevelocityresponse < 15) {      }
1801              ReleaseVelocityResponseCurve = curve_type_special;  
1802              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      /**
1803         * Apply dimension region settings to the respective RIFF chunks. You
1804         * have to call File::Save() to make changes persistent.
1805         *
1806         * Usually there is absolutely no need to call this method explicitly.
1807         * It will be called automatically when File::Save() was called.
1808         *
1809         * @param pProgress - callback function for progress notification
1810         */
1811        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1812            // first update base class's chunk
1813            DLS::Sampler::UpdateChunks(pProgress);
1814    
1815            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1816            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1817            pData[12] = Crossfade.in_start;
1818            pData[13] = Crossfade.in_end;
1819            pData[14] = Crossfade.out_start;
1820            pData[15] = Crossfade.out_end;
1821    
1822            // make sure '3ewa' chunk exists
1823            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1824            if (!_3ewa) {
1825                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1826                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1827                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1828          }          }
1829          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1830              ReleaseVelocityResponseCurve = curve_type_unknown;  
1831              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
1832    
1833            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1834            store32(&pData[0], chunksize); // unknown, always chunk size?
1835    
1836            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1837            store32(&pData[4], lfo3freq);
1838    
1839            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1840            store32(&pData[8], eg3attack);
1841    
1842            // next 2 bytes unknown
1843    
1844            store16(&pData[14], LFO1InternalDepth);
1845    
1846            // next 2 bytes unknown
1847    
1848            store16(&pData[18], LFO3InternalDepth);
1849    
1850            // next 2 bytes unknown
1851    
1852            store16(&pData[22], LFO1ControlDepth);
1853    
1854            // next 2 bytes unknown
1855    
1856            store16(&pData[26], LFO3ControlDepth);
1857    
1858            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1859            store32(&pData[28], eg1attack);
1860    
1861            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1862            store32(&pData[32], eg1decay1);
1863    
1864            // next 2 bytes unknown
1865    
1866            store16(&pData[38], EG1Sustain);
1867    
1868            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1869            store32(&pData[40], eg1release);
1870    
1871            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1872            pData[44] = eg1ctl;
1873    
1874            const uint8_t eg1ctrloptions =
1875                (EG1ControllerInvert ? 0x01 : 0x00) |
1876                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1877                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1878                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1879            pData[45] = eg1ctrloptions;
1880    
1881            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1882            pData[46] = eg2ctl;
1883    
1884            const uint8_t eg2ctrloptions =
1885                (EG2ControllerInvert ? 0x01 : 0x00) |
1886                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1887                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1888                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1889            pData[47] = eg2ctrloptions;
1890    
1891            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1892            store32(&pData[48], lfo1freq);
1893    
1894            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1895            store32(&pData[52], eg2attack);
1896    
1897            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1898            store32(&pData[56], eg2decay1);
1899    
1900            // next 2 bytes unknown
1901    
1902            store16(&pData[62], EG2Sustain);
1903    
1904            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1905            store32(&pData[64], eg2release);
1906    
1907            // next 2 bytes unknown
1908    
1909            store16(&pData[70], LFO2ControlDepth);
1910    
1911            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1912            store32(&pData[72], lfo2freq);
1913    
1914            // next 2 bytes unknown
1915    
1916            store16(&pData[78], LFO2InternalDepth);
1917    
1918            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1919            store32(&pData[80], eg1decay2);
1920    
1921            // next 2 bytes unknown
1922    
1923            store16(&pData[86], EG1PreAttack);
1924    
1925            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1926            store32(&pData[88], eg2decay2);
1927    
1928            // next 2 bytes unknown
1929    
1930            store16(&pData[94], EG2PreAttack);
1931    
1932            {
1933                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1934                uint8_t velocityresponse = VelocityResponseDepth;
1935                switch (VelocityResponseCurve) {
1936                    case curve_type_nonlinear:
1937                        break;
1938                    case curve_type_linear:
1939                        velocityresponse += 5;
1940                        break;
1941                    case curve_type_special:
1942                        velocityresponse += 10;
1943                        break;
1944                    case curve_type_unknown:
1945                    default:
1946                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1947                }
1948                pData[96] = velocityresponse;
1949            }
1950    
1951            {
1952                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1953                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1954                switch (ReleaseVelocityResponseCurve) {
1955                    case curve_type_nonlinear:
1956                        break;
1957                    case curve_type_linear:
1958                        releasevelocityresponse += 5;
1959                        break;
1960                    case curve_type_special:
1961                        releasevelocityresponse += 10;
1962                        break;
1963                    case curve_type_unknown:
1964                    default:
1965                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1966                }
1967                pData[97] = releasevelocityresponse;
1968            }
1969    
1970            pData[98] = VelocityResponseCurveScaling;
1971    
1972            pData[99] = AttenuationControllerThreshold;
1973    
1974            // next 4 bytes unknown
1975    
1976            store16(&pData[104], SampleStartOffset);
1977    
1978            // next 2 bytes unknown
1979    
1980            {
1981                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1982                switch (DimensionBypass) {
1983                    case dim_bypass_ctrl_94:
1984                        pitchTrackDimensionBypass |= 0x10;
1985                        break;
1986                    case dim_bypass_ctrl_95:
1987                        pitchTrackDimensionBypass |= 0x20;
1988                        break;
1989                    case dim_bypass_ctrl_none:
1990                        //FIXME: should we set anything here?
1991                        break;
1992                    default:
1993                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1994                }
1995                pData[108] = pitchTrackDimensionBypass;
1996          }          }
1997          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
1998          AttenuationControllerThreshold = _3ewa->ReadInt8();          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1999          _3ewa->ReadInt32(); // unknown          pData[109] = pan;
2000          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
2001          _3ewa->ReadInt16(); // unknown          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2002          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          pData[110] = selfmask;
2003          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
2004          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;          // next byte unknown
2005          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
2006          else                                       DimensionBypass = dim_bypass_ctrl_none;          {
2007          uint8_t pan = _3ewa->ReadUint8();              uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2008          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2009          SelfMask = _3ewa->ReadInt8() & 0x01;              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2010          _3ewa->ReadInt8(); // unknown              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2011          uint8_t lfo3ctrl = _3ewa->ReadUint8();              pData[112] = lfo3ctrl;
2012          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits          }
2013          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
2014          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2015          AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));          pData[113] = attenctl;
2016          uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
2017          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits          {
2018          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2019          LFO2Sync               = lfo2ctrl & 0x20; // bit 5              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2020          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2021          uint8_t lfo1ctrl       = _3ewa->ReadUint8();              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2022          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits              pData[114] = lfo2ctrl;
2023          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7          }
2024          LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
2025          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))          {
2026                                                      : vcf_res_ctrl_none;              uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2027          uint16_t eg3depth = _3ewa->ReadUint16();              if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2028          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2029                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */              if (VCFResonanceController != vcf_res_ctrl_none)
2030          _3ewa->ReadInt16(); // unknown                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2031          ChannelOffset = _3ewa->ReadUint8() / 4;              pData[115] = lfo1ctrl;
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
2032          }          }
2033    
2034          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2035          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2036            store16(&pData[116], eg3depth);
2037    
2038            // next 2 bytes unknown
2039    
2040            const uint8_t channeloffset = ChannelOffset * 4;
2041            pData[120] = channeloffset;
2042    
2043            {
2044                uint8_t regoptions = 0;
2045                if (MSDecode)      regoptions |= 0x01; // bit 0
2046                if (SustainDefeat) regoptions |= 0x02; // bit 1
2047                pData[121] = regoptions;
2048            }
2049    
2050            // next 2 bytes unknown
2051    
2052            pData[124] = VelocityUpperLimit;
2053    
2054            // next 3 bytes unknown
2055    
2056            pData[128] = ReleaseTriggerDecay;
2057    
2058            // next 2 bytes unknown
2059    
2060            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2061            pData[131] = eg1hold;
2062    
2063            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2064                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2065            pData[132] = vcfcutoff;
2066    
2067            pData[133] = VCFCutoffController;
2068    
2069            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2070                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2071            pData[134] = vcfvelscale;
2072    
2073            // next byte unknown
2074    
2075            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2076                                         (VCFResonance & 0x7f); /* lower 7 bits */
2077            pData[136] = vcfresonance;
2078    
2079            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2080                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2081            pData[137] = vcfbreakpoint;
2082    
2083            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2084                                        VCFVelocityCurve * 5;
2085            pData[138] = vcfvelocity;
2086    
2087            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2088            pData[139] = vcftype;
2089    
2090            if (chunksize >= 148) {
2091                memcpy(&pData[140], DimensionUpperLimits, 8);
2092            }
2093        }
2094    
2095        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2096            curve_type_t curveType = releaseVelocityResponseCurve;
2097            uint8_t depth = releaseVelocityResponseDepth;
2098            // this models a strange behaviour or bug in GSt: two of the
2099            // velocity response curves for release time are not used even
2100            // if specified, instead another curve is chosen.
2101            if ((curveType == curve_type_nonlinear && depth == 0) ||
2102                (curveType == curve_type_special   && depth == 4)) {
2103                curveType = curve_type_nonlinear;
2104                depth = 3;
2105            }
2106            return GetVelocityTable(curveType, depth, 0);
2107        }
2108    
2109        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2110                                                        uint8_t vcfVelocityDynamicRange,
2111                                                        uint8_t vcfVelocityScale,
2112                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2113        {
2114            curve_type_t curveType = vcfVelocityCurve;
2115            uint8_t depth = vcfVelocityDynamicRange;
2116            // even stranger GSt: two of the velocity response curves for
2117            // filter cutoff are not used, instead another special curve
2118            // is chosen. This curve is not used anywhere else.
2119            if ((curveType == curve_type_nonlinear && depth == 0) ||
2120                (curveType == curve_type_special   && depth == 4)) {
2121                curveType = curve_type_special;
2122                depth = 5;
2123            }
2124            return GetVelocityTable(curveType, depth,
2125                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2126                                        ? vcfVelocityScale : 0);
2127        }
2128    
2129        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2130        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2131        {
2132            double* table;
2133            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2134          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2135              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2136          }          }
2137          else {          else {
2138              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2139                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2140          }          }
2141            return table;
2142        }
2143    
2144          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));      Region* DimensionRegion::GetParent() const {
2145            return pRegion;
2146      }      }
2147    
2148    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2149    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2150    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2151    //#pragma GCC diagnostic push
2152    //#pragma GCC diagnostic error "-Wswitch"
2153    
2154      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2155          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2156          switch (EncodedController) {          switch (EncodedController) {
# Line 1288  namespace { Line 2262  namespace {
2262                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2263                  break;                  break;
2264    
2265                // format extension (these controllers are so far only supported by
2266                // LinuxSampler & gigedit) they will *NOT* work with
2267                // Gigasampler/GigaStudio !
2268                case _lev_ctrl_CC3_EXT:
2269                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270                    decodedcontroller.controller_number = 3;
2271                    break;
2272                case _lev_ctrl_CC6_EXT:
2273                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274                    decodedcontroller.controller_number = 6;
2275                    break;
2276                case _lev_ctrl_CC7_EXT:
2277                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278                    decodedcontroller.controller_number = 7;
2279                    break;
2280                case _lev_ctrl_CC8_EXT:
2281                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282                    decodedcontroller.controller_number = 8;
2283                    break;
2284                case _lev_ctrl_CC9_EXT:
2285                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286                    decodedcontroller.controller_number = 9;
2287                    break;
2288                case _lev_ctrl_CC10_EXT:
2289                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290                    decodedcontroller.controller_number = 10;
2291                    break;
2292                case _lev_ctrl_CC11_EXT:
2293                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294                    decodedcontroller.controller_number = 11;
2295                    break;
2296                case _lev_ctrl_CC14_EXT:
2297                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298                    decodedcontroller.controller_number = 14;
2299                    break;
2300                case _lev_ctrl_CC15_EXT:
2301                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302                    decodedcontroller.controller_number = 15;
2303                    break;
2304                case _lev_ctrl_CC20_EXT:
2305                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306                    decodedcontroller.controller_number = 20;
2307                    break;
2308                case _lev_ctrl_CC21_EXT:
2309                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310                    decodedcontroller.controller_number = 21;
2311                    break;
2312                case _lev_ctrl_CC22_EXT:
2313                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314                    decodedcontroller.controller_number = 22;
2315                    break;
2316                case _lev_ctrl_CC23_EXT:
2317                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318                    decodedcontroller.controller_number = 23;
2319                    break;
2320                case _lev_ctrl_CC24_EXT:
2321                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322                    decodedcontroller.controller_number = 24;
2323                    break;
2324                case _lev_ctrl_CC25_EXT:
2325                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326                    decodedcontroller.controller_number = 25;
2327                    break;
2328                case _lev_ctrl_CC26_EXT:
2329                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330                    decodedcontroller.controller_number = 26;
2331                    break;
2332                case _lev_ctrl_CC27_EXT:
2333                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334                    decodedcontroller.controller_number = 27;
2335                    break;
2336                case _lev_ctrl_CC28_EXT:
2337                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338                    decodedcontroller.controller_number = 28;
2339                    break;
2340                case _lev_ctrl_CC29_EXT:
2341                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342                    decodedcontroller.controller_number = 29;
2343                    break;
2344                case _lev_ctrl_CC30_EXT:
2345                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346                    decodedcontroller.controller_number = 30;
2347                    break;
2348                case _lev_ctrl_CC31_EXT:
2349                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350                    decodedcontroller.controller_number = 31;
2351                    break;
2352                case _lev_ctrl_CC68_EXT:
2353                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354                    decodedcontroller.controller_number = 68;
2355                    break;
2356                case _lev_ctrl_CC69_EXT:
2357                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358                    decodedcontroller.controller_number = 69;
2359                    break;
2360                case _lev_ctrl_CC70_EXT:
2361                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362                    decodedcontroller.controller_number = 70;
2363                    break;
2364                case _lev_ctrl_CC71_EXT:
2365                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366                    decodedcontroller.controller_number = 71;
2367                    break;
2368                case _lev_ctrl_CC72_EXT:
2369                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370                    decodedcontroller.controller_number = 72;
2371                    break;
2372                case _lev_ctrl_CC73_EXT:
2373                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374                    decodedcontroller.controller_number = 73;
2375                    break;
2376                case _lev_ctrl_CC74_EXT:
2377                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378                    decodedcontroller.controller_number = 74;
2379                    break;
2380                case _lev_ctrl_CC75_EXT:
2381                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382                    decodedcontroller.controller_number = 75;
2383                    break;
2384                case _lev_ctrl_CC76_EXT:
2385                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386                    decodedcontroller.controller_number = 76;
2387                    break;
2388                case _lev_ctrl_CC77_EXT:
2389                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390                    decodedcontroller.controller_number = 77;
2391                    break;
2392                case _lev_ctrl_CC78_EXT:
2393                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394                    decodedcontroller.controller_number = 78;
2395                    break;
2396                case _lev_ctrl_CC79_EXT:
2397                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398                    decodedcontroller.controller_number = 79;
2399                    break;
2400                case _lev_ctrl_CC84_EXT:
2401                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402                    decodedcontroller.controller_number = 84;
2403                    break;
2404                case _lev_ctrl_CC85_EXT:
2405                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406                    decodedcontroller.controller_number = 85;
2407                    break;
2408                case _lev_ctrl_CC86_EXT:
2409                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410                    decodedcontroller.controller_number = 86;
2411                    break;
2412                case _lev_ctrl_CC87_EXT:
2413                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414                    decodedcontroller.controller_number = 87;
2415                    break;
2416                case _lev_ctrl_CC89_EXT:
2417                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418                    decodedcontroller.controller_number = 89;
2419                    break;
2420                case _lev_ctrl_CC90_EXT:
2421                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422                    decodedcontroller.controller_number = 90;
2423                    break;
2424                case _lev_ctrl_CC96_EXT:
2425                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426                    decodedcontroller.controller_number = 96;
2427                    break;
2428                case _lev_ctrl_CC97_EXT:
2429                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430                    decodedcontroller.controller_number = 97;
2431                    break;
2432                case _lev_ctrl_CC102_EXT:
2433                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434                    decodedcontroller.controller_number = 102;
2435                    break;
2436                case _lev_ctrl_CC103_EXT:
2437                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438                    decodedcontroller.controller_number = 103;
2439                    break;
2440                case _lev_ctrl_CC104_EXT:
2441                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442                    decodedcontroller.controller_number = 104;
2443                    break;
2444                case _lev_ctrl_CC105_EXT:
2445                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2446                    decodedcontroller.controller_number = 105;
2447                    break;
2448                case _lev_ctrl_CC106_EXT:
2449                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450                    decodedcontroller.controller_number = 106;
2451                    break;
2452                case _lev_ctrl_CC107_EXT:
2453                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454                    decodedcontroller.controller_number = 107;
2455                    break;
2456                case _lev_ctrl_CC108_EXT:
2457                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458                    decodedcontroller.controller_number = 108;
2459                    break;
2460                case _lev_ctrl_CC109_EXT:
2461                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462                    decodedcontroller.controller_number = 109;
2463                    break;
2464                case _lev_ctrl_CC110_EXT:
2465                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466                    decodedcontroller.controller_number = 110;
2467                    break;
2468                case _lev_ctrl_CC111_EXT:
2469                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470                    decodedcontroller.controller_number = 111;
2471                    break;
2472                case _lev_ctrl_CC112_EXT:
2473                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474                    decodedcontroller.controller_number = 112;
2475                    break;
2476                case _lev_ctrl_CC113_EXT:
2477                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478                    decodedcontroller.controller_number = 113;
2479                    break;
2480                case _lev_ctrl_CC114_EXT:
2481                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482                    decodedcontroller.controller_number = 114;
2483                    break;
2484                case _lev_ctrl_CC115_EXT:
2485                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486                    decodedcontroller.controller_number = 115;
2487                    break;
2488                case _lev_ctrl_CC116_EXT:
2489                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490                    decodedcontroller.controller_number = 116;
2491                    break;
2492                case _lev_ctrl_CC117_EXT:
2493                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494                    decodedcontroller.controller_number = 117;
2495                    break;
2496                case _lev_ctrl_CC118_EXT:
2497                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498                    decodedcontroller.controller_number = 118;
2499                    break;
2500                case _lev_ctrl_CC119_EXT:
2501                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502                    decodedcontroller.controller_number = 119;
2503                    break;
2504    
2505              // unknown controller type              // unknown controller type
2506              default:              default:
2507                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2508          }          }
2509          return decodedcontroller;          return decodedcontroller;
2510      }      }
2511        
2512    // see above (diagnostic push not supported prior GCC 4.6)
2513    //#pragma GCC diagnostic pop
2514    
2515        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2516            _lev_ctrl_t encodedcontroller;
2517            switch (DecodedController.type) {
2518                // special controller
2519                case leverage_ctrl_t::type_none:
2520                    encodedcontroller = _lev_ctrl_none;
2521                    break;
2522                case leverage_ctrl_t::type_velocity:
2523                    encodedcontroller = _lev_ctrl_velocity;
2524                    break;
2525                case leverage_ctrl_t::type_channelaftertouch:
2526                    encodedcontroller = _lev_ctrl_channelaftertouch;
2527                    break;
2528    
2529                // ordinary MIDI control change controller
2530                case leverage_ctrl_t::type_controlchange:
2531                    switch (DecodedController.controller_number) {
2532                        case 1:
2533                            encodedcontroller = _lev_ctrl_modwheel;
2534                            break;
2535                        case 2:
2536                            encodedcontroller = _lev_ctrl_breath;
2537                            break;
2538                        case 4:
2539                            encodedcontroller = _lev_ctrl_foot;
2540                            break;
2541                        case 12:
2542                            encodedcontroller = _lev_ctrl_effect1;
2543                            break;
2544                        case 13:
2545                            encodedcontroller = _lev_ctrl_effect2;
2546                            break;
2547                        case 16:
2548                            encodedcontroller = _lev_ctrl_genpurpose1;
2549                            break;
2550                        case 17:
2551                            encodedcontroller = _lev_ctrl_genpurpose2;
2552                            break;
2553                        case 18:
2554                            encodedcontroller = _lev_ctrl_genpurpose3;
2555                            break;
2556                        case 19:
2557                            encodedcontroller = _lev_ctrl_genpurpose4;
2558                            break;
2559                        case 5:
2560                            encodedcontroller = _lev_ctrl_portamentotime;
2561                            break;
2562                        case 64:
2563                            encodedcontroller = _lev_ctrl_sustainpedal;
2564                            break;
2565                        case 65:
2566                            encodedcontroller = _lev_ctrl_portamento;
2567                            break;
2568                        case 66:
2569                            encodedcontroller = _lev_ctrl_sostenutopedal;
2570                            break;
2571                        case 67:
2572                            encodedcontroller = _lev_ctrl_softpedal;
2573                            break;
2574                        case 80:
2575                            encodedcontroller = _lev_ctrl_genpurpose5;
2576                            break;
2577                        case 81:
2578                            encodedcontroller = _lev_ctrl_genpurpose6;
2579                            break;
2580                        case 82:
2581                            encodedcontroller = _lev_ctrl_genpurpose7;
2582                            break;
2583                        case 83:
2584                            encodedcontroller = _lev_ctrl_genpurpose8;
2585                            break;
2586                        case 91:
2587                            encodedcontroller = _lev_ctrl_effect1depth;
2588                            break;
2589                        case 92:
2590                            encodedcontroller = _lev_ctrl_effect2depth;
2591                            break;
2592                        case 93:
2593                            encodedcontroller = _lev_ctrl_effect3depth;
2594                            break;
2595                        case 94:
2596                            encodedcontroller = _lev_ctrl_effect4depth;
2597                            break;
2598                        case 95:
2599                            encodedcontroller = _lev_ctrl_effect5depth;
2600                            break;
2601    
2602                        // format extension (these controllers are so far only
2603                        // supported by LinuxSampler & gigedit) they will *NOT*
2604                        // work with Gigasampler/GigaStudio !
