Parent Directory
|
Revision Log
* fixed write support for big-endian systems
1 | /*************************************************************************** |
2 | * * |
3 | * libgig - C++ cross-platform Gigasampler format file access library * |
4 | * * |
5 | * Copyright (C) 2003-2007 by Christian Schoenebeck * |
6 | * <cuse@users.sourceforge.net> * |
7 | * * |
8 | * This library is free software; you can redistribute it and/or modify * |
9 | * it under the terms of the GNU General Public License as published by * |
10 | * the Free Software Foundation; either version 2 of the License, or * |
11 | * (at your option) any later version. * |
12 | * * |
13 | * This library is distributed in the hope that it will be useful, * |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
16 | * GNU General Public License for more details. * |
17 | * * |
18 | * You should have received a copy of the GNU General Public License * |
19 | * along with this library; if not, write to the Free Software * |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * |
21 | * MA 02111-1307 USA * |
22 | ***************************************************************************/ |
23 | |
24 | #include "gig.h" |
25 | |
26 | #include "helper.h" |
27 | |
28 | #include <math.h> |
29 | #include <iostream> |
30 | |
31 | /// Initial size of the sample buffer which is used for decompression of |
32 | /// compressed sample wave streams - this value should always be bigger than |
33 | /// the biggest sample piece expected to be read by the sampler engine, |
34 | /// otherwise the buffer size will be raised at runtime and thus the buffer |
35 | /// reallocated which is time consuming and unefficient. |
36 | #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB |
37 | |
38 | /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */ |
39 | #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x)) |
40 | #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822)) |
41 | #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01)) |
42 | #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01) |
43 | #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03) |
44 | #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4) |
45 | #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03) |
46 | #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03) |
47 | #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03) |
48 | #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1) |
49 | #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3) |
50 | #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5) |
51 | |
52 | namespace gig { |
53 | |
54 | // *************** progress_t *************** |
55 | // * |
56 | |
57 | progress_t::progress_t() { |
58 | callback = NULL; |
59 | custom = NULL; |
60 | __range_min = 0.0f; |
61 | __range_max = 1.0f; |
62 | } |
63 | |
64 | // private helper function to convert progress of a subprocess into the global progress |
65 | static void __notify_progress(progress_t* pProgress, float subprogress) { |
66 | if (pProgress && pProgress->callback) { |
67 | const float totalrange = pProgress->__range_max - pProgress->__range_min; |
68 | const float totalprogress = pProgress->__range_min + subprogress * totalrange; |
69 | pProgress->factor = totalprogress; |
70 | pProgress->callback(pProgress); // now actually notify about the progress |
71 | } |
72 | } |
73 | |
74 | // private helper function to divide a progress into subprogresses |
75 | static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) { |
76 | if (pParentProgress && pParentProgress->callback) { |
77 | const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min; |
78 | pSubProgress->callback = pParentProgress->callback; |
79 | pSubProgress->custom = pParentProgress->custom; |
80 | pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks; |
81 | pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks; |
82 | } |
83 | } |
84 | |
85 | |
86 | // *************** Internal functions for sample decompression *************** |
87 | // * |
88 | |
89 | namespace { |
90 | |
91 | inline int get12lo(const unsigned char* pSrc) |
92 | { |
93 | const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8; |
94 | return x & 0x800 ? x - 0x1000 : x; |
95 | } |
96 | |
97 | inline int get12hi(const unsigned char* pSrc) |
98 | { |
99 | const int x = pSrc[1] >> 4 | pSrc[2] << 4; |
100 | return x & 0x800 ? x - 0x1000 : x; |
101 | } |
102 | |
103 | inline int16_t get16(const unsigned char* pSrc) |
104 | { |
105 | return int16_t(pSrc[0] | pSrc[1] << 8); |
106 | } |
107 | |
108 | inline int get24(const unsigned char* pSrc) |
109 | { |
110 | const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16; |
111 | return x & 0x800000 ? x - 0x1000000 : x; |
112 | } |
113 | |
114 | inline void store24(unsigned char* pDst, int x) |
115 | { |
116 | pDst[0] = x; |
117 | pDst[1] = x >> 8; |
118 | pDst[2] = x >> 16; |
119 | } |
120 | |
121 | void Decompress16(int compressionmode, const unsigned char* params, |
122 | int srcStep, int dstStep, |
123 | const unsigned char* pSrc, int16_t* pDst, |
124 | unsigned long currentframeoffset, |
125 | unsigned long copysamples) |
126 | { |
127 | switch (compressionmode) { |
128 | case 0: // 16 bit uncompressed |
129 | pSrc += currentframeoffset * srcStep; |
130 | while (copysamples) { |
131 | *pDst = get16(pSrc); |
132 | pDst += dstStep; |
133 | pSrc += srcStep; |
134 | copysamples--; |
135 | } |
136 | break; |
137 | |
138 | case 1: // 16 bit compressed to 8 bit |
139 | int y = get16(params); |
140 | int dy = get16(params + 2); |
141 | while (currentframeoffset) { |
142 | dy -= int8_t(*pSrc); |
143 | y -= dy; |
144 | pSrc += srcStep; |
145 | currentframeoffset--; |
146 | } |
147 | while (copysamples) { |
148 | dy -= int8_t(*pSrc); |
149 | y -= dy; |
150 | *pDst = y; |
151 | pDst += dstStep; |
152 | pSrc += srcStep; |
153 | copysamples--; |
154 | } |
155 | break; |
156 | } |
157 | } |
158 | |
159 | void Decompress24(int compressionmode, const unsigned char* params, |
160 | int dstStep, const unsigned char* pSrc, uint8_t* pDst, |
161 | unsigned long currentframeoffset, |
162 | unsigned long copysamples, int truncatedBits) |
163 | { |
164 | int y, dy, ddy, dddy; |
165 | |
166 | #define GET_PARAMS(params) \ |
167 | y = get24(params); \ |
168 | dy = y - get24((params) + 3); \ |
169 | ddy = get24((params) + 6); \ |
170 | dddy = get24((params) + 9) |
171 | |
172 | #define SKIP_ONE(x) \ |
173 | dddy -= (x); \ |
174 | ddy -= dddy; \ |
175 | dy = -dy - ddy; \ |
176 | y += dy |
177 | |
178 | #define COPY_ONE(x) \ |
179 | SKIP_ONE(x); \ |
180 | store24(pDst, y << truncatedBits); \ |
181 | pDst += dstStep |
182 | |
183 | switch (compressionmode) { |
184 | case 2: // 24 bit uncompressed |
185 | pSrc += currentframeoffset * 3; |
186 | while (copysamples) { |
187 | store24(pDst, get24(pSrc) << truncatedBits); |
188 | pDst += dstStep; |
189 | pSrc += 3; |
190 | copysamples--; |
191 | } |
192 | break; |
193 | |
194 | case 3: // 24 bit compressed to 16 bit |
195 | GET_PARAMS(params); |
196 | while (currentframeoffset) { |
197 | SKIP_ONE(get16(pSrc)); |
198 | pSrc += 2; |
199 | currentframeoffset--; |
200 | } |
201 | while (copysamples) { |
202 | COPY_ONE(get16(pSrc)); |
203 | pSrc += 2; |
204 | copysamples--; |
205 | } |
206 | break; |
207 | |
208 | case 4: // 24 bit compressed to 12 bit |
209 | GET_PARAMS(params); |
210 | while (currentframeoffset > 1) { |
211 | SKIP_ONE(get12lo(pSrc)); |
212 | SKIP_ONE(get12hi(pSrc)); |
213 | pSrc += 3; |
214 | currentframeoffset -= 2; |
215 | } |
216 | if (currentframeoffset) { |
217 | SKIP_ONE(get12lo(pSrc)); |
218 | currentframeoffset--; |
219 | if (copysamples) { |
220 | COPY_ONE(get12hi(pSrc)); |
221 | pSrc += 3; |
222 | copysamples--; |
223 | } |
224 | } |
225 | while (copysamples > 1) { |
226 | COPY_ONE(get12lo(pSrc)); |
227 | COPY_ONE(get12hi(pSrc)); |
228 | pSrc += 3; |
229 | copysamples -= 2; |
230 | } |
231 | if (copysamples) { |
232 | COPY_ONE(get12lo(pSrc)); |
233 | } |
234 | break; |
235 | |
236 | case 5: // 24 bit compressed to 8 bit |
237 | GET_PARAMS(params); |
238 | while (currentframeoffset) { |
239 | SKIP_ONE(int8_t(*pSrc++)); |
240 | currentframeoffset--; |
241 | } |
242 | while (copysamples) { |
243 | COPY_ONE(int8_t(*pSrc++)); |
244 | copysamples--; |
245 | } |
246 | break; |
247 | } |
248 | } |
249 | |
250 | const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 }; |
251 | const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 }; |
252 | const int headerSize[] = { 0, 4, 0, 12, 12, 12 }; |
253 | const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 }; |
254 | } |
255 | |
256 | |
257 | |
258 | // *************** Other Internal functions *************** |
259 | // * |
260 | |
261 | static split_type_t __resolveSplitType(dimension_t dimension) { |
262 | return ( |
263 | dimension == dimension_layer || |
264 | dimension == dimension_samplechannel || |
265 | dimension == dimension_releasetrigger || |
266 | dimension == dimension_keyboard || |
267 | dimension == dimension_roundrobin || |
268 | dimension == dimension_random || |
269 | dimension == dimension_smartmidi || |
270 | dimension == dimension_roundrobinkeyboard |
271 | ) ? split_type_bit : split_type_normal; |
272 | } |
273 | |
274 | static int __resolveZoneSize(dimension_def_t& dimension_definition) { |
275 | return (dimension_definition.split_type == split_type_normal) |
276 | ? int(128.0 / dimension_definition.zones) : 0; |
277 | } |
278 | |
279 | |
280 | |
281 | // *************** Sample *************** |
282 | // * |
283 | |
284 | unsigned int Sample::Instances = 0; |
285 | buffer_t Sample::InternalDecompressionBuffer; |
286 | |
287 | /** @brief Constructor. |
288 | * |
289 | * Load an existing sample or create a new one. A 'wave' list chunk must |
290 | * be given to this constructor. In case the given 'wave' list chunk |
291 | * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the |
292 | * format and sample data will be loaded from there, otherwise default |
293 | * values will be used and those chunks will be created when |
294 | * File::Save() will be called later on. |
295 | * |
296 | * @param pFile - pointer to gig::File where this sample is |
297 | * located (or will be located) |
298 | * @param waveList - pointer to 'wave' list chunk which is (or |
299 | * will be) associated with this sample |
300 | * @param WavePoolOffset - offset of this sample data from wave pool |
301 | * ('wvpl') list chunk |
302 | * @param fileNo - number of an extension file where this sample |
303 | * is located, 0 otherwise |
304 | */ |
305 | Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) { |
306 | pInfo->UseFixedLengthStrings = true; |
307 | Instances++; |
308 | FileNo = fileNo; |
309 | |
310 | pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX); |
311 | if (pCk3gix) { |
312 | uint16_t iSampleGroup = pCk3gix->ReadInt16(); |
313 | pGroup = pFile->GetGroup(iSampleGroup); |
314 | } else { // '3gix' chunk missing |
315 | // by default assigned to that mandatory "Default Group" |
316 | pGroup = pFile->GetGroup(0); |
317 | } |
318 | |
319 | pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL); |
320 | if (pCkSmpl) { |
321 | Manufacturer = pCkSmpl->ReadInt32(); |
322 | Product = pCkSmpl->ReadInt32(); |
323 | SamplePeriod = pCkSmpl->ReadInt32(); |
324 | MIDIUnityNote = pCkSmpl->ReadInt32(); |
325 | FineTune = pCkSmpl->ReadInt32(); |
326 | pCkSmpl->Read(&SMPTEFormat, 1, 4); |
327 | SMPTEOffset = pCkSmpl->ReadInt32(); |
328 | Loops = pCkSmpl->ReadInt32(); |
329 | pCkSmpl->ReadInt32(); // manufByt |
330 | LoopID = pCkSmpl->ReadInt32(); |
331 | pCkSmpl->Read(&LoopType, 1, 4); |
332 | LoopStart = pCkSmpl->ReadInt32(); |
333 | LoopEnd = pCkSmpl->ReadInt32(); |
334 | LoopFraction = pCkSmpl->ReadInt32(); |
335 | LoopPlayCount = pCkSmpl->ReadInt32(); |
336 | } else { // 'smpl' chunk missing |
337 | // use default values |
338 | Manufacturer = 0; |
339 | Product = 0; |
340 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
341 | MIDIUnityNote = 64; |
342 | FineTune = 0; |
343 | SMPTEOffset = 0; |
344 | Loops = 0; |
345 | LoopID = 0; |
346 | LoopStart = 0; |
347 | LoopEnd = 0; |
348 | LoopFraction = 0; |
349 | LoopPlayCount = 0; |
350 | } |
351 | |
352 | FrameTable = NULL; |
353 | SamplePos = 0; |
354 | RAMCache.Size = 0; |
355 | RAMCache.pStart = NULL; |
356 | RAMCache.NullExtensionSize = 0; |
357 | |
358 | if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported"); |
359 | |
360 | RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV); |
361 | Compressed = ewav; |
362 | Dithered = false; |
363 | TruncatedBits = 0; |
364 | if (Compressed) { |
365 | uint32_t version = ewav->ReadInt32(); |
366 | if (version == 3 && BitDepth == 24) { |
367 | Dithered = ewav->ReadInt32(); |
368 | ewav->SetPos(Channels == 2 ? 84 : 64); |
369 | TruncatedBits = ewav->ReadInt32(); |
370 | } |
371 | ScanCompressedSample(); |
372 | } |
373 | |
374 | // we use a buffer for decompression and for truncating 24 bit samples to 16 bit |
375 | if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) { |
376 | InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE]; |
377 | InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE; |
378 | } |
379 | FrameOffset = 0; // just for streaming compressed samples |
380 | |
381 | LoopSize = LoopEnd - LoopStart + 1; |
382 | } |
383 | |
384 | /** |
385 | * Apply sample and its settings to the respective RIFF chunks. You have |
386 | * to call File::Save() to make changes persistent. |
387 | * |
388 | * Usually there is absolutely no need to call this method explicitly. |
389 | * It will be called automatically when File::Save() was called. |
390 | * |
391 | * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data |
392 | * was provided yet |
393 | * @throws gig::Exception if there is any invalid sample setting |
394 | */ |
395 | void Sample::UpdateChunks() { |
396 | // first update base class's chunks |
397 | DLS::Sample::UpdateChunks(); |
398 | |
399 | // make sure 'smpl' chunk exists |
400 | pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL); |
401 | if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60); |
402 | // update 'smpl' chunk |
403 | uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData(); |
404 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
405 | store32(&pData[0], Manufacturer); |
406 | store32(&pData[4], Product); |
407 | store32(&pData[8], SamplePeriod); |
408 | store32(&pData[12], MIDIUnityNote); |
409 | store32(&pData[16], FineTune); |
410 | store32(&pData[20], SMPTEFormat); |
411 | store32(&pData[24], SMPTEOffset); |
412 | store32(&pData[28], Loops); |
413 | |
414 | // we skip 'manufByt' for now (4 bytes) |
415 | |
416 | store32(&pData[36], LoopID); |
417 | store32(&pData[40], LoopType); |
418 | store32(&pData[44], LoopStart); |
419 | store32(&pData[48], LoopEnd); |
420 | store32(&pData[52], LoopFraction); |
421 | store32(&pData[56], LoopPlayCount); |
422 | |
423 | // make sure '3gix' chunk exists |
424 | pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX); |
425 | if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4); |
426 | // determine appropriate sample group index (to be stored in chunk) |
427 | uint16_t iSampleGroup = 0; // 0 refers to default sample group |
428 | File* pFile = static_cast<File*>(pParent); |
