/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1192 - (show annotations) (download)
Thu May 17 10:12:08 2007 UTC (12 years, 6 months ago) by persson
File size: 149186 byte(s)
* write support: files created by libgig will now have the RIFF chunks
  in correct order

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** Sample ***************
282 // *
283
284 unsigned int Sample::Instances = 0;
285 buffer_t Sample::InternalDecompressionBuffer;
286
287 /** @brief Constructor.
288 *
289 * Load an existing sample or create a new one. A 'wave' list chunk must
290 * be given to this constructor. In case the given 'wave' list chunk
291 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
292 * format and sample data will be loaded from there, otherwise default
293 * values will be used and those chunks will be created when
294 * File::Save() will be called later on.
295 *
296 * @param pFile - pointer to gig::File where this sample is
297 * located (or will be located)
298 * @param waveList - pointer to 'wave' list chunk which is (or
299 * will be) associated with this sample
300 * @param WavePoolOffset - offset of this sample data from wave pool
301 * ('wvpl') list chunk
302 * @param fileNo - number of an extension file where this sample
303 * is located, 0 otherwise
304 */
305 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
306 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
307 { CHUNK_ID_INAM, 64 },
308 { 0, 0 }
309 };
310 pInfo->FixedStringLengths = fixedStringLengths;
311 Instances++;
312 FileNo = fileNo;
313
314 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
315 if (pCk3gix) {
316 uint16_t iSampleGroup = pCk3gix->ReadInt16();
317 pGroup = pFile->GetGroup(iSampleGroup);
318 } else { // '3gix' chunk missing
319 // by default assigned to that mandatory "Default Group"
320 pGroup = pFile->GetGroup(0);
321 }
322
323 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
324 if (pCkSmpl) {
325 Manufacturer = pCkSmpl->ReadInt32();
326 Product = pCkSmpl->ReadInt32();
327 SamplePeriod = pCkSmpl->ReadInt32();
328 MIDIUnityNote = pCkSmpl->ReadInt32();
329 FineTune = pCkSmpl->ReadInt32();
330 pCkSmpl->Read(&SMPTEFormat, 1, 4);
331 SMPTEOffset = pCkSmpl->ReadInt32();
332 Loops = pCkSmpl->ReadInt32();
333 pCkSmpl->ReadInt32(); // manufByt
334 LoopID = pCkSmpl->ReadInt32();
335 pCkSmpl->Read(&LoopType, 1, 4);
336 LoopStart = pCkSmpl->ReadInt32();
337 LoopEnd = pCkSmpl->ReadInt32();
338 LoopFraction = pCkSmpl->ReadInt32();
339 LoopPlayCount = pCkSmpl->ReadInt32();
340 } else { // 'smpl' chunk missing
341 // use default values
342 Manufacturer = 0;
343 Product = 0;
344 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
345 MIDIUnityNote = 64;
346 FineTune = 0;
347 SMPTEFormat = smpte_format_no_offset;
348 SMPTEOffset = 0;
349 Loops = 0;
350 LoopID = 0;
351 LoopType = loop_type_normal;
352 LoopStart = 0;
353 LoopEnd = 0;
354 LoopFraction = 0;
355 LoopPlayCount = 0;
356 }
357
358 FrameTable = NULL;
359 SamplePos = 0;
360 RAMCache.Size = 0;
361 RAMCache.pStart = NULL;
362 RAMCache.NullExtensionSize = 0;
363
364 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
365
366 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
367 Compressed = ewav;
368 Dithered = false;
369 TruncatedBits = 0;
370 if (Compressed) {
371 uint32_t version = ewav->ReadInt32();
372 if (version == 3 && BitDepth == 24) {
373 Dithered = ewav->ReadInt32();
374 ewav->SetPos(Channels == 2 ? 84 : 64);
375 TruncatedBits = ewav->ReadInt32();
376 }
377 ScanCompressedSample();
378 }
379
380 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
381 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
382 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
383 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
384 }
385 FrameOffset = 0; // just for streaming compressed samples
386
387 LoopSize = LoopEnd - LoopStart + 1;
388 }
389
390 /**
391 * Apply sample and its settings to the respective RIFF chunks. You have
392 * to call File::Save() to make changes persistent.
393 *
394 * Usually there is absolutely no need to call this method explicitly.
395 * It will be called automatically when File::Save() was called.
396 *
397 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
398 * was provided yet
399 * @throws gig::Exception if there is any invalid sample setting
400 */
401 void Sample::UpdateChunks() {
402 // first update base class's chunks
403 DLS::Sample::UpdateChunks();
404
405 // make sure 'smpl' chunk exists
406 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
407 if (!pCkSmpl) {
408 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
409 memset(pCkSmpl->LoadChunkData(), 0, 60);
410 }
411 // update 'smpl' chunk
412 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
413 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
414 store32(&pData[0], Manufacturer);
415 store32(&pData[4], Product);
416 store32(&pData[8], SamplePeriod);
417 store32(&pData[12], MIDIUnityNote);
418 store32(&pData[16], FineTune);
419 store32(&pData[20], SMPTEFormat);
420 store32(&pData[24], SMPTEOffset);
421 store32(&pData[28], Loops);
422
423 // we skip 'manufByt' for now (4 bytes)
424
425 store32(&pData[36], LoopID);
426 store32(&pData[40], LoopType);
427 store32(&pData[44], LoopStart);
428 store32(&pData[48], LoopEnd);
429 store32(&pData[52], LoopFraction);
430 store32(&pData[56], LoopPlayCount);
431
432 // make sure '3gix' chunk exists
433 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
434 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
435 // determine appropriate sample group index (to be stored in chunk)
436 uint16_t iSampleGroup = 0; // 0 refers to default sample group
437 File* pFile = static_cast<File*>(pParent);
438 if (pFile->pGroups) {
439 std::list<Group*>::iterator iter = pFile->pGroups->begin();
440 std::list<Group*>::iterator end = pFile->pGroups->end();
441 for (int i = 0; iter != end; i++, iter++) {
442 if (*iter == pGroup) {
443 iSampleGroup = i;
444 break; // found
445 }
446 }
447 }
448 // update '3gix' chunk
449 pData = (uint8_t*) pCk3gix->LoadChunkData();
450 store16(&pData[0], iSampleGroup);
451 }
452
453 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
454 void Sample::ScanCompressedSample() {
455 //TODO: we have to add some more scans here (e.g. determine compression rate)
456 this->SamplesTotal = 0;
457 std::list<unsigned long> frameOffsets;
458
459 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
460 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
461
462 // Scanning
463 pCkData->SetPos(0);
464 if (Channels == 2) { // Stereo
465 for (int i = 0 ; ; i++) {
466 // for 24 bit samples every 8:th frame offset is
467 // stored, to save some memory
468 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
469
470 const int mode_l = pCkData->ReadUint8();
471 const int mode_r = pCkData->ReadUint8();
472 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
473 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
474
475 if (pCkData->RemainingBytes() <= frameSize) {
476 SamplesInLastFrame =
477 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
478 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
479 SamplesTotal += SamplesInLastFrame;
480 break;
481 }
482 SamplesTotal += SamplesPerFrame;
483 pCkData->SetPos(frameSize, RIFF::stream_curpos);
484 }
485 }
486 else { // Mono
487 for (int i = 0 ; ; i++) {
488 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489
490 const int mode = pCkData->ReadUint8();
491 if (mode > 5) throw gig::Exception("Unknown compression mode");
492 const unsigned long frameSize = bytesPerFrame[mode];
493
494 if (pCkData->RemainingBytes() <= frameSize) {
495 SamplesInLastFrame =
496 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
497 SamplesTotal += SamplesInLastFrame;
498 break;
499 }
500 SamplesTotal += SamplesPerFrame;
501 pCkData->SetPos(frameSize, RIFF::stream_curpos);
502 }
503 }
504 pCkData->SetPos(0);
505
506 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
507 if (FrameTable) delete[] FrameTable;
508 FrameTable = new unsigned long[frameOffsets.size()];
509 std::list<unsigned long>::iterator end = frameOffsets.end();
510 std::list<unsigned long>::iterator iter = frameOffsets.begin();
511 for (int i = 0; iter != end; i++, iter++) {
512 FrameTable[i] = *iter;
513 }
514 }
515
516 /**
517 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
518 * ReleaseSampleData() to free the memory if you don't need the cached
519 * sample data anymore.
520 *
521 * @returns buffer_t structure with start address and size of the buffer
522 * in bytes
523 * @see ReleaseSampleData(), Read(), SetPos()
524 */
525 buffer_t Sample::LoadSampleData() {
526 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
527 }
528
529 /**
530 * Reads (uncompresses if needed) and caches the first \a SampleCount
531 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
532 * memory space if you don't need the cached samples anymore. There is no
533 * guarantee that exactly \a SampleCount samples will be cached; this is
534 * not an error. The size will be eventually truncated e.g. to the
535 * beginning of a frame of a compressed sample. This is done for
536 * efficiency reasons while streaming the wave by your sampler engine
537 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
538 * that will be returned to determine the actual cached samples, but note
539 * that the size is given in bytes! You get the number of actually cached
540 * samples by dividing it by the frame size of the sample:
541 * @code
542 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
543 * long cachedsamples = buf.Size / pSample->FrameSize;
544 * @endcode
545 *
546 * @param SampleCount - number of sample points to load into RAM
547 * @returns buffer_t structure with start address and size of
548 * the cached sample data in bytes
549 * @see ReleaseSampleData(), Read(), SetPos()
550 */
551 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
552 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
553 }
554
555 /**
556 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
557 * ReleaseSampleData() to free the memory if you don't need the cached
558 * sample data anymore.
559 * The method will add \a NullSamplesCount silence samples past the
560 * official buffer end (this won't affect the 'Size' member of the
561 * buffer_t structure, that means 'Size' always reflects the size of the
562 * actual sample data, the buffer might be bigger though). Silence
563 * samples past the official buffer are needed for differential
564 * algorithms that always have to take subsequent samples into account
565 * (resampling/interpolation would be an important example) and avoids
566 * memory access faults in such cases.
567 *
568 * @param NullSamplesCount - number of silence samples the buffer should
569 * be extended past it's data end
570 * @returns buffer_t structure with start address and
571 * size of the buffer in bytes
572 * @see ReleaseSampleData(), Read(), SetPos()
573 */
574 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
575 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
576 }
577
578 /**
579 * Reads (uncompresses if needed) and caches the first \a SampleCount
580 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
581 * memory space if you don't need the cached samples anymore. There is no
582 * guarantee that exactly \a SampleCount samples will be cached; this is
583 * not an error. The size will be eventually truncated e.g. to the
584 * beginning of a frame of a compressed sample. This is done for
585 * efficiency reasons while streaming the wave by your sampler engine
586 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
587 * that will be returned to determine the actual cached samples, but note
588 * that the size is given in bytes! You get the number of actually cached
589 * samples by dividing it by the frame size of the sample:
590 * @code
591 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
592 * long cachedsamples = buf.Size / pSample->FrameSize;
593 * @endcode
594 * The method will add \a NullSamplesCount silence samples past the
595 * official buffer end (this won't affect the 'Size' member of the
596 * buffer_t structure, that means 'Size' always reflects the size of the
597 * actual sample data, the buffer might be bigger though). Silence
598 * samples past the official buffer are needed for differential
599 * algorithms that always have to take subsequent samples into account
600 * (resampling/interpolation would be an important example) and avoids
601 * memory access faults in such cases.