2605                        case 3:
2606                            encodedcontroller = _lev_ctrl_CC3_EXT;
2607                            break;
2608                        case 6:
2609                            encodedcontroller = _lev_ctrl_CC6_EXT;
2610                            break;
2611                        case 7:
2612                            encodedcontroller = _lev_ctrl_CC7_EXT;
2613                            break;
2614                        case 8:
2615                            encodedcontroller = _lev_ctrl_CC8_EXT;
2616                            break;
2617                        case 9:
2618                            encodedcontroller = _lev_ctrl_CC9_EXT;
2619                            break;
2620                        case 10:
2621                            encodedcontroller = _lev_ctrl_CC10_EXT;
2622                            break;
2623                        case 11:
2624                            encodedcontroller = _lev_ctrl_CC11_EXT;
2625                            break;
2626                        case 14:
2627                            encodedcontroller = _lev_ctrl_CC14_EXT;
2628                            break;
2629                        case 15:
2630                            encodedcontroller = _lev_ctrl_CC15_EXT;
2631                            break;
2632                        case 20:
2633                            encodedcontroller = _lev_ctrl_CC20_EXT;
2634                            break;
2635                        case 21:
2636                            encodedcontroller = _lev_ctrl_CC21_EXT;
2637                            break;
2638                        case 22:
2639                            encodedcontroller = _lev_ctrl_CC22_EXT;
2640                            break;
2641                        case 23:
2642                            encodedcontroller = _lev_ctrl_CC23_EXT;
2643                            break;
2644                        case 24:
2645                            encodedcontroller = _lev_ctrl_CC24_EXT;
2646                            break;
2647                        case 25:
2648                            encodedcontroller = _lev_ctrl_CC25_EXT;
2649                            break;
2650                        case 26:
2651                            encodedcontroller = _lev_ctrl_CC26_EXT;
2652                            break;
2653                        case 27:
2654                            encodedcontroller = _lev_ctrl_CC27_EXT;
2655                            break;
2656                        case 28:
2657                            encodedcontroller = _lev_ctrl_CC28_EXT;
2658                            break;
2659                        case 29:
2660                            encodedcontroller = _lev_ctrl_CC29_EXT;
2661                            break;
2662                        case 30:
2663                            encodedcontroller = _lev_ctrl_CC30_EXT;
2664                            break;
2665                        case 31:
2666                            encodedcontroller = _lev_ctrl_CC31_EXT;
2667                            break;
2668                        case 68:
2669                            encodedcontroller = _lev_ctrl_CC68_EXT;
2670                            break;
2671                        case 69:
2672                            encodedcontroller = _lev_ctrl_CC69_EXT;
2673                            break;
2674                        case 70:
2675                            encodedcontroller = _lev_ctrl_CC70_EXT;
2676                            break;
2677                        case 71:
2678                            encodedcontroller = _lev_ctrl_CC71_EXT;
2679                            break;
2680                        case 72:
2681                            encodedcontroller = _lev_ctrl_CC72_EXT;
2682                            break;
2683                        case 73:
2684                            encodedcontroller = _lev_ctrl_CC73_EXT;
2685                            break;
2686                        case 74:
2687                            encodedcontroller = _lev_ctrl_CC74_EXT;
2688                            break;
2689                        case 75:
2690                            encodedcontroller = _lev_ctrl_CC75_EXT;
2691                            break;
2692                        case 76:
2693                            encodedcontroller = _lev_ctrl_CC76_EXT;
2694                            break;
2695                        case 77:
2696                            encodedcontroller = _lev_ctrl_CC77_EXT;
2697                            break;
2698                        case 78:
2699                            encodedcontroller = _lev_ctrl_CC78_EXT;
2700                            break;
2701                        case 79:
2702                            encodedcontroller = _lev_ctrl_CC79_EXT;
2703                            break;
2704                        case 84:
2705                            encodedcontroller = _lev_ctrl_CC84_EXT;
2706                            break;
2707                        case 85:
2708                            encodedcontroller = _lev_ctrl_CC85_EXT;
2709                            break;
2710                        case 86:
2711                            encodedcontroller = _lev_ctrl_CC86_EXT;
2712                            break;
2713                        case 87:
2714                            encodedcontroller = _lev_ctrl_CC87_EXT;
2715                            break;
2716                        case 89:
2717                            encodedcontroller = _lev_ctrl_CC89_EXT;
2718                            break;
2719                        case 90:
2720                            encodedcontroller = _lev_ctrl_CC90_EXT;
2721                            break;
2722                        case 96:
2723                            encodedcontroller = _lev_ctrl_CC96_EXT;
2724                            break;
2725                        case 97:
2726                            encodedcontroller = _lev_ctrl_CC97_EXT;
2727                            break;
2728                        case 102:
2729                            encodedcontroller = _lev_ctrl_CC102_EXT;
2730                            break;
2731                        case 103:
2732                            encodedcontroller = _lev_ctrl_CC103_EXT;
2733                            break;
2734                        case 104:
2735                            encodedcontroller = _lev_ctrl_CC104_EXT;
2736                            break;
2737                        case 105:
2738                            encodedcontroller = _lev_ctrl_CC105_EXT;
2739                            break;
2740                        case 106:
2741                            encodedcontroller = _lev_ctrl_CC106_EXT;
2742                            break;
2743                        case 107:
2744                            encodedcontroller = _lev_ctrl_CC107_EXT;
2745                            break;
2746                        case 108:
2747                            encodedcontroller = _lev_ctrl_CC108_EXT;
2748                            break;
2749                        case 109:
2750                            encodedcontroller = _lev_ctrl_CC109_EXT;
2751                            break;
2752                        case 110:
2753                            encodedcontroller = _lev_ctrl_CC110_EXT;
2754                            break;
2755                        case 111:
2756                            encodedcontroller = _lev_ctrl_CC111_EXT;
2757                            break;
2758                        case 112:
2759                            encodedcontroller = _lev_ctrl_CC112_EXT;
2760                            break;
2761                        case 113:
2762                            encodedcontroller = _lev_ctrl_CC113_EXT;
2763                            break;
2764                        case 114:
2765                            encodedcontroller = _lev_ctrl_CC114_EXT;
2766                            break;
2767                        case 115:
2768                            encodedcontroller = _lev_ctrl_CC115_EXT;
2769                            break;
2770                        case 116:
2771                            encodedcontroller = _lev_ctrl_CC116_EXT;
2772                            break;
2773                        case 117:
2774                            encodedcontroller = _lev_ctrl_CC117_EXT;
2775                            break;
2776                        case 118:
2777                            encodedcontroller = _lev_ctrl_CC118_EXT;
2778                            break;
2779                        case 119:
2780                            encodedcontroller = _lev_ctrl_CC119_EXT;
2781                            break;
2782    
2783                        default:
2784                            throw gig::Exception("leverage controller number is not supported by the gig format");
2785                    }
2786                    break;
2787                default:
2788                    throw gig::Exception("Unknown leverage controller type.");
2789            }
2790            return encodedcontroller;
2791        }
2792    
2793      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2794          Instances--;          Instances--;
# Line 1308  namespace { Line 2803  namespace {
2803              delete pVelocityTables;              delete pVelocityTables;
2804              pVelocityTables = NULL;              pVelocityTables = NULL;
2805          }          }
2806            if (VelocityTable) delete[] VelocityTable;
2807      }      }
2808    
2809      /**      /**
# Line 1325  namespace { Line 2821  namespace {
2821          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2822      }      }
2823    
2824        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2825            return pVelocityReleaseTable[MIDIKeyVelocity];
2826        }
2827    
2828        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2829            return pVelocityCutoffTable[MIDIKeyVelocity];
2830        }
2831    
2832        /**
2833         * Updates the respective member variable and the lookup table / cache
2834         * that depends on this value.
2835         */
2836        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2837            pVelocityAttenuationTable =
2838                GetVelocityTable(
2839                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2840                );
2841            VelocityResponseCurve = curve;
2842        }
2843    
2844        /**
2845         * Updates the respective member variable and the lookup table / cache
2846         * that depends on this value.
2847         */
2848        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2849            pVelocityAttenuationTable =
2850                GetVelocityTable(
2851                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2852                );
2853            VelocityResponseDepth = depth;
2854        }
2855    
2856        /**
2857         * Updates the respective member variable and the lookup table / cache
2858         * that depends on this value.
2859         */
2860        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2861            pVelocityAttenuationTable =
2862                GetVelocityTable(
2863                    VelocityResponseCurve, VelocityResponseDepth, scaling
2864                );
2865            VelocityResponseCurveScaling = scaling;
2866        }
2867    
2868        /**
2869         * Updates the respective member variable and the lookup table / cache
2870         * that depends on this value.
2871         */
2872        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2873            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2874            ReleaseVelocityResponseCurve = curve;
2875        }
2876    
2877        /**
2878         * Updates the respective member variable and the lookup table / cache
2879         * that depends on this value.
2880         */
2881        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2882            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2883            ReleaseVelocityResponseDepth = depth;
2884        }
2885    
2886        /**
2887         * Updates the respective member variable and the lookup table / cache
2888         * that depends on this value.
2889         */
2890        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2891            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2892            VCFCutoffController = controller;
2893        }
2894    
2895        /**
2896         * Updates the respective member variable and the lookup table / cache
2897         * that depends on this value.
2898         */
2899        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2900            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2901            VCFVelocityCurve = curve;
2902        }
2903    
2904        /**
2905         * Updates the respective member variable and the lookup table / cache
2906         * that depends on this value.
2907         */
2908        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2909            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2910            VCFVelocityDynamicRange = range;
2911        }
2912    
2913        /**
2914         * Updates the respective member variable and the lookup table / cache
2915         * that depends on this value.
2916         */
2917        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2918            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2919            VCFVelocityScale = scaling;
2920        }
2921    
2922      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2923    
2924          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1358  namespace { Line 2952  namespace {
2952          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2953                               127, 127 };                               127, 127 };
2954    
2955            // this is only used by the VCF velocity curve
2956            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2957                                 91, 127, 127, 127 };
2958    
2959          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
2960                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
2961                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
2962    
2963          double* const table = new double[128];          double* const table = new double[128];
2964    
# Line 1404  namespace { Line 3002  namespace {
3002    
3003          // Actual Loading          // Actual Loading
3004    
3005            if (!file->GetAutoLoad()) return;
3006    
3007          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3008    
3009          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1412  namespace { Line 3012  namespace {
3012              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3013                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3014                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3015                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3016                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3017                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3018                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3019                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3020                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3021                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3022                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3023                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3024                  }                  }
3025                  else { // active dimension                  else { // active dimension
3026                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3027                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3028                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3029                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3030                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3031                      Dimensions++;                      Dimensions++;
3032    
3033                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3034                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3035                  }                  }
3036                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3037              }              }
3038                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3039    
3040              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3041              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3042                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3043    
3044              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
3045              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
3046                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3047              else              else
3048                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3049    
3050              // load sample references              // load sample references (if auto loading is enabled)
3051              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3052                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3053                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3054                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3055                    }
3056                    GetSample(); // load global region sample reference
3057                }
3058            } else {
3059                DimensionRegions = 0;
3060                for (int i = 0 ; i < 8 ; i++) {
3061                    pDimensionDefinitions[i].dimension  = dimension_none;
3062                    pDimensionDefinitions[i].bits       = 0;
3063                    pDimensionDefinitions[i].zones      = 0;
3064              }              }
3065          }          }
3066          else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3067            // make sure there is at least one dimension region
3068            if (!DimensionRegions) {
3069                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3070                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3071                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3072                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3073                DimensionRegions = 1;
3074            }
3075        }
3076    
3077        /**
3078         * Apply Region settings and all its DimensionRegions to the respective
3079         * RIFF chunks. You have to call File::Save() to make changes persistent.
3080         *
3081         * Usually there is absolutely no need to call this method explicitly.
3082         * It will be called automatically when File::Save() was called.
3083         *
3084         * @param pProgress - callback function for progress notification
3085         * @throws gig::Exception if samples cannot be dereferenced
3086         */
3087        void Region::UpdateChunks(progress_t* pProgress) {
3088            // in the gig format we don't care about the Region's sample reference
3089            // but we still have to provide some existing one to not corrupt the
3090            // file, so to avoid the latter we simply always assign the sample of
3091            // the first dimension region of this region
3092            pSample = pDimensionRegions[0]->pSample;
3093    
3094            // first update base class's chunks
3095            DLS::Region::UpdateChunks(pProgress);
3096    
3097            // update dimension region's chunks
3098            for (int i = 0; i < DimensionRegions; i++) {
3099                pDimensionRegions[i]->UpdateChunks(pProgress);
3100            }
3101    
3102            File* pFile = (File*) GetParent()->GetParent();
3103            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3104            const int iMaxDimensions =  version3 ? 8 : 5;
3105            const int iMaxDimensionRegions = version3 ? 256 : 32;
3106    
3107            // make sure '3lnk' chunk exists
3108            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3109            if (!_3lnk) {
3110                const int _3lnkChunkSize = version3 ? 1092 : 172;
3111                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3112                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3113    
3114                // move 3prg to last position
3115                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3116            }
3117    
3118            // update dimension definitions in '3lnk' chunk
3119            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3120            store32(&pData[0], DimensionRegions);
3121            int shift = 0;
3122            for (int i = 0; i < iMaxDimensions; i++) {
3123                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3124                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3125                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3126                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3127                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3128                // next 3 bytes unknown, always zero?