429 | if (pFile->pGroups) { |
430 | std::list<Group*>::iterator iter = pFile->pGroups->begin(); |
431 | std::list<Group*>::iterator end = pFile->pGroups->end(); |
432 | for (int i = 0; iter != end; i++, iter++) { |
433 | if (*iter == pGroup) { |
434 | iSampleGroup = i; |
435 | break; // found |
436 | } |
437 | } |
438 | } |
439 | // update '3gix' chunk |
440 | pData = (uint8_t*) pCk3gix->LoadChunkData(); |
441 | store16(&pData[0], iSampleGroup); |
442 | } |
443 | |
444 | /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points). |
445 | void Sample::ScanCompressedSample() { |
446 | //TODO: we have to add some more scans here (e.g. determine compression rate) |
447 | this->SamplesTotal = 0; |
448 | std::list<unsigned long> frameOffsets; |
449 | |
450 | SamplesPerFrame = BitDepth == 24 ? 256 : 2048; |
451 | WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag |
452 | |
453 | // Scanning |
454 | pCkData->SetPos(0); |
455 | if (Channels == 2) { // Stereo |
456 | for (int i = 0 ; ; i++) { |
457 | // for 24 bit samples every 8:th frame offset is |
458 | // stored, to save some memory |
459 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
460 | |
461 | const int mode_l = pCkData->ReadUint8(); |
462 | const int mode_r = pCkData->ReadUint8(); |
463 | if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode"); |
464 | const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r]; |
465 | |
466 | if (pCkData->RemainingBytes() <= frameSize) { |
467 | SamplesInLastFrame = |
468 | ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) / |
469 | (bitsPerSample[mode_l] + bitsPerSample[mode_r]); |
470 | SamplesTotal += SamplesInLastFrame; |
471 | break; |
472 | } |
473 | SamplesTotal += SamplesPerFrame; |
474 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
475 | } |
476 | } |
477 | else { // Mono |
478 | for (int i = 0 ; ; i++) { |
479 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
480 | |
481 | const int mode = pCkData->ReadUint8(); |
482 | if (mode > 5) throw gig::Exception("Unknown compression mode"); |
483 | const unsigned long frameSize = bytesPerFrame[mode]; |
484 | |
485 | if (pCkData->RemainingBytes() <= frameSize) { |
486 | SamplesInLastFrame = |
487 | ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode]; |
488 | SamplesTotal += SamplesInLastFrame; |
489 | break; |
490 | } |
491 | SamplesTotal += SamplesPerFrame; |
492 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
493 | } |
494 | } |
495 | pCkData->SetPos(0); |
496 | |
497 | // Build the frames table (which is used for fast resolving of a frame's chunk offset) |
498 | if (FrameTable) delete[] FrameTable; |
499 | FrameTable = new unsigned long[frameOffsets.size()]; |
500 | std::list<unsigned long>::iterator end = frameOffsets.end(); |
501 | std::list<unsigned long>::iterator iter = frameOffsets.begin(); |
502 | for (int i = 0; iter != end; i++, iter++) { |
503 | FrameTable[i] = *iter; |
504 | } |
505 | } |
506 | |
507 | /** |
508 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
509 | * ReleaseSampleData() to free the memory if you don't need the cached |
510 | * sample data anymore. |
511 | * |
512 | * @returns buffer_t structure with start address and size of the buffer |
513 | * in bytes |
514 | * @see ReleaseSampleData(), Read(), SetPos() |
515 | */ |
516 | buffer_t Sample::LoadSampleData() { |
517 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples |
518 | } |
519 | |
520 | /** |
521 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
522 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
523 | * memory space if you don't need the cached samples anymore. There is no |
524 | * guarantee that exactly \a SampleCount samples will be cached; this is |
525 | * not an error. The size will be eventually truncated e.g. to the |
526 | * beginning of a frame of a compressed sample. This is done for |
527 | * efficiency reasons while streaming the wave by your sampler engine |
528 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
529 | * that will be returned to determine the actual cached samples, but note |
530 | * that the size is given in bytes! You get the number of actually cached |
531 | * samples by dividing it by the frame size of the sample: |
532 | * @code |
533 | * buffer_t buf = pSample->LoadSampleData(acquired_samples); |
534 | * long cachedsamples = buf.Size / pSample->FrameSize; |
535 | * @endcode |
536 | * |
537 | * @param SampleCount - number of sample points to load into RAM |
538 | * @returns buffer_t structure with start address and size of |
539 | * the cached sample data in bytes |
540 | * @see ReleaseSampleData(), Read(), SetPos() |
541 | */ |
542 | buffer_t Sample::LoadSampleData(unsigned long SampleCount) { |
543 | return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples |
544 | } |
545 | |
546 | /** |
547 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
548 | * ReleaseSampleData() to free the memory if you don't need the cached |
549 | * sample data anymore. |
550 | * The method will add \a NullSamplesCount silence samples past the |
551 | * official buffer end (this won't affect the 'Size' member of the |
552 | * buffer_t structure, that means 'Size' always reflects the size of the |
553 | * actual sample data, the buffer might be bigger though). Silence |
554 | * samples past the official buffer are needed for differential |
555 | * algorithms that always have to take subsequent samples into account |
556 | * (resampling/interpolation would be an important example) and avoids |
557 | * memory access faults in such cases. |
558 | * |
559 | * @param NullSamplesCount - number of silence samples the buffer should |
560 | * be extended past it's data end |
561 | * @returns buffer_t structure with start address and |
562 | * size of the buffer in bytes |
563 | * @see ReleaseSampleData(), Read(), SetPos() |
564 | */ |
565 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) { |
566 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount); |
567 | } |
568 | |
569 | /** |
570 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
571 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
572 | * memory space if you don't need the cached samples anymore. There is no |
573 | * guarantee that exactly \a SampleCount samples will be cached; this is |
574 | * not an error. The size will be eventually truncated e.g. to the |
575 | * beginning of a frame of a compressed sample. This is done for |
576 | * efficiency reasons while streaming the wave by your sampler engine |
577 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
578 | * that will be returned to determine the actual cached samples, but note |
579 | * that the size is given in bytes! You get the number of actually cached |
580 | * samples by dividing it by the frame size of the sample: |
581 | * @code |
582 | * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples); |
583 | * long cachedsamples = buf.Size / pSample->FrameSize; |
584 | * @endcode |
585 | * The method will add \a NullSamplesCount silence samples past the |
586 | * official buffer end (this won't affect the 'Size' member of the |
587 | * buffer_t structure, that means 'Size' always reflects the size of the |
588 | * actual sample data, the buffer might be bigger though). Silence |
589 | * samples past the official buffer are needed for differential |
590 | * algorithms that always have to take subsequent samples into account |
591 | * (resampling/interpolation would be an important example) and avoids |
592 | * memory access faults in such cases. |
593 | * |
594 | * @param SampleCount - number of sample points to load into RAM |
595 | * @param NullSamplesCount - number of silence samples the buffer should |
596 | * be extended past it's data end |
597 | * @returns buffer_t structure with start address and |
598 | * size of the cached sample data in bytes |
599 | * @see ReleaseSampleData(), Read(), SetPos() |
600 | */ |
601 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) { |
602 | if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal; |
603 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
604 | unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize; |
605 | RAMCache.pStart = new int8_t[allocationsize]; |
606 | RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize; |
607 | RAMCache.NullExtensionSize = allocationsize - RAMCache.Size; |
608 | // fill the remaining buffer space with silence samples |
609 | memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize); |
610 | return GetCache(); |
611 | } |
612 | |
613 | /** |
614 | * Returns current cached sample points. A buffer_t structure will be |
615 | * returned which contains address pointer to the begin of the cache and |
616 | * the size of the cached sample data in bytes. Use |
617 | * <i>LoadSampleData()</i> to cache a specific amount of sample points in |
618 | * RAM. |
619 | * |
620 | * @returns buffer_t structure with current cached sample points |
621 | * @see LoadSampleData(); |
622 | */ |
623 | buffer_t Sample::GetCache() { |
624 | // return a copy of the buffer_t structure |
625 | buffer_t result; |
626 | result.Size = this->RAMCache.Size; |
627 | result.pStart = this->RAMCache.pStart; |
628 | result.NullExtensionSize = this->RAMCache.NullExtensionSize; |
629 | return result; |
630 | } |
631 | |
632 | /** |
633 | * Frees the cached sample from RAM if loaded with |
634 | * <i>LoadSampleData()</i> previously. |
635 | * |
636 | * @see LoadSampleData(); |
637 | */ |
638 | void Sample::ReleaseSampleData() { |
639 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
640 | RAMCache.pStart = NULL; |
641 | RAMCache.Size = 0; |
642 | } |
643 | |
644 | /** @brief Resize sample. |
645 | * |
646 | * Resizes the sample's wave form data, that is the actual size of |
647 | * sample wave data possible to be written for this sample. This call |
648 | * will return immediately and just schedule the resize operation. You |
649 | * should call File::Save() to actually perform the resize operation(s) |
650 | * "physically" to the file. As this can take a while on large files, it |
651 | * is recommended to call Resize() first on all samples which have to be |
652 | * resized and finally to call File::Save() to perform all those resize |
653 | * operations in one rush. |
654 | * |
655 | * The actual size (in bytes) is dependant to the current FrameSize |
656 | * value. You may want to set FrameSize before calling Resize(). |
657 | * |
658 | * <b>Caution:</b> You cannot directly write (i.e. with Write()) to |
659 | * enlarged samples before calling File::Save() as this might exceed the |
660 | * current sample's boundary! |
661 | * |
662 | * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is |
663 | * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with |
664 | * other formats will fail! |
665 | * |
666 | * @param iNewSize - new sample wave data size in sample points (must be |
667 | * greater than zero) |
668 | * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM |
669 | * or if \a iNewSize is less than 1 |
670 | * @throws gig::Exception if existing sample is compressed |
671 | * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize, |
672 | * DLS::Sample::FormatTag, File::Save() |
673 | */ |
674 | void Sample::Resize(int iNewSize) { |
675 | if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)"); |
676 | DLS::Sample::Resize(iNewSize); |
677 | } |
678 | |
679 | /** |
680 | * Sets the position within the sample (in sample points, not in |
681 | * bytes). Use this method and <i>Read()</i> if you don't want to load |
682 | * the sample into RAM, thus for disk streaming. |
683 | * |
684 | * Although the original Gigasampler engine doesn't allow positioning |
685 | * within compressed samples, I decided to implement it. Even though |
686 | * the Gigasampler format doesn't allow to define loops for compressed |
687 | * samples at the moment, positioning within compressed samples might be |
688 | * interesting for some sampler engines though. The only drawback about |
689 | * my decision is that it takes longer to load compressed gig Files on |
690 | * startup, because it's neccessary to scan the samples for some |
691 | * mandatory informations. But I think as it doesn't affect the runtime |
692 | * efficiency, nobody will have a problem with that. |
693 | * |
694 | * @param SampleCount number of sample points to jump |
695 | * @param Whence optional: to which relation \a SampleCount refers |
696 | * to, if omited <i>RIFF::stream_start</i> is assumed |
697 | * @returns the new sample position |
698 | * @see Read() |
699 | */ |
700 | unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) { |
701 | if (Compressed) { |
702 | switch (Whence) { |
703 | case RIFF::stream_curpos: |
704 | this->SamplePos += SampleCount; |
705 | break; |
706 | case RIFF::stream_end: |
707 | this->SamplePos = this->SamplesTotal - 1 - SampleCount; |
708 | break; |
709 | case RIFF::stream_backward: |
710 | this->SamplePos -= SampleCount; |
711 | break; |
712 | case RIFF::stream_start: default: |
713 | this->SamplePos = SampleCount; |
714 | break; |
715 | } |
716 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
717 | |
718 | unsigned long frame = this->SamplePos / 2048; // to which frame to jump |
719 | this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame |
720 | pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame |
721 | return this->SamplePos; |
722 | } |
723 | else { // not compressed |
724 | unsigned long orderedBytes = SampleCount * this->FrameSize; |
725 | unsigned long result = pCkData->SetPos(orderedBytes, Whence); |
726 | return (result == orderedBytes) ? SampleCount |
727 | : result / this->FrameSize; |
728 | } |
729 | } |
730 | |
731 | /** |
732 | * Returns the current position in the sample (in sample points). |
733 | */ |
734 | unsigned long Sample::GetPos() { |
735 | if (Compressed) return SamplePos; |
736 | else return pCkData->GetPos() / FrameSize; |
737 | } |
738 | |
739 | /** |
740 | * Reads \a SampleCount number of sample points from the position stored |
741 | * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves |
742 | * the position within the sample respectively, this method honors the |
743 | * looping informations of the sample (if any). The sample wave stream |
744 | * will be decompressed on the fly if using a compressed sample. Use this |
745 | * method if you don't want to load the sample into RAM, thus for disk |
746 | * streaming. All this methods needs to know to proceed with streaming |
747 | * for the next time you call this method is stored in \a pPlaybackState. |
748 | * You have to allocate and initialize the playback_state_t structure by |
749 | * yourself before you use it to stream a sample: |
750 | * @code |
751 | * gig::playback_state_t playbackstate; |
752 | * playbackstate.position = 0; |
753 | * playbackstate.reverse = false; |
754 | * playbackstate.loop_cycles_left = pSample->LoopPlayCount; |
755 | * @endcode |
756 | * You don't have to take care of things like if there is actually a loop |
757 | * defined or if the current read position is located within a loop area. |
758 | * The method already handles such cases by itself. |
759 | * |
760 | * <b>Caution:</b> If you are using more than one streaming thread, you |