602 *
603 * @param SampleCount - number of sample points to load into RAM
604 * @param NullSamplesCount - number of silence samples the buffer should
605 * be extended past it's data end
606 * @returns buffer_t structure with start address and
607 * size of the cached sample data in bytes
608 * @see ReleaseSampleData(), Read(), SetPos()
609 */
610 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
611 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
612 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
613 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
614 RAMCache.pStart = new int8_t[allocationsize];
615 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
616 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
617 // fill the remaining buffer space with silence samples
618 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
619 return GetCache();
620 }
621
622 /**
623 * Returns current cached sample points. A buffer_t structure will be
624 * returned which contains address pointer to the begin of the cache and
625 * the size of the cached sample data in bytes. Use
626 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
627 * RAM.
628 *
629 * @returns buffer_t structure with current cached sample points
630 * @see LoadSampleData();
631 */
632 buffer_t Sample::GetCache() {
633 // return a copy of the buffer_t structure
634 buffer_t result;
635 result.Size = this->RAMCache.Size;
636 result.pStart = this->RAMCache.pStart;
637 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
638 return result;
639 }
640
641 /**
642 * Frees the cached sample from RAM if loaded with
643 * <i>LoadSampleData()</i> previously.
644 *
645 * @see LoadSampleData();
646 */
647 void Sample::ReleaseSampleData() {
648 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
649 RAMCache.pStart = NULL;
650 RAMCache.Size = 0;
651 }
652
653 /** @brief Resize sample.
654 *
655 * Resizes the sample's wave form data, that is the actual size of
656 * sample wave data possible to be written for this sample. This call
657 * will return immediately and just schedule the resize operation. You
658 * should call File::Save() to actually perform the resize operation(s)
659 * "physically" to the file. As this can take a while on large files, it
660 * is recommended to call Resize() first on all samples which have to be
661 * resized and finally to call File::Save() to perform all those resize
662 * operations in one rush.
663 *
664 * The actual size (in bytes) is dependant to the current FrameSize
665 * value. You may want to set FrameSize before calling Resize().
666 *
667 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
668 * enlarged samples before calling File::Save() as this might exceed the
669 * current sample's boundary!
670 *
671 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
672 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
673 * other formats will fail!
674 *
675 * @param iNewSize - new sample wave data size in sample points (must be
676 * greater than zero)
677 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
678 * or if \a iNewSize is less than 1
679 * @throws gig::Exception if existing sample is compressed
680 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
681 * DLS::Sample::FormatTag, File::Save()
682 */
683 void Sample::Resize(int iNewSize) {
684 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
685 DLS::Sample::Resize(iNewSize);
686 }
687
688 /**
689 * Sets the position within the sample (in sample points, not in
690 * bytes). Use this method and <i>Read()</i> if you don't want to load
691 * the sample into RAM, thus for disk streaming.
692 *
693 * Although the original Gigasampler engine doesn't allow positioning
694 * within compressed samples, I decided to implement it. Even though
695 * the Gigasampler format doesn't allow to define loops for compressed
696 * samples at the moment, positioning within compressed samples might be
697 * interesting for some sampler engines though. The only drawback about
698 * my decision is that it takes longer to load compressed gig Files on
699 * startup, because it's neccessary to scan the samples for some
700 * mandatory informations. But I think as it doesn't affect the runtime
701 * efficiency, nobody will have a problem with that.
702 *
703 * @param SampleCount number of sample points to jump
704 * @param Whence optional: to which relation \a SampleCount refers
705 * to, if omited <i>RIFF::stream_start</i> is assumed
706 * @returns the new sample position
707 * @see Read()
708 */
709 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
710 if (Compressed) {
711 switch (Whence) {
712 case RIFF::stream_curpos:
713 this->SamplePos += SampleCount;
714 break;
715 case RIFF::stream_end:
716 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
717 break;
718 case RIFF::stream_backward:
719 this->SamplePos -= SampleCount;
720 break;
721 case RIFF::stream_start: default:
722 this->SamplePos = SampleCount;
723 break;
724 }
725 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
726
727 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
728 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
729 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
730 return this->SamplePos;
731 }
732 else { // not compressed
733 unsigned long orderedBytes = SampleCount * this->FrameSize;
734 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
735 return (result == orderedBytes) ? SampleCount
736 : result / this->FrameSize;
737 }
738 }
739
740 /**
741 * Returns the current position in the sample (in sample points).
742 */
743 unsigned long Sample::GetPos() {
744 if (Compressed) return SamplePos;
745 else return pCkData->GetPos() / FrameSize;
746 }
747
748 /**
749 * Reads \a SampleCount number of sample points from the position stored
750 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
751 * the position within the sample respectively, this method honors the
752 * looping informations of the sample (if any). The sample wave stream
753 * will be decompressed on the fly if using a compressed sample. Use this
754 * method if you don't want to load the sample into RAM, thus for disk
755 * streaming. All this methods needs to know to proceed with streaming
756 * for the next time you call this method is stored in \a pPlaybackState.
757 * You have to allocate and initialize the playback_state_t structure by
758 * yourself before you use it to stream a sample:
759 * @code
760 * gig::playback_state_t playbackstate;
761 * playbackstate.position = 0;
762 * playbackstate.reverse = false;
763 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
764 * @endcode
765 * You don't have to take care of things like if there is actually a loop
766 * defined or if the current read position is located within a loop area.
767 * The method already handles such cases by itself.
768 *
769 * <b>Caution:</b> If you are using more than one streaming thread, you
770 * have to use an external decompression buffer for <b>EACH</b>
771 * streaming thread to avoid race conditions and crashes!
772 *
773 * @param pBuffer destination buffer
774 * @param SampleCount number of sample points to read
775 * @param pPlaybackState will be used to store and reload the playback
776 * state for the next ReadAndLoop() call
777 * @param pDimRgn dimension region with looping information
778 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
779 * @returns number of successfully read sample points
780 * @see CreateDecompressionBuffer()
781 */
782 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
783 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
784 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
785 uint8_t* pDst = (uint8_t*) pBuffer;
786
787 SetPos(pPlaybackState->position); // recover position from the last time
788
789 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
790
791 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
792 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
793
794 if (GetPos() <= loopEnd) {
795 switch (loop.LoopType) {
796
797 case loop_type_bidirectional: { //TODO: not tested yet!
798 do {
799 // if not endless loop check if max. number of loop cycles have been passed
800 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
801
802 if (!pPlaybackState->reverse) { // forward playback
803 do {
804 samplestoloopend = loopEnd - GetPos();
805 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
806 samplestoread -= readsamples;
807 totalreadsamples += readsamples;
808 if (readsamples == samplestoloopend) {
809 pPlaybackState->reverse = true;
810 break;
811 }
812 } while (samplestoread && readsamples);
813 }
814 else { // backward playback
815
816 // as we can only read forward from disk, we have to
817 // determine the end position within the loop first,
818 // read forward from that 'end' and finally after
819 // reading, swap all sample frames so it reflects
820 // backward playback
821
822 unsigned long swapareastart = totalreadsamples;
823 unsigned long loopoffset = GetPos() - loop.LoopStart;
824 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
825 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
826
827 SetPos(reverseplaybackend);
828
829 // read samples for backward playback
830 do {
831 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
832 samplestoreadinloop -= readsamples;
833 samplestoread -= readsamples;
834 totalreadsamples += readsamples;
835 } while (samplestoreadinloop && readsamples);
836
837 SetPos(reverseplaybackend); // pretend we really read backwards
838
839 if (reverseplaybackend == loop.LoopStart) {
840 pPlaybackState->loop_cycles_left--;
841 pPlaybackState->reverse = false;
842 }
843
844 // reverse the sample frames for backward playback
845 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
846 }
847 } while (samplestoread && readsamples);
848 break;
849 }
850
851 case loop_type_backward: { // TODO: not tested yet!
852 // forward playback (not entered the loop yet)
853 if (!pPlaybackState->reverse) do {
854 samplestoloopend = loopEnd - GetPos();
855 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
856 samplestoread -= readsamples;
857 totalreadsamples += readsamples;
858 if (readsamples == samplestoloopend) {
859 pPlaybackState->reverse = true;
860 break;
861 }
862 } while (samplestoread && readsamples);
863
864 if (!samplestoread) break;
865
866 // as we can only read forward from disk, we have to
867 // determine the end position within the loop first,
868 // read forward from that 'end' and finally after
869 // reading, swap all sample frames so it reflects
870 // backward playback
871
872 unsigned long swapareastart = totalreadsamples;
873 unsigned long loopoffset = GetPos() - loop.LoopStart;
874 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
875 : samplestoread;
876 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
877
878 SetPos(reverseplaybackend);
879
880 // read samples for backward playback
881 do {
882 // if not endless loop check if max. number of loop cycles have been passed
883 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
884 samplestoloopend = loopEnd - GetPos();
885 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
886 samplestoreadinloop -= readsamples;
887 samplestoread -= readsamples;
888 totalreadsamples += readsamples;
889 if (readsamples == samplestoloopend) {
890 pPlaybackState->loop_cycles_left--;
891 SetPos(loop.LoopStart);
892 }
893 } while (samplestoreadinloop && readsamples);
894
895 SetPos(reverseplaybackend); // pretend we really read backwards
896
897 // reverse the sample frames for backward playback
898 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
899 break;
900 }
901
902 default: case loop_type_normal: {
903 do {
904 // if not endless loop check if max. number of loop cycles have been passed
905 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
906 samplestoloopend = loopEnd - GetPos();
907 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
908 samplestoread -= readsamples;
909 totalreadsamples += readsamples;
910 if (readsamples == samplestoloopend) {
911 pPlaybackState->loop_cycles_left--;
912 SetPos(loop.LoopStart);
913 }
914 } while (samplestoread && readsamples);
915 break;
916 }
917 }
918 }
919 }
920
921 // read on without looping
922 if (samplestoread) do {
923 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
924 samplestoread -= readsamples;
925 totalreadsamples += readsamples;
926 } while (readsamples && samplestoread);
927
928 // store current position
929 pPlaybackState->position = GetPos();
930
931 return totalreadsamples;
932 }
933
934 /**
935 * Reads \a SampleCount number of sample points from the current
936 * position into the buffer pointed by \a pBuffer and increments the
937 * position within the sample. The sample wave stream will be
938 * decompressed on the fly if using a compressed sample. Use this method
939 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
940 * thus for disk streaming.
941 *
942 * <b>Caution:</b> If you are using more than one streaming thread, you
943 * have to use an external decompression buffer for <b>EACH</b>
944 * streaming thread to avoid race conditions and crashes!