3129    
3130                shift += pDimensionDefinitions[i].bits;
3131            }
3132    
3133            // update wave pool table in '3lnk' chunk
3134            const int iWavePoolOffset = version3 ? 68 : 44;
3135            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3136                int iWaveIndex = -1;
3137                if (i < DimensionRegions) {
3138                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3139                    File::SampleList::iterator iter = pFile->pSamples->begin();
3140                    File::SampleList::iterator end  = pFile->pSamples->end();
3141                    for (int index = 0; iter != end; ++iter, ++index) {
3142                        if (*iter == pDimensionRegions[i]->pSample) {
3143                            iWaveIndex = index;
3144                            break;
3145                        }
3146                    }
3147                }
3148                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3149            }
3150      }      }
3151    
3152      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1495  namespace { Line 3156  namespace {
3156              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3157              while (_3ewl) {              while (_3ewl) {
3158                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3159                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3160                      dimensionRegionNr++;                      dimensionRegionNr++;
3161                  }                  }
3162                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1504  namespace { Line 3165  namespace {
3165          }          }
3166      }      }
3167    
3168      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3169          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3170              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3171            // update Region key table for fast lookup
3172            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3173        }
3174    
3175        void Region::UpdateVelocityTable() {
3176            // get velocity dimension's index
3177            int veldim = -1;
3178            for (int i = 0 ; i < Dimensions ; i++) {
3179                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3180                    veldim = i;
3181                    break;
3182                }
3183            }
3184            if (veldim == -1) return;
3185    
3186            int step = 1;
3187            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3188            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3189    
3190            // loop through all dimension regions for all dimensions except the velocity dimension
3191            int dim[8] = { 0 };
3192            for (int i = 0 ; i < DimensionRegions ; i++) {
3193                const int end = i + step * pDimensionDefinitions[veldim].zones;
3194    
3195                // create a velocity table for all cases where the velocity zone is zero
3196                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3197                    pDimensionRegions[i]->VelocityUpperLimit) {
3198                    // create the velocity table
3199                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3200                    if (!table) {
3201                        table = new uint8_t[128];
3202                        pDimensionRegions[i]->VelocityTable = table;
3203                    }
3204                    int tableidx = 0;
3205                    int velocityZone = 0;
3206                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3207                        for (int k = i ; k < end ; k += step) {
3208                            DimensionRegion *d = pDimensionRegions[k];
3209                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3210                            velocityZone++;
3211                        }
3212                    } else { // gig2
3213                        for (int k = i ; k < end ; k += step) {
3214                            DimensionRegion *d = pDimensionRegions[k];
3215                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3216                            velocityZone++;
3217                        }
3218                    }
3219                } else {
3220                    if (pDimensionRegions[i]->VelocityTable) {
3221                        delete[] pDimensionRegions[i]->VelocityTable;
3222                        pDimensionRegions[i]->VelocityTable = 0;
3223                    }
3224                }
3225    
3226                // jump to the next case where the velocity zone is zero
3227                int j;
3228                int shift = 0;
3229                for (j = 0 ; j < Dimensions ; j++) {
3230                    if (j == veldim) i += skipveldim; // skip velocity dimension
3231                    else {
3232                        dim[j]++;
3233                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3234                        else {
3235                            // skip unused dimension regions
3236                            dim[j] = 0;
3237                            i += ((1 << pDimensionDefinitions[j].bits) -
3238                                  pDimensionDefinitions[j].zones) << shift;
3239                        }
3240                    }
3241                    shift += pDimensionDefinitions[j].bits;
3242                }
3243                if (j == Dimensions) break;
3244            }
3245        }
3246    
3247        /** @brief Einstein would have dreamed of it - create a new dimension.
3248         *
3249         * Creates a new dimension with the dimension definition given by
3250         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3251         * There is a hard limit of dimensions and total amount of "bits" all
3252         * dimensions can have. This limit is dependant to what gig file format
3253         * version this file refers to. The gig v2 (and lower) format has a
3254         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3255         * format has a limit of 8.
3256         *
3257         * @param pDimDef - defintion of the new dimension
3258         * @throws gig::Exception if dimension of the same type exists already
3259         * @throws gig::Exception if amount of dimensions or total amount of
3260         *                        dimension bits limit is violated
3261         */
3262        void Region::AddDimension(dimension_def_t* pDimDef) {
3263            // some initial sanity checks of the given dimension definition
3264            if (pDimDef->zones < 2)
3265                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3266            if (pDimDef->bits < 1)
3267                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3268            if (pDimDef->dimension == dimension_samplechannel) {
3269                if (pDimDef->zones != 2)
3270                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3271                if (pDimDef->bits != 1)
3272                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3273            }
3274    
3275            // check if max. amount of dimensions reached
3276            File* file = (File*) GetParent()->GetParent();
3277            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3278            if (Dimensions >= iMaxDimensions)
3279                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3280            // check if max. amount of dimension bits reached
3281            int iCurrentBits = 0;
3282            for (int i = 0; i < Dimensions; i++)
3283                iCurrentBits += pDimensionDefinitions[i].bits;
3284            if (iCurrentBits >= iMaxDimensions)
3285                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3286            const int iNewBits = iCurrentBits + pDimDef->bits;
3287            if (iNewBits > iMaxDimensions)
3288                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3289            // check if there's already a dimensions of the same type
3290            for (int i = 0; i < Dimensions; i++)
3291                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3292                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3293    
3294            // pos is where the new dimension should be placed, normally
3295            // last in list, except for the samplechannel dimension which
3296            // has to be first in list
3297            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3298            int bitpos = 0;
3299            for (int i = 0 ; i < pos ; i++)
3300                bitpos += pDimensionDefinitions[i].bits;
3301    
3302            // make room for the new dimension
3303            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3304            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3305                for (int j = Dimensions ; j > pos ; j--) {
3306                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3307                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3308                }
3309            }
3310    
3311            // assign definition of new dimension
3312            pDimensionDefinitions[pos] = *pDimDef;
3313    
3314            // auto correct certain dimension definition fields (where possible)
3315            pDimensionDefinitions[pos].split_type  =
3316                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3317            pDimensionDefinitions[pos].zone_size =
3318                __resolveZoneSize(pDimensionDefinitions[pos]);
3319    
3320            // create new dimension region(s) for this new dimension, and make
3321            // sure that the dimension regions are placed correctly in both the
3322            // RIFF list and the pDimensionRegions array
3323            RIFF::Chunk* moveTo = NULL;
3324            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3325            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3326                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3327                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3328                }
3329                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3330                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3331                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3332                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3333                        // create a new dimension region and copy all parameter values from
3334                        // an existing dimension region
3335                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3336                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3337    
3338                        DimensionRegions++;
3339                    }
3340                }
3341                moveTo = pDimensionRegions[i]->pParentList;
3342            }
3343    
3344            // initialize the upper limits for this dimension
3345            int mask = (1 << bitpos) - 1;
3346            for (int z = 0 ; z < pDimDef->zones ; z++) {
3347                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3348                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3349                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3350                                      (z << bitpos) |
3351                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3352                }
3353            }
3354    
3355            Dimensions++;
3356    
3357            // if this is a layer dimension, update 'Layers' attribute
3358            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3359    
3360            UpdateVelocityTable();
3361        }
3362    
3363        /** @brief Delete an existing dimension.
3364         *
3365         * Deletes the dimension given by \a pDimDef and deletes all respective
3366         * dimension regions, that is all dimension regions where the dimension's
3367         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3368         * for example this would delete all dimension regions for the case(s)
3369         * where the sustain pedal is pressed down.
3370         *
3371         * @param pDimDef - dimension to delete
3372         * @throws gig::Exception if given dimension cannot be found
3373         */
3374        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3375            // get dimension's index
3376            int iDimensionNr = -1;
3377            for (int i = 0; i < Dimensions; i++) {
3378                if (&pDimensionDefinitions[i] == pDimDef) {
3379                    iDimensionNr = i;
3380                    break;
3381                }
3382            }
3383            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3384    
3385            // get amount of bits below the dimension to delete
3386            int iLowerBits = 0;
3387            for (int i = 0; i < iDimensionNr; i++)
3388                iLowerBits += pDimensionDefinitions[i].bits;
3389    
3390            // get amount ot bits above the dimension to delete
3391            int iUpperBits = 0;
3392            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3393                iUpperBits += pDimensionDefinitions[i].bits;
3394    
3395            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3396    
3397            // delete dimension regions which belong to the given dimension
3398            // (that is where the dimension's bit > 0)
3399            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3400                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3401                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3402                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3403                                        iObsoleteBit << iLowerBits |
3404                                        iLowerBit;
3405    
3406                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3407                        delete pDimensionRegions[iToDelete];
3408                        pDimensionRegions[iToDelete] = NULL;
3409                        DimensionRegions--;
3410                    }
3411                }
3412            }
3413    
3414            // defrag pDimensionRegions array
3415            // (that is remove the NULL spaces within the pDimensionRegions array)
3416            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3417                if (!pDimensionRegions[iTo]) {
3418                    if (iFrom <= iTo) iFrom = iTo + 1;
3419                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3420                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3421                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3422                        pDimensionRegions[iFrom] = NULL;
3423                    }
3424                }
3425            }
3426    
3427            // remove the this dimension from the upper limits arrays
3428            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3429                DimensionRegion* d = pDimensionRegions[j];
3430                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3431                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3432                }
3433                d->DimensionUpperLimits[Dimensions - 1] = 127;
3434            }
3435    
3436            // 'remove' dimension definition
3437            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3438                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3439          }          }
3440            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3441            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3442            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3443    
3444            Dimensions--;
3445    
3446            // if this was a layer dimension, update 'Layers' attribute
3447            if (pDimDef->dimension == dimension_layer) Layers = 1;
3448        }
3449    
3450        /** @brief Delete one split zone of a dimension (decrement zone amount).
3451         *
3452         * Instead of deleting an entire dimensions, this method will only delete
3453         * one particular split zone given by @a zone of the Region's dimension
3454         * given by @a type. So this method will simply decrement the amount of
3455         * zones by one of the dimension in question. To be able to do that, the
3456         * respective dimension must exist on this Region and it must have at least
3457         * 3 zones. All DimensionRegion objects associated with the zone will be
3458         * deleted.
3459         *
3460         * @param type - identifies the dimension where a zone shall be deleted
3461         * @param zone - index of the dimension split zone that shall be deleted
3462         * @throws gig::Exception if requested zone could not be deleted
3463         */
3464        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3465            dimension_def_t* oldDef = GetDimensionDefinition(type);
3466            if (!oldDef)
3467                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3468            if (oldDef->zones <= 2)
3469                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3470            if (zone < 0 || zone >= oldDef->zones)
3471                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3472    
3473            const int newZoneSize = oldDef->zones - 1;
3474    
3475            // create a temporary Region which just acts as a temporary copy
3476            // container and will be deleted at the end of this function and will
3477            // also not be visible through the API during this process
3478            gig::Region* tempRgn = NULL;
3479            {
3480                // adding these temporary chunks is probably not even necessary
3481                Instrument* instr = static_cast<Instrument*>(GetParent());
3482                RIFF::List* pCkInstrument = instr->pCkInstrument;
3483                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3484                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3485                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3486                tempRgn = new Region(instr, rgn);
3487            }
3488    
3489            // copy this region's dimensions (with already the dimension split size
3490            // requested by the arguments of this method call) to the temporary
3491            // region, and don't use Region::CopyAssign() here for this task, since
3492            // it would also alter fast lookup helper variables here and there
3493            dimension_def_t newDef;
3494            for (int i = 0; i < Dimensions; ++i) {
3495                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3496                // is this the dimension requested by the method arguments? ...
3497                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3498                    def.zones = newZoneSize;
3499                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3500                    newDef = def;
3501                }
3502                tempRgn->AddDimension(&def);
3503            }
3504    
3505            // find the dimension index in the tempRegion which is the dimension
3506            // type passed to this method (paranoidly expecting different order)
3507            int tempReducedDimensionIndex = -1;
3508            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3509                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3510                    tempReducedDimensionIndex = d;
3511                    break;
3512                }
3513            }
3514    
3515            // copy dimension regions from this region to the temporary region
3516            for (int iDst = 0; iDst < 256; ++iDst) {
3517                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3518                if (!dstDimRgn) continue;
3519                std::map<dimension_t,int> dimCase;
3520                bool isValidZone = true;
3521                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3522                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3523                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3524                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3525                    baseBits += dstBits;
3526                    // there are also DimensionRegion objects of unused zones, skip them
3527                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3528                        isValidZone = false;
3529                        break;
3530                    }
3531                }
3532                if (!isValidZone) continue;
3533                // a bit paranoid: cope with the chance that the dimensions would
3534                // have different order in source and destination regions
3535                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3536                if (dimCase[type] >= zone) dimCase[type]++;
3537                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3538                dstDimRgn->CopyAssign(srcDimRgn);
3539                // if this is the upper most zone of the dimension passed to this
3540                // method, then correct (raise) its upper limit to 127
3541                if (newDef.split_type == split_type_normal && isLastZone)
3542                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3543            }
3544    
3545            // now tempRegion's dimensions and DimensionRegions basically reflect
3546            // what we wanted to get for this actual Region here, so we now just
3547            // delete and recreate the dimension in question with the new amount
3548            // zones and then copy back from tempRegion      
3549            DeleteDimension(oldDef);
3550            AddDimension(&newDef);
3551            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3552                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3553                if (!srcDimRgn) continue;
3554                std::map<dimension_t,int> dimCase;
3555                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3556                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3557                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3558                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3559                    baseBits += srcBits;
3560                }
3561                // a bit paranoid: cope with the chance that the dimensions would
3562                // have different order in source and destination regions
3563                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3564                if (!dstDimRgn) continue;
3565                dstDimRgn->CopyAssign(srcDimRgn);
3566            }
3567    
3568            // delete temporary region
3569            delete tempRgn;
3570    
3571            UpdateVelocityTable();
3572        }
3573    
3574        /** @brief Divide split zone of a dimension in two (increment zone amount).
3575         *
3576         * This will increment the amount of zones for the dimension (given by
3577         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3578         * in the middle of its zone range in two. So the two zones resulting from
3579         * the zone being splitted, will be an equivalent copy regarding all their
3580         * articulation informations and sample reference. The two zones will only
3581         * differ in their zone's upper limit
3582         * (DimensionRegion::DimensionUpperLimits).
3583         *
3584         * @param type - identifies the dimension where a zone shall be splitted
3585         * @param zone - index of the dimension split zone that shall be splitted
3586         * @throws gig::Exception if requested zone could not be splitted
3587         */
3588        void Region::SplitDimensionZone(dimension_t type, int zone) {
3589            dimension_def_t* oldDef = GetDimensionDefinition(type);
3590            if (!oldDef)
3591                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3592            if (zone < 0 || zone >= oldDef->zones)
3593                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3594    
3595            const int newZoneSize = oldDef->zones + 1;
3596    
3597            // create a temporary Region which just acts as a temporary copy
3598            // container and will be deleted at the end of this function and will
3599            // also not be visible through the API during this process
3600            gig::Region* tempRgn = NULL;
3601            {
3602                // adding these temporary chunks is probably not even necessary
3603                Instrument* instr = static_cast<Instrument*>(GetParent());
3604                RIFF::List* pCkInstrument = instr->pCkInstrument;
3605                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3606                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3607                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3608                tempRgn = new Region(instr, rgn);
3609            }
3610    
3611            // copy this region's dimensions (with already the dimension split size
3612            // requested by the arguments of this method call) to the temporary
3613            // region, and don't use Region::CopyAssign() here for this task, since
3614            // it would also alter fast lookup helper variables here and there
3615            dimension_def_t newDef;
3616            for (int i = 0; i < Dimensions; ++i) {
3617                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3618                // is this the dimension requested by the method arguments? ...