761 | * have to use an external decompression buffer for <b>EACH</b> |
762 | * streaming thread to avoid race conditions and crashes! |
763 | * |
764 | * @param pBuffer destination buffer |
765 | * @param SampleCount number of sample points to read |
766 | * @param pPlaybackState will be used to store and reload the playback |
767 | * state for the next ReadAndLoop() call |
768 | * @param pDimRgn dimension region with looping information |
769 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
770 | * @returns number of successfully read sample points |
771 | * @see CreateDecompressionBuffer() |
772 | */ |
773 | unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, |
774 | DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) { |
775 | unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend; |
776 | uint8_t* pDst = (uint8_t*) pBuffer; |
777 | |
778 | SetPos(pPlaybackState->position); // recover position from the last time |
779 | |
780 | if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined |
781 | |
782 | const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0]; |
783 | const uint32_t loopEnd = loop.LoopStart + loop.LoopLength; |
784 | |
785 | if (GetPos() <= loopEnd) { |
786 | switch (loop.LoopType) { |
787 | |
788 | case loop_type_bidirectional: { //TODO: not tested yet! |
789 | do { |
790 | // if not endless loop check if max. number of loop cycles have been passed |
791 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
792 | |
793 | if (!pPlaybackState->reverse) { // forward playback |
794 | do { |
795 | samplestoloopend = loopEnd - GetPos(); |
796 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
797 | samplestoread -= readsamples; |
798 | totalreadsamples += readsamples; |
799 | if (readsamples == samplestoloopend) { |
800 | pPlaybackState->reverse = true; |
801 | break; |
802 | } |
803 | } while (samplestoread && readsamples); |
804 | } |
805 | else { // backward playback |
806 | |
807 | // as we can only read forward from disk, we have to |
808 | // determine the end position within the loop first, |
809 | // read forward from that 'end' and finally after |
810 | // reading, swap all sample frames so it reflects |
811 | // backward playback |
812 | |
813 | unsigned long swapareastart = totalreadsamples; |
814 | unsigned long loopoffset = GetPos() - loop.LoopStart; |
815 | unsigned long samplestoreadinloop = Min(samplestoread, loopoffset); |
816 | unsigned long reverseplaybackend = GetPos() - samplestoreadinloop; |
817 | |
818 | SetPos(reverseplaybackend); |
819 | |
820 | // read samples for backward playback |
821 | do { |
822 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer); |
823 | samplestoreadinloop -= readsamples; |
824 | samplestoread -= readsamples; |
825 | totalreadsamples += readsamples; |
826 | } while (samplestoreadinloop && readsamples); |
827 | |
828 | SetPos(reverseplaybackend); // pretend we really read backwards |
829 | |
830 | if (reverseplaybackend == loop.LoopStart) { |
831 | pPlaybackState->loop_cycles_left--; |
832 | pPlaybackState->reverse = false; |
833 | } |
834 | |
835 | // reverse the sample frames for backward playback |
836 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
837 | } |
838 | } while (samplestoread && readsamples); |
839 | break; |
840 | } |
841 | |
842 | case loop_type_backward: { // TODO: not tested yet! |
843 | // forward playback (not entered the loop yet) |
844 | if (!pPlaybackState->reverse) do { |
845 | samplestoloopend = loopEnd - GetPos(); |
846 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
847 | samplestoread -= readsamples; |
848 | totalreadsamples += readsamples; |
849 | if (readsamples == samplestoloopend) { |
850 | pPlaybackState->reverse = true; |
851 | break; |
852 | } |
853 | } while (samplestoread && readsamples); |
854 | |
855 | if (!samplestoread) break; |
856 | |
857 | // as we can only read forward from disk, we have to |
858 | // determine the end position within the loop first, |
859 | // read forward from that 'end' and finally after |
860 | // reading, swap all sample frames so it reflects |
861 | // backward playback |
862 | |
863 | unsigned long swapareastart = totalreadsamples; |
864 | unsigned long loopoffset = GetPos() - loop.LoopStart; |
865 | unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset) |
866 | : samplestoread; |
867 | unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength); |
868 | |
869 | SetPos(reverseplaybackend); |
870 | |
871 | // read samples for backward playback |
872 | do { |
873 | // if not endless loop check if max. number of loop cycles have been passed |
874 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
875 | samplestoloopend = loopEnd - GetPos(); |
876 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer); |
877 | samplestoreadinloop -= readsamples; |
878 | samplestoread -= readsamples; |
879 | totalreadsamples += readsamples; |
880 | if (readsamples == samplestoloopend) { |
881 | pPlaybackState->loop_cycles_left--; |
882 | SetPos(loop.LoopStart); |
883 | } |
884 | } while (samplestoreadinloop && readsamples); |
885 | |
886 | SetPos(reverseplaybackend); // pretend we really read backwards |
887 | |
888 | // reverse the sample frames for backward playback |
889 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
890 | break; |
891 | } |
892 | |
893 | default: case loop_type_normal: { |
894 | do { |
895 | // if not endless loop check if max. number of loop cycles have been passed |
896 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
897 | samplestoloopend = loopEnd - GetPos(); |
898 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
899 | samplestoread -= readsamples; |
900 | totalreadsamples += readsamples; |
901 | if (readsamples == samplestoloopend) { |
902 | pPlaybackState->loop_cycles_left--; |
903 | SetPos(loop.LoopStart); |
904 | } |
905 | } while (samplestoread && readsamples); |
906 | break; |
907 | } |
908 | } |
909 | } |
910 | } |
911 | |
912 | // read on without looping |
913 | if (samplestoread) do { |
914 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer); |
915 | samplestoread -= readsamples; |
916 | totalreadsamples += readsamples; |
917 | } while (readsamples && samplestoread); |
918 | |
919 | // store current position |
920 | pPlaybackState->position = GetPos(); |
921 | |
922 | return totalreadsamples; |
923 | } |
924 | |
925 | /** |
926 | * Reads \a SampleCount number of sample points from the current |
927 | * position into the buffer pointed by \a pBuffer and increments the |
928 | * position within the sample. The sample wave stream will be |
929 | * decompressed on the fly if using a compressed sample. Use this method |
930 | * and <i>SetPos()</i> if you don't want to load the sample into RAM, |
931 | * thus for disk streaming. |
932 | * |
933 | * <b>Caution:</b> If you are using more than one streaming thread, you |
934 | * have to use an external decompression buffer for <b>EACH</b> |
935 | * streaming thread to avoid race conditions and crashes! |
936 | * |
937 | * For 16 bit samples, the data in the buffer will be int16_t |
938 | * (using native endianness). For 24 bit, the buffer will |
939 | * contain three bytes per sample, little-endian. |
940 | * |
941 | * @param pBuffer destination buffer |
942 | * @param SampleCount number of sample points to read |
943 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
944 | * @returns number of successfully read sample points |
945 | * @see SetPos(), CreateDecompressionBuffer() |
946 | */ |
947 | unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) { |
948 | if (SampleCount == 0) return 0; |
949 | if (!Compressed) { |
950 | if (BitDepth == 24) { |
951 | return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
952 | } |
953 | else { // 16 bit |
954 | // (pCkData->Read does endian correction) |
955 | return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1 |
956 | : pCkData->Read(pBuffer, SampleCount, 2); |
957 | } |
958 | } |
959 | else { |
960 | if (this->SamplePos >= this->SamplesTotal) return 0; |
961 | //TODO: efficiency: maybe we should test for an average compression rate |
962 | unsigned long assumedsize = GuessSize(SampleCount), |
963 | remainingbytes = 0, // remaining bytes in the local buffer |
964 | remainingsamples = SampleCount, |
965 | copysamples, skipsamples, |
966 | currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read() |
967 | this->FrameOffset = 0; |
968 | |
969 | buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer; |
970 | |
971 | // if decompression buffer too small, then reduce amount of samples to read |
972 | if (pDecompressionBuffer->Size < assumedsize) { |
973 | std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl; |
974 | SampleCount = WorstCaseMaxSamples(pDecompressionBuffer); |
975 | remainingsamples = SampleCount; |
976 | assumedsize = GuessSize(SampleCount); |
977 | } |
978 | |
979 | unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
980 | int16_t* pDst = static_cast<int16_t*>(pBuffer); |
981 | uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer); |
982 | remainingbytes = pCkData->Read(pSrc, assumedsize, 1); |
983 | |
984 | while (remainingsamples && remainingbytes) { |
985 | unsigned long framesamples = SamplesPerFrame; |
986 | unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset; |
987 | |
988 | int mode_l = *pSrc++, mode_r = 0; |
989 | |
990 | if (Channels == 2) { |
991 | mode_r = *pSrc++; |
992 | framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2; |
993 | rightChannelOffset = bytesPerFrameNoHdr[mode_l]; |
994 | nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r]; |
995 | if (remainingbytes < framebytes) { // last frame in sample |
996 | framesamples = SamplesInLastFrame; |
997 | if (mode_l == 4 && (framesamples & 1)) { |
998 | rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3; |
999 | } |
1000 | else { |
1001 | rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3; |
1002 | } |
1003 | } |
1004 | } |
1005 | else { |
1006 | framebytes = bytesPerFrame[mode_l] + 1; |
1007 | nextFrameOffset = bytesPerFrameNoHdr[mode_l]; |
1008 | if (remainingbytes < framebytes) { |
1009 | framesamples = SamplesInLastFrame; |
1010 | } |
1011 | } |
1012 | |
1013 | // determine how many samples in this frame to skip and read |
1014 | if (currentframeoffset + remainingsamples >= framesamples) { |
1015 | if (currentframeoffset <= framesamples) { |
1016 | copysamples = framesamples - currentframeoffset; |
1017 | skipsamples = currentframeoffset; |
1018 | } |
1019 | else { |
1020 | copysamples = 0; |
1021 | skipsamples = framesamples; |
1022 | } |
1023 | } |
1024 | else { |
1025 | // This frame has enough data for pBuffer, but not |
1026 | // all of the frame is needed. Set file position |
1027 | // to start of this frame for next call to Read. |
1028 | copysamples = remainingsamples; |
1029 | skipsamples = currentframeoffset; |
1030 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1031 | this->FrameOffset = currentframeoffset + copysamples; |
1032 | } |
1033 | remainingsamples -= copysamples; |
1034 | |
1035 | if (remainingbytes > framebytes) { |
1036 | remainingbytes -= framebytes; |
1037 | if (remainingsamples == 0 && |
1038 | currentframeoffset + copysamples == framesamples) { |
1039 | // This frame has enough data for pBuffer, and |
1040 | // all of the frame is needed. Set file |
1041 | // position to start of next frame for next |
1042 | // call to Read. FrameOffset is 0. |
1043 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1044 | } |
1045 | } |
1046 | else remainingbytes = 0; |
1047 | |
1048 | currentframeoffset -= skipsamples; |
1049 | |
1050 | if (copysamples == 0) { |
1051 | // skip this frame |
1052 | pSrc += framebytes - Channels; |
1053 | } |
1054 | else { |
1055 | const unsigned char* const param_l = pSrc; |
1056 | if (BitDepth == 24) { |
1057 | if (mode_l != 2) pSrc += 12; |
1058 | |
1059 | if (Channels == 2) { // Stereo |
1060 | const unsigned char* const param_r = pSrc; |
1061 | if (mode_r != 2) pSrc += 12; |
1062 | |
1063 | Decompress24(mode_l, param_l, 6, pSrc, pDst24, |
1064 | skipsamples, copysamples, TruncatedBits); |
1065 | Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3, |
1066 | skipsamples, copysamples, TruncatedBits); |
1067 | pDst24 += copysamples * 6; |
1068 | } |
1069 | else { // Mono |
1070 | Decompress24(mode_l, param_l, 3, pSrc, pDst24, |
1071 | skipsamples, copysamples, TruncatedBits); |
1072 | pDst24 += copysamples * 3; |
1073 | } |
1074 | } |
1075 | else { // 16 bit |
1076 | if (mode_l) pSrc += 4; |
1077 | |
1078 | int step; |
1079 | if (Channels == 2) { // Stereo |
1080 | const unsigned char* const param_r = pSrc; |
1081 | if (mode_r) pSrc += 4; |
1082 | |
1083 | step = (2 - mode_l) + (2 - mode_r); |
1084 | Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples); |
1085 | Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1, |
1086 | skipsamples, copysamples); |
1087 | pDst += copysamples << 1; |
1088 | } |
1089 | else { // Mono |
1090 | step = 2 - mode_l; |
1091 | Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples); |
1092 | pDst += copysamples; |
1093 | } |
1094 | } |
1095 | pSrc += nextFrameOffset; |
1096 | } |
1097 | |
1098 | // reload from disk to local buffer if needed |
1099 | if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) { |
1100 | assumedsize = GuessSize(remainingsamples); |
1101 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1102 | if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes(); |
1103 | remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1); |
1104 | pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1105 | } |
1106 | } // while |
1107 | |
1108 | this->SamplePos += (SampleCount - remainingsamples); |
1109 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
1110 | return (SampleCount - remainingsamples); |
1111 | } |
1112 | } |
1113 | |
1114 | /** @brief Write sample wave data. |
1115 | * |
1116 | * Writes \a SampleCount number of sample points from the buffer pointed |
1117 | * by \a pBuffer and increments the position within the sample. Use this |
1118 | * method to directly write the sample data to disk, i.e. if you don't |
1119 | * want or cannot load the whole sample data into RAM. |
1120 | * |
1121 | * You have to Resize() the sample to the desired size and call |
1122 | * File::Save() <b>before</b> using Write(). |
1123 | * |
1124 | * Note: there is currently no support for writing compressed samples. |
1125 | * |
1126 | * @param pBuffer - source buffer |
1127 | * @param SampleCount - number of sample points to write |
1128 | * @throws DLS::Exception if current sample size is too small |
1129 | * @throws gig::Exception if sample is compressed |
1130 | * @see DLS::LoadSampleData() |
1131 | */ |
1132 | unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) { |
1133 | if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)"); |
1134 | return DLS::Sample::Write(pBuffer, SampleCount); |
1135 | } |
1136 | |
1137 | /** |
1138 | * Allocates a decompression buffer for streaming (compressed) samples |
1139 | * with Sample::Read(). If you are using more than one streaming thread |
1140 | * in your application you <b>HAVE</b> to create a decompression buffer |
1141 | * for <b>EACH</b> of your streaming threads and provide it with the |
1142 | * Sample::Read() call in order to avoid race conditions and crashes. |
