/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1179 - (show annotations) (download)
Sat May 12 11:25:04 2007 UTC (12 years, 7 months ago) by persson
File size: 146157 byte(s)
* fixed write support for big-endian systems

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** Sample ***************
282 // *
283
284 unsigned int Sample::Instances = 0;
285 buffer_t Sample::InternalDecompressionBuffer;
286
287 /** @brief Constructor.
288 *
289 * Load an existing sample or create a new one. A 'wave' list chunk must
290 * be given to this constructor. In case the given 'wave' list chunk
291 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
292 * format and sample data will be loaded from there, otherwise default
293 * values will be used and those chunks will be created when
294 * File::Save() will be called later on.
295 *
296 * @param pFile - pointer to gig::File where this sample is
297 * located (or will be located)
298 * @param waveList - pointer to 'wave' list chunk which is (or
299 * will be) associated with this sample
300 * @param WavePoolOffset - offset of this sample data from wave pool
301 * ('wvpl') list chunk
302 * @param fileNo - number of an extension file where this sample
303 * is located, 0 otherwise
304 */
305 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
306 pInfo->UseFixedLengthStrings = true;
307 Instances++;
308 FileNo = fileNo;
309
310 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
311 if (pCk3gix) {
312 uint16_t iSampleGroup = pCk3gix->ReadInt16();
313 pGroup = pFile->GetGroup(iSampleGroup);
314 } else { // '3gix' chunk missing
315 // by default assigned to that mandatory "Default Group"
316 pGroup = pFile->GetGroup(0);
317 }
318
319 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
320 if (pCkSmpl) {
321 Manufacturer = pCkSmpl->ReadInt32();
322 Product = pCkSmpl->ReadInt32();
323 SamplePeriod = pCkSmpl->ReadInt32();
324 MIDIUnityNote = pCkSmpl->ReadInt32();
325 FineTune = pCkSmpl->ReadInt32();
326 pCkSmpl->Read(&SMPTEFormat, 1, 4);
327 SMPTEOffset = pCkSmpl->ReadInt32();
328 Loops = pCkSmpl->ReadInt32();
329 pCkSmpl->ReadInt32(); // manufByt
330 LoopID = pCkSmpl->ReadInt32();
331 pCkSmpl->Read(&LoopType, 1, 4);
332 LoopStart = pCkSmpl->ReadInt32();
333 LoopEnd = pCkSmpl->ReadInt32();
334 LoopFraction = pCkSmpl->ReadInt32();
335 LoopPlayCount = pCkSmpl->ReadInt32();
336 } else { // 'smpl' chunk missing
337 // use default values
338 Manufacturer = 0;
339 Product = 0;
340 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
341 MIDIUnityNote = 64;
342 FineTune = 0;
343 SMPTEOffset = 0;
344 Loops = 0;
345 LoopID = 0;
346 LoopStart = 0;
347 LoopEnd = 0;
348 LoopFraction = 0;
349 LoopPlayCount = 0;
350 }
351
352 FrameTable = NULL;
353 SamplePos = 0;
354 RAMCache.Size = 0;
355 RAMCache.pStart = NULL;
356 RAMCache.NullExtensionSize = 0;
357
358 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
359
360 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
361 Compressed = ewav;
362 Dithered = false;
363 TruncatedBits = 0;
364 if (Compressed) {
365 uint32_t version = ewav->ReadInt32();
366 if (version == 3 && BitDepth == 24) {
367 Dithered = ewav->ReadInt32();
368 ewav->SetPos(Channels == 2 ? 84 : 64);
369 TruncatedBits = ewav->ReadInt32();
370 }
371 ScanCompressedSample();
372 }
373
374 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
375 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
376 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
377 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
378 }
379 FrameOffset = 0; // just for streaming compressed samples
380
381 LoopSize = LoopEnd - LoopStart + 1;
382 }
383
384 /**
385 * Apply sample and its settings to the respective RIFF chunks. You have
386 * to call File::Save() to make changes persistent.
387 *
388 * Usually there is absolutely no need to call this method explicitly.
389 * It will be called automatically when File::Save() was called.
390 *
391 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
392 * was provided yet
393 * @throws gig::Exception if there is any invalid sample setting
394 */
395 void Sample::UpdateChunks() {
396 // first update base class's chunks
397 DLS::Sample::UpdateChunks();
398
399 // make sure 'smpl' chunk exists
400 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
401 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
402 // update 'smpl' chunk
403 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
404 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
405 store32(&pData[0], Manufacturer);
406 store32(&pData[4], Product);
407 store32(&pData[8], SamplePeriod);
408 store32(&pData[12], MIDIUnityNote);
409 store32(&pData[16], FineTune);
410 store32(&pData[20], SMPTEFormat);
411 store32(&pData[24], SMPTEOffset);
412 store32(&pData[28], Loops);
413
414 // we skip 'manufByt' for now (4 bytes)
415
416 store32(&pData[36], LoopID);
417 store32(&pData[40], LoopType);
418 store32(&pData[44], LoopStart);
419 store32(&pData[48], LoopEnd);
420 store32(&pData[52], LoopFraction);
421 store32(&pData[56], LoopPlayCount);
422
423 // make sure '3gix' chunk exists
424 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
425 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
426 // determine appropriate sample group index (to be stored in chunk)
427 uint16_t iSampleGroup = 0; // 0 refers to default sample group
428 File* pFile = static_cast<File*>(pParent);
429 if (pFile->pGroups) {
430 std::list<Group*>::iterator iter = pFile->pGroups->begin();
431 std::list<Group*>::iterator end = pFile->pGroups->end();
432 for (int i = 0; iter != end; i++, iter++) {
433 if (*iter == pGroup) {
434 iSampleGroup = i;
435 break; // found
436 }
437 }
438 }
439 // update '3gix' chunk
440 pData = (uint8_t*) pCk3gix->LoadChunkData();
441 store16(&pData[0], iSampleGroup);
442 }
443
444 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
445 void Sample::ScanCompressedSample() {
446 //TODO: we have to add some more scans here (e.g. determine compression rate)
447 this->SamplesTotal = 0;
448 std::list<unsigned long> frameOffsets;
449
450 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
451 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
452
453 // Scanning
454 pCkData->SetPos(0);
455 if (Channels == 2) { // Stereo
456 for (int i = 0 ; ; i++) {
457 // for 24 bit samples every 8:th frame offset is
458 // stored, to save some memory
459 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
460
461 const int mode_l = pCkData->ReadUint8();
462 const int mode_r = pCkData->ReadUint8();
463 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
464 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
465
466 if (pCkData->RemainingBytes() <= frameSize) {
467 SamplesInLastFrame =
468 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
469 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
470 SamplesTotal += SamplesInLastFrame;
471 break;
472 }
473 SamplesTotal += SamplesPerFrame;
474 pCkData->SetPos(frameSize, RIFF::stream_curpos);
475 }
476 }
477 else { // Mono
478 for (int i = 0 ; ; i++) {
479 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
480
481 const int mode = pCkData->ReadUint8();
482 if (mode > 5) throw gig::Exception("Unknown compression mode");
483 const unsigned long frameSize = bytesPerFrame[mode];
484
485 if (pCkData->RemainingBytes() <= frameSize) {
486 SamplesInLastFrame =
487 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
488 SamplesTotal += SamplesInLastFrame;
489 break;
490 }
491 SamplesTotal += SamplesPerFrame;
492 pCkData->SetPos(frameSize, RIFF::stream_curpos);
493 }
494 }
495 pCkData->SetPos(0);
496
497 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
498 if (FrameTable) delete[] FrameTable;
499 FrameTable = new unsigned long[frameOffsets.size()];
500 std::list<unsigned long>::iterator end = frameOffsets.end();
501 std::list<unsigned long>::iterator iter = frameOffsets.begin();
502 for (int i = 0; iter != end; i++, iter++) {
503 FrameTable[i] = *iter;
504 }
505 }
506
507 /**
508 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
509 * ReleaseSampleData() to free the memory if you don't need the cached
510 * sample data anymore.
511 *
512 * @returns buffer_t structure with start address and size of the buffer
513 * in bytes
514 * @see ReleaseSampleData(), Read(), SetPos()
515 */
516 buffer_t Sample::LoadSampleData() {
517 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
518 }
519
520 /**
521 * Reads (uncompresses if needed) and caches the first \a SampleCount
522 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
523 * memory space if you don't need the cached samples anymore. There is no
524 * guarantee that exactly \a SampleCount samples will be cached; this is
525 * not an error. The size will be eventually truncated e.g. to the
526 * beginning of a frame of a compressed sample. This is done for
527 * efficiency reasons while streaming the wave by your sampler engine
528 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
529 * that will be returned to determine the actual cached samples, but note
530 * that the size is given in bytes! You get the number of actually cached
531 * samples by dividing it by the frame size of the sample:
532 * @code
533 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
534 * long cachedsamples = buf.Size / pSample->FrameSize;
535 * @endcode
536 *
537 * @param SampleCount - number of sample points to load into RAM
538 * @returns buffer_t structure with start address and size of
539 * the cached sample data in bytes
540 * @see ReleaseSampleData(), Read(), SetPos()
541 */
542 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
543 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
544 }
545
546 /**
547 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
548 * ReleaseSampleData() to free the memory if you don't need the cached
549 * sample data anymore.
550 * The method will add \a NullSamplesCount silence samples past the
551 * official buffer end (this won't affect the 'Size' member of the
552 * buffer_t structure, that means 'Size' always reflects the size of the
553 * actual sample data, the buffer might be bigger though). Silence
554 * samples past the official buffer are needed for differential
555 * algorithms that always have to take subsequent samples into account
556 * (resampling/interpolation would be an important example) and avoids
557 * memory access faults in such cases.
558 *
559 * @param NullSamplesCount - number of silence samples the buffer should
560 * be extended past it's data end
561 * @returns buffer_t structure with start address and
562 * size of the buffer in bytes
563 * @see ReleaseSampleData(), Read(), SetPos()
564 */
565 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
566 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
567 }
568
569 /**
570 * Reads (uncompresses if needed) and caches the first \a SampleCount
571 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
572 * memory space if you don't need the cached samples anymore. There is no
573 * guarantee that exactly \a SampleCount samples will be cached; this is
574 * not an error. The size will be eventually truncated e.g. to the
575 * beginning of a frame of a compressed sample. This is done for
576 * efficiency reasons while streaming the wave by your sampler engine
577 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
578 * that will be returned to determine the actual cached samples, but note
579 * that the size is given in bytes! You get the number of actually cached
580 * samples by dividing it by the frame size of the sample:
581 * @code
582 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
583 * long cachedsamples = buf.Size / pSample->FrameSize;
584 * @endcode
585 * The method will add \a NullSamplesCount silence samples past the
586 * official buffer end (this won't affect the 'Size' member of the
587 * buffer_t structure, that means 'Size' always reflects the size of the
588 * actual sample data, the buffer might be bigger though). Silence
589 * samples past the official buffer are needed for differential
590 * algorithms that always have to take subsequent samples into account
591 * (resampling/interpolation would be an important example) and avoids
592 * memory access faults in such cases.
