/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 823 by schoenebeck, Fri Dec 23 01:38:50 2005 UTC revision 1099 by schoenebeck, Thu Mar 15 13:57:47 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 51  Line 51 
51    
52  namespace gig {  namespace gig {
53    
 // *************** dimension_def_t ***************  
 // *  
   
     dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {  
         dimension  = arg.dimension;  
         bits       = arg.bits;  
         zones      = arg.zones;  
         split_type = arg.split_type;  
         ranges     = arg.ranges;  
         zone_size  = arg.zone_size;  
         if (ranges) {  
             ranges = new range_t[zones];  
             for (int i = 0; i < zones; i++)  
                 ranges[i] = arg.ranges[i];  
         }  
         return *this;  
     }  
   
   
   
54  // *************** progress_t ***************  // *************** progress_t ***************
55  // *  // *
56    
# Line 131  namespace { Line 111  namespace {
111          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
112      }      }
113    
114        inline void store24(unsigned char* pDst, int x)
115        {
116            pDst[0] = x;
117            pDst[1] = x >> 8;
118            pDst[2] = x >> 16;
119        }
120    
121      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
122                        int srcStep, int dstStep,                        int srcStep, int dstStep,
123                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
# Line 170  namespace { Line 157  namespace {
157      }      }
158    
159      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
160                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
162                        unsigned long copysamples, int truncatedBits)                        unsigned long copysamples, int truncatedBits)
163      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
164          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
165    
166  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
167          y    = get24(params);                   \          y    = get24(params);                   \
# Line 193  namespace { Line 177  namespace {
177    
178  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
179          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
180          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
181          pDst += dstStep          pDst += dstStep
182    
183          switch (compressionmode) {          switch (compressionmode) {
184              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
185                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
186                  while (copysamples) {                  while (copysamples) {
187                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
188                      pDst += dstStep;                      pDst += dstStep;
189                      pSrc += 3;                      pSrc += 3;
190                      copysamples--;                      copysamples--;
# Line 295  namespace { Line 279  namespace {
279       *                         is located, 0 otherwise       *                         is located, 0 otherwise
280       */       */
281      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282            pInfo->UseFixedLengthStrings = true;
283          Instances++;          Instances++;
284          FileNo = fileNo;          FileNo = fileNo;
285    
286          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287          if (pCk3gix) {          if (pCk3gix) {
288              SampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
289                pGroup = pFile->GetGroup(iSampleGroup);
290          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
291              // use default value(s)              // by default assigned to that mandatory "Default Group"
292              SampleGroup = 0;              pGroup = pFile->GetGroup(0);
293          }          }
294    
295          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
# Line 327  namespace { Line 313  namespace {
313              // use default values              // use default values
314              Manufacturer  = 0;              Manufacturer  = 0;
315              Product       = 0;              Product       = 0;
316              SamplePeriod  = 1 / SamplesPerSecond;              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
317              MIDIUnityNote = 64;              MIDIUnityNote = 64;
318              FineTune      = 0;              FineTune      = 0;
319              SMPTEOffset   = 0;              SMPTEOffset   = 0;
# Line 368  namespace { Line 354  namespace {
354          }          }
355          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
356    
357          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
358      }      }
359    
360      /**      /**
# Line 378  namespace { Line 364  namespace {
364       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
365       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
366       *       *
367       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
368       *                        was provided yet       *                        was provided yet
369       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
370       */       */
# Line 391  namespace { Line 377  namespace {
377          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
378          // update 'smpl' chunk          // update 'smpl' chunk
379          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
380          SamplePeriod = 1 / SamplesPerSecond;          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
381          memcpy(&pData[0], &Manufacturer, 4);          memcpy(&pData[0], &Manufacturer, 4);
382          memcpy(&pData[4], &Product, 4);          memcpy(&pData[4], &Product, 4);
383          memcpy(&pData[8], &SamplePeriod, 4);          memcpy(&pData[8], &SamplePeriod, 4);
# Line 413  namespace { Line 399  namespace {
399          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
400          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
401          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
402            // determine appropriate sample group index (to be stored in chunk)
403            uint16_t iSampleGroup = 0; // 0 refers to default sample group
404            File* pFile = static_cast<File*>(pParent);
405            if (pFile->pGroups) {
406                std::list<Group*>::iterator iter = pFile->pGroups->begin();
407                std::list<Group*>::iterator end  = pFile->pGroups->end();
408                for (int i = 0; iter != end; i++, iter++) {
409                    if (*iter == pGroup) {
410                        iSampleGroup = i;
411                        break; // found
412                    }
413                }
414            }
415          // update '3gix' chunk          // update '3gix' chunk
416          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
417          memcpy(&pData[0], &SampleGroup, 2);          memcpy(&pData[0], &iSampleGroup, 2);
418      }      }
419    
420      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 636  namespace { Line 635  namespace {
635       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
636       * current sample's boundary!       * current sample's boundary!