1143 | * |
1144 | * You should free the memory occupied by the allocated buffer(s) once |
1145 | * you don't need one of your streaming threads anymore by calling |
1146 | * DestroyDecompressionBuffer(). |
1147 | * |
1148 | * @param MaxReadSize - the maximum size (in sample points) you ever |
1149 | * expect to read with one Read() call |
1150 | * @returns allocated decompression buffer |
1151 | * @see DestroyDecompressionBuffer() |
1152 | */ |
1153 | buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) { |
1154 | buffer_t result; |
1155 | const double worstCaseHeaderOverhead = |
1156 | (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0; |
1157 | result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead); |
1158 | result.pStart = new int8_t[result.Size]; |
1159 | result.NullExtensionSize = 0; |
1160 | return result; |
1161 | } |
1162 | |
1163 | /** |
1164 | * Free decompression buffer, previously created with |
1165 | * CreateDecompressionBuffer(). |
1166 | * |
1167 | * @param DecompressionBuffer - previously allocated decompression |
1168 | * buffer to free |
1169 | */ |
1170 | void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) { |
1171 | if (DecompressionBuffer.Size && DecompressionBuffer.pStart) { |
1172 | delete[] (int8_t*) DecompressionBuffer.pStart; |
1173 | DecompressionBuffer.pStart = NULL; |
1174 | DecompressionBuffer.Size = 0; |
1175 | DecompressionBuffer.NullExtensionSize = 0; |
1176 | } |
1177 | } |
1178 | |
1179 | /** |
1180 | * Returns pointer to the Group this Sample belongs to. In the .gig |
1181 | * format a sample always belongs to one group. If it wasn't explicitly |
1182 | * assigned to a certain group, it will be automatically assigned to a |
1183 | * default group. |
1184 | * |
1185 | * @returns Sample's Group (never NULL) |
1186 | */ |
1187 | Group* Sample::GetGroup() const { |
1188 | return pGroup; |
1189 | } |
1190 | |
1191 | Sample::~Sample() { |
1192 | Instances--; |
1193 | if (!Instances && InternalDecompressionBuffer.Size) { |
1194 | delete[] (unsigned char*) InternalDecompressionBuffer.pStart; |
1195 | InternalDecompressionBuffer.pStart = NULL; |
1196 | InternalDecompressionBuffer.Size = 0; |
1197 | } |
1198 | if (FrameTable) delete[] FrameTable; |
1199 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
1200 | } |
1201 | |
1202 | |
1203 | |
1204 | // *************** DimensionRegion *************** |
1205 | // * |
1206 | |
1207 | uint DimensionRegion::Instances = 0; |
1208 | DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL; |
1209 | |
1210 | DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) { |
1211 | Instances++; |
1212 | |
1213 | pSample = NULL; |
1214 | |
1215 | memcpy(&Crossfade, &SamplerOptions, 4); |
1216 | if (!pVelocityTables) pVelocityTables = new VelocityTableMap; |
1217 | |
1218 | RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA); |
1219 | if (_3ewa) { // if '3ewa' chunk exists |
1220 | _3ewa->ReadInt32(); // unknown, always == chunk size ? |
1221 | LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1222 | EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1223 | _3ewa->ReadInt16(); // unknown |
1224 | LFO1InternalDepth = _3ewa->ReadUint16(); |
1225 | _3ewa->ReadInt16(); // unknown |
1226 | LFO3InternalDepth = _3ewa->ReadInt16(); |
1227 | _3ewa->ReadInt16(); // unknown |
1228 | LFO1ControlDepth = _3ewa->ReadUint16(); |
1229 | _3ewa->ReadInt16(); // unknown |
1230 | LFO3ControlDepth = _3ewa->ReadInt16(); |
1231 | EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1232 | EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1233 | _3ewa->ReadInt16(); // unknown |
1234 | EG1Sustain = _3ewa->ReadUint16(); |
1235 | EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1236 | EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1237 | uint8_t eg1ctrloptions = _3ewa->ReadUint8(); |
1238 | EG1ControllerInvert = eg1ctrloptions & 0x01; |
1239 | EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions); |
1240 | EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions); |
1241 | EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions); |
1242 | EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1243 | uint8_t eg2ctrloptions = _3ewa->ReadUint8(); |
1244 | EG2ControllerInvert = eg2ctrloptions & 0x01; |
1245 | EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions); |
1246 | EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions); |
1247 | EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions); |
1248 | LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1249 | EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1250 | EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1251 | _3ewa->ReadInt16(); // unknown |
1252 | EG2Sustain = _3ewa->ReadUint16(); |
1253 | EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1254 | _3ewa->ReadInt16(); // unknown |
1255 | LFO2ControlDepth = _3ewa->ReadUint16(); |
1256 | LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1257 | _3ewa->ReadInt16(); // unknown |
1258 | LFO2InternalDepth = _3ewa->ReadUint16(); |
1259 | int32_t eg1decay2 = _3ewa->ReadInt32(); |
1260 | EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2); |
1261 | EG1InfiniteSustain = (eg1decay2 == 0x7fffffff); |
1262 | _3ewa->ReadInt16(); // unknown |
1263 | EG1PreAttack = _3ewa->ReadUint16(); |
1264 | int32_t eg2decay2 = _3ewa->ReadInt32(); |
1265 | EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2); |
1266 | EG2InfiniteSustain = (eg2decay2 == 0x7fffffff); |
1267 | _3ewa->ReadInt16(); // unknown |
1268 | EG2PreAttack = _3ewa->ReadUint16(); |
1269 | uint8_t velocityresponse = _3ewa->ReadUint8(); |
1270 | if (velocityresponse < 5) { |
1271 | VelocityResponseCurve = curve_type_nonlinear; |
1272 | VelocityResponseDepth = velocityresponse; |
1273 | } else if (velocityresponse < 10) { |
1274 | VelocityResponseCurve = curve_type_linear; |
1275 | VelocityResponseDepth = velocityresponse - 5; |
1276 | } else if (velocityresponse < 15) { |
1277 | VelocityResponseCurve = curve_type_special; |
1278 | VelocityResponseDepth = velocityresponse - 10; |
1279 | } else { |
1280 | VelocityResponseCurve = curve_type_unknown; |
1281 | VelocityResponseDepth = 0; |
1282 | } |
1283 | uint8_t releasevelocityresponse = _3ewa->ReadUint8(); |
1284 | if (releasevelocityresponse < 5) { |
1285 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1286 | ReleaseVelocityResponseDepth = releasevelocityresponse; |
1287 | } else if (releasevelocityresponse < 10) { |
1288 | ReleaseVelocityResponseCurve = curve_type_linear; |
1289 | ReleaseVelocityResponseDepth = releasevelocityresponse - 5; |
1290 | } else if (releasevelocityresponse < 15) { |
1291 | ReleaseVelocityResponseCurve = curve_type_special; |
1292 | ReleaseVelocityResponseDepth = releasevelocityresponse - 10; |
1293 | } else { |
1294 | ReleaseVelocityResponseCurve = curve_type_unknown; |
1295 | ReleaseVelocityResponseDepth = 0; |
1296 | } |
1297 | VelocityResponseCurveScaling = _3ewa->ReadUint8(); |
1298 | AttenuationControllerThreshold = _3ewa->ReadInt8(); |
1299 | _3ewa->ReadInt32(); // unknown |
1300 | SampleStartOffset = (uint16_t) _3ewa->ReadInt16(); |
1301 | _3ewa->ReadInt16(); // unknown |
1302 | uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8(); |
1303 | PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass); |
1304 | if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94; |
1305 | else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95; |
1306 | else DimensionBypass = dim_bypass_ctrl_none; |
1307 | uint8_t pan = _3ewa->ReadUint8(); |
1308 | Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit |
1309 | SelfMask = _3ewa->ReadInt8() & 0x01; |
1310 | _3ewa->ReadInt8(); // unknown |
1311 | uint8_t lfo3ctrl = _3ewa->ReadUint8(); |
1312 | LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits |
1313 | LFO3Sync = lfo3ctrl & 0x20; // bit 5 |
1314 | InvertAttenuationController = lfo3ctrl & 0x80; // bit 7 |
1315 | AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1316 | uint8_t lfo2ctrl = _3ewa->ReadUint8(); |
1317 | LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits |
1318 | LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7 |
1319 | LFO2Sync = lfo2ctrl & 0x20; // bit 5 |
1320 | bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6 |
1321 | uint8_t lfo1ctrl = _3ewa->ReadUint8(); |
1322 | LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits |
1323 | LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7 |
1324 | LFO1Sync = lfo1ctrl & 0x40; // bit 6 |
1325 | VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl)) |
1326 | : vcf_res_ctrl_none; |
1327 | uint16_t eg3depth = _3ewa->ReadUint16(); |
1328 | EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */ |
1329 | : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */ |
1330 | _3ewa->ReadInt16(); // unknown |
1331 | ChannelOffset = _3ewa->ReadUint8() / 4; |
1332 | uint8_t regoptions = _3ewa->ReadUint8(); |
1333 | MSDecode = regoptions & 0x01; // bit 0 |
1334 | SustainDefeat = regoptions & 0x02; // bit 1 |
1335 | _3ewa->ReadInt16(); // unknown |
1336 | VelocityUpperLimit = _3ewa->ReadInt8(); |
1337 | _3ewa->ReadInt8(); // unknown |
1338 | _3ewa->ReadInt16(); // unknown |
1339 | ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay |
1340 | _3ewa->ReadInt8(); // unknown |
1341 | _3ewa->ReadInt8(); // unknown |
1342 | EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7 |
1343 | uint8_t vcfcutoff = _3ewa->ReadUint8(); |
1344 | VCFEnabled = vcfcutoff & 0x80; // bit 7 |
1345 | VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits |
1346 | VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8()); |
1347 | uint8_t vcfvelscale = _3ewa->ReadUint8(); |
1348 | VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7 |
1349 | VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits |
1350 | _3ewa->ReadInt8(); // unknown |
1351 | uint8_t vcfresonance = _3ewa->ReadUint8(); |
1352 | VCFResonance = vcfresonance & 0x7f; // lower 7 bits |
1353 | VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7 |
1354 | uint8_t vcfbreakpoint = _3ewa->ReadUint8(); |
1355 | VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7 |
1356 | VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits |
1357 | uint8_t vcfvelocity = _3ewa->ReadUint8(); |
1358 | VCFVelocityDynamicRange = vcfvelocity % 5; |
1359 | VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5); |
1360 | VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8()); |
1361 | if (VCFType == vcf_type_lowpass) { |
1362 | if (lfo3ctrl & 0x40) // bit 6 |
1363 | VCFType = vcf_type_lowpassturbo; |
1364 | } |
1365 | if (_3ewa->RemainingBytes() >= 8) { |
1366 | _3ewa->Read(DimensionUpperLimits, 1, 8); |
1367 | } else { |
1368 | memset(DimensionUpperLimits, 0, 8); |
1369 | } |
1370 | } else { // '3ewa' chunk does not exist yet |
1371 | // use default values |
1372 | LFO3Frequency = 1.0; |
1373 | EG3Attack = 0.0; |
1374 | LFO1InternalDepth = 0; |
1375 | LFO3InternalDepth = 0; |
1376 | LFO1ControlDepth = 0; |
1377 | LFO3ControlDepth = 0; |
1378 | EG1Attack = 0.0; |
1379 | EG1Decay1 = 0.0; |
1380 | EG1Sustain = 0; |
1381 | EG1Release = 0.0; |
1382 | EG1Controller.type = eg1_ctrl_t::type_none; |
1383 | EG1Controller.controller_number = 0; |
1384 | EG1ControllerInvert = false; |
1385 | EG1ControllerAttackInfluence = 0; |
1386 | EG1ControllerDecayInfluence = 0; |
1387 | EG1ControllerReleaseInfluence = 0; |
1388 | EG2Controller.type = eg2_ctrl_t::type_none; |
1389 | EG2Controller.controller_number = 0; |
1390 | EG2ControllerInvert = false; |
1391 | EG2ControllerAttackInfluence = 0; |
1392 | EG2ControllerDecayInfluence = 0; |
1393 | EG2ControllerReleaseInfluence = 0; |
1394 | LFO1Frequency = 1.0; |
1395 | EG2Attack = 0.0; |
1396 | EG2Decay1 = 0.0; |
1397 | EG2Sustain = 0; |
1398 | EG2Release = 0.0; |
1399 | LFO2ControlDepth = 0; |
1400 | LFO2Frequency = 1.0; |
1401 | LFO2InternalDepth = 0; |
1402 | EG1Decay2 = 0.0; |
1403 | EG1InfiniteSustain = false; |
1404 | EG1PreAttack = 1000; |
1405 | EG2Decay2 = 0.0; |
1406 | EG2InfiniteSustain = false; |
1407 | EG2PreAttack = 1000; |
1408 | VelocityResponseCurve = curve_type_nonlinear; |
1409 | VelocityResponseDepth = 3; |
1410 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1411 | ReleaseVelocityResponseDepth = 3; |
1412 | VelocityResponseCurveScaling = 32; |
1413 | AttenuationControllerThreshold = 0; |
1414 | SampleStartOffset = 0; |
1415 | PitchTrack = true; |
1416 | DimensionBypass = dim_bypass_ctrl_none; |
1417 | Pan = 0; |
1418 | SelfMask = true; |
1419 | LFO3Controller = lfo3_ctrl_modwheel; |
1420 | LFO3Sync = false; |
1421 | InvertAttenuationController = false; |
1422 | AttenuationController.type = attenuation_ctrl_t::type_none; |
1423 | AttenuationController.controller_number = 0; |
1424 | LFO2Controller = lfo2_ctrl_internal; |
1425 | LFO2FlipPhase = false; |
1426 | LFO2Sync = false; |
1427 | LFO1Controller = lfo1_ctrl_internal; |
1428 | LFO1FlipPhase = false; |
1429 | LFO1Sync = false; |
1430 | VCFResonanceController = vcf_res_ctrl_none; |
1431 | EG3Depth = 0; |
1432 | ChannelOffset = 0; |
1433 | MSDecode = false; |
1434 | SustainDefeat = false; |
1435 | VelocityUpperLimit = 0; |
1436 | ReleaseTriggerDecay = 0; |
1437 | EG1Hold = false; |
1438 | VCFEnabled = false; |
1439 | VCFCutoff = 0; |
1440 | VCFCutoffController = vcf_cutoff_ctrl_none; |
1441 | VCFCutoffControllerInvert = false; |
1442 | VCFVelocityScale = 0; |
1443 | VCFResonance = 0; |
1444 | VCFResonanceDynamic = false; |
1445 | VCFKeyboardTracking = false; |
1446 | VCFKeyboardTrackingBreakpoint = 0; |
1447 | VCFVelocityDynamicRange = 0x04; |
1448 | VCFVelocityCurve = curve_type_linear; |
1449 | VCFType = vcf_type_lowpass; |
1450 | memset(DimensionUpperLimits, 0, 8); |
1451 | } |
1452 | |
1453 | pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve, |
1454 | VelocityResponseDepth, |
1455 | VelocityResponseCurveScaling); |
1456 | |
1457 | curve_type_t curveType = ReleaseVelocityResponseCurve; |
1458 | uint8_t depth = ReleaseVelocityResponseDepth; |
1459 | |
1460 | // this models a strange behaviour or bug in GSt: two of the |
1461 | // velocity response curves for release time are not used even |
1462 | // if specified, instead another curve is chosen. |
1463 | if ((curveType == curve_type_nonlinear && depth == 0) || |
1464 | (curveType == curve_type_special && depth == 4)) { |
1465 | curveType = curve_type_nonlinear; |
1466 | depth = 3; |
1467 | } |
1468 | pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0); |
1469 | |
1470 | curveType = VCFVelocityCurve; |
1471 | depth = VCFVelocityDynamicRange; |
1472 | |
1473 | // even stranger GSt: two of the velocity response curves for |
1474 | // filter cutoff are not used, instead another special curve |
1475 | // is chosen. This curve is not used anywhere else. |
1476 | if ((curveType == curve_type_nonlinear && depth == 0) || |
1477 | (curveType == curve_type_special && depth == 4)) { |
1478 | curveType = curve_type_special; |
1479 | depth = 5; |
1480 | } |
1481 | pVelocityCutoffTable = GetVelocityTable(curveType, depth, |
1482 | VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0); |
1483 | |
1484 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1485 | VelocityTable = 0; |
1486 | } |
1487 | |
1488 | /** |
1489 | * Apply dimension region settings to the respective RIFF chunks. You |