593 *
594 * @param SampleCount - number of sample points to load into RAM
595 * @param NullSamplesCount - number of silence samples the buffer should
596 * be extended past it's data end
597 * @returns buffer_t structure with start address and
598 * size of the cached sample data in bytes
599 * @see ReleaseSampleData(), Read(), SetPos()
600 */
601 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
602 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
603 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
604 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
605 RAMCache.pStart = new int8_t[allocationsize];
606 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
607 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
608 // fill the remaining buffer space with silence samples
609 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
610 return GetCache();
611 }
612
613 /**
614 * Returns current cached sample points. A buffer_t structure will be
615 * returned which contains address pointer to the begin of the cache and
616 * the size of the cached sample data in bytes. Use
617 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
618 * RAM.
619 *
620 * @returns buffer_t structure with current cached sample points
621 * @see LoadSampleData();
622 */
623 buffer_t Sample::GetCache() {
624 // return a copy of the buffer_t structure
625 buffer_t result;
626 result.Size = this->RAMCache.Size;
627 result.pStart = this->RAMCache.pStart;
628 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
629 return result;
630 }
631
632 /**
633 * Frees the cached sample from RAM if loaded with
634 * <i>LoadSampleData()</i> previously.
635 *
636 * @see LoadSampleData();
637 */
638 void Sample::ReleaseSampleData() {
639 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
640 RAMCache.pStart = NULL;
641 RAMCache.Size = 0;
642 }
643
644 /** @brief Resize sample.
645 *
646 * Resizes the sample's wave form data, that is the actual size of
647 * sample wave data possible to be written for this sample. This call
648 * will return immediately and just schedule the resize operation. You
649 * should call File::Save() to actually perform the resize operation(s)
650 * "physically" to the file. As this can take a while on large files, it
651 * is recommended to call Resize() first on all samples which have to be
652 * resized and finally to call File::Save() to perform all those resize
653 * operations in one rush.
654 *
655 * The actual size (in bytes) is dependant to the current FrameSize
656 * value. You may want to set FrameSize before calling Resize().
657 *
658 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
659 * enlarged samples before calling File::Save() as this might exceed the
660 * current sample's boundary!
661 *
662 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
663 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
664 * other formats will fail!
665 *
666 * @param iNewSize - new sample wave data size in sample points (must be
667 * greater than zero)
668 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
669 * or if \a iNewSize is less than 1
670 * @throws gig::Exception if existing sample is compressed
671 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
672 * DLS::Sample::FormatTag, File::Save()
673 */
674 void Sample::Resize(int iNewSize) {
675 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
676 DLS::Sample::Resize(iNewSize);
677 }
678
679 /**
680 * Sets the position within the sample (in sample points, not in
681 * bytes). Use this method and <i>Read()</i> if you don't want to load
682 * the sample into RAM, thus for disk streaming.
683 *
684 * Although the original Gigasampler engine doesn't allow positioning
685 * within compressed samples, I decided to implement it. Even though
686 * the Gigasampler format doesn't allow to define loops for compressed
687 * samples at the moment, positioning within compressed samples might be
688 * interesting for some sampler engines though. The only drawback about
689 * my decision is that it takes longer to load compressed gig Files on
690 * startup, because it's neccessary to scan the samples for some
691 * mandatory informations. But I think as it doesn't affect the runtime
692 * efficiency, nobody will have a problem with that.
693 *
694 * @param SampleCount number of sample points to jump
695 * @param Whence optional: to which relation \a SampleCount refers
696 * to, if omited <i>RIFF::stream_start</i> is assumed
697 * @returns the new sample position
698 * @see Read()
699 */
700 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
701 if (Compressed) {
702 switch (Whence) {
703 case RIFF::stream_curpos:
704 this->SamplePos += SampleCount;
705 break;
706 case RIFF::stream_end:
707 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
708 break;
709 case RIFF::stream_backward:
710 this->SamplePos -= SampleCount;
711 break;
712 case RIFF::stream_start: default:
713 this->SamplePos = SampleCount;
714 break;
715 }
716 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
717
718 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
719 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
720 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
721 return this->SamplePos;
722 }
723 else { // not compressed
724 unsigned long orderedBytes = SampleCount * this->FrameSize;
725 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
726 return (result == orderedBytes) ? SampleCount
727 : result / this->FrameSize;
728 }
729 }
730
731 /**
732 * Returns the current position in the sample (in sample points).
733 */
734 unsigned long Sample::GetPos() {
735 if (Compressed) return SamplePos;
736 else return pCkData->GetPos() / FrameSize;
737 }
738
739 /**
740 * Reads \a SampleCount number of sample points from the position stored
741 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
742 * the position within the sample respectively, this method honors the
743 * looping informations of the sample (if any). The sample wave stream
744 * will be decompressed on the fly if using a compressed sample. Use this
745 * method if you don't want to load the sample into RAM, thus for disk
746 * streaming. All this methods needs to know to proceed with streaming
747 * for the next time you call this method is stored in \a pPlaybackState.
748 * You have to allocate and initialize the playback_state_t structure by
749 * yourself before you use it to stream a sample:
750 * @code
751 * gig::playback_state_t playbackstate;
752 * playbackstate.position = 0;
753 * playbackstate.reverse = false;
754 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
755 * @endcode
756 * You don't have to take care of things like if there is actually a loop
757 * defined or if the current read position is located within a loop area.
758 * The method already handles such cases by itself.
759 *
760 * <b>Caution:</b> If you are using more than one streaming thread, you
761 * have to use an external decompression buffer for <b>EACH</b>
762 * streaming thread to avoid race conditions and crashes!
763 *
764 * @param pBuffer destination buffer
765 * @param SampleCount number of sample points to read
766 * @param pPlaybackState will be used to store and reload the playback
767 * state for the next ReadAndLoop() call
768 * @param pDimRgn dimension region with looping information
769 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
770 * @returns number of successfully read sample points
771 * @see CreateDecompressionBuffer()
772 */
773 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
774 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
775 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
776 uint8_t* pDst = (uint8_t*) pBuffer;
777
778 SetPos(pPlaybackState->position); // recover position from the last time
779
780 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
781
782 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
783 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
784
785 if (GetPos() <= loopEnd) {
786 switch (loop.LoopType) {
787
788 case loop_type_bidirectional: { //TODO: not tested yet!
789 do {
790 // if not endless loop check if max. number of loop cycles have been passed
791 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
792
793 if (!pPlaybackState->reverse) { // forward playback
794 do {
795 samplestoloopend = loopEnd - GetPos();
796 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
797 samplestoread -= readsamples;
798 totalreadsamples += readsamples;
799 if (readsamples == samplestoloopend) {
800 pPlaybackState->reverse = true;
801 break;
802 }
803 } while (samplestoread && readsamples);
804 }
805 else { // backward playback
806
807 // as we can only read forward from disk, we have to
808 // determine the end position within the loop first,
809 // read forward from that 'end' and finally after
810 // reading, swap all sample frames so it reflects
811 // backward playback
812
813 unsigned long swapareastart = totalreadsamples;
814 unsigned long loopoffset = GetPos() - loop.LoopStart;
815 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
816 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
817
818 SetPos(reverseplaybackend);
819
820 // read samples for backward playback
821 do {
822 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
823 samplestoreadinloop -= readsamples;
824 samplestoread -= readsamples;
825 totalreadsamples += readsamples;
826 } while (samplestoreadinloop && readsamples);
827
828 SetPos(reverseplaybackend); // pretend we really read backwards
829
830 if (reverseplaybackend == loop.LoopStart) {
831 pPlaybackState->loop_cycles_left--;
832 pPlaybackState->reverse = false;
833 }
834
835 // reverse the sample frames for backward playback
836 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
837 }
838 } while (samplestoread && readsamples);
839 break;
840 }
841
842 case loop_type_backward: { // TODO: not tested yet!
843 // forward playback (not entered the loop yet)
844 if (!pPlaybackState->reverse) do {
845 samplestoloopend = loopEnd - GetPos();
846 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
847 samplestoread -= readsamples;
848 totalreadsamples += readsamples;
849 if (readsamples == samplestoloopend) {
850 pPlaybackState->reverse = true;
851 break;
852 }
853 } while (samplestoread && readsamples);
854
855 if (!samplestoread) break;
856
857 // as we can only read forward from disk, we have to
858 // determine the end position within the loop first,
859 // read forward from that 'end' and finally after
860 // reading, swap all sample frames so it reflects
861 // backward playback
862
863 unsigned long swapareastart = totalreadsamples;
864 unsigned long loopoffset = GetPos() - loop.LoopStart;
865 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
866 : samplestoread;
867 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
868
869 SetPos(reverseplaybackend);
870
871 // read samples for backward playback
872 do {
873 // if not endless loop check if max. number of loop cycles have been passed
874 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
875 samplestoloopend = loopEnd - GetPos();
876 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
877 samplestoreadinloop -= readsamples;
878 samplestoread -= readsamples;
879 totalreadsamples += readsamples;
880 if (readsamples == samplestoloopend) {
881 pPlaybackState->loop_cycles_left--;
882 SetPos(loop.LoopStart);
883 }
884 } while (samplestoreadinloop && readsamples);
885
886 SetPos(reverseplaybackend); // pretend we really read backwards
887
888 // reverse the sample frames for backward playback
889 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
890 break;
891 }
892
893 default: case loop_type_normal: {
894 do {
895 // if not endless loop check if max. number of loop cycles have been passed
896 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
897 samplestoloopend = loopEnd - GetPos();
898 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
899 samplestoread -= readsamples;
900 totalreadsamples += readsamples;
901 if (readsamples == samplestoloopend) {
902 pPlaybackState->loop_cycles_left--;
903 SetPos(loop.LoopStart);
904 }
905 } while (samplestoread && readsamples);
906 break;
907 }
908 }
909 }
910 }
911
912 // read on without looping
913 if (samplestoread) do {
914 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
915 samplestoread -= readsamples;
916 totalreadsamples += readsamples;
917 } while (readsamples && samplestoread);
918
919 // store current position
920 pPlaybackState->position = GetPos();
921
922 return totalreadsamples;
923 }
924
925 /**
926 * Reads \a SampleCount number of sample points from the current
927 * position into the buffer pointed by \a pBuffer and increments the
928 * position within the sample. The sample wave stream will be
929 * decompressed on the fly if using a compressed sample. Use this method
930 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
931 * thus for disk streaming.
932 *
933 * <b>Caution:</b> If you are using more than one streaming thread, you
934 * have to use an external decompression buffer for <b>EACH</b>
935 * streaming thread to avoid race conditions and crashes!
936 *
937 * For 16 bit samples, the data in the buffer will be int16_t
938 * (using native endianness). For 24 bit, the buffer will
939 * contain three bytes per sample, little-endian.