637       *       *
638       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
639       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
640       * other formats will fail!       * other formats will fail!
641       *       *
642       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
643       *                   greater than zero)       *                   greater than zero)
644       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
645       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
646       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
647       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 742  namespace { Line 741  namespace {
741       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
742       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
743       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
744         * @param pDimRgn          dimension region with looping information
745       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
746       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
747       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
748       */       */
749      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
750                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
751          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
752          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
753    
754          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
755    
756          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
757    
758              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
759                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
760    
761                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
762                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
763    
764                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
765                              // determine the end position within the loop first,                          do {
766                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
767                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
768                              // backward playback  
769                                if (!pPlaybackState->reverse) { // forward playback
770                              unsigned long swapareastart       = totalreadsamples;                                  do {
771                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
772                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
773                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
774                                        totalreadsamples += readsamples;
775                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
776                                            pPlaybackState->reverse = true;
777                              // read samples for backward playback                                          break;
778                              do {                                      }
779                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
780                                  samplestoreadinloop -= readsamples;                              }
781                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
782    
783                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
784                                    // determine the end position within the loop first,
785                                    // read forward from that 'end' and finally after
786                                    // reading, swap all sample frames so it reflects
787                                    // backward playback
788    
789                                    unsigned long swapareastart       = totalreadsamples;
790                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
791                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
792                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
793    
794                                    SetPos(reverseplaybackend);
795    
796                                    // read samples for backward playback
797                                    do {
798                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
799                                        samplestoreadinloop -= readsamples;
800                                        samplestoread       -= readsamples;
801                                        totalreadsamples    += readsamples;
802                                    } while (samplestoreadinloop && readsamples);
803    
804                                    SetPos(reverseplaybackend); // pretend we really read backwards
805    
806                                    if (reverseplaybackend == loop.LoopStart) {
807                                        pPlaybackState->loop_cycles_left--;
808                                        pPlaybackState->reverse = false;
809                                    }
810    
811                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
812                                  pPlaybackState->loop_cycles_left--;                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
                                 pPlaybackState->reverse = false;  
813                              }                              }
814                            } while (samplestoread && readsamples);
815                            break;
816                        }
817    
818                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
819                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
820                          }                          if (!pPlaybackState->reverse) do {
821                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
822                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
823                  }                              samplestoread    -= readsamples;
824                                totalreadsamples += readsamples;
825                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
826                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
827                      if (!pPlaybackState->reverse) do {                                  break;
828                          samplestoloopend  = this->LoopEnd - GetPos();                              }
829                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
830    
831                      if (!samplestoread) break;                          if (!samplestoread) break;
832    
833                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
834                      // determine the end position within the loop first,                          // determine the end position within the loop first,
835                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
836                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
837                      // backward playback                          // backward playback
838    
839                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
840                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
841                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
842                                                                                : samplestoread;                                                                                    : samplestoread;
843                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
844    
845                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
846    
847                      // read samples for backward playback                          // read samples for backward playback
848                      do {                          do {
849                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
850                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
851                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
852                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
853                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
854                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
855                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
856                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
857                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
858                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
859                          }                              }
860                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
861    
862                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
863    
864                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
865                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866                      break;                          break;
867                  }                      }
868    
869                  default: case loop_type_normal: {                      default: case loop_type_normal: {
870                      do {                          do {
871                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
872                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
873                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
874                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
875                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
876                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
877                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
878                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
879                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
880                          }                              }
881                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
882                      break;                          break;
883                        }
884                  }                  }
885              }              }
886          }          }
# Line 904  namespace { Line 910  namespace {
910       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
911       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
912       *       *
913         * For 16 bit samples, the data in the buffer will be int16_t
914         * (using native endianness). For 24 bit, the buffer will
915         * contain three bytes per sample, little-endian.
916         *
917       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
918       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
919       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
# Line 914  namespace { Line 924  namespace {
924          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
925          if (!Compressed) {          if (!Compressed) {
926              if (BitDepth == 24) {              if (BitDepth == 24) {
927                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
928              }              }
929              else { // 16 bit              else { // 16 bit
930                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 964  namespace { Line 954  namespace {
954    
955              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
956              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
957                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
958              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
959    
960              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
# Line 1045  namespace { Line 1036  namespace {
1036                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1037                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1038    
1039                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1040                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1041                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1042                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1043                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1044                          }                          }
1045                          else { // Mono                          else { // Mono
1046                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1047                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1048                              pDst += copysamples;                              pDst24 += copysamples * 3;
1049                          }                          }
1050                      }                      }
1051                      else { // 16 bit                      else { // 16 bit
# Line 1161  namespace { Line 1152  namespace {
1152          }          }
1153      }      }
1154    
1155        /**
1156         * Returns pointer to the Group this Sample belongs to. In the .gig
1157         * format a sample always belongs to one group. If it wasn't explicitly
1158         * assigned to a certain group, it will be automatically assigned to a
1159         * default group.
