/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 728 by persson, Tue Jul 26 11:13:53 2005 UTC revision 858 by persson, Sat May 6 11:29:29 2006 UTC
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <math.h>
29  #include <iostream>  #include <iostream>
30    
31    /// Initial size of the sample buffer which is used for decompression of
32    /// compressed sample wave streams - this value should always be bigger than
33    /// the biggest sample piece expected to be read by the sampler engine,
34    /// otherwise the buffer size will be raised at runtime and thus the buffer
35    /// reallocated which is time consuming and unefficient.
36    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
37    
38    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
40    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
41    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
42    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
43    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
44    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
45    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
46    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
47    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
49    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
50    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
51    
52  namespace gig {  namespace gig {
53    
54  // *************** progress_t ***************  // *************** progress_t ***************
# Line 59  namespace gig { Line 83  namespace gig {
83      }      }
84    
85    
86  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
87  // *  // *
88    
89  namespace {  namespace {
# Line 232  namespace { Line 256  namespace {
256      unsigned int Sample::Instances = 0;      unsigned int Sample::Instances = 0;
257      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
258    
259        /** @brief Constructor.
260         *
261         * Load an existing sample or create a new one. A 'wave' list chunk must
262         * be given to this constructor. In case the given 'wave' list chunk
263         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
264         * format and sample data will be loaded from there, otherwise default
265         * values will be used and those chunks will be created when
266         * File::Save() will be called later on.
267         *
268         * @param pFile          - pointer to gig::File where this sample is
269         *                         located (or will be located)
270         * @param waveList       - pointer to 'wave' list chunk which is (or
271         *                         will be) associated with this sample
272         * @param WavePoolOffset - offset of this sample data from wave pool
273         *                         ('wvpl') list chunk
274         * @param fileNo         - number of an extension file where this sample
275         *                         is located, 0 otherwise
276         */
277      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
278          Instances++;          Instances++;
279          FileNo = fileNo;          FileNo = fileNo;
280    
281          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
282          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
283          SampleGroup = _3gix->ReadInt16();              SampleGroup = pCk3gix->ReadInt16();
284            } else { // '3gix' chunk missing
285          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              // use default value(s)
286          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              SampleGroup = 0;
287          Manufacturer      = smpl->ReadInt32();          }
288          Product           = smpl->ReadInt32();  
289          SamplePeriod      = smpl->ReadInt32();          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
290          MIDIUnityNote     = smpl->ReadInt32();          if (pCkSmpl) {
291          FineTune          = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
292          smpl->Read(&SMPTEFormat, 1, 4);              Product       = pCkSmpl->ReadInt32();
293          SMPTEOffset       = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
294          Loops             = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
295          smpl->ReadInt32(); // manufByt              FineTune      = pCkSmpl->ReadInt32();
296          LoopID            = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
297          smpl->Read(&LoopType, 1, 4);              SMPTEOffset   = pCkSmpl->ReadInt32();
298          LoopStart         = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
299          LoopEnd           = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
300          LoopFraction      = smpl->ReadInt32();              LoopID        = pCkSmpl->ReadInt32();
301          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
302                LoopStart     = pCkSmpl->ReadInt32();
303                LoopEnd       = pCkSmpl->ReadInt32();
304                LoopFraction  = pCkSmpl->ReadInt32();
305                LoopPlayCount = pCkSmpl->ReadInt32();
306            } else { // 'smpl' chunk missing
307                // use default values
308                Manufacturer  = 0;
309                Product       = 0;
310                SamplePeriod  = 1 / SamplesPerSecond;
311                MIDIUnityNote = 64;
312                FineTune      = 0;
313                SMPTEOffset   = 0;
314                Loops         = 0;
315                LoopID        = 0;
316                LoopStart     = 0;
317                LoopEnd       = 0;
318                LoopFraction  = 0;
319                LoopPlayCount = 0;
320            }
321    
322          FrameTable                 = NULL;          FrameTable                 = NULL;
323          SamplePos                  = 0;          SamplePos                  = 0;
# Line 290  namespace { Line 351  namespace {
351          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart;
352      }      }
353    
354        /**
355         * Apply sample and its settings to the respective RIFF chunks. You have
356         * to call File::Save() to make changes persistent.
357         *
358         * Usually there is absolutely no need to call this method explicitly.
359         * It will be called automatically when File::Save() was called.
360         *
361         * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
362         *                        was provided yet
363         * @throws gig::Exception if there is any invalid sample setting
364         */
365        void Sample::UpdateChunks() {
366            // first update base class's chunks
367            DLS::Sample::UpdateChunks();
368    
369            // make sure 'smpl' chunk exists
370            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
371            if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
372            // update 'smpl' chunk
373            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
374            SamplePeriod = 1 / SamplesPerSecond;
375            memcpy(&pData[0], &Manufacturer, 4);
376            memcpy(&pData[4], &Product, 4);
377            memcpy(&pData[8], &SamplePeriod, 4);
378            memcpy(&pData[12], &MIDIUnityNote, 4);
379            memcpy(&pData[16], &FineTune, 4);
380            memcpy(&pData[20], &SMPTEFormat, 4);
381            memcpy(&pData[24], &SMPTEOffset, 4);
382            memcpy(&pData[28], &Loops, 4);
383    
384            // we skip 'manufByt' for now (4 bytes)
385    
386            memcpy(&pData[36], &LoopID, 4);
387            memcpy(&pData[40], &LoopType, 4);
388            memcpy(&pData[44], &LoopStart, 4);
389            memcpy(&pData[48], &LoopEnd, 4);
390            memcpy(&pData[52], &LoopFraction, 4);
391            memcpy(&pData[56], &LoopPlayCount, 4);
392    
393            // make sure '3gix' chunk exists
394            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
395            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
396            // update '3gix' chunk
397            pData = (uint8_t*) pCk3gix->LoadChunkData();
398            memcpy(&pData[0], &SampleGroup, 2);
399        }
400    
401      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
402      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
403          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
# Line 490  namespace { Line 598  namespace {
598          RAMCache.Size   = 0;          RAMCache.Size   = 0;
599      }      }
600    
601        /** @brief Resize sample.
602         *
603         * Resizes the sample's wave form data, that is the actual size of
604         * sample wave data possible to be written for this sample. This call
605         * will return immediately and just schedule the resize operation. You
606         * should call File::Save() to actually perform the resize operation(s)
607         * "physically" to the file. As this can take a while on large files, it
608         * is recommended to call Resize() first on all samples which have to be
609         * resized and finally to call File::Save() to perform all those resize
610         * operations in one rush.
611         *
612         * The actual size (in bytes) is dependant to the current FrameSize
613         * value. You may want to set FrameSize before calling Resize().
614         *
615         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
616         * enlarged samples before calling File::Save() as this might exceed the
617         * current sample's boundary!
618         *
619         * Also note: only WAVE_FORMAT_PCM is currently supported, that is
620         * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
621         * other formats will fail!