1490 | * have to call File::Save() to make changes persistent. |
1491 | * |
1492 | * Usually there is absolutely no need to call this method explicitly. |
1493 | * It will be called automatically when File::Save() was called. |
1494 | */ |
1495 | void DimensionRegion::UpdateChunks() { |
1496 | // first update base class's chunk |
1497 | DLS::Sampler::UpdateChunks(); |
1498 | |
1499 | // make sure '3ewa' chunk exists |
1500 | RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA); |
1501 | if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140); |
1502 | uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData(); |
1503 | |
1504 | // update '3ewa' chunk with DimensionRegion's current settings |
1505 | |
1506 | const uint32_t chunksize = _3ewa->GetSize(); |
1507 | store32(&pData[0], chunksize); // unknown, always chunk size? |
1508 | |
1509 | const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency); |
1510 | store32(&pData[4], lfo3freq); |
1511 | |
1512 | const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack); |
1513 | store32(&pData[8], eg3attack); |
1514 | |
1515 | // next 2 bytes unknown |
1516 | |
1517 | store16(&pData[14], LFO1InternalDepth); |
1518 | |
1519 | // next 2 bytes unknown |
1520 | |
1521 | store16(&pData[18], LFO3InternalDepth); |
1522 | |
1523 | // next 2 bytes unknown |
1524 | |
1525 | store16(&pData[22], LFO1ControlDepth); |
1526 | |
1527 | // next 2 bytes unknown |
1528 | |
1529 | store16(&pData[26], LFO3ControlDepth); |
1530 | |
1531 | const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack); |
1532 | store32(&pData[28], eg1attack); |
1533 | |
1534 | const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1); |
1535 | store32(&pData[32], eg1decay1); |
1536 | |
1537 | // next 2 bytes unknown |
1538 | |
1539 | store16(&pData[38], EG1Sustain); |
1540 | |
1541 | const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release); |
1542 | store32(&pData[40], eg1release); |
1543 | |
1544 | const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller); |
1545 | pData[44] = eg1ctl; |
1546 | |
1547 | const uint8_t eg1ctrloptions = |
1548 | (EG1ControllerInvert) ? 0x01 : 0x00 | |
1549 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) | |
1550 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) | |
1551 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence); |
1552 | pData[45] = eg1ctrloptions; |
1553 | |
1554 | const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller); |
1555 | pData[46] = eg2ctl; |
1556 | |
1557 | const uint8_t eg2ctrloptions = |
1558 | (EG2ControllerInvert) ? 0x01 : 0x00 | |
1559 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) | |
1560 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) | |
1561 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence); |
1562 | pData[47] = eg2ctrloptions; |
1563 | |
1564 | const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency); |
1565 | store32(&pData[48], lfo1freq); |
1566 | |
1567 | const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack); |
1568 | store32(&pData[52], eg2attack); |
1569 | |
1570 | const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1); |
1571 | store32(&pData[56], eg2decay1); |
1572 | |
1573 | // next 2 bytes unknown |
1574 | |
1575 | store16(&pData[62], EG2Sustain); |
1576 | |
1577 | const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release); |
1578 | store32(&pData[64], eg2release); |
1579 | |
1580 | // next 2 bytes unknown |
1581 | |
1582 | store16(&pData[70], LFO2ControlDepth); |
1583 | |
1584 | const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency); |
1585 | store32(&pData[72], lfo2freq); |
1586 | |
1587 | // next 2 bytes unknown |
1588 | |
1589 | store16(&pData[78], LFO2InternalDepth); |
1590 | |
1591 | const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2); |
1592 | store32(&pData[80], eg1decay2); |
1593 | |
1594 | // next 2 bytes unknown |
1595 | |
1596 | store16(&pData[86], EG1PreAttack); |
1597 | |
1598 | const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2); |
1599 | store32(&pData[88], eg2decay2); |
1600 | |
1601 | // next 2 bytes unknown |
1602 | |
1603 | store16(&pData[94], EG2PreAttack); |
1604 | |
1605 | { |
1606 | if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4"); |
1607 | uint8_t velocityresponse = VelocityResponseDepth; |
1608 | switch (VelocityResponseCurve) { |
1609 | case curve_type_nonlinear: |
1610 | break; |
1611 | case curve_type_linear: |
1612 | velocityresponse += 5; |
1613 | break; |
1614 | case curve_type_special: |
1615 | velocityresponse += 10; |
1616 | break; |
1617 | case curve_type_unknown: |
1618 | default: |
1619 | throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected"); |
1620 | } |
1621 | pData[96] = velocityresponse; |
1622 | } |
1623 | |
1624 | { |
1625 | if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4"); |
1626 | uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth; |
1627 | switch (ReleaseVelocityResponseCurve) { |
1628 | case curve_type_nonlinear: |
1629 | break; |
1630 | case curve_type_linear: |
1631 | releasevelocityresponse += 5; |
1632 | break; |
1633 | case curve_type_special: |
1634 | releasevelocityresponse += 10; |
1635 | break; |
1636 | case curve_type_unknown: |
1637 | default: |
1638 | throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected"); |
1639 | } |
1640 | pData[97] = releasevelocityresponse; |
1641 | } |
1642 | |
1643 | pData[98] = VelocityResponseCurveScaling; |
1644 | |
1645 | pData[99] = AttenuationControllerThreshold; |
1646 | |
1647 | // next 4 bytes unknown |
1648 | |
1649 | store16(&pData[104], SampleStartOffset); |
1650 | |
1651 | // next 2 bytes unknown |
1652 | |
1653 | { |
1654 | uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack); |
1655 | switch (DimensionBypass) { |
1656 | case dim_bypass_ctrl_94: |
1657 | pitchTrackDimensionBypass |= 0x10; |
1658 | break; |
1659 | case dim_bypass_ctrl_95: |
1660 | pitchTrackDimensionBypass |= 0x20; |
1661 | break; |
1662 | case dim_bypass_ctrl_none: |
1663 | //FIXME: should we set anything here? |
1664 | break; |
1665 | default: |
1666 | throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected"); |
1667 | } |
1668 | pData[108] = pitchTrackDimensionBypass; |
1669 | } |
1670 | |
1671 | const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit |
1672 | pData[109] = pan; |
1673 | |
1674 | const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00; |
1675 | pData[110] = selfmask; |
1676 | |
1677 | // next byte unknown |
1678 | |
1679 | { |
1680 | uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits |
1681 | if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5 |
1682 | if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7 |
1683 | if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6 |
1684 | pData[112] = lfo3ctrl; |
1685 | } |
1686 | |
1687 | const uint8_t attenctl = EncodeLeverageController(AttenuationController); |
1688 | pData[113] = attenctl; |
1689 | |
1690 | { |
1691 | uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits |
1692 | if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7 |
1693 | if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5 |
1694 | if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6 |
1695 | pData[114] = lfo2ctrl; |
1696 | } |
1697 | |
1698 | { |
1699 | uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits |
1700 | if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7 |
1701 | if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6 |
1702 | if (VCFResonanceController != vcf_res_ctrl_none) |
1703 | lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController); |
1704 | pData[115] = lfo1ctrl; |
1705 | } |
1706 | |
1707 | const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth |
1708 | : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */ |
1709 | pData[116] = eg3depth; |
1710 | |
1711 | // next 2 bytes unknown |
1712 | |
1713 | const uint8_t channeloffset = ChannelOffset * 4; |
1714 | pData[120] = channeloffset; |
1715 | |
1716 | { |
1717 | uint8_t regoptions = 0; |
1718 | if (MSDecode) regoptions |= 0x01; // bit 0 |
1719 | if (SustainDefeat) regoptions |= 0x02; // bit 1 |
1720 | pData[121] = regoptions; |
1721 | } |
1722 | |
1723 | // next 2 bytes unknown |
1724 | |
1725 | pData[124] = VelocityUpperLimit; |
1726 | |
1727 | // next 3 bytes unknown |
1728 | |
1729 | pData[128] = ReleaseTriggerDecay; |
1730 | |
1731 | // next 2 bytes unknown |
1732 | |
1733 | const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7 |
1734 | pData[131] = eg1hold; |
1735 | |
1736 | const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */ |
1737 | (VCFCutoff & 0x7f); /* lower 7 bits */ |
1738 | pData[132] = vcfcutoff; |
1739 | |
1740 | pData[133] = VCFCutoffController; |
1741 | |
1742 | const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */ |
1743 | (VCFVelocityScale & 0x7f); /* lower 7 bits */ |
1744 | pData[134] = vcfvelscale; |
1745 | |
1746 | // next byte unknown |
1747 | |
1748 | const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */ |
1749 | (VCFResonance & 0x7f); /* lower 7 bits */ |
1750 | pData[136] = vcfresonance; |
1751 | |
1752 | const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */ |
1753 | (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */ |
1754 | pData[137] = vcfbreakpoint; |
1755 | |
1756 | const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 | |
1757 | VCFVelocityCurve * 5; |
1758 | pData[138] = vcfvelocity; |
1759 | |
1760 | const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType; |
1761 | pData[139] = vcftype; |
1762 | |
1763 | if (chunksize >= 148) { |
1764 | memcpy(&pData[140], DimensionUpperLimits, 8); |
1765 | } |
1766 | } |
1767 | |
1768 | // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet |
1769 | double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) |
1770 | { |
1771 | double* table; |
1772 | uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling; |
1773 | if (pVelocityTables->count(tableKey)) { // if key exists |
1774 | table = (*pVelocityTables)[tableKey]; |
1775 | } |
1776 | else { |
1777 | table = CreateVelocityTable(curveType, depth, scaling); |
1778 | (*pVelocityTables)[tableKey] = table; // put the new table into the tables map |
1779 | } |
1780 | return table; |
1781 | } |
1782 | |
1783 | leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) { |
1784 | leverage_ctrl_t decodedcontroller; |
1785 | switch (EncodedController) { |
1786 | // special controller |
1787 | case _lev_ctrl_none: |
1788 | decodedcontroller.type = leverage_ctrl_t::type_none; |
1789 | decodedcontroller.controller_number = 0; |
1790 | break; |
1791 | case _lev_ctrl_velocity: |
1792 | decodedcontroller.type = leverage_ctrl_t::type_velocity; |
1793 | decodedcontroller.controller_number = 0; |
1794 | break; |
1795 | case _lev_ctrl_channelaftertouch: |
1796 | decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch; |
1797 | decodedcontroller.controller_number = 0; |
1798 | break; |
1799 | |
1800 | // ordinary MIDI control change controller |
1801 | case _lev_ctrl_modwheel: |
1802 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1803 | decodedcontroller.controller_number = 1; |
1804 | break; |
1805 | case _lev_ctrl_breath: |
1806 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1807 | decodedcontroller.controller_number = 2; |
1808 | break; |
1809 | case _lev_ctrl_foot: |
1810 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1811 | decodedcontroller.controller_number = 4; |
1812 | break; |
1813 | case _lev_ctrl_effect1: |
1814 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1815 | decodedcontroller.controller_number = 12; |
1816 | break; |
1817 | case _lev_ctrl_effect2: |
1818 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1819 | decodedcontroller.controller_number = 13; |
1820 | break; |
1821 | case _lev_ctrl_genpurpose1: |
1822 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1823 | decodedcontroller.controller_number = 16; |
1824 | break; |
1825 | case _lev_ctrl_genpurpose2: |
1826 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1827 | decodedcontroller.controller_number = 17; |
1828 | break; |
1829 | case _lev_ctrl_genpurpose3: |
1830 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1831 | decodedcontroller.controller_number = 18; |
1832 | break; |
1833 | case _lev_ctrl_genpurpose4: |
1834 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1835 | decodedcontroller.controller_number = 19; |
1836 | break; |
1837 | case _lev_ctrl_portamentotime: |
1838 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1839 | decodedcontroller.controller_number = 5; |
1840 | break; |
1841 | case _lev_ctrl_sustainpedal: |
1842 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1843 | decodedcontroller.controller_number = 64; |
1844 | break; |
1845 | case _lev_ctrl_portamento: |
1846 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1847 | decodedcontroller.controller_number = 65; |
1848 | break; |
1849 | case _lev_ctrl_sostenutopedal: |
1850 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1851 | decodedcontroller.controller_number = 66; |
1852 | break; |
1853 | case _lev_ctrl_softpedal: |
1854 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1855 | decodedcontroller.controller_number = 67; |
1856 | break; |
1857 | case _lev_ctrl_genpurpose5: |
1858 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1859 | decodedcontroller.controller_number = 80; |
1860 | break; |
1861 | case _lev_ctrl_genpurpose6: |
1862 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1863 | decodedcontroller.controller_number = 81; |
1864 | break; |
1865 | case _lev_ctrl_genpurpose7: |
1866 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1867 | decodedcontroller.controller_number = 82; |
1868 | break; |
1869 | case _lev_ctrl_genpurpose8: |
1870 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1871 | decodedcontroller.controller_number = 83; |
1872 | break; |
1873 | case _lev_ctrl_effect1depth: |
1874 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1875 | decodedcontroller.controller_number = 91; |
1876 | break; |
1877 | case _lev_ctrl_effect2depth: |
1878 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1879 | decodedcontroller.controller_number = 92; |
1880 | break; |
1881 | case _lev_ctrl_effect3depth: |
1882 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1883 | decodedcontroller.controller_number = 93; |
1884 | break; |
1885 | case _lev_ctrl_effect4depth: |
1886 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1887 | decodedcontroller.controller_number = 94; |
1888 | break; |
1889 | case _lev_ctrl_effect5depth: |
1890 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1891 | decodedcontroller.controller_number = 95; |
1892 | break; |
1893 | |
1894 | // unknown controller type |
1895 | default: |
1896 | throw gig::Exception("Unknown leverage controller type."); |
1897 | } |
1898 | return decodedcontroller; |
1899 | } |
1900 | |
1901 | DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) { |
1902 | _lev_ctrl_t encodedcontroller; |
1903 | switch (DecodedController.type) { |
1904 | // special controller |
1905 | case leverage_ctrl_t::type_none: |
1906 | encodedcontroller = _lev_ctrl_none; |
1907 | break; |
1908 | case leverage_ctrl_t::type_velocity: |
1909 | encodedcontroller = _lev_ctrl_velocity; |