945 *
946 * For 16 bit samples, the data in the buffer will be int16_t
947 * (using native endianness). For 24 bit, the buffer will
948 * contain three bytes per sample, little-endian.
949 *
950 * @param pBuffer destination buffer
951 * @param SampleCount number of sample points to read
952 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
953 * @returns number of successfully read sample points
954 * @see SetPos(), CreateDecompressionBuffer()
955 */
956 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
957 if (SampleCount == 0) return 0;
958 if (!Compressed) {
959 if (BitDepth == 24) {
960 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
961 }
962 else { // 16 bit
963 // (pCkData->Read does endian correction)
964 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
965 : pCkData->Read(pBuffer, SampleCount, 2);
966 }
967 }
968 else {
969 if (this->SamplePos >= this->SamplesTotal) return 0;
970 //TODO: efficiency: maybe we should test for an average compression rate
971 unsigned long assumedsize = GuessSize(SampleCount),
972 remainingbytes = 0, // remaining bytes in the local buffer
973 remainingsamples = SampleCount,
974 copysamples, skipsamples,
975 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
976 this->FrameOffset = 0;
977
978 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
979
980 // if decompression buffer too small, then reduce amount of samples to read
981 if (pDecompressionBuffer->Size < assumedsize) {
982 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
983 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
984 remainingsamples = SampleCount;
985 assumedsize = GuessSize(SampleCount);
986 }
987
988 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
989 int16_t* pDst = static_cast<int16_t*>(pBuffer);
990 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
991 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
992
993 while (remainingsamples && remainingbytes) {
994 unsigned long framesamples = SamplesPerFrame;
995 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
996
997 int mode_l = *pSrc++, mode_r = 0;
998
999 if (Channels == 2) {
1000 mode_r = *pSrc++;
1001 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1002 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1003 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1004 if (remainingbytes < framebytes) { // last frame in sample
1005 framesamples = SamplesInLastFrame;
1006 if (mode_l == 4 && (framesamples & 1)) {
1007 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1008 }
1009 else {
1010 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1011 }
1012 }
1013 }
1014 else {
1015 framebytes = bytesPerFrame[mode_l] + 1;
1016 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1017 if (remainingbytes < framebytes) {
1018 framesamples = SamplesInLastFrame;
1019 }
1020 }
1021
1022 // determine how many samples in this frame to skip and read
1023 if (currentframeoffset + remainingsamples >= framesamples) {
1024 if (currentframeoffset <= framesamples) {
1025 copysamples = framesamples - currentframeoffset;
1026 skipsamples = currentframeoffset;
1027 }
1028 else {
1029 copysamples = 0;
1030 skipsamples = framesamples;
1031 }
1032 }
1033 else {
1034 // This frame has enough data for pBuffer, but not
1035 // all of the frame is needed. Set file position
1036 // to start of this frame for next call to Read.
1037 copysamples = remainingsamples;
1038 skipsamples = currentframeoffset;
1039 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1040 this->FrameOffset = currentframeoffset + copysamples;
1041 }
1042 remainingsamples -= copysamples;
1043
1044 if (remainingbytes > framebytes) {
1045 remainingbytes -= framebytes;
1046 if (remainingsamples == 0 &&
1047 currentframeoffset + copysamples == framesamples) {
1048 // This frame has enough data for pBuffer, and
1049 // all of the frame is needed. Set file
1050 // position to start of next frame for next
1051 // call to Read. FrameOffset is 0.
1052 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1053 }
1054 }
1055 else remainingbytes = 0;
1056
1057 currentframeoffset -= skipsamples;
1058
1059 if (copysamples == 0) {
1060 // skip this frame
1061 pSrc += framebytes - Channels;
1062 }
1063 else {
1064 const unsigned char* const param_l = pSrc;
1065 if (BitDepth == 24) {
1066 if (mode_l != 2) pSrc += 12;
1067
1068 if (Channels == 2) { // Stereo
1069 const unsigned char* const param_r = pSrc;
1070 if (mode_r != 2) pSrc += 12;
1071
1072 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1073 skipsamples, copysamples, TruncatedBits);
1074 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1075 skipsamples, copysamples, TruncatedBits);
1076 pDst24 += copysamples * 6;
1077 }
1078 else { // Mono
1079 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1080 skipsamples, copysamples, TruncatedBits);
1081 pDst24 += copysamples * 3;
1082 }
1083 }
1084 else { // 16 bit
1085 if (mode_l) pSrc += 4;
1086
1087 int step;
1088 if (Channels == 2) { // Stereo
1089 const unsigned char* const param_r = pSrc;
1090 if (mode_r) pSrc += 4;
1091
1092 step = (2 - mode_l) + (2 - mode_r);
1093 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1094 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1095 skipsamples, copysamples);
1096 pDst += copysamples << 1;
1097 }
1098 else { // Mono
1099 step = 2 - mode_l;
1100 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1101 pDst += copysamples;
1102 }
1103 }
1104 pSrc += nextFrameOffset;
1105 }
1106
1107 // reload from disk to local buffer if needed
1108 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1109 assumedsize = GuessSize(remainingsamples);
1110 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1111 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1112 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1113 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1114 }
1115 } // while
1116
1117 this->SamplePos += (SampleCount - remainingsamples);
1118 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1119 return (SampleCount - remainingsamples);
1120 }
1121 }
1122
1123 /** @brief Write sample wave data.
1124 *
1125 * Writes \a SampleCount number of sample points from the buffer pointed
1126 * by \a pBuffer and increments the position within the sample. Use this
1127 * method to directly write the sample data to disk, i.e. if you don't
1128 * want or cannot load the whole sample data into RAM.
1129 *
1130 * You have to Resize() the sample to the desired size and call
1131 * File::Save() <b>before</b> using Write().
1132 *
1133 * Note: there is currently no support for writing compressed samples.
1134 *
1135 * @param pBuffer - source buffer
1136 * @param SampleCount - number of sample points to write
1137 * @throws DLS::Exception if current sample size is too small
1138 * @throws gig::Exception if sample is compressed
1139 * @see DLS::LoadSampleData()
1140 */
1141 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1142 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1143 return DLS::Sample::Write(pBuffer, SampleCount);
1144 }
1145
1146 /**
1147 * Allocates a decompression buffer for streaming (compressed) samples
1148 * with Sample::Read(). If you are using more than one streaming thread
1149 * in your application you <b>HAVE</b> to create a decompression buffer
1150 * for <b>EACH</b> of your streaming threads and provide it with the
1151 * Sample::Read() call in order to avoid race conditions and crashes.
1152 *
1153 * You should free the memory occupied by the allocated buffer(s) once
1154 * you don't need one of your streaming threads anymore by calling
1155 * DestroyDecompressionBuffer().
1156 *
1157 * @param MaxReadSize - the maximum size (in sample points) you ever
1158 * expect to read with one Read() call
1159 * @returns allocated decompression buffer
1160 * @see DestroyDecompressionBuffer()
1161 */
1162 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1163 buffer_t result;
1164 const double worstCaseHeaderOverhead =
1165 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1166 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1167 result.pStart = new int8_t[result.Size];
1168 result.NullExtensionSize = 0;
1169 return result;
1170 }
1171
1172 /**
1173 * Free decompression buffer, previously created with
1174 * CreateDecompressionBuffer().
1175 *
1176 * @param DecompressionBuffer - previously allocated decompression
1177 * buffer to free
1178 */
1179 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1180 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1181 delete[] (int8_t*) DecompressionBuffer.pStart;
1182 DecompressionBuffer.pStart = NULL;
1183 DecompressionBuffer.Size = 0;
1184 DecompressionBuffer.NullExtensionSize = 0;
1185 }
1186 }
1187
1188 /**
1189 * Returns pointer to the Group this Sample belongs to. In the .gig
1190 * format a sample always belongs to one group. If it wasn't explicitly
1191 * assigned to a certain group, it will be automatically assigned to a
1192 * default group.