622         *
623         * @param iNewSize - new sample wave data size in sample points (must be
624         *                   greater than zero)
625         * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
626         *                         or if \a iNewSize is less than 1
627         * @throws gig::Exception if existing sample is compressed
628         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
629         *      DLS::Sample::FormatTag, File::Save()
630         */
631        void Sample::Resize(int iNewSize) {
632            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
633            DLS::Sample::Resize(iNewSize);
634        }
635    
636      /**      /**
637       * Sets the position within the sample (in sample points, not in       * Sets the position within the sample (in sample points, not in
638       * bytes). Use this method and <i>Read()</i> if you don't want to load       * bytes). Use this method and <i>Read()</i> if you don't want to load
# Line 933  namespace { Line 1076  namespace {
1076          }          }
1077      }      }
1078    
1079        /** @brief Write sample wave data.
1080         *
1081         * Writes \a SampleCount number of sample points from the buffer pointed
1082         * by \a pBuffer and increments the position within the sample. Use this
1083         * method to directly write the sample data to disk, i.e. if you don't
1084         * want or cannot load the whole sample data into RAM.
1085         *
1086         * You have to Resize() the sample to the desired size and call
1087         * File::Save() <b>before</b> using Write().
1088         *
1089         * Note: there is currently no support for writing compressed samples.
1090         *
1091         * @param pBuffer     - source buffer
1092         * @param SampleCount - number of sample points to write
1093         * @throws DLS::Exception if current sample size is too small
1094         * @throws gig::Exception if sample is compressed
1095         * @see DLS::LoadSampleData()
1096         */
1097        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1098            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1099            return DLS::Sample::Write(pBuffer, SampleCount);
1100        }
1101    
1102      /**      /**
1103       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1104       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 997  namespace { Line 1163  namespace {
1163      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1164          Instances++;          Instances++;
1165    
1166            pSample = NULL;
1167    
1168          memcpy(&Crossfade, &SamplerOptions, 4);          memcpy(&Crossfade, &SamplerOptions, 4);
1169          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1170    
1171          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1172          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1173          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1174          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1175          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1176          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1177          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1178          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1179          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1180          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1181          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1182          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1183          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1184          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1185          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1186          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1187          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1188          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1189          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1190          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1191          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1192          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1193          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1194          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1195          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1196          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1197          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1198          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1199          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1200          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1201          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1202          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1203          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1205          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1206          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1208          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1209          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1210          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1211          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1212          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1213          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1214          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1215          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1216          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1217          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1218          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1219          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1220          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1221          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1222          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1223              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1224              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1225          }                  VelocityResponseDepth = velocityresponse;
1226          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1227              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1228              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1229          }              } else if (velocityresponse < 15) {
1230          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1231              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1232              VelocityResponseDepth = velocityresponse - 10;              } else {
1233          }                  VelocityResponseCurve = curve_type_unknown;
1234          else {                  VelocityResponseDepth = 0;
1235              VelocityResponseCurve = curve_type_unknown;              }
1236              VelocityResponseDepth = 0;              uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1237          }              if (releasevelocityresponse < 5) {
1238          uint8_t releasevelocityresponse = _3ewa->ReadUint8();                  ReleaseVelocityResponseCurve = curve_type_nonlinear;
1239          if (releasevelocityresponse < 5) {                  ReleaseVelocityResponseDepth = releasevelocityresponse;
1240              ReleaseVelocityResponseCurve = curve_type_nonlinear;              } else if (releasevelocityresponse < 10) {
1241              ReleaseVelocityResponseDepth = releasevelocityresponse;                  ReleaseVelocityResponseCurve = curve_type_linear;
1242          }                  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1243          else if (releasevelocityresponse < 10) {              } else if (releasevelocityresponse < 15) {
1244              ReleaseVelocityResponseCurve = curve_type_linear;                  ReleaseVelocityResponseCurve = curve_type_special;
1245              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1246          }              } else {
1247          else if (releasevelocityresponse < 15) {                  ReleaseVelocityResponseCurve = curve_type_unknown;
1248              ReleaseVelocityResponseCurve = curve_type_special;                  ReleaseVelocityResponseDepth = 0;
1249              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;              }
1250          }              VelocityResponseCurveScaling = _3ewa->ReadUint8();
1251          else {              AttenuationControllerThreshold = _3ewa->ReadInt8();
1252              ReleaseVelocityResponseCurve = curve_type_unknown;              _3ewa->ReadInt32(); // unknown
1253              ReleaseVelocityResponseDepth = 0;              SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1254          }              _3ewa->ReadInt16(); // unknown
1255          VelocityResponseCurveScaling = _3ewa->ReadUint8();              uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1256          AttenuationControllerThreshold = _3ewa->ReadInt8();              PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1257          _3ewa->ReadInt32(); // unknown              if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1258          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();              else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1259          _3ewa->ReadInt16(); // unknown              else                                       DimensionBypass = dim_bypass_ctrl_none;
1260          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();              uint8_t pan = _3ewa->ReadUint8();
1261          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);              Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1262          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;              SelfMask = _3ewa->ReadInt8() & 0x01;
1263          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;              _3ewa->ReadInt8(); // unknown
1264          else                                       DimensionBypass = dim_bypass_ctrl_none;              uint8_t lfo3ctrl = _3ewa->ReadUint8();
1265          uint8_t pan = _3ewa->ReadUint8();              LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1266          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit              LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1267          SelfMask = _3ewa->ReadInt8() & 0x01;              InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1268          _3ewa->ReadInt8(); // unknown              AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1269          uint8_t lfo3ctrl = _3ewa->ReadUint8();              uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1270          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits              LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1271          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5              LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1272          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7              LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1273          AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1274          uint8_t lfo2ctrl       = _3ewa->ReadUint8();              uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1275          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits              LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1276          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7              LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1277          LFO2Sync               = lfo2ctrl & 0x20; // bit 5              LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1278          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6              VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1279          uint8_t lfo1ctrl       = _3ewa->ReadUint8();                                                          : vcf_res_ctrl_none;