1910 | break; |
1911 | case leverage_ctrl_t::type_channelaftertouch: |
1912 | encodedcontroller = _lev_ctrl_channelaftertouch; |
1913 | break; |
1914 | |
1915 | // ordinary MIDI control change controller |
1916 | case leverage_ctrl_t::type_controlchange: |
1917 | switch (DecodedController.controller_number) { |
1918 | case 1: |
1919 | encodedcontroller = _lev_ctrl_modwheel; |
1920 | break; |
1921 | case 2: |
1922 | encodedcontroller = _lev_ctrl_breath; |
1923 | break; |
1924 | case 4: |
1925 | encodedcontroller = _lev_ctrl_foot; |
1926 | break; |
1927 | case 12: |
1928 | encodedcontroller = _lev_ctrl_effect1; |
1929 | break; |
1930 | case 13: |
1931 | encodedcontroller = _lev_ctrl_effect2; |
1932 | break; |
1933 | case 16: |
1934 | encodedcontroller = _lev_ctrl_genpurpose1; |
1935 | break; |
1936 | case 17: |
1937 | encodedcontroller = _lev_ctrl_genpurpose2; |
1938 | break; |
1939 | case 18: |
1940 | encodedcontroller = _lev_ctrl_genpurpose3; |
1941 | break; |
1942 | case 19: |
1943 | encodedcontroller = _lev_ctrl_genpurpose4; |
1944 | break; |
1945 | case 5: |
1946 | encodedcontroller = _lev_ctrl_portamentotime; |
1947 | break; |
1948 | case 64: |
1949 | encodedcontroller = _lev_ctrl_sustainpedal; |
1950 | break; |
1951 | case 65: |
1952 | encodedcontroller = _lev_ctrl_portamento; |
1953 | break; |
1954 | case 66: |
1955 | encodedcontroller = _lev_ctrl_sostenutopedal; |
1956 | break; |
1957 | case 67: |
1958 | encodedcontroller = _lev_ctrl_softpedal; |
1959 | break; |
1960 | case 80: |
1961 | encodedcontroller = _lev_ctrl_genpurpose5; |
1962 | break; |
1963 | case 81: |
1964 | encodedcontroller = _lev_ctrl_genpurpose6; |
1965 | break; |
1966 | case 82: |
1967 | encodedcontroller = _lev_ctrl_genpurpose7; |
1968 | break; |
1969 | case 83: |
1970 | encodedcontroller = _lev_ctrl_genpurpose8; |
1971 | break; |
1972 | case 91: |
1973 | encodedcontroller = _lev_ctrl_effect1depth; |
1974 | break; |
1975 | case 92: |
1976 | encodedcontroller = _lev_ctrl_effect2depth; |
1977 | break; |
1978 | case 93: |
1979 | encodedcontroller = _lev_ctrl_effect3depth; |
1980 | break; |
1981 | case 94: |
1982 | encodedcontroller = _lev_ctrl_effect4depth; |
1983 | break; |
1984 | case 95: |
1985 | encodedcontroller = _lev_ctrl_effect5depth; |
1986 | break; |
1987 | default: |
1988 | throw gig::Exception("leverage controller number is not supported by the gig format"); |
1989 | } |
1990 | default: |
1991 | throw gig::Exception("Unknown leverage controller type."); |
1992 | } |
1993 | return encodedcontroller; |
1994 | } |
1995 | |
1996 | DimensionRegion::~DimensionRegion() { |
1997 | Instances--; |
1998 | if (!Instances) { |
1999 | // delete the velocity->volume tables |
2000 | VelocityTableMap::iterator iter; |
2001 | for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) { |
2002 | double* pTable = iter->second; |
2003 | if (pTable) delete[] pTable; |
2004 | } |
2005 | pVelocityTables->clear(); |
2006 | delete pVelocityTables; |
2007 | pVelocityTables = NULL; |
2008 | } |
2009 | if (VelocityTable) delete[] VelocityTable; |
2010 | } |
2011 | |
2012 | /** |
2013 | * Returns the correct amplitude factor for the given \a MIDIKeyVelocity. |
2014 | * All involved parameters (VelocityResponseCurve, VelocityResponseDepth |
2015 | * and VelocityResponseCurveScaling) involved are taken into account to |
2016 | * calculate the amplitude factor. Use this method when a key was |
2017 | * triggered to get the volume with which the sample should be played |
2018 | * back. |
2019 | * |
2020 | * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127) |
2021 | * @returns amplitude factor (between 0.0 and 1.0) |
2022 | */ |
2023 | double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) { |
2024 | return pVelocityAttenuationTable[MIDIKeyVelocity]; |
2025 | } |
2026 | |
2027 | double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) { |
2028 | return pVelocityReleaseTable[MIDIKeyVelocity]; |
2029 | } |
2030 | |
2031 | double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) { |
2032 | return pVelocityCutoffTable[MIDIKeyVelocity]; |
2033 | } |
2034 | |
2035 | double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) { |
2036 | |
2037 | // line-segment approximations of the 15 velocity curves |
2038 | |
2039 | // linear |
2040 | const int lin0[] = { 1, 1, 127, 127 }; |
2041 | const int lin1[] = { 1, 21, 127, 127 }; |
2042 | const int lin2[] = { 1, 45, 127, 127 }; |
2043 | const int lin3[] = { 1, 74, 127, 127 }; |
2044 | const int lin4[] = { 1, 127, 127, 127 }; |
2045 | |
2046 | // non-linear |
2047 | const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 }; |
2048 | const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127, |
2049 | 127, 127 }; |
2050 | const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127, |
2051 | 127, 127 }; |
2052 | const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127, |
2053 | 127, 127 }; |
2054 | const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 }; |
2055 | |
2056 | // special |
2057 | const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44, |
2058 | 113, 127, 127, 127 }; |
2059 | const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67, |
2060 | 118, 127, 127, 127 }; |
2061 | const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74, |
2062 | 85, 90, 91, 127, 127, 127 }; |
2063 | const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73, |
2064 | 117, 127, 127, 127 }; |
2065 | const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127, |
2066 | 127, 127 }; |
2067 | |
2068 | // this is only used by the VCF velocity curve |
2069 | const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106, |
2070 | 91, 127, 127, 127 }; |
2071 | |
2072 | const int* const curves[] = { non0, non1, non2, non3, non4, |
2073 | lin0, lin1, lin2, lin3, lin4, |
2074 | spe0, spe1, spe2, spe3, spe4, spe5 }; |
2075 | |
2076 | double* const table = new double[128]; |
2077 | |
2078 | const int* curve = curves[curveType * 5 + depth]; |
2079 | const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling |
2080 | |
2081 | table[0] = 0; |
2082 | for (int x = 1 ; x < 128 ; x++) { |
2083 | |
2084 | if (x > curve[2]) curve += 2; |
2085 | double y = curve[1] + (x - curve[0]) * |
2086 | (double(curve[3] - curve[1]) / (curve[2] - curve[0])); |
2087 | y = y / 127; |
2088 | |
2089 | // Scale up for s > 20, down for s < 20. When |
2090 | // down-scaling, the curve still ends at 1.0. |
2091 | if (s < 20 && y >= 0.5) |
2092 | y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1); |
2093 | else |
2094 | y = y * (s / 20.0); |
2095 | if (y > 1) y = 1; |
2096 | |
2097 | table[x] = y; |
2098 | } |
2099 | return table; |
2100 | } |
2101 | |
2102 | |
2103 | // *************** Region *************** |
2104 | // * |
2105 | |
2106 | Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) { |
2107 | pInfo->UseFixedLengthStrings = true; |
2108 | |
2109 | // Initialization |
2110 | Dimensions = 0; |
2111 | for (int i = 0; i < 256; i++) { |
2112 | pDimensionRegions[i] = NULL; |
2113 | } |
2114 | Layers = 1; |
2115 | File* file = (File*) GetParent()->GetParent(); |
2116 | int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5; |
2117 | |
2118 | // Actual Loading |
2119 | |
2120 | LoadDimensionRegions(rgnList); |
2121 | |
2122 | RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK); |
2123 | if (_3lnk) { |
2124 | DimensionRegions = _3lnk->ReadUint32(); |
2125 | for (int i = 0; i < dimensionBits; i++) { |
2126 | dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8()); |
2127 | uint8_t bits = _3lnk->ReadUint8(); |
2128 | _3lnk->ReadUint8(); // probably the position of the dimension |
2129 | _3lnk->ReadUint8(); // unknown |
2130 | uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits) |
2131 | if (dimension == dimension_none) { // inactive dimension |
2132 | pDimensionDefinitions[i].dimension = dimension_none; |
2133 | pDimensionDefinitions[i].bits = 0; |
2134 | pDimensionDefinitions[i].zones = 0; |
2135 | pDimensionDefinitions[i].split_type = split_type_bit; |
2136 | pDimensionDefinitions[i].zone_size = 0; |
2137 | } |
2138 | else { // active dimension |
2139 | pDimensionDefinitions[i].dimension = dimension; |
2140 | pDimensionDefinitions[i].bits = bits; |
2141 | pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits) |
2142 | pDimensionDefinitions[i].split_type = __resolveSplitType(dimension); |
2143 | pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]); |
2144 | Dimensions++; |
2145 | |
2146 | // if this is a layer dimension, remember the amount of layers |
2147 | if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones; |
2148 | } |
2149 | _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition |
2150 | } |
2151 | for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0; |
2152 | |
2153 | // if there's a velocity dimension and custom velocity zone splits are used, |
2154 | // update the VelocityTables in the dimension regions |
2155 | UpdateVelocityTable(); |
2156 | |
2157 | // jump to start of the wave pool indices (if not already there) |
2158 | if (file->pVersion && file->pVersion->major == 3) |
2159 | _3lnk->SetPos(68); // version 3 has a different 3lnk structure |
2160 | else |
2161 | _3lnk->SetPos(44); |
2162 | |
2163 | // load sample references |
2164 | for (uint i = 0; i < DimensionRegions; i++) { |
2165 | uint32_t wavepoolindex = _3lnk->ReadUint32(); |
2166 | if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex); |
2167 | } |
2168 | GetSample(); // load global region sample reference |
2169 | } else { |
2170 | DimensionRegions = 0; |
2171 | } |
2172 | |
2173 | // make sure there is at least one dimension region |
2174 | if (!DimensionRegions) { |
2175 | RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG); |
2176 | if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG); |
2177 | RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL); |
2178 | pDimensionRegions[0] = new DimensionRegion(_3ewl); |
2179 | DimensionRegions = 1; |
2180 | } |
2181 | } |
2182 | |
2183 | /** |
2184 | * Apply Region settings and all its DimensionRegions to the respective |
2185 | * RIFF chunks. You have to call File::Save() to make changes persistent. |
2186 | * |
2187 | * Usually there is absolutely no need to call this method explicitly. |
2188 | * It will be called automatically when File::Save() was called. |
2189 | * |
2190 | * @throws gig::Exception if samples cannot be dereferenced |
2191 | */ |
2192 | void Region::UpdateChunks() { |
2193 | // in the gig format we don't care about the Region's sample reference |
2194 | // but we still have to provide some existing one to not corrupt the |
2195 | // file, so to avoid the latter we simply always assign the sample of |
2196 | // the first dimension region of this region |
2197 | pSample = pDimensionRegions[0]->pSample; |
2198 | |
2199 | // first update base class's chunks |
2200 | DLS::Region::UpdateChunks(); |
2201 | |
2202 | // update dimension region's chunks |
2203 | for (int i = 0; i < DimensionRegions; i++) { |
2204 | pDimensionRegions[i]->UpdateChunks(); |
2205 | } |
2206 | |
2207 | File* pFile = (File*) GetParent()->GetParent(); |
2208 | const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5; |
2209 | const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32; |
2210 | |
2211 | // make sure '3lnk' chunk exists |
2212 | RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK); |
2213 | if (!_3lnk) { |
2214 | const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172; |
2215 | _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize); |
2216 | } |
2217 | |
2218 | // update dimension definitions in '3lnk' chunk |
2219 | uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData(); |
2220 | store32(&pData[0], DimensionRegions); |
2221 | for (int i = 0; i < iMaxDimensions; i++) { |
2222 | pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension; |
2223 | pData[5 + i * 8] = pDimensionDefinitions[i].bits; |
2224 | // next 2 bytes unknown |
2225 | pData[8 + i * 8] = pDimensionDefinitions[i].zones; |
2226 | // next 3 bytes unknown |
2227 | } |
2228 | |
2229 | // update wave pool table in '3lnk' chunk |
2230 | const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44; |
2231 | for (uint i = 0; i < iMaxDimensionRegions; i++) { |
2232 | int iWaveIndex = -1; |
2233 | if (i < DimensionRegions) { |
2234 | if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples"); |
2235 | File::SampleList::iterator iter = pFile->pSamples->begin(); |
2236 | File::SampleList::iterator end = pFile->pSamples->end(); |
2237 | for (int index = 0; iter != end; ++iter, ++index) { |
2238 | if (*iter == pDimensionRegions[i]->pSample) { |
2239 | iWaveIndex = index; |
2240 | break; |
2241 | } |
2242 | } |
2243 | if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample"); |
2244 | } |
2245 | store32(&pData[iWavePoolOffset + i * 4], iWaveIndex); |
2246 | } |
2247 | } |
2248 | |
2249 | void Region::LoadDimensionRegions(RIFF::List* rgn) { |
2250 | RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG); |
2251 | if (_3prg) { |
2252 | int dimensionRegionNr = 0; |
2253 | RIFF::List* _3ewl = _3prg->GetFirstSubList(); |
2254 | while (_3ewl) { |
2255 | if (_3ewl->GetListType() == LIST_TYPE_3EWL) { |
2256 | pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl); |
2257 | dimensionRegionNr++; |
2258 | } |
2259 | _3ewl = _3prg->GetNextSubList(); |
2260 | } |
2261 | if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found."); |
2262 | } |
2263 | } |
2264 | |
2265 | void Region::UpdateVelocityTable() { |
2266 | // get velocity dimension's index |
2267 | int veldim = -1; |
2268 | for (int i = 0 ; i < Dimensions ; i++) { |
2269 | if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) { |
2270 | veldim = i; |
2271 | break; |
2272 | } |
2273 | } |
2274 | if (veldim == -1) return; |
2275 | |
2276 | int step = 1; |
2277 | for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits; |
2278 | int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step; |
2279 | int end = step * pDimensionDefinitions[veldim].zones; |
2280 | |
2281 | // loop through all dimension regions for all dimensions except the velocity dimension |
2282 | int dim[8] = { 0 }; |
2283 | for (int i = 0 ; i < DimensionRegions ; i++) { |
2284 | |
2285 | if (pDimensionRegions[i]->DimensionUpperLimits[veldim] || |
2286 | pDimensionRegions[i]->VelocityUpperLimit) { |
2287 | // create the velocity table |
2288 | uint8_t* table = pDimensionRegions[i]->VelocityTable; |
2289 | if (!table) { |
2290 | table = new uint8_t[128]; |
2291 | pDimensionRegions[i]->VelocityTable = table; |
2292 | } |
2293 | int tableidx = 0; |
2294 | int velocityZone = 0; |
2295 | if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3 |
2296 | for (int k = i ; k < end ; k += step) { |
2297 | DimensionRegion *d = pDimensionRegions[k]; |
2298 | for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone; |
2299 | velocityZone++; |
2300 | } |
2301 | } else { // gig2 |
2302 | for (int k = i ; k < end ; k += step) { |
2303 | DimensionRegion *d = pDimensionRegions[k]; |
2304 | for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone; |
2305 | velocityZone++; |
2306 | } |
2307 | } |
2308 | } else { |
2309 | if (pDimensionRegions[i]->VelocityTable) { |
2310 | delete[] pDimensionRegions[i]->VelocityTable; |