940 *
941 * @param pBuffer destination buffer
942 * @param SampleCount number of sample points to read
943 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
944 * @returns number of successfully read sample points
945 * @see SetPos(), CreateDecompressionBuffer()
946 */
947 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
948 if (SampleCount == 0) return 0;
949 if (!Compressed) {
950 if (BitDepth == 24) {
951 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
952 }
953 else { // 16 bit
954 // (pCkData->Read does endian correction)
955 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
956 : pCkData->Read(pBuffer, SampleCount, 2);
957 }
958 }
959 else {
960 if (this->SamplePos >= this->SamplesTotal) return 0;
961 //TODO: efficiency: maybe we should test for an average compression rate
962 unsigned long assumedsize = GuessSize(SampleCount),
963 remainingbytes = 0, // remaining bytes in the local buffer
964 remainingsamples = SampleCount,
965 copysamples, skipsamples,
966 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
967 this->FrameOffset = 0;
968
969 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
970
971 // if decompression buffer too small, then reduce amount of samples to read
972 if (pDecompressionBuffer->Size < assumedsize) {
973 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
974 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
975 remainingsamples = SampleCount;
976 assumedsize = GuessSize(SampleCount);
977 }
978
979 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
980 int16_t* pDst = static_cast<int16_t*>(pBuffer);
981 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
982 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
983
984 while (remainingsamples && remainingbytes) {
985 unsigned long framesamples = SamplesPerFrame;
986 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
987
988 int mode_l = *pSrc++, mode_r = 0;
989
990 if (Channels == 2) {
991 mode_r = *pSrc++;
992 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
993 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
994 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
995 if (remainingbytes < framebytes) { // last frame in sample
996 framesamples = SamplesInLastFrame;
997 if (mode_l == 4 && (framesamples & 1)) {
998 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
999 }
1000 else {
1001 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1002 }
1003 }
1004 }
1005 else {
1006 framebytes = bytesPerFrame[mode_l] + 1;
1007 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1008 if (remainingbytes < framebytes) {
1009 framesamples = SamplesInLastFrame;
1010 }
1011 }
1012
1013 // determine how many samples in this frame to skip and read
1014 if (currentframeoffset + remainingsamples >= framesamples) {
1015 if (currentframeoffset <= framesamples) {
1016 copysamples = framesamples - currentframeoffset;
1017 skipsamples = currentframeoffset;
1018 }
1019 else {
1020 copysamples = 0;
1021 skipsamples = framesamples;
1022 }
1023 }
1024 else {
1025 // This frame has enough data for pBuffer, but not
1026 // all of the frame is needed. Set file position
1027 // to start of this frame for next call to Read.
1028 copysamples = remainingsamples;
1029 skipsamples = currentframeoffset;
1030 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1031 this->FrameOffset = currentframeoffset + copysamples;
1032 }
1033 remainingsamples -= copysamples;
1034
1035 if (remainingbytes > framebytes) {
1036 remainingbytes -= framebytes;
1037 if (remainingsamples == 0 &&
1038 currentframeoffset + copysamples == framesamples) {
1039 // This frame has enough data for pBuffer, and
1040 // all of the frame is needed. Set file
1041 // position to start of next frame for next
1042 // call to Read. FrameOffset is 0.
1043 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1044 }
1045 }
1046 else remainingbytes = 0;
1047
1048 currentframeoffset -= skipsamples;
1049
1050 if (copysamples == 0) {
1051 // skip this frame
1052 pSrc += framebytes - Channels;
1053 }
1054 else {
1055 const unsigned char* const param_l = pSrc;
1056 if (BitDepth == 24) {
1057 if (mode_l != 2) pSrc += 12;
1058
1059 if (Channels == 2) { // Stereo
1060 const unsigned char* const param_r = pSrc;
1061 if (mode_r != 2) pSrc += 12;
1062
1063 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1064 skipsamples, copysamples, TruncatedBits);
1065 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1066 skipsamples, copysamples, TruncatedBits);
1067 pDst24 += copysamples * 6;
1068 }
1069 else { // Mono
1070 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1071 skipsamples, copysamples, TruncatedBits);
1072 pDst24 += copysamples * 3;
1073 }
1074 }
1075 else { // 16 bit
1076 if (mode_l) pSrc += 4;
1077
1078 int step;
1079 if (Channels == 2) { // Stereo
1080 const unsigned char* const param_r = pSrc;
1081 if (mode_r) pSrc += 4;
1082
1083 step = (2 - mode_l) + (2 - mode_r);
1084 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1085 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1086 skipsamples, copysamples);
1087 pDst += copysamples << 1;
1088 }
1089 else { // Mono
1090 step = 2 - mode_l;
1091 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1092 pDst += copysamples;
1093 }
1094 }
1095 pSrc += nextFrameOffset;
1096 }
1097
1098 // reload from disk to local buffer if needed
1099 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1100 assumedsize = GuessSize(remainingsamples);
1101 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1102 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1103 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1104 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1105 }
1106 } // while
1107
1108 this->SamplePos += (SampleCount - remainingsamples);
1109 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1110 return (SampleCount - remainingsamples);
1111 }
1112 }
1113
1114 /** @brief Write sample wave data.
1115 *
1116 * Writes \a SampleCount number of sample points from the buffer pointed
1117 * by \a pBuffer and increments the position within the sample. Use this
1118 * method to directly write the sample data to disk, i.e. if you don't
1119 * want or cannot load the whole sample data into RAM.
1120 *
1121 * You have to Resize() the sample to the desired size and call
1122 * File::Save() <b>before</b> using Write().
1123 *
1124 * Note: there is currently no support for writing compressed samples.
1125 *
1126 * @param pBuffer - source buffer
1127 * @param SampleCount - number of sample points to write
1128 * @throws DLS::Exception if current sample size is too small
1129 * @throws gig::Exception if sample is compressed
1130 * @see DLS::LoadSampleData()
1131 */
1132 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1133 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1134 return DLS::Sample::Write(pBuffer, SampleCount);
1135 }
1136
1137 /**
1138 * Allocates a decompression buffer for streaming (compressed) samples
1139 * with Sample::Read(). If you are using more than one streaming thread
1140 * in your application you <b>HAVE</b> to create a decompression buffer
1141 * for <b>EACH</b> of your streaming threads and provide it with the
1142 * Sample::Read() call in order to avoid race conditions and crashes.
1143 *
1144 * You should free the memory occupied by the allocated buffer(s) once
1145 * you don't need one of your streaming threads anymore by calling
1146 * DestroyDecompressionBuffer().
1147 *
1148 * @param MaxReadSize - the maximum size (in sample points) you ever
1149 * expect to read with one Read() call
1150 * @returns allocated decompression buffer
1151 * @see DestroyDecompressionBuffer()
1152 */
1153 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1154 buffer_t result;
1155 const double worstCaseHeaderOverhead =
1156 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1157 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1158 result.pStart = new int8_t[result.Size];
1159 result.NullExtensionSize = 0;
1160 return result;
1161 }
1162
1163 /**
1164 * Free decompression buffer, previously created with
1165 * CreateDecompressionBuffer().
1166 *
1167 * @param DecompressionBuffer - previously allocated decompression
1168 * buffer to free
1169 */
1170 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1171 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1172 delete[] (int8_t*) DecompressionBuffer.pStart;
1173 DecompressionBuffer.pStart = NULL;
1174 DecompressionBuffer.Size = 0;
1175 DecompressionBuffer.NullExtensionSize = 0;
1176 }
1177 }
1178
1179 /**
1180 * Returns pointer to the Group this Sample belongs to. In the .gig
1181 * format a sample always belongs to one group. If it wasn't explicitly
1182 * assigned to a certain group, it will be automatically assigned to a
1183 * default group.
1184 *
1185 * @returns Sample's Group (never NULL)
1186 */
1187 Group* Sample::GetGroup() const {
1188 return pGroup;
1189 }
1190
1191 Sample::~Sample() {
1192 Instances--;
1193 if (!Instances && InternalDecompressionBuffer.Size) {
1194 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1195 InternalDecompressionBuffer.pStart = NULL;
1196 InternalDecompressionBuffer.Size = 0;
1197 }
1198 if (FrameTable) delete[] FrameTable;
1199 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1200 }
1201
1202
1203
1204 // *************** DimensionRegion ***************
1205 // *
1206
1207 uint DimensionRegion::Instances = 0;
1208 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1209
1210 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1211 Instances++;
1212
1213 pSample = NULL;
1214
1215 memcpy(&Crossfade, &SamplerOptions, 4);
1216 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1217
1218 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1219 if (_3ewa) { // if '3ewa' chunk exists
1220 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1221 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1223 _3ewa->ReadInt16(); // unknown
1224 LFO1InternalDepth = _3ewa->ReadUint16();
1225 _3ewa->ReadInt16(); // unknown
1226 LFO3InternalDepth = _3ewa->ReadInt16();
1227 _3ewa->ReadInt16(); // unknown
1228 LFO1ControlDepth = _3ewa->ReadUint16();
1229 _3ewa->ReadInt16(); // unknown
1230 LFO3ControlDepth = _3ewa->ReadInt16();
1231 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1232 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1233 _3ewa->ReadInt16(); // unknown
1234 EG1Sustain = _3ewa->ReadUint16();
1235 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1236 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1237 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1238 EG1ControllerInvert = eg1ctrloptions & 0x01;
1239 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1240 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1241 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1242 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1243 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1244 EG2ControllerInvert = eg2ctrloptions & 0x01;
1245 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1246 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1247 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1248 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1249 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1250 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1251 _3ewa->ReadInt16(); // unknown
1252 EG2Sustain = _3ewa->ReadUint16();
1253 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1254 _3ewa->ReadInt16(); // unknown
1255 LFO2ControlDepth = _3ewa->ReadUint16();
1256 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1257 _3ewa->ReadInt16(); // unknown
1258 LFO2InternalDepth = _3ewa->ReadUint16();
1259 int32_t eg1decay2 = _3ewa->ReadInt32();
1260 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1261 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1262 _3ewa->ReadInt16(); // unknown
1263 EG1PreAttack = _3ewa->ReadUint16();
1264 int32_t eg2decay2 = _3ewa->ReadInt32();
1265 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1266 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1267 _3ewa->ReadInt16(); // unknown
1268 EG2PreAttack = _3ewa->ReadUint16();
1269 uint8_t velocityresponse = _3ewa->ReadUint8();
1270 if (velocityresponse < 5) {
1271 VelocityResponseCurve = curve_type_nonlinear;
1272 VelocityResponseDepth = velocityresponse;
1273 } else if (velocityresponse < 10) {
1274 VelocityResponseCurve = curve_type_linear;
1275 VelocityResponseDepth = velocityresponse - 5;
1276 } else if (velocityresponse < 15) {
1277 VelocityResponseCurve = curve_type_special;
1278 VelocityResponseDepth = velocityresponse - 10;
1279 } else {
1280 VelocityResponseCurve = curve_type_unknown;
1281 VelocityResponseDepth = 0;
1282 }
1283 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1284 if (releasevelocityresponse < 5) {
1285 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1286 ReleaseVelocityResponseDepth = releasevelocityresponse;
1287 } else if (releasevelocityresponse < 10) {
1288 ReleaseVelocityResponseCurve = curve_type_linear;
