/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 780 by schoenebeck, Sun Sep 25 13:40:37 2005 UTC revision 2923 by schoenebeck, Sat May 21 08:54:32 2016 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2016 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26  #include <iostream>  #include "helper.h"
   
 namespace gig {  
   
 // *************** progress_t ***************  
 // *  
27    
28      progress_t::progress_t() {  #include <algorithm>
29          callback    = NULL;  #include <math.h>
30          custom      = NULL;  #include <iostream>
31          __range_min = 0.0f;  #include <assert.h>
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
32    
33      // private helper function to divide a progress into subprogresses  /// libgig's current file format version (for extending the original Giga file
34      static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  /// format with libgig's own custom data / custom features).
35          if (pParentProgress && pParentProgress->callback) {  #define GIG_FILE_EXT_VERSION    2
36              const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
37              pSubProgress->callback    = pParentProgress->callback;  /// Initial size of the sample buffer which is used for decompression of
38              pSubProgress->custom      = pParentProgress->custom;  /// compressed sample wave streams - this value should always be bigger than
39              pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  /// the biggest sample piece expected to be read by the sampler engine,
40              pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  /// otherwise the buffer size will be raised at runtime and thus the buffer
41          }  /// reallocated which is time consuming and unefficient.
42      }  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58    namespace gig {
59    
60  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
61  // *  // *
62    
63  namespace {  namespace {
# Line 87  namespace { Line 85  namespace {
85          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
86      }      }
87    
88        inline void store24(unsigned char* pDst, int x)
89        {
90            pDst[0] = x;
91            pDst[1] = x >> 8;
92            pDst[2] = x >> 16;
93        }
94    
95      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
96                        int srcStep, int dstStep,                        int srcStep, int dstStep,
97                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
98                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
99                        unsigned long copysamples)                        file_offset_t copysamples)
100      {      {
101          switch (compressionmode) {          switch (compressionmode) {
102              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 126  namespace { Line 131  namespace {
131      }      }
132    
133      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
134                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
136                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
137      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
138          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
139    
140  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
141          y    = get24(params);                   \          y    = get24(params);                   \
# Line 149  namespace { Line 151  namespace {
151    
152  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
153          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
154          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
155          pDst += dstStep          pDst += dstStep
156    
157          switch (compressionmode) {          switch (compressionmode) {
158              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
159                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
160                  while (copysamples) {                  while (copysamples) {
161                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
162                      pDst += dstStep;                      pDst += dstStep;
163                      pSrc += 3;                      pSrc += 3;
164                      copysamples--;                      copysamples--;
# Line 226  namespace { Line 228  namespace {
228  }  }
229    
230    
231    
232    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
233    // *
234    
235        static uint32_t* __initCRCTable() {
236            static uint32_t res[256];
237    
238            for (int i = 0 ; i < 256 ; i++) {
239                uint32_t c = i;
240                for (int j = 0 ; j < 8 ; j++) {
241                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242                }
243                res[i] = c;
244            }
245            return res;
246        }
247    
248        static const uint32_t* __CRCTable = __initCRCTable();
249    
250        /**
251         * Initialize a CRC variable.
252         *
253         * @param crc - variable to be initialized
254         */
255        inline static void __resetCRC(uint32_t& crc) {
256            crc = 0xffffffff;
257        }
258    
259        /**
260         * Used to calculate checksums of the sample data in a gig file. The
261         * checksums are stored in the 3crc chunk of the gig file and
262         * automatically updated when a sample is written with Sample::Write().
263         *
264         * One should call __resetCRC() to initialize the CRC variable to be
265         * used before calling this function the first time.
266         *
267         * After initializing the CRC variable one can call this function
268         * arbitrary times, i.e. to split the overall CRC calculation into
269         * steps.
270         *
271         * Once the whole data was processed by __calculateCRC(), one should
272         * call __encodeCRC() to get the final CRC result.
273         *
274         * @param buf     - pointer to data the CRC shall be calculated of
275         * @param bufSize - size of the data to be processed
276         * @param crc     - variable the CRC sum shall be stored to
277         */
278        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279            for (int i = 0 ; i < bufSize ; i++) {
280                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281            }
282        }
283    
284        /**
285         * Returns the final CRC result.
286         *
287         * @param crc - variable previously passed to __calculateCRC()
288         */
289        inline static uint32_t __encodeCRC(const uint32_t& crc) {
290            return crc ^ 0xffffffff;
291        }
292    
293    
294    
295    // *************** Other Internal functions  ***************
296    // *
297    
298        static split_type_t __resolveSplitType(dimension_t dimension) {
299            return (
300                dimension == dimension_layer ||
301                dimension == dimension_samplechannel ||
302                dimension == dimension_releasetrigger ||
303                dimension == dimension_keyboard ||
304                dimension == dimension_roundrobin ||
305                dimension == dimension_random ||
306                dimension == dimension_smartmidi ||
307                dimension == dimension_roundrobinkeyboard
308            ) ? split_type_bit : split_type_normal;
309        }
310    
311        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312            return (dimension_definition.split_type == split_type_normal)
313            ? int(128.0 / dimension_definition.zones) : 0;
314        }
315    
316    
317    
318  // *************** Sample ***************  // *************** Sample ***************
319  // *  // *
320    
321      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
322      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
323    
324      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
325         *
326         * Load an existing sample or create a new one. A 'wave' list chunk must
327         * be given to this constructor. In case the given 'wave' list chunk
328         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329         * format and sample data will be loaded from there, otherwise default
330         * values will be used and those chunks will be created when
331         * File::Save() will be called later on.
332         *
333         * @param pFile          - pointer to gig::File where this sample is
334         *                         located (or will be located)
335         * @param waveList       - pointer to 'wave' list chunk which is (or
336         *                         will be) associated with this sample
337         * @param WavePoolOffset - offset of this sample data from wave pool
338         *                         ('wvpl') list chunk
339         * @param fileNo         - number of an extension file where this sample
340         *                         is located, 0 otherwise
341         */
342        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343            static const DLS::Info::string_length_t fixedStringLengths[] = {
344                { CHUNK_ID_INAM, 64 },
345                { 0, 0 }
346            };
347            pInfo->SetFixedStringLengths(fixedStringLengths);
348          Instances++;          Instances++;
349          FileNo = fileNo;          FileNo = fileNo;
350    
351          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
352          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");  
353          SampleGroup = _3gix->ReadInt16();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354            if (pCk3gix) {
355          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
356          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              pGroup = pFile->GetGroup(iSampleGroup);
357          Manufacturer      = smpl->ReadInt32();          } else { // '3gix' chunk missing
358          Product           = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
359          SamplePeriod      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
360          MIDIUnityNote     = smpl->ReadInt32();          }
361          FineTune          = smpl->ReadInt32();  
362          smpl->Read(&SMPTEFormat, 1, 4);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363          SMPTEOffset       = smpl->ReadInt32();          if (pCkSmpl) {
364          Loops             = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
365          smpl->ReadInt32(); // manufByt              Product       = pCkSmpl->ReadInt32();
366          LoopID            = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
367          smpl->Read(&LoopType, 1, 4);              MIDIUnityNote = pCkSmpl->ReadInt32();
368          LoopStart         = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
369          LoopEnd           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
370          LoopFraction      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
371          LoopPlayCount     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
372                pCkSmpl->ReadInt32(); // manufByt
373                LoopID        = pCkSmpl->ReadInt32();
374                pCkSmpl->Read(&LoopType, 1, 4);
375                LoopStart     = pCkSmpl->ReadInt32();
376                LoopEnd       = pCkSmpl->ReadInt32();
377                LoopFraction  = pCkSmpl->ReadInt32();
378                LoopPlayCount = pCkSmpl->ReadInt32();
379            } else { // 'smpl' chunk missing
380                // use default values
381                Manufacturer  = 0;
382                Product       = 0;
383                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384                MIDIUnityNote = 60;
385                FineTune      = 0;
386                SMPTEFormat   = smpte_format_no_offset;
387                SMPTEOffset   = 0;
388                Loops         = 0;
389                LoopID        = 0;
390                LoopType      = loop_type_normal;
391                LoopStart     = 0;
392                LoopEnd       = 0;
393                LoopFraction  = 0;
394                LoopPlayCount = 0;
395            }
396    
397          FrameTable                 = NULL;          FrameTable                 = NULL;
398          SamplePos                  = 0;          SamplePos                  = 0;
# Line 287  namespace { Line 423  namespace {
423          }          }
424          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
425    
426          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
427        }
428    
429        /**
430         * Make a (semi) deep copy of the Sample object given by @a orig (without
431         * the actual waveform data) and assign it to this object.
432         *
433         * Discussion: copying .gig samples is a bit tricky. It requires three
434         * steps:
435         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436         *    its new sample waveform data size.
437         * 2. Saving the file (done by File::Save()) so that it gains correct size
438         *    and layout for writing the actual wave form data directly to disc
439         *    in next step.
440         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441         *
442         * @param orig - original Sample object to be copied from
443         */
444        void Sample::CopyAssignMeta(const Sample* orig) {
445            // handle base classes
446            DLS::Sample::CopyAssignCore(orig);
447            
448            // handle actual own attributes of this class
449            Manufacturer = orig->Manufacturer;
450            Product = orig->Product;
451            SamplePeriod = orig->SamplePeriod;
452            MIDIUnityNote = orig->MIDIUnityNote;
453            FineTune = orig->FineTune;
454            SMPTEFormat = orig->SMPTEFormat;
455            SMPTEOffset = orig->SMPTEOffset;
456            Loops = orig->Loops;
457            LoopID = orig->LoopID;
458            LoopType = orig->LoopType;
459            LoopStart = orig->LoopStart;
460            LoopEnd = orig->LoopEnd;
461            LoopSize = orig->LoopSize;
462            LoopFraction = orig->LoopFraction;
463            LoopPlayCount = orig->LoopPlayCount;
464            
465            // schedule resizing this sample to the given sample's size
466            Resize(orig->GetSize());
467        }
468    
469        /**
470         * Should be called after CopyAssignMeta() and File::Save() sequence.
471         * Read more about it in the discussion of CopyAssignMeta(). This method
472         * copies the actual waveform data by disk streaming.
473         *
474         * @e CAUTION: this method is currently not thread safe! During this
475         * operation the sample must not be used for other purposes by other
476         * threads!
477         *
478         * @param orig - original Sample object to be copied from
479         */
480        void Sample::CopyAssignWave(const Sample* orig) {
481            const int iReadAtOnce = 32*1024;
482            char* buf = new char[iReadAtOnce * orig->FrameSize];
483            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484            file_offset_t restorePos = pOrig->GetPos();
485            pOrig->SetPos(0);
486            SetPos(0);
487            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488                               n = pOrig->Read(buf, iReadAtOnce))
489            {
490                Write(buf, n);
491            }
492            pOrig->SetPos(restorePos);
493            delete [] buf;
494        }
495    
496        /**
497         * Apply sample and its settings to the respective RIFF chunks. You have
498         * to call File::Save() to make changes persistent.
499         *
500         * Usually there is absolutely no need to call this method explicitly.
501         * It will be called automatically when File::Save() was called.
502         *
503         * @param pProgress - callback function for progress notification
504         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505         *                        was provided yet
506         * @throws gig::Exception if there is any invalid sample setting
507         */
508        void Sample::UpdateChunks(progress_t* pProgress) {
509            // first update base class's chunks
510            DLS::Sample::UpdateChunks(pProgress);
511    
512            // make sure 'smpl' chunk exists
513            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514            if (!pCkSmpl) {
515                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516                memset(pCkSmpl->LoadChunkData(), 0, 60);
517            }
518            // update 'smpl' chunk
519            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521            store32(&pData[0], Manufacturer);
522            store32(&pData[4], Product);
523            store32(&pData[8], SamplePeriod);
524            store32(&pData[12], MIDIUnityNote);
525            store32(&pData[16], FineTune);
526            store32(&pData[20], SMPTEFormat);
527            store32(&pData[24], SMPTEOffset);
528            store32(&pData[28], Loops);
529    
530            // we skip 'manufByt' for now (4 bytes)
531    
532            store32(&pData[36], LoopID);
533            store32(&pData[40], LoopType);
534            store32(&pData[44], LoopStart);
535            store32(&pData[48], LoopEnd);
536            store32(&pData[52], LoopFraction);
537            store32(&pData[56], LoopPlayCount);
538    
539            // make sure '3gix' chunk exists
540            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542            // determine appropriate sample group index (to be stored in chunk)
543            uint16_t iSampleGroup = 0; // 0 refers to default sample group
544            File* pFile = static_cast<File*>(pParent);
545            if (pFile->pGroups) {
546                std::list<Group*>::iterator iter = pFile->pGroups->begin();
547                std::list<Group*>::iterator end  = pFile->pGroups->end();
548                for (int i = 0; iter != end; i++, iter++) {
549                    if (*iter == pGroup) {
550                        iSampleGroup = i;
551                        break; // found
552                    }
553                }
554            }
555            // update '3gix' chunk
556            pData = (uint8_t*) pCk3gix->LoadChunkData();
557            store16(&pData[0], iSampleGroup);
558    
559            // if the library user toggled the "Compressed" attribute from true to
560            // false, then the EWAV chunk associated with compressed samples needs
561            // to be deleted
562            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563            if (ewav && !Compressed) {
564                pWaveList->DeleteSubChunk(ewav);
565            }
566      }      }
567    
568      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
570          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
571          this->SamplesTotal = 0;          this->SamplesTotal = 0;
572          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
573    
574          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 310  namespace { Line 585  namespace {
585                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
586                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
587                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589    
590                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
591                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 329  namespace { Line 604  namespace {
604    
605                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
606                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
607                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
608    
609                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
610                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 345  namespace { Line 620  namespace {
620    
621          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
623          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
624          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
625          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
627              FrameTable[i] = *iter;              FrameTable[i] = *iter;
628          }          }
# Line 388  namespace { Line 663  namespace {
663       *                      the cached sample data in bytes       *                      the cached sample data in bytes
664       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
665       */       */
666      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668      }      }
669    
# Line 447  namespace { Line 722  namespace {
722       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
723       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
724       */       */
725      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729            SetPos(0); // reset read position to begin of sample
730          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
731          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 488  namespace { Line 764  namespace {
764          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
766          RAMCache.Size   = 0;          RAMCache.Size   = 0;
767            RAMCache.NullExtensionSize = 0;
768        }
769    
770        /** @brief Resize sample.
771         *
772         * Resizes the sample's wave form data, that is the actual size of
773         * sample wave data possible to be written for this sample. This call
774         * will return immediately and just schedule the resize operation. You
775         * should call File::Save() to actually perform the resize operation(s)
776         * "physically" to the file. As this can take a while on large files, it
777         * is recommended to call Resize() first on all samples which have to be
778         * resized and finally to call File::Save() to perform all those resize
779         * operations in one rush.
780         *
781         * The actual size (in bytes) is dependant to the current FrameSize
782         * value. You may want to set FrameSize before calling Resize().
783         *
784         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785         * enlarged samples before calling File::Save() as this might exceed the
786         * current sample's boundary!
787         *
788         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790         * other formats will fail!
791         *
792         * @param NewSize - new sample wave data size in sample points (must be
793         *                  greater than zero)
794         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796         * @throws gig::Exception if existing sample is compressed
797         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798         *      DLS::Sample::FormatTag, File::Save()
799         */
800        void Sample::Resize(file_offset_t NewSize) {
801            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802            DLS::Sample::Resize(NewSize);
803      }      }
804    
805      /**      /**
# Line 511  namespace { Line 823  namespace {
823       * @returns            the new sample position       * @returns            the new sample position
824       * @see                Read()       * @see                Read()
825       */       */
826      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827          if (Compressed) {          if (Compressed) {
828              switch (Whence) {              switch (Whence) {
829                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 529  namespace { Line 841  namespace {
841              }              }
842              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843    
844              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
846              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
847              return this->SamplePos;              return this->SamplePos;
848          }          }
849          else { // not compressed          else { // not compressed
850              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
851              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
853                                              : result / this->FrameSize;                                              : result / this->FrameSize;
854          }          }
# Line 545  namespace { Line 857  namespace {
857      /**      /**
858       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
859       */       */
860      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
861          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
862          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
863      }      }
# Line 579  namespace { Line 891  namespace {
891       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
892       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
893       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
894         * @param pDimRgn          dimension region with looping information
895       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
896       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
897       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
898       */       */
899      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
903    
904          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
905    
906          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907    
908              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910    
911                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
912                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
913    
914                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
915                              // determine the end position within the loop first,                          do {
916                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
917                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918                              // backward playback  
919                                if (!pPlaybackState->reverse) { // forward playback
920                              unsigned long swapareastart       = totalreadsamples;                                  do {
921                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
922                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
924                                        totalreadsamples += readsamples;
925                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
926                                            pPlaybackState->reverse = true;
927                              // read samples for backward playback                                          break;
928                              do {                                      }
929                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
930                                  samplestoreadinloop -= readsamples;                              }
931                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
932    
933                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
934                                    // determine the end position within the loop first,
935                                    // read forward from that 'end' and finally after
936                                    // reading, swap all sample frames so it reflects
937                                    // backward playback
938    
939                                    file_offset_t swapareastart       = totalreadsamples;
940                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
941                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
943    
944                                    SetPos(reverseplaybackend);
945    
946                                    // read samples for backward playback
947                                    do {
948                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949                                        samplestoreadinloop -= readsamples;
950                                        samplestoread       -= readsamples;
951                                        totalreadsamples    += readsamples;
952                                    } while (samplestoreadinloop && readsamples);
953    
954                                    SetPos(reverseplaybackend); // pretend we really read backwards
955    
956                                    if (reverseplaybackend == loop.LoopStart) {
957                                        pPlaybackState->loop_cycles_left--;
958                                        pPlaybackState->reverse = false;
959                                    }
960    
961                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
962                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964                              }                              }
965                            } while (samplestoread && readsamples);
966                            break;
967                        }
968    
969                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
970                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
971                          }                          if (!pPlaybackState->reverse) do {
972                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
973                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974                  }                              samplestoread    -= readsamples;
975                                totalreadsamples += readsamples;
976                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
977                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
978                      if (!pPlaybackState->reverse) do {                                  break;
979                          samplestoloopend  = this->LoopEnd - GetPos();                              }
980                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
981    
982                      if (!samplestoread) break;                          if (!samplestoread) break;
983    
984                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
985                      // determine the end position within the loop first,                          // determine the end position within the loop first,
986                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
987                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
988                      // backward playback                          // backward playback
989    
990                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
991                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
992                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993                                                                                : samplestoread;                                                                                    : samplestoread;
994                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995    
996                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
997    
998                      // read samples for backward playback                          // read samples for backward playback
999                      do {                          do {
1000                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1001                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1003                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1005                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1006                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1007                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1008                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1009                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1010                          }                              }
1011                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1012    
1013                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1014    
1015                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1016                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017                      break;                          break;
1018                  }                      }
1019    
1020                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1021                      do {                          do {
1022                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1023                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1025                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1027                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1028                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1029                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1030                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1031                          }                              }
1032                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1033                      break;                          break;
1034                        }
1035                  }                  }
1036              }              }
1037          }          }
# Line 741  namespace { Line 1061  namespace {
1061       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1062       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1063       *       *
1064         * For 16 bit samples, the data in the buffer will be int16_t
1065         * (using native endianness). For 24 bit, the buffer will
1066         * contain three bytes per sample, little-endian.
1067         *
1068       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1069       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1070       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1071       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1072       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1073       */       */
1074      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1076          if (!Compressed) {          if (!Compressed) {
1077              if (BitDepth == 24) {              if (BitDepth == 24) {
1078                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1079              }              }
1080              else { // 16 bit              else { // 16 bit
1081                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 782  namespace { Line 1086  namespace {
1086          else {          else {
1087              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1088              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1089              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1090                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1091                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1092                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 801  namespace { Line 1105  namespace {
1105    
1106              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110    
1111              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1112                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1113                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114    
1115                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1116    
# Line 882  namespace { Line 1187  namespace {
1187                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1188                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1189    
1190                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1192                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1194                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1195                          }                          }
1196                          else { // Mono                          else { // Mono
1197                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1199                              pDst += copysamples;                              pDst24 += copysamples * 3;
1200                          }                          }
1201                      }                      }
1202                      else { // 16 bit                      else { // 16 bit
# Line 933  namespace { Line 1238  namespace {
1238          }          }
1239      }      }
1240    
1241        /** @brief Write sample wave data.
1242         *
1243         * Writes \a SampleCount number of sample points from the buffer pointed
1244         * by \a pBuffer and increments the position within the sample. Use this
1245         * method to directly write the sample data to disk, i.e. if you don't
1246         * want or cannot load the whole sample data into RAM.
1247         *
1248         * You have to Resize() the sample to the desired size and call
1249         * File::Save() <b>before</b> using Write().