3619                if (def.dimension == type) { // ... if yes, increment zone amount by one
3620                    def.zones = newZoneSize;
3621                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3622                    newDef = def;
3623                }
3624                tempRgn->AddDimension(&def);
3625            }
3626    
3627            // find the dimension index in the tempRegion which is the dimension
3628            // type passed to this method (paranoidly expecting different order)
3629            int tempIncreasedDimensionIndex = -1;
3630            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3631                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3632                    tempIncreasedDimensionIndex = d;
3633                    break;
3634                }
3635            }
3636    
3637            // copy dimension regions from this region to the temporary region
3638            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3639                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3640                if (!srcDimRgn) continue;
3641                std::map<dimension_t,int> dimCase;
3642                bool isValidZone = true;
3643                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3644                    const int srcBits = pDimensionDefinitions[d].bits;
3645                    dimCase[pDimensionDefinitions[d].dimension] =
3646                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3647                    // there are also DimensionRegion objects for unused zones, skip them
3648                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3649                        isValidZone = false;
3650                        break;
3651                    }
3652                    baseBits += srcBits;
3653                }
3654                if (!isValidZone) continue;
3655                // a bit paranoid: cope with the chance that the dimensions would
3656                // have different order in source and destination regions            
3657                if (dimCase[type] > zone) dimCase[type]++;
3658                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3659                dstDimRgn->CopyAssign(srcDimRgn);
3660                // if this is the requested zone to be splitted, then also copy
3661                // the source DimensionRegion to the newly created target zone
3662                // and set the old zones upper limit lower
3663                if (dimCase[type] == zone) {
3664                    // lower old zones upper limit
3665                    if (newDef.split_type == split_type_normal) {
3666                        const int high =
3667                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3668                        int low = 0;
3669                        if (zone > 0) {
3670                            std::map<dimension_t,int> lowerCase = dimCase;
3671                            lowerCase[type]--;
3672                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3673                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3674                        }
3675                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3676                    }
3677                    // fill the newly created zone of the divided zone as well
3678                    dimCase[type]++;
3679                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3680                    dstDimRgn->CopyAssign(srcDimRgn);
3681                }
3682            }
3683    
3684            // now tempRegion's dimensions and DimensionRegions basically reflect
3685            // what we wanted to get for this actual Region here, so we now just
3686            // delete and recreate the dimension in question with the new amount
3687            // zones and then copy back from tempRegion      
3688            DeleteDimension(oldDef);
3689            AddDimension(&newDef);
3690            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3691                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3692                if (!srcDimRgn) continue;
3693                std::map<dimension_t,int> dimCase;
3694                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3695                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3696                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3697                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3698                    baseBits += srcBits;
3699                }
3700                // a bit paranoid: cope with the chance that the dimensions would
3701                // have different order in source and destination regions
3702                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3703                if (!dstDimRgn) continue;
3704                dstDimRgn->CopyAssign(srcDimRgn);
3705            }
3706    
3707            // delete temporary region
3708            delete tempRgn;
3709    
3710            UpdateVelocityTable();
3711        }
3712    
3713        /** @brief Change type of an existing dimension.
3714         *
3715         * Alters the dimension type of a dimension already existing on this
3716         * region. If there is currently no dimension on this Region with type
3717         * @a oldType, then this call with throw an Exception. Likewise there are
3718         * cases where the requested dimension type cannot be performed. For example
3719         * if the new dimension type shall be gig::dimension_samplechannel, and the
3720         * current dimension has more than 2 zones. In such cases an Exception is
3721         * thrown as well.
3722         *
3723         * @param oldType - identifies the existing dimension to be changed
3724         * @param newType - to which dimension type it should be changed to
3725         * @throws gig::Exception if requested change cannot be performed
3726         */
3727        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3728            if (oldType == newType) return;
3729            dimension_def_t* def = GetDimensionDefinition(oldType);
3730            if (!def)
3731                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3732            if (newType == dimension_samplechannel && def->zones != 2)
3733                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3734            if (GetDimensionDefinition(newType))
3735                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3736            def->dimension  = newType;
3737            def->split_type = __resolveSplitType(newType);
3738        }
3739    
3740        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3741            uint8_t bits[8] = {};
3742            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3743                 it != DimCase.end(); ++it)
3744            {
3745                for (int d = 0; d < Dimensions; ++d) {
3746                    if (pDimensionDefinitions[d].dimension == it->first) {
3747                        bits[d] = it->second;
3748                        goto nextDimCaseSlice;
3749                    }
3750                }
3751                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3752                nextDimCaseSlice:
3753                ; // noop
3754            }
3755            return GetDimensionRegionByBit(bits);
3756        }
3757    
3758        /**
3759         * Searches in the current Region for a dimension of the given dimension
3760         * type and returns the precise configuration of that dimension in this
3761         * Region.
3762         *
3763         * @param type - dimension type of the sought dimension
3764         * @returns dimension definition or NULL if there is no dimension with
3765         *          sought type in this Region.
3766         */
3767        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3768            for (int i = 0; i < Dimensions; ++i)
3769                if (pDimensionDefinitions[i].dimension == type)
3770                    return &pDimensionDefinitions[i];
3771            return NULL;
3772        }
3773    
3774        Region::~Region() {
3775          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3776              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3777          }          }
# Line 1532  namespace { Line 3796  namespace {
3796       * @see             Dimensions       * @see             Dimensions
3797       */       */
3798      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3799          uint8_t bits[8] = { 0 };          uint8_t bits;
3800            int veldim = -1;
3801            int velbitpos = 0;
3802            int bitpos = 0;
3803            int dimregidx = 0;
3804          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3805              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3806              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3807                  case split_type_normal:                  veldim = i;
3808                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
3809                      break;              } else {
3810                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3811                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3812                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3813                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3814                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3815                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3816                      break;                              }
3817                            } else {
3818                                // gig2: evenly sized zones
3819                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3820                            }
3821                            break;
3822                        case split_type_bit: // the value is already the sought dimension bit number
3823                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3824                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3825                            break;
3826                    }
3827                    dimregidx |= bits << bitpos;
3828              }              }
3829                bitpos += pDimensionDefinitions[i].bits;
3830          }          }
3831          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3832            if (!dimreg) return NULL;
3833            if (veldim != -1) {
3834                // (dimreg is now the dimension region for the lowest velocity)
3835                if (dimreg->VelocityTable) // custom defined zone ranges
3836                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3837                else // normal split type
3838                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3839    
3840                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3841                dimregidx |= (bits & limiter_mask) << velbitpos;
3842                dimreg = pDimensionRegions[dimregidx & 255];
3843            }
3844            return dimreg;
3845        }
3846    
3847        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3848            uint8_t bits;
3849            int veldim = -1;
3850            int velbitpos = 0;
3851            int bitpos = 0;
3852            int dimregidx = 0;
3853            for (uint i = 0; i < Dimensions; i++) {
3854                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3855                    // the velocity dimension must be handled after the other dimensions
3856                    veldim = i;
3857                    velbitpos = bitpos;
3858                } else {
3859                    switch (pDimensionDefinitions[i].split_type) {
3860                        case split_type_normal:
3861                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3862                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3863                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3864                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3865                                }
3866                            } else {
3867                                // gig2: evenly sized zones
3868                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3869                            }
3870                            break;
3871                        case split_type_bit: // the value is already the sought dimension bit number
3872                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3873                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3874                            break;
3875                    }
3876                    dimregidx |= bits << bitpos;
3877                }
3878                bitpos += pDimensionDefinitions[i].bits;
3879            }
3880            dimregidx &= 255;
3881            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3882            if (!dimreg) return -1;
3883            if (veldim != -1) {
3884                // (dimreg is now the dimension region for the lowest velocity)
3885                if (dimreg->VelocityTable) // custom defined zone ranges
3886                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3887                else // normal split type
3888                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3889    
3890                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3891                dimregidx |= (bits & limiter_mask) << velbitpos;
3892                dimregidx &= 255;
3893            }
3894            return dimregidx;
3895      }      }
3896    
3897      /**      /**
# Line 1588  namespace { Line 3931  namespace {
3931      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3932          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
3933          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3934          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
3935          Sample* sample = file->GetFirstSample(pProgress);          // for new files or files >= 2 GB use 64 bit wave pool offsets
3936          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3937              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
3938              sample = file->GetNextSample();              uint64_t soughtoffset =
3939                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3940                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3941                Sample* sample = file->GetFirstSample(pProgress);
3942                while (sample) {
3943                    if (sample->ullWavePoolOffset == soughtoffset)
3944                        return static_cast<gig::Sample*>(sample);
3945                    sample = file->GetNextSample();
3946                }
3947            } else {
3948                // use extension files and 32 bit wave pool offsets
3949                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3950                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3951                Sample* sample = file->GetFirstSample(pProgress);
3952                while (sample) {
3953                    if (sample->ullWavePoolOffset == soughtoffset &&
3954                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3955                    sample = file->GetNextSample();
3956                }
3957          }          }
3958          return NULL;          return NULL;
3959      }      }
3960        
3961        /**
3962         * Make a (semi) deep copy of the Region object given by @a orig
3963         * and assign it to this object.
3964         *
3965         * Note that all sample pointers referenced by @a orig are simply copied as
3966         * memory address. Thus the respective samples are shared, not duplicated!
3967         *
3968         * @param orig - original Region object to be copied from
3969         */
3970        void Region::CopyAssign(const Region* orig) {
3971            CopyAssign(orig, NULL);
3972        }
3973        
3974        /**
3975         * Make a (semi) deep copy of the Region object given by @a orig and
3976         * assign it to this object
3977         *
3978         * @param mSamples - crosslink map between the foreign file's samples and
3979         *                   this file's samples
3980         */
3981        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3982            // handle base classes
3983            DLS::Region::CopyAssign(orig);
3984            
3985            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3986                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3987            }
3988            
3989            // handle own member variables
3990            for (int i = Dimensions - 1; i >= 0; --i) {
3991                DeleteDimension(&pDimensionDefinitions[i]);
3992            }
3993            Layers = 0; // just to be sure
3994            for (int i = 0; i < orig->Dimensions; i++) {
3995                // we need to copy the dim definition here, to avoid the compiler
3996                // complaining about const-ness issue
3997                dimension_def_t def = orig->pDimensionDefinitions[i];
3998                AddDimension(&def);
3999            }
4000            for (int i = 0; i < 256; i++) {
4001                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4002                    pDimensionRegions[i]->CopyAssign(
4003                        orig->pDimensionRegions[i],
4004                        mSamples
4005                    );
4006                }
4007            }
4008            Layers = orig->Layers;
4009        }
4010    
4011    
4012    // *************** MidiRule ***************
4013    // *
4014    
4015        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4016            _3ewg->SetPos(36);
4017            Triggers = _3ewg->ReadUint8();
4018            _3ewg->SetPos(40);
4019            ControllerNumber = _3ewg->ReadUint8();
4020            _3ewg->SetPos(46);
4021            for (int i = 0 ; i < Triggers ; i++) {
4022                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4023                pTriggers[i].Descending = _3ewg->ReadUint8();
4024                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4025                pTriggers[i].Key = _3ewg->ReadUint8();
4026                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4027                pTriggers[i].Velocity = _3ewg->ReadUint8();
4028                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4029                _3ewg->ReadUint8();
4030            }
4031        }
4032    
4033        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4034            ControllerNumber(0),
4035            Triggers(0) {
4036        }
4037    
4038        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4039            pData[32] = 4;
4040            pData[33] = 16;
4041            pData[36] = Triggers;
4042            pData[40] = ControllerNumber;
4043            for (int i = 0 ; i < Triggers ; i++) {
4044                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4045                pData[47 + i * 8] = pTriggers[i].Descending;
4046                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4047                pData[49 + i * 8] = pTriggers[i].Key;
4048                pData[50 + i * 8] = pTriggers[i].NoteOff;
4049                pData[51 + i * 8] = pTriggers[i].Velocity;
4050                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4051            }
4052        }
4053    
4054        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4055            _3ewg->SetPos(36);
4056            LegatoSamples = _3ewg->ReadUint8(); // always 12
4057            _3ewg->SetPos(40);
4058            BypassUseController = _3ewg->ReadUint8();
4059            BypassKey = _3ewg->ReadUint8();
4060            BypassController = _3ewg->ReadUint8();
4061            ThresholdTime = _3ewg->ReadUint16();
4062            _3ewg->ReadInt16();
4063            ReleaseTime = _3ewg->ReadUint16();
4064            _3ewg->ReadInt16();
4065            KeyRange.low = _3ewg->ReadUint8();
4066            KeyRange.high = _3ewg->ReadUint8();
4067            _3ewg->SetPos(64);
4068            ReleaseTriggerKey = _3ewg->ReadUint8();
4069            AltSustain1Key = _3ewg->ReadUint8();
4070            AltSustain2Key = _3ewg->ReadUint8();
4071        }
4072    
4073        MidiRuleLegato::MidiRuleLegato() :
4074            LegatoSamples(12),
4075            BypassUseController(false),
4076            BypassKey(0),
4077            BypassController(1),
4078            ThresholdTime(20),
4079            ReleaseTime(20),
4080            ReleaseTriggerKey(0),
4081            AltSustain1Key(0),
4082            AltSustain2Key(0)
4083        {
4084            KeyRange.low = KeyRange.high = 0;
4085        }
4086    
4087        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4088            pData[32] = 0;
4089            pData[33] = 16;
4090            pData[36] = LegatoSamples;
4091            pData[40] = BypassUseController;
4092            pData[41] = BypassKey;
4093            pData[42] = BypassController;
4094            store16(&pData[43], ThresholdTime);
4095            store16(&pData[47], ReleaseTime);
4096            pData[51] = KeyRange.low;
4097            pData[52] = KeyRange.high;
4098            pData[64] = ReleaseTriggerKey;
4099            pData[65] = AltSustain1Key;
4100            pData[66] = AltSustain2Key;
4101        }
4102    
4103        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4104            _3ewg->SetPos(36);
4105            Articulations = _3ewg->ReadUint8();
4106            int flags = _3ewg->ReadUint8();
4107            Polyphonic = flags & 8;
4108            Chained = flags & 4;
4109            Selector = (flags & 2) ? selector_controller :
4110                (flags & 1) ? selector_key_switch : selector_none;
4111            Patterns = _3ewg->ReadUint8();
4112            _3ewg->ReadUint8(); // chosen row
4113            _3ewg->ReadUint8(); // unknown
4114            _3ewg->ReadUint8(); // unknown
4115            _3ewg->ReadUint8(); // unknown
4116            KeySwitchRange.low = _3ewg->ReadUint8();
4117            KeySwitchRange.high = _3ewg->ReadUint8();
4118            Controller = _3ewg->ReadUint8();
4119            PlayRange.low = _3ewg->ReadUint8();
4120            PlayRange.high = _3ewg->ReadUint8();
4121    
4122            int n = std::min(int(Articulations), 32);
4123            for (int i = 0 ; i < n ; i++) {
4124                _3ewg->ReadString(pArticulations[i], 32);
4125            }
4126            _3ewg->SetPos(1072);
4127            n = std::min(int(Patterns), 32);
4128            for (int i = 0 ; i < n ; i++) {
4129                _3ewg->ReadString(pPatterns[i].Name, 16);
4130                pPatterns[i].Size = _3ewg->ReadUint8();
4131                _3ewg->Read(&pPatterns[i][0], 1, 32);
4132            }
4133        }
4134    
4135        MidiRuleAlternator::MidiRuleAlternator() :
4136            Articulations(0),
4137            Patterns(0),
4138            Selector(selector_none),
4139            Controller(0),
4140            Polyphonic(false),
4141            Chained(false)
4142        {
4143            PlayRange.low = PlayRange.high = 0;
4144            KeySwitchRange.low = KeySwitchRange.high = 0;
4145        }
4146    
4147        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4148            pData[32] = 3;
4149            pData[33] = 16;
4150            pData[36] = Articulations;
4151            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4152                (Selector == selector_controller ? 2 :
4153                 (Selector == selector_key_switch ? 1 : 0));
4154            pData[38] = Patterns;
4155    
4156            pData[43] = KeySwitchRange.low;
4157            pData[44] = KeySwitchRange.high;
4158            pData[45] = Controller;
4159            pData[46] = PlayRange.low;
4160            pData[47] = PlayRange.high;
4161    
4162            char* str = reinterpret_cast<char*>(pData);
4163            int pos = 48;
4164            int n = std::min(int(Articulations), 32);
4165            for (int i = 0 ; i < n ; i++, pos += 32) {
4166                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4167            }
4168    
4169            pos = 1072;
4170            n = std::min(int(Patterns), 32);
4171            for (int i = 0 ; i < n ; i++, pos += 49) {
4172                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4173                pData[pos + 16] = pPatterns[i].Size;
4174                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4175            }
4176        }
4177    
4178    // *************** Script ***************
4179    // *
4180    
4181        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4182            pGroup = group;
4183            pChunk = ckScri;
4184            if (ckScri) { // object is loaded from file ...
4185                // read header
4186                uint32_t headerSize = ckScri->ReadUint32();
4187                Compression = (Compression_t) ckScri->ReadUint32();
4188                Encoding    = (Encoding_t) ckScri->ReadUint32();
4189                Language    = (Language_t) ckScri->ReadUint32();
4190                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4191                crc         = ckScri->ReadUint32();
4192                uint32_t nameSize = ckScri->ReadUint32();
4193                Name.resize(nameSize, ' ');
4194                for (int i = 0; i < nameSize; ++i)
4195                    Name[i] = ckScri->ReadUint8();
4196                // to handle potential future extensions of the header
4197                ckScri->SetPos(sizeof(int32_t) + headerSize);
4198                // read actual script data
4199                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4200                data.resize(scriptSize);
4201                for (int i = 0; i < scriptSize; ++i)
4202                    data[i] = ckScri->ReadUint8();
4203            } else { // this is a new script object, so just initialize it as such ...
4204                Compression = COMPRESSION_NONE;
4205                Encoding = ENCODING_ASCII;
4206                Language = LANGUAGE_NKSP;
4207                Bypass   = false;
4208                crc      = 0;
4209                Name     = "Unnamed Script";
4210            }
4211        }
4212    
4213        Script::~Script() {
4214        }
4215    
4216        /**
4217         * Returns the current script (i.e. as source code) in text format.