1280          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits              uint16_t eg3depth = _3ewa->ReadUint16();
1281          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1282          LFO1Sync               = lfo1ctrl & 0x40; // bit 6                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1283          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))              _3ewa->ReadInt16(); // unknown
1284                                                      : vcf_res_ctrl_none;              ChannelOffset = _3ewa->ReadUint8() / 4;
1285          uint16_t eg3depth = _3ewa->ReadUint16();              uint8_t regoptions = _3ewa->ReadUint8();
1286          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              MSDecode           = regoptions & 0x01; // bit 0
1287                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */              SustainDefeat      = regoptions & 0x02; // bit 1
1288          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1289          ChannelOffset = _3ewa->ReadUint8() / 4;              VelocityUpperLimit = _3ewa->ReadInt8();
1290          uint8_t regoptions = _3ewa->ReadUint8();              _3ewa->ReadInt8(); // unknown
1291          MSDecode           = regoptions & 0x01; // bit 0              _3ewa->ReadInt16(); // unknown
1292          SustainDefeat      = regoptions & 0x02; // bit 1              ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1293          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt8(); // unknown
1294          VelocityUpperLimit = _3ewa->ReadInt8();              _3ewa->ReadInt8(); // unknown
1295          _3ewa->ReadInt8(); // unknown              EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1296          _3ewa->ReadInt16(); // unknown              uint8_t vcfcutoff = _3ewa->ReadUint8();
1297          ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay              VCFEnabled = vcfcutoff & 0x80; // bit 7
1298          _3ewa->ReadInt8(); // unknown              VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1299          _3ewa->ReadInt8(); // unknown              VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1300          EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7              uint8_t vcfvelscale = _3ewa->ReadUint8();
1301          uint8_t vcfcutoff = _3ewa->ReadUint8();              VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1302          VCFEnabled = vcfcutoff & 0x80; // bit 7              VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1303          VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits              _3ewa->ReadInt8(); // unknown
1304          VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());              uint8_t vcfresonance = _3ewa->ReadUint8();
1305          uint8_t vcfvelscale = _3ewa->ReadUint8();              VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1306          VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7              VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1307          VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits              uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1308          _3ewa->ReadInt8(); // unknown              VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1309          uint8_t vcfresonance = _3ewa->ReadUint8();              VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1310          VCFResonance = vcfresonance & 0x7f; // lower 7 bits              uint8_t vcfvelocity = _3ewa->ReadUint8();
1311          VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7              VCFVelocityDynamicRange = vcfvelocity % 5;
1312          uint8_t vcfbreakpoint         = _3ewa->ReadUint8();              VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1313          VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7              VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1314          VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits              if (VCFType == vcf_type_lowpass) {
1315          uint8_t vcfvelocity = _3ewa->ReadUint8();                  if (lfo3ctrl & 0x40) // bit 6
1316          VCFVelocityDynamicRange = vcfvelocity % 5;                      VCFType = vcf_type_lowpassturbo;
1317          VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);              }
1318          VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());          } else { // '3ewa' chunk does not exist yet
1319          if (VCFType == vcf_type_lowpass) {              // use default values
1320              if (lfo3ctrl & 0x40) // bit 6              LFO3Frequency                   = 1.0;
1321                  VCFType = vcf_type_lowpassturbo;              EG3Attack                       = 0.0;
1322                LFO1InternalDepth               = 0;
1323                LFO3InternalDepth               = 0;
1324                LFO1ControlDepth                = 0;
1325                LFO3ControlDepth                = 0;
1326                EG1Attack                       = 0.0;
1327                EG1Decay1                       = 0.0;
1328                EG1Sustain                      = 0;
1329                EG1Release                      = 0.0;
1330                EG1Controller.type              = eg1_ctrl_t::type_none;
1331                EG1Controller.controller_number = 0;
1332                EG1ControllerInvert             = false;
1333                EG1ControllerAttackInfluence    = 0;
1334                EG1ControllerDecayInfluence     = 0;
1335                EG1ControllerReleaseInfluence   = 0;
1336                EG2Controller.type              = eg2_ctrl_t::type_none;
1337                EG2Controller.controller_number = 0;
1338                EG2ControllerInvert             = false;
1339                EG2ControllerAttackInfluence    = 0;
1340                EG2ControllerDecayInfluence     = 0;
1341                EG2ControllerReleaseInfluence   = 0;
1342                LFO1Frequency                   = 1.0;
1343                EG2Attack                       = 0.0;
1344                EG2Decay1                       = 0.0;
1345                EG2Sustain                      = 0;
1346                EG2Release                      = 0.0;
1347                LFO2ControlDepth                = 0;
1348                LFO2Frequency                   = 1.0;
1349                LFO2InternalDepth               = 0;
1350                EG1Decay2                       = 0.0;
1351                EG1InfiniteSustain              = false;
1352                EG1PreAttack                    = 1000;
1353                EG2Decay2                       = 0.0;
1354                EG2InfiniteSustain              = false;
1355                EG2PreAttack                    = 1000;
1356                VelocityResponseCurve           = curve_type_nonlinear;
1357                VelocityResponseDepth           = 3;
1358                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1359                ReleaseVelocityResponseDepth    = 3;
1360                VelocityResponseCurveScaling    = 32;
1361                AttenuationControllerThreshold  = 0;
1362                SampleStartOffset               = 0;
1363                PitchTrack                      = true;
1364                DimensionBypass                 = dim_bypass_ctrl_none;
1365                Pan                             = 0;
1366                SelfMask                        = true;
1367                LFO3Controller                  = lfo3_ctrl_modwheel;
1368                LFO3Sync                        = false;
1369                InvertAttenuationController     = false;
1370                AttenuationController.type      = attenuation_ctrl_t::type_none;
1371                AttenuationController.controller_number = 0;
1372                LFO2Controller                  = lfo2_ctrl_internal;
1373                LFO2FlipPhase                   = false;
1374                LFO2Sync                        = false;
1375                LFO1Controller                  = lfo1_ctrl_internal;
1376                LFO1FlipPhase                   = false;
1377                LFO1Sync                        = false;
1378                VCFResonanceController          = vcf_res_ctrl_none;
1379                EG3Depth                        = 0;
1380                ChannelOffset                   = 0;
1381                MSDecode                        = false;
1382                SustainDefeat                   = false;
1383                VelocityUpperLimit              = 0;
1384                ReleaseTriggerDecay             = 0;
1385                EG1Hold                         = false;
1386                VCFEnabled                      = false;
1387                VCFCutoff                       = 0;
1388                VCFCutoffController             = vcf_cutoff_ctrl_none;
1389                VCFCutoffControllerInvert       = false;
1390                VCFVelocityScale                = 0;
1391                VCFResonance                    = 0;
1392                VCFResonanceDynamic             = false;
1393                VCFKeyboardTracking             = false;
1394                VCFKeyboardTrackingBreakpoint   = 0;
1395                VCFVelocityDynamicRange         = 0x04;
1396                VCFVelocityCurve                = curve_type_linear;
1397                VCFType                         = vcf_type_lowpass;
1398          }          }
1399    
1400          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1182  namespace { Line 1426  namespace {
1426              depth = 5;              depth = 5;
1427          }          }
1428          pVelocityCutoffTable = GetVelocityTable(curveType, depth,          pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1429                                                  VCFCutoffController == vcf_cutoff_ctrl_none ? VCFVelocityScale : 0);                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1430    
1431          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1432            VelocityTable = 0;
1433        }
1434    
1435        /**
1436         * Apply dimension region settings to the respective RIFF chunks. You
1437         * have to call File::Save() to make changes persistent.
1438         *
1439         * Usually there is absolutely no need to call this method explicitly.
1440         * It will be called automatically when File::Save() was called.