2311 | pDimensionRegions[i]->VelocityTable = 0; |
2312 | } |
2313 | } |
2314 | |
2315 | int j; |
2316 | int shift = 0; |
2317 | for (j = 0 ; j < Dimensions ; j++) { |
2318 | if (j == veldim) i += skipveldim; // skip velocity dimension |
2319 | else { |
2320 | dim[j]++; |
2321 | if (dim[j] < pDimensionDefinitions[j].zones) break; |
2322 | else { |
2323 | // skip unused dimension regions |
2324 | dim[j] = 0; |
2325 | i += ((1 << pDimensionDefinitions[j].bits) - |
2326 | pDimensionDefinitions[j].zones) << shift; |
2327 | } |
2328 | } |
2329 | shift += pDimensionDefinitions[j].bits; |
2330 | } |
2331 | if (j == Dimensions) break; |
2332 | } |
2333 | } |
2334 | |
2335 | /** @brief Einstein would have dreamed of it - create a new dimension. |
2336 | * |
2337 | * Creates a new dimension with the dimension definition given by |
2338 | * \a pDimDef. The appropriate amount of DimensionRegions will be created. |
2339 | * There is a hard limit of dimensions and total amount of "bits" all |
2340 | * dimensions can have. This limit is dependant to what gig file format |
2341 | * version this file refers to. The gig v2 (and lower) format has a |
2342 | * dimension limit and total amount of bits limit of 5, whereas the gig v3 |
2343 | * format has a limit of 8. |
2344 | * |
2345 | * @param pDimDef - defintion of the new dimension |
2346 | * @throws gig::Exception if dimension of the same type exists already |
2347 | * @throws gig::Exception if amount of dimensions or total amount of |
2348 | * dimension bits limit is violated |
2349 | */ |
2350 | void Region::AddDimension(dimension_def_t* pDimDef) { |
2351 | // check if max. amount of dimensions reached |
2352 | File* file = (File*) GetParent()->GetParent(); |
2353 | const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5; |
2354 | if (Dimensions >= iMaxDimensions) |
2355 | throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached"); |
2356 | // check if max. amount of dimension bits reached |
2357 | int iCurrentBits = 0; |
2358 | for (int i = 0; i < Dimensions; i++) |
2359 | iCurrentBits += pDimensionDefinitions[i].bits; |
2360 | if (iCurrentBits >= iMaxDimensions) |
2361 | throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached"); |
2362 | const int iNewBits = iCurrentBits + pDimDef->bits; |
2363 | if (iNewBits > iMaxDimensions) |
2364 | throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits"); |
2365 | // check if there's already a dimensions of the same type |
2366 | for (int i = 0; i < Dimensions; i++) |
2367 | if (pDimensionDefinitions[i].dimension == pDimDef->dimension) |
2368 | throw gig::Exception("Could not add new dimension, there is already a dimension of the same type"); |
2369 | |
2370 | // assign definition of new dimension |
2371 | pDimensionDefinitions[Dimensions] = *pDimDef; |
2372 | |
2373 | // auto correct certain dimension definition fields (where possible) |
2374 | pDimensionDefinitions[Dimensions].split_type = |
2375 | __resolveSplitType(pDimensionDefinitions[Dimensions].dimension); |
2376 | pDimensionDefinitions[Dimensions].zone_size = |
2377 | __resolveZoneSize(pDimensionDefinitions[Dimensions]); |
2378 | |
2379 | // create new dimension region(s) for this new dimension |
2380 | for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) { |
2381 | //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values |
2382 | RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL); |
2383 | pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk); |
2384 | DimensionRegions++; |
2385 | } |
2386 | |
2387 | Dimensions++; |
2388 | |
2389 | // if this is a layer dimension, update 'Layers' attribute |
2390 | if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones; |
2391 | |
2392 | UpdateVelocityTable(); |
2393 | } |
2394 | |
2395 | /** @brief Delete an existing dimension. |
2396 | * |
2397 | * Deletes the dimension given by \a pDimDef and deletes all respective |
2398 | * dimension regions, that is all dimension regions where the dimension's |
2399 | * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension |
2400 | * for example this would delete all dimension regions for the case(s) |
2401 | * where the sustain pedal is pressed down. |
2402 | * |
2403 | * @param pDimDef - dimension to delete |
2404 | * @throws gig::Exception if given dimension cannot be found |
2405 | */ |
2406 | void Region::DeleteDimension(dimension_def_t* pDimDef) { |
2407 | // get dimension's index |
2408 | int iDimensionNr = -1; |
2409 | for (int i = 0; i < Dimensions; i++) { |
2410 | if (&pDimensionDefinitions[i] == pDimDef) { |
2411 | iDimensionNr = i; |
2412 | break; |
2413 | } |
2414 | } |
2415 | if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer"); |
2416 | |
2417 | // get amount of bits below the dimension to delete |
2418 | int iLowerBits = 0; |
2419 | for (int i = 0; i < iDimensionNr; i++) |
2420 | iLowerBits += pDimensionDefinitions[i].bits; |
2421 | |
2422 | // get amount ot bits above the dimension to delete |
2423 | int iUpperBits = 0; |
2424 | for (int i = iDimensionNr + 1; i < Dimensions; i++) |
2425 | iUpperBits += pDimensionDefinitions[i].bits; |
2426 | |
2427 | // delete dimension regions which belong to the given dimension |
2428 | // (that is where the dimension's bit > 0) |
2429 | for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) { |
2430 | for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) { |
2431 | for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) { |
2432 | int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) | |
2433 | iObsoleteBit << iLowerBits | |
2434 | iLowerBit; |
2435 | delete pDimensionRegions[iToDelete]; |
2436 | pDimensionRegions[iToDelete] = NULL; |
2437 | DimensionRegions--; |
2438 | } |
2439 | } |
2440 | } |
2441 | |
2442 | // defrag pDimensionRegions array |
2443 | // (that is remove the NULL spaces within the pDimensionRegions array) |
2444 | for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) { |
2445 | if (!pDimensionRegions[iTo]) { |
2446 | if (iFrom <= iTo) iFrom = iTo + 1; |
2447 | while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++; |
2448 | if (iFrom < 256 && pDimensionRegions[iFrom]) { |
2449 | pDimensionRegions[iTo] = pDimensionRegions[iFrom]; |
2450 | pDimensionRegions[iFrom] = NULL; |
2451 | } |
2452 | } |
2453 | } |
2454 | |
2455 | // 'remove' dimension definition |
2456 | for (int i = iDimensionNr + 1; i < Dimensions; i++) { |
2457 | pDimensionDefinitions[i - 1] = pDimensionDefinitions[i]; |
2458 | } |
2459 | pDimensionDefinitions[Dimensions - 1].dimension = dimension_none; |
2460 | pDimensionDefinitions[Dimensions - 1].bits = 0; |
2461 | pDimensionDefinitions[Dimensions - 1].zones = 0; |
2462 | |
2463 | Dimensions--; |
2464 | |
2465 | // if this was a layer dimension, update 'Layers' attribute |
2466 | if (pDimDef->dimension == dimension_layer) Layers = 1; |
2467 | } |
2468 | |
2469 | Region::~Region() { |
2470 | for (int i = 0; i < 256; i++) { |
2471 | if (pDimensionRegions[i]) delete pDimensionRegions[i]; |
2472 | } |
2473 | } |
2474 | |
2475 | /** |
2476 | * Use this method in your audio engine to get the appropriate dimension |
2477 | * region with it's articulation data for the current situation. Just |
2478 | * call the method with the current MIDI controller values and you'll get |
2479 | * the DimensionRegion with the appropriate articulation data for the |
2480 | * current situation (for this Region of course only). To do that you'll |
2481 | * first have to look which dimensions with which controllers and in |
2482 | * which order are defined for this Region when you load the .gig file. |
2483 | * Special cases are e.g. layer or channel dimensions where you just put |
2484 | * in the index numbers instead of a MIDI controller value (means 0 for |
2485 | * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1, |
2486 | * etc.). |
2487 | * |
2488 | * @param DimValues MIDI controller values (0-127) for dimension 0 to 7 |
2489 | * @returns adress to the DimensionRegion for the given situation |
2490 | * @see pDimensionDefinitions |
2491 | * @see Dimensions |
2492 | */ |
2493 | DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) { |
2494 | uint8_t bits; |
2495 | int veldim = -1; |
2496 | int velbitpos; |
2497 | int bitpos = 0; |
2498 | int dimregidx = 0; |
2499 | for (uint i = 0; i < Dimensions; i++) { |
2500 | if (pDimensionDefinitions[i].dimension == dimension_velocity) { |
2501 | // the velocity dimension must be handled after the other dimensions |
2502 | veldim = i; |
2503 | velbitpos = bitpos; |
2504 | } else { |
2505 | switch (pDimensionDefinitions[i].split_type) { |
2506 | case split_type_normal: |
2507 | if (pDimensionRegions[0]->DimensionUpperLimits[i]) { |
2508 | // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges |
2509 | for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) { |
2510 | if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break; |
2511 | } |
2512 | } else { |
2513 | // gig2: evenly sized zones |
2514 | bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size); |
2515 | } |
2516 | break; |
2517 | case split_type_bit: // the value is already the sought dimension bit number |
2518 | const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff; |
2519 | bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed |
2520 | break; |
2521 | } |
2522 | dimregidx |= bits << bitpos; |
2523 | } |
2524 | bitpos += pDimensionDefinitions[i].bits; |
2525 | } |
2526 | DimensionRegion* dimreg = pDimensionRegions[dimregidx]; |
2527 | if (veldim != -1) { |
2528 | // (dimreg is now the dimension region for the lowest velocity) |
2529 | if (dimreg->VelocityTable) // custom defined zone ranges |
2530 | bits = dimreg->VelocityTable[DimValues[veldim]]; |
2531 | else // normal split type |
2532 | bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size); |
2533 | |
2534 | dimregidx |= bits << velbitpos; |
2535 | dimreg = pDimensionRegions[dimregidx]; |
2536 | } |
2537 | return dimreg; |
2538 | } |
2539 | |
2540 | /** |
2541 | * Returns the appropriate DimensionRegion for the given dimension bit |
2542 | * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i> |
2543 | * instead of calling this method directly! |
2544 | * |
2545 | * @param DimBits Bit numbers for dimension 0 to 7 |
2546 | * @returns adress to the DimensionRegion for the given dimension |
2547 | * bit numbers |
2548 | * @see GetDimensionRegionByValue() |
2549 | */ |
2550 | DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) { |
2551 | return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6]) |
2552 | << pDimensionDefinitions[5].bits | DimBits[5]) |
2553 | << pDimensionDefinitions[4].bits | DimBits[4]) |
2554 | << pDimensionDefinitions[3].bits | DimBits[3]) |
2555 | << pDimensionDefinitions[2].bits | DimBits[2]) |
2556 | << pDimensionDefinitions[1].bits | DimBits[1]) |
2557 | << pDimensionDefinitions[0].bits | DimBits[0]]; |
2558 | } |
2559 | |
2560 | /** |
2561 | * Returns pointer address to the Sample referenced with this region. |
2562 | * This is the global Sample for the entire Region (not sure if this is |
2563 | * actually used by the Gigasampler engine - I would only use the Sample |
2564 | * referenced by the appropriate DimensionRegion instead of this sample). |
2565 | * |
2566 | * @returns address to Sample or NULL if there is no reference to a |
2567 | * sample saved in the .gig file |
2568 | */ |
2569 | Sample* Region::GetSample() { |
2570 | if (pSample) return static_cast<gig::Sample*>(pSample); |
2571 | else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex)); |
2572 | } |
2573 | |
2574 | Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) { |
2575 | if ((int32_t)WavePoolTableIndex == -1) return NULL; |
2576 | File* file = (File*) GetParent()->GetParent(); |
2577 | if (!file->pWavePoolTable) return NULL; |
2578 | unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex]; |
2579 | unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex]; |
2580 | Sample* sample = file->GetFirstSample(pProgress); |
2581 | while (sample) { |
2582 | if (sample->ulWavePoolOffset == soughtoffset && |
2583 | sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample); |
2584 | sample = file->GetNextSample(); |
2585 | } |
2586 | return NULL; |
2587 | } |
2588 | |
2589 | |
2590 | |
2591 | // *************** Instrument *************** |
2592 | // * |
2593 | |
2594 | Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) { |
2595 | pInfo->UseFixedLengthStrings = true; |
2596 | |
2597 | // Initialization |
2598 | for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL; |
2599 | |
2600 | // Loading |
2601 | RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART); |
2602 | if (lart) { |
2603 | RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG); |
2604 | if (_3ewg) { |
2605 | EffectSend = _3ewg->ReadUint16(); |
2606 | Attenuation = _3ewg->ReadInt32(); |
2607 | FineTune = _3ewg->ReadInt16(); |
2608 | PitchbendRange = _3ewg->ReadInt16(); |
2609 | uint8_t dimkeystart = _3ewg->ReadUint8(); |
2610 | PianoReleaseMode = dimkeystart & 0x01; |
2611 | DimensionKeyRange.low = dimkeystart >> 1; |
2612 | DimensionKeyRange.high = _3ewg->ReadUint8(); |
2613 | } |
2614 | } |
2615 | |
2616 | if (!pRegions) pRegions = new RegionList; |
2617 | RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN); |
2618 | if (lrgn) { |
2619 | RIFF::List* rgn = lrgn->GetFirstSubList(); |
2620 | while (rgn) { |
2621 | if (rgn->GetListType() == LIST_TYPE_RGN) { |
2622 | __notify_progress(pProgress, (float) pRegions->size() / (float) Regions); |
2623 | pRegions->push_back(new Region(this, rgn)); |
2624 | } |
2625 | rgn = lrgn->GetNextSubList(); |
2626 | } |
2627 | // Creating Region Key Table for fast lookup |
2628 | UpdateRegionKeyTable(); |
2629 | } |
2630 | |
2631 | __notify_progress(pProgress, 1.0f); // notify done |
2632 | } |
2633 | |
2634 | void Instrument::UpdateRegionKeyTable() { |
2635 | RegionList::iterator iter = pRegions->begin(); |
2636 | RegionList::iterator end = pRegions->end(); |
2637 | for (; iter != end; ++iter) { |
2638 | gig::Region* pRegion = static_cast<gig::Region*>(*iter); |
2639 | for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) { |
2640 | RegionKeyTable[iKey] = pRegion; |
2641 | } |
2642 | } |
2643 | } |
2644 | |
2645 | Instrument::~Instrument() { |
2646 | } |
2647 | |
2648 | /** |
2649 | * Apply Instrument with all its Regions to the respective RIFF chunks. |
2650 | * You have to call File::Save() to make changes persistent. |
2651 | * |
2652 | * Usually there is absolutely no need to call this method explicitly. |
2653 | * It will be called automatically when File::Save() was called. |
2654 | * |
2655 | * @throws gig::Exception if samples cannot be dereferenced |
2656 | */ |
2657 | void Instrument::UpdateChunks() { |
2658 | // first update base classes' chunks |
2659 | DLS::Instrument::UpdateChunks(); |
2660 | |
2661 | // update Regions' chunks |
2662 | { |
2663 | RegionList::iterator iter = pRegions->begin(); |
2664 | RegionList::iterator end = pRegions->end(); |
2665 | for (; iter != end; ++iter) |
2666 | (*iter)->UpdateChunks(); |
2667 | } |
2668 | |
2669 | // make sure 'lart' RIFF list chunk exists |
2670 | RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART); |
2671 | if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART); |
2672 | // make sure '3ewg' RIFF chunk exists |