1250         *
1251         * Note: there is currently no support for writing compressed samples.
1252         *
1253         * For 16 bit samples, the data in the source buffer should be
1254         * int16_t (using native endianness). For 24 bit, the buffer
1255         * should contain three bytes per sample, little-endian.
1256         *
1257         * @param pBuffer     - source buffer
1258         * @param SampleCount - number of sample points to write
1259         * @throws DLS::Exception if current sample size is too small
1260         * @throws gig::Exception if sample is compressed
1261         * @see DLS::LoadSampleData()
1262         */
1263        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265    
1266            // if this is the first write in this sample, reset the
1267            // checksum calculator
1268            if (pCkData->GetPos() == 0) {
1269                __resetCRC(crc);
1270            }
1271            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272            file_offset_t res;
1273            if (BitDepth == 24) {
1274                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275            } else { // 16 bit
1276                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277                                    : pCkData->Write(pBuffer, SampleCount, 2);
1278            }
1279            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280    
1281            // if this is the last write, update the checksum chunk in the
1282            // file
1283            if (pCkData->GetPos() == pCkData->GetSize()) {
1284                File* pFile = static_cast<File*>(GetParent());
1285                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286            }
1287            return res;
1288        }
1289    
1290      /**      /**
1291       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1292       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 949  namespace { Line 1303  namespace {
1303       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1304       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1305       */       */
1306      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307          buffer_t result;          buffer_t result;
1308          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1309                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1312          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1313          return result;          return result;
# Line 975  namespace { Line 1329  namespace {
1329          }          }
1330      }      }
1331    
1332        /**
1333         * Returns pointer to the Group this Sample belongs to. In the .gig
1334         * format a sample always belongs to one group. If it wasn't explicitly
1335         * assigned to a certain group, it will be automatically assigned to a
1336         * default group.
1337         *
1338         * @returns Sample's Group (never NULL)
1339         */
1340        Group* Sample::GetGroup() const {
1341            return pGroup;
1342        }
1343    
1344      Sample::~Sample() {      Sample::~Sample() {
1345          Instances--;          Instances--;
1346          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 991  namespace { Line 1357  namespace {
1357  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1358  // *  // *
1359    
1360      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1361      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1362    
1363      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1364          Instances++;          Instances++;
1365    
1366          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1367            pRegion = pParent;
1368    
1369            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1370            else memset(&Crossfade, 0, 4);
1371    
1372          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1373    
1374          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1375          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1376          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1377          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1378          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1379          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1380          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1381          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1382          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1383          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1384          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1385          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1386          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1387          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1388          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1389          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1390          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1391          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1392          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1393          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1394          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1395          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1396          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1397          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1398          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1399          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1400          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1401          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1402          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1403          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1404          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1407          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1408          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1409          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1410          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1411          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1412          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1413          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1414          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1415          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1416          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1417          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1418          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1419          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1420          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1421          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1422          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1423          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1424          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1425          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1426              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1427              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1428          }                  VelocityResponseDepth = velocityresponse;
1429          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1430              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1431              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1432          }              } else if (velocityresponse < 15) {
1433          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1434              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1435              VelocityResponseDepth = velocityresponse - 10;              } else {
1436                    VelocityResponseCurve = curve_type_unknown;
1437                    VelocityResponseDepth = 0;
1438                }
1439                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1440                if (releasevelocityresponse < 5) {
1441                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1442                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1443                } else if (releasevelocityresponse < 10) {
1444                    ReleaseVelocityResponseCurve = curve_type_linear;
1445                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1446                } else if (releasevelocityresponse < 15) {
1447                    ReleaseVelocityResponseCurve = curve_type_special;
1448                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1449                } else {
1450                    ReleaseVelocityResponseCurve = curve_type_unknown;
1451                    ReleaseVelocityResponseDepth = 0;
1452                }
1453                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1454                AttenuationControllerThreshold = _3ewa->ReadInt8();
1455                _3ewa->ReadInt32(); // unknown
1456                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1457                _3ewa->ReadInt16(); // unknown
1458                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1459                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1460                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1461                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1462                else                                       DimensionBypass = dim_bypass_ctrl_none;
1463                uint8_t pan = _3ewa->ReadUint8();
1464                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1465                SelfMask = _3ewa->ReadInt8() & 0x01;
1466                _3ewa->ReadInt8(); // unknown
1467                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1468                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1469                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1470                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1471                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1473                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1474                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1475                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1476                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1477                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1478                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1479                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1480                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1481                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1482                                                            : vcf_res_ctrl_none;
1483                uint16_t eg3depth = _3ewa->ReadUint16();
1484                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1485                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1486                _3ewa->ReadInt16(); // unknown
1487                ChannelOffset = _3ewa->ReadUint8() / 4;
1488                uint8_t regoptions = _3ewa->ReadUint8();
1489                MSDecode           = regoptions & 0x01; // bit 0
1490                SustainDefeat      = regoptions & 0x02; // bit 1
1491                _3ewa->ReadInt16(); // unknown
1492                VelocityUpperLimit = _3ewa->ReadInt8();
1493                _3ewa->ReadInt8(); // unknown
1494                _3ewa->ReadInt16(); // unknown
1495                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1496                _3ewa->ReadInt8(); // unknown
1497                _3ewa->ReadInt8(); // unknown
1498                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1499                uint8_t vcfcutoff = _3ewa->ReadUint8();
1500                VCFEnabled = vcfcutoff & 0x80; // bit 7
1501                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1502                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1503                uint8_t vcfvelscale = _3ewa->ReadUint8();
1504                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1505                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1506                _3ewa->ReadInt8(); // unknown
1507                uint8_t vcfresonance = _3ewa->ReadUint8();
1508                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1509                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1510                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1511                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1512                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1513                uint8_t vcfvelocity = _3ewa->ReadUint8();
1514                VCFVelocityDynamicRange = vcfvelocity % 5;
1515                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1516                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1517                if (VCFType == vcf_type_lowpass) {
1518                    if (lfo3ctrl & 0x40) // bit 6
1519                        VCFType = vcf_type_lowpassturbo;
1520                }
1521                if (_3ewa->RemainingBytes() >= 8) {
1522                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1523                } else {
1524                    memset(DimensionUpperLimits, 0, 8);
1525                }
1526            } else { // '3ewa' chunk does not exist yet
1527                // use default values
1528                LFO3Frequency                   = 1.0;
1529                EG3Attack                       = 0.0;
1530                LFO1InternalDepth               = 0;
1531                LFO3InternalDepth               = 0;
1532                LFO1ControlDepth                = 0;
1533                LFO3ControlDepth                = 0;
1534                EG1Attack                       = 0.0;
1535                EG1Decay1                       = 0.005;
1536                EG1Sustain                      = 1000;
1537                EG1Release                      = 0.3;
1538                EG1Controller.type              = eg1_ctrl_t::type_none;
1539                EG1Controller.controller_number = 0;
1540                EG1ControllerInvert             = false;
1541                EG1ControllerAttackInfluence    = 0;
1542                EG1ControllerDecayInfluence     = 0;
1543                EG1ControllerReleaseInfluence   = 0;
1544                EG2Controller.type              = eg2_ctrl_t::type_none;
1545                EG2Controller.controller_number = 0;
1546                EG2ControllerInvert             = false;
1547                EG2ControllerAttackInfluence    = 0;
1548                EG2ControllerDecayInfluence     = 0;
1549                EG2ControllerReleaseInfluence   = 0;
1550                LFO1Frequency                   = 1.0;
1551                EG2Attack                       = 0.0;
1552                EG2Decay1                       = 0.005;
1553                EG2Sustain                      = 1000;
1554                EG2Release                      = 0.3;
1555                LFO2ControlDepth                = 0;
1556                LFO2Frequency                   = 1.0;
1557                LFO2InternalDepth               = 0;
1558                EG1Decay2                       = 0.0;
1559                EG1InfiniteSustain              = true;
1560                EG1PreAttack                    = 0;
1561                EG2Decay2                       = 0.0;
1562                EG2InfiniteSustain              = true;
1563                EG2PreAttack                    = 0;
1564                VelocityResponseCurve           = curve_type_nonlinear;
1565                VelocityResponseDepth           = 3;
1566                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1567                ReleaseVelocityResponseDepth    = 3;
1568                VelocityResponseCurveScaling    = 32;
1569                AttenuationControllerThreshold  = 0;
1570                SampleStartOffset               = 0;
1571                PitchTrack                      = true;
1572                DimensionBypass                 = dim_bypass_ctrl_none;
1573                Pan                             = 0;
1574                SelfMask                        = true;
1575                LFO3Controller                  = lfo3_ctrl_modwheel;
1576                LFO3Sync                        = false;
1577                InvertAttenuationController     = false;
1578                AttenuationController.type      = attenuation_ctrl_t::type_none;
1579                AttenuationController.controller_number = 0;
1580                LFO2Controller                  = lfo2_ctrl_internal;
1581                LFO2FlipPhase                   = false;
1582                LFO2Sync                        = false;
1583                LFO1Controller                  = lfo1_ctrl_internal;
1584                LFO1FlipPhase                   = false;
1585                LFO1Sync                        = false;
1586                VCFResonanceController          = vcf_res_ctrl_none;
1587                EG3Depth                        = 0;
1588                ChannelOffset                   = 0;
1589                MSDecode                        = false;
1590                SustainDefeat                   = false;
1591                VelocityUpperLimit              = 0;
1592                ReleaseTriggerDecay             = 0;
1593                EG1Hold                         = false;
1594                VCFEnabled                      = false;
1595                VCFCutoff                       = 0;
1596                VCFCutoffController             = vcf_cutoff_ctrl_none;
1597                VCFCutoffControllerInvert       = false;
1598                VCFVelocityScale                = 0;
1599                VCFResonance                    = 0;
1600                VCFResonanceDynamic             = false;
1601                VCFKeyboardTracking             = false;
1602                VCFKeyboardTrackingBreakpoint   = 0;
1603                VCFVelocityDynamicRange         = 0x04;
1604                VCFVelocityCurve                = curve_type_linear;
1605                VCFType                         = vcf_type_lowpass;
1606                memset(DimensionUpperLimits, 127, 8);
1607          }          }
1608          else {  
1609              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1610              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1611                                                         VelocityResponseCurveScaling);
1612    
1613            pVelocityReleaseTable = GetReleaseVelocityTable(
1614                                        ReleaseVelocityResponseCurve,
1615                                        ReleaseVelocityResponseDepth
1616                                    );
1617    
1618            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1619                                                          VCFVelocityDynamicRange,
1620                                                          VCFVelocityScale,
1621                                                          VCFCutoffController);
1622    
1623            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1624            VelocityTable = 0;
1625        }
1626    
1627        /*
1628         * Constructs a DimensionRegion by copying all parameters from
1629         * another DimensionRegion
1630         */
1631        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1632            Instances++;
1633            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1634            *this = src; // default memberwise shallow copy of all parameters
1635            pParentList = _3ewl; // restore the chunk pointer
1636    
1637            // deep copy of owned structures
1638            if (src.VelocityTable) {
1639                VelocityTable = new uint8_t[128];
1640                for (int k = 0 ; k < 128 ; k++)
1641                    VelocityTable[k] = src.VelocityTable[k];
1642            }
1643            if (src.pSampleLoops) {
1644                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1645                for (int k = 0 ; k < src.SampleLoops ; k++)
1646                    pSampleLoops[k] = src.pSampleLoops[k];
1647            }
1648        }
1649        
1650        /**
1651         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1652         * and assign it to this object.
1653         *
1654         * Note that all sample pointers referenced by @a orig are simply copied as
1655         * memory address. Thus the respective samples are shared, not duplicated!
1656         *
1657         * @param orig - original DimensionRegion object to be copied from
1658         */
1659        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1660            CopyAssign(orig, NULL);
1661        }
1662    
1663        /**
1664         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1665         * and assign it to this object.
1666         *
1667         * @param orig - original DimensionRegion object to be copied from
1668         * @param mSamples - crosslink map between the foreign file's samples and
1669         *                   this file's samples
1670         */
1671        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1672            // delete all allocated data first
1673            if (VelocityTable) delete [] VelocityTable;
1674            if (pSampleLoops) delete [] pSampleLoops;
1675            
1676            // backup parent list pointer
1677            RIFF::List* p = pParentList;
1678            
1679            gig::Sample* pOriginalSample = pSample;
1680            gig::Region* pOriginalRegion = pRegion;
1681            
1682            //NOTE: copy code copied from assignment constructor above, see comment there as well
1683            
1684            *this = *orig; // default memberwise shallow copy of all parameters
1685            
1686            // restore members that shall not be altered
1687            pParentList = p; // restore the chunk pointer
1688            pRegion = pOriginalRegion;
1689            
1690            // only take the raw sample reference reference if the
1691            // two DimensionRegion objects are part of the same file
1692            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1693                pSample = pOriginalSample;
1694            }
1695            
1696            if (mSamples && mSamples->count(orig->pSample)) {
1697                pSample = mSamples->find(orig->pSample)->second;
1698            }
1699    
1700            // deep copy of owned structures
1701            if (orig->VelocityTable) {
1702                VelocityTable = new uint8_t[128];
1703                for (int k = 0 ; k < 128 ; k++)
1704                    VelocityTable[k] = orig->VelocityTable[k];
1705            }
1706            if (orig->pSampleLoops) {
1707                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1708                for (int k = 0 ; k < orig->SampleLoops ; k++)
1709                    pSampleLoops[k] = orig->pSampleLoops[k];
1710          }          }
1711          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1712          if (releasevelocityresponse < 5) {  
1713              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1714              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Updates the respective member variable and updates @c SampleAttenuation
1715          }       * which depends on this value.
1716          else if (releasevelocityresponse < 10) {       */
1717              ReleaseVelocityResponseCurve = curve_type_linear;      void DimensionRegion::SetGain(int32_t gain) {
1718              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          DLS::Sampler::SetGain(gain);
1719          }          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1720          else if (releasevelocityresponse < 15) {      }
1721              ReleaseVelocityResponseCurve = curve_type_special;  
1722              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      /**
1723         * Apply dimension region settings to the respective RIFF chunks. You
1724         * have to call File::Save() to make changes persistent.
1725         *
1726         * Usually there is absolutely no need to call this method explicitly.
1727         * It will be called automatically when File::Save() was called.
1728         *
1729         * @param pProgress - callback function for progress notification
1730         */
1731        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1732            // first update base class's chunk
1733            DLS::Sampler::UpdateChunks(pProgress);
1734    
1735            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1736            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1737            pData[12] = Crossfade.in_start;
1738            pData[13] = Crossfade.in_end;
1739            pData[14] = Crossfade.out_start;
1740            pData[15] = Crossfade.out_end;
1741    
1742            // make sure '3ewa' chunk exists
1743            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1744            if (!_3ewa) {
1745                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1746                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1747                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1748          }          }
1749          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1750              ReleaseVelocityResponseCurve = curve_type_unknown;  
1751              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
1752    
1753            const uint32_t chunksize = _3ewa->GetNewSize();
1754            store32(&pData[0], chunksize); // unknown, always chunk size?
1755    
1756            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1757            store32(&pData[4], lfo3freq);
1758    
1759            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1760            store32(&pData[8], eg3attack);
1761    
1762            // next 2 bytes unknown
1763    
1764            store16(&pData[14], LFO1InternalDepth);
1765    
1766            // next 2 bytes unknown
1767    
1768            store16(&pData[18], LFO3InternalDepth);
1769    
1770            // next 2 bytes unknown
1771    
1772            store16(&pData[22], LFO1ControlDepth);
1773    
1774            // next 2 bytes unknown
1775    
1776            store16(&pData[26], LFO3ControlDepth);
1777    
1778            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1779            store32(&pData[28], eg1attack);
1780    
1781            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1782            store32(&pData[32], eg1decay1);
1783    
1784            // next 2 bytes unknown
1785    
1786            store16(&pData[38], EG1Sustain);
1787    
1788            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1789            store32(&pData[40], eg1release);
1790    
1791            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1792            pData[44] = eg1ctl;
1793    
1794            const uint8_t eg1ctrloptions =
1795                (EG1ControllerInvert ? 0x01 : 0x00) |
1796                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1797                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1798                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1799            pData[45] = eg1ctrloptions;
1800    
1801            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1802            pData[46] = eg2ctl;
1803    
1804            const uint8_t eg2ctrloptions =
1805                (EG2ControllerInvert ? 0x01 : 0x00) |
1806                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1807                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1808                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1809            pData[47] = eg2ctrloptions;
1810    
1811            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1812            store32(&pData[48], lfo1freq);
1813    
1814            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1815            store32(&pData[52], eg2attack);
1816    
1817            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1818            store32(&pData[56], eg2decay1);
1819    
1820            // next 2 bytes unknown
1821    
1822            store16(&pData[62], EG2Sustain);
1823    
1824            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1825            store32(&pData[64], eg2release);
1826    
1827            // next 2 bytes unknown
1828    
1829            store16(&pData[70], LFO2ControlDepth);
1830    
1831            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1832            store32(&pData[72], lfo2freq);
1833    
1834            // next 2 bytes unknown
1835    
1836            store16(&pData[78], LFO2InternalDepth);
1837    
1838            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1839            store32(&pData[80], eg1decay2);
1840    
1841            // next 2 bytes unknown
1842    
1843            store16(&pData[86], EG1PreAttack);
1844    
1845            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1846            store32(&pData[88], eg2decay2);
1847    
1848            // next 2 bytes unknown
1849    
1850            store16(&pData[94], EG2PreAttack);
1851    
1852            {
1853                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1854                uint8_t velocityresponse = VelocityResponseDepth;
1855                switch (VelocityResponseCurve) {
1856                    case curve_type_nonlinear:
1857                        break;
1858                    case curve_type_linear:
1859                        velocityresponse += 5;
1860                        break;
1861                    case curve_type_special:
1862                        velocityresponse += 10;
1863                        break;
1864                    case curve_type_unknown:
1865                    default:
1866                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1867                }
1868                pData[96] = velocityresponse;
1869          }          }
1870          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
1871          AttenuationControllerThreshold = _3ewa->ReadInt8();          {
1872          _3ewa->ReadInt32(); // unknown              if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1873          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();              uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1874          _3ewa->ReadInt16(); // unknown              switch (ReleaseVelocityResponseCurve) {
1875          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();                  case curve_type_nonlinear:
1876          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);                      break;
1877          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;                  case curve_type_linear:
1878          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;                      releasevelocityresponse += 5;
1879          else                                       DimensionBypass = dim_bypass_ctrl_none;                      break;
1880          uint8_t pan = _3ewa->ReadUint8();                  case curve_type_special:
1881          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit                      releasevelocityresponse += 10;
1882          SelfMask = _3ewa->ReadInt8() & 0x01;                      break;
1883          _3ewa->ReadInt8(); // unknown                  case curve_type_unknown:
1884          uint8_t lfo3ctrl = _3ewa->ReadUint8();                  default:
1885          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1886          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5              }
1887          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7              pData[97] = releasevelocityresponse;
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t vcfvelscale = _3ewa->ReadUint8();  
         VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7  
         VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
1888          }          }
1889    
1890          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pData[98] = VelocityResponseCurveScaling;
1891                                                       VelocityResponseDepth,  
1892                                                       VelocityResponseCurveScaling);          pData[99] = AttenuationControllerThreshold;
1893    
1894            // next 4 bytes unknown
1895    
1896            store16(&pData[104], SampleStartOffset);
1897    
1898            // next 2 bytes unknown
1899    
1900            {
1901                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1902                switch (DimensionBypass) {
1903                    case dim_bypass_ctrl_94:
1904                        pitchTrackDimensionBypass |= 0x10;
1905                        break;
1906                    case dim_bypass_ctrl_95:
1907                        pitchTrackDimensionBypass |= 0x20;
1908                        break;
1909                    case dim_bypass_ctrl_none:
1910                        //FIXME: should we set anything here?