1160         *
1161         * @returns Sample's Group (never NULL)
1162         */
1163        Group* Sample::GetGroup() const {
1164            return pGroup;
1165        }
1166    
1167      Sample::~Sample() {      Sample::~Sample() {
1168          Instances--;          Instances--;
1169          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1190  namespace { Line 1193  namespace {
1193    
1194          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1195          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1196              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1197              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
# Line 1335  namespace { Line 1338  namespace {
1338                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1339                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1340              }              }
1341                if (_3ewa->RemainingBytes() >= 8) {
1342                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1343                } else {
1344                    memset(DimensionUpperLimits, 0, 8);
1345                }
1346          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1347              // use default values              // use default values
1348              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1415  namespace { Line 1423  namespace {
1423              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1424              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1425              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1426                memset(DimensionUpperLimits, 0, 8);
1427          }          }
1428    
1429          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1449  namespace { Line 1458  namespace {
1458                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1459    
1460          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1461            VelocityTable = 0;
1462      }      }
1463    
1464      /**      /**
# Line 1469  namespace { Line 1479  namespace {
1479    
1480          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1481    
1482          const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?          const uint32_t chunksize = _3ewa->GetSize();
1483          memcpy(&pData[0], &unknown, 4);          memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?
1484    
1485          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1486          memcpy(&pData[4], &lfo3freq, 4);          memcpy(&pData[4], &lfo3freq, 4);
1487    
1488          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1489          memcpy(&pData[4], &eg3attack, 4);          memcpy(&pData[8], &eg3attack, 4);
1490    
1491          // next 2 bytes unknown          // next 2 bytes unknown
1492    
1493          memcpy(&pData[10], &LFO1InternalDepth, 2);          memcpy(&pData[14], &LFO1InternalDepth, 2);
1494    
1495          // next 2 bytes unknown          // next 2 bytes unknown
1496    
1497          memcpy(&pData[14], &LFO3InternalDepth, 2);          memcpy(&pData[18], &LFO3InternalDepth, 2);
1498    
1499          // next 2 bytes unknown          // next 2 bytes unknown
1500    
1501          memcpy(&pData[18], &LFO1ControlDepth, 2);          memcpy(&pData[22], &LFO1ControlDepth, 2);
1502    
1503          // next 2 bytes unknown          // next 2 bytes unknown
1504    
1505          memcpy(&pData[22], &LFO3ControlDepth, 2);          memcpy(&pData[26], &LFO3ControlDepth, 2);
1506    
1507          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1508          memcpy(&pData[24], &eg1attack, 4);          memcpy(&pData[28], &eg1attack, 4);
1509    
1510          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1511          memcpy(&pData[28], &eg1decay1, 4);          memcpy(&pData[32], &eg1decay1, 4);
1512    
1513          // next 2 bytes unknown          // next 2 bytes unknown
1514    
1515          memcpy(&pData[34], &EG1Sustain, 2);          memcpy(&pData[38], &EG1Sustain, 2);
1516    
1517          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1518          memcpy(&pData[36], &eg1release, 4);          memcpy(&pData[40], &eg1release, 4);
1519    
1520          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1521          memcpy(&pData[40], &eg1ctl, 1);          memcpy(&pData[44], &eg1ctl, 1);
1522    
1523          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1524              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1525              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1526              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1527              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1528          memcpy(&pData[41], &eg1ctrloptions, 1);          memcpy(&pData[45], &eg1ctrloptions, 1);
1529    
1530          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1531          memcpy(&pData[42], &eg2ctl, 1);          memcpy(&pData[46], &eg2ctl, 1);
1532    
1533          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1534              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1535              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1536              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1537              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1538          memcpy(&pData[43], &eg2ctrloptions, 1);          memcpy(&pData[47], &eg2ctrloptions, 1);
1539    
1540          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1541          memcpy(&pData[44], &lfo1freq, 4);          memcpy(&pData[48], &lfo1freq, 4);
1542    
1543          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1544          memcpy(&pData[48], &eg2attack, 4);          memcpy(&pData[52], &eg2attack, 4);
1545    
1546          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1547          memcpy(&pData[52], &eg2decay1, 4);          memcpy(&pData[56], &eg2decay1, 4);
1548    
1549          // next 2 bytes unknown          // next 2 bytes unknown
1550    
1551          memcpy(&pData[58], &EG2Sustain, 2);          memcpy(&pData[62], &EG2Sustain, 2);
1552    
1553          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1554          memcpy(&pData[60], &eg2release, 4);          memcpy(&pData[64], &eg2release, 4);
1555    
1556          // next 2 bytes unknown          // next 2 bytes unknown
1557    
1558          memcpy(&pData[66], &LFO2ControlDepth, 2);          memcpy(&pData[70], &LFO2ControlDepth, 2);
1559    
1560          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1561          memcpy(&pData[68], &lfo2freq, 4);          memcpy(&pData[72], &lfo2freq, 4);
1562    
1563          // next 2 bytes unknown          // next 2 bytes unknown
1564    
1565          memcpy(&pData[72], &LFO2InternalDepth, 2);          memcpy(&pData[78], &LFO2InternalDepth, 2);
1566    
1567          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1568          memcpy(&pData[74], &eg1decay2, 4);          memcpy(&pData[80], &eg1decay2, 4);
1569    
1570          // next 2 bytes unknown          // next 2 bytes unknown
1571    
1572          memcpy(&pData[80], &EG1PreAttack, 2);          memcpy(&pData[86], &EG1PreAttack, 2);
1573    
1574          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1575          memcpy(&pData[82], &eg2decay2, 4);          memcpy(&pData[88], &eg2decay2, 4);
1576    
1577          // next 2 bytes unknown          // next 2 bytes unknown
1578    
1579          memcpy(&pData[88], &EG2PreAttack, 2);          memcpy(&pData[94], &EG2PreAttack, 2);
1580    
1581          {          {
