/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 930 by schoenebeck, Sun Oct 29 17:57:20 2006 UTC revision 1199 by persson, Sun May 20 10:11:39 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2006 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 254  namespace { Line 254  namespace {
254  }  }
255    
256    
257    
258    // *************** Other Internal functions  ***************
259    // *
260    
261        static split_type_t __resolveSplitType(dimension_t dimension) {
262            return (
263                dimension == dimension_layer ||
264                dimension == dimension_samplechannel ||
265                dimension == dimension_releasetrigger ||
266                dimension == dimension_keyboard ||
267                dimension == dimension_roundrobin ||
268                dimension == dimension_random ||
269                dimension == dimension_smartmidi ||
270                dimension == dimension_roundrobinkeyboard
271            ) ? split_type_bit : split_type_normal;
272        }
273    
274        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275            return (dimension_definition.split_type == split_type_normal)
276            ? int(128.0 / dimension_definition.zones) : 0;
277        }
278    
279    
280    
281    // *************** CRC ***************
282    // *
283    
284        const uint32_t* CRC::table(initTable());
285    
286        uint32_t* CRC::initTable() {
287            uint32_t* res = new uint32_t[256];
288    
289            for (int i = 0 ; i < 256 ; i++) {
290                uint32_t c = i;
291                for (int j = 0 ; j < 8 ; j++) {
292                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293                }
294                res[i] = c;
295            }
296            return res;
297        }
298    
299    
300    
301  // *************** Sample ***************  // *************** Sample ***************
302  // *  // *
303    
# Line 279  namespace { Line 323  namespace {
323       *                         is located, 0 otherwise       *                         is located, 0 otherwise
324       */       */
325      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327                { CHUNK_ID_INAM, 64 },
328                { 0, 0 }
329            };
330            pInfo->FixedStringLengths = fixedStringLengths;
331          Instances++;          Instances++;
332          FileNo = fileNo;          FileNo = fileNo;
333    
# Line 316  namespace { Line 364  namespace {
364              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365              MIDIUnityNote = 64;              MIDIUnityNote = 64;
366              FineTune      = 0;              FineTune      = 0;
367                SMPTEFormat   = smpte_format_no_offset;
368              SMPTEOffset   = 0;              SMPTEOffset   = 0;
369              Loops         = 0;              Loops         = 0;
370              LoopID        = 0;              LoopID        = 0;
371                LoopType      = loop_type_normal;
372              LoopStart     = 0;              LoopStart     = 0;
373              LoopEnd       = 0;              LoopEnd       = 0;
374              LoopFraction  = 0;              LoopFraction  = 0;
# Line 364  namespace { Line 414  namespace {
414       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
415       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
416       *       *
417       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418       *                        was provided yet       *                        was provided yet
419       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
420       */       */
# Line 374  namespace { Line 424  namespace {
424    
425          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
426          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
428                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429                memset(pCkSmpl->LoadChunkData(), 0, 60);
430            }
431          // update 'smpl' chunk          // update 'smpl' chunk
432          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
435          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
436          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
437          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
438          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
439          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
440          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
441          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
442    
443          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
444    
445          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
446          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
447          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
448          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
449          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
450          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
451    
452          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
453          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 467  namespace {
467          }          }
468          // update '3gix' chunk          // update '3gix' chunk
469          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
470          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
471      }      }
472    
473      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 635  namespace { Line 688  namespace {
688       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
689       * current sample's boundary!       * current sample's boundary!
690       *       *
691       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693       * other formats will fail!       * other formats will fail!