1911                        break;
1912                    default:
1913                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1914                }
1915                pData[108] = pitchTrackDimensionBypass;
1916            }
1917    
1918            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1919            pData[109] = pan;
1920    
1921            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1922            pData[110] = selfmask;
1923    
1924            // next byte unknown
1925    
1926            {
1927                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1928                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1929                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1930                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1931                pData[112] = lfo3ctrl;
1932            }
1933    
1934            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1935            pData[113] = attenctl;
1936    
1937            {
1938                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1939                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1940                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1941                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1942                pData[114] = lfo2ctrl;
1943            }
1944    
1945            {
1946                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1947                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1948                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1949                if (VCFResonanceController != vcf_res_ctrl_none)
1950                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1951                pData[115] = lfo1ctrl;
1952            }
1953    
1954            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1955                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1956            store16(&pData[116], eg3depth);
1957    
1958            // next 2 bytes unknown
1959    
1960            const uint8_t channeloffset = ChannelOffset * 4;
1961            pData[120] = channeloffset;
1962    
1963            {
1964                uint8_t regoptions = 0;
1965                if (MSDecode)      regoptions |= 0x01; // bit 0
1966                if (SustainDefeat) regoptions |= 0x02; // bit 1
1967                pData[121] = regoptions;
1968            }
1969    
1970            // next 2 bytes unknown
1971    
1972            pData[124] = VelocityUpperLimit;
1973    
1974            // next 3 bytes unknown
1975    
1976            pData[128] = ReleaseTriggerDecay;
1977    
1978            // next 2 bytes unknown
1979    
1980            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1981            pData[131] = eg1hold;
1982    
1983            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
1984                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
1985            pData[132] = vcfcutoff;
1986    
1987            pData[133] = VCFCutoffController;
1988    
1989          curve_type_t curveType = ReleaseVelocityResponseCurve;          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1990          uint8_t depth = ReleaseVelocityResponseDepth;                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1991            pData[134] = vcfvelscale;
1992    
1993            // next byte unknown
1994    
1995            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1996                                         (VCFResonance & 0x7f); /* lower 7 bits */
1997            pData[136] = vcfresonance;
1998    
1999            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2000                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2001            pData[137] = vcfbreakpoint;
2002    
2003            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2004                                        VCFVelocityCurve * 5;
2005            pData[138] = vcfvelocity;
2006    
2007            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2008            pData[139] = vcftype;
2009    
2010            if (chunksize >= 148) {
2011                memcpy(&pData[140], DimensionUpperLimits, 8);
2012            }
2013        }
2014    
2015        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2016            curve_type_t curveType = releaseVelocityResponseCurve;
2017            uint8_t depth = releaseVelocityResponseDepth;
2018          // this models a strange behaviour or bug in GSt: two of the          // this models a strange behaviour or bug in GSt: two of the
2019          // velocity response curves for release time are not used even          // velocity response curves for release time are not used even
2020          // if specified, instead another curve is chosen.          // if specified, instead another curve is chosen.
# Line 1168  namespace { Line 2023  namespace {
2023              curveType = curve_type_nonlinear;              curveType = curve_type_nonlinear;
2024              depth = 3;              depth = 3;
2025          }          }
2026          pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);          return GetVelocityTable(curveType, depth, 0);
2027        }
         curveType = VCFVelocityCurve;  
         depth = VCFVelocityDynamicRange;  
2028    
2029        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2030                                                        uint8_t vcfVelocityDynamicRange,
2031                                                        uint8_t vcfVelocityScale,
2032                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2033        {
2034            curve_type_t curveType = vcfVelocityCurve;
2035            uint8_t depth = vcfVelocityDynamicRange;
2036          // even stranger GSt: two of the velocity response curves for          // even stranger GSt: two of the velocity response curves for
2037          // filter cutoff are not used, instead another special curve          // filter cutoff are not used, instead another special curve
2038          // is chosen. This curve is not used anywhere else.          // is chosen. This curve is not used anywhere else.
# Line 1181  namespace { Line 2041  namespace {
2041              curveType = curve_type_special;              curveType = curve_type_special;
2042              depth = 5;              depth = 5;
2043          }          }
2044          pVelocityCutoffTable = GetVelocityTable(curveType, depth,          return GetVelocityTable(curveType, depth,
2045                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);                                  (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2046                                        ? vcfVelocityScale : 0);
         SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));  
2047      }      }
2048    
2049      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1202  namespace { Line 2061  namespace {
2061          return table;          return table;
2062      }      }
2063    
2064        Region* DimensionRegion::GetParent() const {
2065            return pRegion;
2066        }
2067    
2068    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2069    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2070    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2071    //#pragma GCC diagnostic push
2072    //#pragma GCC diagnostic error "-Wswitch"
2073    
2074      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2075          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2076          switch (EncodedController) {          switch (EncodedController) {
# Line 1313  namespace { Line 2182  namespace {
2182                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2183                  break;                  break;
2184    
2185                // format extension (these controllers are so far only supported by
2186                // LinuxSampler & gigedit) they will *NOT* work with
2187                // Gigasampler/GigaStudio !
2188                case _lev_ctrl_CC3_EXT:
2189                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190                    decodedcontroller.controller_number = 3;
2191                    break;
2192                case _lev_ctrl_CC6_EXT:
2193                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194                    decodedcontroller.controller_number = 6;
2195                    break;
2196                case _lev_ctrl_CC7_EXT:
2197                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198                    decodedcontroller.controller_number = 7;
2199                    break;
2200                case _lev_ctrl_CC8_EXT:
2201                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202                    decodedcontroller.controller_number = 8;
2203                    break;
2204                case _lev_ctrl_CC9_EXT:
2205                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206                    decodedcontroller.controller_number = 9;
2207                    break;
2208                case _lev_ctrl_CC10_EXT:
2209                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210                    decodedcontroller.controller_number = 10;
2211                    break;
2212                case _lev_ctrl_CC11_EXT:
2213                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214                    decodedcontroller.controller_number = 11;
2215                    break;
2216                case _lev_ctrl_CC14_EXT:
2217                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218                    decodedcontroller.controller_number = 14;
2219                    break;
2220                case _lev_ctrl_CC15_EXT:
2221                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222                    decodedcontroller.controller_number = 15;
2223                    break;
2224                case _lev_ctrl_CC20_EXT:
2225                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226                    decodedcontroller.controller_number = 20;
2227                    break;
2228                case _lev_ctrl_CC21_EXT:
2229                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230                    decodedcontroller.controller_number = 21;
2231                    break;
2232                case _lev_ctrl_CC22_EXT:
2233                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234                    decodedcontroller.controller_number = 22;
2235                    break;
2236                case _lev_ctrl_CC23_EXT:
2237                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238                    decodedcontroller.controller_number = 23;
2239                    break;
2240                case _lev_ctrl_CC24_EXT:
2241                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242                    decodedcontroller.controller_number = 24;
2243                    break;
2244                case _lev_ctrl_CC25_EXT:
2245                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246                    decodedcontroller.controller_number = 25;
2247                    break;
2248                case _lev_ctrl_CC26_EXT:
2249                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250                    decodedcontroller.controller_number = 26;
2251                    break;
2252                case _lev_ctrl_CC27_EXT:
2253                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254                    decodedcontroller.controller_number = 27;
2255                    break;
2256                case _lev_ctrl_CC28_EXT:
2257                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258                    decodedcontroller.controller_number = 28;
2259                    break;
2260                case _lev_ctrl_CC29_EXT:
2261                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262                    decodedcontroller.controller_number = 29;
2263                    break;
2264                case _lev_ctrl_CC30_EXT:
2265                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266                    decodedcontroller.controller_number = 30;
2267                    break;
2268                case _lev_ctrl_CC31_EXT:
2269                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270                    decodedcontroller.controller_number = 31;
2271                    break;
2272                case _lev_ctrl_CC68_EXT:
2273                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274                    decodedcontroller.controller_number = 68;
2275                    break;
2276                case _lev_ctrl_CC69_EXT:
2277                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278                    decodedcontroller.controller_number = 69;
2279                    break;
2280                case _lev_ctrl_CC70_EXT:
2281                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282                    decodedcontroller.controller_number = 70;
2283                    break;
2284                case _lev_ctrl_CC71_EXT:
2285                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286                    decodedcontroller.controller_number = 71;
2287                    break;
2288                case _lev_ctrl_CC72_EXT:
2289                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290                    decodedcontroller.controller_number = 72;
2291                    break;
2292                case _lev_ctrl_CC73_EXT:
2293                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294                    decodedcontroller.controller_number = 73;
2295                    break;
2296                case _lev_ctrl_CC74_EXT:
2297                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298                    decodedcontroller.controller_number = 74;
2299                    break;
2300                case _lev_ctrl_CC75_EXT:
2301                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302                    decodedcontroller.controller_number = 75;
2303                    break;
2304                case _lev_ctrl_CC76_EXT:
2305                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306                    decodedcontroller.controller_number = 76;
2307                    break;
2308                case _lev_ctrl_CC77_EXT:
2309                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310                    decodedcontroller.controller_number = 77;
2311                    break;
2312                case _lev_ctrl_CC78_EXT:
2313                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314                    decodedcontroller.controller_number = 78;
2315                    break;
2316                case _lev_ctrl_CC79_EXT:
2317                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318                    decodedcontroller.controller_number = 79;
2319                    break;
2320                case _lev_ctrl_CC84_EXT:
2321                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322                    decodedcontroller.controller_number = 84;
2323                    break;
2324                case _lev_ctrl_CC85_EXT:
2325                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326                    decodedcontroller.controller_number = 85;
2327                    break;
2328                case _lev_ctrl_CC86_EXT:
2329                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330                    decodedcontroller.controller_number = 86;
2331                    break;
2332                case _lev_ctrl_CC87_EXT:
2333                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334                    decodedcontroller.controller_number = 87;
2335                    break;
2336                case _lev_ctrl_CC89_EXT:
2337                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338                    decodedcontroller.controller_number = 89;
2339                    break;
2340                case _lev_ctrl_CC90_EXT:
2341                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342                    decodedcontroller.controller_number = 90;
2343                    break;
2344                case _lev_ctrl_CC96_EXT:
2345                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346                    decodedcontroller.controller_number = 96;
2347                    break;
2348                case _lev_ctrl_CC97_EXT:
2349                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350                    decodedcontroller.controller_number = 97;
2351                    break;
2352                case _lev_ctrl_CC102_EXT:
2353                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354                    decodedcontroller.controller_number = 102;
2355                    break;
2356                case _lev_ctrl_CC103_EXT:
2357                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358                    decodedcontroller.controller_number = 103;
2359                    break;
2360                case _lev_ctrl_CC104_EXT:
2361                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362                    decodedcontroller.controller_number = 104;
2363                    break;
2364                case _lev_ctrl_CC105_EXT:
2365                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366                    decodedcontroller.controller_number = 105;
2367                    break;
2368                case _lev_ctrl_CC106_EXT:
2369                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370                    decodedcontroller.controller_number = 106;
2371                    break;
2372                case _lev_ctrl_CC107_EXT:
2373                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374                    decodedcontroller.controller_number = 107;
2375                    break;
2376                case _lev_ctrl_CC108_EXT:
2377                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378                    decodedcontroller.controller_number = 108;
2379                    break;
2380                case _lev_ctrl_CC109_EXT:
2381                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382                    decodedcontroller.controller_number = 109;
2383                    break;
2384                case _lev_ctrl_CC110_EXT:
2385                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386                    decodedcontroller.controller_number = 110;
2387                    break;
2388                case _lev_ctrl_CC111_EXT:
2389                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390                    decodedcontroller.controller_number = 111;
2391                    break;
2392                case _lev_ctrl_CC112_EXT:
2393                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394                    decodedcontroller.controller_number = 112;
2395                    break;
2396                case _lev_ctrl_CC113_EXT:
2397                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398                    decodedcontroller.controller_number = 113;
2399                    break;
2400                case _lev_ctrl_CC114_EXT:
2401                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402                    decodedcontroller.controller_number = 114;
2403                    break;
2404                case _lev_ctrl_CC115_EXT:
2405                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406                    decodedcontroller.controller_number = 115;
2407                    break;
2408                case _lev_ctrl_CC116_EXT:
2409                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410                    decodedcontroller.controller_number = 116;
2411                    break;
2412                case _lev_ctrl_CC117_EXT:
2413                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414                    decodedcontroller.controller_number = 117;
2415                    break;
2416                case _lev_ctrl_CC118_EXT:
2417                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418                    decodedcontroller.controller_number = 118;
2419                    break;
2420                case _lev_ctrl_CC119_EXT:
2421                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422                    decodedcontroller.controller_number = 119;
2423                    break;
2424    
2425              // unknown controller type              // unknown controller type
2426              default:              default:
2427                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2428          }          }
2429          return decodedcontroller;          return decodedcontroller;
2430      }      }
2431        
2432    // see above (diagnostic push not supported prior GCC 4.6)
2433    //#pragma GCC diagnostic pop
2434    
2435        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2436            _lev_ctrl_t encodedcontroller;
2437            switch (DecodedController.type) {
2438                // special controller
2439                case leverage_ctrl_t::type_none:
2440                    encodedcontroller = _lev_ctrl_none;
2441                    break;
2442                case leverage_ctrl_t::type_velocity:
2443                    encodedcontroller = _lev_ctrl_velocity;
2444                    break;
2445                case leverage_ctrl_t::type_channelaftertouch:
2446                    encodedcontroller = _lev_ctrl_channelaftertouch;
2447                    break;
2448    
2449                // ordinary MIDI control change controller
2450                case leverage_ctrl_t::type_controlchange:
2451                    switch (DecodedController.controller_number) {
2452                        case 1:
2453                            encodedcontroller = _lev_ctrl_modwheel;
2454                            break;
2455                        case 2:
2456                            encodedcontroller = _lev_ctrl_breath;
2457                            break;
2458                        case 4:
2459                            encodedcontroller = _lev_ctrl_foot;
2460                            break;
2461                        case 12:
2462                            encodedcontroller = _lev_ctrl_effect1;
2463                            break;
2464                        case 13:
2465                            encodedcontroller = _lev_ctrl_effect2;
2466                            break;
2467                        case 16:
2468                            encodedcontroller = _lev_ctrl_genpurpose1;
2469                            break;
2470                        case 17:
2471                            encodedcontroller = _lev_ctrl_genpurpose2;
2472                            break;
2473                        case 18:
2474                            encodedcontroller = _lev_ctrl_genpurpose3;
2475                            break;
2476                        case 19:
2477                            encodedcontroller = _lev_ctrl_genpurpose4;
2478                            break;
2479                        case 5:
2480                            encodedcontroller = _lev_ctrl_portamentotime;
2481                            break;
2482                        case 64:
2483                            encodedcontroller = _lev_ctrl_sustainpedal;
2484                            break;
2485                        case 65:
2486                            encodedcontroller = _lev_ctrl_portamento;
2487                            break;
2488                        case 66:
2489                            encodedcontroller = _lev_ctrl_sostenutopedal;
2490                            break;
2491                        case 67:
2492                            encodedcontroller = _lev_ctrl_softpedal;
2493                            break;
2494                        case 80:
2495                            encodedcontroller = _lev_ctrl_genpurpose5;
2496                            break;
2497                        case 81:
2498                            encodedcontroller = _lev_ctrl_genpurpose6;
2499                            break;
2500                        case 82:
2501                            encodedcontroller = _lev_ctrl_genpurpose7;
2502                            break;
2503                        case 83:
2504                            encodedcontroller = _lev_ctrl_genpurpose8;
2505                            break;
2506                        case 91:
2507                            encodedcontroller = _lev_ctrl_effect1depth;
2508                            break;
2509                        case 92:
2510                            encodedcontroller = _lev_ctrl_effect2depth;
2511                            break;
2512                        case 93:
2513                            encodedcontroller = _lev_ctrl_effect3depth;
2514                            break;
2515                        case 94:
2516                            encodedcontroller = _lev_ctrl_effect4depth;
2517                            break;
2518                        case 95:
2519                            encodedcontroller = _lev_ctrl_effect5depth;
2520                            break;
2521    
2522                        // format extension (these controllers are so far only
2523                        // supported by LinuxSampler & gigedit) they will *NOT*
2524                        // work with Gigasampler/GigaStudio !
2525                        case 3:
2526                            encodedcontroller = _lev_ctrl_CC3_EXT;
2527                            break;
2528                        case 6:
2529                            encodedcontroller = _lev_ctrl_CC6_EXT;
2530                            break;
2531                        case 7:
2532                            encodedcontroller = _lev_ctrl_CC7_EXT;
2533                            break;
2534                        case 8:
2535                            encodedcontroller = _lev_ctrl_CC8_EXT;
2536                            break;
2537                        case 9:
2538                            encodedcontroller = _lev_ctrl_CC9_EXT;
2539                            break;
2540                        case 10:
2541                            encodedcontroller = _lev_ctrl_CC10_EXT;
2542                            break;
2543                        case 11:
2544                            encodedcontroller = _lev_ctrl_CC11_EXT;
2545                            break;
2546                        case 14:
2547                            encodedcontroller = _lev_ctrl_CC14_EXT;
2548                            break;
2549                        case 15:
2550                            encodedcontroller = _lev_ctrl_CC15_EXT;
2551                            break;
2552                        case 20:
2553                            encodedcontroller = _lev_ctrl_CC20_EXT;
2554                            break;
2555                        case 21:
2556                            encodedcontroller = _lev_ctrl_CC21_EXT;
2557                            break;
2558                        case 22:
2559                            encodedcontroller = _lev_ctrl_CC22_EXT;
2560                            break;
2561                        case 23:
2562                            encodedcontroller = _lev_ctrl_CC23_EXT;
2563                            break;
2564                        case 24:
2565                            encodedcontroller = _lev_ctrl_CC24_EXT;
2566                            break;
2567                        case 25:
2568                            encodedcontroller = _lev_ctrl_CC25_EXT;
2569                            break;
2570                        case 26:
2571                            encodedcontroller = _lev_ctrl_CC26_EXT;
2572                            break;
2573                        case 27:
2574                            encodedcontroller = _lev_ctrl_CC27_EXT;
2575                            break;
2576                        case 28:
2577                            encodedcontroller = _lev_ctrl_CC28_EXT;
2578                            break;
2579                        case 29:
2580                            encodedcontroller = _lev_ctrl_CC29_EXT;
2581                            break;
2582                        case 30:
2583                            encodedcontroller = _lev_ctrl_CC30_EXT;
2584                            break;
2585                        case 31:
2586                            encodedcontroller = _lev_ctrl_CC31_EXT;
2587                            break;
2588                        case 68:
2589                            encodedcontroller = _lev_ctrl_CC68_EXT;
2590                            break;
2591                        case 69:
2592                            encodedcontroller = _lev_ctrl_CC69_EXT;
2593                            break;
2594                        case 70:
2595                            encodedcontroller = _lev_ctrl_CC70_EXT;
2596                            break;
2597                        case 71:
2598                            encodedcontroller = _lev_ctrl_CC71_EXT;
2599                            break;
2600                        case 72:
2601                            encodedcontroller = _lev_ctrl_CC72_EXT;
2602                            break;
2603                        case 73:
2604                            encodedcontroller = _lev_ctrl_CC73_EXT;
2605                            break;
2606                        case 74:
2607                            encodedcontroller = _lev_ctrl_CC74_EXT;
2608                            break;
2609                        case 75:
2610                            encodedcontroller = _lev_ctrl_CC75_EXT;
2611                            break;
2612                        case 76:
2613                            encodedcontroller = _lev_ctrl_CC76_EXT;
2614                            break;
2615                        case 77:
2616                            encodedcontroller = _lev_ctrl_CC77_EXT;
2617                            break;
2618                        case 78:
2619                            encodedcontroller = _lev_ctrl_CC78_EXT;
2620                            break;
2621                        case 79:
2622                            encodedcontroller = _lev_ctrl_CC79_EXT;
2623                            break;
2624                        case 84:
2625                            encodedcontroller = _lev_ctrl_CC84_EXT;
2626                            break;
2627                        case 85:
2628                            encodedcontroller = _lev_ctrl_CC85_EXT;
2629                            break;
2630                        case 86:
2631                            encodedcontroller = _lev_ctrl_CC86_EXT;
2632                            break;
2633                        case 87:
2634                            encodedcontroller = _lev_ctrl_CC87_EXT;
2635                            break;
2636                        case 89:
2637                            encodedcontroller = _lev_ctrl_CC89_EXT;
2638                            break;
2639                        case 90:
2640                            encodedcontroller = _lev_ctrl_CC90_EXT;
2641                            break;
2642                        case 96:
2643                            encodedcontroller = _lev_ctrl_CC96_EXT;
2644                            break;
2645                        case 97:
2646                            encodedcontroller = _lev_ctrl_CC97_EXT;
2647                            break;
2648                        case 102:
2649                            encodedcontroller = _lev_ctrl_CC102_EXT;
2650                            break;
2651                        case 103:
2652                            encodedcontroller = _lev_ctrl_CC103_EXT;
2653                            break;
2654                        case 104:
2655                            encodedcontroller = _lev_ctrl_CC104_EXT;
2656                            break;
2657                        case 105:
2658                            encodedcontroller = _lev_ctrl_CC105_EXT;
2659                            break;
2660                        case 106:
2661                            encodedcontroller = _lev_ctrl_CC106_EXT;
2662                            break;
2663                        case 107:
2664                            encodedcontroller = _lev_ctrl_CC107_EXT;
2665                            break;
2666                        case 108:
2667                            encodedcontroller = _lev_ctrl_CC108_EXT;
2668                            break;
2669                        case 109:
2670                            encodedcontroller = _lev_ctrl_CC109_EXT;
2671                            break;
2672                        case 110:
2673                            encodedcontroller = _lev_ctrl_CC110_EXT;
2674                            break;
2675                        case 111:
2676                            encodedcontroller = _lev_ctrl_CC111_EXT;
2677                            break;
2678                        case 112:
2679                            encodedcontroller = _lev_ctrl_CC112_EXT;
2680                            break;
2681                        case 113:
2682                            encodedcontroller = _lev_ctrl_CC113_EXT;
2683                            break;
2684                        case 114:
2685                            encodedcontroller = _lev_ctrl_CC114_EXT;
2686                            break;
2687                        case 115:
2688                            encodedcontroller = _lev_ctrl_CC115_EXT;
2689                            break;
2690                        case 116:
2691                            encodedcontroller = _lev_ctrl_CC116_EXT;
2692                            break;
2693                        case 117:
2694                            encodedcontroller = _lev_ctrl_CC117_EXT;
2695                            break;
2696                        case 118:
2697                            encodedcontroller = _lev_ctrl_CC118_EXT;
2698                            break;
2699                        case 119:
2700                            encodedcontroller = _lev_ctrl_CC119_EXT;
2701                            break;
2702    
2703                        default:
2704                            throw gig::Exception("leverage controller number is not supported by the gig format");
2705                    }
2706                    break;
2707                default:
2708                    throw gig::Exception("Unknown leverage controller type.");
2709            }
2710            return encodedcontroller;
2711        }
2712    
2713      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2714          Instances--;          Instances--;
# Line 1333  namespace { Line 2723  namespace {
2723              delete pVelocityTables;              delete pVelocityTables;
2724              pVelocityTables = NULL;              pVelocityTables = NULL;
2725          }          }
2726            if (VelocityTable) delete[] VelocityTable;
2727      }      }
2728    
2729      /**      /**
# Line 1358  namespace { Line 2749  namespace {
2749          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2750      }      }
2751    
2752        /**
2753         * Updates the respective member variable and the lookup table / cache
2754         * that depends on this value.