1582              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1584  namespace { Line 1594  namespace {
1594                  default:                  default:
1595                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1596              }              }
1597              memcpy(&pData[90], &velocityresponse, 1);              memcpy(&pData[96], &velocityresponse, 1);
1598          }          }
1599    
1600          {          {
# Line 1603  namespace { Line 1613  namespace {
1613                  default:                  default:
1614                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1615              }              }
1616              memcpy(&pData[91], &releasevelocityresponse, 1);              memcpy(&pData[97], &releasevelocityresponse, 1);
1617          }          }
1618    
1619          memcpy(&pData[92], &VelocityResponseCurveScaling, 1);          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1620    
1621          memcpy(&pData[93], &AttenuationControllerThreshold, 1);          memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1622    
1623          // next 4 bytes unknown          // next 4 bytes unknown
1624    
1625          memcpy(&pData[98], &SampleStartOffset, 2);          memcpy(&pData[104], &SampleStartOffset, 2);
1626    
1627          // next 2 bytes unknown          // next 2 bytes unknown
1628    
# Line 1631  namespace { Line 1641  namespace {
1641                  default:                  default:
1642                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1643              }              }
1644              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1645          }          }
1646    
1647          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1648          memcpy(&pData[103], &pan, 1);          memcpy(&pData[109], &pan, 1);
1649    
1650          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1651          memcpy(&pData[104], &selfmask, 1);          memcpy(&pData[110], &selfmask, 1);
1652    
1653          // next byte unknown          // next byte unknown
1654    
# Line 1647  namespace { Line 1657  namespace {
1657              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1658              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1659              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1660              memcpy(&pData[106], &lfo3ctrl, 1);              memcpy(&pData[112], &lfo3ctrl, 1);
1661          }          }
1662    
1663          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1664          memcpy(&pData[107], &attenctl, 1);          memcpy(&pData[113], &attenctl, 1);
1665    
1666          {          {
1667              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1668              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1669              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1670              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1671              memcpy(&pData[108], &lfo2ctrl, 1);              memcpy(&pData[114], &lfo2ctrl, 1);
1672          }          }
1673    
1674          {          {
# Line 1667  namespace { Line 1677  namespace {
1677              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1678              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1679                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1680              memcpy(&pData[109], &lfo1ctrl, 1);              memcpy(&pData[115], &lfo1ctrl, 1);
1681          }          }
1682    
1683          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1684                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1685          memcpy(&pData[110], &eg3depth, 1);          memcpy(&pData[116], &eg3depth, 1);
1686    
1687          // next 2 bytes unknown          // next 2 bytes unknown
1688    
1689          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1690          memcpy(&pData[113], &channeloffset, 1);          memcpy(&pData[120], &channeloffset, 1);
1691    
1692          {          {
1693              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1694              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1695              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1696              memcpy(&pData[114], &regoptions, 1);              memcpy(&pData[121], &regoptions, 1);
1697          }          }
1698    
1699          // next 2 bytes unknown          // next 2 bytes unknown
1700    
1701          memcpy(&pData[117], &VelocityUpperLimit, 1);          memcpy(&pData[124], &VelocityUpperLimit, 1);
1702    
1703          // next 3 bytes unknown          // next 3 bytes unknown
1704    
1705          memcpy(&pData[121], &ReleaseTriggerDecay, 1);          memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1706    
1707          // next 2 bytes unknown          // next 2 bytes unknown
1708    
1709          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1710          memcpy(&pData[124], &eg1hold, 1);          memcpy(&pData[131], &eg1hold, 1);
1711    
1712          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1713                                    (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1714          memcpy(&pData[125], &vcfcutoff, 1);          memcpy(&pData[132], &vcfcutoff, 1);
1715    
1716          memcpy(&pData[126], &VCFCutoffController, 1);          memcpy(&pData[133], &VCFCutoffController, 1);
1717    
1718          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1719                                      (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1720          memcpy(&pData[127], &vcfvelscale, 1);          memcpy(&pData[134], &vcfvelscale, 1);
1721    
1722          // next byte unknown          // next byte unknown
1723    
1724          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1725                                       (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1726          memcpy(&pData[129], &vcfresonance, 1);          memcpy(&pData[136], &vcfresonance, 1);
1727    
1728          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1729                                        (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1730          memcpy(&pData[130], &vcfbreakpoint, 1);          memcpy(&pData[137], &vcfbreakpoint, 1);
1731    
1732          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1733                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1734          memcpy(&pData[131], &vcfvelocity, 1);          memcpy(&pData[138], &vcfvelocity, 1);
1735    
1736          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1737          memcpy(&pData[132], &vcftype, 1);          memcpy(&pData[139], &vcftype, 1);
1738    
1739            if (chunksize >= 148) {
1740                memcpy(&pData[140], DimensionUpperLimits, 8);
1741            }
1742      }      }
1743    
1744      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1968  namespace { Line 1982  namespace {
1982              delete pVelocityTables;              delete pVelocityTables;
1983              pVelocityTables = NULL;              pVelocityTables = NULL;
1984          }          }
1985            if (VelocityTable) delete[] VelocityTable;
1986      }      }
1987    
1988      /**      /**
# Line 2065  namespace { Line 2080  namespace {
2080  // *  // *
2081    
2082      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2083            pInfo->UseFixedLengthStrings = true;
2084    
2085          // Initialization          // Initialization
2086          Dimensions = 0;          Dimensions = 0;