1441         */
1442        void DimensionRegion::UpdateChunks() {
1443            // first update base class's chunk
1444            DLS::Sampler::UpdateChunks();
1445    
1446            // make sure '3ewa' chunk exists
1447            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1448            if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1449            uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1450    
1451            // update '3ewa' chunk with DimensionRegion's current settings
1452    
1453            const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1454            memcpy(&pData[0], &unknown, 4);
1455    
1456            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1457            memcpy(&pData[4], &lfo3freq, 4);
1458    
1459            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1460            memcpy(&pData[4], &eg3attack, 4);
1461    
1462            // next 2 bytes unknown
1463    
1464            memcpy(&pData[10], &LFO1InternalDepth, 2);
1465    
1466            // next 2 bytes unknown
1467    
1468            memcpy(&pData[14], &LFO3InternalDepth, 2);
1469    
1470            // next 2 bytes unknown
1471    
1472            memcpy(&pData[18], &LFO1ControlDepth, 2);
1473    
1474            // next 2 bytes unknown
1475    
1476            memcpy(&pData[22], &LFO3ControlDepth, 2);
1477    
1478            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1479            memcpy(&pData[24], &eg1attack, 4);
1480    
1481            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1482            memcpy(&pData[28], &eg1decay1, 4);
1483    
1484            // next 2 bytes unknown
1485    
1486            memcpy(&pData[34], &EG1Sustain, 2);
1487    
1488            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1489            memcpy(&pData[36], &eg1release, 4);
1490    
1491            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1492            memcpy(&pData[40], &eg1ctl, 1);
1493    
1494            const uint8_t eg1ctrloptions =
1495                (EG1ControllerInvert) ? 0x01 : 0x00 |
1496                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1497                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1498                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1499            memcpy(&pData[41], &eg1ctrloptions, 1);
1500    
1501            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1502            memcpy(&pData[42], &eg2ctl, 1);
1503    
1504            const uint8_t eg2ctrloptions =
1505                (EG2ControllerInvert) ? 0x01 : 0x00 |
1506                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1507                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1508                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1509            memcpy(&pData[43], &eg2ctrloptions, 1);
1510    
1511            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1512            memcpy(&pData[44], &lfo1freq, 4);
1513    
1514            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1515            memcpy(&pData[48], &eg2attack, 4);
1516    
1517            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1518            memcpy(&pData[52], &eg2decay1, 4);
1519    
1520            // next 2 bytes unknown
1521    
1522            memcpy(&pData[58], &EG2Sustain, 2);
1523    
1524            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1525            memcpy(&pData[60], &eg2release, 4);
1526    
1527            // next 2 bytes unknown
1528    
1529            memcpy(&pData[66], &LFO2ControlDepth, 2);
1530    
1531            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1532            memcpy(&pData[68], &lfo2freq, 4);
1533    
1534            // next 2 bytes unknown
1535    
1536            memcpy(&pData[72], &LFO2InternalDepth, 2);
1537    
1538            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1539            memcpy(&pData[74], &eg1decay2, 4);
1540    
1541            // next 2 bytes unknown
1542    
1543            memcpy(&pData[80], &EG1PreAttack, 2);
1544    
1545            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1546            memcpy(&pData[82], &eg2decay2, 4);
1547    
1548            // next 2 bytes unknown
1549    
1550            memcpy(&pData[88], &EG2PreAttack, 2);
1551    
1552            {
1553                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1554                uint8_t velocityresponse = VelocityResponseDepth;
1555                switch (VelocityResponseCurve) {
1556                    case curve_type_nonlinear:
1557                        break;
1558                    case curve_type_linear:
1559                        velocityresponse += 5;
1560                        break;
1561                    case curve_type_special:
1562                        velocityresponse += 10;
1563                        break;
1564                    case curve_type_unknown:
1565                    default:
1566                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1567                }
1568                memcpy(&pData[90], &velocityresponse, 1);
1569            }
1570    
1571            {
1572                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1573                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1574                switch (ReleaseVelocityResponseCurve) {
1575                    case curve_type_nonlinear:
1576                        break;
1577                    case curve_type_linear:
1578                        releasevelocityresponse += 5;
1579                        break;
1580                    case curve_type_special:
1581                        releasevelocityresponse += 10;
1582                        break;
1583                    case curve_type_unknown:
1584                    default:
1585                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1586                }
1587                memcpy(&pData[91], &releasevelocityresponse, 1);
1588            }
1589    
1590            memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1591    
1592            memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1593    
1594            // next 4 bytes unknown
1595    
1596            memcpy(&pData[98], &SampleStartOffset, 2);
1597    
1598            // next 2 bytes unknown
1599    
1600            {
1601                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1602                switch (DimensionBypass) {
1603                    case dim_bypass_ctrl_94:
1604                        pitchTrackDimensionBypass |= 0x10;
1605                        break;
1606                    case dim_bypass_ctrl_95:
1607                        pitchTrackDimensionBypass |= 0x20;
1608                        break;
1609                    case dim_bypass_ctrl_none:
1610                        //FIXME: should we set anything here?
