/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1247 - (show annotations) (download)
Fri Jun 22 09:59:57 2007 UTC (12 years ago) by persson
File size: 159145 byte(s)
* more write support fixes: crossfade parameters were not saved, v3
  dimension limits were not correctly initialized and saved when
  dimensions were added or deleted, v3 wave pool offsets were not
  saved correctly

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** CRC ***************
282 // *
283
284 const uint32_t* CRC::table(initTable());
285
286 uint32_t* CRC::initTable() {
287 uint32_t* res = new uint32_t[256];
288
289 for (int i = 0 ; i < 256 ; i++) {
290 uint32_t c = i;
291 for (int j = 0 ; j < 8 ; j++) {
292 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293 }
294 res[i] = c;
295 }
296 return res;
297 }
298
299
300
301 // *************** Sample ***************
302 // *
303
304 unsigned int Sample::Instances = 0;
305 buffer_t Sample::InternalDecompressionBuffer;
306
307 /** @brief Constructor.
308 *
309 * Load an existing sample or create a new one. A 'wave' list chunk must
310 * be given to this constructor. In case the given 'wave' list chunk
311 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312 * format and sample data will be loaded from there, otherwise default
313 * values will be used and those chunks will be created when
314 * File::Save() will be called later on.
315 *
316 * @param pFile - pointer to gig::File where this sample is
317 * located (or will be located)
318 * @param waveList - pointer to 'wave' list chunk which is (or
319 * will be) associated with this sample
320 * @param WavePoolOffset - offset of this sample data from wave pool
321 * ('wvpl') list chunk
322 * @param fileNo - number of an extension file where this sample
323 * is located, 0 otherwise
324 */
325 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327 { CHUNK_ID_INAM, 64 },
328 { 0, 0 }
329 };
330 pInfo->FixedStringLengths = fixedStringLengths;
331 Instances++;
332 FileNo = fileNo;
333
334 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335 if (pCk3gix) {
336 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 pGroup = pFile->GetGroup(iSampleGroup);
338 } else { // '3gix' chunk missing
339 // by default assigned to that mandatory "Default Group"
340 pGroup = pFile->GetGroup(0);
341 }
342
343 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344 if (pCkSmpl) {
345 Manufacturer = pCkSmpl->ReadInt32();
346 Product = pCkSmpl->ReadInt32();
347 SamplePeriod = pCkSmpl->ReadInt32();
348 MIDIUnityNote = pCkSmpl->ReadInt32();
349 FineTune = pCkSmpl->ReadInt32();
350 pCkSmpl->Read(&SMPTEFormat, 1, 4);
351 SMPTEOffset = pCkSmpl->ReadInt32();
352 Loops = pCkSmpl->ReadInt32();
353 pCkSmpl->ReadInt32(); // manufByt
354 LoopID = pCkSmpl->ReadInt32();
355 pCkSmpl->Read(&LoopType, 1, 4);
356 LoopStart = pCkSmpl->ReadInt32();
357 LoopEnd = pCkSmpl->ReadInt32();
358 LoopFraction = pCkSmpl->ReadInt32();
359 LoopPlayCount = pCkSmpl->ReadInt32();
360 } else { // 'smpl' chunk missing
361 // use default values
362 Manufacturer = 0;
363 Product = 0;
364 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 MIDIUnityNote = 60;
366 FineTune = 0;
367 SMPTEFormat = smpte_format_no_offset;
368 SMPTEOffset = 0;
369 Loops = 0;
370 LoopID = 0;
371 LoopType = loop_type_normal;
372 LoopStart = 0;
373 LoopEnd = 0;
374 LoopFraction = 0;
375 LoopPlayCount = 0;
376 }
377
378 FrameTable = NULL;
379 SamplePos = 0;
380 RAMCache.Size = 0;
381 RAMCache.pStart = NULL;
382 RAMCache.NullExtensionSize = 0;
383
384 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385
386 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387 Compressed = ewav;
388 Dithered = false;
389 TruncatedBits = 0;
390 if (Compressed) {
391 uint32_t version = ewav->ReadInt32();
392 if (version == 3 && BitDepth == 24) {
393 Dithered = ewav->ReadInt32();
394 ewav->SetPos(Channels == 2 ? 84 : 64);
395 TruncatedBits = ewav->ReadInt32();
396 }
397 ScanCompressedSample();
398 }
399
400 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 }
405 FrameOffset = 0; // just for streaming compressed samples
406
407 LoopSize = LoopEnd - LoopStart + 1;
408 }
409
410 /**
411 * Apply sample and its settings to the respective RIFF chunks. You have
412 * to call File::Save() to make changes persistent.
413 *
414 * Usually there is absolutely no need to call this method explicitly.
415 * It will be called automatically when File::Save() was called.
416 *
417 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 * was provided yet
419 * @throws gig::Exception if there is any invalid sample setting
420 */
421 void Sample::UpdateChunks() {
422 // first update base class's chunks
423 DLS::Sample::UpdateChunks();
424
425 // make sure 'smpl' chunk exists
426 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 if (!pCkSmpl) {
428 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429 memset(pCkSmpl->LoadChunkData(), 0, 60);
430 }
431 // update 'smpl' chunk
432 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 store32(&pData[0], Manufacturer);
435 store32(&pData[4], Product);
436 store32(&pData[8], SamplePeriod);
437 store32(&pData[12], MIDIUnityNote);
438 store32(&pData[16], FineTune);
439 store32(&pData[20], SMPTEFormat);
440 store32(&pData[24], SMPTEOffset);
441 store32(&pData[28], Loops);
442
443 // we skip 'manufByt' for now (4 bytes)
444
445 store32(&pData[36], LoopID);
446 store32(&pData[40], LoopType);
447 store32(&pData[44], LoopStart);
448 store32(&pData[48], LoopEnd);
449 store32(&pData[52], LoopFraction);
450 store32(&pData[56], LoopPlayCount);
451
452 // make sure '3gix' chunk exists
453 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 // determine appropriate sample group index (to be stored in chunk)
456 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 File* pFile = static_cast<File*>(pParent);
458 if (pFile->pGroups) {
459 std::list<Group*>::iterator iter = pFile->pGroups->begin();
460 std::list<Group*>::iterator end = pFile->pGroups->end();
461 for (int i = 0; iter != end; i++, iter++) {
462 if (*iter == pGroup) {
463 iSampleGroup = i;
464 break; // found
465 }
466 }
467 }
468 // update '3gix' chunk
469 pData = (uint8_t*) pCk3gix->LoadChunkData();
470 store16(&pData[0], iSampleGroup);
471 }
472
473 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474 void Sample::ScanCompressedSample() {
475 //TODO: we have to add some more scans here (e.g. determine compression rate)
476 this->SamplesTotal = 0;
477 std::list<unsigned long> frameOffsets;
478
479 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481
482 // Scanning
483 pCkData->SetPos(0);
484 if (Channels == 2) { // Stereo
485 for (int i = 0 ; ; i++) {
486 // for 24 bit samples every 8:th frame offset is
487 // stored, to save some memory
488 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489
490 const int mode_l = pCkData->ReadUint8();
491 const int mode_r = pCkData->ReadUint8();
492 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494
495 if (pCkData->RemainingBytes() <= frameSize) {
496 SamplesInLastFrame =
497 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499 SamplesTotal += SamplesInLastFrame;
500 break;
501 }
502 SamplesTotal += SamplesPerFrame;
503 pCkData->SetPos(frameSize, RIFF::stream_curpos);
504 }
505 }
506 else { // Mono
507 for (int i = 0 ; ; i++) {
508 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509
510 const int mode = pCkData->ReadUint8();
511 if (mode > 5) throw gig::Exception("Unknown compression mode");
512 const unsigned long frameSize = bytesPerFrame[mode];
513
514 if (pCkData->RemainingBytes() <= frameSize) {
515 SamplesInLastFrame =
516 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517 SamplesTotal += SamplesInLastFrame;
518 break;
519 }
520 SamplesTotal += SamplesPerFrame;
521 pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 }
523 }
524 pCkData->SetPos(0);
525
526 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527 if (FrameTable) delete[] FrameTable;
528 FrameTable = new unsigned long[frameOffsets.size()];
529 std::list<unsigned long>::iterator end = frameOffsets.end();
530 std::list<unsigned long>::iterator iter = frameOffsets.begin();
531 for (int i = 0; iter != end; i++, iter++) {
532 FrameTable[i] = *iter;
533 }
534 }
535
536 /**
537 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538 * ReleaseSampleData() to free the memory if you don't need the cached
539 * sample data anymore.
540 *
541 * @returns buffer_t structure with start address and size of the buffer
542 * in bytes
543 * @see ReleaseSampleData(), Read(), SetPos()
544 */
545 buffer_t Sample::LoadSampleData() {
546 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547 }
548
549 /**
550 * Reads (uncompresses if needed) and caches the first \a SampleCount
551 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552 * memory space if you don't need the cached samples anymore. There is no
553 * guarantee that exactly \a SampleCount samples will be cached; this is
554 * not an error. The size will be eventually truncated e.g. to the
555 * beginning of a frame of a compressed sample. This is done for
556 * efficiency reasons while streaming the wave by your sampler engine
557 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558 * that will be returned to determine the actual cached samples, but note
559 * that the size is given in bytes! You get the number of actually cached
560 * samples by dividing it by the frame size of the sample:
561 * @code
562 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563 * long cachedsamples = buf.Size / pSample->FrameSize;
564 * @endcode
565 *
566 * @param SampleCount - number of sample points to load into RAM
567 * @returns buffer_t structure with start address and size of
568 * the cached sample data in bytes
569 * @see ReleaseSampleData(), Read(), SetPos()
570 */
571 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573 }
574
575 /**
576 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577 * ReleaseSampleData() to free the memory if you don't need the cached
578 * sample data anymore.
579 * The method will add \a NullSamplesCount silence samples past the
580 * official buffer end (this won't affect the 'Size' member of the
581 * buffer_t structure, that means 'Size' always reflects the size of the
582 * actual sample data, the buffer might be bigger though). Silence
583 * samples past the official buffer are needed for differential
584 * algorithms that always have to take subsequent samples into account
585 * (resampling/interpolation would be an important example) and avoids
586 * memory access faults in such cases.