2087          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2092  namespace { Line 2109  namespace {
2109                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2110                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2111                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2112                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2113                  }                  }
2114                  else { // active dimension                  else { // active dimension
# Line 2102  namespace { Line 2118  namespace {
2118                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2119                                                             dimension == dimension_samplechannel ||                                                             dimension == dimension_samplechannel ||
2120                                                             dimension == dimension_releasetrigger ||                                                             dimension == dimension_releasetrigger ||
2121                                                               dimension == dimension_keyboard ||
2122                                                             dimension == dimension_roundrobin ||                                                             dimension == dimension_roundrobin ||
2123                                                             dimension == dimension_random) ? split_type_bit                                                             dimension == dimension_random ||
2124                                                                                            : split_type_normal;                                                             dimension == dimension_smartmidi ||
2125                      pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point                                                             dimension == dimension_roundrobinkeyboard) ? split_type_bit
2126                                                                                                          : split_type_normal;
2127                      pDimensionDefinitions[i].zone_size  =                      pDimensionDefinitions[i].zone_size  =
2128                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones                          (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2129                                                                                     : 0;                                                                                     : 0;
# Line 2116  namespace { Line 2134  namespace {
2134                  }                  }
2135                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2136              }              }
2137                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2138    
2139              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2140              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2141                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         UpdateVelocityTable(pDimDef);  
                     }  
                 }  
             }  
2142    
2143              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2144              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2145                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2146              else              else
# Line 2144  namespace { Line 2149  namespace {
2149              // load sample references              // load sample references
2150              for (uint i = 0; i < DimensionRegions; i++) {              for (uint i = 0; i < DimensionRegions; i++) {
2151                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  uint32_t wavepoolindex = _3lnk->ReadUint32();
2152                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2153              }              }
2154                GetSample(); // load global region sample reference
2155          }          }
2156    
2157          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2189  namespace { Line 2195  namespace {
2195    
2196          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2197          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2198            memcpy(&pData[0], &DimensionRegions, 4);
2199          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2200              pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2201              pData[i * 8 + 1] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2202              // next 2 bytes unknown              // next 2 bytes unknown
2203              pData[i * 8 + 4] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2204              // next 3 bytes unknown              // next 3 bytes unknown
2205          }          }
2206    
# Line 2233  namespace { Line 2240  namespace {
2240          }          }
2241      }      }
2242    
2243      void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {      void Region::UpdateVelocityTable() {
2244          // get dimension's index          // get velocity dimension's index
2245          int iDimensionNr = -1;          int veldim = -1;
2246          for (int i = 0; i < Dimensions; i++) {          for (int i = 0 ; i < Dimensions ; i++) {
2247              if (&pDimensionDefinitions[i] == pDimDef) {              if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2248                  iDimensionNr = i;                  veldim = i;
2249                  break;                  break;
2250              }              }
2251          }          }
2252          if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");          if (veldim == -1) return;
2253    
2254            int step = 1;
2255            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2256            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2257            int end = step * pDimensionDefinitions[veldim].zones;
2258    
2259            // loop through all dimension regions for all dimensions except the velocity dimension
2260            int dim[8] = { 0 };
2261            for (int i = 0 ; i < DimensionRegions ; i++) {
2262    
2263                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2264                    pDimensionRegions[i]->VelocityUpperLimit) {
2265                    // create the velocity table
2266                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
2267                    if (!table) {
2268                        table = new uint8_t[128];
2269                        pDimensionRegions[i]->VelocityTable = table;
2270                    }
2271                    int tableidx = 0;
2272                    int velocityZone = 0;
2273                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2274                        for (int k = i ; k < end ; k += step) {
2275                            DimensionRegion *d = pDimensionRegions[k];
2276                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2277                            velocityZone++;
2278                        }
2279                    } else { // gig2
2280                        for (int k = i ; k < end ; k += step) {
2281                            DimensionRegion *d = pDimensionRegions[k];
2282                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2283                            velocityZone++;
2284                        }
2285                    }
2286                } else {
2287                    if (pDimensionRegions[i]->VelocityTable) {
2288                        delete[] pDimensionRegions[i]->VelocityTable;
2289                        pDimensionRegions[i]->VelocityTable = 0;