1289 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1290 } else if (releasevelocityresponse < 15) {
1291 ReleaseVelocityResponseCurve = curve_type_special;
1292 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1293 } else {
1294 ReleaseVelocityResponseCurve = curve_type_unknown;
1295 ReleaseVelocityResponseDepth = 0;
1296 }
1297 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1298 AttenuationControllerThreshold = _3ewa->ReadInt8();
1299 _3ewa->ReadInt32(); // unknown
1300 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1301 _3ewa->ReadInt16(); // unknown
1302 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1303 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1304 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1305 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1306 else DimensionBypass = dim_bypass_ctrl_none;
1307 uint8_t pan = _3ewa->ReadUint8();
1308 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1309 SelfMask = _3ewa->ReadInt8() & 0x01;
1310 _3ewa->ReadInt8(); // unknown
1311 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1312 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1313 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1314 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1315 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1316 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1317 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1318 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1319 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1320 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1321 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1322 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1323 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1324 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1325 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1326 : vcf_res_ctrl_none;
1327 uint16_t eg3depth = _3ewa->ReadUint16();
1328 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1329 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1330 _3ewa->ReadInt16(); // unknown
1331 ChannelOffset = _3ewa->ReadUint8() / 4;
1332 uint8_t regoptions = _3ewa->ReadUint8();
1333 MSDecode = regoptions & 0x01; // bit 0
1334 SustainDefeat = regoptions & 0x02; // bit 1
1335 _3ewa->ReadInt16(); // unknown
1336 VelocityUpperLimit = _3ewa->ReadInt8();
1337 _3ewa->ReadInt8(); // unknown
1338 _3ewa->ReadInt16(); // unknown
1339 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1340 _3ewa->ReadInt8(); // unknown
1341 _3ewa->ReadInt8(); // unknown
1342 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1343 uint8_t vcfcutoff = _3ewa->ReadUint8();
1344 VCFEnabled = vcfcutoff & 0x80; // bit 7
1345 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1346 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1347 uint8_t vcfvelscale = _3ewa->ReadUint8();
1348 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1349 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1350 _3ewa->ReadInt8(); // unknown
1351 uint8_t vcfresonance = _3ewa->ReadUint8();
1352 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1353 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1354 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1355 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1356 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1357 uint8_t vcfvelocity = _3ewa->ReadUint8();
1358 VCFVelocityDynamicRange = vcfvelocity % 5;
1359 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1360 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1361 if (VCFType == vcf_type_lowpass) {
1362 if (lfo3ctrl & 0x40) // bit 6
1363 VCFType = vcf_type_lowpassturbo;
1364 }
1365 if (_3ewa->RemainingBytes() >= 8) {
1366 _3ewa->Read(DimensionUpperLimits, 1, 8);
1367 } else {
1368 memset(DimensionUpperLimits, 0, 8);
1369 }
1370 } else { // '3ewa' chunk does not exist yet
1371 // use default values
1372 LFO3Frequency = 1.0;
1373 EG3Attack = 0.0;
1374 LFO1InternalDepth = 0;
1375 LFO3InternalDepth = 0;
1376 LFO1ControlDepth = 0;
1377 LFO3ControlDepth = 0;
1378 EG1Attack = 0.0;
1379 EG1Decay1 = 0.0;
1380 EG1Sustain = 0;
1381 EG1Release = 0.0;
1382 EG1Controller.type = eg1_ctrl_t::type_none;
1383 EG1Controller.controller_number = 0;
1384 EG1ControllerInvert = false;
1385 EG1ControllerAttackInfluence = 0;
1386 EG1ControllerDecayInfluence = 0;
1387 EG1ControllerReleaseInfluence = 0;
1388 EG2Controller.type = eg2_ctrl_t::type_none;
1389 EG2Controller.controller_number = 0;
1390 EG2ControllerInvert = false;
1391 EG2ControllerAttackInfluence = 0;
1392 EG2ControllerDecayInfluence = 0;
1393 EG2ControllerReleaseInfluence = 0;
1394 LFO1Frequency = 1.0;
1395 EG2Attack = 0.0;
1396 EG2Decay1 = 0.0;
1397 EG2Sustain = 0;
1398 EG2Release = 0.0;
1399 LFO2ControlDepth = 0;
1400 LFO2Frequency = 1.0;
1401 LFO2InternalDepth = 0;
1402 EG1Decay2 = 0.0;
1403 EG1InfiniteSustain = false;
1404 EG1PreAttack = 1000;
1405 EG2Decay2 = 0.0;
1406 EG2InfiniteSustain = false;
1407 EG2PreAttack = 1000;
1408 VelocityResponseCurve = curve_type_nonlinear;
1409 VelocityResponseDepth = 3;
1410 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1411 ReleaseVelocityResponseDepth = 3;
1412 VelocityResponseCurveScaling = 32;
1413 AttenuationControllerThreshold = 0;
1414 SampleStartOffset = 0;
1415 PitchTrack = true;
1416 DimensionBypass = dim_bypass_ctrl_none;
1417 Pan = 0;
1418 SelfMask = true;
1419 LFO3Controller = lfo3_ctrl_modwheel;
1420 LFO3Sync = false;
1421 InvertAttenuationController = false;
1422 AttenuationController.type = attenuation_ctrl_t::type_none;
1423 AttenuationController.controller_number = 0;
1424 LFO2Controller = lfo2_ctrl_internal;
1425 LFO2FlipPhase = false;
1426 LFO2Sync = false;
1427 LFO1Controller = lfo1_ctrl_internal;
1428 LFO1FlipPhase = false;
1429 LFO1Sync = false;
1430 VCFResonanceController = vcf_res_ctrl_none;
1431 EG3Depth = 0;
1432 ChannelOffset = 0;
1433 MSDecode = false;
1434 SustainDefeat = false;
1435 VelocityUpperLimit = 0;
1436 ReleaseTriggerDecay = 0;
1437 EG1Hold = false;
1438 VCFEnabled = false;
1439 VCFCutoff = 0;
1440 VCFCutoffController = vcf_cutoff_ctrl_none;
1441 VCFCutoffControllerInvert = false;
1442 VCFVelocityScale = 0;
1443 VCFResonance = 0;
1444 VCFResonanceDynamic = false;
1445 VCFKeyboardTracking = false;
1446 VCFKeyboardTrackingBreakpoint = 0;
1447 VCFVelocityDynamicRange = 0x04;
1448 VCFVelocityCurve = curve_type_linear;
1449 VCFType = vcf_type_lowpass;
1450 memset(DimensionUpperLimits, 0, 8);
1451 }
1452
1453 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1454 VelocityResponseDepth,
1455 VelocityResponseCurveScaling);
1456
1457 curve_type_t curveType = ReleaseVelocityResponseCurve;
1458 uint8_t depth = ReleaseVelocityResponseDepth;
1459
1460 // this models a strange behaviour or bug in GSt: two of the
1461 // velocity response curves for release time are not used even
1462 // if specified, instead another curve is chosen.
1463 if ((curveType == curve_type_nonlinear && depth == 0) ||
1464 (curveType == curve_type_special && depth == 4)) {
1465 curveType = curve_type_nonlinear;
1466 depth = 3;
1467 }
1468 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1469
1470 curveType = VCFVelocityCurve;
1471 depth = VCFVelocityDynamicRange;
1472
1473 // even stranger GSt: two of the velocity response curves for
1474 // filter cutoff are not used, instead another special curve
1475 // is chosen. This curve is not used anywhere else.
1476 if ((curveType == curve_type_nonlinear && depth == 0) ||
1477 (curveType == curve_type_special && depth == 4)) {
1478 curveType = curve_type_special;
1479 depth = 5;
1480 }
1481 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1482 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1483
1484 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1485 VelocityTable = 0;
1486 }
1487
1488 /**
1489 * Apply dimension region settings to the respective RIFF chunks. You
1490 * have to call File::Save() to make changes persistent.
1491 *
1492 * Usually there is absolutely no need to call this method explicitly.
1493 * It will be called automatically when File::Save() was called.
1494 */
1495 void DimensionRegion::UpdateChunks() {
1496 // first update base class's chunk
1497 DLS::Sampler::UpdateChunks();
1498
1499 // make sure '3ewa' chunk exists
1500 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1501 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1502 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1503
1504 // update '3ewa' chunk with DimensionRegion's current settings
1505
1506 const uint32_t chunksize = _3ewa->GetSize();
1507 store32(&pData[0], chunksize); // unknown, always chunk size?
1508
1509 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1510 store32(&pData[4], lfo3freq);
1511
1512 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1513 store32(&pData[8], eg3attack);
1514
1515 // next 2 bytes unknown
1516
1517 store16(&pData[14], LFO1InternalDepth);
1518
1519 // next 2 bytes unknown
1520
1521 store16(&pData[18], LFO3InternalDepth);
1522
1523 // next 2 bytes unknown
1524
1525 store16(&pData[22], LFO1ControlDepth);
1526
1527 // next 2 bytes unknown
1528
1529 store16(&pData[26], LFO3ControlDepth);
1530
1531 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1532 store32(&pData[28], eg1attack);
1533
1534 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1535 store32(&pData[32], eg1decay1);
1536
1537 // next 2 bytes unknown
1538
1539 store16(&pData[38], EG1Sustain);
1540
1541 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1542 store32(&pData[40], eg1release);
1543
1544 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1545 pData[44] = eg1ctl;
1546
1547 const uint8_t eg1ctrloptions =
1548 (EG1ControllerInvert) ? 0x01 : 0x00 |
1549 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1550 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1551 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1552 pData[45] = eg1ctrloptions;
1553
1554 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1555 pData[46] = eg2ctl;
1556
1557 const uint8_t eg2ctrloptions =
1558 (EG2ControllerInvert) ? 0x01 : 0x00 |
1559 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1560 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1561 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1562 pData[47] = eg2ctrloptions;
1563
1564 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1565 store32(&pData[48], lfo1freq);
1566
1567 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1568 store32(&pData[52], eg2attack);
1569
1570 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1571 store32(&pData[56], eg2decay1);
1572
1573 // next 2 bytes unknown
1574
1575 store16(&pData[62], EG2Sustain);
1576
1577 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1578 store32(&pData[64], eg2release);
1579
1580 // next 2 bytes unknown
1581
1582 store16(&pData[70], LFO2ControlDepth);
1583
1584 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1585 store32(&pData[72], lfo2freq);
1586
1587 // next 2 bytes unknown
1588
1589 store16(&pData[78], LFO2InternalDepth);
1590
1591 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1592 store32(&pData[80], eg1decay2);
1593
1594 // next 2 bytes unknown
1595
1596 store16(&pData[86], EG1PreAttack);
1597
1598 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1599 store32(&pData[88], eg2decay2);
1600
1601 // next 2 bytes unknown
1602
1603 store16(&pData[94], EG2PreAttack);
1604
1605 {
1606 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1607 uint8_t velocityresponse = VelocityResponseDepth;
1608 switch (VelocityResponseCurve) {
1609 case curve_type_nonlinear:
1610 break;
1611 case curve_type_linear:
1612 velocityresponse += 5;
1613 break;
1614 case curve_type_special:
1615 velocityresponse += 10;
1616 break;
1617 case curve_type_unknown:
1618 default:
1619 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1620 }
1621 pData[96] = velocityresponse;
1622 }
1623
1624 {
1625 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1626 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1627 switch (ReleaseVelocityResponseCurve) {
1628 case curve_type_nonlinear:
1629 break;
1630 case curve_type_linear:
1631 releasevelocityresponse += 5;
1632 break;
1633 case curve_type_special:
1634 releasevelocityresponse += 10;
1635 break;
1636 case curve_type_unknown:
1637 default:
1638 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1639 }
1640 pData[97] = releasevelocityresponse;
1641 }
1642
1643 pData[98] = VelocityResponseCurveScaling;
1644
1645 pData[99] = AttenuationControllerThreshold;
1646
1647 // next 4 bytes unknown
1648
1649 store16(&pData[104], SampleStartOffset);
1650
1651 // next 2 bytes unknown
1652
1653 {
1654 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1655 switch (DimensionBypass) {
1656 case dim_bypass_ctrl_94:
1657 pitchTrackDimensionBypass |= 0x10;
1658 break;
1659 case dim_bypass_ctrl_95:
1660 pitchTrackDimensionBypass |= 0x20;
1661 break;
1662 case dim_bypass_ctrl_none:
1663 //FIXME: should we set anything here?