587 *
588 * @param NullSamplesCount - number of silence samples the buffer should
589 * be extended past it's data end
590 * @returns buffer_t structure with start address and
591 * size of the buffer in bytes
592 * @see ReleaseSampleData(), Read(), SetPos()
593 */
594 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596 }
597
598 /**
599 * Reads (uncompresses if needed) and caches the first \a SampleCount
600 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601 * memory space if you don't need the cached samples anymore. There is no
602 * guarantee that exactly \a SampleCount samples will be cached; this is
603 * not an error. The size will be eventually truncated e.g. to the
604 * beginning of a frame of a compressed sample. This is done for
605 * efficiency reasons while streaming the wave by your sampler engine
606 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607 * that will be returned to determine the actual cached samples, but note
608 * that the size is given in bytes! You get the number of actually cached
609 * samples by dividing it by the frame size of the sample:
610 * @code
611 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612 * long cachedsamples = buf.Size / pSample->FrameSize;
613 * @endcode
614 * The method will add \a NullSamplesCount silence samples past the
615 * official buffer end (this won't affect the 'Size' member of the
616 * buffer_t structure, that means 'Size' always reflects the size of the
617 * actual sample data, the buffer might be bigger though). Silence
618 * samples past the official buffer are needed for differential
619 * algorithms that always have to take subsequent samples into account
620 * (resampling/interpolation would be an important example) and avoids
621 * memory access faults in such cases.
622 *
623 * @param SampleCount - number of sample points to load into RAM
624 * @param NullSamplesCount - number of silence samples the buffer should
625 * be extended past it's data end
626 * @returns buffer_t structure with start address and
627 * size of the cached sample data in bytes
628 * @see ReleaseSampleData(), Read(), SetPos()
629 */
630 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634 RAMCache.pStart = new int8_t[allocationsize];
635 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637 // fill the remaining buffer space with silence samples
638 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639 return GetCache();
640 }
641
642 /**
643 * Returns current cached sample points. A buffer_t structure will be
644 * returned which contains address pointer to the begin of the cache and
645 * the size of the cached sample data in bytes. Use
646 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647 * RAM.
648 *
649 * @returns buffer_t structure with current cached sample points
650 * @see LoadSampleData();
651 */
652 buffer_t Sample::GetCache() {
653 // return a copy of the buffer_t structure
654 buffer_t result;
655 result.Size = this->RAMCache.Size;
656 result.pStart = this->RAMCache.pStart;
657 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658 return result;
659 }
660
661 /**
662 * Frees the cached sample from RAM if loaded with
663 * <i>LoadSampleData()</i> previously.
664 *
665 * @see LoadSampleData();
666 */
667 void Sample::ReleaseSampleData() {
668 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669 RAMCache.pStart = NULL;
670 RAMCache.Size = 0;
671 }
672
673 /** @brief Resize sample.
674 *
675 * Resizes the sample's wave form data, that is the actual size of
676 * sample wave data possible to be written for this sample. This call
677 * will return immediately and just schedule the resize operation. You
678 * should call File::Save() to actually perform the resize operation(s)
679 * "physically" to the file. As this can take a while on large files, it
680 * is recommended to call Resize() first on all samples which have to be
681 * resized and finally to call File::Save() to perform all those resize
682 * operations in one rush.
683 *
684 * The actual size (in bytes) is dependant to the current FrameSize
685 * value. You may want to set FrameSize before calling Resize().
686 *
687 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688 * enlarged samples before calling File::Save() as this might exceed the
689 * current sample's boundary!
690 *
691 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 * other formats will fail!
694 *
695 * @param iNewSize - new sample wave data size in sample points (must be
696 * greater than zero)
697 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 * or if \a iNewSize is less than 1
699 * @throws gig::Exception if existing sample is compressed
700 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701 * DLS::Sample::FormatTag, File::Save()
702 */
703 void Sample::Resize(int iNewSize) {
704 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705 DLS::Sample::Resize(iNewSize);
706 }
707
708 /**
709 * Sets the position within the sample (in sample points, not in
710 * bytes). Use this method and <i>Read()</i> if you don't want to load
711 * the sample into RAM, thus for disk streaming.
712 *
713 * Although the original Gigasampler engine doesn't allow positioning
714 * within compressed samples, I decided to implement it. Even though
715 * the Gigasampler format doesn't allow to define loops for compressed
716 * samples at the moment, positioning within compressed samples might be
717 * interesting for some sampler engines though. The only drawback about
718 * my decision is that it takes longer to load compressed gig Files on
719 * startup, because it's neccessary to scan the samples for some
720 * mandatory informations. But I think as it doesn't affect the runtime
721 * efficiency, nobody will have a problem with that.
722 *
723 * @param SampleCount number of sample points to jump
724 * @param Whence optional: to which relation \a SampleCount refers
725 * to, if omited <i>RIFF::stream_start</i> is assumed
726 * @returns the new sample position
727 * @see Read()
728 */
729 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730 if (Compressed) {
731 switch (Whence) {
732 case RIFF::stream_curpos:
733 this->SamplePos += SampleCount;
734 break;
735 case RIFF::stream_end:
736 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737 break;
738 case RIFF::stream_backward:
739 this->SamplePos -= SampleCount;
740 break;
741 case RIFF::stream_start: default:
742 this->SamplePos = SampleCount;
743 break;
744 }
745 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746
747 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750 return this->SamplePos;
751 }
752 else { // not compressed
753 unsigned long orderedBytes = SampleCount * this->FrameSize;
754 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755 return (result == orderedBytes) ? SampleCount
756 : result / this->FrameSize;
757 }
758 }
759
760 /**
761 * Returns the current position in the sample (in sample points).
762 */
763 unsigned long Sample::GetPos() {
764 if (Compressed) return SamplePos;
765 else return pCkData->GetPos() / FrameSize;
766 }
767
768 /**
769 * Reads \a SampleCount number of sample points from the position stored
770 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771 * the position within the sample respectively, this method honors the
772 * looping informations of the sample (if any). The sample wave stream
773 * will be decompressed on the fly if using a compressed sample. Use this
774 * method if you don't want to load the sample into RAM, thus for disk
775 * streaming. All this methods needs to know to proceed with streaming
776 * for the next time you call this method is stored in \a pPlaybackState.
777 * You have to allocate and initialize the playback_state_t structure by
778 * yourself before you use it to stream a sample:
779 * @code
780 * gig::playback_state_t playbackstate;
781 * playbackstate.position = 0;
782 * playbackstate.reverse = false;
783 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784 * @endcode
785 * You don't have to take care of things like if there is actually a loop
786 * defined or if the current read position is located within a loop area.
787 * The method already handles such cases by itself.
788 *
789 * <b>Caution:</b> If you are using more than one streaming thread, you
790 * have to use an external decompression buffer for <b>EACH</b>
791 * streaming thread to avoid race conditions and crashes!
792 *
793 * @param pBuffer destination buffer
794 * @param SampleCount number of sample points to read
795 * @param pPlaybackState will be used to store and reload the playback
796 * state for the next ReadAndLoop() call
797 * @param pDimRgn dimension region with looping information
798 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 * @returns number of successfully read sample points
800 * @see CreateDecompressionBuffer()
801 */
802 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805 uint8_t* pDst = (uint8_t*) pBuffer;
806
807 SetPos(pPlaybackState->position); // recover position from the last time
808
809 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810
811 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813
814 if (GetPos() <= loopEnd) {
815 switch (loop.LoopType) {
816
817 case loop_type_bidirectional: { //TODO: not tested yet!
818 do {
819 // if not endless loop check if max. number of loop cycles have been passed
820 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821
822 if (!pPlaybackState->reverse) { // forward playback
823 do {
824 samplestoloopend = loopEnd - GetPos();
825 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826 samplestoread -= readsamples;
827 totalreadsamples += readsamples;
828 if (readsamples == samplestoloopend) {
829 pPlaybackState->reverse = true;
830 break;
831 }
832 } while (samplestoread && readsamples);
833 }
834 else { // backward playback
835
836 // as we can only read forward from disk, we have to
837 // determine the end position within the loop first,
838 // read forward from that 'end' and finally after
839 // reading, swap all sample frames so it reflects
840 // backward playback
841
842 unsigned long swapareastart = totalreadsamples;
843 unsigned long loopoffset = GetPos() - loop.LoopStart;
844 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846
847 SetPos(reverseplaybackend);
848
849 // read samples for backward playback
850 do {
851 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852 samplestoreadinloop -= readsamples;
853 samplestoread -= readsamples;
854 totalreadsamples += readsamples;
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 if (reverseplaybackend == loop.LoopStart) {
860 pPlaybackState->loop_cycles_left--;
861 pPlaybackState->reverse = false;
862 }
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 }
867 } while (samplestoread && readsamples);
868 break;
869 }
870
871 case loop_type_backward: { // TODO: not tested yet!
872 // forward playback (not entered the loop yet)
873 if (!pPlaybackState->reverse) do {
874 samplestoloopend = loopEnd - GetPos();
875 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876 samplestoread -= readsamples;
877 totalreadsamples += readsamples;
878 if (readsamples == samplestoloopend) {
879 pPlaybackState->reverse = true;
880 break;
881 }
882 } while (samplestoread && readsamples);
883
884 if (!samplestoread) break;
885
886 // as we can only read forward from disk, we have to
887 // determine the end position within the loop first,
888 // read forward from that 'end' and finally after
889 // reading, swap all sample frames so it reflects
890 // backward playback
891
892 unsigned long swapareastart = totalreadsamples;
893 unsigned long loopoffset = GetPos() - loop.LoopStart;
894 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895 : samplestoread;
896 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897
898 SetPos(reverseplaybackend);
899
900 // read samples for backward playback
901 do {
902 // if not endless loop check if max. number of loop cycles have been passed
903 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904 samplestoloopend = loopEnd - GetPos();
905 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906 samplestoreadinloop -= readsamples;
907 samplestoread -= readsamples;
908 totalreadsamples += readsamples;
909 if (readsamples == samplestoloopend) {
910 pPlaybackState->loop_cycles_left--;
911 SetPos(loop.LoopStart);
912 }
913 } while (samplestoreadinloop && readsamples);
914
915 SetPos(reverseplaybackend); // pretend we really read backwards
916
917 // reverse the sample frames for backward playback
918 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919 break;
920 }
921
922 default: case loop_type_normal: {
923 do {
924 // if not endless loop check if max. number of loop cycles have been passed
925 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926 samplestoloopend = loopEnd - GetPos();
927 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928 samplestoread -= readsamples;
929 totalreadsamples += readsamples;
930 if (readsamples == samplestoloopend) {
931 pPlaybackState->loop_cycles_left--;
932 SetPos(loop.LoopStart);
933 }
934 } while (samplestoread && readsamples);
935 break;
936 }
937 }
938 }
939 }
940
941 // read on without looping
942 if (samplestoread) do {
943 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 samplestoread -= readsamples;
945 totalreadsamples += readsamples;
946 } while (readsamples && samplestoread);
947
948 // store current position
949 pPlaybackState->position = GetPos();
950
951 return totalreadsamples;
952 }
953
954 /**
955 * Reads \a SampleCount number of sample points from the current
956 * position into the buffer pointed by \a pBuffer and increments the
957 * position within the sample. The sample wave stream will be
958 * decompressed on the fly if using a compressed sample. Use this method
959 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960 * thus for disk streaming.