2290                    }
2291                }
2292    
2293          uint8_t bits[8] = { 0 };              int j;
2294          int previousUpperLimit = -1;              int shift = 0;
2295          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {              for (j = 0 ; j < Dimensions ; j++) {
2296              bits[iDimensionNr] = velocityZone;                  if (j == veldim) i += skipveldim; // skip velocity dimension
2297              DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);                  else {
2298                        dim[j]++;
2299              pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;                      if (dim[j] < pDimensionDefinitions[j].zones) break;
2300              pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;                      else {
2301              previousUpperLimit = pDimDef->ranges[velocityZone].high;                          // skip unused dimension regions
2302              // fill velocity table                          dim[j] = 0;
2303              for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {                          i += ((1 << pDimensionDefinitions[j].bits) -
2304                  VelocityTable[i] = velocityZone;                                pDimensionDefinitions[j].zones) << shift;
2305                        }
2306                    }
2307                    shift += pDimensionDefinitions[j].bits;
2308              }              }
2309                if (j == Dimensions) break;
2310          }          }
2311      }      }
2312    
# Line 2311  namespace { Line 2361  namespace {
2361          // if this is a layer dimension, update 'Layers' attribute          // if this is a layer dimension, update 'Layers' attribute
2362          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2363    
2364          // if this is velocity dimension and got custom defined ranges, update velocity table          UpdateVelocityTable();
         if (pDimDef->dimension  == dimension_velocity &&  
             pDimDef->split_type == split_type_customvelocity) {  
             UpdateVelocityTable(pDimDef);  
         }  
2365      }      }
2366    
2367      /** @brief Delete an existing dimension.      /** @brief Delete an existing dimension.
# Line 2385  namespace { Line 2431  namespace {
2431          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2432          pDimensionDefinitions[Dimensions - 1].bits      = 0;          pDimensionDefinitions[Dimensions - 1].bits      = 0;
2433          pDimensionDefinitions[Dimensions - 1].zones     = 0;          pDimensionDefinitions[Dimensions - 1].zones     = 0;
         if (pDimensionDefinitions[Dimensions - 1].ranges) {  
             delete[] pDimensionDefinitions[Dimensions - 1].ranges;  
             pDimensionDefinitions[Dimensions - 1].ranges = NULL;  
         }  
2434    
2435          Dimensions--;          Dimensions--;
2436    
# Line 2397  namespace { Line 2439  namespace {
2439      }      }
2440    
2441      Region::~Region() {      Region::~Region() {
         for (uint i = 0; i < Dimensions; i++) {  
             if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;  
         }  
2442          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
2443              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
2444          }          }
# Line 2424  namespace { Line 2463  namespace {
2463       * @see             Dimensions       * @see             Dimensions
2464       */       */
2465      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2466          uint8_t bits[8] = { 0 };          uint8_t bits;
2467            int veldim = -1;
2468            int velbitpos;
2469            int bitpos = 0;
2470            int dimregidx = 0;
2471          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
2472              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2473              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
2474                  case split_type_normal:                  veldim = i;
2475                      bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);                  velbitpos = bitpos;
2476                      break;              } else {
2477                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
2478                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
2479                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2480                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2481                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2482                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2483                      break;                              }
2484                            } else {
2485                                // gig2: evenly sized zones
2486                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2487                            }
2488                            break;
2489                        case split_type_bit: // the value is already the sought dimension bit number
2490                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2491                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2492                            break;
2493                    }
2494                    dimregidx |= bits << bitpos;
2495              }              }
2496                bitpos += pDimensionDefinitions[i].bits;
2497            }
2498            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2499            if (veldim != -1) {
2500                // (dimreg is now the dimension region for the lowest velocity)
2501                if (dimreg->VelocityTable) // custom defined zone ranges
2502                    bits = dimreg->VelocityTable[DimValues[veldim]];
2503                else // normal split type
2504                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2505    
2506                dimregidx |= bits << velbitpos;
2507                dimreg = pDimensionRegions[dimregidx];
2508          }          }
2509          return GetDimensionRegionByBit(bits);          return dimreg;
2510      }      }
2511    
2512      /**      /**
# Line 2480  namespace { Line 2546  namespace {
2546      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2547          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
2548          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
2549            if (!file->pWavePoolTable) return NULL;
2550          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2551          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2552          Sample* sample = file->GetFirstSample(pProgress);          Sample* sample = file->GetFirstSample(pProgress);
2553          while (sample) {          while (sample) {
2554              if (sample->ulWavePoolOffset == soughtoffset &&              if (sample->ulWavePoolOffset == soughtoffset &&
2555                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2556              sample = file->GetNextSample();              sample = file->GetNextSample();
2557          }          }
2558          return NULL;          return NULL;
# Line 2497  namespace { Line 2564  namespace {
2564  // *  // *
2565    
2566      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2567            pInfo->UseFixedLengthStrings = true;
2568    
2569          // Initialization          // Initialization
2570          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2571    
# Line 2655  namespace { Line 2724  namespace {
2724    
2725    
2726    
2727    // *************** Group ***************
2728    // *
2729    
2730        /** @brief Constructor.