1611                        break;
1612                    default:
1613                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1614                }
1615                memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1616            }
1617    
1618            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1619            memcpy(&pData[103], &pan, 1);
1620    
1621            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1622            memcpy(&pData[104], &selfmask, 1);
1623    
1624            // next byte unknown
1625    
1626            {
1627                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1628                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1629                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1630                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1631                memcpy(&pData[106], &lfo3ctrl, 1);
1632            }
1633    
1634            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1635            memcpy(&pData[107], &attenctl, 1);
1636    
1637            {
1638                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1639                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1640                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1641                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1642                memcpy(&pData[108], &lfo2ctrl, 1);
1643            }
1644    
1645            {
1646                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1647                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1648                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1649                if (VCFResonanceController != vcf_res_ctrl_none)
1650                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1651                memcpy(&pData[109], &lfo1ctrl, 1);
1652            }
1653    
1654            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1655                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1656            memcpy(&pData[110], &eg3depth, 1);
1657    
1658            // next 2 bytes unknown
1659    
1660            const uint8_t channeloffset = ChannelOffset * 4;
1661            memcpy(&pData[113], &channeloffset, 1);
1662    
1663            {
1664                uint8_t regoptions = 0;
1665                if (MSDecode)      regoptions |= 0x01; // bit 0
1666                if (SustainDefeat) regoptions |= 0x02; // bit 1
1667                memcpy(&pData[114], &regoptions, 1);
1668            }
1669    
1670            // next 2 bytes unknown
1671    
1672            memcpy(&pData[117], &VelocityUpperLimit, 1);
1673    
1674            // next 3 bytes unknown
1675    
1676            memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1677    
1678            // next 2 bytes unknown
1679    
1680            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1681            memcpy(&pData[124], &eg1hold, 1);
1682    
1683            const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1684                                      (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */
1685            memcpy(&pData[125], &vcfcutoff, 1);
1686    
1687            memcpy(&pData[126], &VCFCutoffController, 1);
1688    
1689            const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1690                                        (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1691            memcpy(&pData[127], &vcfvelscale, 1);
1692    
1693            // next byte unknown
1694    
1695            const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1696                                         (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1697            memcpy(&pData[129], &vcfresonance, 1);
1698    
1699            const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1700                                          (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1701            memcpy(&pData[130], &vcfbreakpoint, 1);
1702    
1703            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1704                                        VCFVelocityCurve * 5;
1705            memcpy(&pData[131], &vcfvelocity, 1);
1706    
1707            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1708            memcpy(&pData[132], &vcftype, 1);
1709      }      }
1710    
1711      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1320  namespace { Line 1841  namespace {
1841          return decodedcontroller;          return decodedcontroller;
1842      }      }
1843    
1844        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1845            _lev_ctrl_t encodedcontroller;
1846            switch (DecodedController.type) {
1847                // special controller
1848                case leverage_ctrl_t::type_none:
1849                    encodedcontroller = _lev_ctrl_none;
1850                    break;
1851                case leverage_ctrl_t::type_velocity:
1852                    encodedcontroller = _lev_ctrl_velocity;
1853                    break;
1854                case leverage_ctrl_t::type_channelaftertouch:
1855                    encodedcontroller = _lev_ctrl_channelaftertouch;
1856                    break;
1857    
1858                // ordinary MIDI control change controller
1859                case leverage_ctrl_t::type_controlchange:
1860                    switch (DecodedController.controller_number) {
1861                        case 1:
1862                            encodedcontroller = _lev_ctrl_modwheel;
1863                            break;
1864                        case 2:
1865                            encodedcontroller = _lev_ctrl_breath;
1866                            break;
1867                        case 4:
1868                            encodedcontroller = _lev_ctrl_foot;
1869                            break;
1870                        case 12:
1871                            encodedcontroller = _lev_ctrl_effect1;
1872                            break;
1873                        case 13:
1874                            encodedcontroller = _lev_ctrl_effect2;
1875                            break;
1876                        case 16:
1877                            encodedcontroller = _lev_ctrl_genpurpose1;
1878                            break;
1879                        case 17:
1880                            encodedcontroller = _lev_ctrl_genpurpose2;
1881                            break;
1882                        case 18:
1883                            encodedcontroller = _lev_ctrl_genpurpose3;
1884                            break;
1885                        case 19:
1886                            encodedcontroller = _lev_ctrl_genpurpose4;
1887                            break;
1888                        case 5:
1889                            encodedcontroller = _lev_ctrl_portamentotime;
1890                            break;
1891                        case 64:
1892                            encodedcontroller = _lev_ctrl_sustainpedal;
1893                            break;
1894                        case 65:
1895                            encodedcontroller = _lev_ctrl_portamento;
1896                            break;
1897                        case 66:
1898                            encodedcontroller = _lev_ctrl_sostenutopedal;
1899                            break;
1900                        case 67:
1901                            encodedcontroller = _lev_ctrl_softpedal;
1902                            break;
1903                        case 80:
1904                            encodedcontroller = _lev_ctrl_genpurpose5;
1905                            break;
1906                        case 81:
1907                            encodedcontroller = _lev_ctrl_genpurpose6;
1908                            break;
1909                        case 82:
1910                            encodedcontroller = _lev_ctrl_genpurpose7;
1911                            break;
1912                        case 83:
1913                            encodedcontroller = _lev_ctrl_genpurpose8;
1914                            break;
1915                        case 91:
1916                            encodedcontroller = _lev_ctrl_effect1depth;
1917                            break;
1918                        case 92:
1919                            encodedcontroller = _lev_ctrl_effect2depth;
1920                            break;
1921                        case 93:
1922                            encodedcontroller = _lev_ctrl_effect3depth;
1923                            break;
1924                        case 94:
1925                            encodedcontroller = _lev_ctrl_effect4depth;
1926                            break;
1927                        case 95:
1928                            encodedcontroller = _lev_ctrl_effect5depth;
1929                            break;
1930                        default:
1931                            throw gig::Exception("leverage controller number is not supported by the gig format");
1932                    }
1933                default:
1934                    throw gig::Exception("Unknown leverage controller type.");
1935            }
1936            return encodedcontroller;
1937        }
1938    
1939      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
1940          Instances--;          Instances--;
1941          if (!Instances) {          if (!Instances) {
# Line 1333  namespace { Line 1949  namespace {
1949              delete pVelocityTables;              delete pVelocityTables;
1950              pVelocityTables = NULL;              pVelocityTables = NULL;
1951          }          }
1952            if (VelocityTable) delete[] VelocityTable;
1953      }      }
1954    
1955      /**      /**
# Line 1449  namespace { Line 2066  namespace {
2066              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2067                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2068                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2069                    _3lnk->ReadUint8(); // probably the position of the dimension
2070                    _3lnk->ReadUint8(); // unknown
2071                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2072                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2073                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2074                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2075                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2076                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2077                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2078                  }                  }
2079                  else { // active dimension                  else { // active dimension
2080                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2081                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2082                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2083                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2084                                                             dimension == dimension_samplechannel ||                                                             dimension == dimension_samplechannel ||
2085                                                             dimension == dimension_releasetrigger ||                                                             dimension == dimension_releasetrigger ||
2086                                                             dimension == dimension_roundrobin ||                                                             dimension == dimension_roundrobin ||
2087                                                             dimension == dimension_random) ? split_type_bit                                                             dimension == dimension_random) ? split_type_bit
2088                                                                                            : split_type_normal;                                                                                            : split_type_normal;
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
2089                      pDimensionDefinitions[i].zone_size  =                      pDimensionDefinitions[i].zone_size  =
2090                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2091                                                                                     : 0;                                                                                     : 0;
2092                      Dimensions++;                      Dimensions++;
2093    
2094                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
2095                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2096                  }                  }
2097                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2098              }              }
2099                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2100    
2101              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2102              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2103                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2104    
2105              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2106              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2107                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2108              else              else
# Line 1522  namespace { Line 2114  namespace {
2114                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2115              }              }
2116          }          }
2117          else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
2118            // make sure there is at least one dimension region
2119            if (!DimensionRegions) {
2120                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2121                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2122                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2123                pDimensionRegions[0] = new DimensionRegion(_3ewl);
2124                DimensionRegions = 1;
2125            }
2126        }
2127    
2128        /**
2129         * Apply Region settings and all its DimensionRegions to the respective
2130         * RIFF chunks. You have to call File::Save() to make changes persistent.
2131         *
2132         * Usually there is absolutely no need to call this method explicitly.
2133         * It will be called automatically when File::Save() was called.