2673 | RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG); |
2674 | if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12); |
2675 | // update '3ewg' RIFF chunk |
2676 | uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData(); |
2677 | store16(&pData[0], EffectSend); |
2678 | store32(&pData[2], Attenuation); |
2679 | store16(&pData[6], FineTune); |
2680 | store16(&pData[8], PitchbendRange); |
2681 | const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 | |
2682 | DimensionKeyRange.low << 1; |
2683 | pData[10] = dimkeystart; |
2684 | pData[11] = DimensionKeyRange.high; |
2685 | } |
2686 | |
2687 | /** |
2688 | * Returns the appropriate Region for a triggered note. |
2689 | * |
2690 | * @param Key MIDI Key number of triggered note / key (0 - 127) |
2691 | * @returns pointer adress to the appropriate Region or NULL if there |
2692 | * there is no Region defined for the given \a Key |
2693 | */ |
2694 | Region* Instrument::GetRegion(unsigned int Key) { |
2695 | if (!pRegions || !pRegions->size() || Key > 127) return NULL; |
2696 | return RegionKeyTable[Key]; |
2697 | |
2698 | /*for (int i = 0; i < Regions; i++) { |
2699 | if (Key <= pRegions[i]->KeyRange.high && |
2700 | Key >= pRegions[i]->KeyRange.low) return pRegions[i]; |
2701 | } |
2702 | return NULL;*/ |
2703 | } |
2704 | |
2705 | /** |
2706 | * Returns the first Region of the instrument. You have to call this |
2707 | * method once before you use GetNextRegion(). |
2708 | * |
2709 | * @returns pointer address to first region or NULL if there is none |
2710 | * @see GetNextRegion() |
2711 | */ |
2712 | Region* Instrument::GetFirstRegion() { |
2713 | if (!pRegions) return NULL; |
2714 | RegionsIterator = pRegions->begin(); |
2715 | return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL ); |
2716 | } |
2717 | |
2718 | /** |
2719 | * Returns the next Region of the instrument. You have to call |
2720 | * GetFirstRegion() once before you can use this method. By calling this |
2721 | * method multiple times it iterates through the available Regions. |
2722 | * |
2723 | * @returns pointer address to the next region or NULL if end reached |
2724 | * @see GetFirstRegion() |
2725 | */ |
2726 | Region* Instrument::GetNextRegion() { |
2727 | if (!pRegions) return NULL; |
2728 | RegionsIterator++; |
2729 | return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL ); |
2730 | } |
2731 | |
2732 | Region* Instrument::AddRegion() { |
2733 | // create new Region object (and its RIFF chunks) |
2734 | RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN); |
2735 | if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN); |
2736 | RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN); |
2737 | Region* pNewRegion = new Region(this, rgn); |
2738 | pRegions->push_back(pNewRegion); |
2739 | Regions = pRegions->size(); |
2740 | // update Region key table for fast lookup |
2741 | UpdateRegionKeyTable(); |
2742 | // done |
2743 | return pNewRegion; |
2744 | } |
2745 | |
2746 | void Instrument::DeleteRegion(Region* pRegion) { |
2747 | if (!pRegions) return; |
2748 | DLS::Instrument::DeleteRegion((DLS::Region*) pRegion); |
2749 | // update Region key table for fast lookup |
2750 | UpdateRegionKeyTable(); |
2751 | } |
2752 | |
2753 | |
2754 | |
2755 | // *************** Group *************** |
2756 | // * |
2757 | |
2758 | /** @brief Constructor. |
2759 | * |
2760 | * @param file - pointer to the gig::File object |
2761 | * @param ck3gnm - pointer to 3gnm chunk associated with this group or |
2762 | * NULL if this is a new Group |
2763 | */ |
2764 | Group::Group(File* file, RIFF::Chunk* ck3gnm) { |
2765 | pFile = file; |
2766 | pNameChunk = ck3gnm; |
2767 | ::LoadString(pNameChunk, Name); |
2768 | } |
2769 | |
2770 | Group::~Group() { |
2771 | // remove the chunk associated with this group (if any) |
2772 | if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk); |
2773 | } |
2774 | |
2775 | /** @brief Update chunks with current group settings. |
2776 | * |
2777 | * Apply current Group field values to the respective chunks. You have |
2778 | * to call File::Save() to make changes persistent. |
2779 | * |
2780 | * Usually there is absolutely no need to call this method explicitly. |
2781 | * It will be called automatically when File::Save() was called. |
2782 | */ |
2783 | void Group::UpdateChunks() { |
2784 | // make sure <3gri> and <3gnl> list chunks exist |
2785 | RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI); |
2786 | if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI); |
2787 | RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL); |
2788 | if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL); |
2789 | // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk |
2790 | ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64); |
2791 | } |
2792 | |
2793 | /** |
2794 | * Returns the first Sample of this Group. You have to call this method |
2795 | * once before you use GetNextSample(). |
2796 | * |
2797 | * <b>Notice:</b> this method might block for a long time, in case the |
2798 | * samples of this .gig file were not scanned yet |
2799 | * |
2800 | * @returns pointer address to first Sample or NULL if there is none |
2801 | * applied to this Group |
2802 | * @see GetNextSample() |
2803 | */ |
2804 | Sample* Group::GetFirstSample() { |
2805 | // FIXME: lazy und unsafe implementation, should be an autonomous iterator |
2806 | for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) { |
2807 | if (pSample->GetGroup() == this) return pSample; |
2808 | } |
2809 | return NULL; |
2810 | } |
2811 | |
2812 | /** |
2813 | * Returns the next Sample of the Group. You have to call |
2814 | * GetFirstSample() once before you can use this method. By calling this |
2815 | * method multiple times it iterates through the Samples assigned to |
2816 | * this Group. |
2817 | * |
2818 | * @returns pointer address to the next Sample of this Group or NULL if |
2819 | * end reached |
2820 | * @see GetFirstSample() |
2821 | */ |
2822 | Sample* Group::GetNextSample() { |
2823 | // FIXME: lazy und unsafe implementation, should be an autonomous iterator |
2824 | for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) { |
2825 | if (pSample->GetGroup() == this) return pSample; |
2826 | } |
2827 | return NULL; |
2828 | } |
2829 | |
2830 | /** |
2831 | * Move Sample given by \a pSample from another Group to this Group. |
2832 | */ |
2833 | void Group::AddSample(Sample* pSample) { |
2834 | pSample->pGroup = this; |
2835 | } |
2836 | |
2837 | /** |
2838 | * Move all members of this group to another group (preferably the 1st |
2839 | * one except this). This method is called explicitly by |
2840 | * File::DeleteGroup() thus when a Group was deleted. This code was |
2841 | * intentionally not placed in the destructor! |
2842 | */ |
2843 | void Group::MoveAll() { |
2844 | // get "that" other group first |
2845 | Group* pOtherGroup = NULL; |
2846 | for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) { |
2847 | if (pOtherGroup != this) break; |
2848 | } |
2849 | if (!pOtherGroup) throw Exception( |
2850 | "Could not move samples to another group, since there is no " |
2851 | "other Group. This is a bug, report it!" |
2852 | ); |
2853 | // now move all samples of this group to the other group |
2854 | for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) { |
2855 | pOtherGroup->AddSample(pSample); |
2856 | } |
2857 | } |
2858 | |
2859 | |
2860 | |
2861 | // *************** File *************** |
2862 | // * |
2863 | |
2864 | File::File() : DLS::File() { |
2865 | pGroups = NULL; |
2866 | pInfo->UseFixedLengthStrings = true; |
2867 | } |
2868 | |
2869 | File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) { |
2870 | pGroups = NULL; |
2871 | pInfo->UseFixedLengthStrings = true; |
2872 | } |
2873 | |
2874 | File::~File() { |
2875 | if (pGroups) { |
2876 | std::list<Group*>::iterator iter = pGroups->begin(); |
2877 | std::list<Group*>::iterator end = pGroups->end(); |
2878 | while (iter != end) { |
2879 | delete *iter; |
2880 | ++iter; |
2881 | } |
2882 | delete pGroups; |
2883 | } |
2884 | } |
2885 | |
2886 | Sample* File::GetFirstSample(progress_t* pProgress) { |
2887 | if (!pSamples) LoadSamples(pProgress); |
2888 | if (!pSamples) return NULL; |
2889 | SamplesIterator = pSamples->begin(); |
2890 | return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL ); |
2891 | } |
2892 | |
2893 | Sample* File::GetNextSample() { |
2894 | if (!pSamples) return NULL; |
2895 | SamplesIterator++; |
2896 | return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL ); |
2897 | } |
2898 | |
2899 | /** @brief Add a new sample. |
2900 | * |
2901 | * This will create a new Sample object for the gig file. You have to |
2902 | * call Save() to make this persistent to the file. |
2903 | * |
2904 | * @returns pointer to new Sample object |
2905 | */ |
2906 | Sample* File::AddSample() { |
2907 | if (!pSamples) LoadSamples(); |
2908 | __ensureMandatoryChunksExist(); |
2909 | RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL); |
2910 | // create new Sample object and its respective 'wave' list chunk |
2911 | RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE); |
2912 | Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/); |
2913 | pSamples->push_back(pSample); |
2914 | return pSample; |
2915 | } |
2916 | |
2917 | /** @brief Delete a sample. |
2918 | * |
2919 | * This will delete the given Sample object from the gig file. You have |
2920 | * to call Save() to make this persistent to the file. |
2921 | * |
2922 | * @param pSample - sample to delete |
2923 | * @throws gig::Exception if given sample could not be found |
2924 | */ |
2925 | void File::DeleteSample(Sample* pSample) { |
2926 | if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples"); |
2927 | SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample); |
2928 | if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample"); |
2929 | if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation |
2930 | pSamples->erase(iter); |
2931 | delete pSample; |
2932 | } |
2933 | |
2934 | void File::LoadSamples() { |
2935 | LoadSamples(NULL); |
2936 | } |
2937 | |
2938 | void File::LoadSamples(progress_t* pProgress) { |
2939 | // Groups must be loaded before samples, because samples will try |
2940 | // to resolve the group they belong to |
2941 | if (!pGroups) LoadGroups(); |
2942 | |
2943 | if (!pSamples) pSamples = new SampleList; |
2944 | |
2945 | RIFF::File* file = pRIFF; |
2946 | |
2947 | // just for progress calculation |
2948 | int iSampleIndex = 0; |
2949 | int iTotalSamples = WavePoolCount; |
2950 | |
2951 | // check if samples should be loaded from extension files |
2952 | int lastFileNo = 0; |
2953 | for (int i = 0 ; i < WavePoolCount ; i++) { |
2954 | if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i]; |
2955 | } |
2956 | String name(pRIFF->GetFileName()); |
2957 | int nameLen = name.length(); |
2958 | char suffix[6]; |
2959 | if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4; |
2960 | |
2961 | for (int fileNo = 0 ; ; ) { |
2962 | RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL); |
2963 | if (wvpl) { |
2964 | unsigned long wvplFileOffset = wvpl->GetFilePos(); |
2965 | RIFF::List* wave = wvpl->GetFirstSubList(); |
2966 | while (wave) { |
2967 | if (wave->GetListType() == LIST_TYPE_WAVE) { |
2968 | // notify current progress |
2969 | const float subprogress = (float) iSampleIndex / (float) iTotalSamples; |
2970 | __notify_progress(pProgress, subprogress); |
2971 | |
2972 | unsigned long waveFileOffset = wave->GetFilePos(); |
2973 | pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo)); |
2974 | |
2975 | iSampleIndex++; |
2976 | } |
2977 | wave = wvpl->GetNextSubList(); |
2978 | } |
2979 | |
2980 | if (fileNo == lastFileNo) break; |
2981 | |
2982 | // open extension file (*.gx01, *.gx02, ...) |
2983 | fileNo++; |
2984 | sprintf(suffix, ".gx%02d", fileNo); |
2985 | name.replace(nameLen, 5, suffix); |
2986 | file = new RIFF::File(name); |
2987 | ExtensionFiles.push_back(file); |
2988 | } else break; |
2989 | } |
2990 | |
2991 | __notify_progress(pProgress, 1.0); // notify done |
2992 | } |
2993 | |
2994 | Instrument* File::GetFirstInstrument() { |
2995 | if (!pInstruments) LoadInstruments(); |
2996 | if (!pInstruments) return NULL; |
2997 | InstrumentsIterator = pInstruments->begin(); |
2998 | return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL ); |
2999 | } |
3000 | |
3001 | Instrument* File::GetNextInstrument() { |
3002 | if (!pInstruments) return NULL; |
3003 | InstrumentsIterator++; |
3004 | return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL ); |
3005 | } |
3006 | |
3007 | /** |
3008 | * Returns the instrument with the given index. |
3009 | * |
3010 | * @param index - number of the sought instrument (0..n) |
3011 | * @param pProgress - optional: callback function for progress notification |
3012 | * @returns sought instrument or NULL if there's no such instrument |
3013 | */ |
3014 | Instrument* File::GetInstrument(uint index, progress_t* pProgress) { |
3015 | if (!pInstruments) { |
3016 | // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM) |
3017 | |
3018 | // sample loading subtask |
3019 | progress_t subprogress; |
3020 | __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask |
3021 | __notify_progress(&subprogress, 0.0f); |
3022 | GetFirstSample(&subprogress); // now force all samples to be loaded |
3023 | __notify_progress(&subprogress, 1.0f); |
3024 | |
3025 | // instrument loading subtask |
3026 | if (pProgress && pProgress->callback) { |
3027 | subprogress.__range_min = subprogress.__range_max; |
3028 | subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask |
3029 | } |
3030 | __notify_progress(&subprogress, 0.0f); |
3031 | LoadInstruments(&subprogress); |
3032 | __notify_progress(&subprogress, 1.0f); |
3033 | } |
3034 | if (!pInstruments) return NULL; |
3035 | InstrumentsIterator = pInstruments->begin(); |
3036 | for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) { |
3037 | if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator ); |
3038 | InstrumentsIterator++; |
3039 | } |
3040 | return NULL; |
3041 | } |
3042 | |
3043 | /** @brief Add a new instrument definition. |
3044 | * |
3045 | * This will create a new Instrument object for the gig file. You have |
3046 | * to call Save() to make this persistent to the file. |
3047 | * |
3048 | * @returns pointer to new Instrument object |
3049 | */ |
3050 | Instrument* File::AddInstrument() { |
3051 | if (!pInstruments) LoadInstruments(); |
3052 | __ensureMandatoryChunksExist(); |
3053 | RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS); |
3054 | RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS); |
3055 | Instrument* pInstrument = new Instrument(this, lstInstr); |
3056 | pInstruments->push_back(pInstrument); |
3057 | return pInstrument; |
3058 | } |
3059 | |
3060 | /** @brief Delete an instrument. |
3061 | * |
3062 | * This will delete the given Instrument object from the gig file. You |
3063 | * have to call Save() to make this persistent to the file. |
3064 | * |
3065 | * @param pInstrument - instrument to delete |
3066 | * @throws gig::Exception if given instrument could not be found |
3067 | */ |
3068 | void File::DeleteInstrument(Instrument* pInstrument) { |