2731         *
2732         * @param file   - pointer to the gig::File object
2733         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2734         *                 NULL if this is a new Group
2735         */
2736        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2737            pFile      = file;
2738            pNameChunk = ck3gnm;
2739            ::LoadString(pNameChunk, Name);
2740        }
2741    
2742        Group::~Group() {
2743            // remove the chunk associated with this group (if any)
2744            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2745        }
2746    
2747        /** @brief Update chunks with current group settings.
2748         *
2749         * Apply current Group field values to the respective chunks. You have
2750         * to call File::Save() to make changes persistent.
2751         *
2752         * Usually there is absolutely no need to call this method explicitly.
2753         * It will be called automatically when File::Save() was called.
2754         */
2755        void Group::UpdateChunks() {
2756            // make sure <3gri> and <3gnl> list chunks exist
2757            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2758            if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2759            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2760            if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);
2761            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2762            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2763        }
2764    
2765        /**
2766         * Returns the first Sample of this Group. You have to call this method
2767         * once before you use GetNextSample().
2768         *
2769         * <b>Notice:</b> this method might block for a long time, in case the
2770         * samples of this .gig file were not scanned yet
2771         *
2772         * @returns  pointer address to first Sample or NULL if there is none
2773         *           applied to this Group
2774         * @see      GetNextSample()
2775         */
2776        Sample* Group::GetFirstSample() {
2777            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2778            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2779                if (pSample->GetGroup() == this) return pSample;
2780            }
2781            return NULL;
2782        }
2783    
2784        /**
2785         * Returns the next Sample of the Group. You have to call
2786         * GetFirstSample() once before you can use this method. By calling this
2787         * method multiple times it iterates through the Samples assigned to
2788         * this Group.
2789         *
2790         * @returns  pointer address to the next Sample of this Group or NULL if
2791         *           end reached
2792         * @see      GetFirstSample()
2793         */
2794        Sample* Group::GetNextSample() {
2795            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2796            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2797                if (pSample->GetGroup() == this) return pSample;
2798            }
2799            return NULL;
2800        }
2801    
2802        /**
2803         * Move Sample given by \a pSample from another Group to this Group.
2804         */
2805        void Group::AddSample(Sample* pSample) {
2806            pSample->pGroup = this;
2807        }
2808    
2809        /**
2810         * Move all members of this group to another group (preferably the 1st
2811         * one except this). This method is called explicitly by
2812         * File::DeleteGroup() thus when a Group was deleted. This code was
2813         * intentionally not placed in the destructor!
2814         */
2815        void Group::MoveAll() {
2816            // get "that" other group first
2817            Group* pOtherGroup = NULL;
2818            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2819                if (pOtherGroup != this) break;
2820            }
2821            if (!pOtherGroup) throw Exception(
2822                "Could not move samples to another group, since there is no "
2823                "other Group. This is a bug, report it!"