2134         *
2135         * @throws gig::Exception if samples cannot be dereferenced
2136         */
2137        void Region::UpdateChunks() {
2138            // first update base class's chunks
2139            DLS::Region::UpdateChunks();
2140    
2141            // update dimension region's chunks
2142            for (int i = 0; i < DimensionRegions; i++) {
2143                pDimensionRegions[i]->UpdateChunks();
2144            }
2145    
2146            File* pFile = (File*) GetParent()->GetParent();
2147            const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2148            const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2149    
2150            // make sure '3lnk' chunk exists
2151            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2152            if (!_3lnk) {
2153                const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2154                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2155            }
2156    
2157            // update dimension definitions in '3lnk' chunk
2158            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2159            for (int i = 0; i < iMaxDimensions; i++) {
2160                pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;
2161                pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2162                // next 2 bytes unknown
2163                pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2164                // next 3 bytes unknown
2165            }
2166    
2167            // update wave pool table in '3lnk' chunk
2168            const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2169            for (uint i = 0; i < iMaxDimensionRegions; i++) {
2170                int iWaveIndex = -1;
2171                if (i < DimensionRegions) {
2172                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2173                    File::SampleList::iterator iter = pFile->pSamples->begin();
2174                    File::SampleList::iterator end  = pFile->pSamples->end();
2175                    for (int index = 0; iter != end; ++iter, ++index) {
2176                        if (*iter == pDimensionRegions[i]->pSample) {
2177                            iWaveIndex = index;
2178                            break;
2179                        }
2180                    }
2181                    if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2182                }
2183                memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2184            }
2185      }      }
2186    
2187      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1541  namespace { Line 2200  namespace {
2200          }          }
2201      }      }
2202    
2203      Region::~Region() {      void Region::UpdateVelocityTable() {
2204          for (uint i = 0; i < Dimensions; i++) {          // get velocity dimension's index
2205              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          int veldim = -1;
2206            for (int i = 0 ; i < Dimensions ; i++) {
2207                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2208                    veldim = i;
2209                    break;
2210                }
2211            }
2212            if (veldim == -1) return;
2213    
2214            int step = 1;
2215            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2216            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2217            int end = step * pDimensionDefinitions[veldim].zones;
2218    
2219            // loop through all dimension regions for all dimensions except the velocity dimension
2220            int dim[8] = { 0 };
2221            for (int i = 0 ; i < DimensionRegions ; i++) {
2222    
2223                if (pDimensionRegions[i]->VelocityUpperLimit) {
2224                    // create the velocity table
2225                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2226                    if (!table) {
2227                        table = new uint8_t[128];
2228                        pDimensionRegions[i]->VelocityTable = table;
2229                    }
2230                    int tableidx = 0;
2231                    int velocityZone = 0;
2232                    for (int k = i ; k < end ; k += step) {
2233                        DimensionRegion *d = pDimensionRegions[k];
2234                        for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2235                        velocityZone++;
2236                    }
2237                } else {
2238                    if (pDimensionRegions[i]->VelocityTable) {
2239                        delete[] pDimensionRegions[i]->VelocityTable;
2240                        pDimensionRegions[i]->VelocityTable = 0;
2241                    }
2242                }
2243    
2244                int j;
2245                int shift = 0;
2246                for (j = 0 ; j < Dimensions ; j++) {
2247                    if (j == veldim) i += skipveldim; // skip velocity dimension
2248                    else {
2249                        dim[j]++;
2250                        if (dim[j] < pDimensionDefinitions[j].zones) break;
2251                        else {
2252                            // skip unused dimension regions
2253                            dim[j] = 0;
2254                            i += ((1 << pDimensionDefinitions[j].bits) -
2255                                  pDimensionDefinitions[j].zones) << shift;
2256                        }
2257                    }
2258                    shift += pDimensionDefinitions[j].bits;
2259                }
2260                if (j == Dimensions) break;
2261            }
2262        }
2263    
2264        /** @brief Einstein would have dreamed of it - create a new dimension.
2265         *
2266         * Creates a new dimension with the dimension definition given by
2267         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2268         * There is a hard limit of dimensions and total amount of "bits" all
2269         * dimensions can have. This limit is dependant to what gig file format
2270         * version this file refers to. The gig v2 (and lower) format has a
2271         * dimension limit and total amount of bits limit of 5, whereas the gig v3
2272         * format has a limit of 8.
2273         *
2274         * @param pDimDef - defintion of the new dimension
2275         * @throws gig::Exception if dimension of the same type exists already
2276         * @throws gig::Exception if amount of dimensions or total amount of
2277         *                        dimension bits limit is violated
2278         */
2279        void Region::AddDimension(dimension_def_t* pDimDef) {
2280            // check if max. amount of dimensions reached
2281            File* file = (File*) GetParent()->GetParent();
2282            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2283            if (Dimensions >= iMaxDimensions)
2284                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2285            // check if max. amount of dimension bits reached
2286            int iCurrentBits = 0;
2287            for (int i = 0; i < Dimensions; i++)
2288                iCurrentBits += pDimensionDefinitions[i].bits;
2289            if (iCurrentBits >= iMaxDimensions)
2290                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2291            const int iNewBits = iCurrentBits + pDimDef->bits;
2292            if (iNewBits > iMaxDimensions)
2293                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2294            // check if there's already a dimensions of the same type
2295            for (int i = 0; i < Dimensions; i++)
2296                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2297                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2298    
2299            // assign definition of new dimension
2300            pDimensionDefinitions[Dimensions] = *pDimDef;
2301    
2302            // create new dimension region(s) for this new dimension
2303            for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2304                //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2305                RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2306                pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2307                DimensionRegions++;
2308            }
2309    
2310            Dimensions++;
2311    
2312            // if this is a layer dimension, update 'Layers' attribute
2313            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2314    
2315            UpdateVelocityTable();
2316        }
2317    
2318        /** @brief Delete an existing dimension.
2319         *
2320         * Deletes the dimension given by \a pDimDef and deletes all respective
2321         * dimension regions, that is all dimension regions where the dimension's
2322         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2323         * for example this would delete all dimension regions for the case(s)
2324         * where the sustain pedal is pressed down.