4218         */
4219        String Script::GetScriptAsText() {
4220            String s;
4221            s.resize(data.size(), ' ');
4222            memcpy(&s[0], &data[0], data.size());
4223            return s;
4224        }
4225    
4226        /**
4227         * Replaces the current script with the new script source code text given
4228         * by @a text.
4229         *
4230         * @param text - new script source code
4231         */
4232        void Script::SetScriptAsText(const String& text) {
4233            data.resize(text.size());
4234            memcpy(&data[0], &text[0], text.size());
4235        }
4236    
4237        /**
4238         * Apply this script to the respective RIFF chunks. You have to call
4239         * File::Save() to make changes persistent.
4240         *
4241         * Usually there is absolutely no need to call this method explicitly.
4242         * It will be called automatically when File::Save() was called.
4243         *
4244         * @param pProgress - callback function for progress notification
4245         */
4246        void Script::UpdateChunks(progress_t* pProgress) {
4247            // recalculate CRC32 check sum
4248            __resetCRC(crc);
4249            __calculateCRC(&data[0], data.size(), crc);
4250            __finalizeCRC(crc);
4251            // make sure chunk exists and has the required size
4252            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4253            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4254            else pChunk->Resize(chunkSize);
4255            // fill the chunk data to be written to disk
4256            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4257            int pos = 0;
4258            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4259            pos += sizeof(int32_t);
4260            store32(&pData[pos], Compression);
4261            pos += sizeof(int32_t);
4262            store32(&pData[pos], Encoding);
4263            pos += sizeof(int32_t);
4264            store32(&pData[pos], Language);
4265            pos += sizeof(int32_t);
4266            store32(&pData[pos], Bypass ? 1 : 0);
4267            pos += sizeof(int32_t);
4268            store32(&pData[pos], crc);
4269            pos += sizeof(int32_t);
4270            store32(&pData[pos], (uint32_t) Name.size());
4271            pos += sizeof(int32_t);
4272            for (int i = 0; i < Name.size(); ++i, ++pos)
4273                pData[pos] = Name[i];
4274            for (int i = 0; i < data.size(); ++i, ++pos)
4275                pData[pos] = data[i];
4276        }
4277    
4278        /**
4279         * Move this script from its current ScriptGroup to another ScriptGroup
4280         * given by @a pGroup.
4281         *
4282         * @param pGroup - script's new group
4283         */
4284        void Script::SetGroup(ScriptGroup* pGroup) {
4285            if (this->pGroup == pGroup) return;
4286            if (pChunk)
4287                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4288            this->pGroup = pGroup;
4289        }
4290    
4291        /**
4292         * Returns the script group this script currently belongs to. Each script
4293         * is a member of exactly one ScriptGroup.
4294         *
4295         * @returns current script group
4296         */
4297        ScriptGroup* Script::GetGroup() const {
4298            return pGroup;
4299        }
4300    
4301        /**
4302         * Make a (semi) deep copy of the Script object given by @a orig
4303         * and assign it to this object. Note: the ScriptGroup this Script
4304         * object belongs to remains untouched by this call.
4305         *
4306         * @param orig - original Script object to be copied from
4307         */
4308        void Script::CopyAssign(const Script* orig) {
4309            Name        = orig->Name;
4310            Compression = orig->Compression;
4311            Encoding    = orig->Encoding;
4312            Language    = orig->Language;
4313            Bypass      = orig->Bypass;
4314            data        = orig->data;
4315        }
4316    
4317        void Script::RemoveAllScriptReferences() {
4318            File* pFile = pGroup->pFile;
4319            for (int i = 0; pFile->GetInstrument(i); ++i) {
4320                Instrument* instr = pFile->GetInstrument(i);
4321                instr->RemoveScript(this);
4322            }
4323        }
4324    
4325    // *************** ScriptGroup ***************
4326    // *
4327    
4328        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4329            pFile = file;
4330            pList = lstRTIS;
4331            pScripts = NULL;
4332            if (lstRTIS) {
4333                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4334                ::LoadString(ckName, Name);
4335            } else {
4336                Name = "Default Group";
4337            }
4338        }
4339    
4340        ScriptGroup::~ScriptGroup() {
4341            if (pScripts) {
4342                std::list<Script*>::iterator iter = pScripts->begin();
4343                std::list<Script*>::iterator end  = pScripts->end();
4344                while (iter != end) {
4345                    delete *iter;
4346                    ++iter;
4347                }
4348                delete pScripts;
4349            }
4350        }
4351    
4352        /**
4353         * Apply this script group to the respective RIFF chunks. You have to call
4354         * File::Save() to make changes persistent.
4355         *
4356         * Usually there is absolutely no need to call this method explicitly.
4357         * It will be called automatically when File::Save() was called.
4358         *
4359         * @param pProgress - callback function for progress notification
4360         */
4361        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4362            if (pScripts) {
4363                if (!pList)
4364                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4365    
4366                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4367                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4368    
4369                for (std::list<Script*>::iterator it = pScripts->begin();
4370                     it != pScripts->end(); ++it)
4371                {
4372                    (*it)->UpdateChunks(pProgress);
4373                }
4374            }
4375        }
4376    
4377        /** @brief Get instrument script.
4378         *
4379         * Returns the real-time instrument script with the given index.
4380         *
4381         * @param index - number of the sought script (0..n)
4382         * @returns sought script or NULL if there's no such script
4383         */
4384        Script* ScriptGroup::GetScript(uint index) {
4385            if (!pScripts) LoadScripts();
4386            std::list<Script*>::iterator it = pScripts->begin();
4387            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4388                if (i == index) return *it;
4389            return NULL;
4390        }
4391    
4392        /** @brief Add new instrument script.
4393         *
4394         * Adds a new real-time instrument script to the file. The script is not
4395         * actually used / executed unless it is referenced by an instrument to be
4396         * used. This is similar to samples, which you can add to a file, without
4397         * an instrument necessarily actually using it.
4398         *
4399         * You have to call Save() to make this persistent to the file.
4400         *
4401         * @return new empty script object
4402         */
4403        Script* ScriptGroup::AddScript() {
4404            if (!pScripts) LoadScripts();
4405            Script* pScript = new Script(this, NULL);
4406            pScripts->push_back(pScript);
4407            return pScript;
4408        }
4409    
4410        /** @brief Delete an instrument script.
4411         *
4412         * This will delete the given real-time instrument script. References of
4413         * instruments that are using that script will be removed accordingly.
4414         *
4415         * You have to call Save() to make this persistent to the file.
4416         *
4417         * @param pScript - script to delete
4418         * @throws gig::Exception if given script could not be found
4419         */
4420        void ScriptGroup::DeleteScript(Script* pScript) {
4421            if (!pScripts) LoadScripts();
4422            std::list<Script*>::iterator iter =
4423                find(pScripts->begin(), pScripts->end(), pScript);
4424            if (iter == pScripts->end())
4425                throw gig::Exception("Could not delete script, could not find given script");
4426            pScripts->erase(iter);
4427            pScript->RemoveAllScriptReferences();
4428            if (pScript->pChunk)
4429                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4430            delete pScript;
4431        }
4432    
4433        void ScriptGroup::LoadScripts() {
4434            if (pScripts) return;
4435            pScripts = new std::list<Script*>;
4436            if (!pList) return;
4437    
4438            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4439                 ck = pList->GetNextSubChunk())
4440            {
4441                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4442                    pScripts->push_back(new Script(this, ck));
4443                }
4444            }
4445        }
4446    
4447  // *************** Instrument ***************  // *************** Instrument ***************
4448  // *  // *
4449    
4450      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4451            static const DLS::Info::string_length_t fixedStringLengths[] = {
4452                { CHUNK_ID_INAM, 64 },
4453                { CHUNK_ID_ISFT, 12 },
4454                { 0, 0 }
4455            };
4456            pInfo->SetFixedStringLengths(fixedStringLengths);
4457    
4458          // Initialization          // Initialization
4459          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4460          RegionIndex = -1;          EffectSend = 0;
4461            Attenuation = 0;
4462            FineTune = 0;
4463            PitchbendRange = 2;
4464            PianoReleaseMode = false;
4465            DimensionKeyRange.low = 0;
4466            DimensionKeyRange.high = 0;
4467            pMidiRules = new MidiRule*[3];
4468            pMidiRules[0] = NULL;
4469            pScriptRefs = NULL;
4470    
4471          // Loading          // Loading
4472          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1620  namespace { Line 4481  namespace {
4481                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4482                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4483                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4484    
4485                    if (_3ewg->GetSize() > 32) {
4486                        // read MIDI rules
4487                        int i = 0;
4488                        _3ewg->SetPos(32);
4489                        uint8_t id1 = _3ewg->ReadUint8();
4490                        uint8_t id2 = _3ewg->ReadUint8();
4491    
4492                        if (id2 == 16) {
4493                            if (id1 == 4) {
4494                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4495                            } else if (id1 == 0) {
4496                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4497                            } else if (id1 == 3) {
4498                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4499                            } else {
4500                                pMidiRules[i++] = new MidiRuleUnknown;
4501                            }
4502                        }
4503                        else if (id1 != 0 || id2 != 0) {
4504                            pMidiRules[i++] = new MidiRuleUnknown;
4505                        }
4506                        //TODO: all the other types of rules
4507    
4508                        pMidiRules[i] = NULL;
4509                    }
4510                }
4511            }
4512    
4513            if (pFile->GetAutoLoad()) {
4514                if (!pRegions) pRegions = new RegionList;
4515                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4516                if (lrgn) {
4517                    RIFF::List* rgn = lrgn->GetFirstSubList();
4518                    while (rgn) {
4519                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4520                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4521                            pRegions->push_back(new Region(this, rgn));
4522                        }
4523                        rgn = lrgn->GetNextSubList();
4524                    }
4525                    // Creating Region Key Table for fast lookup
4526                    UpdateRegionKeyTable();
4527              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4528          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4529    
4530          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          // own gig format extensions
4531          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4532          pRegions = new Region*[Regions];          if (lst3LS) {
4533          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4534          RIFF::List* rgn = lrgn->GetFirstSubList();              if (ckSCSL) {
4535          unsigned int iRegion = 0;                  int headerSize = ckSCSL->ReadUint32();
4536          while (rgn) {                  int slotCount  = ckSCSL->ReadUint32();
4537              if (rgn->GetListType() == LIST_TYPE_RGN) {                  if (slotCount) {
4538                  __notify_progress(pProgress, (float) iRegion / (float) Regions);                      int slotSize  = ckSCSL->ReadUint32();
4539                  pRegions[iRegion] = new Region(this, rgn);                      ckSCSL->SetPos(headerSize); // in case of future header extensions
4540                  iRegion++;                      int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4541              }                      for (int i = 0; i < slotCount; ++i) {
4542              rgn = lrgn->GetNextSubList();                          _ScriptPooolEntry e;
4543          }                          e.fileOffset = ckSCSL->ReadUint32();
4544                            e.bypass     = ckSCSL->ReadUint32() & 1;
4545          // Creating Region Key Table for fast lookup                          if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4546          for (uint iReg = 0; iReg < Regions; iReg++) {                          scriptPoolFileOffsets.push_back(e);
4547              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {                      }
4548                  RegionKeyTable[iKey] = pRegions[iReg];                  }
4549              }              }
4550          }          }
4551    
4552          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4553      }      }
4554    
4555        void Instrument::UpdateRegionKeyTable() {
4556            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4557            RegionList::iterator iter = pRegions->begin();
4558            RegionList::iterator end  = pRegions->end();
4559            for (; iter != end; ++iter) {
4560                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4561                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4562                    RegionKeyTable[iKey] = pRegion;
4563                }
4564            }
4565        }
4566    
4567      Instrument::~Instrument() {      Instrument::~Instrument() {
4568          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4569              if (pRegions) {              delete pMidiRules[i];
4570                  if (pRegions[i]) delete (pRegions[i]);          }
4571            delete[] pMidiRules;
4572            if (pScriptRefs) delete pScriptRefs;
4573        }
4574    
4575        /**
4576         * Apply Instrument with all its Regions to the respective RIFF chunks.
4577         * You have to call File::Save() to make changes persistent.
4578         *
4579         * Usually there is absolutely no need to call this method explicitly.
4580         * It will be called automatically when File::Save() was called.
4581         *
4582         * @param pProgress - callback function for progress notification
4583         * @throws gig::Exception if samples cannot be dereferenced
4584         */
4585        void Instrument::UpdateChunks(progress_t* pProgress) {
4586            // first update base classes' chunks
4587            DLS::Instrument::UpdateChunks(pProgress);
4588    
4589            // update Regions' chunks
4590            {
4591                RegionList::iterator iter = pRegions->begin();
4592                RegionList::iterator end  = pRegions->end();
4593                for (; iter != end; ++iter)
4594                    (*iter)->UpdateChunks(pProgress);
4595            }
4596    
4597            // make sure 'lart' RIFF list chunk exists
4598            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4599            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4600            // make sure '3ewg' RIFF chunk exists
4601            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4602            if (!_3ewg)  {
4603                File* pFile = (File*) GetParent();
4604    
4605                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4606                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4607                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4608                memset(_3ewg->LoadChunkData(), 0, size);
4609            }
4610            // update '3ewg' RIFF chunk
4611            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4612            store16(&pData[0], EffectSend);
4613            store32(&pData[2], Attenuation);
4614            store16(&pData[6], FineTune);
4615            store16(&pData[8], PitchbendRange);
4616            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4617                                        DimensionKeyRange.low << 1;
4618            pData[10] = dimkeystart;
4619            pData[11] = DimensionKeyRange.high;
4620    
4621            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4622                pData[32] = 0;
4623                pData[33] = 0;
4624            } else {
4625                for (int i = 0 ; pMidiRules[i] ; i++) {
4626                    pMidiRules[i]->UpdateChunks(pData);
4627              }              }
4628          }          }
4629          if (pRegions) delete[] pRegions;  
4630            // own gig format extensions
4631           if (ScriptSlotCount()) {
4632               // make sure we have converted the original loaded script file
4633               // offsets into valid Script object pointers
4634               LoadScripts();
4635    
4636               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4637               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4638               const int slotCount = (int) pScriptRefs->size();
4639               const int headerSize = 3 * sizeof(uint32_t);
4640               const int slotSize  = 2 * sizeof(uint32_t);
4641               const int totalChunkSize = headerSize + slotCount * slotSize;
4642               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4643               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4644               else ckSCSL->Resize(totalChunkSize);
4645               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4646               int pos = 0;
4647               store32(&pData[pos], headerSize);
4648               pos += sizeof(uint32_t);
4649               store32(&pData[pos], slotCount);
4650               pos += sizeof(uint32_t);
4651               store32(&pData[pos], slotSize);
4652               pos += sizeof(uint32_t);
4653               for (int i = 0; i < slotCount; ++i) {
4654                   // arbitrary value, the actual file offset will be updated in
4655                   // UpdateScriptFileOffsets() after the file has been resized
4656                   int bogusFileOffset = 0;
4657                   store32(&pData[pos], bogusFileOffset);
4658                   pos += sizeof(uint32_t);
4659                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4660                   pos += sizeof(uint32_t);
4661               }
4662           } else {
4663               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4664               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4665               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4666           }
4667        }
4668    
4669        void Instrument::UpdateScriptFileOffsets() {
4670           // own gig format extensions
4671           if (pScriptRefs && pScriptRefs->size() > 0) {
4672               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4673               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4674               const int slotCount = (int) pScriptRefs->size();
4675               const int headerSize = 3 * sizeof(uint32_t);
4676               ckSCSL->SetPos(headerSize);
4677               for (int i = 0; i < slotCount; ++i) {
4678                   uint32_t fileOffset = uint32_t(
4679                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4680                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4681                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4682                   );
4683                   ckSCSL->WriteUint32(&fileOffset);
4684                   // jump over flags entry (containing the bypass flag)
4685                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4686               }
4687           }        
4688      }      }
4689    
4690      /**      /**
# Line 1667  namespace { Line 4695  namespace {
4695       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4696       */       */
4697      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4698          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4699          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4700    
4701          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4702              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4703                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1684  namespace { Line 4713  namespace {
4713       * @see      GetNextRegion()       * @see      GetNextRegion()
4714       */       */
4715      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4716          if (!Regions) return NULL;          if (!pRegions) return NULL;
4717          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4718          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4719      }      }
4720    
4721      /**      /**
# Line 1698  namespace { Line 4727  namespace {
4727       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4728       */       */
4729      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4730          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
4731          return pRegions[RegionIndex++];          RegionsIterator++;
4732            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4733        }
4734    
4735        Region* Instrument::AddRegion() {
4736            // create new Region object (and its RIFF chunks)
4737            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4738            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4739            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4740            Region* pNewRegion = new Region(this, rgn);
4741            pRegions->push_back(pNewRegion);
4742            Regions = (uint32_t) pRegions->size();
4743            // update Region key table for fast lookup
4744            UpdateRegionKeyTable();
4745            // done
4746            return pNewRegion;
4747        }
4748    
4749        void Instrument::DeleteRegion(Region* pRegion) {
4750            if (!pRegions) return;
4751            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4752            // update Region key table for fast lookup
4753            UpdateRegionKeyTable();
4754        }
4755    
4756        /**
4757         * Move this instrument at the position before @arg dst.