1193 *
1194 * @returns Sample's Group (never NULL)
1195 */
1196 Group* Sample::GetGroup() const {
1197 return pGroup;
1198 }
1199
1200 Sample::~Sample() {
1201 Instances--;
1202 if (!Instances && InternalDecompressionBuffer.Size) {
1203 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1204 InternalDecompressionBuffer.pStart = NULL;
1205 InternalDecompressionBuffer.Size = 0;
1206 }
1207 if (FrameTable) delete[] FrameTable;
1208 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1209 }
1210
1211
1212
1213 // *************** DimensionRegion ***************
1214 // *
1215
1216 uint DimensionRegion::Instances = 0;
1217 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1218
1219 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1220 Instances++;
1221
1222 pSample = NULL;
1223
1224 memcpy(&Crossfade, &SamplerOptions, 4);
1225 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1226
1227 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1228 if (_3ewa) { // if '3ewa' chunk exists
1229 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1230 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1231 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1232 _3ewa->ReadInt16(); // unknown
1233 LFO1InternalDepth = _3ewa->ReadUint16();
1234 _3ewa->ReadInt16(); // unknown
1235 LFO3InternalDepth = _3ewa->ReadInt16();
1236 _3ewa->ReadInt16(); // unknown
1237 LFO1ControlDepth = _3ewa->ReadUint16();
1238 _3ewa->ReadInt16(); // unknown
1239 LFO3ControlDepth = _3ewa->ReadInt16();
1240 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1241 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1242 _3ewa->ReadInt16(); // unknown
1243 EG1Sustain = _3ewa->ReadUint16();
1244 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1245 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1246 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1247 EG1ControllerInvert = eg1ctrloptions & 0x01;
1248 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1249 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1250 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1251 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1252 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1253 EG2ControllerInvert = eg2ctrloptions & 0x01;
1254 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1255 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1256 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1257 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1258 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1259 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1260 _3ewa->ReadInt16(); // unknown
1261 EG2Sustain = _3ewa->ReadUint16();
1262 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1263 _3ewa->ReadInt16(); // unknown
1264 LFO2ControlDepth = _3ewa->ReadUint16();
1265 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1266 _3ewa->ReadInt16(); // unknown
1267 LFO2InternalDepth = _3ewa->ReadUint16();
1268 int32_t eg1decay2 = _3ewa->ReadInt32();
1269 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1270 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1271 _3ewa->ReadInt16(); // unknown
1272 EG1PreAttack = _3ewa->ReadUint16();
1273 int32_t eg2decay2 = _3ewa->ReadInt32();
1274 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1275 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1276 _3ewa->ReadInt16(); // unknown
1277 EG2PreAttack = _3ewa->ReadUint16();
1278 uint8_t velocityresponse = _3ewa->ReadUint8();
1279 if (velocityresponse < 5) {
1280 VelocityResponseCurve = curve_type_nonlinear;
1281 VelocityResponseDepth = velocityresponse;
1282 } else if (velocityresponse < 10) {
1283 VelocityResponseCurve = curve_type_linear;
1284 VelocityResponseDepth = velocityresponse - 5;
1285 } else if (velocityresponse < 15) {
1286 VelocityResponseCurve = curve_type_special;
1287 VelocityResponseDepth = velocityresponse - 10;
1288 } else {
1289 VelocityResponseCurve = curve_type_unknown;
1290 VelocityResponseDepth = 0;
1291 }
1292 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1293 if (releasevelocityresponse < 5) {
1294 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1295 ReleaseVelocityResponseDepth = releasevelocityresponse;
1296 } else if (releasevelocityresponse < 10) {
1297 ReleaseVelocityResponseCurve = curve_type_linear;
1298 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1299 } else if (releasevelocityresponse < 15) {
1300 ReleaseVelocityResponseCurve = curve_type_special;
1301 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1302 } else {
1303 ReleaseVelocityResponseCurve = curve_type_unknown;
1304 ReleaseVelocityResponseDepth = 0;
1305 }
1306 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1307 AttenuationControllerThreshold = _3ewa->ReadInt8();
1308 _3ewa->ReadInt32(); // unknown
1309 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1310 _3ewa->ReadInt16(); // unknown
1311 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1312 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1313 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1314 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1315 else DimensionBypass = dim_bypass_ctrl_none;
1316 uint8_t pan = _3ewa->ReadUint8();
1317 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1318 SelfMask = _3ewa->ReadInt8() & 0x01;
1319 _3ewa->ReadInt8(); // unknown
1320 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1321 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1322 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1323 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1324 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1325 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1326 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1327 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1328 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1329 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1330 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1331 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1332 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1333 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1334 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1335 : vcf_res_ctrl_none;
1336 uint16_t eg3depth = _3ewa->ReadUint16();
1337 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1338 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1339 _3ewa->ReadInt16(); // unknown
1340 ChannelOffset = _3ewa->ReadUint8() / 4;
1341 uint8_t regoptions = _3ewa->ReadUint8();
1342 MSDecode = regoptions & 0x01; // bit 0
1343 SustainDefeat = regoptions & 0x02; // bit 1
1344 _3ewa->ReadInt16(); // unknown
1345 VelocityUpperLimit = _3ewa->ReadInt8();
1346 _3ewa->ReadInt8(); // unknown
1347 _3ewa->ReadInt16(); // unknown
1348 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1349 _3ewa->ReadInt8(); // unknown
1350 _3ewa->ReadInt8(); // unknown
1351 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1352 uint8_t vcfcutoff = _3ewa->ReadUint8();
1353 VCFEnabled = vcfcutoff & 0x80; // bit 7
1354 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1355 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1356 uint8_t vcfvelscale = _3ewa->ReadUint8();
1357 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1358 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1359 _3ewa->ReadInt8(); // unknown
1360 uint8_t vcfresonance = _3ewa->ReadUint8();
1361 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1362 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1363 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1364 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1365 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1366 uint8_t vcfvelocity = _3ewa->ReadUint8();
1367 VCFVelocityDynamicRange = vcfvelocity % 5;
1368 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1369 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1370 if (VCFType == vcf_type_lowpass) {
1371 if (lfo3ctrl & 0x40) // bit 6
1372 VCFType = vcf_type_lowpassturbo;
1373 }
1374 if (_3ewa->RemainingBytes() >= 8) {
1375 _3ewa->Read(DimensionUpperLimits, 1, 8);
1376 } else {
1377 memset(DimensionUpperLimits, 0, 8);
1378 }
1379 } else { // '3ewa' chunk does not exist yet
1380 // use default values
1381 LFO3Frequency = 1.0;
1382 EG3Attack = 0.0;
1383 LFO1InternalDepth = 0;
1384 LFO3InternalDepth = 0;
1385 LFO1ControlDepth = 0;
1386 LFO3ControlDepth = 0;
1387 EG1Attack = 0.0;
1388 EG1Decay1 = 0.0;
1389 EG1Sustain = 0;
1390 EG1Release = 0.0;
1391 EG1Controller.type = eg1_ctrl_t::type_none;
1392 EG1Controller.controller_number = 0;
1393 EG1ControllerInvert = false;
1394 EG1ControllerAttackInfluence = 0;
1395 EG1ControllerDecayInfluence = 0;
1396 EG1ControllerReleaseInfluence = 0;
1397 EG2Controller.type = eg2_ctrl_t::type_none;
1398 EG2Controller.controller_number = 0;
1399 EG2ControllerInvert = false;
1400 EG2ControllerAttackInfluence = 0;
1401 EG2ControllerDecayInfluence = 0;
1402 EG2ControllerReleaseInfluence = 0;
1403 LFO1Frequency = 1.0;
1404 EG2Attack = 0.0;
1405 EG2Decay1 = 0.0;
1406 EG2Sustain = 0;
1407 EG2Release = 0.0;
1408 LFO2ControlDepth = 0;
1409 LFO2Frequency = 1.0;
1410 LFO2InternalDepth = 0;
1411 EG1Decay2 = 0.0;
1412 EG1InfiniteSustain = false;
1413 EG1PreAttack = 1000;
1414 EG2Decay2 = 0.0;
1415 EG2InfiniteSustain = false;
1416 EG2PreAttack = 1000;
1417 VelocityResponseCurve = curve_type_nonlinear;
1418 VelocityResponseDepth = 3;
1419 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1420 ReleaseVelocityResponseDepth = 3;
1421 VelocityResponseCurveScaling = 32;
1422 AttenuationControllerThreshold = 0;
1423 SampleStartOffset = 0;
1424 PitchTrack = true;
1425 DimensionBypass = dim_bypass_ctrl_none;
1426 Pan = 0;
1427 SelfMask = true;
1428 LFO3Controller = lfo3_ctrl_modwheel;
1429 LFO3Sync = false;
1430 InvertAttenuationController = false;
1431 AttenuationController.type = attenuation_ctrl_t::type_none;
1432 AttenuationController.controller_number = 0;
1433 LFO2Controller = lfo2_ctrl_internal;
1434 LFO2FlipPhase = false;
1435 LFO2Sync = false;
1436 LFO1Controller = lfo1_ctrl_internal;
1437 LFO1FlipPhase = false;
1438 LFO1Sync = false;
1439 VCFResonanceController = vcf_res_ctrl_none;
1440 EG3Depth = 0;
1441 ChannelOffset = 0;
1442 MSDecode = false;
1443 SustainDefeat = false;
1444 VelocityUpperLimit = 0;
1445 ReleaseTriggerDecay = 0;
1446 EG1Hold = false;
1447 VCFEnabled = false;
1448 VCFCutoff = 0;
1449 VCFCutoffController = vcf_cutoff_ctrl_none;
1450 VCFCutoffControllerInvert = false;
1451 VCFVelocityScale = 0;
1452 VCFResonance = 0;
1453 VCFResonanceDynamic = false;
1454 VCFKeyboardTracking = false;
1455 VCFKeyboardTrackingBreakpoint = 0;
1456 VCFVelocityDynamicRange = 0x04;
1457 VCFVelocityCurve = curve_type_linear;
1458 VCFType = vcf_type_lowpass;
1459 memset(DimensionUpperLimits, 0, 8);
1460 }
1461
1462 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1463 VelocityResponseDepth,
1464 VelocityResponseCurveScaling);
1465
1466 curve_type_t curveType = ReleaseVelocityResponseCurve;
1467 uint8_t depth = ReleaseVelocityResponseDepth;
1468
1469 // this models a strange behaviour or bug in GSt: two of the
1470 // velocity response curves for release time are not used even
1471 // if specified, instead another curve is chosen.
1472 if ((curveType == curve_type_nonlinear && depth == 0) ||
1473 (curveType == curve_type_special && depth == 4)) {
1474 curveType = curve_type_nonlinear;
1475 depth = 3;
1476 }
1477 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1478
1479 curveType = VCFVelocityCurve;
1480 depth = VCFVelocityDynamicRange;
1481
1482 // even stranger GSt: two of the velocity response curves for
1483 // filter cutoff are not used, instead another special curve
1484 // is chosen. This curve is not used anywhere else.
1485 if ((curveType == curve_type_nonlinear && depth == 0) ||
1486 (curveType == curve_type_special && depth == 4)) {
1487 curveType = curve_type_special;
1488 depth = 5;
1489 }
1490 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1491 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1492
1493 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1494 VelocityTable = 0;
1495 }
1496
1497 /**
1498 * Apply dimension region settings to the respective RIFF chunks. You
1499 * have to call File::Save() to make changes persistent.
1500 *
1501 * Usually there is absolutely no need to call this method explicitly.
1502 * It will be called automatically when File::Save() was called.
1503 */
1504 void DimensionRegion::UpdateChunks() {
1505 // first update base class's chunk
1506 DLS::Sampler::UpdateChunks();
1507
1508 // make sure '3ewa' chunk exists
1509 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1510 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1511 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1512
1513 // update '3ewa' chunk with DimensionRegion's current settings
1514
1515 const uint32_t chunksize = _3ewa->GetNewSize();
1516 store32(&pData[0], chunksize); // unknown, always chunk size?
1517
1518 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1519 store32(&pData[4], lfo3freq);
1520
1521 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1522 store32(&pData[8], eg3attack);
1523
1524 // next 2 bytes unknown
1525
1526 store16(&pData[14], LFO1InternalDepth);
1527
1528 // next 2 bytes unknown
1529
1530 store16(&pData[18], LFO3InternalDepth);
1531
1532 // next 2 bytes unknown
1533
1534 store16(&pData[22], LFO1ControlDepth);
1535
1536 // next 2 bytes unknown
1537
1538 store16(&pData[26], LFO3ControlDepth);
1539
1540 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1541 store32(&pData[28], eg1attack);
1542
1543 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1544 store32(&pData[32], eg1decay1);
1545
1546 // next 2 bytes unknown
1547
1548 store16(&pData[38], EG1Sustain);
1549
1550 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1551 store32(&pData[40], eg1release);
1552
1553 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1554 pData[44] = eg1ctl;
1555
1556 const uint8_t eg1ctrloptions =
1557 (EG1ControllerInvert) ? 0x01 : 0x00 |
1558 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1559 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1560 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1561 pData[45] = eg1ctrloptions;
1562
1563 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1564 pData[46] = eg2ctl;
1565
1566 const uint8_t eg2ctrloptions =
1567 (EG2ControllerInvert) ? 0x01 : 0x00 |
1568 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1569 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1570 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1571 pData[47] = eg2ctrloptions;
1572
1573 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1574 store32(&pData[48], lfo1freq);
1575
1576 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1577 store32(&pData[52], eg2attack);
1578
1579 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1580 store32(&pData[56], eg2decay1);
1581
1582 // next 2 bytes unknown
1583
1584 store16(&pData[62], EG2Sustain);
1585
1586 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1587 store32(&pData[64], eg2release);
1588
1589 // next 2 bytes unknown
1590
1591 store16(&pData[70], LFO2ControlDepth);
1592
1593 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1594 store32(&pData[72], lfo2freq);
1595
1596 // next 2 bytes unknown
1597
1598 store16(&pData[78], LFO2InternalDepth);
1599
1600 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1601 store32(&pData[80], eg1decay2);
1602
1603 // next 2 bytes unknown
1604
1605 store16(&pData[86], EG1PreAttack);
1606
1607 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1608 store32(&pData[88], eg2decay2);
1609
1610 // next 2 bytes unknown
1611
1612 store16(&pData[94], EG2PreAttack);
1613
1614 {
1615 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1616 uint8_t velocityresponse = VelocityResponseDepth;
1617 switch (VelocityResponseCurve) {
1618 case curve_type_nonlinear:
1619 break;
1620 case curve_type_linear:
1621 velocityresponse += 5;
1622 break;
1623 case curve_type_special:
1624 velocityresponse += 10;
1625 break;
1626 case curve_type_unknown:
1627 default:
1628 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1629 }
1630 pData[96] = velocityresponse;
1631 }
1632
1633 {
1634 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1635 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1636 switch (ReleaseVelocityResponseCurve) {
1637 case curve_type_nonlinear:
1638 break;
1639 case curve_type_linear:
1640 releasevelocityresponse += 5;
1641 break;
1642 case curve_type_special:
1643 releasevelocityresponse += 10;
1644 break;
1645 case curve_type_unknown:
1646 default:
1647 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1648 }
1649 pData[97] = releasevelocityresponse;
1650 }
1651
1652 pData[98] = VelocityResponseCurveScaling;
1653
1654 pData[99] = AttenuationControllerThreshold;
1655
1656 // next 4 bytes unknown
1657
1658 store16(&pData[104], SampleStartOffset);
1659
1660 // next 2 bytes unknown
1661
1662 {
1663 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1664 switch (DimensionBypass) {
1665 case dim_bypass_ctrl_94:
1666 pitchTrackDimensionBypass |= 0x10;
1667 break;
1668 case dim_bypass_ctrl_95:
1669 pitchTrackDimensionBypass |= 0x20;
1670 break;
1671 case dim_bypass_ctrl_none:
1672 //FIXME: should we set anything here?