2755         */
2756        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2757            pVelocityAttenuationTable =
2758                GetVelocityTable(
2759                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2760                );
2761            VelocityResponseCurve = curve;
2762        }
2763    
2764        /**
2765         * Updates the respective member variable and the lookup table / cache
2766         * that depends on this value.
2767         */
2768        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2769            pVelocityAttenuationTable =
2770                GetVelocityTable(
2771                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2772                );
2773            VelocityResponseDepth = depth;
2774        }
2775    
2776        /**
2777         * Updates the respective member variable and the lookup table / cache
2778         * that depends on this value.
2779         */
2780        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2781            pVelocityAttenuationTable =
2782                GetVelocityTable(
2783                    VelocityResponseCurve, VelocityResponseDepth, scaling
2784                );
2785            VelocityResponseCurveScaling = scaling;
2786        }
2787    
2788        /**
2789         * Updates the respective member variable and the lookup table / cache
2790         * that depends on this value.
2791         */
2792        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2793            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2794            ReleaseVelocityResponseCurve = curve;
2795        }
2796    
2797        /**
2798         * Updates the respective member variable and the lookup table / cache
2799         * that depends on this value.
2800         */
2801        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2802            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2803            ReleaseVelocityResponseDepth = depth;
2804        }
2805    
2806        /**
2807         * Updates the respective member variable and the lookup table / cache
2808         * that depends on this value.
2809         */
2810        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2811            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2812            VCFCutoffController = controller;
2813        }
2814    
2815        /**
2816         * Updates the respective member variable and the lookup table / cache
2817         * that depends on this value.
2818         */
2819        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2820            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2821            VCFVelocityCurve = curve;
2822        }
2823    
2824        /**
2825         * Updates the respective member variable and the lookup table / cache
2826         * that depends on this value.
2827         */
2828        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2829            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2830            VCFVelocityDynamicRange = range;
2831        }
2832    
2833        /**
2834         * Updates the respective member variable and the lookup table / cache
2835         * that depends on this value.
2836         */
2837        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2838            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2839            VCFVelocityScale = scaling;
2840        }
2841    
2842      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2843    
2844          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1441  namespace { Line 2922  namespace {
2922    
2923          // Actual Loading          // Actual Loading
2924    
2925            if (!file->GetAutoLoad()) return;
2926    
2927          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2928    
2929          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1449  namespace { Line 2932  namespace {
2932              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2933                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2934                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2935                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2936                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2937                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2938                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2939                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2940                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2941                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2942                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2943                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2944                  }                  }
2945                  else { // active dimension                  else { // active dimension
2946                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2947                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2948                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2949                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2950                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2951                      Dimensions++;                      Dimensions++;
2952    
2953                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 1481  namespace { Line 2955  namespace {
2955                  }                  }
2956                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2957              }              }
2958                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2959    
2960              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2961              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2962                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
2963    
2964              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2965              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2966                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2967              else              else
2968                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2969    
2970              // load sample references              // load sample references (if auto loading is enabled)
2971              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2972                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2973                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2974                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2975                    }
2976                    GetSample(); // load global region sample reference
2977                }
2978            } else {
2979                DimensionRegions = 0;
2980                for (int i = 0 ; i < 8 ; i++) {
2981                    pDimensionDefinitions[i].dimension  = dimension_none;
2982                    pDimensionDefinitions[i].bits       = 0;
2983                    pDimensionDefinitions[i].zones      = 0;
2984                }
2985            }
2986    
2987            // make sure there is at least one dimension region
2988            if (!DimensionRegions) {
2989                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2990                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2991                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2992                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2993                DimensionRegions = 1;
2994            }
2995        }
2996    
2997        /**
2998         * Apply Region settings and all its DimensionRegions to the respective
2999         * RIFF chunks. You have to call File::Save() to make changes persistent.
3000         *
3001         * Usually there is absolutely no need to call this method explicitly.
3002         * It will be called automatically when File::Save() was called.
3003         *
3004         * @param pProgress - callback function for progress notification
3005         * @throws gig::Exception if samples cannot be dereferenced
3006         */
3007        void Region::UpdateChunks(progress_t* pProgress) {
3008            // in the gig format we don't care about the Region's sample reference
3009            // but we still have to provide some existing one to not corrupt the
3010            // file, so to avoid the latter we simply always assign the sample of
3011            // the first dimension region of this region
3012            pSample = pDimensionRegions[0]->pSample;
3013    
3014            // first update base class's chunks
3015            DLS::Region::UpdateChunks(pProgress);
3016    
3017            // update dimension region's chunks
3018            for (int i = 0; i < DimensionRegions; i++) {
3019                pDimensionRegions[i]->UpdateChunks(pProgress);
3020            }
3021    
3022            File* pFile = (File*) GetParent()->GetParent();
3023            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3024            const int iMaxDimensions =  version3 ? 8 : 5;
3025            const int iMaxDimensionRegions = version3 ? 256 : 32;
3026    
3027            // make sure '3lnk' chunk exists
3028            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3029            if (!_3lnk) {
3030                const int _3lnkChunkSize = version3 ? 1092 : 172;
3031                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3032                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3033    
3034                // move 3prg to last position
3035                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3036            }
3037    
3038            // update dimension definitions in '3lnk' chunk
3039            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3040            store32(&pData[0], DimensionRegions);
3041            int shift = 0;
3042            for (int i = 0; i < iMaxDimensions; i++) {
3043                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3044                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3045                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3046                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3047                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3048                // next 3 bytes unknown, always zero?
3049    
3050                shift += pDimensionDefinitions[i].bits;
3051            }
3052    
3053            // update wave pool table in '3lnk' chunk
3054            const int iWavePoolOffset = version3 ? 68 : 44;
3055            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3056                int iWaveIndex = -1;
3057                if (i < DimensionRegions) {
3058                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3059                    File::SampleList::iterator iter = pFile->pSamples->begin();
3060                    File::SampleList::iterator end  = pFile->pSamples->end();
3061                    for (int index = 0; iter != end; ++iter, ++index) {
3062                        if (*iter == pDimensionRegions[i]->pSample) {
3063                            iWaveIndex = index;
3064                            break;
3065                        }
3066                    }
3067              }              }
3068                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3069          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3070      }      }
3071    
3072      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1535  namespace { Line 3076  namespace {
3076              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3077              while (_3ewl) {              while (_3ewl) {
3078                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3079                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3080                      dimensionRegionNr++;                      dimensionRegionNr++;
3081                  }                  }
3082                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1544  namespace { Line 3085  namespace {
3085          }          }
3086      }      }
3087    
3088      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3089          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3090              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3091            // update Region key table for fast lookup
3092            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3093        }
3094    
3095        void Region::UpdateVelocityTable() {
3096            // get velocity dimension's index
3097            int veldim = -1;
3098            for (int i = 0 ; i < Dimensions ; i++) {
3099                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3100                    veldim = i;
3101                    break;
3102                }
3103            }
3104            if (veldim == -1) return;
3105    
3106            int step = 1;
3107            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3108            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3109    
3110            // loop through all dimension regions for all dimensions except the velocity dimension
3111            int dim[8] = { 0 };
3112            for (int i = 0 ; i < DimensionRegions ; i++) {
3113                const int end = i + step * pDimensionDefinitions[veldim].zones;
3114    
3115                // create a velocity table for all cases where the velocity zone is zero
3116                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3117                    pDimensionRegions[i]->VelocityUpperLimit) {
3118                    // create the velocity table
3119                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3120                    if (!table) {
3121                        table = new uint8_t[128];
3122                        pDimensionRegions[i]->VelocityTable = table;
3123                    }
3124                    int tableidx = 0;
3125                    int velocityZone = 0;
3126                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3127                        for (int k = i ; k < end ; k += step) {
3128                            DimensionRegion *d = pDimensionRegions[k];
3129                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3130                            velocityZone++;
3131                        }
3132                    } else { // gig2
3133                        for (int k = i ; k < end ; k += step) {
3134                            DimensionRegion *d = pDimensionRegions[k];
3135                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3136                            velocityZone++;
3137                        }
3138                    }
3139                } else {
3140                    if (pDimensionRegions[i]->VelocityTable) {
3141                        delete[] pDimensionRegions[i]->VelocityTable;
3142                        pDimensionRegions[i]->VelocityTable = 0;
3143                    }
3144                }
3145    
3146                // jump to the next case where the velocity zone is zero
3147                int j;
3148                int shift = 0;
3149                for (j = 0 ; j < Dimensions ; j++) {
3150                    if (j == veldim) i += skipveldim; // skip velocity dimension
3151                    else {
3152                        dim[j]++;
3153                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3154                        else {
3155                            // skip unused dimension regions
3156                            dim[j] = 0;
3157                            i += ((1 << pDimensionDefinitions[j].bits) -
3158                                  pDimensionDefinitions[j].zones) << shift;
3159                        }
3160                    }
3161                    shift += pDimensionDefinitions[j].bits;
3162                }
3163                if (j == Dimensions) break;
3164            }
3165        }
3166    
3167        /** @brief Einstein would have dreamed of it - create a new dimension.
3168         *
3169         * Creates a new dimension with the dimension definition given by
3170         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3171         * There is a hard limit of dimensions and total amount of "bits" all
3172         * dimensions can have. This limit is dependant to what gig file format
3173         * version this file refers to. The gig v2 (and lower) format has a
3174         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3175         * format has a limit of 8.
3176         *
3177         * @param pDimDef - defintion of the new dimension
3178         * @throws gig::Exception if dimension of the same type exists already
3179         * @throws gig::Exception if amount of dimensions or total amount of
3180         *                        dimension bits limit is violated
3181         */
3182        void Region::AddDimension(dimension_def_t* pDimDef) {
3183            // some initial sanity checks of the given dimension definition
3184            if (pDimDef->zones < 2)
3185                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3186            if (pDimDef->bits < 1)
3187                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3188            if (pDimDef->dimension == dimension_samplechannel) {
3189                if (pDimDef->zones != 2)
3190                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3191                if (pDimDef->bits != 1)
3192                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3193            }
3194    
3195            // check if max. amount of dimensions reached
3196            File* file = (File*) GetParent()->GetParent();
3197            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3198            if (Dimensions >= iMaxDimensions)
3199                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3200            // check if max. amount of dimension bits reached
3201            int iCurrentBits = 0;
3202            for (int i = 0; i < Dimensions; i++)
3203                iCurrentBits += pDimensionDefinitions[i].bits;
3204            if (iCurrentBits >= iMaxDimensions)
3205                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3206            const int iNewBits = iCurrentBits + pDimDef->bits;
3207            if (iNewBits > iMaxDimensions)
3208                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3209            // check if there's already a dimensions of the same type
3210            for (int i = 0; i < Dimensions; i++)
3211                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3212                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3213    
3214            // pos is where the new dimension should be placed, normally
3215            // last in list, except for the samplechannel dimension which
3216            // has to be first in list
3217            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3218            int bitpos = 0;
3219            for (int i = 0 ; i < pos ; i++)
3220                bitpos += pDimensionDefinitions[i].bits;
3221    
3222            // make room for the new dimension
3223            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3224            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3225                for (int j = Dimensions ; j > pos ; j--) {
3226                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3227                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3228                }
3229            }
3230    
3231            // assign definition of new dimension
3232            pDimensionDefinitions[pos] = *pDimDef;
3233    
3234            // auto correct certain dimension definition fields (where possible)
3235            pDimensionDefinitions[pos].split_type  =
3236                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3237            pDimensionDefinitions[pos].zone_size =
3238                __resolveZoneSize(pDimensionDefinitions[pos]);
3239    
3240            // create new dimension region(s) for this new dimension, and make
3241            // sure that the dimension regions are placed correctly in both the
3242            // RIFF list and the pDimensionRegions array
3243            RIFF::Chunk* moveTo = NULL;
3244            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3245            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3246                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3247                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3248                }
3249                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3250                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3251                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3252                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3253                        // create a new dimension region and copy all parameter values from
3254                        // an existing dimension region
3255                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3256                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3257    
3258                        DimensionRegions++;
3259                    }
3260                }
3261                moveTo = pDimensionRegions[i]->pParentList;
3262            }
3263    
3264            // initialize the upper limits for this dimension
3265            int mask = (1 << bitpos) - 1;
3266            for (int z = 0 ; z < pDimDef->zones ; z++) {
3267                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3268                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3269                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3270                                      (z << bitpos) |
3271                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3272                }
3273            }
3274    
3275            Dimensions++;
3276    
3277            // if this is a layer dimension, update 'Layers' attribute
3278            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3279    
3280            UpdateVelocityTable();
3281        }
3282    
3283        /** @brief Delete an existing dimension.
3284         *
3285         * Deletes the dimension given by \a pDimDef and deletes all respective
3286         * dimension regions, that is all dimension regions where the dimension's
3287         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3288         * for example this would delete all dimension regions for the case(s)
3289         * where the sustain pedal is pressed down.
3290         *
3291         * @param pDimDef - dimension to delete
3292         * @throws gig::Exception if given dimension cannot be found
3293         */
3294        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3295            // get dimension's index
3296            int iDimensionNr = -1;
3297            for (int i = 0; i < Dimensions; i++) {
3298                if (&pDimensionDefinitions[i] == pDimDef) {
3299                    iDimensionNr = i;
3300                    break;
3301                }
3302            }
3303            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3304    
3305            // get amount of bits below the dimension to delete
3306            int iLowerBits = 0;
3307            for (int i = 0; i < iDimensionNr; i++)
3308                iLowerBits += pDimensionDefinitions[i].bits;
3309    
3310            // get amount ot bits above the dimension to delete
3311            int iUpperBits = 0;
3312            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3313                iUpperBits += pDimensionDefinitions[i].bits;
3314    
3315            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3316    
3317            // delete dimension regions which belong to the given dimension
3318            // (that is where the dimension's bit > 0)
3319            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3320                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3321                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3322                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3323                                        iObsoleteBit << iLowerBits |
3324                                        iLowerBit;
3325    
3326                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3327                        delete pDimensionRegions[iToDelete];
3328                        pDimensionRegions[iToDelete] = NULL;
3329                        DimensionRegions--;
3330                    }
3331                }
3332            }
3333    
3334            // defrag pDimensionRegions array
3335            // (that is remove the NULL spaces within the pDimensionRegions array)
3336            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3337                if (!pDimensionRegions[iTo]) {
3338                    if (iFrom <= iTo) iFrom = iTo + 1;
3339                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3340                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3341                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3342                        pDimensionRegions[iFrom] = NULL;
3343                    }
3344                }
3345            }
3346    
3347            // remove the this dimension from the upper limits arrays
3348            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3349                DimensionRegion* d = pDimensionRegions[j];
3350                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3351                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3352                }
3353                d->DimensionUpperLimits[Dimensions - 1] = 127;
3354            }
3355    
3356            // 'remove' dimension definition
3357            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3358                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3359            }
3360            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3361            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3362            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3363    
3364            Dimensions--;
3365    
3366            // if this was a layer dimension, update 'Layers' attribute
3367            if (pDimDef->dimension == dimension_layer) Layers = 1;
3368        }
3369    
3370        /** @brief Delete one split zone of a dimension (decrement zone amount).
3371         *
3372         * Instead of deleting an entire dimensions, this method will only delete
3373         * one particular split zone given by @a zone of the Region's dimension
3374         * given by @a type. So this method will simply decrement the amount of
3375         * zones by one of the dimension in question. To be able to do that, the
3376         * respective dimension must exist on this Region and it must have at least
3377         * 3 zones. All DimensionRegion objects associated with the zone will be
3378         * deleted.
3379         *
3380         * @param type - identifies the dimension where a zone shall be deleted
3381         * @param zone - index of the dimension split zone that shall be deleted
3382         * @throws gig::Exception if requested zone could not be deleted
3383         */
3384        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3385            dimension_def_t* oldDef = GetDimensionDefinition(type);
3386            if (!oldDef)
3387                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3388            if (oldDef->zones <= 2)
3389                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3390            if (zone < 0 || zone >= oldDef->zones)
3391                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3392    
3393            const int newZoneSize = oldDef->zones - 1;
3394    
3395            // create a temporary Region which just acts as a temporary copy
3396            // container and will be deleted at the end of this function and will
3397            // also not be visible through the API during this process
3398            gig::Region* tempRgn = NULL;
3399            {
3400                // adding these temporary chunks is probably not even necessary
3401                Instrument* instr = static_cast<Instrument*>(GetParent());
3402                RIFF::List* pCkInstrument = instr->pCkInstrument;
3403                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3404                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3405                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3406                tempRgn = new Region(instr, rgn);
3407            }
3408    
3409            // copy this region's dimensions (with already the dimension split size
3410            // requested by the arguments of this method call) to the temporary
3411            // region, and don't use Region::CopyAssign() here for this task, since
3412            // it would also alter fast lookup helper variables here and there
3413            dimension_def_t newDef;
3414            for (int i = 0; i < Dimensions; ++i) {
3415                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3416                // is this the dimension requested by the method arguments? ...
3417                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3418                    def.zones = newZoneSize;
3419                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3420                    newDef = def;
3421                }
3422                tempRgn->AddDimension(&def);
3423            }
3424    
3425            // find the dimension index in the tempRegion which is the dimension
3426            // type passed to this method (paranoidly expecting different order)
3427            int tempReducedDimensionIndex = -1;
3428            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3429                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3430                    tempReducedDimensionIndex = d;
3431                    break;
3432                }
3433          }          }
3434    
3435            // copy dimension regions from this region to the temporary region
3436            for (int iDst = 0; iDst < 256; ++iDst) {
3437                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3438                if (!dstDimRgn) continue;
3439                std::map<dimension_t,int> dimCase;
3440                bool isValidZone = true;
3441                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3442                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3443                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3444                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3445                    baseBits += dstBits;
3446                    // there are also DimensionRegion objects of unused zones, skip them
3447                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3448                        isValidZone = false;
3449                        break;
3450                    }
3451                }
3452                if (!isValidZone) continue;
3453                // a bit paranoid: cope with the chance that the dimensions would
3454                // have different order in source and destination regions
3455                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3456                if (dimCase[type] >= zone) dimCase[type]++;
3457                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3458                dstDimRgn->CopyAssign(srcDimRgn);
3459                // if this is the upper most zone of the dimension passed to this
3460                // method, then correct (raise) its upper limit to 127
3461                if (newDef.split_type == split_type_normal && isLastZone)
3462                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3463            }
3464    
3465            // now tempRegion's dimensions and DimensionRegions basically reflect
3466            // what we wanted to get for this actual Region here, so we now just
3467            // delete and recreate the dimension in question with the new amount
3468            // zones and then copy back from tempRegion      
3469            DeleteDimension(oldDef);
3470            AddDimension(&newDef);
3471            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3472                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3473                if (!srcDimRgn) continue;
3474                std::map<dimension_t,int> dimCase;
3475                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3476                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3477                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3478                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3479                    baseBits += srcBits;
3480                }
3481                // a bit paranoid: cope with the chance that the dimensions would
3482                // have different order in source and destination regions
3483                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3484                if (!dstDimRgn) continue;
3485                dstDimRgn->CopyAssign(srcDimRgn);
3486            }
3487    
3488            // delete temporary region
3489            delete tempRgn;
3490    
3491            UpdateVelocityTable();
3492        }
3493    
3494        /** @brief Divide split zone of a dimension in two (increment zone amount).