694       *       *
695       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
696       *                   greater than zero)       *                   greater than zero)
697       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
699       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
700       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 1107  namespace { Line 1160  namespace {
1160       */       */
1161      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163          return DLS::Sample::Write(pBuffer, SampleCount);          if (pCkData->GetPos() == 0) {
1164                crc.reset();
1165            }
1166            unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1167            crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1168    
1169            if (pCkData->GetPos() == pCkData->GetSize()) {
1170                File* pFile = static_cast<File*>(GetParent());
1171                pFile->SetSampleChecksum(this, crc.getValue());
1172            }
1173            return res;
1174      }      }
1175    
1176      /**      /**
# Line 1338  namespace { Line 1401  namespace {
1401                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1402                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1403              }              }
1404                if (_3ewa->RemainingBytes() >= 8) {
1405                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1406                } else {
1407                    memset(DimensionUpperLimits, 0, 8);
1408                }
1409          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1410              // use default values              // use default values
1411              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1418  namespace { Line 1486  namespace {
1486              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1487              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1488              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1489                memset(DimensionUpperLimits, 0, 8);
1490          }          }
1491    
1492          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
# Line 1473  namespace { Line 1542  namespace {
1542    
1543          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1544    
1545          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = _3ewa->GetNewSize();
1546          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1547    
1548          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1549          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1550    
1551          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1552          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
1553    
1554          // next 2 bytes unknown          // next 2 bytes unknown
1555    
1556          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1557    
1558          // next 2 bytes unknown          // next 2 bytes unknown
1559    
1560          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1561    
1562          // next 2 bytes unknown          // next 2 bytes unknown
1563    
1564          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1565    
1566          // next 2 bytes unknown          // next 2 bytes unknown
1567    
1568          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1569    
1570          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1571          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
1572    
1573          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1574          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1575    
1576          // next 2 bytes unknown          // next 2 bytes unknown
1577    
1578          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1579    
1580          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1581          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
1582    
1583          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1584          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
1585    
1586          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1587              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert) ? 0x01 : 0x00 |
1588              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1589              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1590              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1591          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1592    
1593          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1594          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
1595    
1596          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1597              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert) ? 0x01 : 0x00 |
1598              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1599              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1600              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1601          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1602    
1603          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1604          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1605    
1606          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1607          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
1608    
1609          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1610          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1611    
1612          // next 2 bytes unknown          // next 2 bytes unknown
1613    
1614          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1615    
1616          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1617          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
1618    
1619          // next 2 bytes unknown          // next 2 bytes unknown
1620    
1621          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1622    
1623          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1624          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1625    
1626          // next 2 bytes unknown          // next 2 bytes unknown
1627    
1628          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1629    
1630          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1631          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1632    
1633          // next 2 bytes unknown          // next 2 bytes unknown
1634    
1635          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1636    
1637          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1638          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1639    
1640          // next 2 bytes unknown          // next 2 bytes unknown
1641    
1642          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1643    
1644          {          {
1645              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 1657  namespace {
1657                  default:                  default:
1658                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1659              }              }
1660              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
1661          }          }
1662    
1663          {          {
# Line 1607  namespace { Line 1676  namespace {
1676                  default:                  default:
1677                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1678              }              }
1679              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1680          }          }
1681    
1682          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1683    
1684          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1685    
1686          // next 4 bytes unknown          // next 4 bytes unknown
1687    
1688          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1689    
1690          // next 2 bytes unknown          // next 2 bytes unknown
1691    
# Line 1635  namespace { Line 1704  namespace {
1704                  default:                  default:
1705                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1706              }              }
1707              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1708          }          }
1709    
1710          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1711          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
1712    
1713          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1714          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
1715    