1673 break;
1674 default:
1675 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1676 }
1677 pData[108] = pitchTrackDimensionBypass;
1678 }
1679
1680 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1681 pData[109] = pan;
1682
1683 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1684 pData[110] = selfmask;
1685
1686 // next byte unknown
1687
1688 {
1689 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1690 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1691 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1692 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1693 pData[112] = lfo3ctrl;
1694 }
1695
1696 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1697 pData[113] = attenctl;
1698
1699 {
1700 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1701 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1702 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1703 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1704 pData[114] = lfo2ctrl;
1705 }
1706
1707 {
1708 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1709 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1710 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1711 if (VCFResonanceController != vcf_res_ctrl_none)
1712 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1713 pData[115] = lfo1ctrl;
1714 }
1715
1716 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1717 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1718 pData[116] = eg3depth;
1719
1720 // next 2 bytes unknown
1721
1722 const uint8_t channeloffset = ChannelOffset * 4;
1723 pData[120] = channeloffset;
1724
1725 {
1726 uint8_t regoptions = 0;
1727 if (MSDecode) regoptions |= 0x01; // bit 0
1728 if (SustainDefeat) regoptions |= 0x02; // bit 1
1729 pData[121] = regoptions;
1730 }
1731
1732 // next 2 bytes unknown
1733
1734 pData[124] = VelocityUpperLimit;
1735
1736 // next 3 bytes unknown
1737
1738 pData[128] = ReleaseTriggerDecay;
1739
1740 // next 2 bytes unknown
1741
1742 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1743 pData[131] = eg1hold;
1744
1745 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1746 (VCFCutoff & 0x7f); /* lower 7 bits */
1747 pData[132] = vcfcutoff;
1748
1749 pData[133] = VCFCutoffController;
1750
1751 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1752 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1753 pData[134] = vcfvelscale;
1754
1755 // next byte unknown
1756
1757 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1758 (VCFResonance & 0x7f); /* lower 7 bits */
1759 pData[136] = vcfresonance;
1760
1761 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1762 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1763 pData[137] = vcfbreakpoint;
1764
1765 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1766 VCFVelocityCurve * 5;
1767 pData[138] = vcfvelocity;
1768
1769 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1770 pData[139] = vcftype;
1771
1772 if (chunksize >= 148) {
1773 memcpy(&pData[140], DimensionUpperLimits, 8);
1774 }
1775 }
1776
1777 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1778 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1779 {
1780 double* table;
1781 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1782 if (pVelocityTables->count(tableKey)) { // if key exists
1783 table = (*pVelocityTables)[tableKey];
1784 }
1785 else {
1786 table = CreateVelocityTable(curveType, depth, scaling);
1787 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1788 }
1789 return table;
1790 }
1791
1792 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1793 leverage_ctrl_t decodedcontroller;
1794 switch (EncodedController) {
1795 // special controller
1796 case _lev_ctrl_none:
1797 decodedcontroller.type = leverage_ctrl_t::type_none;
1798 decodedcontroller.controller_number = 0;
1799 break;
1800 case _lev_ctrl_velocity:
1801 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1802 decodedcontroller.controller_number = 0;
1803 break;
1804 case _lev_ctrl_channelaftertouch:
1805 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1806 decodedcontroller.controller_number = 0;
1807 break;
1808
1809 // ordinary MIDI control change controller
1810 case _lev_ctrl_modwheel:
1811 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1812 decodedcontroller.controller_number = 1;
1813 break;
1814 case _lev_ctrl_breath:
1815 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1816 decodedcontroller.controller_number = 2;
1817 break;
1818 case _lev_ctrl_foot:
1819 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1820 decodedcontroller.controller_number = 4;
1821 break;
1822 case _lev_ctrl_effect1:
1823 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1824 decodedcontroller.controller_number = 12;
1825 break;
1826 case _lev_ctrl_effect2:
1827 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1828 decodedcontroller.controller_number = 13;
1829 break;
1830 case _lev_ctrl_genpurpose1:
1831 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1832 decodedcontroller.controller_number = 16;
1833 break;
1834 case _lev_ctrl_genpurpose2:
1835 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1836 decodedcontroller.controller_number = 17;
1837 break;
1838 case _lev_ctrl_genpurpose3:
1839 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1840 decodedcontroller.controller_number = 18;
1841 break;
1842 case _lev_ctrl_genpurpose4:
1843 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1844 decodedcontroller.controller_number = 19;
1845 break;
1846 case _lev_ctrl_portamentotime:
1847 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1848 decodedcontroller.controller_number = 5;
1849 break;
1850 case _lev_ctrl_sustainpedal:
1851 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1852 decodedcontroller.controller_number = 64;
1853 break;
1854 case _lev_ctrl_portamento:
1855 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1856 decodedcontroller.controller_number = 65;
1857 break;
1858 case _lev_ctrl_sostenutopedal:
1859 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1860 decodedcontroller.controller_number = 66;
1861 break;
1862 case _lev_ctrl_softpedal:
1863 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1864 decodedcontroller.controller_number = 67;
1865 break;
1866 case _lev_ctrl_genpurpose5:
1867 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1868 decodedcontroller.controller_number = 80;
1869 break;
1870 case _lev_ctrl_genpurpose6:
1871 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1872 decodedcontroller.controller_number = 81;
1873 break;
1874 case _lev_ctrl_genpurpose7:
1875 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1876 decodedcontroller.controller_number = 82;
1877 break;
1878 case _lev_ctrl_genpurpose8:
1879 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1880 decodedcontroller.controller_number = 83;
1881 break;
1882 case _lev_ctrl_effect1depth:
1883 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1884 decodedcontroller.controller_number = 91;
1885 break;
1886 case _lev_ctrl_effect2depth:
1887 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1888 decodedcontroller.controller_number = 92;
1889 break;
1890 case _lev_ctrl_effect3depth:
1891 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1892 decodedcontroller.controller_number = 93;
1893 break;
1894 case _lev_ctrl_effect4depth:
1895 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1896 decodedcontroller.controller_number = 94;
1897 break;
1898 case _lev_ctrl_effect5depth:
1899 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1900 decodedcontroller.controller_number = 95;
1901 break;
1902
1903 // unknown controller type
1904 default:
1905 throw gig::Exception("Unknown leverage controller type.");
1906 }
1907 return decodedcontroller;
1908 }
1909
1910 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1911 _lev_ctrl_t encodedcontroller;
1912 switch (DecodedController.type) {
1913 // special controller
1914 case leverage_ctrl_t::type_none:
1915 encodedcontroller = _lev_ctrl_none;
1916 break;
1917 case leverage_ctrl_t::type_velocity:
1918 encodedcontroller = _lev_ctrl_velocity;
1919 break;
1920 case leverage_ctrl_t::type_channelaftertouch:
1921 encodedcontroller = _lev_ctrl_channelaftertouch;
1922 break;
1923
1924 // ordinary MIDI control change controller
1925 case leverage_ctrl_t::type_controlchange:
1926 switch (DecodedController.controller_number) {
1927 case 1:
1928 encodedcontroller = _lev_ctrl_modwheel;
1929 break;
1930 case 2:
1931 encodedcontroller = _lev_ctrl_breath;
1932 break;
1933 case 4:
1934 encodedcontroller = _lev_ctrl_foot;
1935 break;
1936 case 12:
1937 encodedcontroller = _lev_ctrl_effect1;
1938 break;
1939 case 13:
1940 encodedcontroller = _lev_ctrl_effect2;
1941 break;
1942 case 16:
1943 encodedcontroller = _lev_ctrl_genpurpose1;
1944 break;
1945 case 17:
1946 encodedcontroller = _lev_ctrl_genpurpose2;
1947 break;
1948 case 18:
1949 encodedcontroller = _lev_ctrl_genpurpose3;
1950 break;
1951 case 19:
1952 encodedcontroller = _lev_ctrl_genpurpose4;
1953 break;
1954 case 5:
1955 encodedcontroller = _lev_ctrl_portamentotime;
1956 break;
1957 case 64:
1958 encodedcontroller = _lev_ctrl_sustainpedal;
1959 break;
1960 case 65:
1961 encodedcontroller = _lev_ctrl_portamento;
1962 break;
1963 case 66:
1964 encodedcontroller = _lev_ctrl_sostenutopedal;
1965 break;
1966 case 67:
1967 encodedcontroller = _lev_ctrl_softpedal;
1968 break;
1969 case 80:
1970 encodedcontroller = _lev_ctrl_genpurpose5;
1971 break;
1972 case 81:
1973 encodedcontroller = _lev_ctrl_genpurpose6;
1974 break;
1975 case 82:
1976 encodedcontroller = _lev_ctrl_genpurpose7;
1977 break;
1978 case 83:
1979 encodedcontroller = _lev_ctrl_genpurpose8;
1980 break;
1981 case 91:
1982 encodedcontroller = _lev_ctrl_effect1depth;
1983 break;
1984 case 92:
1985 encodedcontroller = _lev_ctrl_effect2depth;
1986 break;
1987 case 93:
1988 encodedcontroller = _lev_ctrl_effect3depth;
1989 break;
1990 case 94:
1991 encodedcontroller = _lev_ctrl_effect4depth;
1992 break;
1993 case 95:
1994 encodedcontroller = _lev_ctrl_effect5depth;
1995 break;
1996 default:
1997 throw gig::Exception("leverage controller number is not supported by the gig format");
1998 }
1999 break;
2000 default:
2001 throw gig::Exception("Unknown leverage controller type.");
2002 }
2003 return encodedcontroller;
2004 }
2005
2006 DimensionRegion::~DimensionRegion() {
2007 Instances--;
2008 if (!Instances) {
2009 // delete the velocity->volume tables
2010 VelocityTableMap::iterator iter;
2011 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2012 double* pTable = iter->second;
2013 if (pTable) delete[] pTable;
2014 }
2015 pVelocityTables->clear();
2016 delete pVelocityTables;
2017 pVelocityTables = NULL;
2018 }
2019 if (VelocityTable) delete[] VelocityTable;
2020 }
2021
2022 /**
2023 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2024 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2025 * and VelocityResponseCurveScaling) involved are taken into account to
2026 * calculate the amplitude factor. Use this method when a key was
2027 * triggered to get the volume with which the sample should be played
2028 * back.