1664 break;
1665 default:
1666 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1667 }
1668 pData[108] = pitchTrackDimensionBypass;
1669 }
1670
1671 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1672 pData[109] = pan;
1673
1674 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1675 pData[110] = selfmask;
1676
1677 // next byte unknown
1678
1679 {
1680 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1681 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1682 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1683 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1684 pData[112] = lfo3ctrl;
1685 }
1686
1687 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1688 pData[113] = attenctl;
1689
1690 {
1691 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1692 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1693 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1694 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1695 pData[114] = lfo2ctrl;
1696 }
1697
1698 {
1699 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1700 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1701 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1702 if (VCFResonanceController != vcf_res_ctrl_none)
1703 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1704 pData[115] = lfo1ctrl;
1705 }
1706
1707 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1708 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1709 pData[116] = eg3depth;
1710
1711 // next 2 bytes unknown
1712
1713 const uint8_t channeloffset = ChannelOffset * 4;
1714 pData[120] = channeloffset;
1715
1716 {
1717 uint8_t regoptions = 0;
1718 if (MSDecode) regoptions |= 0x01; // bit 0
1719 if (SustainDefeat) regoptions |= 0x02; // bit 1
1720 pData[121] = regoptions;
1721 }
1722
1723 // next 2 bytes unknown
1724
1725 pData[124] = VelocityUpperLimit;
1726
1727 // next 3 bytes unknown
1728
1729 pData[128] = ReleaseTriggerDecay;
1730
1731 // next 2 bytes unknown
1732
1733 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1734 pData[131] = eg1hold;
1735
1736 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1737 (VCFCutoff & 0x7f); /* lower 7 bits */
1738 pData[132] = vcfcutoff;
1739
1740 pData[133] = VCFCutoffController;
1741
1742 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1743 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1744 pData[134] = vcfvelscale;
1745
1746 // next byte unknown
1747
1748 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1749 (VCFResonance & 0x7f); /* lower 7 bits */
1750 pData[136] = vcfresonance;
1751
1752 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1753 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1754 pData[137] = vcfbreakpoint;
1755
1756 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1757 VCFVelocityCurve * 5;
1758 pData[138] = vcfvelocity;
1759
1760 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1761 pData[139] = vcftype;
1762
1763 if (chunksize >= 148) {
1764 memcpy(&pData[140], DimensionUpperLimits, 8);
1765 }
1766 }
1767
1768 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1769 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1770 {
1771 double* table;
1772 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1773 if (pVelocityTables->count(tableKey)) { // if key exists
1774 table = (*pVelocityTables)[tableKey];
1775 }
1776 else {
1777 table = CreateVelocityTable(curveType, depth, scaling);
1778 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1779 }
1780 return table;
1781 }
1782
1783 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1784 leverage_ctrl_t decodedcontroller;
1785 switch (EncodedController) {
1786 // special controller
1787 case _lev_ctrl_none:
1788 decodedcontroller.type = leverage_ctrl_t::type_none;
1789 decodedcontroller.controller_number = 0;
1790 break;
1791 case _lev_ctrl_velocity:
1792 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1793 decodedcontroller.controller_number = 0;
1794 break;
1795 case _lev_ctrl_channelaftertouch:
1796 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1797 decodedcontroller.controller_number = 0;
1798 break;
1799
1800 // ordinary MIDI control change controller
1801 case _lev_ctrl_modwheel:
1802 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803 decodedcontroller.controller_number = 1;
1804 break;
1805 case _lev_ctrl_breath:
1806 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807 decodedcontroller.controller_number = 2;
1808 break;
1809 case _lev_ctrl_foot:
1810 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811 decodedcontroller.controller_number = 4;
1812 break;
1813 case _lev_ctrl_effect1:
1814 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815 decodedcontroller.controller_number = 12;
1816 break;
1817 case _lev_ctrl_effect2:
1818 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819 decodedcontroller.controller_number = 13;
1820 break;
1821 case _lev_ctrl_genpurpose1:
1822 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823 decodedcontroller.controller_number = 16;
1824 break;
1825 case _lev_ctrl_genpurpose2:
1826 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827 decodedcontroller.controller_number = 17;
1828 break;
1829 case _lev_ctrl_genpurpose3:
1830 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831 decodedcontroller.controller_number = 18;
1832 break;
1833 case _lev_ctrl_genpurpose4:
1834 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835 decodedcontroller.controller_number = 19;
1836 break;
1837 case _lev_ctrl_portamentotime:
1838 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839 decodedcontroller.controller_number = 5;
1840 break;
1841 case _lev_ctrl_sustainpedal:
1842 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843 decodedcontroller.controller_number = 64;
1844 break;
1845 case _lev_ctrl_portamento:
1846 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847 decodedcontroller.controller_number = 65;
1848 break;
1849 case _lev_ctrl_sostenutopedal:
1850 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851 decodedcontroller.controller_number = 66;
1852 break;
1853 case _lev_ctrl_softpedal:
1854 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855 decodedcontroller.controller_number = 67;
1856 break;
1857 case _lev_ctrl_genpurpose5:
1858 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859 decodedcontroller.controller_number = 80;
1860 break;
1861 case _lev_ctrl_genpurpose6:
1862 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863 decodedcontroller.controller_number = 81;
1864 break;
1865 case _lev_ctrl_genpurpose7:
1866 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867 decodedcontroller.controller_number = 82;
1868 break;
1869 case _lev_ctrl_genpurpose8:
1870 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1871 decodedcontroller.controller_number = 83;
1872 break;
1873 case _lev_ctrl_effect1depth:
1874 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1875 decodedcontroller.controller_number = 91;
1876 break;
1877 case _lev_ctrl_effect2depth:
1878 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1879 decodedcontroller.controller_number = 92;
1880 break;
1881 case _lev_ctrl_effect3depth:
1882 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1883 decodedcontroller.controller_number = 93;
1884 break;
1885 case _lev_ctrl_effect4depth:
1886 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1887 decodedcontroller.controller_number = 94;
1888 break;
1889 case _lev_ctrl_effect5depth:
1890 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1891 decodedcontroller.controller_number = 95;
1892 break;
1893
1894 // unknown controller type
1895 default:
1896 throw gig::Exception("Unknown leverage controller type.");
1897 }
1898 return decodedcontroller;
1899 }
1900
1901 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1902 _lev_ctrl_t encodedcontroller;
1903 switch (DecodedController.type) {
1904 // special controller
1905 case leverage_ctrl_t::type_none:
1906 encodedcontroller = _lev_ctrl_none;
1907 break;
1908 case leverage_ctrl_t::type_velocity:
1909 encodedcontroller = _lev_ctrl_velocity;
1910 break;
1911 case leverage_ctrl_t::type_channelaftertouch:
1912 encodedcontroller = _lev_ctrl_channelaftertouch;
1913 break;
1914
1915 // ordinary MIDI control change controller
1916 case leverage_ctrl_t::type_controlchange:
1917 switch (DecodedController.controller_number) {
1918 case 1:
1919 encodedcontroller = _lev_ctrl_modwheel;
1920 break;
1921 case 2:
1922 encodedcontroller = _lev_ctrl_breath;
1923 break;
1924 case 4:
1925 encodedcontroller = _lev_ctrl_foot;
1926 break;
1927 case 12:
1928 encodedcontroller = _lev_ctrl_effect1;
1929 break;
1930 case 13:
1931 encodedcontroller = _lev_ctrl_effect2;
1932 break;
1933 case 16:
1934 encodedcontroller = _lev_ctrl_genpurpose1;
1935 break;
1936 case 17:
1937 encodedcontroller = _lev_ctrl_genpurpose2;
1938 break;
1939 case 18:
1940 encodedcontroller = _lev_ctrl_genpurpose3;
1941 break;
1942 case 19:
1943 encodedcontroller = _lev_ctrl_genpurpose4;
1944 break;
1945 case 5:
1946 encodedcontroller = _lev_ctrl_portamentotime;
1947 break;
1948 case 64:
1949 encodedcontroller = _lev_ctrl_sustainpedal;
1950 break;
1951 case 65:
1952 encodedcontroller = _lev_ctrl_portamento;
1953 break;
1954 case 66:
1955 encodedcontroller = _lev_ctrl_sostenutopedal;
1956 break;
1957 case 67:
1958 encodedcontroller = _lev_ctrl_softpedal;
1959 break;
1960 case 80:
1961 encodedcontroller = _lev_ctrl_genpurpose5;
1962 break;
1963 case 81:
1964 encodedcontroller = _lev_ctrl_genpurpose6;
1965 break;
1966 case 82:
1967 encodedcontroller = _lev_ctrl_genpurpose7;
1968 break;
1969 case 83:
1970 encodedcontroller = _lev_ctrl_genpurpose8;
1971 break;
1972 case 91:
1973 encodedcontroller = _lev_ctrl_effect1depth;
1974 break;
1975 case 92:
1976 encodedcontroller = _lev_ctrl_effect2depth;
1977 break;
1978 case 93:
1979 encodedcontroller = _lev_ctrl_effect3depth;
1980 break;
1981 case 94:
1982 encodedcontroller = _lev_ctrl_effect4depth;
1983 break;
1984 case 95:
1985 encodedcontroller = _lev_ctrl_effect5depth;
1986 break;
1987 default:
1988 throw gig::Exception("leverage controller number is not supported by the gig format");
1989 }
1990 default:
1991 throw gig::Exception("Unknown leverage controller type.");
1992 }
1993 return encodedcontroller;
1994 }
1995
1996 DimensionRegion::~DimensionRegion() {
1997 Instances--;
1998 if (!Instances) {
1999 // delete the velocity->volume tables
2000 VelocityTableMap::iterator iter;
2001 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2002 double* pTable = iter->second;
2003 if (pTable) delete[] pTable;
2004 }
2005 pVelocityTables->clear();
2006 delete pVelocityTables;
2007 pVelocityTables = NULL;
2008 }
2009 if (VelocityTable) delete[] VelocityTable;
2010 }
2011
2012 /**
2013 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2014 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2015 * and VelocityResponseCurveScaling) involved are taken into account to
2016 * calculate the amplitude factor. Use this method when a key was
2017 * triggered to get the volume with which the sample should be played
2018 * back.