2325         *
2326         * @param pDimDef - dimension to delete
2327         * @throws gig::Exception if given dimension cannot be found
2328         */
2329        void Region::DeleteDimension(dimension_def_t* pDimDef) {
2330            // get dimension's index
2331            int iDimensionNr = -1;
2332            for (int i = 0; i < Dimensions; i++) {
2333                if (&pDimensionDefinitions[i] == pDimDef) {
2334                    iDimensionNr = i;
2335                    break;
2336                }
2337            }
2338            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2339    
2340            // get amount of bits below the dimension to delete
2341            int iLowerBits = 0;
2342            for (int i = 0; i < iDimensionNr; i++)
2343                iLowerBits += pDimensionDefinitions[i].bits;
2344    
2345            // get amount ot bits above the dimension to delete
2346            int iUpperBits = 0;
2347            for (int i = iDimensionNr + 1; i < Dimensions; i++)
2348                iUpperBits += pDimensionDefinitions[i].bits;
2349    
2350            // delete dimension regions which belong to the given dimension
2351            // (that is where the dimension's bit > 0)
2352            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2353                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2354                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2355                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2356                                        iObsoleteBit << iLowerBits |
2357                                        iLowerBit;
2358                        delete pDimensionRegions[iToDelete];
2359                        pDimensionRegions[iToDelete] = NULL;
2360                        DimensionRegions--;
2361                    }
2362                }
2363            }
2364    
2365            // defrag pDimensionRegions array
2366            // (that is remove the NULL spaces within the pDimensionRegions array)
2367            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2368                if (!pDimensionRegions[iTo]) {
2369                    if (iFrom <= iTo) iFrom = iTo + 1;
2370                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2371                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
2372                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
2373                        pDimensionRegions[iFrom] = NULL;
2374                    }
2375                }
2376          }          }
2377    
2378            // 'remove' dimension definition
2379            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2380                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2381            }
2382            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2383            pDimensionDefinitions[Dimensions - 1].bits      = 0;
2384            pDimensionDefinitions[Dimensions - 1].zones     = 0;
2385    
2386            Dimensions--;
2387    
2388            // if this was a layer dimension, update 'Layers' attribute
2389            if (pDimDef->dimension == dimension_layer) Layers = 1;
2390        }
2391    
2392        Region::~Region() {
2393          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
2394              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2395          }          }
# Line 1569  namespace { Line 2414  namespace {
2414       * @see             Dimensions       * @see             Dimensions
2415       */       */
2416      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2417          uint8_t bits[8] = { 0 };          uint8_t bits;
2418            int veldim = -1;
2419            int velbitpos;
2420            int bitpos = 0;
2421            int dimregidx = 0;
2422          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2423              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2424              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
2425                  case split_type_normal:                  veldim = i;
2426                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
2427                      break;              } else {
2428                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
2429                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
2430                      break;                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2431                  case split_type_bit: // the value is already the sought dimension bit number                          break;
2432                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                      case split_type_bit: // the value is already the sought dimension bit number
2433                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2434                      break;                          bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2435              }                          break;
2436                    }
2437                    dimregidx |= bits << bitpos;
2438                }
2439                bitpos += pDimensionDefinitions[i].bits;
2440            }
2441            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2442            if (veldim != -1) {
2443                // (dimreg is now the dimension region for the lowest velocity)
2444                if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2445                    bits = dimreg->VelocityTable[DimValues[veldim]];
2446                else // normal split type
2447                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2448    
2449                dimregidx |= bits << velbitpos;
2450                dimreg = pDimensionRegions[dimregidx];
2451          }          }
2452          return GetDimensionRegionByBit(bits);          return dimreg;
2453      }      }
2454    
2455      /**      /**
# Line 1644  namespace { Line 2508  namespace {
2508      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2509          // Initialization          // Initialization
2510          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
         RegionIndex = -1;  
2511    
2512          // Loading          // Loading
2513          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1660  namespace { Line 2523  namespace {
2523                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
2524                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
2525              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
2526          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
2527    
2528            if (!pRegions) pRegions = new RegionList;
2529          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2530          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          if (lrgn) {
2531          pRegions = new Region*[Regions];              RIFF::List* rgn = lrgn->GetFirstSubList();
2532          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              while (rgn) {
2533          RIFF::List* rgn = lrgn->GetFirstSubList();                  if (rgn->GetListType() == LIST_TYPE_RGN) {
2534          unsigned int iRegion = 0;                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2535          while (rgn) {                      pRegions->push_back(new Region(this, rgn));
2536              if (rgn->GetListType() == LIST_TYPE_RGN) {                  }
2537                  __notify_progress(pProgress, (float) iRegion / (float) Regions);                  rgn = lrgn->GetNextSubList();
                 pRegions[iRegion] = new Region(this, rgn);  
                 iRegion++;  
             }  
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
2538              }              }
2539                // Creating Region Key Table for fast lookup
2540                UpdateRegionKeyTable();
2541          }          }
2542    
2543          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
2544      }      }
2545    
2546      Instrument::~Instrument() {      void Instrument::UpdateRegionKeyTable() {
2547          for (uint i = 0; i < Regions; i++) {          RegionList::iterator iter = pRegions->begin();
2548              if (pRegions) {          RegionList::iterator end  = pRegions->end();
2549                  if (pRegions[i]) delete (pRegions[i]);          for (; iter != end; ++iter) {
2550                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2551                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2552                    RegionKeyTable[iKey] = pRegion;
2553              }              }
2554          }          }
2555          if (pRegions) delete[] pRegions;      }
2556    
2557        Instrument::~Instrument() {
2558        }
2559    
2560        /**
2561         * Apply Instrument with all its Regions to the respective RIFF chunks.
2562         * You have to call File::Save() to make changes persistent.
2563         *
2564         * Usually there is absolutely no need to call this method explicitly.
2565         * It will be called automatically when File::Save() was called.
2566         *
2567         * @throws gig::Exception if samples cannot be dereferenced
2568         */
2569        void Instrument::UpdateChunks() {
2570            // first update base classes' chunks
2571            DLS::Instrument::UpdateChunks();
2572    
2573            // update Regions' chunks
2574            {
2575                RegionList::iterator iter = pRegions->begin();
2576                RegionList::iterator end  = pRegions->end();
2577                for (; iter != end; ++iter)
2578                    (*iter)->UpdateChunks();
2579            }
2580    
2581            // make sure 'lart' RIFF list chunk exists
2582            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2583            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2584            // make sure '3ewg' RIFF chunk exists
2585            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2586            if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2587            // update '3ewg' RIFF chunk
2588            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2589            memcpy(&pData[0], &EffectSend, 2);
2590            memcpy(&pData[2], &Attenuation, 4);
2591            memcpy(&pData[6], &FineTune, 2);
2592            memcpy(&pData[8], &PitchbendRange, 2);
2593            const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2594                                        DimensionKeyRange.low << 1;
2595            memcpy(&pData[10], &dimkeystart, 1);
2596            memcpy(&pData[11], &DimensionKeyRange.high, 1);
2597      }      }
2598    
2599      /**      /**
# Line 1706  namespace { Line 2604  namespace {
2604       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
2605       */       */
2606      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
2607          if (!pRegions || Key > 127) return NULL;          if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2608          return RegionKeyTable[Key];          return RegionKeyTable[Key];
2609    
2610          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
2611              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
2612                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1723  namespace { Line 2622  namespace {
2622       * @see      GetNextRegion()       * @see      GetNextRegion()
2623       */       */
2624      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
2625          if (!Regions) return NULL;          if (!pRegions) return NULL;
2626          RegionIndex = 1;          RegionsIterator = pRegions->begin();
2627          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2628      }      }
2629    
2630      /**      /**
# Line 1737  namespace { Line 2636  namespace {
2636       * @see      GetFirstRegion()       * @see      GetFirstRegion()
2637       */       */
2638      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
2639          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
2640          return pRegions[RegionIndex++];          RegionsIterator++;
2641            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2642        }
2643    
2644        Region* Instrument::AddRegion() {
2645            // create new Region object (and its RIFF chunks)
2646            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2647            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2648            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2649            Region* pNewRegion = new Region(this, rgn);
2650            pRegions->push_back(pNewRegion);
2651            Regions = pRegions->size();
2652            // update Region key table for fast lookup
2653            UpdateRegionKeyTable();
2654            // done
2655            return pNewRegion;
2656        }
2657    
2658        void Instrument::DeleteRegion(Region* pRegion) {
2659            if (!pRegions) return;
2660            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2661            // update Region key table for fast lookup
2662            UpdateRegionKeyTable();
2663      }      }
2664    
2665    
# Line 1746  namespace { Line 2667  namespace {
2667  // *************** File ***************  // *************** File ***************
2668  // *  // *
2669    
2670      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File() : DLS::File() {
         pSamples     = NULL;  
         pInstruments = NULL;  
2671      }      }
2672    
2673      File::~File() {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
         // free samples  
         if (pSamples) {  
             SamplesIterator = pSamples->begin();  
             while (SamplesIterator != pSamples->end() ) {  
                 delete (*SamplesIterator);  
                 SamplesIterator++;  
             }  
             pSamples->clear();  
             delete pSamples;  
   
         }  
         // free instruments  
         if (pInstruments) {  
             InstrumentsIterator = pInstruments->begin();  
             while (InstrumentsIterator != pInstruments->end() ) {  
                 delete (*InstrumentsIterator);  
                 InstrumentsIterator++;  
             }  
             pInstruments->clear();  
             delete pInstruments;  
         }  
         // free extension files  
         for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)  
             delete *i;  
2674      }      }
2675    
2676      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 1791  namespace { Line 2686  namespace {
2686          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2687      }      }
2688    
2689        /** @brief Add a new sample.