2029 *
2030 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2031 * @returns amplitude factor (between 0.0 and 1.0)
2032 */
2033 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2034 return pVelocityAttenuationTable[MIDIKeyVelocity];
2035 }
2036
2037 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2038 return pVelocityReleaseTable[MIDIKeyVelocity];
2039 }
2040
2041 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2042 return pVelocityCutoffTable[MIDIKeyVelocity];
2043 }
2044
2045 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2046
2047 // line-segment approximations of the 15 velocity curves
2048
2049 // linear
2050 const int lin0[] = { 1, 1, 127, 127 };
2051 const int lin1[] = { 1, 21, 127, 127 };
2052 const int lin2[] = { 1, 45, 127, 127 };
2053 const int lin3[] = { 1, 74, 127, 127 };
2054 const int lin4[] = { 1, 127, 127, 127 };
2055
2056 // non-linear
2057 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2058 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2059 127, 127 };
2060 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2061 127, 127 };
2062 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2063 127, 127 };
2064 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2065
2066 // special
2067 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2068 113, 127, 127, 127 };
2069 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2070 118, 127, 127, 127 };
2071 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2072 85, 90, 91, 127, 127, 127 };
2073 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2074 117, 127, 127, 127 };
2075 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2076 127, 127 };
2077
2078 // this is only used by the VCF velocity curve
2079 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2080 91, 127, 127, 127 };
2081
2082 const int* const curves[] = { non0, non1, non2, non3, non4,
2083 lin0, lin1, lin2, lin3, lin4,
2084 spe0, spe1, spe2, spe3, spe4, spe5 };
2085
2086 double* const table = new double[128];
2087
2088 const int* curve = curves[curveType * 5 + depth];
2089 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2090
2091 table[0] = 0;
2092 for (int x = 1 ; x < 128 ; x++) {
2093
2094 if (x > curve[2]) curve += 2;
2095 double y = curve[1] + (x - curve[0]) *
2096 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2097 y = y / 127;
2098
2099 // Scale up for s > 20, down for s < 20. When
2100 // down-scaling, the curve still ends at 1.0.
2101 if (s < 20 && y >= 0.5)
2102 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2103 else
2104 y = y * (s / 20.0);
2105 if (y > 1) y = 1;
2106
2107 table[x] = y;
2108 }
2109 return table;
2110 }
2111
2112
2113 // *************** Region ***************
2114 // *
2115
2116 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2117 // Initialization
2118 Dimensions = 0;
2119 for (int i = 0; i < 256; i++) {
2120 pDimensionRegions[i] = NULL;
2121 }
2122 Layers = 1;
2123 File* file = (File*) GetParent()->GetParent();
2124 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2125
2126 // Actual Loading
2127
2128 LoadDimensionRegions(rgnList);
2129
2130 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2131 if (_3lnk) {
2132 DimensionRegions = _3lnk->ReadUint32();
2133 for (int i = 0; i < dimensionBits; i++) {
2134 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2135 uint8_t bits = _3lnk->ReadUint8();
2136 _3lnk->ReadUint8(); // probably the position of the dimension
2137 _3lnk->ReadUint8(); // unknown
2138 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2139 if (dimension == dimension_none) { // inactive dimension
2140 pDimensionDefinitions[i].dimension = dimension_none;
2141 pDimensionDefinitions[i].bits = 0;
2142 pDimensionDefinitions[i].zones = 0;
2143 pDimensionDefinitions[i].split_type = split_type_bit;
2144 pDimensionDefinitions[i].zone_size = 0;
2145 }
2146 else { // active dimension
2147 pDimensionDefinitions[i].dimension = dimension;
2148 pDimensionDefinitions[i].bits = bits;
2149 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2150 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2151 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2152 Dimensions++;
2153
2154 // if this is a layer dimension, remember the amount of layers
2155 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2156 }
2157 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2158 }
2159 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2160
2161 // if there's a velocity dimension and custom velocity zone splits are used,
2162 // update the VelocityTables in the dimension regions
2163 UpdateVelocityTable();
2164
2165 // jump to start of the wave pool indices (if not already there)
2166 if (file->pVersion && file->pVersion->major == 3)
2167 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2168 else
2169 _3lnk->SetPos(44);
2170
2171 // load sample references
2172 for (uint i = 0; i < DimensionRegions; i++) {
2173 uint32_t wavepoolindex = _3lnk->ReadUint32();
2174 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2175 }
2176 GetSample(); // load global region sample reference
2177 } else {
2178 DimensionRegions = 0;
2179 for (int i = 0 ; i < 8 ; i++) {
2180 pDimensionDefinitions[i].dimension = dimension_none;
2181 pDimensionDefinitions[i].bits = 0;
2182 pDimensionDefinitions[i].zones = 0;
2183 }
2184 }
2185
2186 // make sure there is at least one dimension region
2187 if (!DimensionRegions) {
2188 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2189 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2190 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2191 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2192 DimensionRegions = 1;
2193 }
2194 }
2195
2196 /**
2197 * Apply Region settings and all its DimensionRegions to the respective
2198 * RIFF chunks. You have to call File::Save() to make changes persistent.
2199 *
2200 * Usually there is absolutely no need to call this method explicitly.
2201 * It will be called automatically when File::Save() was called.
2202 *
2203 * @throws gig::Exception if samples cannot be dereferenced
2204 */
2205 void Region::UpdateChunks() {
2206 // in the gig format we don't care about the Region's sample reference
2207 // but we still have to provide some existing one to not corrupt the
2208 // file, so to avoid the latter we simply always assign the sample of
2209 // the first dimension region of this region
2210 pSample = pDimensionRegions[0]->pSample;
2211
2212 // first update base class's chunks
2213 DLS::Region::UpdateChunks();
2214
2215 // update dimension region's chunks
2216 for (int i = 0; i < DimensionRegions; i++) {
2217 pDimensionRegions[i]->UpdateChunks();
2218 }
2219
2220 File* pFile = (File*) GetParent()->GetParent();
2221 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2222 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2223
2224 // make sure '3lnk' chunk exists
2225 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2226 if (!_3lnk) {
2227 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2228 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2229 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2230
2231 // move 3prg to last position
2232 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2233 }
2234
2235 // update dimension definitions in '3lnk' chunk
2236 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2237 store32(&pData[0], DimensionRegions);
2238 for (int i = 0; i < iMaxDimensions; i++) {
2239 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2240 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2241 // next 2 bytes unknown
2242 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2243 // next 3 bytes unknown
2244 }
2245
2246 // update wave pool table in '3lnk' chunk
2247 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2248 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2249 int iWaveIndex = -1;
2250 if (i < DimensionRegions) {
2251 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2252 File::SampleList::iterator iter = pFile->pSamples->begin();
2253 File::SampleList::iterator end = pFile->pSamples->end();
2254 for (int index = 0; iter != end; ++iter, ++index) {
2255 if (*iter == pDimensionRegions[i]->pSample) {
2256 iWaveIndex = index;
2257 break;
2258 }
2259 }
2260 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2261 }
2262 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2263 }
2264 }
2265
2266 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2267 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2268 if (_3prg) {
2269 int dimensionRegionNr = 0;
2270 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2271 while (_3ewl) {
2272 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2273 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2274 dimensionRegionNr++;
2275 }
2276 _3ewl = _3prg->GetNextSubList();
2277 }
2278 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2279 }
2280 }
2281
2282 void Region::UpdateVelocityTable() {
2283 // get velocity dimension's index
2284 int veldim = -1;
2285 for (int i = 0 ; i < Dimensions ; i++) {
2286 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2287 veldim = i;
2288 break;
2289 }
2290 }
2291 if (veldim == -1) return;
2292
2293 int step = 1;
2294 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2295 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2296 int end = step * pDimensionDefinitions[veldim].zones;
2297
2298 // loop through all dimension regions for all dimensions except the velocity dimension
2299 int dim[8] = { 0 };
2300 for (int i = 0 ; i < DimensionRegions ; i++) {
2301
2302 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2303 pDimensionRegions[i]->VelocityUpperLimit) {
2304 // create the velocity table
2305 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2306 if (!table) {
2307 table = new uint8_t[128];
2308 pDimensionRegions[i]->VelocityTable = table;
2309 }
2310 int tableidx = 0;
2311 int velocityZone = 0;
2312 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2313 for (int k = i ; k < end ; k += step) {
2314 DimensionRegion *d = pDimensionRegions[k];
2315 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2316 velocityZone++;
2317 }
2318 } else { // gig2
2319 for (int k = i ; k < end ; k += step) {
2320 DimensionRegion *d = pDimensionRegions[k];
2321 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2322 velocityZone++;
2323 }
2324 }
2325 } else {
2326 if (pDimensionRegions[i]->VelocityTable) {
2327 delete[] pDimensionRegions[i]->VelocityTable;
2328 pDimensionRegions[i]->VelocityTable = 0;
2329 }
2330 }
2331
2332 int j;
2333 int shift = 0;
2334 for (j = 0 ; j < Dimensions ; j++) {
2335 if (j == veldim) i += skipveldim; // skip velocity dimension
2336 else {
2337 dim[j]++;
2338 if (dim[j] < pDimensionDefinitions[j].zones) break;
2339 else {
2340 // skip unused dimension regions
2341 dim[j] = 0;
2342 i += ((1 << pDimensionDefinitions[j].bits) -
2343 pDimensionDefinitions[j].zones) << shift;
2344 }
2345 }
2346 shift += pDimensionDefinitions[j].bits;
2347 }
2348 if (j == Dimensions) break;
2349 }
2350 }
2351
2352 /** @brief Einstein would have dreamed of it - create a new dimension.
2353 *
2354 * Creates a new dimension with the dimension definition given by
2355 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2356 * There is a hard limit of dimensions and total amount of "bits" all
2357 * dimensions can have. This limit is dependant to what gig file format
2358 * version this file refers to. The gig v2 (and lower) format has a
2359 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2360 * format has a limit of 8.