4758         *
4759         * This method can be used to reorder the sequence of instruments in a
4760         * .gig file. This might be helpful especially on large .gig files which
4761         * contain a large number of instruments within the same .gig file. So
4762         * grouping such instruments to similar ones, can help to keep track of them
4763         * when working with such complex .gig files.
4764         *
4765         * When calling this method, this instrument will be removed from in its
4766         * current position in the instruments list and moved to the requested
4767         * target position provided by @param dst. You may also pass NULL as
4768         * argument to this method, in that case this intrument will be moved to the
4769         * very end of the .gig file's instrument list.
4770         *
4771         * You have to call Save() to make the order change persistent to the .gig
4772         * file.
4773         *
4774         * Currently this method is limited to moving the instrument within the same
4775         * .gig file. Trying to move it to another .gig file by calling this method
4776         * will throw an exception.
4777         *
4778         * @param dst - destination instrument at which this instrument will be
4779         *              moved to, or pass NULL for moving to end of list
4780         * @throw gig::Exception if this instrument and target instrument are not
4781         *                       part of the same file
4782         */
4783        void Instrument::MoveTo(Instrument* dst) {
4784            if (dst && GetParent() != dst->GetParent())
4785                throw Exception(
4786                    "gig::Instrument::MoveTo() can only be used for moving within "
4787                    "the same gig file."
4788                );
4789    
4790            File* pFile = (File*) GetParent();
4791    
4792            // move this instrument within the instrument list
4793            {
4794                File::InstrumentList& list = *pFile->pInstruments;
4795    
4796                File::InstrumentList::iterator itFrom =
4797                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4798    
4799                File::InstrumentList::iterator itTo =
4800                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4801    
4802                list.splice(itTo, list, itFrom);
4803            }
4804    
4805            // move the instrument's actual list RIFF chunk appropriately
4806            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4807            lstCkInstruments->MoveSubChunk(
4808                this->pCkInstrument,
4809                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4810            );
4811        }
4812    
4813        /**
4814         * Returns a MIDI rule of the instrument.
4815         *
4816         * The list of MIDI rules, at least in gig v3, always contains at
4817         * most two rules. The second rule can only be the DEF filter
4818         * (which currently isn't supported by libgig).
4819         *
4820         * @param i - MIDI rule number
4821         * @returns   pointer address to MIDI rule number i or NULL if there is none
4822         */
4823        MidiRule* Instrument::GetMidiRule(int i) {
4824            return pMidiRules[i];
4825        }
4826    
4827        /**
4828         * Adds the "controller trigger" MIDI rule to the instrument.
4829         *
4830         * @returns the new MIDI rule
4831         */
4832        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4833            delete pMidiRules[0];
4834            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4835            pMidiRules[0] = r;
4836            pMidiRules[1] = 0;
4837            return r;
4838        }
4839    
4840        /**
4841         * Adds the legato MIDI rule to the instrument.
4842         *
4843         * @returns the new MIDI rule
4844         */
4845        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4846            delete pMidiRules[0];
4847            MidiRuleLegato* r = new MidiRuleLegato;
4848            pMidiRules[0] = r;
4849            pMidiRules[1] = 0;
4850            return r;
4851        }
4852    
4853        /**
4854         * Adds the alternator MIDI rule to the instrument.
4855         *
4856         * @returns the new MIDI rule
4857         */
4858        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4859            delete pMidiRules[0];
4860            MidiRuleAlternator* r = new MidiRuleAlternator;
4861            pMidiRules[0] = r;
4862            pMidiRules[1] = 0;
4863            return r;
4864        }
4865    
4866        /**
4867         * Deletes a MIDI rule from the instrument.
4868         *
4869         * @param i - MIDI rule number
4870         */
4871        void Instrument::DeleteMidiRule(int i) {
4872            delete pMidiRules[i];
4873            pMidiRules[i] = 0;
4874        }
4875    
4876        void Instrument::LoadScripts() {
4877            if (pScriptRefs) return;
4878            pScriptRefs = new std::vector<_ScriptPooolRef>;
4879            if (scriptPoolFileOffsets.empty()) return;
4880            File* pFile = (File*) GetParent();
4881            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4882                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4883                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4884                    ScriptGroup* group = pFile->GetScriptGroup(i);
4885                    for (uint s = 0; group->GetScript(s); ++s) {
4886                        Script* script = group->GetScript(s);
4887                        if (script->pChunk) {
4888                            uint32_t offset = uint32_t(
4889                                script->pChunk->GetFilePos() -
4890                                script->pChunk->GetPos() -
4891                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
4892                            );
4893                            if (offset == soughtOffset)
4894                            {
4895                                _ScriptPooolRef ref;
4896                                ref.script = script;
4897                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4898                                pScriptRefs->push_back(ref);
4899                                break;
4900                            }
4901                        }
4902                    }
4903                }
4904            }
4905            // we don't need that anymore
4906            scriptPoolFileOffsets.clear();
4907        }
4908    
4909        /** @brief Get instrument script (gig format extension).
4910         *
4911         * Returns the real-time instrument script of instrument script slot
4912         * @a index.
4913         *
4914         * @note This is an own format extension which did not exist i.e. in the
4915         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4916         * gigedit.
4917         *
4918         * @param index - instrument script slot index
4919         * @returns script or NULL if index is out of bounds
4920         */
4921        Script* Instrument::GetScriptOfSlot(uint index) {
4922            LoadScripts();
4923            if (index >= pScriptRefs->size()) return NULL;
4924            return pScriptRefs->at(index).script;
4925        }
4926    
4927        /** @brief Add new instrument script slot (gig format extension).
4928         *
4929         * Add the given real-time instrument script reference to this instrument,
4930         * which shall be executed by the sampler for for this instrument. The
4931         * script will be added to the end of the script list of this instrument.
4932         * The positions of the scripts in the Instrument's Script list are
4933         * relevant, because they define in which order they shall be executed by
4934         * the sampler. For this reason it is also legal to add the same script
4935         * twice to an instrument, for example you might have a script called
4936         * "MyFilter" which performs an event filter task, and you might have
4937         * another script called "MyNoteTrigger" which triggers new notes, then you
4938         * might for example have the following list of scripts on the instrument:
4939         *
4940         * 1. Script "MyFilter"
4941         * 2. Script "MyNoteTrigger"
4942         * 3. Script "MyFilter"
4943         *
4944         * Which would make sense, because the 2nd script launched new events, which
4945         * you might need to filter as well.
4946         *
4947         * There are two ways to disable / "bypass" scripts. You can either disable
4948         * a script locally for the respective script slot on an instrument (i.e. by
4949         * passing @c false to the 2nd argument of this method, or by calling
4950         * SetScriptBypassed()). Or you can disable a script globally for all slots
4951         * and all instruments by setting Script::Bypass.
4952         *
4953         * @note This is an own format extension which did not exist i.e. in the
4954         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4955         * gigedit.
4956         *
4957         * @param pScript - script that shall be executed for this instrument
4958         * @param bypass  - if enabled, the sampler shall skip executing this
4959         *                  script (in the respective list position)
4960         * @see SetScriptBypassed()
4961         */
4962        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4963            LoadScripts();
4964            _ScriptPooolRef ref = { pScript, bypass };
4965            pScriptRefs->push_back(ref);
4966        }
4967    
4968        /** @brief Flip two script slots with each other (gig format extension).
4969         *
4970         * Swaps the position of the two given scripts in the Instrument's Script
4971         * list. The positions of the scripts in the Instrument's Script list are
4972         * relevant, because they define in which order they shall be executed by
4973         * the sampler.
4974         *
4975         * @note This is an own format extension which did not exist i.e. in the
4976         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4977         * gigedit.
4978         *
4979         * @param index1 - index of the first script slot to swap
4980         * @param index2 - index of the second script slot to swap
4981         */
4982        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4983            LoadScripts();
4984            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4985                return;
4986            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4987            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4988            (*pScriptRefs)[index2] = tmp;
4989        }
4990    
4991        /** @brief Remove script slot.
4992         *
4993         * Removes the script slot with the given slot index.
4994         *
4995         * @param index - index of script slot to remove
4996         */
4997        void Instrument::RemoveScriptSlot(uint index) {
4998            LoadScripts();
4999            if (index >= pScriptRefs->size()) return;
5000            pScriptRefs->erase( pScriptRefs->begin() + index );
5001        }
5002    
5003        /** @brief Remove reference to given Script (gig format extension).
5004         *
5005         * This will remove all script slots on the instrument which are referencing
5006         * the given script.
5007         *
5008         * @note This is an own format extension which did not exist i.e. in the
5009         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5010         * gigedit.
5011         *
5012         * @param pScript - script reference to remove from this instrument
5013         * @see RemoveScriptSlot()
5014         */
5015        void Instrument::RemoveScript(Script* pScript) {
5016            LoadScripts();
5017            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5018                if ((*pScriptRefs)[i].script == pScript) {
5019                    pScriptRefs->erase( pScriptRefs->begin() + i );
5020                }
5021            }
5022        }
5023    
5024        /** @brief Instrument's amount of script slots.
5025         *
5026         * This method returns the amount of script slots this instrument currently
5027         * uses.
5028         *
5029         * A script slot is a reference of a real-time instrument script to be
5030         * executed by the sampler. The scripts will be executed by the sampler in
5031         * sequence of the slots. One (same) script may be referenced multiple
5032         * times in different slots.
5033         *
5034         * @note This is an own format extension which did not exist i.e. in the
5035         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5036         * gigedit.
5037         */
5038        uint Instrument::ScriptSlotCount() const {
5039            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5040        }
5041    
5042        /** @brief Whether script execution shall be skipped.
5043         *
5044         * Defines locally for the Script reference slot in the Instrument's Script
5045         * list, whether the script shall be skipped by the sampler regarding
5046         * execution.
5047         *
5048         * It is also possible to ignore exeuction of the script globally, for all
5049         * slots and for all instruments by setting Script::Bypass.
5050         *
5051         * @note This is an own format extension which did not exist i.e. in the
5052         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5053         * gigedit.
5054         *
5055         * @param index - index of the script slot on this instrument
5056         * @see Script::Bypass
5057         */
5058        bool Instrument::IsScriptSlotBypassed(uint index) {
5059            if (index >= ScriptSlotCount()) return false;
5060            return pScriptRefs ? pScriptRefs->at(index).bypass
5061                               : scriptPoolFileOffsets.at(index).bypass;
5062            
5063        }
5064    
5065        /** @brief Defines whether execution shall be skipped.
5066         *
5067         * You can call this method to define locally whether or whether not the
5068         * given script slot shall be executed by the sampler.
5069         *
5070         * @note This is an own format extension which did not exist i.e. in the
5071         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5072         * gigedit.
5073         *
5074         * @param index - script slot index on this instrument
5075         * @param bBypass - if true, the script slot will be skipped by the sampler
5076         * @see Script::Bypass
5077         */
5078        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5079            if (index >= ScriptSlotCount()) return;
5080            if (pScriptRefs)
5081                pScriptRefs->at(index).bypass = bBypass;
5082            else
5083                scriptPoolFileOffsets.at(index).bypass = bBypass;
5084        }
5085    
5086        /**
5087         * Make a (semi) deep copy of the Instrument object given by @a orig
5088         * and assign it to this object.
5089         *
5090         * Note that all sample pointers referenced by @a orig are simply copied as
5091         * memory address. Thus the respective samples are shared, not duplicated!
5092         *
5093         * @param orig - original Instrument object to be copied from
5094         */
5095        void Instrument::CopyAssign(const Instrument* orig) {
5096            CopyAssign(orig, NULL);
5097        }
5098            
5099        /**
5100         * Make a (semi) deep copy of the Instrument object given by @a orig
5101         * and assign it to this object.
5102         *
5103         * @param orig - original Instrument object to be copied from
5104         * @param mSamples - crosslink map between the foreign file's samples and
5105         *                   this file's samples
5106         */
5107        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5108            // handle base class
5109            // (without copying DLS region stuff)
5110            DLS::Instrument::CopyAssignCore(orig);
5111            
5112            // handle own member variables
5113            Attenuation = orig->Attenuation;
5114            EffectSend = orig->EffectSend;
5115            FineTune = orig->FineTune;
5116            PitchbendRange = orig->PitchbendRange;
5117            PianoReleaseMode = orig->PianoReleaseMode;
5118            DimensionKeyRange = orig->DimensionKeyRange;
5119            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5120            pScriptRefs = orig->pScriptRefs;
5121            
5122            // free old midi rules
5123            for (int i = 0 ; pMidiRules[i] ; i++) {
5124                delete pMidiRules[i];
5125            }
5126            //TODO: MIDI rule copying
5127            pMidiRules[0] = NULL;
5128            
5129            // delete all old regions
5130            while (Regions) DeleteRegion(GetFirstRegion());
5131            // create new regions and copy them from original
5132            {
5133                RegionList::const_iterator it = orig->pRegions->begin();
5134                for (int i = 0; i < orig->Regions; ++i, ++it) {
5135                    Region* dstRgn = AddRegion();
5136                    //NOTE: Region does semi-deep copy !
5137                    dstRgn->CopyAssign(
5138                        static_cast<gig::Region*>(*it),
5139                        mSamples
5140                    );
5141                }
5142            }
5143    
5144            UpdateRegionKeyTable();
5145        }
5146    
5147    
5148    // *************** Group ***************
5149    // *
5150    
5151        /** @brief Constructor.
5152         *
5153         * @param file   - pointer to the gig::File object
5154         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5155         *                 NULL if this is a new Group
5156         */
5157        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5158            pFile      = file;
5159            pNameChunk = ck3gnm;
5160            ::LoadString(pNameChunk, Name);
5161        }
5162    
5163        Group::~Group() {
5164            // remove the chunk associated with this group (if any)
5165            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5166        }
5167    
5168        /** @brief Update chunks with current group settings.
5169         *
5170         * Apply current Group field values to the respective chunks. You have
5171         * to call File::Save() to make changes persistent.
5172         *
5173         * Usually there is absolutely no need to call this method explicitly.
5174         * It will be called automatically when File::Save() was called.
5175         *
5176         * @param pProgress - callback function for progress notification
5177         */
5178        void Group::UpdateChunks(progress_t* pProgress) {
5179            // make sure <3gri> and <3gnl> list chunks exist
5180            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5181            if (!_3gri) {
5182                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5183                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5184            }
5185            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5186            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5187    
5188            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5189                // v3 has a fixed list of 128 strings, find a free one
5190                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5191                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5192                        pNameChunk = ck;
5193                        break;
5194                    }
5195                }
5196            }
5197    
5198            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5199            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5200        }
5201    
5202        /**
5203         * Returns the first Sample of this Group. You have to call this method
5204         * once before you use GetNextSample().
5205         *
5206         * <b>Notice:</b> this method might block for a long time, in case the
5207         * samples of this .gig file were not scanned yet
5208         *
5209         * @returns  pointer address to first Sample or NULL if there is none
5210         *           applied to this Group
5211         * @see      GetNextSample()
5212         */
5213        Sample* Group::GetFirstSample() {
5214            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5215            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5216                if (pSample->GetGroup() == this) return pSample;
5217            }
5218            return NULL;
5219        }
5220    
5221        /**
5222         * Returns the next Sample of the Group. You have to call
5223         * GetFirstSample() once before you can use this method. By calling this
5224         * method multiple times it iterates through the Samples assigned to
5225         * this Group.
5226         *
5227         * @returns  pointer address to the next Sample of this Group or NULL if
5228         *           end reached
5229         * @see      GetFirstSample()
5230         */
5231        Sample* Group::GetNextSample() {
5232            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5233            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5234                if (pSample->GetGroup() == this) return pSample;
5235            }
5236            return NULL;
5237        }
5238    
5239        /**
5240         * Move Sample given by \a pSample from another Group to this Group.
5241         */
5242        void Group::AddSample(Sample* pSample) {
5243            pSample->pGroup = this;
5244        }
5245    
5246        /**
5247         * Move all members of this group to another group (preferably the 1st
5248         * one except this). This method is called explicitly by
5249         * File::DeleteGroup() thus when a Group was deleted. This code was
5250         * intentionally not placed in the destructor!
5251         */
5252        void Group::MoveAll() {
5253            // get "that" other group first
5254            Group* pOtherGroup = NULL;
5255            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5256                if (pOtherGroup != this) break;
5257            }
5258            if (!pOtherGroup) throw Exception(
5259                "Could not move samples to another group, since there is no "
5260                "other Group. This is a bug, report it!"