961 *
962 * <b>Caution:</b> If you are using more than one streaming thread, you
963 * have to use an external decompression buffer for <b>EACH</b>
964 * streaming thread to avoid race conditions and crashes!
965 *
966 * For 16 bit samples, the data in the buffer will be int16_t
967 * (using native endianness). For 24 bit, the buffer will
968 * contain three bytes per sample, little-endian.
969 *
970 * @param pBuffer destination buffer
971 * @param SampleCount number of sample points to read
972 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 * @returns number of successfully read sample points
974 * @see SetPos(), CreateDecompressionBuffer()
975 */
976 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 if (SampleCount == 0) return 0;
978 if (!Compressed) {
979 if (BitDepth == 24) {
980 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 }
982 else { // 16 bit
983 // (pCkData->Read does endian correction)
984 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985 : pCkData->Read(pBuffer, SampleCount, 2);
986 }
987 }
988 else {
989 if (this->SamplePos >= this->SamplesTotal) return 0;
990 //TODO: efficiency: maybe we should test for an average compression rate
991 unsigned long assumedsize = GuessSize(SampleCount),
992 remainingbytes = 0, // remaining bytes in the local buffer
993 remainingsamples = SampleCount,
994 copysamples, skipsamples,
995 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 this->FrameOffset = 0;
997
998 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999
1000 // if decompression buffer too small, then reduce amount of samples to read
1001 if (pDecompressionBuffer->Size < assumedsize) {
1002 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004 remainingsamples = SampleCount;
1005 assumedsize = GuessSize(SampleCount);
1006 }
1007
1008 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012
1013 while (remainingsamples && remainingbytes) {
1014 unsigned long framesamples = SamplesPerFrame;
1015 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016
1017 int mode_l = *pSrc++, mode_r = 0;
1018
1019 if (Channels == 2) {
1020 mode_r = *pSrc++;
1021 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024 if (remainingbytes < framebytes) { // last frame in sample
1025 framesamples = SamplesInLastFrame;
1026 if (mode_l == 4 && (framesamples & 1)) {
1027 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028 }
1029 else {
1030 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031 }
1032 }
1033 }
1034 else {
1035 framebytes = bytesPerFrame[mode_l] + 1;
1036 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037 if (remainingbytes < framebytes) {
1038 framesamples = SamplesInLastFrame;
1039 }
1040 }
1041
1042 // determine how many samples in this frame to skip and read
1043 if (currentframeoffset + remainingsamples >= framesamples) {
1044 if (currentframeoffset <= framesamples) {
1045 copysamples = framesamples - currentframeoffset;
1046 skipsamples = currentframeoffset;
1047 }
1048 else {
1049 copysamples = 0;
1050 skipsamples = framesamples;
1051 }
1052 }
1053 else {
1054 // This frame has enough data for pBuffer, but not
1055 // all of the frame is needed. Set file position
1056 // to start of this frame for next call to Read.
1057 copysamples = remainingsamples;
1058 skipsamples = currentframeoffset;
1059 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060 this->FrameOffset = currentframeoffset + copysamples;
1061 }
1062 remainingsamples -= copysamples;
1063
1064 if (remainingbytes > framebytes) {
1065 remainingbytes -= framebytes;
1066 if (remainingsamples == 0 &&
1067 currentframeoffset + copysamples == framesamples) {
1068 // This frame has enough data for pBuffer, and
1069 // all of the frame is needed. Set file
1070 // position to start of next frame for next
1071 // call to Read. FrameOffset is 0.
1072 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073 }
1074 }
1075 else remainingbytes = 0;
1076
1077 currentframeoffset -= skipsamples;
1078
1079 if (copysamples == 0) {
1080 // skip this frame
1081 pSrc += framebytes - Channels;
1082 }
1083 else {
1084 const unsigned char* const param_l = pSrc;
1085 if (BitDepth == 24) {
1086 if (mode_l != 2) pSrc += 12;
1087
1088 if (Channels == 2) { // Stereo
1089 const unsigned char* const param_r = pSrc;
1090 if (mode_r != 2) pSrc += 12;
1091
1092 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 skipsamples, copysamples, TruncatedBits);
1094 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 skipsamples, copysamples, TruncatedBits);
1096 pDst24 += copysamples * 6;
1097 }
1098 else { // Mono
1099 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 skipsamples, copysamples, TruncatedBits);
1101 pDst24 += copysamples * 3;
1102 }
1103 }
1104 else { // 16 bit
1105 if (mode_l) pSrc += 4;
1106
1107 int step;
1108 if (Channels == 2) { // Stereo
1109 const unsigned char* const param_r = pSrc;
1110 if (mode_r) pSrc += 4;
1111
1112 step = (2 - mode_l) + (2 - mode_r);
1113 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 skipsamples, copysamples);
1116 pDst += copysamples << 1;
1117 }
1118 else { // Mono
1119 step = 2 - mode_l;
1120 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 pDst += copysamples;
1122 }
1123 }
1124 pSrc += nextFrameOffset;
1125 }
1126
1127 // reload from disk to local buffer if needed
1128 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129 assumedsize = GuessSize(remainingsamples);
1130 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 }
1135 } // while
1136
1137 this->SamplePos += (SampleCount - remainingsamples);
1138 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 return (SampleCount - remainingsamples);
1140 }
1141 }
1142
1143 /** @brief Write sample wave data.
1144 *
1145 * Writes \a SampleCount number of sample points from the buffer pointed
1146 * by \a pBuffer and increments the position within the sample. Use this
1147 * method to directly write the sample data to disk, i.e. if you don't
1148 * want or cannot load the whole sample data into RAM.
1149 *
1150 * You have to Resize() the sample to the desired size and call
1151 * File::Save() <b>before</b> using Write().
1152 *
1153 * Note: there is currently no support for writing compressed samples.
1154 *
1155 * @param pBuffer - source buffer
1156 * @param SampleCount - number of sample points to write
1157 * @throws DLS::Exception if current sample size is too small
1158 * @throws gig::Exception if sample is compressed
1159 * @see DLS::LoadSampleData()
1160 */
1161 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163
1164 // if this is the first write in this sample, reset the
1165 // checksum calculator
1166 if (pCkData->GetPos() == 0) {
1167 crc.reset();
1168 }
1169 unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171
1172 // if this is the last write, update the checksum chunk in the
1173 // file
1174 if (pCkData->GetPos() == pCkData->GetSize()) {
1175 File* pFile = static_cast<File*>(GetParent());
1176 pFile->SetSampleChecksum(this, crc.getValue());
1177 }
1178 return res;
1179 }
1180
1181 /**
1182 * Allocates a decompression buffer for streaming (compressed) samples
1183 * with Sample::Read(). If you are using more than one streaming thread
1184 * in your application you <b>HAVE</b> to create a decompression buffer
1185 * for <b>EACH</b> of your streaming threads and provide it with the
1186 * Sample::Read() call in order to avoid race conditions and crashes.
1187 *
1188 * You should free the memory occupied by the allocated buffer(s) once
1189 * you don't need one of your streaming threads anymore by calling
1190 * DestroyDecompressionBuffer().
1191 *
1192 * @param MaxReadSize - the maximum size (in sample points) you ever
1193 * expect to read with one Read() call
1194 * @returns allocated decompression buffer
1195 * @see DestroyDecompressionBuffer()
1196 */
1197 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1198 buffer_t result;
1199 const double worstCaseHeaderOverhead =
1200 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1201 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1202 result.pStart = new int8_t[result.Size];
1203 result.NullExtensionSize = 0;
1204 return result;
1205 }
1206
1207 /**
1208 * Free decompression buffer, previously created with
1209 * CreateDecompressionBuffer().
1210 *
1211 * @param DecompressionBuffer - previously allocated decompression
1212 * buffer to free
1213 */
1214 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1215 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1216 delete[] (int8_t*) DecompressionBuffer.pStart;
1217 DecompressionBuffer.pStart = NULL;
1218 DecompressionBuffer.Size = 0;
1219 DecompressionBuffer.NullExtensionSize = 0;
1220 }
1221 }
1222
1223 /**
1224 * Returns pointer to the Group this Sample belongs to. In the .gig
1225 * format a sample always belongs to one group. If it wasn't explicitly
1226 * assigned to a certain group, it will be automatically assigned to a
1227 * default group.