3495         *
3496         * This will increment the amount of zones for the dimension (given by
3497         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3498         * in the middle of its zone range in two. So the two zones resulting from
3499         * the zone being splitted, will be an equivalent copy regarding all their
3500         * articulation informations and sample reference. The two zones will only
3501         * differ in their zone's upper limit
3502         * (DimensionRegion::DimensionUpperLimits).
3503         *
3504         * @param type - identifies the dimension where a zone shall be splitted
3505         * @param zone - index of the dimension split zone that shall be splitted
3506         * @throws gig::Exception if requested zone could not be splitted
3507         */
3508        void Region::SplitDimensionZone(dimension_t type, int zone) {
3509            dimension_def_t* oldDef = GetDimensionDefinition(type);
3510            if (!oldDef)
3511                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3512            if (zone < 0 || zone >= oldDef->zones)
3513                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3514    
3515            const int newZoneSize = oldDef->zones + 1;
3516    
3517            // create a temporary Region which just acts as a temporary copy
3518            // container and will be deleted at the end of this function and will
3519            // also not be visible through the API during this process
3520            gig::Region* tempRgn = NULL;
3521            {
3522                // adding these temporary chunks is probably not even necessary
3523                Instrument* instr = static_cast<Instrument*>(GetParent());
3524                RIFF::List* pCkInstrument = instr->pCkInstrument;
3525                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3526                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3527                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3528                tempRgn = new Region(instr, rgn);
3529            }
3530    
3531            // copy this region's dimensions (with already the dimension split size
3532            // requested by the arguments of this method call) to the temporary
3533            // region, and don't use Region::CopyAssign() here for this task, since
3534            // it would also alter fast lookup helper variables here and there
3535            dimension_def_t newDef;
3536            for (int i = 0; i < Dimensions; ++i) {
3537                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3538                // is this the dimension requested by the method arguments? ...
3539                if (def.dimension == type) { // ... if yes, increment zone amount by one
3540                    def.zones = newZoneSize;
3541                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3542                    newDef = def;
3543                }
3544                tempRgn->AddDimension(&def);
3545            }
3546    
3547            // find the dimension index in the tempRegion which is the dimension
3548            // type passed to this method (paranoidly expecting different order)
3549            int tempIncreasedDimensionIndex = -1;
3550            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3551                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3552                    tempIncreasedDimensionIndex = d;
3553                    break;
3554                }
3555            }
3556    
3557            // copy dimension regions from this region to the temporary region
3558            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3559                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3560                if (!srcDimRgn) continue;
3561                std::map<dimension_t,int> dimCase;
3562                bool isValidZone = true;
3563                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3564                    const int srcBits = pDimensionDefinitions[d].bits;
3565                    dimCase[pDimensionDefinitions[d].dimension] =
3566                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3567                    // there are also DimensionRegion objects for unused zones, skip them
3568                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3569                        isValidZone = false;
3570                        break;
3571                    }
3572                    baseBits += srcBits;
3573                }
3574                if (!isValidZone) continue;
3575                // a bit paranoid: cope with the chance that the dimensions would
3576                // have different order in source and destination regions            
3577                if (dimCase[type] > zone) dimCase[type]++;
3578                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3579                dstDimRgn->CopyAssign(srcDimRgn);
3580                // if this is the requested zone to be splitted, then also copy
3581                // the source DimensionRegion to the newly created target zone
3582                // and set the old zones upper limit lower
3583                if (dimCase[type] == zone) {
3584                    // lower old zones upper limit
3585                    if (newDef.split_type == split_type_normal) {
3586                        const int high =
3587                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3588                        int low = 0;
3589                        if (zone > 0) {
3590                            std::map<dimension_t,int> lowerCase = dimCase;
3591                            lowerCase[type]--;
3592                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3593                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3594                        }
3595                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3596                    }
3597                    // fill the newly created zone of the divided zone as well
3598                    dimCase[type]++;
3599                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3600                    dstDimRgn->CopyAssign(srcDimRgn);
3601                }
3602            }
3603    
3604            // now tempRegion's dimensions and DimensionRegions basically reflect
3605            // what we wanted to get for this actual Region here, so we now just
3606            // delete and recreate the dimension in question with the new amount
3607            // zones and then copy back from tempRegion      
3608            DeleteDimension(oldDef);
3609            AddDimension(&newDef);
3610            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3611                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3612                if (!srcDimRgn) continue;
3613                std::map<dimension_t,int> dimCase;
3614                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3615                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3616                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3617                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3618                    baseBits += srcBits;
3619                }
3620                // a bit paranoid: cope with the chance that the dimensions would
3621                // have different order in source and destination regions
3622                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3623                if (!dstDimRgn) continue;
3624                dstDimRgn->CopyAssign(srcDimRgn);
3625            }
3626    
3627            // delete temporary region
3628            delete tempRgn;
3629    
3630            UpdateVelocityTable();
3631        }
3632    
3633        /** @brief Change type of an existing dimension.
3634         *
3635         * Alters the dimension type of a dimension already existing on this
3636         * region. If there is currently no dimension on this Region with type
3637         * @a oldType, then this call with throw an Exception. Likewise there are
3638         * cases where the requested dimension type cannot be performed. For example
3639         * if the new dimension type shall be gig::dimension_samplechannel, and the
3640         * current dimension has more than 2 zones. In such cases an Exception is
3641         * thrown as well.
3642         *
3643         * @param oldType - identifies the existing dimension to be changed
3644         * @param newType - to which dimension type it should be changed to
3645         * @throws gig::Exception if requested change cannot be performed
3646         */
3647        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3648            if (oldType == newType) return;
3649            dimension_def_t* def = GetDimensionDefinition(oldType);
3650            if (!def)
3651                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3652            if (newType == dimension_samplechannel && def->zones != 2)
3653                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3654            if (GetDimensionDefinition(newType))
3655                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3656            def->dimension  = newType;
3657            def->split_type = __resolveSplitType(newType);
3658        }
3659    
3660        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3661            uint8_t bits[8] = {};
3662            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3663                 it != DimCase.end(); ++it)
3664            {
3665                for (int d = 0; d < Dimensions; ++d) {
3666                    if (pDimensionDefinitions[d].dimension == it->first) {
3667                        bits[d] = it->second;
3668                        goto nextDimCaseSlice;
3669                    }
3670                }
3671                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3672                nextDimCaseSlice:
3673                ; // noop
3674            }
3675            return GetDimensionRegionByBit(bits);
3676        }
3677    
3678        /**
3679         * Searches in the current Region for a dimension of the given dimension
3680         * type and returns the precise configuration of that dimension in this
3681         * Region.
3682         *
3683         * @param type - dimension type of the sought dimension
3684         * @returns dimension definition or NULL if there is no dimension with
3685         *          sought type in this Region.
3686         */
3687        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3688            for (int i = 0; i < Dimensions; ++i)
3689                if (pDimensionDefinitions[i].dimension == type)
3690                    return &pDimensionDefinitions[i];
3691            return NULL;
3692        }
3693    
3694        Region::~Region() {
3695          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3696              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3697          }          }
# Line 1572  namespace { Line 3716  namespace {
3716       * @see             Dimensions       * @see             Dimensions
3717       */       */
3718      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3719          uint8_t bits[8] = { 0 };          uint8_t bits;
3720            int veldim = -1;
3721            int velbitpos;
3722            int bitpos = 0;
3723            int dimregidx = 0;
3724          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3725              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3726              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3727                  case split_type_normal:                  veldim = i;
3728                      bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);                  velbitpos = bitpos;
3729                      break;              } else {
3730                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3731                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3732                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3733                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3734                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3735                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3736                      break;                              }
3737                            } else {
3738                                // gig2: evenly sized zones
3739                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3740                            }
3741                            break;
3742                        case split_type_bit: // the value is already the sought dimension bit number
3743                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3744                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3745                            break;
3746                    }
3747                    dimregidx |= bits << bitpos;
3748              }              }
3749                bitpos += pDimensionDefinitions[i].bits;
3750          }          }
3751          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3752            if (!dimreg) return NULL;
3753            if (veldim != -1) {
3754                // (dimreg is now the dimension region for the lowest velocity)
3755                if (dimreg->VelocityTable) // custom defined zone ranges
3756                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3757                else // normal split type
3758                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3759    
3760                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3761                dimregidx |= (bits & limiter_mask) << velbitpos;
3762                dimreg = pDimensionRegions[dimregidx & 255];
3763            }
3764            return dimreg;
3765        }
3766    
3767        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3768            uint8_t bits;
3769            int veldim = -1;
3770            int velbitpos;
3771            int bitpos = 0;
3772            int dimregidx = 0;
3773            for (uint i = 0; i < Dimensions; i++) {
3774                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3775                    // the velocity dimension must be handled after the other dimensions
3776                    veldim = i;
3777                    velbitpos = bitpos;
3778                } else {
3779                    switch (pDimensionDefinitions[i].split_type) {
3780                        case split_type_normal:
3781                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3782                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3783                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3784                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3785                                }
3786                            } else {
3787                                // gig2: evenly sized zones
3788                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3789                            }
3790                            break;
3791                        case split_type_bit: // the value is already the sought dimension bit number
3792                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3793                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3794                            break;
3795                    }
3796                    dimregidx |= bits << bitpos;
3797                }
3798                bitpos += pDimensionDefinitions[i].bits;
3799            }
3800            dimregidx &= 255;
3801            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3802            if (!dimreg) return -1;
3803            if (veldim != -1) {
3804                // (dimreg is now the dimension region for the lowest velocity)
3805                if (dimreg->VelocityTable) // custom defined zone ranges
3806                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3807                else // normal split type
3808                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3809    
3810                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3811                dimregidx |= (bits & limiter_mask) << velbitpos;
3812                dimregidx &= 255;
3813            }
3814            return dimregidx;
3815      }      }
3816    
3817      /**      /**
# Line 1628  namespace { Line 3851  namespace {
3851      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3852          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
3853          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3854          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
3855          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          // for new files or files >= 2 GB use 64 bit wave pool offsets
3856          Sample* sample = file->GetFirstSample(pProgress);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3857          while (sample) {              // use 64 bit wave pool offsets (treating this as large file)
3858              if (sample->ulWavePoolOffset == soughtoffset &&              uint64_t soughtoffset =
3859                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3860              sample = file->GetNextSample();                  uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3861                Sample* sample = file->GetFirstSample(pProgress);
3862                while (sample) {
3863                    if (sample->ullWavePoolOffset == soughtoffset)
3864                        return static_cast<gig::Sample*>(sample);
3865                    sample = file->GetNextSample();
3866                }
3867            } else {
3868                // use extension files and 32 bit wave pool offsets
3869                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3870                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3871                Sample* sample = file->GetFirstSample(pProgress);
3872                while (sample) {
3873                    if (sample->ullWavePoolOffset == soughtoffset &&
3874                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3875                    sample = file->GetNextSample();
3876                }
3877          }          }
3878          return NULL;          return NULL;
3879      }      }
3880        
3881        /**
3882         * Make a (semi) deep copy of the Region object given by @a orig
3883         * and assign it to this object.
3884         *
3885         * Note that all sample pointers referenced by @a orig are simply copied as
3886         * memory address. Thus the respective samples are shared, not duplicated!
3887         *
3888         * @param orig - original Region object to be copied from
3889         */
3890        void Region::CopyAssign(const Region* orig) {
3891            CopyAssign(orig, NULL);
3892        }
3893        
3894        /**
3895         * Make a (semi) deep copy of the Region object given by @a orig and
3896         * assign it to this object
3897         *
3898         * @param mSamples - crosslink map between the foreign file's samples and
3899         *                   this file's samples
3900         */
3901        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3902            // handle base classes
3903            DLS::Region::CopyAssign(orig);
3904            
3905            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3906                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3907            }
3908            
3909            // handle own member variables
3910            for (int i = Dimensions - 1; i >= 0; --i) {
3911                DeleteDimension(&pDimensionDefinitions[i]);
3912            }
3913            Layers = 0; // just to be sure
3914            for (int i = 0; i < orig->Dimensions; i++) {
3915                // we need to copy the dim definition here, to avoid the compiler
3916                // complaining about const-ness issue
3917                dimension_def_t def = orig->pDimensionDefinitions[i];
3918                AddDimension(&def);
3919            }
3920            for (int i = 0; i < 256; i++) {
3921                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3922                    pDimensionRegions[i]->CopyAssign(
3923                        orig->pDimensionRegions[i],
3924                        mSamples
3925                    );
3926                }
3927            }
3928            Layers = orig->Layers;
3929        }
3930    
3931    
3932    // *************** MidiRule ***************
3933    // *
3934    
3935        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3936            _3ewg->SetPos(36);
3937            Triggers = _3ewg->ReadUint8();
3938            _3ewg->SetPos(40);
3939            ControllerNumber = _3ewg->ReadUint8();
3940            _3ewg->SetPos(46);
3941            for (int i = 0 ; i < Triggers ; i++) {
3942                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3943                pTriggers[i].Descending = _3ewg->ReadUint8();
3944                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3945                pTriggers[i].Key = _3ewg->ReadUint8();
3946                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3947                pTriggers[i].Velocity = _3ewg->ReadUint8();
3948                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3949                _3ewg->ReadUint8();
3950            }
3951        }
3952    
3953        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3954            ControllerNumber(0),
3955            Triggers(0) {
3956        }
3957    
3958        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3959            pData[32] = 4;
3960            pData[33] = 16;
3961            pData[36] = Triggers;
3962            pData[40] = ControllerNumber;
3963            for (int i = 0 ; i < Triggers ; i++) {
3964                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3965                pData[47 + i * 8] = pTriggers[i].Descending;
3966                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3967                pData[49 + i * 8] = pTriggers[i].Key;
3968                pData[50 + i * 8] = pTriggers[i].NoteOff;
3969                pData[51 + i * 8] = pTriggers[i].Velocity;
3970                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3971            }
3972        }
3973    
3974        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3975            _3ewg->SetPos(36);
3976            LegatoSamples = _3ewg->ReadUint8(); // always 12
3977            _3ewg->SetPos(40);
3978            BypassUseController = _3ewg->ReadUint8();
3979            BypassKey = _3ewg->ReadUint8();
3980            BypassController = _3ewg->ReadUint8();
3981            ThresholdTime = _3ewg->ReadUint16();
3982            _3ewg->ReadInt16();
3983            ReleaseTime = _3ewg->ReadUint16();
3984            _3ewg->ReadInt16();
3985            KeyRange.low = _3ewg->ReadUint8();
3986            KeyRange.high = _3ewg->ReadUint8();
3987            _3ewg->SetPos(64);
3988            ReleaseTriggerKey = _3ewg->ReadUint8();
3989            AltSustain1Key = _3ewg->ReadUint8();
3990            AltSustain2Key = _3ewg->ReadUint8();
3991        }
3992    
3993        MidiRuleLegato::MidiRuleLegato() :
3994            LegatoSamples(12),
3995            BypassUseController(false),
3996            BypassKey(0),
3997            BypassController(1),
3998            ThresholdTime(20),
3999            ReleaseTime(20),
4000            ReleaseTriggerKey(0),
4001            AltSustain1Key(0),
4002            AltSustain2Key(0)
4003        {
4004            KeyRange.low = KeyRange.high = 0;
4005        }
4006    
4007        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4008            pData[32] = 0;
4009            pData[33] = 16;
4010            pData[36] = LegatoSamples;
4011            pData[40] = BypassUseController;
4012            pData[41] = BypassKey;
4013            pData[42] = BypassController;
4014            store16(&pData[43], ThresholdTime);
4015            store16(&pData[47], ReleaseTime);
4016            pData[51] = KeyRange.low;
4017            pData[52] = KeyRange.high;
4018            pData[64] = ReleaseTriggerKey;
4019            pData[65] = AltSustain1Key;
4020            pData[66] = AltSustain2Key;
4021        }
4022    
4023        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4024            _3ewg->SetPos(36);
4025            Articulations = _3ewg->ReadUint8();
4026            int flags = _3ewg->ReadUint8();
4027            Polyphonic = flags & 8;
4028            Chained = flags & 4;
4029            Selector = (flags & 2) ? selector_controller :
4030                (flags & 1) ? selector_key_switch : selector_none;
4031            Patterns = _3ewg->ReadUint8();
4032            _3ewg->ReadUint8(); // chosen row
4033            _3ewg->ReadUint8(); // unknown
4034            _3ewg->ReadUint8(); // unknown
4035            _3ewg->ReadUint8(); // unknown
4036            KeySwitchRange.low = _3ewg->ReadUint8();
4037            KeySwitchRange.high = _3ewg->ReadUint8();
4038            Controller = _3ewg->ReadUint8();
4039            PlayRange.low = _3ewg->ReadUint8();
4040            PlayRange.high = _3ewg->ReadUint8();
4041    
4042            int n = std::min(int(Articulations), 32);
4043            for (int i = 0 ; i < n ; i++) {
4044                _3ewg->ReadString(pArticulations[i], 32);
4045            }
4046            _3ewg->SetPos(1072);
4047            n = std::min(int(Patterns), 32);
4048            for (int i = 0 ; i < n ; i++) {
4049                _3ewg->ReadString(pPatterns[i].Name, 16);
4050                pPatterns[i].Size = _3ewg->ReadUint8();
4051                _3ewg->Read(&pPatterns[i][0], 1, 32);
4052            }
4053        }
4054    
4055        MidiRuleAlternator::MidiRuleAlternator() :
4056            Articulations(0),
4057            Patterns(0),
4058            Selector(selector_none),
4059            Controller(0),
4060            Polyphonic(false),
4061            Chained(false)
4062        {
4063            PlayRange.low = PlayRange.high = 0;
4064            KeySwitchRange.low = KeySwitchRange.high = 0;
4065        }
4066    
4067        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4068            pData[32] = 3;
4069            pData[33] = 16;
4070            pData[36] = Articulations;
4071            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4072                (Selector == selector_controller ? 2 :
4073                 (Selector == selector_key_switch ? 1 : 0));
4074            pData[38] = Patterns;
4075    
4076            pData[43] = KeySwitchRange.low;
4077            pData[44] = KeySwitchRange.high;
4078            pData[45] = Controller;
4079            pData[46] = PlayRange.low;
4080            pData[47] = PlayRange.high;
4081    
4082            char* str = reinterpret_cast<char*>(pData);
4083            int pos = 48;
4084            int n = std::min(int(Articulations), 32);
4085            for (int i = 0 ; i < n ; i++, pos += 32) {
4086                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4087            }
4088    
4089            pos = 1072;
4090            n = std::min(int(Patterns), 32);
4091            for (int i = 0 ; i < n ; i++, pos += 49) {
4092                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4093                pData[pos + 16] = pPatterns[i].Size;
4094                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4095            }
4096        }
4097    
4098    // *************** Script ***************
4099    // *
4100    
4101        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4102            pGroup = group;
4103            pChunk = ckScri;
4104            if (ckScri) { // object is loaded from file ...
4105                // read header
4106                uint32_t headerSize = ckScri->ReadUint32();
4107                Compression = (Compression_t) ckScri->ReadUint32();
4108                Encoding    = (Encoding_t) ckScri->ReadUint32();
4109                Language    = (Language_t) ckScri->ReadUint32();
4110                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4111                crc         = ckScri->ReadUint32();
4112                uint32_t nameSize = ckScri->ReadUint32();
4113                Name.resize(nameSize, ' ');
4114                for (int i = 0; i < nameSize; ++i)
4115                    Name[i] = ckScri->ReadUint8();
4116                // to handle potential future extensions of the header
4117                ckScri->SetPos(sizeof(int32_t) + headerSize);
4118                // read actual script data
4119                uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4120                data.resize(scriptSize);
4121                for (int i = 0; i < scriptSize; ++i)
4122                    data[i] = ckScri->ReadUint8();
4123            } else { // this is a new script object, so just initialize it as such ...
4124                Compression = COMPRESSION_NONE;
4125                Encoding = ENCODING_ASCII;
4126                Language = LANGUAGE_NKSP;
4127                Bypass   = false;
4128                crc      = 0;
4129                Name     = "Unnamed Script";
4130            }
4131        }
4132    
4133        Script::~Script() {
4134        }
4135    
4136        /**
4137         * Returns the current script (i.e. as source code) in text format.
4138         */
4139        String Script::GetScriptAsText() {
4140            String s;
4141            s.resize(data.size(), ' ');
4142            memcpy(&s[0], &data[0], data.size());
4143            return s;
4144        }
4145    
4146        /**
4147         * Replaces the current script with the new script source code text given
4148         * by @a text.