1716          // next byte unknown          // next byte unknown
1717    
# Line 1651  namespace { Line 1720  namespace {
1720              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1721              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1722              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1723              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1724          }          }
1725    
1726          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1727          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
1728    
1729          {          {
1730              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1731              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1732              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1733              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1734              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1735          }          }
1736    
1737          {          {
# Line 1671  namespace { Line 1740  namespace {
1740              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1741              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1742                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1743              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1744          }          }
1745    
1746          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1747                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1748          memcpy(&pData[116], &eg3depth, 1);          pData[116] = eg3depth;
1749    
1750          // next 2 bytes unknown          // next 2 bytes unknown
1751    
1752          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1753          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
1754    
1755          {          {
1756              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1757              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1758              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1759              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
1760          }          }
1761    
1762          // next 2 bytes unknown          // next 2 bytes unknown
1763    
1764          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1765    
1766          // next 3 bytes unknown          // next 3 bytes unknown
1767    
1768          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
1769    
1770          // next 2 bytes unknown          // next 2 bytes unknown
1771    
1772          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1773          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
1774    
1775          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */
1776                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
1777          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
1778    
1779          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
1780    
1781          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1782                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
1783          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
1784    
1785          // next byte unknown          // next byte unknown
1786    
1787          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1788                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
1789          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
1790    
1791          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1792                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1793          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
1794    
1795          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1796                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
1797          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
1798    
1799          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1800          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
1801    
1802            if (chunksize >= 148) {
1803                memcpy(&pData[140], DimensionUpperLimits, 8);
1804            }
1805      }      }
1806    
1807      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1953  namespace { Line 2026  namespace {
2026                      default:                      default:
2027                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2028                  }                  }
2029                    break;
2030              default:              default:
2031                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2032          }          }
# Line 2070  namespace { Line 2144  namespace {
2144  // *  // *
2145    
2146      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
2147          // Initialization          // Initialization
2148          Dimensions = 0;          Dimensions = 0;
2149          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2091  namespace { Line 2163  namespace {
2163              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2164                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2165                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2166                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2167                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2168                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2169                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2170                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2105  namespace { Line 2177  namespace {
2177                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2178                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2179                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2180                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2181                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2182                      Dimensions++;                      Dimensions++;
2183    
2184                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2140  namespace { Line 2204  namespace {
2204                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2205              }              }
2206              GetSample(); // load global region sample reference              GetSample(); // load global region sample reference
2207            } else {
2208                DimensionRegions = 0;
2209                for (int i = 0 ; i < 8 ; i++) {
2210                    pDimensionDefinitions[i].dimension  = dimension_none;
2211                    pDimensionDefinitions[i].bits       = 0;
2212                    pDimensionDefinitions[i].zones      = 0;
2213                }
2214          }          }
2215    
2216          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2162  namespace { Line 2233  namespace {
2233       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
2234       */       */
2235      void Region::UpdateChunks() {      void Region::UpdateChunks() {
2236            // in the gig format we don't care about the Region's sample reference
2237            // but we still have to provide some existing one to not corrupt the
2238            // file, so to avoid the latter we simply always assign the sample of
2239            // the first dimension region of this region
2240            pSample = pDimensionRegions[0]->pSample;
2241    
2242          // first update base class's chunks          // first update base class's chunks
2243          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
2244    
# Line 2179  namespace { Line 2256  namespace {
2256          if (!_3lnk) {          if (!_3lnk) {
2257              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2258              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2259                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2260    
2261                // move 3prg to last position
2262                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2263          }          }
2264    
2265          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
2266          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2267          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
2268            int shift = 0;
2269          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
2270              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2271              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2272              // next 2 bytes unknown              pData[6 + i * 8] = shift;