2019 *
2020 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2021 * @returns amplitude factor (between 0.0 and 1.0)
2022 */
2023 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2024 return pVelocityAttenuationTable[MIDIKeyVelocity];
2025 }
2026
2027 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2028 return pVelocityReleaseTable[MIDIKeyVelocity];
2029 }
2030
2031 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2032 return pVelocityCutoffTable[MIDIKeyVelocity];
2033 }
2034
2035 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2036
2037 // line-segment approximations of the 15 velocity curves
2038
2039 // linear
2040 const int lin0[] = { 1, 1, 127, 127 };
2041 const int lin1[] = { 1, 21, 127, 127 };
2042 const int lin2[] = { 1, 45, 127, 127 };
2043 const int lin3[] = { 1, 74, 127, 127 };
2044 const int lin4[] = { 1, 127, 127, 127 };
2045
2046 // non-linear
2047 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2048 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2049 127, 127 };
2050 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2051 127, 127 };
2052 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2053 127, 127 };
2054 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2055
2056 // special
2057 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2058 113, 127, 127, 127 };
2059 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2060 118, 127, 127, 127 };
2061 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2062 85, 90, 91, 127, 127, 127 };
2063 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2064 117, 127, 127, 127 };
2065 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2066 127, 127 };
2067
2068 // this is only used by the VCF velocity curve
2069 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2070 91, 127, 127, 127 };
2071
2072 const int* const curves[] = { non0, non1, non2, non3, non4,
2073 lin0, lin1, lin2, lin3, lin4,
2074 spe0, spe1, spe2, spe3, spe4, spe5 };
2075
2076 double* const table = new double[128];
2077
2078 const int* curve = curves[curveType * 5 + depth];
2079 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2080
2081 table[0] = 0;
2082 for (int x = 1 ; x < 128 ; x++) {
2083
2084 if (x > curve[2]) curve += 2;
2085 double y = curve[1] + (x - curve[0]) *
2086 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2087 y = y / 127;
2088
2089 // Scale up for s > 20, down for s < 20. When
2090 // down-scaling, the curve still ends at 1.0.
2091 if (s < 20 && y >= 0.5)
2092 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2093 else
2094 y = y * (s / 20.0);
2095 if (y > 1) y = 1;
2096
2097 table[x] = y;
2098 }
2099 return table;
2100 }
2101
2102
2103 // *************** Region ***************
2104 // *
2105
2106 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2107 pInfo->UseFixedLengthStrings = true;
2108
2109 // Initialization
2110 Dimensions = 0;
2111 for (int i = 0; i < 256; i++) {
2112 pDimensionRegions[i] = NULL;
2113 }
2114 Layers = 1;
2115 File* file = (File*) GetParent()->GetParent();
2116 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2117
2118 // Actual Loading
2119
2120 LoadDimensionRegions(rgnList);
2121
2122 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2123 if (_3lnk) {
2124 DimensionRegions = _3lnk->ReadUint32();
2125 for (int i = 0; i < dimensionBits; i++) {
2126 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2127 uint8_t bits = _3lnk->ReadUint8();
2128 _3lnk->ReadUint8(); // probably the position of the dimension
2129 _3lnk->ReadUint8(); // unknown
2130 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2131 if (dimension == dimension_none) { // inactive dimension
2132 pDimensionDefinitions[i].dimension = dimension_none;
2133 pDimensionDefinitions[i].bits = 0;
2134 pDimensionDefinitions[i].zones = 0;
2135 pDimensionDefinitions[i].split_type = split_type_bit;
2136 pDimensionDefinitions[i].zone_size = 0;
2137 }
2138 else { // active dimension
2139 pDimensionDefinitions[i].dimension = dimension;
2140 pDimensionDefinitions[i].bits = bits;
2141 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2142 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2143 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2144 Dimensions++;
2145
2146 // if this is a layer dimension, remember the amount of layers
2147 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2148 }
2149 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2150 }
2151 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2152
2153 // if there's a velocity dimension and custom velocity zone splits are used,
2154 // update the VelocityTables in the dimension regions
2155 UpdateVelocityTable();
2156
2157 // jump to start of the wave pool indices (if not already there)
2158 if (file->pVersion && file->pVersion->major == 3)
2159 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2160 else
2161 _3lnk->SetPos(44);
2162
2163 // load sample references
2164 for (uint i = 0; i < DimensionRegions; i++) {
2165 uint32_t wavepoolindex = _3lnk->ReadUint32();
2166 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2167 }
2168 GetSample(); // load global region sample reference
2169 } else {
2170 DimensionRegions = 0;
2171 }
2172
2173 // make sure there is at least one dimension region
2174 if (!DimensionRegions) {
2175 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2176 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2177 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2178 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2179 DimensionRegions = 1;
2180 }
2181 }
2182
2183 /**
2184 * Apply Region settings and all its DimensionRegions to the respective
2185 * RIFF chunks. You have to call File::Save() to make changes persistent.
2186 *
2187 * Usually there is absolutely no need to call this method explicitly.
2188 * It will be called automatically when File::Save() was called.
2189 *
2190 * @throws gig::Exception if samples cannot be dereferenced
2191 */
2192 void Region::UpdateChunks() {
2193 // in the gig format we don't care about the Region's sample reference
2194 // but we still have to provide some existing one to not corrupt the
2195 // file, so to avoid the latter we simply always assign the sample of
2196 // the first dimension region of this region
2197 pSample = pDimensionRegions[0]->pSample;
2198
2199 // first update base class's chunks
2200 DLS::Region::UpdateChunks();
2201
2202 // update dimension region's chunks
2203 for (int i = 0; i < DimensionRegions; i++) {
2204 pDimensionRegions[i]->UpdateChunks();
2205 }
2206
2207 File* pFile = (File*) GetParent()->GetParent();
2208 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2209 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2210
2211 // make sure '3lnk' chunk exists
2212 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2213 if (!_3lnk) {
2214 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2215 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2216 }
2217
2218 // update dimension definitions in '3lnk' chunk
2219 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2220 store32(&pData[0], DimensionRegions);
2221 for (int i = 0; i < iMaxDimensions; i++) {
2222 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2223 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2224 // next 2 bytes unknown
2225 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2226 // next 3 bytes unknown
2227 }
2228
2229 // update wave pool table in '3lnk' chunk
2230 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2231 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2232 int iWaveIndex = -1;
2233 if (i < DimensionRegions) {
2234 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2235 File::SampleList::iterator iter = pFile->pSamples->begin();
2236 File::SampleList::iterator end = pFile->pSamples->end();
2237 for (int index = 0; iter != end; ++iter, ++index) {
2238 if (*iter == pDimensionRegions[i]->pSample) {
2239 iWaveIndex = index;
2240 break;
2241 }
2242 }
2243 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2244 }
2245 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2246 }
2247 }
2248
2249 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2250 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2251 if (_3prg) {
2252 int dimensionRegionNr = 0;
2253 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2254 while (_3ewl) {
2255 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2256 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2257 dimensionRegionNr++;
2258 }
2259 _3ewl = _3prg->GetNextSubList();
2260 }
2261 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2262 }
2263 }
2264
2265 void Region::UpdateVelocityTable() {
2266 // get velocity dimension's index
2267 int veldim = -1;
2268 for (int i = 0 ; i < Dimensions ; i++) {
2269 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2270 veldim = i;
2271 break;
2272 }
2273 }
2274 if (veldim == -1) return;
2275
2276 int step = 1;
2277 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2278 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2279 int end = step * pDimensionDefinitions[veldim].zones;
2280
2281 // loop through all dimension regions for all dimensions except the velocity dimension
2282 int dim[8] = { 0 };
2283 for (int i = 0 ; i < DimensionRegions ; i++) {
2284
2285 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2286 pDimensionRegions[i]->VelocityUpperLimit) {
2287 // create the velocity table
2288 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2289 if (!table) {
2290 table = new uint8_t[128];
2291 pDimensionRegions[i]->VelocityTable = table;
2292 }
2293 int tableidx = 0;
2294 int velocityZone = 0;
2295 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2296 for (int k = i ; k < end ; k += step) {
2297 DimensionRegion *d = pDimensionRegions[k];
2298 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2299 velocityZone++;
2300 }
2301 } else { // gig2
2302 for (int k = i ; k < end ; k += step) {
2303 DimensionRegion *d = pDimensionRegions[k];
2304 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2305 velocityZone++;
2306 }
2307 }
2308 } else {
2309 if (pDimensionRegions[i]->VelocityTable) {
2310 delete[] pDimensionRegions[i]->VelocityTable;
2311 pDimensionRegions[i]->VelocityTable = 0;
2312 }
2313 }
2314
2315 int j;
2316 int shift = 0;
2317 for (j = 0 ; j < Dimensions ; j++) {
2318 if (j == veldim) i += skipveldim; // skip velocity dimension
2319 else {
2320 dim[j]++;
2321 if (dim[j] < pDimensionDefinitions[j].zones) break;
2322 else {
2323 // skip unused dimension regions
2324 dim[j] = 0;
2325 i += ((1 << pDimensionDefinitions[j].bits) -
2326 pDimensionDefinitions[j].zones) << shift;
2327 }
2328 }
2329 shift += pDimensionDefinitions[j].bits;
2330 }
2331 if (j == Dimensions) break;
2332 }
2333 }
2334
2335 /** @brief Einstein would have dreamed of it - create a new dimension.
2336 *
2337 * Creates a new dimension with the dimension definition given by
2338 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2339 * There is a hard limit of dimensions and total amount of "bits" all
2340 * dimensions can have. This limit is dependant to what gig file format
2341 * version this file refers to. The gig v2 (and lower) format has a
2342 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2343 * format has a limit of 8.