4149         *
4150         * @param text - new script source code
4151         */
4152        void Script::SetScriptAsText(const String& text) {
4153            data.resize(text.size());
4154            memcpy(&data[0], &text[0], text.size());
4155        }
4156    
4157        /**
4158         * Apply this script to the respective RIFF chunks. You have to call
4159         * File::Save() to make changes persistent.
4160         *
4161         * Usually there is absolutely no need to call this method explicitly.
4162         * It will be called automatically when File::Save() was called.
4163         *
4164         * @param pProgress - callback function for progress notification
4165         */
4166        void Script::UpdateChunks(progress_t* pProgress) {
4167            // recalculate CRC32 check sum
4168            __resetCRC(crc);
4169            __calculateCRC(&data[0], data.size(), crc);
4170            __encodeCRC(crc);
4171            // make sure chunk exists and has the required size
4172            const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4173            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4174            else pChunk->Resize(chunkSize);
4175            // fill the chunk data to be written to disk
4176            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4177            int pos = 0;
4178            store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4179            pos += sizeof(int32_t);
4180            store32(&pData[pos], Compression);
4181            pos += sizeof(int32_t);
4182            store32(&pData[pos], Encoding);
4183            pos += sizeof(int32_t);
4184            store32(&pData[pos], Language);
4185            pos += sizeof(int32_t);
4186            store32(&pData[pos], Bypass ? 1 : 0);
4187            pos += sizeof(int32_t);
4188            store32(&pData[pos], crc);
4189            pos += sizeof(int32_t);
4190            store32(&pData[pos], Name.size());
4191            pos += sizeof(int32_t);
4192            for (int i = 0; i < Name.size(); ++i, ++pos)
4193                pData[pos] = Name[i];
4194            for (int i = 0; i < data.size(); ++i, ++pos)
4195                pData[pos] = data[i];
4196        }
4197    
4198        /**
4199         * Move this script from its current ScriptGroup to another ScriptGroup
4200         * given by @a pGroup.
4201         *
4202         * @param pGroup - script's new group
4203         */
4204        void Script::SetGroup(ScriptGroup* pGroup) {
4205            if (this->pGroup == pGroup) return;
4206            if (pChunk)
4207                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4208            this->pGroup = pGroup;
4209        }
4210    
4211        /**
4212         * Returns the script group this script currently belongs to. Each script
4213         * is a member of exactly one ScriptGroup.
4214         *
4215         * @returns current script group
4216         */
4217        ScriptGroup* Script::GetGroup() const {
4218            return pGroup;
4219        }
4220    
4221        void Script::RemoveAllScriptReferences() {
4222            File* pFile = pGroup->pFile;
4223            for (int i = 0; pFile->GetInstrument(i); ++i) {
4224                Instrument* instr = pFile->GetInstrument(i);
4225                instr->RemoveScript(this);
4226            }
4227        }
4228    
4229    // *************** ScriptGroup ***************
4230    // *
4231    
4232        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4233            pFile = file;
4234            pList = lstRTIS;
4235            pScripts = NULL;
4236            if (lstRTIS) {
4237                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4238                ::LoadString(ckName, Name);
4239            } else {
4240                Name = "Default Group";
4241            }
4242        }
4243    
4244        ScriptGroup::~ScriptGroup() {
4245            if (pScripts) {
4246                std::list<Script*>::iterator iter = pScripts->begin();
4247                std::list<Script*>::iterator end  = pScripts->end();
4248                while (iter != end) {
4249                    delete *iter;
4250                    ++iter;
4251                }
4252                delete pScripts;
4253            }
4254        }
4255    
4256        /**
4257         * Apply this script group to the respective RIFF chunks. You have to call
4258         * File::Save() to make changes persistent.
4259         *
4260         * Usually there is absolutely no need to call this method explicitly.
4261         * It will be called automatically when File::Save() was called.
4262         *
4263         * @param pProgress - callback function for progress notification
4264         */
4265        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4266            if (pScripts) {
4267                if (!pList)
4268                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4269    
4270                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4271                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4272    
4273                for (std::list<Script*>::iterator it = pScripts->begin();
4274                     it != pScripts->end(); ++it)
4275                {
4276                    (*it)->UpdateChunks(pProgress);
4277                }
4278            }
4279        }
4280    
4281        /** @brief Get instrument script.
4282         *
4283         * Returns the real-time instrument script with the given index.
4284         *
4285         * @param index - number of the sought script (0..n)
4286         * @returns sought script or NULL if there's no such script
4287         */
4288        Script* ScriptGroup::GetScript(uint index) {
4289            if (!pScripts) LoadScripts();
4290            std::list<Script*>::iterator it = pScripts->begin();
4291            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4292                if (i == index) return *it;
4293            return NULL;
4294        }
4295    
4296        /** @brief Add new instrument script.
4297         *
4298         * Adds a new real-time instrument script to the file. The script is not
4299         * actually used / executed unless it is referenced by an instrument to be
4300         * used. This is similar to samples, which you can add to a file, without
4301         * an instrument necessarily actually using it.
4302         *
4303         * You have to call Save() to make this persistent to the file.
4304         *
4305         * @return new empty script object
4306         */
4307        Script* ScriptGroup::AddScript() {
4308            if (!pScripts) LoadScripts();
4309            Script* pScript = new Script(this, NULL);
4310            pScripts->push_back(pScript);
4311            return pScript;
4312        }
4313    
4314        /** @brief Delete an instrument script.
4315         *
4316         * This will delete the given real-time instrument script. References of
4317         * instruments that are using that script will be removed accordingly.
4318         *
4319         * You have to call Save() to make this persistent to the file.
4320         *
4321         * @param pScript - script to delete
4322         * @throws gig::Exception if given script could not be found
4323         */
4324        void ScriptGroup::DeleteScript(Script* pScript) {
4325            if (!pScripts) LoadScripts();
4326            std::list<Script*>::iterator iter =
4327                find(pScripts->begin(), pScripts->end(), pScript);
4328            if (iter == pScripts->end())
4329                throw gig::Exception("Could not delete script, could not find given script");
4330            pScripts->erase(iter);
4331            pScript->RemoveAllScriptReferences();
4332            if (pScript->pChunk)
4333                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4334            delete pScript;
4335        }
4336    
4337        void ScriptGroup::LoadScripts() {
4338            if (pScripts) return;
4339            pScripts = new std::list<Script*>;
4340            if (!pList) return;
4341    
4342            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4343                 ck = pList->GetNextSubChunk())
4344            {
4345                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4346                    pScripts->push_back(new Script(this, ck));
4347                }
4348            }
4349        }
4350    
4351  // *************** Instrument ***************  // *************** Instrument ***************
4352  // *  // *
4353    
4354      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4355            static const DLS::Info::string_length_t fixedStringLengths[] = {
4356                { CHUNK_ID_INAM, 64 },
4357                { CHUNK_ID_ISFT, 12 },
4358                { 0, 0 }
4359            };
4360            pInfo->SetFixedStringLengths(fixedStringLengths);
4361    
4362          // Initialization          // Initialization
4363          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4364          RegionIndex = -1;          EffectSend = 0;
4365            Attenuation = 0;
4366            FineTune = 0;
4367            PitchbendRange = 0;
4368            PianoReleaseMode = false;
4369            DimensionKeyRange.low = 0;
4370            DimensionKeyRange.high = 0;
4371            pMidiRules = new MidiRule*[3];
4372            pMidiRules[0] = NULL;
4373            pScriptRefs = NULL;
4374    
4375          // Loading          // Loading
4376          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1662  namespace { Line 4385  namespace {
4385                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4386                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4387                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4388    
4389                    if (_3ewg->GetSize() > 32) {
4390                        // read MIDI rules
4391                        int i = 0;
4392                        _3ewg->SetPos(32);
4393                        uint8_t id1 = _3ewg->ReadUint8();
4394                        uint8_t id2 = _3ewg->ReadUint8();
4395    
4396                        if (id2 == 16) {
4397                            if (id1 == 4) {
4398                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4399                            } else if (id1 == 0) {
4400                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4401                            } else if (id1 == 3) {
4402                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4403                            } else {
4404                                pMidiRules[i++] = new MidiRuleUnknown;
4405                            }
4406                        }
4407                        else if (id1 != 0 || id2 != 0) {
4408                            pMidiRules[i++] = new MidiRuleUnknown;
4409                        }
4410                        //TODO: all the other types of rules
4411    
4412                        pMidiRules[i] = NULL;
4413                    }
4414                }
4415            }
4416    
4417            if (pFile->GetAutoLoad()) {
4418                if (!pRegions) pRegions = new RegionList;
4419                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4420                if (lrgn) {
4421                    RIFF::List* rgn = lrgn->GetFirstSubList();
4422                    while (rgn) {
4423                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4424                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4425                            pRegions->push_back(new Region(this, rgn));
4426                        }
4427                        rgn = lrgn->GetNextSubList();
4428                    }
4429                    // Creating Region Key Table for fast lookup
4430                    UpdateRegionKeyTable();
4431              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4432          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4433    
4434          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          // own gig format extensions
4435          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4436          pRegions = new Region*[Regions];          if (lst3LS) {
4437          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4438          RIFF::List* rgn = lrgn->GetFirstSubList();              if (ckSCSL) {
4439          unsigned int iRegion = 0;                  int headerSize = ckSCSL->ReadUint32();
4440          while (rgn) {                  int slotCount  = ckSCSL->ReadUint32();
4441              if (rgn->GetListType() == LIST_TYPE_RGN) {                  if (slotCount) {
4442                  __notify_progress(pProgress, (float) iRegion / (float) Regions);                      int slotSize  = ckSCSL->ReadUint32();
4443                  pRegions[iRegion] = new Region(this, rgn);                      ckSCSL->SetPos(headerSize); // in case of future header extensions
4444                  iRegion++;                      int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4445              }                      for (int i = 0; i < slotCount; ++i) {
4446              rgn = lrgn->GetNextSubList();                          _ScriptPooolEntry e;
4447          }                          e.fileOffset = ckSCSL->ReadUint32();
4448                            e.bypass     = ckSCSL->ReadUint32() & 1;
4449          // Creating Region Key Table for fast lookup                          if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4450          for (uint iReg = 0; iReg < Regions; iReg++) {                          scriptPoolFileOffsets.push_back(e);
4451              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {                      }
4452                  RegionKeyTable[iKey] = pRegions[iReg];                  }
4453              }              }
4454          }          }
4455    
4456          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4457      }      }
4458    
4459        void Instrument::UpdateRegionKeyTable() {
4460            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4461            RegionList::iterator iter = pRegions->begin();
4462            RegionList::iterator end  = pRegions->end();
4463            for (; iter != end; ++iter) {
4464                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4465                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4466                    RegionKeyTable[iKey] = pRegion;
4467                }
4468            }
4469        }
4470    
4471      Instrument::~Instrument() {      Instrument::~Instrument() {
4472          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4473              if (pRegions) {              delete pMidiRules[i];
4474                  if (pRegions[i]) delete (pRegions[i]);          }
4475            delete[] pMidiRules;
4476            if (pScriptRefs) delete pScriptRefs;
4477        }
4478    
4479        /**
4480         * Apply Instrument with all its Regions to the respective RIFF chunks.
4481         * You have to call File::Save() to make changes persistent.
4482         *
4483         * Usually there is absolutely no need to call this method explicitly.
4484         * It will be called automatically when File::Save() was called.
4485         *
4486         * @param pProgress - callback function for progress notification
4487         * @throws gig::Exception if samples cannot be dereferenced
4488         */
4489        void Instrument::UpdateChunks(progress_t* pProgress) {
4490            // first update base classes' chunks
4491            DLS::Instrument::UpdateChunks(pProgress);
4492    
4493            // update Regions' chunks
4494            {
4495                RegionList::iterator iter = pRegions->begin();
4496                RegionList::iterator end  = pRegions->end();
4497                for (; iter != end; ++iter)
4498                    (*iter)->UpdateChunks(pProgress);
4499            }
4500    
4501            // make sure 'lart' RIFF list chunk exists
4502            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4503            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4504            // make sure '3ewg' RIFF chunk exists
4505            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4506            if (!_3ewg)  {
4507                File* pFile = (File*) GetParent();
4508    
4509                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4510                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4511                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4512                memset(_3ewg->LoadChunkData(), 0, size);
4513            }
4514            // update '3ewg' RIFF chunk
4515            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4516            store16(&pData[0], EffectSend);
4517            store32(&pData[2], Attenuation);
4518            store16(&pData[6], FineTune);
4519            store16(&pData[8], PitchbendRange);
4520            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4521                                        DimensionKeyRange.low << 1;
4522            pData[10] = dimkeystart;
4523            pData[11] = DimensionKeyRange.high;
4524    
4525            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4526                pData[32] = 0;
4527                pData[33] = 0;
4528            } else {
4529                for (int i = 0 ; pMidiRules[i] ; i++) {
4530                    pMidiRules[i]->UpdateChunks(pData);
4531              }              }
4532          }          }
4533          if (pRegions) delete[] pRegions;  
4534            // own gig format extensions
4535           if (ScriptSlotCount()) {
4536               // make sure we have converted the original loaded script file
4537               // offsets into valid Script object pointers
4538               LoadScripts();
4539    
4540               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4541               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4542               const int slotCount = pScriptRefs->size();
4543               const int headerSize = 3 * sizeof(uint32_t);
4544               const int slotSize  = 2 * sizeof(uint32_t);
4545               const int totalChunkSize = headerSize + slotCount * slotSize;
4546               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4547               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4548               else ckSCSL->Resize(totalChunkSize);
4549               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4550               int pos = 0;
4551               store32(&pData[pos], headerSize);
4552               pos += sizeof(uint32_t);
4553               store32(&pData[pos], slotCount);
4554               pos += sizeof(uint32_t);
4555               store32(&pData[pos], slotSize);
4556               pos += sizeof(uint32_t);
4557               for (int i = 0; i < slotCount; ++i) {
4558                   // arbitrary value, the actual file offset will be updated in
4559                   // UpdateScriptFileOffsets() after the file has been resized
4560                   int bogusFileOffset = 0;
4561                   store32(&pData[pos], bogusFileOffset);
4562                   pos += sizeof(uint32_t);
4563                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4564                   pos += sizeof(uint32_t);
4565               }
4566           } else {
4567               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4568               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4569               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4570           }
4571        }
4572    
4573        void Instrument::UpdateScriptFileOffsets() {
4574           // own gig format extensions
4575           if (pScriptRefs && pScriptRefs->size() > 0) {
4576               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4577               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4578               const int slotCount = pScriptRefs->size();
4579               const int headerSize = 3 * sizeof(uint32_t);
4580               ckSCSL->SetPos(headerSize);
4581               for (int i = 0; i < slotCount; ++i) {
4582                   uint32_t fileOffset =
4583                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4584                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4585                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4586                   ckSCSL->WriteUint32(&fileOffset);
4587                   // jump over flags entry (containing the bypass flag)
4588                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4589               }
4590           }        
4591      }      }
4592    
4593      /**      /**
# Line 1709  namespace { Line 4598  namespace {
4598       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4599       */       */
4600      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4601          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4602          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4603    
4604          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4605              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4606                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1726  namespace { Line 4616  namespace {
4616       * @see      GetNextRegion()       * @see      GetNextRegion()
4617       */       */
4618      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4619          if (!Regions) return NULL;          if (!pRegions) return NULL;
4620          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4621          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4622      }      }
4623    
4624      /**      /**
# Line 1740  namespace { Line 4630  namespace {
4630       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4631       */       */
4632      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4633          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
4634          return pRegions[RegionIndex++];          RegionsIterator++;
4635            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4636        }
4637    
4638        Region* Instrument::AddRegion() {
4639            // create new Region object (and its RIFF chunks)
4640            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4641            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4642            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4643            Region* pNewRegion = new Region(this, rgn);
4644            pRegions->push_back(pNewRegion);
4645            Regions = pRegions->size();
4646            // update Region key table for fast lookup
4647            UpdateRegionKeyTable();
4648            // done
4649            return pNewRegion;
4650        }
4651    
4652        void Instrument::DeleteRegion(Region* pRegion) {
4653            if (!pRegions) return;
4654            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4655            // update Region key table for fast lookup
4656            UpdateRegionKeyTable();
4657        }
4658    
4659        /**
4660         * Move this instrument at the position before @arg dst.
4661         *
4662         * This method can be used to reorder the sequence of instruments in a
4663         * .gig file. This might be helpful especially on large .gig files which
4664         * contain a large number of instruments within the same .gig file. So
4665         * grouping such instruments to similar ones, can help to keep track of them
4666         * when working with such complex .gig files.
4667         *
4668         * When calling this method, this instrument will be removed from in its
4669         * current position in the instruments list and moved to the requested
4670         * target position provided by @param dst. You may also pass NULL as
4671         * argument to this method, in that case this intrument will be moved to the
4672         * very end of the .gig file's instrument list.
4673         *
4674         * You have to call Save() to make the order change persistent to the .gig
4675         * file.
4676         *
4677         * Currently this method is limited to moving the instrument within the same
4678         * .gig file. Trying to move it to another .gig file by calling this method
4679         * will throw an exception.
4680         *
4681         * @param dst - destination instrument at which this instrument will be
4682         *              moved to, or pass NULL for moving to end of list
4683         * @throw gig::Exception if this instrument and target instrument are not
4684         *                       part of the same file
4685         */
4686        void Instrument::MoveTo(Instrument* dst) {
4687            if (dst && GetParent() != dst->GetParent())
4688                throw Exception(
4689                    "gig::Instrument::MoveTo() can only be used for moving within "
4690                    "the same gig file."
4691                );
4692    
4693            File* pFile = (File*) GetParent();
4694    
4695            // move this instrument within the instrument list
4696            {
4697                File::InstrumentList& list = *pFile->pInstruments;
4698    
4699                File::InstrumentList::iterator itFrom =
4700                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4701    
4702                File::InstrumentList::iterator itTo =
4703                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4704    
4705                list.splice(itTo, list, itFrom);
4706            }
4707    
4708            // move the instrument's actual list RIFF chunk appropriately
4709            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4710            lstCkInstruments->MoveSubChunk(
4711                this->pCkInstrument,
4712                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4713            );
4714        }
4715    
4716        /**
4717         * Returns a MIDI rule of the instrument.
4718         *
4719         * The list of MIDI rules, at least in gig v3, always contains at
4720         * most two rules. The second rule can only be the DEF filter
4721         * (which currently isn't supported by libgig).
4722         *
4723         * @param i - MIDI rule number
4724         * @returns   pointer address to MIDI rule number i or NULL if there is none
4725         */
4726        MidiRule* Instrument::GetMidiRule(int i) {
4727            return pMidiRules[i];
4728        }
4729    
4730        /**
4731         * Adds the "controller trigger" MIDI rule to the instrument.
4732         *
4733         * @returns the new MIDI rule
4734         */
4735        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4736            delete pMidiRules[0];
4737            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4738            pMidiRules[0] = r;
4739            pMidiRules[1] = 0;
4740            return r;
4741        }
4742    
4743        /**
4744         * Adds the legato MIDI rule to the instrument.
4745         *
4746         * @returns the new MIDI rule
4747         */
4748        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4749            delete pMidiRules[0];
4750            MidiRuleLegato* r = new MidiRuleLegato;
4751            pMidiRules[0] = r;
4752            pMidiRules[1] = 0;
4753            return r;
4754        }
4755    
4756        /**
4757         * Adds the alternator MIDI rule to the instrument.
4758         *
4759         * @returns the new MIDI rule
4760         */
4761        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4762            delete pMidiRules[0];
4763            MidiRuleAlternator* r = new MidiRuleAlternator;
4764            pMidiRules[0] = r;
4765            pMidiRules[1] = 0;
4766            return r;
4767        }
4768    
4769        /**
4770         * Deletes a MIDI rule from the instrument.
4771         *
4772         * @param i - MIDI rule number
4773         */
4774        void Instrument::DeleteMidiRule(int i) {
4775            delete pMidiRules[i];
4776            pMidiRules[i] = 0;
4777        }
4778    
4779        void Instrument::LoadScripts() {
4780            if (pScriptRefs) return;
4781            pScriptRefs = new std::vector<_ScriptPooolRef>;
4782            if (scriptPoolFileOffsets.empty()) return;
4783            File* pFile = (File*) GetParent();
4784            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4785                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4786                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4787                    ScriptGroup* group = pFile->GetScriptGroup(i);
4788                    for (uint s = 0; group->GetScript(s); ++s) {
4789                        Script* script = group->GetScript(s);
4790                        if (script->pChunk) {
4791                            uint32_t offset = script->pChunk->GetFilePos() -
4792                                              script->pChunk->GetPos() -
4793                                              CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4794                            if (offset == soughtOffset)
4795                            {
4796                                _ScriptPooolRef ref;
4797                                ref.script = script;
4798                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4799                                pScriptRefs->push_back(ref);
4800                                break;
4801                            }
4802                        }
4803                    }
4804                }
4805            }
4806            // we don't need that anymore
4807            scriptPoolFileOffsets.clear();
4808        }
4809    
4810        /** @brief Get instrument script (gig format extension).