5261            );
5262            // now move all samples of this group to the other group
5263            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5264                pOtherGroup->AddSample(pSample);
5265            }
5266      }      }
5267    
5268    
# Line 1707  namespace { Line 5270  namespace {
5270  // *************** File ***************  // *************** File ***************
5271  // *  // *
5272    
5273        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5274        const DLS::version_t File::VERSION_2 = {
5275            0, 2, 19980628 & 0xffff, 19980628 >> 16
5276        };
5277    
5278        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5279        const DLS::version_t File::VERSION_3 = {
5280            0, 3, 20030331 & 0xffff, 20030331 >> 16
5281        };
5282    
5283        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5284            { CHUNK_ID_IARL, 256 },
5285            { CHUNK_ID_IART, 128 },
5286            { CHUNK_ID_ICMS, 128 },
5287            { CHUNK_ID_ICMT, 1024 },
5288            { CHUNK_ID_ICOP, 128 },
5289            { CHUNK_ID_ICRD, 128 },
5290            { CHUNK_ID_IENG, 128 },
5291            { CHUNK_ID_IGNR, 128 },
5292            { CHUNK_ID_IKEY, 128 },
5293            { CHUNK_ID_IMED, 128 },
5294            { CHUNK_ID_INAM, 128 },
5295            { CHUNK_ID_IPRD, 128 },
5296            { CHUNK_ID_ISBJ, 128 },
5297            { CHUNK_ID_ISFT, 128 },
5298            { CHUNK_ID_ISRC, 128 },
5299            { CHUNK_ID_ISRF, 128 },
5300            { CHUNK_ID_ITCH, 128 },
5301            { 0, 0 }
5302        };
5303    
5304        File::File() : DLS::File() {
5305            bAutoLoad = true;
5306            *pVersion = VERSION_3;
5307            pGroups = NULL;
5308            pScriptGroups = NULL;
5309            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5310            pInfo->ArchivalLocation = String(256, ' ');
5311    
5312            // add some mandatory chunks to get the file chunks in right
5313            // order (INFO chunk will be moved to first position later)
5314            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5315            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5316            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5317    
5318            GenerateDLSID();
5319        }
5320    
5321      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5322          pSamples     = NULL;          bAutoLoad = true;
5323          pInstruments = NULL;          pGroups = NULL;
5324            pScriptGroups = NULL;
5325            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5326      }      }
5327    
5328      File::~File() {      File::~File() {
5329          // free samples          if (pGroups) {
5330          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5331              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5332              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5333                  delete (*SamplesIterator);                  delete *iter;
5334                  SamplesIterator++;                  ++iter;
5335              }              }
5336              pSamples->clear();              delete pGroups;
5337              delete pSamples;          }
5338            if (pScriptGroups) {
5339          }              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5340          // free instruments              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5341          if (pInstruments) {              while (iter != end) {
5342              InstrumentsIterator = pInstruments->begin();                  delete *iter;
5343              while (InstrumentsIterator != pInstruments->end() ) {                  ++iter;
                 delete (*InstrumentsIterator);  
                 InstrumentsIterator++;  
5344              }              }
5345              pInstruments->clear();              delete pScriptGroups;
             delete pInstruments;  
5346          }          }
5347      }      }
5348    
# Line 1748  namespace { Line 5358  namespace {
5358          SamplesIterator++;          SamplesIterator++;
5359          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5360      }      }
5361        
5362        /**
5363         * Returns Sample object of @a index.
5364         *
5365         * @returns sample object or NULL if index is out of bounds
5366         */
5367        Sample* File::GetSample(uint index) {
5368            if (!pSamples) LoadSamples();
5369            if (!pSamples) return NULL;
5370            DLS::File::SampleList::iterator it = pSamples->begin();
5371            for (int i = 0; i < index; ++i) {
5372                ++it;
5373                if (it == pSamples->end()) return NULL;
5374            }
5375            if (it == pSamples->end()) return NULL;
5376            return static_cast<gig::Sample*>( *it );
5377        }
5378    
5379      void File::LoadSamples(progress_t* pProgress) {      /** @brief Add a new sample.
5380          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5381          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5382              // just for progress calculation       * call Save() to make this persistent to the file.
5383              int iSampleIndex  = 0;       *
5384              int iTotalSamples = wvpl->CountSubLists(LIST_TYPE_WAVE);       * @returns pointer to new Sample object
5385         */
5386              unsigned long wvplFileOffset = wvpl->GetFilePos();      Sample* File::AddSample() {
5387              RIFF::List* wave = wvpl->GetFirstSubList();         if (!pSamples) LoadSamples();
5388              while (wave) {         __ensureMandatoryChunksExist();
5389                  if (wave->GetListType() == LIST_TYPE_WAVE) {         RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5390                      // notify current progress         // create new Sample object and its respective 'wave' list chunk
5391                      const float subprogress = (float) iSampleIndex / (float) iTotalSamples;         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5392                      __notify_progress(pProgress, subprogress);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5393    
5394           // add mandatory chunks to get the chunks in right order
5395           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5396           wave->AddSubList(LIST_TYPE_INFO);
5397    
5398                      if (!pSamples) pSamples = new SampleList;         pSamples->push_back(pSample);
5399                      unsigned long waveFileOffset = wave->GetFilePos();         return pSample;
5400                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));      }
5401    
5402                      iSampleIndex++;      /** @brief Delete a sample.
5403         *
5404         * This will delete the given Sample object from the gig file. Any
5405         * references to this sample from Regions and DimensionRegions will be
5406         * removed. You have to call Save() to make this persistent to the file.
5407         *
5408         * @param pSample - sample to delete
5409         * @throws gig::Exception if given sample could not be found
5410         */
5411        void File::DeleteSample(Sample* pSample) {
5412            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5413            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5414            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5415            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5416            pSamples->erase(iter);
5417            delete pSample;
5418    
5419            SampleList::iterator tmp = SamplesIterator;
5420            // remove all references to the sample
5421            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5422                 instrument = GetNextInstrument()) {
5423                for (Region* region = instrument->GetFirstRegion() ; region ;
5424                     region = instrument->GetNextRegion()) {
5425    
5426                    if (region->GetSample() == pSample) region->SetSample(NULL);
5427    
5428                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5429                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5430                        if (d->pSample == pSample) d->pSample = NULL;
5431                  }                  }
                 wave = wvpl->GetNextSubList();  
5432              }              }
             __notify_progress(pProgress, 1.0); // notify done  
5433          }          }
5434          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5435        }
5436    
5437        void File::LoadSamples() {
5438            LoadSamples(NULL);
5439        }
5440    
5441        void File::LoadSamples(progress_t* pProgress) {
5442            // Groups must be loaded before samples, because samples will try
5443            // to resolve the group they belong to
5444            if (!pGroups) LoadGroups();
5445    
5446            if (!pSamples) pSamples = new SampleList;
5447    
5448            RIFF::File* file = pRIFF;
5449    
5450            // just for progress calculation
5451            int iSampleIndex  = 0;
5452            int iTotalSamples = WavePoolCount;
5453    
5454            // check if samples should be loaded from extension files
5455            // (only for old gig files < 2 GB)
5456            int lastFileNo = 0;
5457            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5458                for (int i = 0 ; i < WavePoolCount ; i++) {
5459                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5460                }
5461            }
5462            String name(pRIFF->GetFileName());
5463            int nameLen = (int) name.length();
5464            char suffix[6];
5465            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5466    
5467            for (int fileNo = 0 ; ; ) {
5468                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5469                if (wvpl) {
5470                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5471                    RIFF::List* wave = wvpl->GetFirstSubList();
5472                    while (wave) {
5473                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5474                            // notify current progress
5475                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5476                            __notify_progress(pProgress, subprogress);
5477    
5478                            file_offset_t waveFileOffset = wave->GetFilePos();
5479                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5480    
5481                            iSampleIndex++;
5482                        }
5483                        wave = wvpl->GetNextSubList();
5484                    }
5485    
5486                    if (fileNo == lastFileNo) break;
5487    
5488                    // open extension file (*.gx01, *.gx02, ...)
5489                    fileNo++;
5490                    sprintf(suffix, ".gx%02d", fileNo);
5491                    name.replace(nameLen, 5, suffix);
5492                    file = new RIFF::File(name);
5493                    ExtensionFiles.push_back(file);
5494                } else break;
5495            }
5496    
5497            __notify_progress(pProgress, 1.0); // notify done
5498      }      }
5499    
5500      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5501          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5502          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5503          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5504          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5505      }      }
5506    
5507      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5508          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5509          InstrumentsIterator++;          InstrumentsIterator++;
5510          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5511      }      }
5512    
5513      /**      /**
# Line 1805  namespace { Line 5525  namespace {
5525              progress_t subprogress;              progress_t subprogress;
5526              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5527              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5528              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5529                    GetFirstSample(&subprogress); // now force all samples to be loaded
5530              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5531    
5532              // instrument loading subtask              // instrument loading subtask
# Line 1820  namespace { Line 5541  namespace {
5541          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5542          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5543          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5544              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5545              InstrumentsIterator++;              InstrumentsIterator++;
5546          }          }
5547          return NULL;          return NULL;
5548      }      }
5549    
5550        /** @brief Add a new instrument definition.
5551         *
5552         * This will create a new Instrument object for the gig file. You have
5553         * to call Save() to make this persistent to the file.
5554         *
5555         * @returns pointer to new Instrument object
5556         */
5557        Instrument* File::AddInstrument() {
5558           if (!pInstruments) LoadInstruments();
5559           __ensureMandatoryChunksExist();
5560           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5561           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5562    
5563           // add mandatory chunks to get the chunks in right order
5564           lstInstr->AddSubList(LIST_TYPE_INFO);
5565           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5566    
5567           Instrument* pInstrument = new Instrument(this, lstInstr);
5568           pInstrument->GenerateDLSID();
5569    
5570           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5571    
5572           // this string is needed for the gig to be loadable in GSt:
5573           pInstrument->pInfo->Software = "Endless Wave";
5574    
5575           pInstruments->push_back(pInstrument);
5576           return pInstrument;
5577        }
5578        
5579        /** @brief Add a duplicate of an existing instrument.
5580         *
5581         * Duplicates the instrument definition given by @a orig and adds it
5582         * to this file. This allows in an instrument editor application to
5583         * easily create variations of an instrument, which will be stored in
5584         * the same .gig file, sharing i.e. the same samples.
5585         *
5586         * Note that all sample pointers referenced by @a orig are simply copied as
5587         * memory address. Thus the respective samples are shared, not duplicated!
5588         *
5589         * You have to call Save() to make this persistent to the file.
5590         *
5591         * @param orig - original instrument to be copied
5592         * @returns duplicated copy of the given instrument
5593         */
5594        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5595            Instrument* instr = AddInstrument();
5596            instr->CopyAssign(orig);
5597            return instr;
5598        }
5599        
5600        /** @brief Add content of another existing file.
5601         *
5602         * Duplicates the samples, groups and instruments of the original file
5603         * given by @a pFile and adds them to @c this File. In case @c this File is
5604         * a new one that you haven't saved before, then you have to call
5605         * SetFileName() before calling AddContentOf(), because this method will
5606         * automatically save this file during operation, which is required for
5607         * writing the sample waveform data by disk streaming.
5608         *
5609         * @param pFile - original file whose's content shall be copied from
5610         */
5611        void File::AddContentOf(File* pFile) {
5612            static int iCallCount = -1;
5613            iCallCount++;
5614            std::map<Group*,Group*> mGroups;
5615            std::map<Sample*,Sample*> mSamples;
5616            
5617            // clone sample groups
5618            for (int i = 0; pFile->GetGroup(i); ++i) {
5619                Group* g = AddGroup();
5620                g->Name =
5621                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5622                mGroups[pFile->GetGroup(i)] = g;
5623            }
5624            
5625            // clone samples (not waveform data here yet)
5626            for (int i = 0; pFile->GetSample(i); ++i) {
5627                Sample* s = AddSample();
5628                s->CopyAssignMeta(pFile->GetSample(i));
5629                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5630                mSamples[pFile->GetSample(i)] = s;
5631            }
5632    
5633            // clone script groups and their scripts
5634            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5635                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5636                ScriptGroup* dg = AddScriptGroup();
5637                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5638                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5639                    Script* ss = sg->GetScript(iScript);
5640                    Script* ds = dg->AddScript();
5641                    ds->CopyAssign(ss);
5642                }
5643            }
5644    
5645            //BUG: For some reason this method only works with this additional
5646            //     Save() call in between here.
5647            //
5648            // Important: The correct one of the 2 Save() methods has to be called
5649            // here, depending on whether the file is completely new or has been
5650            // saved to disk already, otherwise it will result in data corruption.
5651            if (pRIFF->IsNew())
5652                Save(GetFileName());
5653            else
5654                Save();
5655            
5656            // clone instruments
5657            // (passing the crosslink table here for the cloned samples)
5658            for (int i = 0; pFile->GetInstrument(i); ++i) {
5659                Instrument* instr = AddInstrument();
5660                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5661            }
5662            
5663            // Mandatory: file needs to be saved to disk at this point, so this
5664            // file has the correct size and data layout for writing the samples'
5665            // waveform data to disk.
5666            Save();
5667            
5668            // clone samples' waveform data
5669            // (using direct read & write disk streaming)
5670            for (int i = 0; pFile->GetSample(i); ++i) {
5671                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5672            }
5673        }
5674    
5675        /** @brief Delete an instrument.
5676         *
5677         * This will delete the given Instrument object from the gig file. You
5678         * have to call Save() to make this persistent to the file.
5679         *
5680         * @param pInstrument - instrument to delete
5681         * @throws gig::Exception if given instrument could not be found
5682         */
5683        void File::DeleteInstrument(Instrument* pInstrument) {
5684            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5685            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5686            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5687            pInstruments->erase(iter);
5688            delete pInstrument;
5689        }
5690    
5691        void File::LoadInstruments() {
5692            LoadInstruments(NULL);
5693        }
5694    
5695      void File::LoadInstruments(progress_t* pProgress) {      void File::LoadInstruments(progress_t* pProgress) {
5696            if (!pInstruments) pInstruments = new InstrumentList;
5697          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5698          if (lstInstruments) {          if (lstInstruments) {
5699              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
# Line 1841  namespace { Line 5708  namespace {
5708                      progress_t subprogress;                      progress_t subprogress;
5709                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5710    
                     if (!pInstruments) pInstruments = new InstrumentList;  
5711                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5712    
5713                      iInstrumentIndex++;                      iInstrumentIndex++;
# Line 1850  namespace { Line 5716  namespace {
5716              }              }
5717              __notify_progress(pProgress, 1.0); // notify done              __notify_progress(pProgress, 1.0); // notify done
5718          }          }
5719          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5720    
5721        /// Updates the 3crc chunk with the checksum of a sample. The
5722        /// update is done directly to disk, as this method is called
5723        /// after File::Save()
5724        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5725            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5726            if (!_3crc) return;
5727    
5728            // get the index of the sample
5729            int iWaveIndex = GetWaveTableIndexOf(pSample);
5730            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5731    
5732            // write the CRC-32 checksum to disk
5733            _3crc->SetPos(iWaveIndex * 8);
5734            uint32_t one = 1;
5735            _3crc->WriteUint32(&one); // always 1
5736            _3crc->WriteUint32(&crc);
5737        }
5738    
5739        uint32_t File::GetSampleChecksum(Sample* pSample) {
5740            // get the index of the sample
5741            int iWaveIndex = GetWaveTableIndexOf(pSample);
5742            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5743    
5744            return GetSampleChecksumByIndex(iWaveIndex);
5745        }
5746    
5747        uint32_t File::GetSampleChecksumByIndex(int index) {
5748            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5749    
5750            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5751            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5752            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5753            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5754    
5755            // read the CRC-32 checksum directly from disk
5756            size_t pos = index * 8;
5757            if (pos + 8 > _3crc->GetNewSize())
5758                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5759    
5760            uint32_t one = load32(&pData[pos]); // always 1
5761            if (one != 1)
5762                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5763    
5764            return load32(&pData[pos+4]);
5765        }
5766    
5767        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5768            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5769            File::SampleList::iterator iter = pSamples->begin();
5770            File::SampleList::iterator end  = pSamples->end();
5771            for (int index = 0; iter != end; ++iter, ++index)
5772                if (*iter == pSample)
5773                    return index;
5774            return -1;
5775        }
5776    
5777        /**
5778         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5779         * the CRC32 check sums of all samples' raw wave data.
5780         *
5781         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5782         */
5783        bool File::VerifySampleChecksumTable() {
5784            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5785            if (!_3crc) return false;
5786            if (_3crc->GetNewSize() <= 0) return false;
5787            if (_3crc->GetNewSize() % 8) return false;
5788            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5789            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5790    
5791            const file_offset_t n = _3crc->GetNewSize() / 8;
5792    
5793            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5794            if (!pData) return false;
5795    
5796            for (file_offset_t i = 0; i < n; ++i) {
5797                uint32_t one = pData[i*2];
5798                if (one != 1) return false;
5799            }
5800    
5801            return true;
5802        }
5803    
5804        /**
5805         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5806         * file's checksum table with those new checksums. This might usually
5807         * just be necessary if the checksum table was damaged.
5808         *
5809         * @e IMPORTANT: The current implementation of this method only works
5810         * with files that have not been modified since it was loaded, because
5811         * it expects that no externally caused file structure changes are
5812         * required!
5813         *
5814         * Due to the expectation above, this method is currently protected
5815         * and actually only used by the command line tool "gigdump" yet.
5816         *
5817         * @returns true if Save() is required to be called after this call,
5818         *          false if no further action is required
5819         */
5820        bool File::RebuildSampleChecksumTable() {
5821            // make sure sample chunks were scanned
5822            if (!pSamples) GetFirstSample();
5823    
5824            bool bRequiresSave = false;
5825    
5826            // make sure "3CRC" chunk exists with required size
5827            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5828            if (!_3crc) {
5829                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5830                // the order of einf and 3crc is not the same in v2 and v3
5831                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5832                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5833                bRequiresSave = true;
5834            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5835                _3crc->Resize(pSamples->size() * 8);
5836                bRequiresSave = true;
5837            }
5838    
5839            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5840                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5841                {
5842                    File::SampleList::iterator iter = pSamples->begin();
5843                    File::SampleList::iterator end  = pSamples->end();
5844                    for (; iter != end; ++iter) {
5845                        gig::Sample* pSample = (gig::Sample*) *iter;
5846                        int index = GetWaveTableIndexOf(pSample);
5847                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5848                        pData[index*2]   = 1; // always 1
5849                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5850                    }
5851                }
5852            } else { // no file structure changes necessary, so directly write to disk and we are done ...