2273                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2274              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2275              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
2276    
2277                shift += pDimensionDefinitions[i].bits;
2278          }          }
2279    
2280          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
# Line 2208  namespace { Line 2293  namespace {
2293                  }                  }
2294                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");                  if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2295              }              }
2296              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2297          }          }
2298      }      }
2299    
# Line 2248  namespace { Line 2333  namespace {
2333          int dim[8] = { 0 };          int dim[8] = { 0 };
2334          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
2335    
2336              if (pDimensionRegions[i]->VelocityUpperLimit) {              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2337                    pDimensionRegions[i]->VelocityUpperLimit) {
2338                  // create the velocity table                  // create the velocity table
2339                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2340                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 2343  namespace {
2343                  }                  }
2344                  int tableidx = 0;                  int tableidx = 0;
2345                  int velocityZone = 0;                  int velocityZone = 0;
2346                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2347                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
2348                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
2349                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2350                            velocityZone++;
2351                        }
2352                    } else { // gig2
2353                        for (int k = i ; k < end ; k += step) {
2354                            DimensionRegion *d = pDimensionRegions[k];
2355                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2356                            velocityZone++;
2357                        }
2358                  }                  }
2359              } else {              } else {
2360                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2327  namespace { Line 2421  namespace {
2421          // assign definition of new dimension          // assign definition of new dimension
2422          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[Dimensions] = *pDimDef;
2423    
2424            // auto correct certain dimension definition fields (where possible)
2425            pDimensionDefinitions[Dimensions].split_type  =
2426                __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2427            pDimensionDefinitions[Dimensions].zone_size =
2428                __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2429    
2430          // create new dimension region(s) for this new dimension          // create new dimension region(s) for this new dimension
2431          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2432              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2433              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2434                RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2435              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2436              DimensionRegions++;              DimensionRegions++;
2437          }          }
# Line 2455  namespace { Line 2556  namespace {
2556              } else {              } else {
2557                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
2558                      case split_type_normal:                      case split_type_normal:
2559                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2560                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2561                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2562                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2563                                }
2564                            } else {
2565                                // gig2: evenly sized zones
2566                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2567                            }
2568                          break;                          break;
2569                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
2570                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2469  namespace { Line 2578  namespace {
2578          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2579          if (veldim != -1) {          if (veldim != -1) {
2580              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
2581              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
2582                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim]];
2583              else // normal split type              else // normal split type
2584                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
# Line 2535  namespace { Line 2644  namespace {
2644  // *  // *
2645    
2646      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2647          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2648                { CHUNK_ID_INAM, 64 },
2649                { CHUNK_ID_ISFT, 12 },
2650                { 0, 0 }
2651            };
2652            pInfo->FixedStringLengths = fixedStringLengths;
2653    
2654          // Initialization          // Initialization
2655          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2656            EffectSend = 0;
2657            Attenuation = 0;
2658            FineTune = 0;
2659            PitchbendRange = 0;
2660            PianoReleaseMode = false;
2661            DimensionKeyRange.low = 0;
2662            DimensionKeyRange.high = 0;
2663    
2664          // Loading          // Loading
2665          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2617  namespace { Line 2738  namespace {
2738          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2739          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
2740          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2741          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
2742          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
2743          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
2744          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
2745          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2746                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
2747          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
2748          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
2749      }      }
2750    
2751      /**      /**
# Line 2711  namespace { Line 2832  namespace {
2832      }      }
2833    
2834      Group::~Group() {      Group::~Group() {
2835            // remove the chunk associated with this group (if any)
2836            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2837      }      }
2838    
2839      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
2840       *       *
2841       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
2842       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
2843         *
2844         * Usually there is absolutely no need to call this method explicitly.
2845         * It will be called automatically when File::Save() was called.
2846       */       */
2847      void Group::UpdateChunks() {      void Group::UpdateChunks() {
2848          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
2849          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2850          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
2851                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2852                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2853            }
2854          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2855          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2856          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2857          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2858      }      }
# Line 2799  namespace { Line 2928  namespace {
2928  // *************** File ***************  // *************** File ***************
2929  // *  // *
2930    
2931        // File version 2.0, 1998-06-28