2690         *
2691         * This will create a new Sample object for the gig file. You have to
2692         * call Save() to make this persistent to the file.
2693         *
2694         * @returns pointer to new Sample object
2695         */
2696        Sample* File::AddSample() {
2697           if (!pSamples) LoadSamples();
2698           __ensureMandatoryChunksExist();
2699           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2700           // create new Sample object and its respective 'wave' list chunk
2701           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2702           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2703           pSamples->push_back(pSample);
2704           return pSample;
2705        }
2706    
2707        /** @brief Delete a sample.
2708         *
2709         * This will delete the given Sample object from the gig file. You have
2710         * to call Save() to make this persistent to the file.
2711         *
2712         * @param pSample - sample to delete
2713         * @throws gig::Exception if given sample could not be found
2714         */
2715        void File::DeleteSample(Sample* pSample) {
2716            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2717            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2718            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2719            pSamples->erase(iter);
2720            delete pSample;
2721        }
2722    
2723        void File::LoadSamples() {
2724            LoadSamples(NULL);
2725        }
2726    
2727      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
2728            if (!pSamples) pSamples = new SampleList;
2729    
2730          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
2731    
2732          // just for progress calculation          // just for progress calculation
# Line 1803  namespace { Line 2738  namespace {
2738          for (int i = 0 ; i < WavePoolCount ; i++) {          for (int i = 0 ; i < WavePoolCount ; i++) {
2739              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2740          }          }
2741          String name(pRIFF->Filename);          String name(pRIFF->GetFileName());
2742          int nameLen = pRIFF->Filename.length();          int nameLen = name.length();
2743          char suffix[6];          char suffix[6];
2744          if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2745    
2746          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
2747              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
# Line 1819  namespace { Line 2754  namespace {
2754                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2755                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
2756    
                         if (!pSamples) pSamples = new SampleList;  
2757                          unsigned long waveFileOffset = wave->GetFilePos();                          unsigned long waveFileOffset = wave->GetFilePos();
2758                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2759    
# Line 1836  namespace { Line 2770  namespace {
2770                  name.replace(nameLen, 5, suffix);                  name.replace(nameLen, 5, suffix);
2771                  file = new RIFF::File(name);                  file = new RIFF::File(name);
2772                  ExtensionFiles.push_back(file);                  ExtensionFiles.push_back(file);
2773              }              } else break;
             else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
2774          }          }
2775    
2776          __notify_progress(pProgress, 1.0); // notify done          __notify_progress(pProgress, 1.0); // notify done
# Line 1847  namespace { Line 2780  namespace {
2780          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
2781          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2782          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
2783          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2784      }      }
2785    
2786      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
2787          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2788          InstrumentsIterator++;          InstrumentsIterator++;
2789          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2790      }      }
2791    
2792      /**      /**
# Line 1886  namespace { Line 2819  namespace {
2819          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
2820          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
2821          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2822              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2823              InstrumentsIterator++;              InstrumentsIterator++;
2824          }          }
2825          return NULL;          return NULL;
2826      }      }
2827    
2828        /** @brief Add a new instrument definition.
2829         *
2830         * This will create a new Instrument object for the gig file. You have
2831         * to call Save() to make this persistent to the file.
2832         *
2833         * @returns pointer to new Instrument object
2834         */
2835        Instrument* File::AddInstrument() {
2836           if (!pInstruments) LoadInstruments();
2837           __ensureMandatoryChunksExist();
2838           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2839           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2840           Instrument* pInstrument = new Instrument(this, lstInstr);
2841           pInstruments->push_back(pInstrument);
2842           return pInstrument;
2843        }
2844    
2845        /** @brief Delete an instrument.
2846         *
2847         * This will delete the given Instrument object from the gig file. You
2848         * have to call Save() to make this persistent to the file.
2849         *
2850         * @param pInstrument - instrument to delete
2851         * @throws gig::Excption if given instrument could not be found
2852         */
2853        void File::DeleteInstrument(Instrument* pInstrument) {
2854            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2855            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2856            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2857            pInstruments->erase(iter);
2858            delete pInstrument;
2859        }
2860    
2861        void File::LoadInstruments() {
2862            LoadInstruments(NULL);
2863        }
2864    
2865      void File::LoadInstruments(progress_t* pProgress) {      void File::LoadInstruments(progress_t* pProgress) {
2866            if (!pInstruments) pInstruments = new InstrumentList;
2867          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2868          if (lstInstruments) {          if (lstInstruments) {
2869              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
# Line 1907  namespace { Line 2878  namespace {
2878                      progress_t subprogress;                      progress_t subprogress;
2879                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2880    
                     if (!pInstruments) pInstruments = new InstrumentList;  
2881                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2882    
2883                      iInstrumentIndex++;                      iInstrumentIndex++;
# Line 1916  namespace { Line 2886  namespace {
2886              }              }
2887              __notify_progress(pProgress, 1.0); // notify done              __notify_progress(pProgress, 1.0); // notify done
2888          }          }
         else throw gig::Exception("Mandatory <lins> list chunk not found.");  
2889      }      }
2890    
2891    

Legend:
Removed from v.728  
changed lines
  Added in v.858

  ViewVC Help
Powered by ViewVC