2361 *
2362 * @param pDimDef - defintion of the new dimension
2363 * @throws gig::Exception if dimension of the same type exists already
2364 * @throws gig::Exception if amount of dimensions or total amount of
2365 * dimension bits limit is violated
2366 */
2367 void Region::AddDimension(dimension_def_t* pDimDef) {
2368 // check if max. amount of dimensions reached
2369 File* file = (File*) GetParent()->GetParent();
2370 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2371 if (Dimensions >= iMaxDimensions)
2372 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2373 // check if max. amount of dimension bits reached
2374 int iCurrentBits = 0;
2375 for (int i = 0; i < Dimensions; i++)
2376 iCurrentBits += pDimensionDefinitions[i].bits;
2377 if (iCurrentBits >= iMaxDimensions)
2378 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2379 const int iNewBits = iCurrentBits + pDimDef->bits;
2380 if (iNewBits > iMaxDimensions)
2381 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2382 // check if there's already a dimensions of the same type
2383 for (int i = 0; i < Dimensions; i++)
2384 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2385 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2386
2387 // assign definition of new dimension
2388 pDimensionDefinitions[Dimensions] = *pDimDef;
2389
2390 // auto correct certain dimension definition fields (where possible)
2391 pDimensionDefinitions[Dimensions].split_type =
2392 __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2393 pDimensionDefinitions[Dimensions].zone_size =
2394 __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2395
2396 // create new dimension region(s) for this new dimension
2397 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2398 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2399 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2400 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2401 DimensionRegions++;
2402 }
2403
2404 Dimensions++;
2405
2406 // if this is a layer dimension, update 'Layers' attribute
2407 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2408
2409 UpdateVelocityTable();
2410 }
2411
2412 /** @brief Delete an existing dimension.
2413 *
2414 * Deletes the dimension given by \a pDimDef and deletes all respective
2415 * dimension regions, that is all dimension regions where the dimension's
2416 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2417 * for example this would delete all dimension regions for the case(s)
2418 * where the sustain pedal is pressed down.
2419 *
2420 * @param pDimDef - dimension to delete
2421 * @throws gig::Exception if given dimension cannot be found
2422 */
2423 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2424 // get dimension's index
2425 int iDimensionNr = -1;
2426 for (int i = 0; i < Dimensions; i++) {
2427 if (&pDimensionDefinitions[i] == pDimDef) {
2428 iDimensionNr = i;
2429 break;
2430 }
2431 }
2432 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2433
2434 // get amount of bits below the dimension to delete
2435 int iLowerBits = 0;
2436 for (int i = 0; i < iDimensionNr; i++)
2437 iLowerBits += pDimensionDefinitions[i].bits;
2438
2439 // get amount ot bits above the dimension to delete
2440 int iUpperBits = 0;
2441 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2442 iUpperBits += pDimensionDefinitions[i].bits;
2443
2444 // delete dimension regions which belong to the given dimension
2445 // (that is where the dimension's bit > 0)
2446 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2447 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2448 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2449 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2450 iObsoleteBit << iLowerBits |
2451 iLowerBit;
2452 delete pDimensionRegions[iToDelete];
2453 pDimensionRegions[iToDelete] = NULL;
2454 DimensionRegions--;
2455 }
2456 }
2457 }
2458
2459 // defrag pDimensionRegions array
2460 // (that is remove the NULL spaces within the pDimensionRegions array)
2461 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2462 if (!pDimensionRegions[iTo]) {
2463 if (iFrom <= iTo) iFrom = iTo + 1;
2464 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2465 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2466 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2467 pDimensionRegions[iFrom] = NULL;
2468 }
2469 }
2470 }
2471
2472 // 'remove' dimension definition
2473 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2474 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2475 }
2476 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2477 pDimensionDefinitions[Dimensions - 1].bits = 0;
2478 pDimensionDefinitions[Dimensions - 1].zones = 0;
2479
2480 Dimensions--;
2481
2482 // if this was a layer dimension, update 'Layers' attribute
2483 if (pDimDef->dimension == dimension_layer) Layers = 1;
2484 }
2485
2486 Region::~Region() {
2487 for (int i = 0; i < 256; i++) {
2488 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2489 }
2490 }
2491
2492 /**
2493 * Use this method in your audio engine to get the appropriate dimension
2494 * region with it's articulation data for the current situation. Just
2495 * call the method with the current MIDI controller values and you'll get
2496 * the DimensionRegion with the appropriate articulation data for the
2497 * current situation (for this Region of course only). To do that you'll
2498 * first have to look which dimensions with which controllers and in
2499 * which order are defined for this Region when you load the .gig file.
2500 * Special cases are e.g. layer or channel dimensions where you just put
2501 * in the index numbers instead of a MIDI controller value (means 0 for
2502 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2503 * etc.).
2504 *
2505 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2506 * @returns adress to the DimensionRegion for the given situation
2507 * @see pDimensionDefinitions
2508 * @see Dimensions
2509 */
2510 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2511 uint8_t bits;
2512 int veldim = -1;
2513 int velbitpos;
2514 int bitpos = 0;
2515 int dimregidx = 0;
2516 for (uint i = 0; i < Dimensions; i++) {
2517 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2518 // the velocity dimension must be handled after the other dimensions
2519 veldim = i;
2520 velbitpos = bitpos;
2521 } else {
2522 switch (pDimensionDefinitions[i].split_type) {
2523 case split_type_normal:
2524 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2525 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2526 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2527 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2528 }
2529 } else {
2530 // gig2: evenly sized zones
2531 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2532 }
2533 break;
2534 case split_type_bit: // the value is already the sought dimension bit number
2535 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2536 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2537 break;
2538 }
2539 dimregidx |= bits << bitpos;
2540 }
2541 bitpos += pDimensionDefinitions[i].bits;
2542 }
2543 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2544 if (veldim != -1) {
2545 // (dimreg is now the dimension region for the lowest velocity)
2546 if (dimreg->VelocityTable) // custom defined zone ranges
2547 bits = dimreg->VelocityTable[DimValues[veldim]];
2548 else // normal split type
2549 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2550
2551 dimregidx |= bits << velbitpos;
2552 dimreg = pDimensionRegions[dimregidx];
2553 }
2554 return dimreg;
2555 }
2556
2557 /**
2558 * Returns the appropriate DimensionRegion for the given dimension bit
2559 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2560 * instead of calling this method directly!
2561 *
2562 * @param DimBits Bit numbers for dimension 0 to 7
2563 * @returns adress to the DimensionRegion for the given dimension
2564 * bit numbers
2565 * @see GetDimensionRegionByValue()
2566 */
2567 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2568 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2569 << pDimensionDefinitions[5].bits | DimBits[5])
2570 << pDimensionDefinitions[4].bits | DimBits[4])
2571 << pDimensionDefinitions[3].bits | DimBits[3])
2572 << pDimensionDefinitions[2].bits | DimBits[2])
2573 << pDimensionDefinitions[1].bits | DimBits[1])
2574 << pDimensionDefinitions[0].bits | DimBits[0]];
2575 }
2576
2577 /**
2578 * Returns pointer address to the Sample referenced with this region.
2579 * This is the global Sample for the entire Region (not sure if this is
2580 * actually used by the Gigasampler engine - I would only use the Sample
2581 * referenced by the appropriate DimensionRegion instead of this sample).
2582 *
2583 * @returns address to Sample or NULL if there is no reference to a
2584 * sample saved in the .gig file
2585 */
2586 Sample* Region::GetSample() {
2587 if (pSample) return static_cast<gig::Sample*>(pSample);
2588 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2589 }
2590
2591 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2592 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2593 File* file = (File*) GetParent()->GetParent();
2594 if (!file->pWavePoolTable) return NULL;
2595 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2596 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2597 Sample* sample = file->GetFirstSample(pProgress);
2598 while (sample) {
2599 if (sample->ulWavePoolOffset == soughtoffset &&
2600 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2601 sample = file->GetNextSample();
2602 }
2603 return NULL;
2604 }
2605
2606
2607
2608 // *************** Instrument ***************
2609 // *
2610
2611 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2612 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2613 { CHUNK_ID_INAM, 64 },
2614 { CHUNK_ID_ISFT, 12 },
2615 { 0, 0 }
2616 };
2617 pInfo->FixedStringLengths = fixedStringLengths;
2618
2619 // Initialization
2620 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2621 EffectSend = 0;
2622 Attenuation = 0;
2623 FineTune = 0;
2624 PitchbendRange = 0;
2625 PianoReleaseMode = false;
2626 DimensionKeyRange.low = 0;
2627 DimensionKeyRange.high = 0;
2628
2629 // Loading
2630 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2631 if (lart) {
2632 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2633 if (_3ewg) {
2634 EffectSend = _3ewg->ReadUint16();
2635 Attenuation = _3ewg->ReadInt32();
2636 FineTune = _3ewg->ReadInt16();
2637 PitchbendRange = _3ewg->ReadInt16();
2638 uint8_t dimkeystart = _3ewg->ReadUint8();
2639 PianoReleaseMode = dimkeystart & 0x01;
2640 DimensionKeyRange.low = dimkeystart >> 1;
2641 DimensionKeyRange.high = _3ewg->ReadUint8();
2642 }
2643 }
2644
2645 if (!pRegions) pRegions = new RegionList;
2646 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2647 if (lrgn) {
2648 RIFF::List* rgn = lrgn->GetFirstSubList();
2649 while (rgn) {
2650 if (rgn->GetListType() == LIST_TYPE_RGN) {
2651 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2652 pRegions->push_back(new Region(this, rgn));
2653 }
2654 rgn = lrgn->GetNextSubList();
2655 }
2656 // Creating Region Key Table for fast lookup
2657 UpdateRegionKeyTable();
2658 }
2659
2660 __notify_progress(pProgress, 1.0f); // notify done
2661 }
2662
2663 void Instrument::UpdateRegionKeyTable() {
2664 RegionList::iterator iter = pRegions->begin();
2665 RegionList::iterator end = pRegions->end();
2666 for (; iter != end; ++iter) {
2667 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2668 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2669 RegionKeyTable[iKey] = pRegion;
2670 }
2671 }
2672 }
2673
2674 Instrument::~Instrument() {
2675 }
2676
2677 /**
2678 * Apply Instrument with all its Regions to the respective RIFF chunks.
2679 * You have to call File::Save() to make changes persistent.
2680 *
2681 * Usually there is absolutely no need to call this method explicitly.
2682 * It will be called automatically when File::Save() was called.
2683 *
2684 * @throws gig::Exception if samples cannot be dereferenced
2685 */
2686 void Instrument::UpdateChunks() {
2687 // first update base classes' chunks
2688 DLS::Instrument::UpdateChunks();
2689
2690 // update Regions' chunks
2691 {
2692 RegionList::iterator iter = pRegions->begin();
2693 RegionList::iterator end = pRegions->end();
2694 for (; iter != end; ++iter)
2695 (*iter)->UpdateChunks();
2696 }
2697
2698 // make sure 'lart' RIFF list chunk exists
2699 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2700 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2701 // make sure '3ewg' RIFF chunk exists
2702 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2703 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2704 // update '3ewg' RIFF chunk
2705 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2706 store16(&pData[0], EffectSend);
2707 store32(&pData[2], Attenuation);
2708 store16(&pData[6], FineTune);
2709 store16(&pData[8], PitchbendRange);
2710 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2711 DimensionKeyRange.low << 1;
2712 pData[10] = dimkeystart;
2713 pData[11] = DimensionKeyRange.high;
2714 }
2715
2716 /**
2717 * Returns the appropriate Region for a triggered note.