1228 *
1229 * @returns Sample's Group (never NULL)
1230 */
1231 Group* Sample::GetGroup() const {
1232 return pGroup;
1233 }
1234
1235 Sample::~Sample() {
1236 Instances--;
1237 if (!Instances && InternalDecompressionBuffer.Size) {
1238 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1239 InternalDecompressionBuffer.pStart = NULL;
1240 InternalDecompressionBuffer.Size = 0;
1241 }
1242 if (FrameTable) delete[] FrameTable;
1243 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1244 }
1245
1246
1247
1248 // *************** DimensionRegion ***************
1249 // *
1250
1251 uint DimensionRegion::Instances = 0;
1252 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1253
1254 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1255 Instances++;
1256
1257 pSample = NULL;
1258
1259 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1260 else memset(&Crossfade, 0, 4);
1261
1262 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1263
1264 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1265 if (_3ewa) { // if '3ewa' chunk exists
1266 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1267 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1268 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1269 _3ewa->ReadInt16(); // unknown
1270 LFO1InternalDepth = _3ewa->ReadUint16();
1271 _3ewa->ReadInt16(); // unknown
1272 LFO3InternalDepth = _3ewa->ReadInt16();
1273 _3ewa->ReadInt16(); // unknown
1274 LFO1ControlDepth = _3ewa->ReadUint16();
1275 _3ewa->ReadInt16(); // unknown
1276 LFO3ControlDepth = _3ewa->ReadInt16();
1277 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1278 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1279 _3ewa->ReadInt16(); // unknown
1280 EG1Sustain = _3ewa->ReadUint16();
1281 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1282 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1283 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1284 EG1ControllerInvert = eg1ctrloptions & 0x01;
1285 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1286 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1287 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1288 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1289 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1290 EG2ControllerInvert = eg2ctrloptions & 0x01;
1291 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1292 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1293 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1294 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1295 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1296 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1297 _3ewa->ReadInt16(); // unknown
1298 EG2Sustain = _3ewa->ReadUint16();
1299 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1300 _3ewa->ReadInt16(); // unknown
1301 LFO2ControlDepth = _3ewa->ReadUint16();
1302 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1303 _3ewa->ReadInt16(); // unknown
1304 LFO2InternalDepth = _3ewa->ReadUint16();
1305 int32_t eg1decay2 = _3ewa->ReadInt32();
1306 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1307 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1308 _3ewa->ReadInt16(); // unknown
1309 EG1PreAttack = _3ewa->ReadUint16();
1310 int32_t eg2decay2 = _3ewa->ReadInt32();
1311 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1312 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1313 _3ewa->ReadInt16(); // unknown
1314 EG2PreAttack = _3ewa->ReadUint16();
1315 uint8_t velocityresponse = _3ewa->ReadUint8();
1316 if (velocityresponse < 5) {
1317 VelocityResponseCurve = curve_type_nonlinear;
1318 VelocityResponseDepth = velocityresponse;
1319 } else if (velocityresponse < 10) {
1320 VelocityResponseCurve = curve_type_linear;
1321 VelocityResponseDepth = velocityresponse - 5;
1322 } else if (velocityresponse < 15) {
1323 VelocityResponseCurve = curve_type_special;
1324 VelocityResponseDepth = velocityresponse - 10;
1325 } else {
1326 VelocityResponseCurve = curve_type_unknown;
1327 VelocityResponseDepth = 0;
1328 }
1329 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1330 if (releasevelocityresponse < 5) {
1331 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1332 ReleaseVelocityResponseDepth = releasevelocityresponse;
1333 } else if (releasevelocityresponse < 10) {
1334 ReleaseVelocityResponseCurve = curve_type_linear;
1335 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1336 } else if (releasevelocityresponse < 15) {
1337 ReleaseVelocityResponseCurve = curve_type_special;
1338 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1339 } else {
1340 ReleaseVelocityResponseCurve = curve_type_unknown;
1341 ReleaseVelocityResponseDepth = 0;
1342 }
1343 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1344 AttenuationControllerThreshold = _3ewa->ReadInt8();
1345 _3ewa->ReadInt32(); // unknown
1346 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1347 _3ewa->ReadInt16(); // unknown
1348 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1349 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1350 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1351 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1352 else DimensionBypass = dim_bypass_ctrl_none;
1353 uint8_t pan = _3ewa->ReadUint8();
1354 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1355 SelfMask = _3ewa->ReadInt8() & 0x01;
1356 _3ewa->ReadInt8(); // unknown
1357 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1358 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1359 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1360 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1361 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1362 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1363 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1364 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1365 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1366 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1367 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1368 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1369 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1370 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1371 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1372 : vcf_res_ctrl_none;
1373 uint16_t eg3depth = _3ewa->ReadUint16();
1374 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1375 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1376 _3ewa->ReadInt16(); // unknown
1377 ChannelOffset = _3ewa->ReadUint8() / 4;
1378 uint8_t regoptions = _3ewa->ReadUint8();
1379 MSDecode = regoptions & 0x01; // bit 0
1380 SustainDefeat = regoptions & 0x02; // bit 1
1381 _3ewa->ReadInt16(); // unknown
1382 VelocityUpperLimit = _3ewa->ReadInt8();
1383 _3ewa->ReadInt8(); // unknown
1384 _3ewa->ReadInt16(); // unknown
1385 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1386 _3ewa->ReadInt8(); // unknown
1387 _3ewa->ReadInt8(); // unknown
1388 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1389 uint8_t vcfcutoff = _3ewa->ReadUint8();
1390 VCFEnabled = vcfcutoff & 0x80; // bit 7
1391 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1392 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1393 uint8_t vcfvelscale = _3ewa->ReadUint8();
1394 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1395 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1396 _3ewa->ReadInt8(); // unknown
1397 uint8_t vcfresonance = _3ewa->ReadUint8();
1398 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1399 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1400 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1401 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1402 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1403 uint8_t vcfvelocity = _3ewa->ReadUint8();
1404 VCFVelocityDynamicRange = vcfvelocity % 5;
1405 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1406 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1407 if (VCFType == vcf_type_lowpass) {
1408 if (lfo3ctrl & 0x40) // bit 6
1409 VCFType = vcf_type_lowpassturbo;
1410 }
1411 if (_3ewa->RemainingBytes() >= 8) {
1412 _3ewa->Read(DimensionUpperLimits, 1, 8);
1413 } else {
1414 memset(DimensionUpperLimits, 0, 8);
1415 }
1416 } else { // '3ewa' chunk does not exist yet
1417 // use default values
1418 LFO3Frequency = 1.0;
1419 EG3Attack = 0.0;
1420 LFO1InternalDepth = 0;
1421 LFO3InternalDepth = 0;
1422 LFO1ControlDepth = 0;
1423 LFO3ControlDepth = 0;
1424 EG1Attack = 0.0;
1425 EG1Decay1 = 0.005;
1426 EG1Sustain = 1000;
1427 EG1Release = 0.3;
1428 EG1Controller.type = eg1_ctrl_t::type_none;
1429 EG1Controller.controller_number = 0;
1430 EG1ControllerInvert = false;
1431 EG1ControllerAttackInfluence = 0;
1432 EG1ControllerDecayInfluence = 0;
1433 EG1ControllerReleaseInfluence = 0;
1434 EG2Controller.type = eg2_ctrl_t::type_none;
1435 EG2Controller.controller_number = 0;
1436 EG2ControllerInvert = false;
1437 EG2ControllerAttackInfluence = 0;
1438 EG2ControllerDecayInfluence = 0;
1439 EG2ControllerReleaseInfluence = 0;
1440 LFO1Frequency = 1.0;
1441 EG2Attack = 0.0;
1442 EG2Decay1 = 0.005;
1443 EG2Sustain = 1000;
1444 EG2Release = 0.3;
1445 LFO2ControlDepth = 0;
1446 LFO2Frequency = 1.0;
1447 LFO2InternalDepth = 0;
1448 EG1Decay2 = 0.0;
1449 EG1InfiniteSustain = true;
1450 EG1PreAttack = 0;
1451 EG2Decay2 = 0.0;
1452 EG2InfiniteSustain = true;
1453 EG2PreAttack = 0;
1454 VelocityResponseCurve = curve_type_nonlinear;
1455 VelocityResponseDepth = 3;
1456 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1457 ReleaseVelocityResponseDepth = 3;
1458 VelocityResponseCurveScaling = 32;
1459 AttenuationControllerThreshold = 0;
1460 SampleStartOffset = 0;
1461 PitchTrack = true;
1462 DimensionBypass = dim_bypass_ctrl_none;
1463 Pan = 0;
1464 SelfMask = true;
1465 LFO3Controller = lfo3_ctrl_modwheel;
1466 LFO3Sync = false;
1467 InvertAttenuationController = false;
1468 AttenuationController.type = attenuation_ctrl_t::type_none;
1469 AttenuationController.controller_number = 0;
1470 LFO2Controller = lfo2_ctrl_internal;
1471 LFO2FlipPhase = false;
1472 LFO2Sync = false;
1473 LFO1Controller = lfo1_ctrl_internal;
1474 LFO1FlipPhase = false;
1475 LFO1Sync = false;
1476 VCFResonanceController = vcf_res_ctrl_none;
1477 EG3Depth = 0;
1478 ChannelOffset = 0;
1479 MSDecode = false;
1480 SustainDefeat = false;
1481 VelocityUpperLimit = 0;
1482 ReleaseTriggerDecay = 0;
1483 EG1Hold = false;
1484 VCFEnabled = false;
1485 VCFCutoff = 0;
1486 VCFCutoffController = vcf_cutoff_ctrl_none;
1487 VCFCutoffControllerInvert = false;
1488 VCFVelocityScale = 0;
1489 VCFResonance = 0;
1490 VCFResonanceDynamic = false;
1491 VCFKeyboardTracking = false;
1492 VCFKeyboardTrackingBreakpoint = 0;
1493 VCFVelocityDynamicRange = 0x04;
1494 VCFVelocityCurve = curve_type_linear;
1495 VCFType = vcf_type_lowpass;
1496 memset(DimensionUpperLimits, 127, 8);
1497 }
1498
1499 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1500 VelocityResponseDepth,
1501 VelocityResponseCurveScaling);
1502
1503 curve_type_t curveType = ReleaseVelocityResponseCurve;
1504 uint8_t depth = ReleaseVelocityResponseDepth;
1505
1506 // this models a strange behaviour or bug in GSt: two of the
1507 // velocity response curves for release time are not used even
1508 // if specified, instead another curve is chosen.
1509 if ((curveType == curve_type_nonlinear && depth == 0) ||
1510 (curveType == curve_type_special && depth == 4)) {
1511 curveType = curve_type_nonlinear;
1512 depth = 3;
1513 }
1514 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1515
1516 curveType = VCFVelocityCurve;
1517 depth = VCFVelocityDynamicRange;
1518
1519 // even stranger GSt: two of the velocity response curves for
1520 // filter cutoff are not used, instead another special curve
1521 // is chosen. This curve is not used anywhere else.
1522 if ((curveType == curve_type_nonlinear && depth == 0) ||
1523 (curveType == curve_type_special && depth == 4)) {
1524 curveType = curve_type_special;
1525 depth = 5;
1526 }
1527 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1528 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1529
1530 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1531 VelocityTable = 0;
1532 }
1533
1534 /**
1535 * Apply dimension region settings to the respective RIFF chunks. You
1536 * have to call File::Save() to make changes persistent.
1537 *
1538 * Usually there is absolutely no need to call this method explicitly.
1539 * It will be called automatically when File::Save() was called.