5853                // make sure file is in write mode
5854                pRIFF->SetMode(RIFF::stream_mode_read_write);
5855                {
5856                    File::SampleList::iterator iter = pSamples->begin();
5857                    File::SampleList::iterator end  = pSamples->end();
5858                    for (; iter != end; ++iter) {
5859                        gig::Sample* pSample = (gig::Sample*) *iter;
5860                        int index = GetWaveTableIndexOf(pSample);
5861                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5862                        pSample->crc  = pSample->CalculateWaveDataChecksum();
5863                        SetSampleChecksum(pSample, pSample->crc);
5864                    }
5865                }
5866            }
5867    
5868            return bRequiresSave;
5869        }
5870    
5871        Group* File::GetFirstGroup() {
5872            if (!pGroups) LoadGroups();
5873            // there must always be at least one group
5874            GroupsIterator = pGroups->begin();
5875            return *GroupsIterator;
5876        }
5877    
5878        Group* File::GetNextGroup() {
5879            if (!pGroups) return NULL;
5880            ++GroupsIterator;
5881            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5882        }
5883    
5884        /**
5885         * Returns the group with the given index.
5886         *
5887         * @param index - number of the sought group (0..n)
5888         * @returns sought group or NULL if there's no such group
5889         */
5890        Group* File::GetGroup(uint index) {
5891            if (!pGroups) LoadGroups();
5892            GroupsIterator = pGroups->begin();
5893            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5894                if (i == index) return *GroupsIterator;
5895                ++GroupsIterator;
5896            }
5897            return NULL;
5898        }
5899    
5900        /**
5901         * Returns the group with the given group name.
5902         *
5903         * Note: group names don't have to be unique in the gig format! So there
5904         * can be multiple groups with the same name. This method will simply
5905         * return the first group found with the given name.
5906         *
5907         * @param name - name of the sought group
5908         * @returns sought group or NULL if there's no group with that name
5909         */
5910        Group* File::GetGroup(String name) {
5911            if (!pGroups) LoadGroups();
5912            GroupsIterator = pGroups->begin();
5913            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5914                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5915            return NULL;
5916        }
5917    
5918        Group* File::AddGroup() {
5919            if (!pGroups) LoadGroups();
5920            // there must always be at least one group
5921            __ensureMandatoryChunksExist();
5922            Group* pGroup = new Group(this, NULL);
5923            pGroups->push_back(pGroup);
5924            return pGroup;
5925        }
5926    
5927        /** @brief Delete a group and its samples.
5928         *
5929         * This will delete the given Group object and all the samples that
5930         * belong to this group from the gig file. You have to call Save() to
5931         * make this persistent to the file.
5932         *
5933         * @param pGroup - group to delete
5934         * @throws gig::Exception if given group could not be found
5935         */
5936        void File::DeleteGroup(Group* pGroup) {
5937            if (!pGroups) LoadGroups();
5938            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5939            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5940            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5941            // delete all members of this group
5942            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5943                DeleteSample(pSample);
5944            }
5945            // now delete this group object
5946            pGroups->erase(iter);
5947            delete pGroup;
5948        }
5949    
5950        /** @brief Delete a group.
5951         *
5952         * This will delete the given Group object from the gig file. All the
5953         * samples that belong to this group will not be deleted, but instead
5954         * be moved to another group. You have to call Save() to make this
5955         * persistent to the file.
5956         *
5957         * @param pGroup - group to delete
5958         * @throws gig::Exception if given group could not be found
5959         */
5960        void File::DeleteGroupOnly(Group* pGroup) {
5961            if (!pGroups) LoadGroups();
5962            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5963            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5964            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5965            // move all members of this group to another group
5966            pGroup->MoveAll();
5967            pGroups->erase(iter);
5968            delete pGroup;
5969        }
5970    
5971        void File::LoadGroups() {
5972            if (!pGroups) pGroups = new std::list<Group*>;
5973            // try to read defined groups from file
5974            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5975            if (lst3gri) {
5976                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5977                if (lst3gnl) {
5978                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5979                    while (ck) {
5980                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5981                            if (pVersion && pVersion->major == 3 &&
5982                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5983    
5984                            pGroups->push_back(new Group(this, ck));
5985                        }
5986                        ck = lst3gnl->GetNextSubChunk();
5987                    }
5988                }
5989            }
5990            // if there were no group(s), create at least the mandatory default group
5991            if (!pGroups->size()) {
5992                Group* pGroup = new Group(this, NULL);
5993                pGroup->Name = "Default Group";
5994                pGroups->push_back(pGroup);
5995            }
5996        }
5997    
5998        /** @brief Get instrument script group (by index).
5999         *
6000         * Returns the real-time instrument script group with the given index.
6001         *
6002         * @param index - number of the sought group (0..n)
6003         * @returns sought script group or NULL if there's no such group
6004         */
6005        ScriptGroup* File::GetScriptGroup(uint index) {
6006            if (!pScriptGroups) LoadScriptGroups();
6007            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6008            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6009                if (i == index) return *it;
6010            return NULL;
6011        }
6012    
6013        /** @brief Get instrument script group (by name).
6014         *
6015         * Returns the first real-time instrument script group found with the given
6016         * group name. Note that group names may not necessarily be unique.
6017         *
6018         * @param name - name of the sought script group
6019         * @returns sought script group or NULL if there's no such group
6020         */
6021        ScriptGroup* File::GetScriptGroup(const String& name) {
6022            if (!pScriptGroups) LoadScriptGroups();
6023            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6024            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6025                if ((*it)->Name == name) return *it;
6026            return NULL;
6027        }
6028    
6029        /** @brief Add new instrument script group.
6030         *
6031         * Adds a new, empty real-time instrument script group to the file.
6032         *
6033         * You have to call Save() to make this persistent to the file.
6034         *
6035         * @return new empty script group
6036         */
6037        ScriptGroup* File::AddScriptGroup() {
6038            if (!pScriptGroups) LoadScriptGroups();
6039            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6040            pScriptGroups->push_back(pScriptGroup);
6041            return pScriptGroup;
6042        }
6043    
6044        /** @brief Delete an instrument script group.
6045         *
6046         * This will delete the given real-time instrument script group and all its
6047         * instrument scripts it contains. References inside instruments that are
6048         * using the deleted scripts will be removed from the respective instruments
6049         * accordingly.
6050         *
6051         * You have to call Save() to make this persistent to the file.
6052         *
6053         * @param pScriptGroup - script group to delete
6054         * @throws gig::Exception if given script group could not be found
6055         */
6056        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6057            if (!pScriptGroups) LoadScriptGroups();
6058            std::list<ScriptGroup*>::iterator iter =
6059                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6060            if (iter == pScriptGroups->end())
6061                throw gig::Exception("Could not delete script group, could not find given script group");
6062            pScriptGroups->erase(iter);
6063            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6064                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6065            if (pScriptGroup->pList)
6066                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6067            delete pScriptGroup;
6068        }
6069    
6070        void File::LoadScriptGroups() {
6071            if (pScriptGroups) return;
6072            pScriptGroups = new std::list<ScriptGroup*>;
6073            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6074            if (lstLS) {
6075                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6076                     lst = lstLS->GetNextSubList())
6077                {
6078                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6079                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6080                    }
6081                }
6082            }
6083        }
6084    
6085        /**
6086         * Apply all the gig file's current instruments, samples, groups and settings
6087         * to the respective RIFF chunks. You have to call Save() to make changes
6088         * persistent.
6089         *
6090         * Usually there is absolutely no need to call this method explicitly.
6091         * It will be called automatically when File::Save() was called.
6092         *
6093         * @param pProgress - callback function for progress notification
6094         * @throws Exception - on errors
6095         */
6096        void File::UpdateChunks(progress_t* pProgress) {
6097            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6098    
6099            // update own gig format extension chunks
6100            // (not part of the GigaStudio 4 format)
6101            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6102            if (!lst3LS) {
6103                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6104            }
6105            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6106            // location of <3LS > is irrelevant, however it should be located
6107            // before  the actual wave data
6108            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6109            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6110    
6111            // This must be performed before writing the chunks for instruments,
6112            // because the instruments' script slots will write the file offsets
6113            // of the respective instrument script chunk as reference.
6114            if (pScriptGroups) {
6115                // Update instrument script (group) chunks.
6116                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6117                     it != pScriptGroups->end(); ++it)
6118                {
6119                    (*it)->UpdateChunks(pProgress);
6120                }
6121            }
6122    
6123            // in case no libgig custom format data was added, then remove the
6124            // custom "3LS " chunk again
6125            if (!lst3LS->CountSubChunks()) {
6126                pRIFF->DeleteSubChunk(lst3LS);
6127                lst3LS = NULL;
6128            }
6129    
6130            // first update base class's chunks
6131            DLS::File::UpdateChunks(pProgress);
6132    
6133            if (newFile) {
6134                // INFO was added by Resource::UpdateChunks - make sure it
6135                // is placed first in file
6136                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6137                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6138                if (first != info) {
6139                    pRIFF->MoveSubChunk(info, first);
6140                }
6141            }
6142    
6143            // update group's chunks
6144            if (pGroups) {
6145                // make sure '3gri' and '3gnl' list chunks exist
6146                // (before updating the Group chunks)
6147                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6148                if (!_3gri) {
6149                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6150                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6151                }
6152                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6153                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6154    
6155                // v3: make sure the file has 128 3gnm chunks
6156                // (before updating the Group chunks)
6157                if (pVersion && pVersion->major == 3) {
6158                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6159                    for (int i = 0 ; i < 128 ; i++) {
6160                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6161                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6162                    }
6163                }
6164    
6165                std::list<Group*>::iterator iter = pGroups->begin();
6166                std::list<Group*>::iterator end  = pGroups->end();
6167                for (; iter != end; ++iter) {
6168                    (*iter)->UpdateChunks(pProgress);
6169                }
6170            }
6171    
6172            // update einf chunk
6173    
6174            // The einf chunk contains statistics about the gig file, such
6175            // as the number of regions and samples used by each
6176            // instrument. It is divided in equally sized parts, where the
6177            // first part contains information about the whole gig file,
6178            // and the rest of the parts map to each instrument in the
6179            // file.
6180            //
6181            // At the end of each part there is a bit map of each sample
6182            // in the file, where a set bit means that the sample is used
6183            // by the file/instrument.
6184            //
6185            // Note that there are several fields with unknown use. These
6186            // are set to zero.
6187    
6188            int sublen = int(pSamples->size() / 8 + 49);
6189            int einfSize = (Instruments + 1) * sublen;
6190    
6191            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6192            if (einf) {
6193                if (einf->GetSize() != einfSize) {
6194                    einf->Resize(einfSize);
6195                    memset(einf->LoadChunkData(), 0, einfSize);
6196                }
6197            } else if (newFile) {
6198                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6199            }
6200            if (einf) {
6201                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6202    
6203                std::map<gig::Sample*,int> sampleMap;
6204                int sampleIdx = 0;
6205                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6206                    sampleMap[pSample] = sampleIdx++;
6207                }
6208    
6209                int totnbusedsamples = 0;
6210                int totnbusedchannels = 0;
6211                int totnbregions = 0;
6212                int totnbdimregions = 0;
6213                int totnbloops = 0;
6214                int instrumentIdx = 0;
6215    
6216                memset(&pData[48], 0, sublen - 48);
6217    
6218                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6219                     instrument = GetNextInstrument()) {
6220                    int nbusedsamples = 0;
6221                    int nbusedchannels = 0;
6222                    int nbdimregions = 0;
6223                    int nbloops = 0;
6224    
6225                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6226    
6227                    for (Region* region = instrument->GetFirstRegion() ; region ;
6228                         region = instrument->GetNextRegion()) {
6229                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6230                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6231                            if (d->pSample) {
6232                                int sampleIdx = sampleMap[d->pSample];
6233                                int byte = 48 + sampleIdx / 8;
6234                                int bit = 1 << (sampleIdx & 7);
6235                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6236                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6237                                    nbusedsamples++;
6238                                    nbusedchannels += d->pSample->Channels;
6239    
6240                                    if ((pData[byte] & bit) == 0) {
6241                                        pData[byte] |= bit;
6242                                        totnbusedsamples++;
6243                                        totnbusedchannels += d->pSample->Channels;
6244                                    }
6245                                }
6246                            }
6247                            if (d->SampleLoops) nbloops++;
6248                        }
6249                        nbdimregions += region->DimensionRegions;
6250                    }
6251                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6252                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6253                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6254                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6255                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6256                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6257                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6258                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6259                    // next 8 bytes unknown
6260                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6261                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6262                    // next 4 bytes unknown
6263    
6264                    totnbregions += instrument->Regions;
6265                    totnbdimregions += nbdimregions;
6266                    totnbloops += nbloops;
6267                    instrumentIdx++;
6268                }
6269                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6270                // store32(&pData[0], sublen);
6271                store32(&pData[4], totnbusedchannels);
6272                store32(&pData[8], totnbusedsamples);
6273                store32(&pData[12], Instruments);
6274                store32(&pData[16], totnbregions);
6275                store32(&pData[20], totnbdimregions);
6276                store32(&pData[24], totnbloops);
6277                // next 8 bytes unknown
6278                // next 4 bytes unknown, not always 0
6279                store32(&pData[40], (uint32_t) pSamples->size());
6280                // next 4 bytes unknown
6281            }
6282    
6283            // update 3crc chunk
6284    
6285            // The 3crc chunk contains CRC-32 checksums for the
6286            // samples. When saving a gig file to disk, we first update the 3CRC
6287            // chunk here (in RAM) with the old crc values which we read from the
6288            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6289            // member variable). This step is required, because samples might have
6290            // been deleted by the user since the file was opened, which in turn
6291            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6292            // If a sample was conciously modified by the user (that is if
6293            // Sample::Write() was called later on) then Sample::Write() will just
6294            // update the respective individual checksum(s) directly on disk and
6295            // leaves all other sample checksums untouched.
6296    
6297            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6298            if (_3crc) {
6299                _3crc->Resize(pSamples->size() * 8);
6300            } else /*if (newFile)*/ {
6301                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6302                // the order of einf and 3crc is not the same in v2 and v3
6303                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6304            }
6305            { // must be performed in RAM here ...
6306                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6307                if (pData) {
6308                    File::SampleList::iterator iter = pSamples->begin();
6309                    File::SampleList::iterator end  = pSamples->end();
6310                    for (int index = 0; iter != end; ++iter, ++index) {
6311                        gig::Sample* pSample = (gig::Sample*) *iter;
6312                        pData[index*2]   = 1; // always 1
6313                        pData[index*2+1] = pSample->crc;
6314                    }
6315                }
6316            }
6317        }
6318        
6319        void File::UpdateFileOffsets() {
6320            DLS::File::UpdateFileOffsets();
6321    
6322            for (Instrument* instrument = GetFirstInstrument(); instrument;
6323                 instrument = GetNextInstrument())
6324            {
6325                instrument->UpdateScriptFileOffsets();
6326            }
6327        }
6328    
6329        /**
6330         * Enable / disable automatic loading. By default this properyt is
6331         * enabled and all informations are loaded automatically. However
6332         * loading all Regions, DimensionRegions and especially samples might
6333         * take a long time for large .gig files, and sometimes one might only
6334         * be interested in retrieving very superficial informations like the
6335         * amount of instruments and their names. In this case one might disable
6336         * automatic loading to avoid very slow response times.
6337         *
6338         * @e CAUTION: by disabling this property many pointers (i.e. sample
6339         * references) and informations will have invalid or even undefined
6340         * data! This feature is currently only intended for retrieving very
6341         * superficial informations in a very fast way. Don't use it to retrieve
6342         * details like synthesis informations or even to modify .gig files!
6343         */
6344        void File::SetAutoLoad(bool b) {
6345            bAutoLoad = b;
6346        }
6347    
6348        /**
6349         * Returns whether automatic loading is enabled.
6350         * @see SetAutoLoad()
6351         */
6352        bool File::GetAutoLoad() {
6353            return bAutoLoad;
6354      }      }
6355    
6356    
# Line 1865  namespace { Line 6365  namespace {
6365          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6366      }      }
6367    
6368    
6369    // *************** functions ***************
6370    // *
6371    
6372        /**
6373         * Returns the name of this C++ library. This is usually "libgig" of
6374         * course. This call is equivalent to RIFF::libraryName() and
6375         * DLS::libraryName().
6376         */
6377        String libraryName() {
6378            return PACKAGE;
6379        }
6380    
6381        /**
6382         * Returns version of this C++ library. This call is equivalent to
6383         * RIFF::libraryVersion() and DLS::libraryVersion().
6384         */
6385        String libraryVersion() {
6386            return VERSION;
6387        }
6388    
6389  } // namespace gig  } // namespace gig

Legend:
Removed from v.516  
changed lines
  Added in v.3117

  ViewVC Help
Powered by ViewVC