2932        const DLS::version_t File::VERSION_2 = {
2933            0, 2, 19980628 & 0xffff, 19980628 >> 16
2934        };
2935    
2936        // File version 3.0, 2003-03-31
2937        const DLS::version_t File::VERSION_3 = {
2938            0, 3, 20030331 & 0xffff, 20030331 >> 16
2939        };
2940    
2941        const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2942            { CHUNK_ID_IARL, 256 },
2943            { CHUNK_ID_IART, 128 },
2944            { CHUNK_ID_ICMS, 128 },
2945            { CHUNK_ID_ICMT, 1024 },
2946            { CHUNK_ID_ICOP, 128 },
2947            { CHUNK_ID_ICRD, 128 },
2948            { CHUNK_ID_IENG, 128 },
2949            { CHUNK_ID_IGNR, 128 },
2950            { CHUNK_ID_IKEY, 128 },
2951            { CHUNK_ID_IMED, 128 },
2952            { CHUNK_ID_INAM, 128 },
2953            { CHUNK_ID_IPRD, 128 },
2954            { CHUNK_ID_ISBJ, 128 },
2955            { CHUNK_ID_ISFT, 128 },
2956            { CHUNK_ID_ISRC, 128 },
2957            { CHUNK_ID_ISRF, 128 },
2958            { CHUNK_ID_ITCH, 128 },
2959            { 0, 0 }
2960        };
2961    
2962      File::File() : DLS::File() {      File::File() : DLS::File() {
2963          pGroups = NULL;          pGroups = NULL;
2964          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2965            pInfo->ArchivalLocation = String(256, ' ');
2966    
2967            // add some mandatory chunks to get the file chunks in right
2968            // order (INFO chunk will be moved to first position later)
2969            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2970            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2971      }      }
2972    
2973      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2974          pGroups = NULL;          pGroups = NULL;
2975          pInfo->UseFixedLengthStrings = true;          pInfo->FixedStringLengths = FixedStringLengths;
2976      }      }
2977    
2978      File::~File() {      File::~File() {
# Line 2848  namespace { Line 3014  namespace {
3014         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
3015         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3016         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3017    
3018           // add mandatory chunks to get the chunks in right order
3019           wave->AddSubChunk(CHUNK_ID_FMT, 16);
3020           wave->AddSubList(LIST_TYPE_INFO);
3021    
3022         pSamples->push_back(pSample);         pSamples->push_back(pSample);
3023         return pSample;         return pSample;
3024      }      }
# Line 2864  namespace { Line 3035  namespace {
3035          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3036          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3037          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3038            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3039          pSamples->erase(iter);          pSamples->erase(iter);
3040          delete pSample;          delete pSample;
3041      }      }
# Line 2875  namespace { Line 3047  namespace {
3047      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
3048          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
3049          // to resolve the group they belong to          // to resolve the group they belong to
3050          LoadGroups();          if (!pGroups) LoadGroups();
3051    
3052          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
3053    
# Line 2989  namespace { Line 3161  namespace {
3161         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
3162         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3163         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3164    
3165           // add mandatory chunks to get the chunks in right order
3166           lstInstr->AddSubList(LIST_TYPE_INFO);
3167    
3168         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
3169    
3170           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3171    
3172           // this string is needed for the gig to be loadable in GSt:
3173           pInstrument->pInfo->Software = "Endless Wave";
3174    
3175         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
3176         return pInstrument;         return pInstrument;
3177      }      }
# Line 3000  namespace { Line 3182  namespace {
3182       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
3183       *       *
3184       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
3185       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
3186       */       */
3187      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
3188          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 3040  namespace { Line 3222  namespace {
3222          }          }
3223      }      }
3224    
3225        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3226            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3227            if (!_3crc) return;
3228            int iWaveIndex = -1;
3229            File::SampleList::iterator iter = pSamples->begin();
3230            File::SampleList::iterator end  = pSamples->end();
3231            for (int index = 0; iter != end; ++iter, ++index) {
3232                if (*iter == pSample) {
3233                    iWaveIndex = index;
3234                    break;
3235                }
3236            }
3237            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3238    
3239            _3crc->SetPos(iWaveIndex * 8);
3240            uint32_t tmp = 1;
3241            _3crc->WriteUint32(&tmp); // unknown, always 1?
3242            _3crc->WriteUint32(&crc);
3243        }
3244    
3245      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
3246          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3247          // there must always be at least one group          // there must always be at least one group
# Line 3078  namespace { Line 3280  namespace {
3280          return pGroup;          return pGroup;
3281      }      }
3282    
3283        /** @brief Delete a group and its samples.
3284         *
3285         * This will delete the given Group object and all the samples that
3286         * belong to this group from the gig file. You have to call Save() to
3287         * make this persistent to the file.
3288         *
3289         * @param pGroup - group to delete
3290         * @throws gig::Exception if given group could not be found
3291         */
3292      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
3293          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
3294          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3295          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3296          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3297            // delete all members of this group
3298            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3299                DeleteSample(pSample);
3300            }
3301            // now delete this group object
3302            pGroups->erase(iter);
3303            delete pGroup;
3304        }
3305    
3306        /** @brief Delete a group.
3307         *
3308         * This will delete the given Group object from the gig file. All the
3309         * samples that belong to this group will not be deleted, but instead
3310         * be moved to another group. You have to call Save() to make this
3311         * persistent to the file.
3312         *
3313         * @param pGroup - group to delete
3314         * @throws gig::Exception if given group could not be found
3315         */
3316        void File::DeleteGroupOnly(Group* pGroup) {
3317            if (!pGroups) LoadGroups();
3318            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3319            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3320            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3321          // move all members of this group to another group          // move all members of this group to another group
3322          pGroup->MoveAll();          pGroup->MoveAll();
3323          pGroups->erase(iter);          pGroups->erase(iter);
# Line 3113  namespace { Line 3348  namespace {
3348          }          }
3349      }      }
3350    
3351        /**
3352         * Apply all the gig file's current instruments, samples, groups and settings
3353         * to the respective RIFF chunks. You have to call Save() to make changes
3354         * persistent.
3355         *
3356         * Usually there is absolutely no need to call this method explicitly.
3357         * It will be called automatically when File::Save() was called.