1540 */
1541 void DimensionRegion::UpdateChunks() {
1542 // first update base class's chunk
1543 DLS::Sampler::UpdateChunks();
1544
1545 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1546 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1547 pData[12] = Crossfade.in_start;
1548 pData[13] = Crossfade.in_end;
1549 pData[14] = Crossfade.out_start;
1550 pData[15] = Crossfade.out_end;
1551
1552 // make sure '3ewa' chunk exists
1553 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1554 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1555 pData = (uint8_t*) _3ewa->LoadChunkData();
1556
1557 // update '3ewa' chunk with DimensionRegion's current settings
1558
1559 const uint32_t chunksize = _3ewa->GetNewSize();
1560 store32(&pData[0], chunksize); // unknown, always chunk size?
1561
1562 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1563 store32(&pData[4], lfo3freq);
1564
1565 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1566 store32(&pData[8], eg3attack);
1567
1568 // next 2 bytes unknown
1569
1570 store16(&pData[14], LFO1InternalDepth);
1571
1572 // next 2 bytes unknown
1573
1574 store16(&pData[18], LFO3InternalDepth);
1575
1576 // next 2 bytes unknown
1577
1578 store16(&pData[22], LFO1ControlDepth);
1579
1580 // next 2 bytes unknown
1581
1582 store16(&pData[26], LFO3ControlDepth);
1583
1584 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1585 store32(&pData[28], eg1attack);
1586
1587 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1588 store32(&pData[32], eg1decay1);
1589
1590 // next 2 bytes unknown
1591
1592 store16(&pData[38], EG1Sustain);
1593
1594 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1595 store32(&pData[40], eg1release);
1596
1597 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1598 pData[44] = eg1ctl;
1599
1600 const uint8_t eg1ctrloptions =
1601 (EG1ControllerInvert) ? 0x01 : 0x00 |
1602 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1603 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1604 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1605 pData[45] = eg1ctrloptions;
1606
1607 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1608 pData[46] = eg2ctl;
1609
1610 const uint8_t eg2ctrloptions =
1611 (EG2ControllerInvert) ? 0x01 : 0x00 |
1612 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1613 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1614 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1615 pData[47] = eg2ctrloptions;
1616
1617 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1618 store32(&pData[48], lfo1freq);
1619
1620 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1621 store32(&pData[52], eg2attack);
1622
1623 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1624 store32(&pData[56], eg2decay1);
1625
1626 // next 2 bytes unknown
1627
1628 store16(&pData[62], EG2Sustain);
1629
1630 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1631 store32(&pData[64], eg2release);
1632
1633 // next 2 bytes unknown
1634
1635 store16(&pData[70], LFO2ControlDepth);
1636
1637 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1638 store32(&pData[72], lfo2freq);
1639
1640 // next 2 bytes unknown
1641
1642 store16(&pData[78], LFO2InternalDepth);
1643
1644 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1645 store32(&pData[80], eg1decay2);
1646
1647 // next 2 bytes unknown
1648
1649 store16(&pData[86], EG1PreAttack);
1650
1651 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1652 store32(&pData[88], eg2decay2);
1653
1654 // next 2 bytes unknown
1655
1656 store16(&pData[94], EG2PreAttack);
1657
1658 {
1659 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1660 uint8_t velocityresponse = VelocityResponseDepth;
1661 switch (VelocityResponseCurve) {
1662 case curve_type_nonlinear:
1663 break;
1664 case curve_type_linear:
1665 velocityresponse += 5;
1666 break;
1667 case curve_type_special:
1668 velocityresponse += 10;
1669 break;
1670 case curve_type_unknown:
1671 default:
1672 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1673 }
1674 pData[96] = velocityresponse;
1675 }
1676
1677 {
1678 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1679 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1680 switch (ReleaseVelocityResponseCurve) {
1681 case curve_type_nonlinear:
1682 break;
1683 case curve_type_linear:
1684 releasevelocityresponse += 5;
1685 break;
1686 case curve_type_special:
1687 releasevelocityresponse += 10;
1688 break;
1689 case curve_type_unknown:
1690 default:
1691 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1692 }
1693 pData[97] = releasevelocityresponse;
1694 }
1695
1696 pData[98] = VelocityResponseCurveScaling;
1697
1698 pData[99] = AttenuationControllerThreshold;
1699
1700 // next 4 bytes unknown
1701
1702 store16(&pData[104], SampleStartOffset);
1703
1704 // next 2 bytes unknown
1705
1706 {
1707 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1708 switch (DimensionBypass) {
1709 case dim_bypass_ctrl_94:
1710 pitchTrackDimensionBypass |= 0x10;
1711 break;
1712 case dim_bypass_ctrl_95:
1713 pitchTrackDimensionBypass |= 0x20;
1714 break;
1715 case dim_bypass_ctrl_none:
1716 //FIXME: should we set anything here?
1717 break;
1718 default:
1719 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1720 }
1721 pData[108] = pitchTrackDimensionBypass;
1722 }
1723
1724 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1725 pData[109] = pan;
1726
1727 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1728 pData[110] = selfmask;
1729
1730 // next byte unknown
1731
1732 {
1733 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1734 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1735 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1736 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1737 pData[112] = lfo3ctrl;
1738 }
1739
1740 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1741 pData[113] = attenctl;
1742
1743 {
1744 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1745 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1746 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1747 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1748 pData[114] = lfo2ctrl;
1749 }
1750
1751 {
1752 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1753 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1754 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1755 if (VCFResonanceController != vcf_res_ctrl_none)
1756 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1757 pData[115] = lfo1ctrl;
1758 }
1759
1760 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1761 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1762 pData[116] = eg3depth;
1763
1764 // next 2 bytes unknown
1765
1766 const uint8_t channeloffset = ChannelOffset * 4;
1767 pData[120] = channeloffset;
1768
1769 {
1770 uint8_t regoptions = 0;
1771 if (MSDecode) regoptions |= 0x01; // bit 0
1772 if (SustainDefeat) regoptions |= 0x02; // bit 1
1773 pData[121] = regoptions;
1774 }
1775
1776 // next 2 bytes unknown
1777
1778 pData[124] = VelocityUpperLimit;
1779
1780 // next 3 bytes unknown
1781
1782 pData[128] = ReleaseTriggerDecay;
1783
1784 // next 2 bytes unknown
1785
1786 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1787 pData[131] = eg1hold;
1788
1789 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1790 (VCFCutoff & 0x7f); /* lower 7 bits */
1791 pData[132] = vcfcutoff;
1792
1793 pData[133] = VCFCutoffController;
1794
1795 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1796 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1797 pData[134] = vcfvelscale;
1798
1799 // next byte unknown
1800
1801 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1802 (VCFResonance & 0x7f); /* lower 7 bits */
1803 pData[136] = vcfresonance;
1804
1805 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1806 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1807 pData[137] = vcfbreakpoint;
1808
1809 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1810 VCFVelocityCurve * 5;
1811 pData[138] = vcfvelocity;
1812
1813 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1814 pData[139] = vcftype;
1815
1816 if (chunksize >= 148) {
1817 memcpy(&pData[140], DimensionUpperLimits, 8);
1818 }
1819 }
1820
1821 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1822 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1823 {
1824 double* table;
1825 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1826 if (pVelocityTables->count(tableKey)) { // if key exists
1827 table = (*pVelocityTables)[tableKey];
1828 }
1829 else {
1830 table = CreateVelocityTable(curveType, depth, scaling);
1831 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1832 }
1833 return table;
1834 }
1835
1836 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1837 leverage_ctrl_t decodedcontroller;
1838 switch (EncodedController) {
1839 // special controller
1840 case _lev_ctrl_none:
1841 decodedcontroller.type = leverage_ctrl_t::type_none;
1842 decodedcontroller.controller_number = 0;
1843 break;
1844 case _lev_ctrl_velocity:
1845 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1846 decodedcontroller.controller_number = 0;
1847 break;
1848 case _lev_ctrl_channelaftertouch:
1849 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1850 decodedcontroller.controller_number = 0;
1851 break;
1852
1853 // ordinary MIDI control change controller
1854 case _lev_ctrl_modwheel:
1855 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1856 decodedcontroller.controller_number = 1;
1857 break;
1858 case _lev_ctrl_breath:
1859 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1860 decodedcontroller.controller_number = 2;
1861 break;
1862 case _lev_ctrl_foot:
1863 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1864 decodedcontroller.controller_number = 4;
1865 break;
1866 case _lev_ctrl_effect1:
1867 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1868 decodedcontroller.controller_number = 12;
1869 break;
1870 case _lev_ctrl_effect2:
1871 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1872 decodedcontroller.controller_number = 13;
1873 break;
1874 case _lev_ctrl_genpurpose1:
1875 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1876 decodedcontroller.controller_number = 16;
1877 break;
1878 case _lev_ctrl_genpurpose2:
1879 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1880 decodedcontroller.controller_number = 17;
1881 break;
1882 case _lev_ctrl_genpurpose3:
1883 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1884 decodedcontroller.controller_number = 18;
1885 break;
1886 case _lev_ctrl_genpurpose4:
1887 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1888 decodedcontroller.controller_number = 19;
1889 break;
1890 case _lev_ctrl_portamentotime:
1891 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1892 decodedcontroller.controller_number = 5;
1893 break;
1894 case _lev_ctrl_sustainpedal:
1895 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1896 decodedcontroller.controller_number = 64;
1897 break;
1898 case _lev_ctrl_portamento:
1899 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1900 decodedcontroller.controller_number = 65;
1901 break;
1902 case _lev_ctrl_sostenutopedal:
1903 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1904 decodedcontroller.controller_number = 66;
1905 break;
1906 case _lev_ctrl_softpedal:
1907 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1908 decodedcontroller.controller_number = 67;
1909 break;
1910 case _lev_ctrl_genpurpose5:
1911 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1912 decodedcontroller.controller_number = 80;
1913 break;
1914 case _lev_ctrl_genpurpose6:
1915 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1916 decodedcontroller.controller_number = 81;
1917 break;
1918 case _lev_ctrl_genpurpose7:
1919 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1920 decodedcontroller.controller_number = 82;
1921 break;
1922 case _lev_ctrl_genpurpose8:
1923 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1924 decodedcontroller.controller_number = 83;
1925 break;
1926 case _lev_ctrl_effect1depth:
1927 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1928 decodedcontroller.controller_number = 91;
1929 break;
1930 case _lev_ctrl_effect2depth:
1931 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1932 decodedcontroller.controller_number = 92;
1933 break;
1934 case _lev_ctrl_effect3depth:
1935 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1936 decodedcontroller.controller_number = 93;
1937 break;
1938 case _lev_ctrl_effect4depth:
1939 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1940 decodedcontroller.controller_number = 94;
1941 break;
1942 case _lev_ctrl_effect5depth:
1943 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1944 decodedcontroller.controller_number = 95;
1945 break;
1946
1947 // unknown controller type
1948 default:
1949 throw gig::Exception("Unknown leverage controller type.");
1950 }
1951 return decodedcontroller;
1952 }
1953
1954 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1955 _lev_ctrl_t encodedcontroller;
1956 switch (DecodedController.type) {
1957 // special controller
1958 case leverage_ctrl_t::type_none:
1959 encodedcontroller = _lev_ctrl_none;
1960 break;
1961 case leverage_ctrl_t::type_velocity:
1962 encodedcontroller = _lev_ctrl_velocity;
1963 break;
1964 case leverage_ctrl_t::type_channelaftertouch:
1965 encodedcontroller = _lev_ctrl_channelaftertouch;
1966 break;
1967
1968 // ordinary MIDI control change controller
1969 case leverage_ctrl_t::type_controlchange:
1970 switch (DecodedController.controller_number) {
1971 case 1:
1972 encodedcontroller = _lev_ctrl_modwheel;
1973 break;
1974 case 2:
1975 encodedcontroller = _lev_ctrl_breath;
1976 break;
1977 case 4:
1978 encodedcontroller = _lev_ctrl_foot;
1979 break;
1980 case 12:
1981 encodedcontroller = _lev_ctrl_effect1;
1982 break;
1983 case 13:
1984 encodedcontroller = _lev_ctrl_effect2;
1985 break;
1986 case 16:
1987 encodedcontroller = _lev_ctrl_genpurpose1;
1988 break;
1989 case 17:
1990 encodedcontroller = _lev_ctrl_genpurpose2;
1991 break;
1992 case 18:
1993 encodedcontroller = _lev_ctrl_genpurpose3;
1994 break;
1995 case 19:
1996 encodedcontroller = _lev_ctrl_genpurpose4;
1997 break;
1998 case 5:
1999 encodedcontroller = _lev_ctrl_portamentotime;
2000 break;
2001 case 64:
2002 encodedcontroller = _lev_ctrl_sustainpedal;
2003 break;
2004 case 65:
2005 encodedcontroller = _lev_ctrl_portamento;
2006 break;
2007 case 66:
2008 encodedcontroller = _lev_ctrl_sostenutopedal;
2009 break;
2010 case 67:
2011 encodedcontroller = _lev_ctrl_softpedal;
2012 break;
2013 case 80:
2014 encodedcontroller = _lev_ctrl_genpurpose5;
2015 break;
2016 case 81:
2017 encodedcontroller = _lev_ctrl_genpurpose6;
2018 break;
2019 case 82:
2020 encodedcontroller = _lev_ctrl_genpurpose7;
2021 break;
2022 case 83:
2023 encodedcontroller = _lev_ctrl_genpurpose8;
2024 break;
2025 case 91:
2026 encodedcontroller = _lev_ctrl_effect1depth;
2027 break;
2028 case 92:
2029 encodedcontroller = _lev_ctrl_effect2depth;
2030 break;
2031 case 93:
2032 encodedcontroller = _lev_ctrl_effect3depth;
2033 break;
2034 case 94:
2035 encodedcontroller = _lev_ctrl_effect4depth;
2036 break;
2037 case 95:
2038 encodedcontroller = _lev_ctrl_effect5depth;
2039 break;
2040 default:
2041 throw gig::Exception("leverage controller number is not supported by the gig format");
2042 }
2043 break;
2044 default:
2045 throw gig::Exception("Unknown leverage controller type.");
2046 }
2047 return encodedcontroller;
2048 }
2049
2050 DimensionRegion::~DimensionRegion() {
2051 Instances--;
2052 if (!Instances) {
2053 // delete the velocity->volume tables
2054 VelocityTableMap::iterator iter;
2055 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2056 double* pTable = iter->second;
2057 if (pTable) delete[] pTable;
2058 }
2059 pVelocityTables->clear();
2060 delete pVelocityTables;
2061 pVelocityTables = NULL;
2062 }
2063 if (VelocityTable) delete[] VelocityTable;
2064 }
2065
2066 /**
2067 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2068 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2069 * and VelocityResponseCurveScaling) involved are taken into account to
2070 * calculate the amplitude factor. Use this method when a key was
2071 * triggered to get the volume with which the sample should be played
2072 * back.
2073 *
2074 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2075 * @returns amplitude factor (between 0.0 and 1.0)
2076 */
2077 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2078 return pVelocityAttenuationTable[MIDIKeyVelocity];
2079 }
2080
2081 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2082 return pVelocityReleaseTable[MIDIKeyVelocity];
2083 }
2084
2085 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2086 return pVelocityCutoffTable[MIDIKeyVelocity];
2087 }
2088
2089 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2090
2091 // line-segment approximations of the 15 velocity curves
2092
2093 // linear
2094 const int lin0[] = { 1, 1, 127, 127 };
2095 const int lin1[] = { 1, 21, 127, 127 };
2096 const int lin2[] = { 1, 45, 127, 127 };
2097 const int lin3[] = { 1, 74, 127, 127 };
2098 const int lin4[] = { 1, 127, 127, 127 };
2099
2100 // non-linear
2101 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2102 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2103 127, 127 };
2104 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2105 127, 127 };
2106 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2107 127, 127 };
2108 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2109
2110 // special
2111 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2112 113, 127, 127, 127 };
2113 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2114 118, 127, 127, 127 };
2115 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2116 85, 90, 91, 127, 127, 127 };
2117 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2118 117, 127, 127, 127 };
2119 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2120 127, 127 };
2121
2122 // this is only used by the VCF velocity curve
2123 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2124 91, 127, 127, 127 };
2125
2126 const int* const curves[] = { non0, non1, non2, non3, non4,
2127 lin0, lin1, lin2, lin3, lin4,
2128 spe0, spe1, spe2, spe3, spe4, spe5 };
2129
2130 double* const table = new double[128];
2131
2132 const int* curve = curves[curveType * 5 + depth];
2133 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2134
2135 table[0] = 0;
2136 for (int x = 1 ; x < 128 ; x++) {
2137
2138 if (x > curve[2]) curve += 2;
2139 double y = curve[1] + (x - curve[0]) *
2140 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2141 y = y / 127;
2142
2143 // Scale up for s > 20, down for s < 20. When
2144 // down-scaling, the curve still ends at 1.0.
2145 if (s < 20 && y >= 0.5)
2146 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2147 else
2148 y = y * (s / 20.0);
2149 if (y > 1) y = 1;
2150
2151 table[x] = y;
2152 }
2153 return table;
2154 }
2155
2156
2157 // *************** Region ***************
2158 // *
2159
2160 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2161 // Initialization
2162 Dimensions = 0;
2163 for (int i = 0; i < 256; i++) {
2164 pDimensionRegions[i] = NULL;
2165 }
2166 Layers = 1;
2167 File* file = (File*) GetParent()->GetParent();
2168 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2169
2170 // Actual Loading
2171
2172 LoadDimensionRegions(rgnList);
2173
2174 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2175 if (_3lnk) {
2176 DimensionRegions = _3lnk->ReadUint32();
2177 for (int i = 0; i < dimensionBits; i++) {
2178 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2179 uint8_t bits = _3lnk->ReadUint8();
2180 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2181 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2182 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2183 if (dimension == dimension_none) { // inactive dimension
2184 pDimensionDefinitions[i].dimension = dimension_none;
2185 pDimensionDefinitions[i].bits = 0;
2186 pDimensionDefinitions[i].zones = 0;
2187 pDimensionDefinitions[i].split_type = split_type_bit;
2188 pDimensionDefinitions[i].zone_size = 0;
2189 }
2190 else { // active dimension
2191 pDimensionDefinitions[i].dimension = dimension;
2192 pDimensionDefinitions[i].bits = bits;
2193 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2194 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2195 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2196 Dimensions++;
2197
2198 // if this is a layer dimension, remember the amount of layers
2199 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2200 }
2201 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2202 }
2203 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2204
2205 // if there's a velocity dimension and custom velocity zone splits are used,
2206 // update the VelocityTables in the dimension regions
2207 UpdateVelocityTable();
2208
2209 // jump to start of the wave pool indices (if not already there)
2210 if (file->pVersion && file->pVersion->major == 3)
2211 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2212 else
2213 _3lnk->SetPos(44);
2214
2215 // load sample references
2216 for (uint i = 0; i < DimensionRegions; i++) {
2217 uint32_t wavepoolindex = _3lnk->ReadUint32();
2218 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2219 }
2220 GetSample(); // load global region sample reference
2221 } else {
2222 DimensionRegions = 0;
2223 for (int i = 0 ; i < 8 ; i++) {
2224 pDimensionDefinitions[i].dimension = dimension_none;
2225 pDimensionDefinitions[i].bits = 0;
2226 pDimensionDefinitions[i].zones = 0;
2227 }
2228 }
2229
2230 // make sure there is at least one dimension region
2231 if (!DimensionRegions) {
2232 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2233 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2234 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2235 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2236 DimensionRegions = 1;
2237 }
2238 }
2239
2240 /**
2241 * Apply Region settings and all its DimensionRegions to the respective
2242 * RIFF chunks. You have to call File::Save() to make changes persistent.
2243 *
2244 * Usually there is absolutely no need to call this method explicitly.
2245 * It will be called automatically when File::Save() was called.
2246 *
2247 * @throws gig::Exception if samples cannot be dereferenced
2248 */
2249 void Region::UpdateChunks() {
2250 // in the gig format we don't care about the Region's sample reference
2251 // but we still have to provide some existing one to not corrupt the
2252 // file, so to avoid the latter we simply always assign the sample of
2253 // the first dimension region of this region
2254 pSample = pDimensionRegions[0]->pSample;
2255
2256 // first update base class's chunks
2257 DLS::Region::UpdateChunks();
2258
2259 File* pFile = (File*) GetParent()->GetParent();
2260 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2261
2262 // update dimension region's chunks
2263 for (int i = 0; i < DimensionRegions; i++) {
2264 DimensionRegion* d = pDimensionRegions[i];
2265
2266 // make sure '3ewa' chunk exists (we need to this before
2267 // calling DimensionRegion::UpdateChunks, as
2268 // DimensionRegion doesn't know which file version it is)
2269 RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2270 if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2271
2272 d->UpdateChunks();
2273 }
2274
2275 const int iMaxDimensions = version3 ? 8 : 5;
2276 const int iMaxDimensionRegions = version3 ? 256 : 32;
2277
2278 // make sure '3lnk' chunk exists
2279 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2280 if (!_3lnk) {
2281 const int _3lnkChunkSize = version3 ? 1092 : 172;
2282 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2283 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2284
2285 // move 3prg to last position
2286 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2287 }
2288
2289 // update dimension definitions in '3lnk' chunk
2290 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2291 store32(&pData[0], DimensionRegions);
2292 int shift = 0;
2293 for (int i = 0; i < iMaxDimensions; i++) {
2294 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2295 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2296 pData[6 + i * 8] = shift;
2297 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2298 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2299 // next 3 bytes unknown, always zero?