2824            );
2825            // now move all samples of this group to the other group
2826            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2827                pOtherGroup->AddSample(pSample);
2828            }
2829        }
2830    
2831    
2832    
2833  // *************** File ***************  // *************** File ***************
2834  // *  // *
2835    
2836      File::File() : DLS::File() {      File::File() : DLS::File() {
2837            pGroups = NULL;
2838            pInfo->UseFixedLengthStrings = true;
2839      }      }
2840    
2841      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2842            pGroups = NULL;
2843            pInfo->UseFixedLengthStrings = true;
2844      }      }
2845    
2846      File::~File() {      File::~File() {
2847          // free extension files          if (pGroups) {
2848          for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)              std::list<Group*>::iterator iter = pGroups->begin();
2849              delete *i;              std::list<Group*>::iterator end  = pGroups->end();
2850                while (iter != end) {
2851                    delete *iter;
2852                    ++iter;
2853                }
2854                delete pGroups;
2855            }
2856      }      }
2857    
2858      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2713  namespace { Line 2898  namespace {
2898          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2899          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2900          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2901            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2902          pSamples->erase(iter);          pSamples->erase(iter);
2903          delete pSample;          delete pSample;
2904      }      }
# Line 2722  namespace { Line 2908  namespace {
2908      }      }
2909    
2910      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
2911            // Groups must be loaded before samples, because samples will try
2912            // to resolve the group they belong to
2913            LoadGroups();
2914    
2915          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
2916    
2917          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
# Line 2845  namespace { Line 3035  namespace {
3035       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3036       *       *
3037       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3038       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3039       */       */
3040      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3041          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 2885  namespace { Line 3075  namespace {
3075          }          }
3076      }      }
3077    
3078        Group* File::GetFirstGroup() {
3079            if (!pGroups) LoadGroups();
3080            // there must always be at least one group
3081            GroupsIterator = pGroups->begin();
3082            return *GroupsIterator;
3083        }
3084    
3085        Group* File::GetNextGroup() {
3086            if (!pGroups) return NULL;
3087            ++GroupsIterator;
3088            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3089        }
3090    
3091        /**
3092         * Returns the group with the given index.
3093         *
3094         * @param index - number of the sought group (0..n)
3095         * @returns sought group or NULL if there's no such group
3096         */
3097        Group* File::GetGroup(uint index) {
3098            if (!pGroups) LoadGroups();
3099            GroupsIterator = pGroups->begin();
3100            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3101                if (i == index) return *GroupsIterator;
3102                ++GroupsIterator;
3103            }
3104            return NULL;
3105        }
3106    
3107        Group* File::AddGroup() {
3108            if (!pGroups) LoadGroups();
3109            // there must always be at least one group
3110            __ensureMandatoryChunksExist();
3111            Group* pGroup = new Group(this, NULL);
3112            pGroups->push_back(pGroup);
3113            return pGroup;
3114        }
3115    
3116        /** @brief Delete a group and its samples.
3117         *
3118         * This will delete the given Group object and all the samples that
3119         * belong to this group from the gig file. You have to call Save() to
3120         * make this persistent to the file.
3121         *
3122         * @param pGroup - group to delete
3123         * @throws gig::Exception if given group could not be found
3124         */
3125        void File::DeleteGroup(Group* pGroup) {
3126            if (!pGroups) LoadGroups();
3127            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3128            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3129            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3130            // delete all members of this group
3131            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3132                DeleteSample(pSample);
3133            }
3134            // now delete this group object
3135            pGroups->erase(iter);
3136            delete pGroup;
3137        }
3138    
3139        /** @brief Delete a group.
3140         *
3141         * This will delete the given Group object from the gig file. All the
3142         * samples that belong to this group will not be deleted, but instead
3143         * be moved to another group. You have to call Save() to make this
3144         * persistent to the file.
3145         *
3146         * @param pGroup - group to delete
3147         * @throws gig::Exception if given group could not be found
3148         */
3149        void File::DeleteGroupOnly(Group* pGroup) {
3150            if (!pGroups) LoadGroups();
3151            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3152            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3153            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3154            // move all members of this group to another group
3155            pGroup->MoveAll();
3156            pGroups->erase(iter);
3157            delete pGroup;
3158        }
3159    
3160        void File::LoadGroups() {
3161            if (!pGroups) pGroups = new std::list<Group*>;
3162            // try to read defined groups from file
3163            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3164            if (lst3gri) {
3165                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3166                if (lst3gnl) {
3167                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3168                    while (ck) {
3169                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3170                            pGroups->push_back(new Group(this, ck));
3171                        }
3172                        ck = lst3gnl->GetNextSubChunk();
3173                    }
3174                }
3175            }
3176            // if there were no group(s), create at least the mandatory default group
3177            if (!pGroups->size()) {
3178                Group* pGroup = new Group(this, NULL);
3179                pGroup->Name = "Default Group";
3180                pGroups->push_back(pGroup);
3181            }
3182        }
3183    
3184        /**
3185         * Apply all the gig file's current instruments, samples, groups and settings
3186         * to the respective RIFF chunks. You have to call Save() to make changes
3187         * persistent.
3188         *
3189         * Usually there is absolutely no need to call this method explicitly.
3190         * It will be called automatically when File::Save() was called.
3191         *
3192         * @throws Exception - on errors
3193         */
3194        void File::UpdateChunks() {
3195            // first update base class's chunks
3196            DLS::File::UpdateChunks();
3197    
3198            // update group's chunks
3199            if (pGroups) {
3200                std::list<Group*>::iterator iter = pGroups->begin();
3201                std::list<Group*>::iterator end  = pGroups->end();
3202                for (; iter != end; ++iter) {
3203                    (*iter)->UpdateChunks();
3204                }
3205            }
3206        }
3207    
3208    
3209    
3210  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.823  
changed lines
  Added in v.1099

  ViewVC Help
Powered by ViewVC