4811         *
4812         * Returns the real-time instrument script of instrument script slot
4813         * @a index.
4814         *
4815         * @note This is an own format extension which did not exist i.e. in the
4816         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4817         * gigedit.
4818         *
4819         * @param index - instrument script slot index
4820         * @returns script or NULL if index is out of bounds
4821         */
4822        Script* Instrument::GetScriptOfSlot(uint index) {
4823            LoadScripts();
4824            if (index >= pScriptRefs->size()) return NULL;
4825            return pScriptRefs->at(index).script;
4826        }
4827    
4828        /** @brief Add new instrument script slot (gig format extension).
4829         *
4830         * Add the given real-time instrument script reference to this instrument,
4831         * which shall be executed by the sampler for for this instrument. The
4832         * script will be added to the end of the script list of this instrument.
4833         * The positions of the scripts in the Instrument's Script list are
4834         * relevant, because they define in which order they shall be executed by
4835         * the sampler. For this reason it is also legal to add the same script
4836         * twice to an instrument, for example you might have a script called
4837         * "MyFilter" which performs an event filter task, and you might have
4838         * another script called "MyNoteTrigger" which triggers new notes, then you
4839         * might for example have the following list of scripts on the instrument:
4840         *
4841         * 1. Script "MyFilter"
4842         * 2. Script "MyNoteTrigger"
4843         * 3. Script "MyFilter"
4844         *
4845         * Which would make sense, because the 2nd script launched new events, which
4846         * you might need to filter as well.
4847         *
4848         * There are two ways to disable / "bypass" scripts. You can either disable
4849         * a script locally for the respective script slot on an instrument (i.e. by
4850         * passing @c false to the 2nd argument of this method, or by calling
4851         * SetScriptBypassed()). Or you can disable a script globally for all slots
4852         * and all instruments by setting Script::Bypass.
4853         *
4854         * @note This is an own format extension which did not exist i.e. in the
4855         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4856         * gigedit.
4857         *
4858         * @param pScript - script that shall be executed for this instrument
4859         * @param bypass  - if enabled, the sampler shall skip executing this
4860         *                  script (in the respective list position)
4861         * @see SetScriptBypassed()
4862         */
4863        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4864            LoadScripts();
4865            _ScriptPooolRef ref = { pScript, bypass };
4866            pScriptRefs->push_back(ref);
4867        }
4868    
4869        /** @brief Flip two script slots with each other (gig format extension).
4870         *
4871         * Swaps the position of the two given scripts in the Instrument's Script
4872         * list. The positions of the scripts in the Instrument's Script list are
4873         * relevant, because they define in which order they shall be executed by
4874         * the sampler.
4875         *
4876         * @note This is an own format extension which did not exist i.e. in the
4877         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4878         * gigedit.
4879         *
4880         * @param index1 - index of the first script slot to swap
4881         * @param index2 - index of the second script slot to swap
4882         */
4883        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4884            LoadScripts();
4885            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4886                return;
4887            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4888            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4889            (*pScriptRefs)[index2] = tmp;
4890        }
4891    
4892        /** @brief Remove script slot.
4893         *
4894         * Removes the script slot with the given slot index.
4895         *
4896         * @param index - index of script slot to remove
4897         */
4898        void Instrument::RemoveScriptSlot(uint index) {
4899            LoadScripts();
4900            if (index >= pScriptRefs->size()) return;
4901            pScriptRefs->erase( pScriptRefs->begin() + index );
4902        }
4903    
4904        /** @brief Remove reference to given Script (gig format extension).
4905         *
4906         * This will remove all script slots on the instrument which are referencing
4907         * the given script.
4908         *
4909         * @note This is an own format extension which did not exist i.e. in the
4910         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4911         * gigedit.
4912         *
4913         * @param pScript - script reference to remove from this instrument
4914         * @see RemoveScriptSlot()
4915         */
4916        void Instrument::RemoveScript(Script* pScript) {
4917            LoadScripts();
4918            for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4919                if ((*pScriptRefs)[i].script == pScript) {
4920                    pScriptRefs->erase( pScriptRefs->begin() + i );
4921                }
4922            }
4923        }
4924    
4925        /** @brief Instrument's amount of script slots.
4926         *
4927         * This method returns the amount of script slots this instrument currently
4928         * uses.
4929         *
4930         * A script slot is a reference of a real-time instrument script to be
4931         * executed by the sampler. The scripts will be executed by the sampler in
4932         * sequence of the slots. One (same) script may be referenced multiple
4933         * times in different slots.
4934         *
4935         * @note This is an own format extension which did not exist i.e. in the
4936         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4937         * gigedit.
4938         */
4939        uint Instrument::ScriptSlotCount() const {
4940            return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4941        }
4942    
4943        /** @brief Whether script execution shall be skipped.
4944         *
4945         * Defines locally for the Script reference slot in the Instrument's Script
4946         * list, whether the script shall be skipped by the sampler regarding
4947         * execution.
4948         *
4949         * It is also possible to ignore exeuction of the script globally, for all
4950         * slots and for all instruments by setting Script::Bypass.
4951         *
4952         * @note This is an own format extension which did not exist i.e. in the
4953         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4954         * gigedit.
4955         *
4956         * @param index - index of the script slot on this instrument
4957         * @see Script::Bypass
4958         */
4959        bool Instrument::IsScriptSlotBypassed(uint index) {
4960            if (index >= ScriptSlotCount()) return false;
4961            return pScriptRefs ? pScriptRefs->at(index).bypass
4962                               : scriptPoolFileOffsets.at(index).bypass;
4963            
4964        }
4965    
4966        /** @brief Defines whether execution shall be skipped.
4967         *
4968         * You can call this method to define locally whether or whether not the
4969         * given script slot shall be executed by the sampler.
4970         *
4971         * @note This is an own format extension which did not exist i.e. in the
4972         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4973         * gigedit.
4974         *
4975         * @param index - script slot index on this instrument
4976         * @param bBypass - if true, the script slot will be skipped by the sampler
4977         * @see Script::Bypass
4978         */
4979        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4980            if (index >= ScriptSlotCount()) return;
4981            if (pScriptRefs)
4982                pScriptRefs->at(index).bypass = bBypass;
4983            else
4984                scriptPoolFileOffsets.at(index).bypass = bBypass;
4985        }
4986    
4987        /**
4988         * Make a (semi) deep copy of the Instrument object given by @a orig
4989         * and assign it to this object.
4990         *
4991         * Note that all sample pointers referenced by @a orig are simply copied as
4992         * memory address. Thus the respective samples are shared, not duplicated!
4993         *
4994         * @param orig - original Instrument object to be copied from
4995         */
4996        void Instrument::CopyAssign(const Instrument* orig) {
4997            CopyAssign(orig, NULL);
4998        }
4999            
5000        /**
5001         * Make a (semi) deep copy of the Instrument object given by @a orig
5002         * and assign it to this object.
5003         *
5004         * @param orig - original Instrument object to be copied from
5005         * @param mSamples - crosslink map between the foreign file's samples and
5006         *                   this file's samples
5007         */
5008        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5009            // handle base class
5010            // (without copying DLS region stuff)
5011            DLS::Instrument::CopyAssignCore(orig);
5012            
5013            // handle own member variables
5014            Attenuation = orig->Attenuation;
5015            EffectSend = orig->EffectSend;
5016            FineTune = orig->FineTune;
5017            PitchbendRange = orig->PitchbendRange;
5018            PianoReleaseMode = orig->PianoReleaseMode;
5019            DimensionKeyRange = orig->DimensionKeyRange;
5020            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5021            pScriptRefs = orig->pScriptRefs;
5022            
5023            // free old midi rules
5024            for (int i = 0 ; pMidiRules[i] ; i++) {
5025                delete pMidiRules[i];
5026            }
5027            //TODO: MIDI rule copying
5028            pMidiRules[0] = NULL;
5029            
5030            // delete all old regions
5031            while (Regions) DeleteRegion(GetFirstRegion());
5032            // create new regions and copy them from original
5033            {
5034                RegionList::const_iterator it = orig->pRegions->begin();
5035                for (int i = 0; i < orig->Regions; ++i, ++it) {
5036                    Region* dstRgn = AddRegion();
5037                    //NOTE: Region does semi-deep copy !
5038                    dstRgn->CopyAssign(
5039                        static_cast<gig::Region*>(*it),
5040                        mSamples
5041                    );
5042                }
5043            }
5044    
5045            UpdateRegionKeyTable();
5046        }
5047    
5048    
5049    // *************** Group ***************
5050    // *
5051    
5052        /** @brief Constructor.
5053         *
5054         * @param file   - pointer to the gig::File object
5055         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5056         *                 NULL if this is a new Group
5057         */
5058        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5059            pFile      = file;
5060            pNameChunk = ck3gnm;
5061            ::LoadString(pNameChunk, Name);
5062        }
5063    
5064        Group::~Group() {
5065            // remove the chunk associated with this group (if any)
5066            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5067        }
5068    
5069        /** @brief Update chunks with current group settings.
5070         *
5071         * Apply current Group field values to the respective chunks. You have
5072         * to call File::Save() to make changes persistent.
5073         *
5074         * Usually there is absolutely no need to call this method explicitly.
5075         * It will be called automatically when File::Save() was called.
5076         *
5077         * @param pProgress - callback function for progress notification
5078         */
5079        void Group::UpdateChunks(progress_t* pProgress) {
5080            // make sure <3gri> and <3gnl> list chunks exist
5081            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5082            if (!_3gri) {
5083                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5084                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5085            }
5086            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5087            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5088    
5089            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5090                // v3 has a fixed list of 128 strings, find a free one
5091                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5092                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5093                        pNameChunk = ck;
5094                        break;
5095                    }
5096                }
5097            }
5098    
5099            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5100            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5101        }
5102    
5103        /**
5104         * Returns the first Sample of this Group. You have to call this method
5105         * once before you use GetNextSample().
5106         *
5107         * <b>Notice:</b> this method might block for a long time, in case the
5108         * samples of this .gig file were not scanned yet
5109         *
5110         * @returns  pointer address to first Sample or NULL if there is none
5111         *           applied to this Group
5112         * @see      GetNextSample()
5113         */
5114        Sample* Group::GetFirstSample() {
5115            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5116            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5117                if (pSample->GetGroup() == this) return pSample;
5118            }
5119            return NULL;
5120        }
5121    
5122        /**
5123         * Returns the next Sample of the Group. You have to call
5124         * GetFirstSample() once before you can use this method. By calling this
5125         * method multiple times it iterates through the Samples assigned to
5126         * this Group.
5127         *
5128         * @returns  pointer address to the next Sample of this Group or NULL if
5129         *           end reached
5130         * @see      GetFirstSample()
5131         */
5132        Sample* Group::GetNextSample() {
5133            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5134            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5135                if (pSample->GetGroup() == this) return pSample;
5136            }
5137            return NULL;
5138        }
5139    
5140        /**
5141         * Move Sample given by \a pSample from another Group to this Group.
5142         */
5143        void Group::AddSample(Sample* pSample) {
5144            pSample->pGroup = this;
5145        }
5146    
5147        /**
5148         * Move all members of this group to another group (preferably the 1st
5149         * one except this). This method is called explicitly by
5150         * File::DeleteGroup() thus when a Group was deleted. This code was
5151         * intentionally not placed in the destructor!
5152         */
5153        void Group::MoveAll() {
5154            // get "that" other group first
5155            Group* pOtherGroup = NULL;
5156            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5157                if (pOtherGroup != this) break;
5158            }
5159            if (!pOtherGroup) throw Exception(
5160                "Could not move samples to another group, since there is no "
5161                "other Group. This is a bug, report it!"
5162            );
5163            // now move all samples of this group to the other group
5164            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5165                pOtherGroup->AddSample(pSample);
5166            }
5167      }      }
5168    
5169    
# Line 1749  namespace { Line 5171  namespace {
5171  // *************** File ***************  // *************** File ***************
5172  // *  // *
5173    
5174        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5175        const DLS::version_t File::VERSION_2 = {
5176            0, 2, 19980628 & 0xffff, 19980628 >> 16
5177        };
5178    
5179        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5180        const DLS::version_t File::VERSION_3 = {
5181            0, 3, 20030331 & 0xffff, 20030331 >> 16
5182        };
5183    
5184        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5185            { CHUNK_ID_IARL, 256 },
5186            { CHUNK_ID_IART, 128 },
5187            { CHUNK_ID_ICMS, 128 },
5188            { CHUNK_ID_ICMT, 1024 },
5189            { CHUNK_ID_ICOP, 128 },
5190            { CHUNK_ID_ICRD, 128 },
5191            { CHUNK_ID_IENG, 128 },
5192            { CHUNK_ID_IGNR, 128 },
5193            { CHUNK_ID_IKEY, 128 },
5194            { CHUNK_ID_IMED, 128 },
5195            { CHUNK_ID_INAM, 128 },
5196            { CHUNK_ID_IPRD, 128 },
5197            { CHUNK_ID_ISBJ, 128 },
5198            { CHUNK_ID_ISFT, 128 },
5199            { CHUNK_ID_ISRC, 128 },
5200            { CHUNK_ID_ISRF, 128 },
5201            { CHUNK_ID_ITCH, 128 },
5202            { 0, 0 }
5203        };
5204    
5205        File::File() : DLS::File() {
5206            bAutoLoad = true;
5207            *pVersion = VERSION_3;
5208            pGroups = NULL;
5209            pScriptGroups = NULL;
5210            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5211            pInfo->ArchivalLocation = String(256, ' ');
5212    
5213            // add some mandatory chunks to get the file chunks in right
5214            // order (INFO chunk will be moved to first position later)
5215            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5216            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5217            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5218    
5219            GenerateDLSID();
5220        }
5221    
5222      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5223          pSamples     = NULL;          bAutoLoad = true;
5224          pInstruments = NULL;          pGroups = NULL;
5225            pScriptGroups = NULL;
5226            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5227      }      }
5228    
5229      File::~File() {      File::~File() {
5230          // free samples          if (pGroups) {
5231          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5232              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5233              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5234                  delete (*SamplesIterator);                  delete *iter;
5235                  SamplesIterator++;                  ++iter;
5236              }              }
5237              pSamples->clear();              delete pGroups;
5238              delete pSamples;          }
5239            if (pScriptGroups) {
5240          }              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5241          // free instruments              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5242          if (pInstruments) {              while (iter != end) {
5243              InstrumentsIterator = pInstruments->begin();                  delete *iter;
5244              while (InstrumentsIterator != pInstruments->end() ) {                  ++iter;
5245                  delete (*InstrumentsIterator);              }
5246                  InstrumentsIterator++;              delete pScriptGroups;
5247              }          }
             pInstruments->clear();  
             delete pInstruments;  
         }  
         // free extension files  
         for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)  
             delete *i;  
5248      }      }
5249    
5250      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 1793  namespace { Line 5259  namespace {
5259          SamplesIterator++;          SamplesIterator++;
5260          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5261      }      }
5262        
5263        /**
5264         * Returns Sample object of @a index.
5265         *
5266         * @returns sample object or NULL if index is out of bounds
5267         */
5268        Sample* File::GetSample(uint index) {
5269            if (!pSamples) LoadSamples();
5270            if (!pSamples) return NULL;
5271            DLS::File::SampleList::iterator it = pSamples->begin();
5272            for (int i = 0; i < index; ++i) {
5273                ++it;
5274                if (it == pSamples->end()) return NULL;
5275            }
5276            if (it == pSamples->end()) return NULL;
5277            return static_cast<gig::Sample*>( *it );
5278        }
5279    
5280        /** @brief Add a new sample.
5281         *
5282         * This will create a new Sample object for the gig file. You have to
5283         * call Save() to make this persistent to the file.
5284         *
5285         * @returns pointer to new Sample object
5286         */
5287        Sample* File::AddSample() {
5288           if (!pSamples) LoadSamples();
5289           __ensureMandatoryChunksExist();
5290           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5291           // create new Sample object and its respective 'wave' list chunk
5292           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5293           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5294    
5295           // add mandatory chunks to get the chunks in right order
5296           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5297           wave->AddSubList(LIST_TYPE_INFO);
5298    
5299           pSamples->push_back(pSample);
5300           return pSample;
5301        }
5302    
5303        /** @brief Delete a sample.
5304         *
5305         * This will delete the given Sample object from the gig file. Any
5306         * references to this sample from Regions and DimensionRegions will be
5307         * removed. You have to call Save() to make this persistent to the file.
5308         *
5309         * @param pSample - sample to delete
5310         * @throws gig::Exception if given sample could not be found
5311         */
5312        void File::DeleteSample(Sample* pSample) {
5313            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5314            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5315            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5316            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5317            pSamples->erase(iter);
5318            delete pSample;
5319    
5320            SampleList::iterator tmp = SamplesIterator;
5321            // remove all references to the sample
5322            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5323                 instrument = GetNextInstrument()) {
5324                for (Region* region = instrument->GetFirstRegion() ; region ;
5325                     region = instrument->GetNextRegion()) {
5326    
5327                    if (region->GetSample() == pSample) region->SetSample(NULL);
5328    
5329                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5330                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5331                        if (d->pSample == pSample) d->pSample = NULL;
5332                    }
5333                }
5334            }
5335            SamplesIterator = tmp; // restore iterator
5336        }
5337    
5338        void File::LoadSamples() {
5339            LoadSamples(NULL);
5340        }
5341    
5342      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5343            // Groups must be loaded before samples, because samples will try
5344            // to resolve the group they belong to
5345            if (!pGroups) LoadGroups();
5346    
5347            if (!pSamples) pSamples = new SampleList;
5348    
5349          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
5350    
5351          // just for progress calculation          // just for progress calculation
# Line 1802  namespace { Line 5353  namespace {
5353          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5354    
5355          // check if samples should be loaded from extension files          // check if samples should be loaded from extension files
5356            // (only for old gig files < 2 GB)
5357          int lastFileNo = 0;          int lastFileNo = 0;
5358          for (int i = 0 ; i < WavePoolCount ; i++) {          if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5359              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];              for (int i = 0 ; i < WavePoolCount ; i++) {
5360                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5361                }
5362          }          }
5363          String name(pRIFF->GetFileName());          String name(pRIFF->GetFileName());
5364          int nameLen = name.length();          int nameLen = name.length();
# Line 1814  namespace { Line 5368  namespace {
5368          for (int fileNo = 0 ; ; ) {          for (int fileNo = 0 ; ; ) {
5369              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5370              if (wvpl) {              if (wvpl) {
5371                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos();
5372                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5373                  while (wave) {                  while (wave) {
5374                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
# Line 1822  namespace { Line 5376  namespace {
5376                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5377                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
5378    
5379                          if (!pSamples) pSamples = new SampleList;                          file_offset_t waveFileOffset = wave->GetFilePos();
                         unsigned long waveFileOffset = wave->GetFilePos();  
5380                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5381    
5382                          iSampleIndex++;                          iSampleIndex++;
# Line 1839  namespace { Line 5392  namespace {
5392                  name.replace(nameLen, 5, suffix);                  name.replace(nameLen, 5, suffix);
5393                  file = new RIFF::File(name);                  file = new RIFF::File(name);
5394                  ExtensionFiles.push_back(file);                  ExtensionFiles.push_back(file);
5395              }              } else break;
             else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
5396          }          }
5397    
5398          __notify_progress(pProgress, 1.0); // notify done          __notify_progress(pProgress, 1.0); // notify done
# Line 1850  namespace { Line 5402  namespace {
5402          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5403          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5404          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5405          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5406      }      }
5407    
5408      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5409          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5410          InstrumentsIterator++;          InstrumentsIterator++;
5411          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5412      }      }
5413    
5414      /**      /**
# Line 1874  namespace { Line 5426  namespace {
5426              progress_t subprogress;              progress_t subprogress;
5427              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5428              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5429              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5430                    GetFirstSample(&subprogress); // now force all samples to be loaded
5431              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5432    
5433              // instrument loading subtask              // instrument loading subtask
# Line 1889  namespace { Line 5442  namespace {
5442          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5443          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5444          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5445              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5446              InstrumentsIterator++;              InstrumentsIterator++;
5447          }          }
5448          return NULL;          return NULL;
5449      }      }
5450    
5451        /** @brief Add a new instrument definition.
5452         *
5453         * This will create a new Instrument object for the gig file. You have
5454         * to call Save() to make this persistent to the file.