2300
2301 shift += pDimensionDefinitions[i].bits;
2302 }
2303
2304 // update wave pool table in '3lnk' chunk
2305 const int iWavePoolOffset = version3 ? 68 : 44;
2306 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2307 int iWaveIndex = -1;
2308 if (i < DimensionRegions) {
2309 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2310 File::SampleList::iterator iter = pFile->pSamples->begin();
2311 File::SampleList::iterator end = pFile->pSamples->end();
2312 for (int index = 0; iter != end; ++iter, ++index) {
2313 if (*iter == pDimensionRegions[i]->pSample) {
2314 iWaveIndex = index;
2315 break;
2316 }
2317 }
2318 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2319 }
2320 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2321 }
2322 }
2323
2324 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2325 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2326 if (_3prg) {
2327 int dimensionRegionNr = 0;
2328 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2329 while (_3ewl) {
2330 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2331 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2332 dimensionRegionNr++;
2333 }
2334 _3ewl = _3prg->GetNextSubList();
2335 }
2336 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2337 }
2338 }
2339
2340 void Region::UpdateVelocityTable() {
2341 // get velocity dimension's index
2342 int veldim = -1;
2343 for (int i = 0 ; i < Dimensions ; i++) {
2344 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2345 veldim = i;
2346 break;
2347 }
2348 }
2349 if (veldim == -1) return;
2350
2351 int step = 1;
2352 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2353 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2354 int end = step * pDimensionDefinitions[veldim].zones;
2355
2356 // loop through all dimension regions for all dimensions except the velocity dimension
2357 int dim[8] = { 0 };
2358 for (int i = 0 ; i < DimensionRegions ; i++) {
2359
2360 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2361 pDimensionRegions[i]->VelocityUpperLimit) {
2362 // create the velocity table
2363 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2364 if (!table) {
2365 table = new uint8_t[128];
2366 pDimensionRegions[i]->VelocityTable = table;
2367 }
2368 int tableidx = 0;
2369 int velocityZone = 0;
2370 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2371 for (int k = i ; k < end ; k += step) {
2372 DimensionRegion *d = pDimensionRegions[k];
2373 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2374 velocityZone++;
2375 }
2376 } else { // gig2
2377 for (int k = i ; k < end ; k += step) {
2378 DimensionRegion *d = pDimensionRegions[k];
2379 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2380 velocityZone++;
2381 }
2382 }
2383 } else {
2384 if (pDimensionRegions[i]->VelocityTable) {
2385 delete[] pDimensionRegions[i]->VelocityTable;
2386 pDimensionRegions[i]->VelocityTable = 0;
2387 }
2388 }
2389
2390 int j;
2391 int shift = 0;
2392 for (j = 0 ; j < Dimensions ; j++) {
2393 if (j == veldim) i += skipveldim; // skip velocity dimension
2394 else {
2395 dim[j]++;
2396 if (dim[j] < pDimensionDefinitions[j].zones) break;
2397 else {
2398 // skip unused dimension regions
2399 dim[j] = 0;
2400 i += ((1 << pDimensionDefinitions[j].bits) -
2401 pDimensionDefinitions[j].zones) << shift;
2402 }
2403 }
2404 shift += pDimensionDefinitions[j].bits;
2405 }
2406 if (j == Dimensions) break;
2407 }
2408 }
2409
2410 /** @brief Einstein would have dreamed of it - create a new dimension.
2411 *
2412 * Creates a new dimension with the dimension definition given by
2413 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2414 * There is a hard limit of dimensions and total amount of "bits" all
2415 * dimensions can have. This limit is dependant to what gig file format
2416 * version this file refers to. The gig v2 (and lower) format has a
2417 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2418 * format has a limit of 8.
2419 *
2420 * @param pDimDef - defintion of the new dimension
2421 * @throws gig::Exception if dimension of the same type exists already
2422 * @throws gig::Exception if amount of dimensions or total amount of
2423 * dimension bits limit is violated
2424 */
2425 void Region::AddDimension(dimension_def_t* pDimDef) {
2426 // check if max. amount of dimensions reached
2427 File* file = (File*) GetParent()->GetParent();
2428 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2429 if (Dimensions >= iMaxDimensions)
2430 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2431 // check if max. amount of dimension bits reached
2432 int iCurrentBits = 0;
2433 for (int i = 0; i < Dimensions; i++)
2434 iCurrentBits += pDimensionDefinitions[i].bits;
2435 if (iCurrentBits >= iMaxDimensions)
2436 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2437 const int iNewBits = iCurrentBits + pDimDef->bits;
2438 if (iNewBits > iMaxDimensions)
2439 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2440 // check if there's already a dimensions of the same type
2441 for (int i = 0; i < Dimensions; i++)
2442 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2443 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2444
2445 // assign definition of new dimension
2446 pDimensionDefinitions[Dimensions] = *pDimDef;
2447
2448 // auto correct certain dimension definition fields (where possible)
2449 pDimensionDefinitions[Dimensions].split_type =
2450 __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2451 pDimensionDefinitions[Dimensions].zone_size =
2452 __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2453
2454 // create new dimension region(s) for this new dimension
2455 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2456 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2457 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2458 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2459 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2460
2461 // copy the upper limits for the other dimensions
2462 memcpy(pDimensionRegions[i]->DimensionUpperLimits,
2463 pDimensionRegions[i & ((1 << iCurrentBits) - 1)]->DimensionUpperLimits, 8);
2464
2465 DimensionRegions++;
2466 }
2467
2468 // initialize the upper limits for this dimension
2469 for (int z = 0, j = 0 ; z < pDimDef->zones ; z++, j += 1 << iCurrentBits) {
2470 uint8_t upperLimit = (z + 1) * 128.0 / pDimDef->zones - 1;
2471 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2472 pDimensionRegions[j + i]->DimensionUpperLimits[Dimensions] = upperLimit;
2473 }
2474 }
2475
2476 Dimensions++;
2477
2478 // if this is a layer dimension, update 'Layers' attribute
2479 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2480
2481 UpdateVelocityTable();
2482 }
2483
2484 /** @brief Delete an existing dimension.
2485 *
2486 * Deletes the dimension given by \a pDimDef and deletes all respective
2487 * dimension regions, that is all dimension regions where the dimension's
2488 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2489 * for example this would delete all dimension regions for the case(s)
2490 * where the sustain pedal is pressed down.
2491 *
2492 * @param pDimDef - dimension to delete
2493 * @throws gig::Exception if given dimension cannot be found
2494 */
2495 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2496 // get dimension's index
2497 int iDimensionNr = -1;
2498 for (int i = 0; i < Dimensions; i++) {
2499 if (&pDimensionDefinitions[i] == pDimDef) {
2500 iDimensionNr = i;
2501 break;
2502 }
2503 }
2504 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2505
2506 // get amount of bits below the dimension to delete
2507 int iLowerBits = 0;
2508 for (int i = 0; i < iDimensionNr; i++)
2509 iLowerBits += pDimensionDefinitions[i].bits;
2510
2511 // get amount ot bits above the dimension to delete
2512 int iUpperBits = 0;
2513 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2514 iUpperBits += pDimensionDefinitions[i].bits;
2515
2516 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2517
2518 // delete dimension regions which belong to the given dimension
2519 // (that is where the dimension's bit > 0)
2520 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2521 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2522 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2523 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2524 iObsoleteBit << iLowerBits |
2525 iLowerBit;
2526
2527 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2528 delete pDimensionRegions[iToDelete];
2529 pDimensionRegions[iToDelete] = NULL;
2530 DimensionRegions--;
2531 }
2532 }
2533 }
2534
2535 // defrag pDimensionRegions array
2536 // (that is remove the NULL spaces within the pDimensionRegions array)
2537 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2538 if (!pDimensionRegions[iTo]) {
2539 if (iFrom <= iTo) iFrom = iTo + 1;
2540 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2541 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2542 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2543 pDimensionRegions[iFrom] = NULL;
2544 }
2545 }
2546 }
2547
2548 // remove the this dimension from the upper limits arrays
2549 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2550 DimensionRegion* d = pDimensionRegions[j];
2551 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2552 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2553 }
2554 d->DimensionUpperLimits[Dimensions - 1] = 127;
2555 }
2556
2557 // 'remove' dimension definition
2558 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2559 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2560 }
2561 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2562 pDimensionDefinitions[Dimensions - 1].bits = 0;
2563 pDimensionDefinitions[Dimensions - 1].zones = 0;
2564
2565 Dimensions--;
2566
2567 // if this was a layer dimension, update 'Layers' attribute
2568 if (pDimDef->dimension == dimension_layer) Layers = 1;
2569 }
2570
2571 Region::~Region() {
2572 for (int i = 0; i < 256; i++) {
2573 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2574 }
2575 }
2576
2577 /**
2578 * Use this method in your audio engine to get the appropriate dimension
2579 * region with it's articulation data for the current situation. Just
2580 * call the method with the current MIDI controller values and you'll get
2581 * the DimensionRegion with the appropriate articulation data for the
2582 * current situation (for this Region of course only). To do that you'll
2583 * first have to look which dimensions with which controllers and in
2584 * which order are defined for this Region when you load the .gig file.
2585 * Special cases are e.g. layer or channel dimensions where you just put
2586 * in the index numbers instead of a MIDI controller value (means 0 for
2587 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2588 * etc.).