2344 *
2345 * @param pDimDef - defintion of the new dimension
2346 * @throws gig::Exception if dimension of the same type exists already
2347 * @throws gig::Exception if amount of dimensions or total amount of
2348 * dimension bits limit is violated
2349 */
2350 void Region::AddDimension(dimension_def_t* pDimDef) {
2351 // check if max. amount of dimensions reached
2352 File* file = (File*) GetParent()->GetParent();
2353 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2354 if (Dimensions >= iMaxDimensions)
2355 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2356 // check if max. amount of dimension bits reached
2357 int iCurrentBits = 0;
2358 for (int i = 0; i < Dimensions; i++)
2359 iCurrentBits += pDimensionDefinitions[i].bits;
2360 if (iCurrentBits >= iMaxDimensions)
2361 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2362 const int iNewBits = iCurrentBits + pDimDef->bits;
2363 if (iNewBits > iMaxDimensions)
2364 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2365 // check if there's already a dimensions of the same type
2366 for (int i = 0; i < Dimensions; i++)
2367 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2368 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2369
2370 // assign definition of new dimension
2371 pDimensionDefinitions[Dimensions] = *pDimDef;
2372
2373 // auto correct certain dimension definition fields (where possible)
2374 pDimensionDefinitions[Dimensions].split_type =
2375 __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2376 pDimensionDefinitions[Dimensions].zone_size =
2377 __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2378
2379 // create new dimension region(s) for this new dimension
2380 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2381 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2382 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2383 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2384 DimensionRegions++;
2385 }
2386
2387 Dimensions++;
2388
2389 // if this is a layer dimension, update 'Layers' attribute
2390 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2391
2392 UpdateVelocityTable();
2393 }
2394
2395 /** @brief Delete an existing dimension.
2396 *
2397 * Deletes the dimension given by \a pDimDef and deletes all respective
2398 * dimension regions, that is all dimension regions where the dimension's
2399 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2400 * for example this would delete all dimension regions for the case(s)
2401 * where the sustain pedal is pressed down.
2402 *
2403 * @param pDimDef - dimension to delete
2404 * @throws gig::Exception if given dimension cannot be found
2405 */
2406 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2407 // get dimension's index
2408 int iDimensionNr = -1;
2409 for (int i = 0; i < Dimensions; i++) {
2410 if (&pDimensionDefinitions[i] == pDimDef) {
2411 iDimensionNr = i;
2412 break;
2413 }
2414 }
2415 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2416
2417 // get amount of bits below the dimension to delete
2418 int iLowerBits = 0;
2419 for (int i = 0; i < iDimensionNr; i++)
2420 iLowerBits += pDimensionDefinitions[i].bits;
2421
2422 // get amount ot bits above the dimension to delete
2423 int iUpperBits = 0;
2424 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2425 iUpperBits += pDimensionDefinitions[i].bits;
2426
2427 // delete dimension regions which belong to the given dimension
2428 // (that is where the dimension's bit > 0)
2429 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2430 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2431 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2432 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2433 iObsoleteBit << iLowerBits |
2434 iLowerBit;
2435 delete pDimensionRegions[iToDelete];
2436 pDimensionRegions[iToDelete] = NULL;
2437 DimensionRegions--;
2438 }
2439 }
2440 }
2441
2442 // defrag pDimensionRegions array
2443 // (that is remove the NULL spaces within the pDimensionRegions array)
2444 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2445 if (!pDimensionRegions[iTo]) {
2446 if (iFrom <= iTo) iFrom = iTo + 1;
2447 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2448 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2449 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2450 pDimensionRegions[iFrom] = NULL;
2451 }
2452 }
2453 }
2454
2455 // 'remove' dimension definition
2456 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2457 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2458 }
2459 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2460 pDimensionDefinitions[Dimensions - 1].bits = 0;
2461 pDimensionDefinitions[Dimensions - 1].zones = 0;
2462
2463 Dimensions--;
2464
2465 // if this was a layer dimension, update 'Layers' attribute
2466 if (pDimDef->dimension == dimension_layer) Layers = 1;
2467 }
2468
2469 Region::~Region() {
2470 for (int i = 0; i < 256; i++) {
2471 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2472 }
2473 }
2474
2475 /**
2476 * Use this method in your audio engine to get the appropriate dimension
2477 * region with it's articulation data for the current situation. Just
2478 * call the method with the current MIDI controller values and you'll get
2479 * the DimensionRegion with the appropriate articulation data for the
2480 * current situation (for this Region of course only). To do that you'll
2481 * first have to look which dimensions with which controllers and in
2482 * which order are defined for this Region when you load the .gig file.
2483 * Special cases are e.g. layer or channel dimensions where you just put
2484 * in the index numbers instead of a MIDI controller value (means 0 for
2485 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2486 * etc.).
2487 *
2488 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2489 * @returns adress to the DimensionRegion for the given situation
2490 * @see pDimensionDefinitions
2491 * @see Dimensions
2492 */
2493 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2494 uint8_t bits;
2495 int veldim = -1;
2496 int velbitpos;
2497 int bitpos = 0;
2498 int dimregidx = 0;
2499 for (uint i = 0; i < Dimensions; i++) {
2500 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2501 // the velocity dimension must be handled after the other dimensions
2502 veldim = i;
2503 velbitpos = bitpos;
2504 } else {
2505 switch (pDimensionDefinitions[i].split_type) {
2506 case split_type_normal:
2507 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2508 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2509 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2510 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2511 }
2512 } else {
2513 // gig2: evenly sized zones
2514 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2515 }
2516 break;
2517 case split_type_bit: // the value is already the sought dimension bit number
2518 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2519 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2520 break;
2521 }
2522 dimregidx |= bits << bitpos;
2523 }
2524 bitpos += pDimensionDefinitions[i].bits;
2525 }
2526 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2527 if (veldim != -1) {
2528 // (dimreg is now the dimension region for the lowest velocity)
2529 if (dimreg->VelocityTable) // custom defined zone ranges
2530 bits = dimreg->VelocityTable[DimValues[veldim]];
2531 else // normal split type
2532 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2533
2534 dimregidx |= bits << velbitpos;
2535 dimreg = pDimensionRegions[dimregidx];
2536 }
2537 return dimreg;
2538 }
2539
2540 /**
2541 * Returns the appropriate DimensionRegion for the given dimension bit
2542 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2543 * instead of calling this method directly!
2544 *
2545 * @param DimBits Bit numbers for dimension 0 to 7
2546 * @returns adress to the DimensionRegion for the given dimension
2547 * bit numbers
2548 * @see GetDimensionRegionByValue()
2549 */
2550 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2551 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2552 << pDimensionDefinitions[5].bits | DimBits[5])
2553 << pDimensionDefinitions[4].bits | DimBits[4])
2554 << pDimensionDefinitions[3].bits | DimBits[3])
2555 << pDimensionDefinitions[2].bits | DimBits[2])
2556 << pDimensionDefinitions[1].bits | DimBits[1])
2557 << pDimensionDefinitions[0].bits | DimBits[0]];
2558 }
2559
2560 /**
2561 * Returns pointer address to the Sample referenced with this region.
2562 * This is the global Sample for the entire Region (not sure if this is
2563 * actually used by the Gigasampler engine - I would only use the Sample
2564 * referenced by the appropriate DimensionRegion instead of this sample).
2565 *
2566 * @returns address to Sample or NULL if there is no reference to a
2567 * sample saved in the .gig file
2568 */
2569 Sample* Region::GetSample() {
2570 if (pSample) return static_cast<gig::Sample*>(pSample);
2571 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2572 }
2573
2574 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2575 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2576 File* file = (File*) GetParent()->GetParent();
2577 if (!file->pWavePoolTable) return NULL;
2578 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2579 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2580 Sample* sample = file->GetFirstSample(pProgress);
2581 while (sample) {
2582 if (sample->ulWavePoolOffset == soughtoffset &&
2583 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2584 sample = file->GetNextSample();
2585 }
2586 return NULL;
2587 }
2588
2589
2590
2591 // *************** Instrument ***************
2592 // *
2593
2594 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2595 pInfo->UseFixedLengthStrings = true;
2596
2597 // Initialization
2598 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2599
2600 // Loading
2601 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2602 if (lart) {
2603 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2604 if (_3ewg) {
2605 EffectSend = _3ewg->ReadUint16();
2606 Attenuation = _3ewg->ReadInt32();
2607 FineTune = _3ewg->ReadInt16();
2608 PitchbendRange = _3ewg->ReadInt16();
2609 uint8_t dimkeystart = _3ewg->ReadUint8();
2610 PianoReleaseMode = dimkeystart & 0x01;
2611 DimensionKeyRange.low = dimkeystart >> 1;
2612 DimensionKeyRange.high = _3ewg->ReadUint8();
2613 }
2614 }
2615
2616 if (!pRegions) pRegions = new RegionList;
2617 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2618 if (lrgn) {
2619 RIFF::List* rgn = lrgn->GetFirstSubList();
2620 while (rgn) {
2621 if (rgn->GetListType() == LIST_TYPE_RGN) {
2622 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2623 pRegions->push_back(new Region(this, rgn));
2624 }
2625 rgn = lrgn->GetNextSubList();
2626 }
2627 // Creating Region Key Table for fast lookup
2628 UpdateRegionKeyTable();
2629 }
2630
2631 __notify_progress(pProgress, 1.0f); // notify done
2632 }
2633
2634 void Instrument::UpdateRegionKeyTable() {
2635 RegionList::iterator iter = pRegions->begin();
2636 RegionList::iterator end = pRegions->end();
2637 for (; iter != end; ++iter) {
2638 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2639 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2640 RegionKeyTable[iKey] = pRegion;
2641 }
2642 }
2643 }
2644
2645 Instrument::~Instrument() {
2646 }
2647
2648 /**
2649 * Apply Instrument with all its Regions to the respective RIFF chunks.
2650 * You have to call File::Save() to make changes persistent.
2651 *
2652 * Usually there is absolutely no need to call this method explicitly.
2653 * It will be called automatically when File::Save() was called.
2654 *
2655 * @throws gig::Exception if samples cannot be dereferenced
2656 */
2657 void Instrument::UpdateChunks() {
2658 // first update base classes' chunks
2659 DLS::Instrument::UpdateChunks();
2660
2661 // update Regions' chunks
2662 {
2663 RegionList::iterator iter = pRegions->begin();
2664 RegionList::iterator end = pRegions->end();
2665 for (; iter != end; ++iter)
2666 (*iter)->UpdateChunks();
2667 }
2668
2669 // make sure 'lart' RIFF list chunk exists
2670 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2671 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2672 // make sure '3ewg' RIFF chunk exists
2673 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2674 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2675 // update '3ewg' RIFF chunk
2676 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2677 store16(&pData[0], EffectSend);
2678 store32(&pData[2], Attenuation);
2679 store16(&pData[6], FineTune);
2680 store16(&pData[8], PitchbendRange);
2681 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2682 DimensionKeyRange.low << 1;
2683 pData[10] = dimkeystart;
2684 pData[11] = DimensionKeyRange.high;
2685 }
2686
2687 /**
2688 * Returns the appropriate Region for a triggered note.
2689 *
2690 * @param Key MIDI Key number of triggered note / key (0 - 127)
2691 * @returns pointer adress to the appropriate Region or NULL if there
2692 * there is no Region defined for the given \a Key
2693 */
2694 Region* Instrument::GetRegion(unsigned int Key) {
2695 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2696 return RegionKeyTable[Key];
2697
2698 /*for (int i = 0; i < Regions; i++) {
2699 if (Key <= pRegions[i]->KeyRange.high &&
2700 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2701 }
2702 return NULL;*/
2703 }
2704
2705 /**
2706 * Returns the first Region of the instrument. You have to call this
2707 * method once before you use GetNextRegion().