5455         *
5456         * @returns pointer to new Instrument object
5457         */
5458        Instrument* File::AddInstrument() {
5459           if (!pInstruments) LoadInstruments();
5460           __ensureMandatoryChunksExist();
5461           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5462           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5463    
5464           // add mandatory chunks to get the chunks in right order
5465           lstInstr->AddSubList(LIST_TYPE_INFO);
5466           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5467    
5468           Instrument* pInstrument = new Instrument(this, lstInstr);
5469           pInstrument->GenerateDLSID();
5470    
5471           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5472    
5473           // this string is needed for the gig to be loadable in GSt:
5474           pInstrument->pInfo->Software = "Endless Wave";
5475    
5476           pInstruments->push_back(pInstrument);
5477           return pInstrument;
5478        }
5479        
5480        /** @brief Add a duplicate of an existing instrument.
5481         *
5482         * Duplicates the instrument definition given by @a orig and adds it
5483         * to this file. This allows in an instrument editor application to
5484         * easily create variations of an instrument, which will be stored in
5485         * the same .gig file, sharing i.e. the same samples.
5486         *
5487         * Note that all sample pointers referenced by @a orig are simply copied as
5488         * memory address. Thus the respective samples are shared, not duplicated!
5489         *
5490         * You have to call Save() to make this persistent to the file.
5491         *
5492         * @param orig - original instrument to be copied
5493         * @returns duplicated copy of the given instrument
5494         */
5495        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5496            Instrument* instr = AddInstrument();
5497            instr->CopyAssign(orig);
5498            return instr;
5499        }
5500        
5501        /** @brief Add content of another existing file.
5502         *
5503         * Duplicates the samples, groups and instruments of the original file
5504         * given by @a pFile and adds them to @c this File. In case @c this File is
5505         * a new one that you haven't saved before, then you have to call
5506         * SetFileName() before calling AddContentOf(), because this method will
5507         * automatically save this file during operation, which is required for
5508         * writing the sample waveform data by disk streaming.
5509         *
5510         * @param pFile - original file whose's content shall be copied from
5511         */
5512        void File::AddContentOf(File* pFile) {
5513            static int iCallCount = -1;
5514            iCallCount++;
5515            std::map<Group*,Group*> mGroups;
5516            std::map<Sample*,Sample*> mSamples;
5517            
5518            // clone sample groups
5519            for (int i = 0; pFile->GetGroup(i); ++i) {
5520                Group* g = AddGroup();
5521                g->Name =
5522                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5523                mGroups[pFile->GetGroup(i)] = g;
5524            }
5525            
5526            // clone samples (not waveform data here yet)
5527            for (int i = 0; pFile->GetSample(i); ++i) {
5528                Sample* s = AddSample();
5529                s->CopyAssignMeta(pFile->GetSample(i));
5530                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5531                mSamples[pFile->GetSample(i)] = s;
5532            }
5533            
5534            //BUG: For some reason this method only works with this additional
5535            //     Save() call in between here.
5536            //
5537            // Important: The correct one of the 2 Save() methods has to be called
5538            // here, depending on whether the file is completely new or has been
5539            // saved to disk already, otherwise it will result in data corruption.
5540            if (pRIFF->IsNew())
5541                Save(GetFileName());
5542            else
5543                Save();
5544            
5545            // clone instruments
5546            // (passing the crosslink table here for the cloned samples)
5547            for (int i = 0; pFile->GetInstrument(i); ++i) {
5548                Instrument* instr = AddInstrument();
5549                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5550            }
5551            
5552            // Mandatory: file needs to be saved to disk at this point, so this
5553            // file has the correct size and data layout for writing the samples'
5554            // waveform data to disk.
5555            Save();
5556            
5557            // clone samples' waveform data
5558            // (using direct read & write disk streaming)
5559            for (int i = 0; pFile->GetSample(i); ++i) {
5560                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5561            }
5562        }
5563    
5564        /** @brief Delete an instrument.
5565         *
5566         * This will delete the given Instrument object from the gig file. You
5567         * have to call Save() to make this persistent to the file.
5568         *
5569         * @param pInstrument - instrument to delete
5570         * @throws gig::Exception if given instrument could not be found
5571         */
5572        void File::DeleteInstrument(Instrument* pInstrument) {
5573            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5574            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5575            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5576            pInstruments->erase(iter);
5577            delete pInstrument;
5578        }
5579    
5580        void File::LoadInstruments() {
5581            LoadInstruments(NULL);
5582        }
5583    
5584      void File::LoadInstruments(progress_t* pProgress) {      void File::LoadInstruments(progress_t* pProgress) {
5585            if (!pInstruments) pInstruments = new InstrumentList;
5586          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5587          if (lstInstruments) {          if (lstInstruments) {
5588              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
# Line 1910  namespace { Line 5597  namespace {
5597                      progress_t subprogress;                      progress_t subprogress;
5598                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5599    
                     if (!pInstruments) pInstruments = new InstrumentList;  
5600                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5601    
5602                      iInstrumentIndex++;                      iInstrumentIndex++;
# Line 1919  namespace { Line 5605  namespace {
5605              }              }
5606              __notify_progress(pProgress, 1.0); // notify done              __notify_progress(pProgress, 1.0); // notify done
5607          }          }
5608          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5609    
5610        /// Updates the 3crc chunk with the checksum of a sample. The
5611        /// update is done directly to disk, as this method is called
5612        /// after File::Save()
5613        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5614            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5615            if (!_3crc) return;
5616    
5617            // get the index of the sample
5618            int iWaveIndex = -1;
5619            File::SampleList::iterator iter = pSamples->begin();
5620            File::SampleList::iterator end  = pSamples->end();
5621            for (int index = 0; iter != end; ++iter, ++index) {
5622                if (*iter == pSample) {
5623                    iWaveIndex = index;
5624                    break;
5625                }
5626            }
5627            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5628    
5629            // write the CRC-32 checksum to disk
5630            _3crc->SetPos(iWaveIndex * 8);
5631            uint32_t tmp = 1;
5632            _3crc->WriteUint32(&tmp); // unknown, always 1?
5633            _3crc->WriteUint32(&crc);
5634        }
5635    
5636        Group* File::GetFirstGroup() {
5637            if (!pGroups) LoadGroups();
5638            // there must always be at least one group
5639            GroupsIterator = pGroups->begin();
5640            return *GroupsIterator;
5641        }
5642    
5643        Group* File::GetNextGroup() {
5644            if (!pGroups) return NULL;
5645            ++GroupsIterator;
5646            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5647        }
5648    
5649        /**
5650         * Returns the group with the given index.
5651         *
5652         * @param index - number of the sought group (0..n)
5653         * @returns sought group or NULL if there's no such group
5654         */
5655        Group* File::GetGroup(uint index) {
5656            if (!pGroups) LoadGroups();
5657            GroupsIterator = pGroups->begin();
5658            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5659                if (i == index) return *GroupsIterator;
5660                ++GroupsIterator;
5661            }
5662            return NULL;
5663        }
5664    
5665        /**
5666         * Returns the group with the given group name.
5667         *
5668         * Note: group names don't have to be unique in the gig format! So there
5669         * can be multiple groups with the same name. This method will simply
5670         * return the first group found with the given name.
5671         *
5672         * @param name - name of the sought group
5673         * @returns sought group or NULL if there's no group with that name
5674         */
5675        Group* File::GetGroup(String name) {
5676            if (!pGroups) LoadGroups();
5677            GroupsIterator = pGroups->begin();
5678            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5679                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5680            return NULL;
5681        }
5682    
5683        Group* File::AddGroup() {
5684            if (!pGroups) LoadGroups();
5685            // there must always be at least one group
5686            __ensureMandatoryChunksExist();
5687            Group* pGroup = new Group(this, NULL);
5688            pGroups->push_back(pGroup);
5689            return pGroup;
5690        }
5691    
5692        /** @brief Delete a group and its samples.
5693         *
5694         * This will delete the given Group object and all the samples that
5695         * belong to this group from the gig file. You have to call Save() to
5696         * make this persistent to the file.
5697         *
5698         * @param pGroup - group to delete
5699         * @throws gig::Exception if given group could not be found
5700         */
5701        void File::DeleteGroup(Group* pGroup) {
5702            if (!pGroups) LoadGroups();
5703            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5704            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5705            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5706            // delete all members of this group
5707            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5708                DeleteSample(pSample);
5709            }
5710            // now delete this group object
5711            pGroups->erase(iter);
5712            delete pGroup;
5713        }
5714    
5715        /** @brief Delete a group.
5716         *
5717         * This will delete the given Group object from the gig file. All the
5718         * samples that belong to this group will not be deleted, but instead
5719         * be moved to another group. You have to call Save() to make this
5720         * persistent to the file.
5721         *
5722         * @param pGroup - group to delete
5723         * @throws gig::Exception if given group could not be found
5724         */
5725        void File::DeleteGroupOnly(Group* pGroup) {
5726            if (!pGroups) LoadGroups();
5727            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5728            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5729            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5730            // move all members of this group to another group
5731            pGroup->MoveAll();
5732            pGroups->erase(iter);
5733            delete pGroup;
5734        }
5735    
5736        void File::LoadGroups() {
5737            if (!pGroups) pGroups = new std::list<Group*>;
5738            // try to read defined groups from file
5739            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5740            if (lst3gri) {
5741                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5742                if (lst3gnl) {
5743                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5744                    while (ck) {
5745                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5746                            if (pVersion && pVersion->major == 3 &&
5747                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5748    
5749                            pGroups->push_back(new Group(this, ck));
5750                        }
5751                        ck = lst3gnl->GetNextSubChunk();
5752                    }
5753                }
5754            }
5755            // if there were no group(s), create at least the mandatory default group
5756            if (!pGroups->size()) {
5757                Group* pGroup = new Group(this, NULL);
5758                pGroup->Name = "Default Group";
5759                pGroups->push_back(pGroup);
5760            }
5761        }
5762    
5763        /** @brief Get instrument script group (by index).
5764         *
5765         * Returns the real-time instrument script group with the given index.
5766         *
5767         * @param index - number of the sought group (0..n)
5768         * @returns sought script group or NULL if there's no such group
5769         */
5770        ScriptGroup* File::GetScriptGroup(uint index) {
5771            if (!pScriptGroups) LoadScriptGroups();
5772            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5773            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5774                if (i == index) return *it;
5775            return NULL;
5776        }
5777    
5778        /** @brief Get instrument script group (by name).
5779         *
5780         * Returns the first real-time instrument script group found with the given
5781         * group name. Note that group names may not necessarily be unique.
5782         *
5783         * @param name - name of the sought script group
5784         * @returns sought script group or NULL if there's no such group
5785         */
5786        ScriptGroup* File::GetScriptGroup(const String& name) {
5787            if (!pScriptGroups) LoadScriptGroups();
5788            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5789            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5790                if ((*it)->Name == name) return *it;
5791            return NULL;
5792        }
5793    
5794        /** @brief Add new instrument script group.
5795         *
5796         * Adds a new, empty real-time instrument script group to the file.
5797         *
5798         * You have to call Save() to make this persistent to the file.
5799         *
5800         * @return new empty script group
5801         */
5802        ScriptGroup* File::AddScriptGroup() {
5803            if (!pScriptGroups) LoadScriptGroups();
5804            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5805            pScriptGroups->push_back(pScriptGroup);
5806            return pScriptGroup;
5807        }
5808    
5809        /** @brief Delete an instrument script group.
5810         *
5811         * This will delete the given real-time instrument script group and all its
5812         * instrument scripts it contains. References inside instruments that are
5813         * using the deleted scripts will be removed from the respective instruments
5814         * accordingly.
5815         *
5816         * You have to call Save() to make this persistent to the file.
5817         *
5818         * @param pScriptGroup - script group to delete
5819         * @throws gig::Exception if given script group could not be found
5820         */
5821        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5822            if (!pScriptGroups) LoadScriptGroups();
5823            std::list<ScriptGroup*>::iterator iter =
5824                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5825            if (iter == pScriptGroups->end())
5826                throw gig::Exception("Could not delete script group, could not find given script group");
5827            pScriptGroups->erase(iter);
5828            for (int i = 0; pScriptGroup->GetScript(i); ++i)
5829                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5830            if (pScriptGroup->pList)
5831                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5832            delete pScriptGroup;
5833        }
5834    
5835        void File::LoadScriptGroups() {
5836            if (pScriptGroups) return;
5837            pScriptGroups = new std::list<ScriptGroup*>;
5838            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5839            if (lstLS) {
5840                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5841                     lst = lstLS->GetNextSubList())
5842                {
5843                    if (lst->GetListType() == LIST_TYPE_RTIS) {
5844                        pScriptGroups->push_back(new ScriptGroup(this, lst));
5845                    }
5846                }
5847            }
5848        }
5849    
5850        /**
5851         * Apply all the gig file's current instruments, samples, groups and settings
5852         * to the respective RIFF chunks. You have to call Save() to make changes
5853         * persistent.
5854         *
5855         * Usually there is absolutely no need to call this method explicitly.
5856         * It will be called automatically when File::Save() was called.
5857         *
5858         * @param pProgress - callback function for progress notification
5859         * @throws Exception - on errors
5860         */
5861        void File::UpdateChunks(progress_t* pProgress) {
5862            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5863    
5864            // update own gig format extension chunks
5865            // (not part of the GigaStudio 4 format)
5866            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5867            if (!lst3LS) {
5868                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5869            }
5870            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
5871            // location of <3LS > is irrelevant, however it should be located
5872            // before  the actual wave data
5873            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
5874            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
5875    
5876            // This must be performed before writing the chunks for instruments,
5877            // because the instruments' script slots will write the file offsets
5878            // of the respective instrument script chunk as reference.
5879            if (pScriptGroups) {
5880                // Update instrument script (group) chunks.
5881                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5882                     it != pScriptGroups->end(); ++it)
5883                {
5884                    (*it)->UpdateChunks(pProgress);
5885                }
5886            }
5887    
5888            // in case no libgig custom format data was added, then remove the
5889            // custom "3LS " chunk again
5890            if (!lst3LS->CountSubChunks()) {
5891                pRIFF->DeleteSubChunk(lst3LS);
5892                lst3LS = NULL;
5893            }
5894    
5895            // first update base class's chunks
5896            DLS::File::UpdateChunks(pProgress);
5897    
5898            if (newFile) {
5899                // INFO was added by Resource::UpdateChunks - make sure it
5900                // is placed first in file
5901                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5902                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5903                if (first != info) {
5904                    pRIFF->MoveSubChunk(info, first);
5905                }
5906            }
5907    
5908            // update group's chunks
5909            if (pGroups) {
5910                // make sure '3gri' and '3gnl' list chunks exist
5911                // (before updating the Group chunks)
5912                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5913                if (!_3gri) {
5914                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5915                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5916                }
5917                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5918                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5919    
5920                // v3: make sure the file has 128 3gnm chunks
5921                // (before updating the Group chunks)
5922                if (pVersion && pVersion->major == 3) {
5923                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5924                    for (int i = 0 ; i < 128 ; i++) {
5925                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5926                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5927                    }
5928                }
5929    
5930                std::list<Group*>::iterator iter = pGroups->begin();
5931                std::list<Group*>::iterator end  = pGroups->end();
5932                for (; iter != end; ++iter) {
5933                    (*iter)->UpdateChunks(pProgress);
5934                }
5935            }
5936    
5937            // update einf chunk
5938    
5939            // The einf chunk contains statistics about the gig file, such
5940            // as the number of regions and samples used by each
5941            // instrument. It is divided in equally sized parts, where the
5942            // first part contains information about the whole gig file,
5943            // and the rest of the parts map to each instrument in the
5944            // file.
5945            //
5946            // At the end of each part there is a bit map of each sample
5947            // in the file, where a set bit means that the sample is used
5948            // by the file/instrument.
5949            //
5950            // Note that there are several fields with unknown use. These
5951            // are set to zero.
5952    
5953            int sublen = pSamples->size() / 8 + 49;
5954            int einfSize = (Instruments + 1) * sublen;
5955    
5956            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5957            if (einf) {
5958                if (einf->GetSize() != einfSize) {
5959                    einf->Resize(einfSize);
5960                    memset(einf->LoadChunkData(), 0, einfSize);
5961                }
5962            } else if (newFile) {
5963                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5964            }
5965            if (einf) {
5966                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5967    
5968                std::map<gig::Sample*,int> sampleMap;
5969                int sampleIdx = 0;
5970                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5971                    sampleMap[pSample] = sampleIdx++;
5972                }
5973    
5974                int totnbusedsamples = 0;
5975                int totnbusedchannels = 0;
5976                int totnbregions = 0;
5977                int totnbdimregions = 0;
5978                int totnbloops = 0;
5979                int instrumentIdx = 0;
5980    
5981                memset(&pData[48], 0, sublen - 48);
5982    
5983                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5984                     instrument = GetNextInstrument()) {
5985                    int nbusedsamples = 0;
5986                    int nbusedchannels = 0;
5987                    int nbdimregions = 0;
5988                    int nbloops = 0;
5989    
5990                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5991    
5992                    for (Region* region = instrument->GetFirstRegion() ; region ;
5993                         region = instrument->GetNextRegion()) {
5994                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
5995                            gig::DimensionRegion *d = region->pDimensionRegions[i];
5996                            if (d->pSample) {
5997                                int sampleIdx = sampleMap[d->pSample];
5998                                int byte = 48 + sampleIdx / 8;
5999                                int bit = 1 << (sampleIdx & 7);
6000                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6001                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6002                                    nbusedsamples++;
6003                                    nbusedchannels += d->pSample->Channels;
6004    
6005                                    if ((pData[byte] & bit) == 0) {
6006                                        pData[byte] |= bit;
6007                                        totnbusedsamples++;
6008                                        totnbusedchannels += d->pSample->Channels;
6009                                    }
6010                                }
6011                            }
6012                            if (d->SampleLoops) nbloops++;
6013                        }
6014                        nbdimregions += region->DimensionRegions;
6015                    }
6016                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6017                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6018                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6019                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6020                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6021                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6022                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6023                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6024                    // next 8 bytes unknown
6025                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6026                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6027                    // next 4 bytes unknown
6028    
6029                    totnbregions += instrument->Regions;
6030                    totnbdimregions += nbdimregions;
6031                    totnbloops += nbloops;
6032                    instrumentIdx++;
6033                }
6034                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6035                // store32(&pData[0], sublen);
6036                store32(&pData[4], totnbusedchannels);
6037                store32(&pData[8], totnbusedsamples);
6038                store32(&pData[12], Instruments);
6039                store32(&pData[16], totnbregions);
6040                store32(&pData[20], totnbdimregions);
6041                store32(&pData[24], totnbloops);
6042                // next 8 bytes unknown
6043                // next 4 bytes unknown, not always 0
6044                store32(&pData[40], pSamples->size());
6045                // next 4 bytes unknown
6046            }
6047    
6048            // update 3crc chunk
6049    
6050            // The 3crc chunk contains CRC-32 checksums for the
6051            // samples. The actual checksum values will be filled in
6052            // later, by Sample::Write.
6053    
6054            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6055            if (_3crc) {
6056                _3crc->Resize(pSamples->size() * 8);
6057            } else if (newFile) {
6058                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6059                _3crc->LoadChunkData();
6060    
6061                // the order of einf and 3crc is not the same in v2 and v3
6062                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6063            }
6064        }
6065        
6066        void File::UpdateFileOffsets() {
6067            DLS::File::UpdateFileOffsets();
6068    
6069            for (Instrument* instrument = GetFirstInstrument(); instrument;
6070                 instrument = GetNextInstrument())
6071            {
6072                instrument->UpdateScriptFileOffsets();
6073            }
6074        }
6075    
6076        /**
6077         * Enable / disable automatic loading. By default this properyt is
6078         * enabled and all informations are loaded automatically. However
6079         * loading all Regions, DimensionRegions and especially samples might
6080         * take a long time for large .gig files, and sometimes one might only
6081         * be interested in retrieving very superficial informations like the
6082         * amount of instruments and their names. In this case one might disable
6083         * automatic loading to avoid very slow response times.
6084         *
6085         * @e CAUTION: by disabling this property many pointers (i.e. sample
6086         * references) and informations will have invalid or even undefined
6087         * data! This feature is currently only intended for retrieving very
6088         * superficial informations in a very fast way. Don't use it to retrieve
6089         * details like synthesis informations or even to modify .gig files!
6090         */
6091        void File::SetAutoLoad(bool b) {
6092            bAutoLoad = b;
6093        }
6094    
6095        /**
6096         * Returns whether automatic loading is enabled.
6097         * @see SetAutoLoad()
6098         */
6099        bool File::GetAutoLoad() {
6100            return bAutoLoad;
6101      }      }
6102    
6103    

Legend:
Removed from v.780  
changed lines
  Added in v.2923

  ViewVC Help
Powered by ViewVC