3358         *
3359         * @throws Exception - on errors
3360         */
3361        void File::UpdateChunks() {
3362            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3363    
3364            // first update base class's chunks
3365            DLS::File::UpdateChunks();
3366    
3367            if (newFile) {
3368                // INFO was added by Resource::UpdateChunks - make sure it
3369                // is placed first in file
3370                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3371                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3372                if (first != info) {
3373                    pRIFF->MoveSubChunk(info, first);
3374                }
3375            }
3376    
3377            // update group's chunks
3378            if (pGroups) {
3379                std::list<Group*>::iterator iter = pGroups->begin();
3380                std::list<Group*>::iterator end  = pGroups->end();
3381                for (; iter != end; ++iter) {
3382                    (*iter)->UpdateChunks();
3383                }
3384            }
3385    
3386            // update einf chunk
3387    
3388            // The einf chunk contains statistics about the gig file, such
3389            // as the number of regions and samples used by each
3390            // instrument. It is divided in equally sized parts, where the
3391            // first part contains information about the whole gig file,
3392            // and the rest of the parts map to each instrument in the
3393            // file.
3394            //
3395            // At the end of each part there is a bit map of each sample
3396            // in the file, where a set bit means that the sample is used
3397            // by the file/instrument.
3398            //
3399            // Note that there are several fields with unknown use. These
3400            // are set to zero.
3401    
3402            int sublen = pSamples->size() / 8 + 49;
3403            int einfSize = (Instruments + 1) * sublen;
3404    
3405            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3406            if (einf) {
3407                if (einf->GetSize() != einfSize) {
3408                    einf->Resize(einfSize);
3409                    memset(einf->LoadChunkData(), 0, einfSize);
3410                }
3411            } else if (newFile) {
3412                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3413            }
3414            if (einf) {
3415                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3416    
3417                std::map<gig::Sample*,int> sampleMap;
3418                int sampleIdx = 0;
3419                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3420                    sampleMap[pSample] = sampleIdx++;
3421                }
3422    
3423                int totnbusedsamples = 0;
3424                int totnbusedchannels = 0;
3425                int totnbregions = 0;
3426                int totnbdimregions = 0;
3427                int instrumentIdx = 0;
3428    
3429                memset(&pData[48], 0, sublen - 48);
3430    
3431                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3432                     instrument = GetNextInstrument()) {
3433                    int nbusedsamples = 0;
3434                    int nbusedchannels = 0;
3435                    int nbdimregions = 0;
3436    
3437                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3438    
3439                    for (Region* region = instrument->GetFirstRegion() ; region ;
3440                         region = instrument->GetNextRegion()) {
3441                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
3442                            gig::DimensionRegion *d = region->pDimensionRegions[i];
3443                            if (d->pSample) {
3444                                int sampleIdx = sampleMap[d->pSample];
3445                                int byte = 48 + sampleIdx / 8;
3446                                int bit = 1 << (sampleIdx & 7);
3447                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3448                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3449                                    nbusedsamples++;
3450                                    nbusedchannels += d->pSample->Channels;
3451    
3452                                    if ((pData[byte] & bit) == 0) {
3453                                        pData[byte] |= bit;
3454                                        totnbusedsamples++;
3455                                        totnbusedchannels += d->pSample->Channels;
3456                                    }
3457                                }
3458                            }
3459                        }
3460                        nbdimregions += region->DimensionRegions;
3461                    }
3462                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3463                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3464                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3465                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3466                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3467                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3468                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3469                    // next 12 bytes unknown
3470                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3471                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3472                    // next 4 bytes unknown
3473    
3474                    totnbregions += instrument->Regions;
3475                    totnbdimregions += nbdimregions;
3476                    instrumentIdx++;
3477                }
3478                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3479                // store32(&pData[0], sublen);
3480                store32(&pData[4], totnbusedchannels);
3481                store32(&pData[8], totnbusedsamples);
3482                store32(&pData[12], Instruments);
3483                store32(&pData[16], totnbregions);
3484                store32(&pData[20], totnbdimregions);
3485                // next 12 bytes unknown
3486                // next 4 bytes unknown, always 0?
3487                store32(&pData[40], pSamples->size());
3488                // next 4 bytes unknown
3489            }
3490    
3491            // update 3crc chunk
3492    
3493            // The 3crc chunk contains CRC-32 checksums for the
3494            // samples. The actual checksum values will be filled in
3495            // later, by Sample::Write.
3496    
3497            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3498            if (_3crc) {
3499                _3crc->Resize(pSamples->size() * 8);
3500            } else if (newFile) {
3501                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3502                _3crc->LoadChunkData();
3503            }
3504        }
3505    
3506    
3507    
3508  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.930  
changed lines
  Added in v.1199

  ViewVC Help
Powered by ViewVC