2708 *
2709 * @returns pointer address to first region or NULL if there is none
2710 * @see GetNextRegion()
2711 */
2712 Region* Instrument::GetFirstRegion() {
2713 if (!pRegions) return NULL;
2714 RegionsIterator = pRegions->begin();
2715 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2716 }
2717
2718 /**
2719 * Returns the next Region of the instrument. You have to call
2720 * GetFirstRegion() once before you can use this method. By calling this
2721 * method multiple times it iterates through the available Regions.
2722 *
2723 * @returns pointer address to the next region or NULL if end reached
2724 * @see GetFirstRegion()
2725 */
2726 Region* Instrument::GetNextRegion() {
2727 if (!pRegions) return NULL;
2728 RegionsIterator++;
2729 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2730 }
2731
2732 Region* Instrument::AddRegion() {
2733 // create new Region object (and its RIFF chunks)
2734 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2735 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2736 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2737 Region* pNewRegion = new Region(this, rgn);
2738 pRegions->push_back(pNewRegion);
2739 Regions = pRegions->size();
2740 // update Region key table for fast lookup
2741 UpdateRegionKeyTable();
2742 // done
2743 return pNewRegion;
2744 }
2745
2746 void Instrument::DeleteRegion(Region* pRegion) {
2747 if (!pRegions) return;
2748 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2749 // update Region key table for fast lookup
2750 UpdateRegionKeyTable();
2751 }
2752
2753
2754
2755 // *************** Group ***************
2756 // *
2757
2758 /** @brief Constructor.
2759 *
2760 * @param file - pointer to the gig::File object
2761 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2762 * NULL if this is a new Group
2763 */
2764 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2765 pFile = file;
2766 pNameChunk = ck3gnm;
2767 ::LoadString(pNameChunk, Name);
2768 }
2769
2770 Group::~Group() {
2771 // remove the chunk associated with this group (if any)
2772 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2773 }
2774
2775 /** @brief Update chunks with current group settings.
2776 *
2777 * Apply current Group field values to the respective chunks. You have
2778 * to call File::Save() to make changes persistent.
2779 *
2780 * Usually there is absolutely no need to call this method explicitly.
2781 * It will be called automatically when File::Save() was called.
2782 */
2783 void Group::UpdateChunks() {
2784 // make sure <3gri> and <3gnl> list chunks exist
2785 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2786 if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2787 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2788 if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);
2789 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2790 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2791 }
2792
2793 /**
2794 * Returns the first Sample of this Group. You have to call this method
2795 * once before you use GetNextSample().
2796 *
2797 * <b>Notice:</b> this method might block for a long time, in case the
2798 * samples of this .gig file were not scanned yet
2799 *
2800 * @returns pointer address to first Sample or NULL if there is none
2801 * applied to this Group
2802 * @see GetNextSample()
2803 */
2804 Sample* Group::GetFirstSample() {
2805 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2806 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2807 if (pSample->GetGroup() == this) return pSample;
2808 }
2809 return NULL;
2810 }
2811
2812 /**
2813 * Returns the next Sample of the Group. You have to call
2814 * GetFirstSample() once before you can use this method. By calling this
2815 * method multiple times it iterates through the Samples assigned to
2816 * this Group.
2817 *
2818 * @returns pointer address to the next Sample of this Group or NULL if
2819 * end reached
2820 * @see GetFirstSample()
2821 */
2822 Sample* Group::GetNextSample() {
2823 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2824 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2825 if (pSample->GetGroup() == this) return pSample;
2826 }
2827 return NULL;
2828 }
2829
2830 /**
2831 * Move Sample given by \a pSample from another Group to this Group.
2832 */
2833 void Group::AddSample(Sample* pSample) {
2834 pSample->pGroup = this;
2835 }
2836
2837 /**
2838 * Move all members of this group to another group (preferably the 1st
2839 * one except this). This method is called explicitly by
2840 * File::DeleteGroup() thus when a Group was deleted. This code was
2841 * intentionally not placed in the destructor!
2842 */
2843 void Group::MoveAll() {
2844 // get "that" other group first
2845 Group* pOtherGroup = NULL;
2846 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2847 if (pOtherGroup != this) break;
2848 }
2849 if (!pOtherGroup) throw Exception(
2850 "Could not move samples to another group, since there is no "
2851 "other Group. This is a bug, report it!"
2852 );
2853 // now move all samples of this group to the other group
2854 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2855 pOtherGroup->AddSample(pSample);
2856 }
2857 }
2858
2859
2860
2861 // *************** File ***************
2862 // *
2863
2864 File::File() : DLS::File() {
2865 pGroups = NULL;
2866 pInfo->UseFixedLengthStrings = true;
2867 }
2868
2869 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2870 pGroups = NULL;
2871 pInfo->UseFixedLengthStrings = true;
2872 }
2873
2874 File::~File() {
2875 if (pGroups) {
2876 std::list<Group*>::iterator iter = pGroups->begin();
2877 std::list<Group*>::iterator end = pGroups->end();
2878 while (iter != end) {
2879 delete *iter;
2880 ++iter;
2881 }
2882 delete pGroups;
2883 }
2884 }
2885
2886 Sample* File::GetFirstSample(progress_t* pProgress) {
2887 if (!pSamples) LoadSamples(pProgress);
2888 if (!pSamples) return NULL;
2889 SamplesIterator = pSamples->begin();
2890 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2891 }
2892
2893 Sample* File::GetNextSample() {
2894 if (!pSamples) return NULL;
2895 SamplesIterator++;
2896 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2897 }
2898
2899 /** @brief Add a new sample.
2900 *
2901 * This will create a new Sample object for the gig file. You have to
2902 * call Save() to make this persistent to the file.
2903 *
2904 * @returns pointer to new Sample object
2905 */
2906 Sample* File::AddSample() {
2907 if (!pSamples) LoadSamples();
2908 __ensureMandatoryChunksExist();
2909 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2910 // create new Sample object and its respective 'wave' list chunk
2911 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2912 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2913 pSamples->push_back(pSample);
2914 return pSample;
2915 }
2916
2917 /** @brief Delete a sample.
2918 *
2919 * This will delete the given Sample object from the gig file. You have
2920 * to call Save() to make this persistent to the file.
2921 *
2922 * @param pSample - sample to delete
2923 * @throws gig::Exception if given sample could not be found
2924 */
2925 void File::DeleteSample(Sample* pSample) {
2926 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2927 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2928 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2929 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2930 pSamples->erase(iter);
2931 delete pSample;
2932 }
2933
2934 void File::LoadSamples() {
2935 LoadSamples(NULL);
2936 }
2937
2938 void File::LoadSamples(progress_t* pProgress) {
2939 // Groups must be loaded before samples, because samples will try
2940 // to resolve the group they belong to
2941 if (!pGroups) LoadGroups();
2942
2943 if (!pSamples) pSamples = new SampleList;
2944
2945 RIFF::File* file = pRIFF;
2946
2947 // just for progress calculation
2948 int iSampleIndex = 0;
2949 int iTotalSamples = WavePoolCount;
2950
2951 // check if samples should be loaded from extension files
2952 int lastFileNo = 0;
2953 for (int i = 0 ; i < WavePoolCount ; i++) {
2954 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2955 }
2956 String name(pRIFF->GetFileName());
2957 int nameLen = name.length();
2958 char suffix[6];
2959 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2960
2961 for (int fileNo = 0 ; ; ) {
2962 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2963 if (wvpl) {
2964 unsigned long wvplFileOffset = wvpl->GetFilePos();
2965 RIFF::List* wave = wvpl->GetFirstSubList();
2966 while (wave) {
2967 if (wave->GetListType() == LIST_TYPE_WAVE) {
2968 // notify current progress
2969 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2970 __notify_progress(pProgress, subprogress);
2971
2972 unsigned long waveFileOffset = wave->GetFilePos();
2973 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2974
2975 iSampleIndex++;
2976 }
2977 wave = wvpl->GetNextSubList();
2978 }
2979
2980 if (fileNo == lastFileNo) break;
2981
2982 // open extension file (*.gx01, *.gx02, ...)
2983 fileNo++;
2984 sprintf(suffix, ".gx%02d", fileNo);
2985 name.replace(nameLen, 5, suffix);
2986 file = new RIFF::File(name);
2987 ExtensionFiles.push_back(file);
2988 } else break;
2989 }
2990
2991 __notify_progress(pProgress, 1.0); // notify done
2992 }
2993
2994 Instrument* File::GetFirstInstrument() {
2995 if (!pInstruments) LoadInstruments();
2996 if (!pInstruments) return NULL;
2997 InstrumentsIterator = pInstruments->begin();
2998 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2999 }
3000
3001 Instrument* File::GetNextInstrument() {
3002 if (!pInstruments) return NULL;
3003 InstrumentsIterator++;
3004 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3005 }
3006
3007 /**
3008 * Returns the instrument with the given index.
3009 *
3010 * @param index - number of the sought instrument (0..n)
3011 * @param pProgress - optional: callback function for progress notification
3012 * @returns sought instrument or NULL if there's no such instrument
3013 */
3014 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3015 if (!pInstruments) {
3016 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3017
3018 // sample loading subtask
3019 progress_t subprogress;
3020 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3021 __notify_progress(&subprogress, 0.0f);
3022 GetFirstSample(&subprogress); // now force all samples to be loaded
3023 __notify_progress(&subprogress, 1.0f);
3024
3025 // instrument loading subtask
3026 if (pProgress && pProgress->callback) {
3027 subprogress.__range_min = subprogress.__range_max;
3028 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3029 }
3030 __notify_progress(&subprogress, 0.0f);
3031 LoadInstruments(&subprogress);
3032 __notify_progress(&subprogress, 1.0f);
3033 }
3034 if (!pInstruments) return NULL;
3035 InstrumentsIterator = pInstruments->begin();
3036 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3037 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3038 InstrumentsIterator++;
3039 }
3040 return NULL;
3041 }
3042
3043 /** @brief Add a new instrument definition.
3044 *
3045 * This will create a new Instrument object for the gig file. You have
3046 * to call Save() to make this persistent to the file.
3047 *
3048 * @returns pointer to new Instrument object
3049 */
3050 Instrument* File::AddInstrument() {
3051 if (!pInstruments) LoadInstruments();
3052 __ensureMandatoryChunksExist();
3053 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3054 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3055 Instrument* pInstrument = new Instrument(this, lstInstr);
3056 pInstruments->push_back(pInstrument);
3057 return pInstrument;
3058 }
3059
3060 /** @brief Delete an instrument.
3061 *
3062 * This will delete the given Instrument object from the gig file. You
3063 * have to call Save() to make this persistent to the file.
3064 *
3065 * @param pInstrument - instrument to delete
3066 * @throws gig::Exception if given instrument could not be found
3067 */
3068 void File::DeleteInstrument(Instrument* pInstrument) {