2718 *
2719 * @param Key MIDI Key number of triggered note / key (0 - 127)
2720 * @returns pointer adress to the appropriate Region or NULL if there
2721 * there is no Region defined for the given \a Key
2722 */
2723 Region* Instrument::GetRegion(unsigned int Key) {
2724 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2725 return RegionKeyTable[Key];
2726
2727 /*for (int i = 0; i < Regions; i++) {
2728 if (Key <= pRegions[i]->KeyRange.high &&
2729 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2730 }
2731 return NULL;*/
2732 }
2733
2734 /**
2735 * Returns the first Region of the instrument. You have to call this
2736 * method once before you use GetNextRegion().
2737 *
2738 * @returns pointer address to first region or NULL if there is none
2739 * @see GetNextRegion()
2740 */
2741 Region* Instrument::GetFirstRegion() {
2742 if (!pRegions) return NULL;
2743 RegionsIterator = pRegions->begin();
2744 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2745 }
2746
2747 /**
2748 * Returns the next Region of the instrument. You have to call
2749 * GetFirstRegion() once before you can use this method. By calling this
2750 * method multiple times it iterates through the available Regions.
2751 *
2752 * @returns pointer address to the next region or NULL if end reached
2753 * @see GetFirstRegion()
2754 */
2755 Region* Instrument::GetNextRegion() {
2756 if (!pRegions) return NULL;
2757 RegionsIterator++;
2758 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2759 }
2760
2761 Region* Instrument::AddRegion() {
2762 // create new Region object (and its RIFF chunks)
2763 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2764 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2765 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2766 Region* pNewRegion = new Region(this, rgn);
2767 pRegions->push_back(pNewRegion);
2768 Regions = pRegions->size();
2769 // update Region key table for fast lookup
2770 UpdateRegionKeyTable();
2771 // done
2772 return pNewRegion;
2773 }
2774
2775 void Instrument::DeleteRegion(Region* pRegion) {
2776 if (!pRegions) return;
2777 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2778 // update Region key table for fast lookup
2779 UpdateRegionKeyTable();
2780 }
2781
2782
2783
2784 // *************** Group ***************
2785 // *
2786
2787 /** @brief Constructor.
2788 *
2789 * @param file - pointer to the gig::File object
2790 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2791 * NULL if this is a new Group
2792 */
2793 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2794 pFile = file;
2795 pNameChunk = ck3gnm;
2796 ::LoadString(pNameChunk, Name);
2797 }
2798
2799 Group::~Group() {
2800 // remove the chunk associated with this group (if any)
2801 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2802 }
2803
2804 /** @brief Update chunks with current group settings.
2805 *
2806 * Apply current Group field values to the respective chunks. You have
2807 * to call File::Save() to make changes persistent.
2808 *
2809 * Usually there is absolutely no need to call this method explicitly.
2810 * It will be called automatically when File::Save() was called.
2811 */
2812 void Group::UpdateChunks() {
2813 // make sure <3gri> and <3gnl> list chunks exist
2814 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2815 if (!_3gri) {
2816 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2817 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2818 }
2819 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2820 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2821 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2822 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2823 }
2824
2825 /**
2826 * Returns the first Sample of this Group. You have to call this method
2827 * once before you use GetNextSample().
2828 *
2829 * <b>Notice:</b> this method might block for a long time, in case the
2830 * samples of this .gig file were not scanned yet
2831 *
2832 * @returns pointer address to first Sample or NULL if there is none
2833 * applied to this Group
2834 * @see GetNextSample()
2835 */
2836 Sample* Group::GetFirstSample() {
2837 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2838 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2839 if (pSample->GetGroup() == this) return pSample;
2840 }
2841 return NULL;
2842 }
2843
2844 /**
2845 * Returns the next Sample of the Group. You have to call
2846 * GetFirstSample() once before you can use this method. By calling this
2847 * method multiple times it iterates through the Samples assigned to
2848 * this Group.
2849 *
2850 * @returns pointer address to the next Sample of this Group or NULL if
2851 * end reached
2852 * @see GetFirstSample()
2853 */
2854 Sample* Group::GetNextSample() {
2855 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2856 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2857 if (pSample->GetGroup() == this) return pSample;
2858 }
2859 return NULL;
2860 }
2861
2862 /**
2863 * Move Sample given by \a pSample from another Group to this Group.
2864 */
2865 void Group::AddSample(Sample* pSample) {
2866 pSample->pGroup = this;
2867 }
2868
2869 /**
2870 * Move all members of this group to another group (preferably the 1st
2871 * one except this). This method is called explicitly by
2872 * File::DeleteGroup() thus when a Group was deleted. This code was
2873 * intentionally not placed in the destructor!
2874 */
2875 void Group::MoveAll() {
2876 // get "that" other group first
2877 Group* pOtherGroup = NULL;
2878 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2879 if (pOtherGroup != this) break;
2880 }
2881 if (!pOtherGroup) throw Exception(
2882 "Could not move samples to another group, since there is no "
2883 "other Group. This is a bug, report it!"
2884 );
2885 // now move all samples of this group to the other group
2886 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2887 pOtherGroup->AddSample(pSample);
2888 }
2889 }
2890
2891
2892
2893 // *************** File ***************
2894 // *
2895
2896 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2897 { CHUNK_ID_IARL, 256 },
2898 { CHUNK_ID_IART, 128 },
2899 { CHUNK_ID_ICMS, 128 },
2900 { CHUNK_ID_ICMT, 1024 },
2901 { CHUNK_ID_ICOP, 128 },
2902 { CHUNK_ID_ICRD, 128 },
2903 { CHUNK_ID_IENG, 128 },
2904 { CHUNK_ID_IGNR, 128 },
2905 { CHUNK_ID_IKEY, 128 },
2906 { CHUNK_ID_IMED, 128 },
2907 { CHUNK_ID_INAM, 128 },
2908 { CHUNK_ID_IPRD, 128 },
2909 { CHUNK_ID_ISBJ, 128 },
2910 { CHUNK_ID_ISFT, 128 },
2911 { CHUNK_ID_ISRC, 128 },
2912 { CHUNK_ID_ISRF, 128 },
2913 { CHUNK_ID_ITCH, 128 },
2914 { 0, 0 }
2915 };
2916
2917 File::File() : DLS::File() {
2918 pGroups = NULL;
2919 pInfo->FixedStringLengths = FixedStringLengths;
2920 pInfo->ArchivalLocation = String(256, ' ');
2921
2922 // add some mandatory chunks to get the file chunks in right
2923 // order (INFO chunk will be moved to first position later)
2924 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2925 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2926 }
2927
2928 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2929 pGroups = NULL;
2930 pInfo->FixedStringLengths = FixedStringLengths;
2931 }
2932
2933 File::~File() {
2934 if (pGroups) {
2935 std::list<Group*>::iterator iter = pGroups->begin();
2936 std::list<Group*>::iterator end = pGroups->end();
2937 while (iter != end) {
2938 delete *iter;
2939 ++iter;
2940 }
2941 delete pGroups;
2942 }
2943 }
2944
2945 Sample* File::GetFirstSample(progress_t* pProgress) {
2946 if (!pSamples) LoadSamples(pProgress);
2947 if (!pSamples) return NULL;
2948 SamplesIterator = pSamples->begin();
2949 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2950 }
2951
2952 Sample* File::GetNextSample() {
2953 if (!pSamples) return NULL;
2954 SamplesIterator++;
2955 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2956 }
2957
2958 /** @brief Add a new sample.
2959 *
2960 * This will create a new Sample object for the gig file. You have to
2961 * call Save() to make this persistent to the file.
2962 *
2963 * @returns pointer to new Sample object
2964 */
2965 Sample* File::AddSample() {
2966 if (!pSamples) LoadSamples();
2967 __ensureMandatoryChunksExist();
2968 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2969 // create new Sample object and its respective 'wave' list chunk
2970 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2971 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2972
2973 // add mandatory chunks to get the chunks in right order
2974 wave->AddSubChunk(CHUNK_ID_FMT, 16);
2975 wave->AddSubList(LIST_TYPE_INFO);
2976
2977 pSamples->push_back(pSample);
2978 return pSample;
2979 }
2980
2981 /** @brief Delete a sample.
2982 *
2983 * This will delete the given Sample object from the gig file. You have
2984 * to call Save() to make this persistent to the file.
2985 *
2986 * @param pSample - sample to delete
2987 * @throws gig::Exception if given sample could not be found
2988 */
2989 void File::DeleteSample(Sample* pSample) {
2990 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2991 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2992 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2993 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2994 pSamples->erase(iter);
2995 delete pSample;
2996 }
2997
2998 void File::LoadSamples() {
2999 LoadSamples(NULL);
3000 }
3001
3002 void File::LoadSamples(progress_t* pProgress) {
3003 // Groups must be loaded before samples, because samples will try
3004 // to resolve the group they belong to
3005 if (!pGroups) LoadGroups();
3006
3007 if (!pSamples) pSamples = new SampleList;
3008
3009 RIFF::File* file = pRIFF;
3010
3011 // just for progress calculation
3012 int iSampleIndex = 0;
3013 int iTotalSamples = WavePoolCount;
3014
3015 // check if samples should be loaded from extension files
3016 int lastFileNo = 0;
3017 for (int i = 0 ; i < WavePoolCount ; i++) {
3018 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3019 }
3020 String name(pRIFF->GetFileName());
3021 int nameLen = name.length();
3022 char suffix[6];
3023 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3024
3025 for (int fileNo = 0 ; ; ) {
3026 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3027 if (wvpl) {
3028 unsigned long wvplFileOffset = wvpl->GetFilePos();
3029 RIFF::List* wave = wvpl->GetFirstSubList();
3030 while (wave) {
3031 if (wave->GetListType() == LIST_TYPE_WAVE) {
3032 // notify current progress
3033 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3034 __notify_progress(pProgress, subprogress);
3035
3036 unsigned long waveFileOffset = wave->GetFilePos();
3037 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3038
3039 iSampleIndex++;
3040 }
3041 wave = wvpl->GetNextSubList();
3042 }
3043
3044 if (fileNo == lastFileNo) break;
3045
3046 // open extension file (*.gx01, *.gx02, ...)
3047 fileNo++;
3048 sprintf(suffix, ".gx%02d", fileNo);
3049 name.replace(nameLen, 5, suffix);
3050 file = new RIFF::File(name);
3051 ExtensionFiles.push_back(file);
3052 } else break;
3053 }
3054
3055 __notify_progress(pProgress, 1.0); // notify done
3056 }
3057
3058 Instrument* File::GetFirstInstrument() {
3059 if (!pInstruments) LoadInstruments();
3060 if (!pInstruments) return NULL;
3061 InstrumentsIterator = pInstruments->begin();
3062 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3063 }
3064
3065 Instrument* File::