2589 *
2590 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2591 * @returns adress to the DimensionRegion for the given situation
2592 * @see pDimensionDefinitions
2593 * @see Dimensions
2594 */
2595 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2596 uint8_t bits;
2597 int veldim = -1;
2598 int velbitpos;
2599 int bitpos = 0;
2600 int dimregidx = 0;
2601 for (uint i = 0; i < Dimensions; i++) {
2602 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2603 // the velocity dimension must be handled after the other dimensions
2604 veldim = i;
2605 velbitpos = bitpos;
2606 } else {
2607 switch (pDimensionDefinitions[i].split_type) {
2608 case split_type_normal:
2609 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2610 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2611 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2612 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2613 }
2614 } else {
2615 // gig2: evenly sized zones
2616 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2617 }
2618 break;
2619 case split_type_bit: // the value is already the sought dimension bit number
2620 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2621 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2622 break;
2623 }
2624 dimregidx |= bits << bitpos;
2625 }
2626 bitpos += pDimensionDefinitions[i].bits;
2627 }
2628 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2629 if (veldim != -1) {
2630 // (dimreg is now the dimension region for the lowest velocity)
2631 if (dimreg->VelocityTable) // custom defined zone ranges
2632 bits = dimreg->VelocityTable[DimValues[veldim]];
2633 else // normal split type
2634 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2635
2636 dimregidx |= bits << velbitpos;
2637 dimreg = pDimensionRegions[dimregidx];
2638 }
2639 return dimreg;
2640 }
2641
2642 /**
2643 * Returns the appropriate DimensionRegion for the given dimension bit
2644 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2645 * instead of calling this method directly!
2646 *
2647 * @param DimBits Bit numbers for dimension 0 to 7
2648 * @returns adress to the DimensionRegion for the given dimension
2649 * bit numbers
2650 * @see GetDimensionRegionByValue()
2651 */
2652 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2653 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2654 << pDimensionDefinitions[5].bits | DimBits[5])
2655 << pDimensionDefinitions[4].bits | DimBits[4])
2656 << pDimensionDefinitions[3].bits | DimBits[3])
2657 << pDimensionDefinitions[2].bits | DimBits[2])
2658 << pDimensionDefinitions[1].bits | DimBits[1])
2659 << pDimensionDefinitions[0].bits | DimBits[0]];
2660 }
2661
2662 /**
2663 * Returns pointer address to the Sample referenced with this region.
2664 * This is the global Sample for the entire Region (not sure if this is
2665 * actually used by the Gigasampler engine - I would only use the Sample
2666 * referenced by the appropriate DimensionRegion instead of this sample).
2667 *
2668 * @returns address to Sample or NULL if there is no reference to a
2669 * sample saved in the .gig file
2670 */
2671 Sample* Region::GetSample() {
2672 if (pSample) return static_cast<gig::Sample*>(pSample);
2673 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2674 }
2675
2676 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2677 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2678 File* file = (File*) GetParent()->GetParent();
2679 if (!file->pWavePoolTable) return NULL;
2680 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2681 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2682 Sample* sample = file->GetFirstSample(pProgress);
2683 while (sample) {
2684 if (sample->ulWavePoolOffset == soughtoffset &&
2685 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2686 sample = file->GetNextSample();
2687 }
2688 return NULL;
2689 }
2690
2691
2692
2693 // *************** Instrument ***************
2694 // *
2695
2696 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2697 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2698 { CHUNK_ID_INAM, 64 },
2699 { CHUNK_ID_ISFT, 12 },
2700 { 0, 0 }
2701 };
2702 pInfo->FixedStringLengths = fixedStringLengths;
2703
2704 // Initialization
2705 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2706 EffectSend = 0;
2707 Attenuation = 0;
2708 FineTune = 0;
2709 PitchbendRange = 0;
2710 PianoReleaseMode = false;
2711 DimensionKeyRange.low = 0;
2712 DimensionKeyRange.high = 0;
2713
2714 // Loading
2715 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2716 if (lart) {
2717 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2718 if (_3ewg) {
2719 EffectSend = _3ewg->ReadUint16();
2720 Attenuation = _3ewg->ReadInt32();
2721 FineTune = _3ewg->ReadInt16();
2722 PitchbendRange = _3ewg->ReadInt16();
2723 uint8_t dimkeystart = _3ewg->ReadUint8();
2724 PianoReleaseMode = dimkeystart & 0x01;
2725 DimensionKeyRange.low = dimkeystart >> 1;
2726 DimensionKeyRange.high = _3ewg->ReadUint8();
2727 }
2728 }
2729
2730 if (!pRegions) pRegions = new RegionList;
2731 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2732 if (lrgn) {
2733 RIFF::List* rgn = lrgn->GetFirstSubList();
2734 while (rgn) {
2735 if (rgn->GetListType() == LIST_TYPE_RGN) {
2736 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2737 pRegions->push_back(new Region(this, rgn));
2738 }
2739 rgn = lrgn->GetNextSubList();
2740 }
2741 // Creating Region Key Table for fast lookup
2742 UpdateRegionKeyTable();
2743 }
2744
2745 __notify_progress(pProgress, 1.0f); // notify done
2746 }
2747
2748 void Instrument::UpdateRegionKeyTable() {
2749 RegionList::iterator iter = pRegions->begin();
2750 RegionList::iterator end = pRegions->end();
2751 for (; iter != end; ++iter) {
2752 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2753 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2754 RegionKeyTable[iKey] = pRegion;
2755 }
2756 }
2757 }
2758
2759 Instrument::~Instrument() {
2760 }
2761
2762 /**
2763 * Apply Instrument with all its Regions to the respective RIFF chunks.
2764 * You have to call File::Save() to make changes persistent.
2765 *
2766 * Usually there is absolutely no need to call this method explicitly.
2767 * It will be called automatically when File::Save() was called.
2768 *
2769 * @throws gig::Exception if samples cannot be dereferenced
2770 */
2771 void Instrument::UpdateChunks() {
2772 // first update base classes' chunks
2773 DLS::Instrument::UpdateChunks();
2774
2775 // update Regions' chunks
2776 {
2777 RegionList::iterator iter = pRegions->begin();
2778 RegionList::iterator end = pRegions->end();
2779 for (; iter != end; ++iter)
2780 (*iter)->UpdateChunks();
2781 }
2782
2783 // make sure 'lart' RIFF list chunk exists
2784 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2785 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2786 // make sure '3ewg' RIFF chunk exists
2787 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2788 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2789 // update '3ewg' RIFF chunk
2790 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2791 store16(&pData[0], EffectSend);
2792 store32(&pData[2], Attenuation);
2793 store16(&pData[6], FineTune);
2794 store16(&pData[8], PitchbendRange);
2795 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2796 DimensionKeyRange.low << 1;
2797 pData[10] = dimkeystart;
2798 pData[11] = DimensionKeyRange.high;
2799 }
2800
2801 /**
2802 * Returns the appropriate Region for a triggered note.
2803 *
2804 * @param Key MIDI Key number of triggered note / key (0 - 127)
2805 * @returns pointer adress to the appropriate Region or NULL if there
2806 * there is no Region defined for the given \a Key
2807 */
2808 Region* Instrument::GetRegion(unsigned int Key) {
2809 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2810 return RegionKeyTable[Key];
2811
2812 /*for (int i = 0; i < Regions; i++) {
2813 if (Key <= pRegions[i]->KeyRange.high &&
2814 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2815 }
2816 return NULL;*/
2817 }
2818
2819 /**
2820 * Returns the first Region of the instrument. You have to call this
2821 * method once before you use GetNextRegion().
2822 *
2823 * @returns pointer address to first region or NULL if there is none
2824 * @see GetNextRegion()
2825 */
2826 Region* Instrument::GetFirstRegion() {
2827 if (!pRegions) return NULL;
2828 RegionsIterator = pRegions->begin();
2829 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2830 }
2831
2832 /**
2833 * Returns the next Region of the instrument. You have to call
2834 * GetFirstRegion() once before you can use this method. By calling this
2835 * method multiple times it iterates through the available Regions.
2836 *
2837 * @returns pointer address to the next region or NULL if end reached
2838 * @see GetFirstRegion()
2839 */
2840 Region* Instrument::GetNextRegion() {
2841 if (!pRegions) return NULL;
2842 RegionsIterator++;
2843 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2844 }
2845
2846 Region* Instrument::AddRegion() {
2847 // create new Region object (and its RIFF chunks)
2848 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2849 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2850 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2851 Region* pNewRegion = new Region(this, rgn);
2852 pRegions->push_back(pNewRegion);
2853 Regions = pRegions->size();
2854 // update Region key table for fast lookup
2855 UpdateRegionKeyTable();
2856 // done
2857 return pNewRegion;
2858 }
2859
2860 void Instrument::DeleteRegion(Region* pRegion) {
2861 if (!pRegions) return;
2862 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2863 // update Region key table for fast lookup
2864 UpdateRegionKeyTable();
2865 }
2866
2867
2868
2869 // *************** Group ***************
2870 // *
2871
2872 /** @brief Constructor.
2873 *
2874 * @param file - pointer to the gig::File object
2875 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2876 * NULL if this is a new Group
2877 */
2878 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2879 pFile = file;
2880 pNameChunk = ck3gnm;
2881 ::LoadString(pNameChunk, Name);
2882 }
2883
2884 Group::~Group() {
2885 // remove the chunk associated with this group (if any)
2886 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2887 }
2888
2889 /** @brief Update chunks with current group settings.
2890 *
2891 * Apply current Group field values to the respective chunks. You have
2892 * to call File::Save() to make changes persistent.
2893 *
2894 * Usually there is absolutely no need to call this method explicitly.
2895 * It will be called automatically when File::Save() was called.
2896 */
2897 void Group::UpdateChunks() {
2898 // make sure <3gri> and <3gnl> list chunks exist
2899 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2900 if (!_3gri) {
2901 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2902 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2903 }
2904 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2905 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2906 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2907 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2908 }
2909
2910 /**
2911 * Returns the first Sample of this Group. You have to call this method
2912 * once before you use GetNextSample().
2913 *
2914 * <b>Notice:</b> this method might block for a long time, in case the
2915 * samples of this .gig file were not scanned yet
2916 *
2917 * @returns pointer address to first Sample or NULL if there is none
2918 * applied to this Group
2919 * @see GetNextSample()
2920 */
2921 Sample* Group::GetFirstSample() {
2922 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2923 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2924 if (pSample->GetGroup() == this) return pSample;
2925 }
2926 return NULL;
2927 }
2928
2929 /**
2930 * Returns the next Sample of the Group. You have to call
2931 * GetFirstSample() once before you can use this method. By calling this
2932 * method multiple times it iterates through the Samples assigned to
2933 * this Group.
2934 *
2935 * @returns pointer address to the next Sample of this Group or NULL if
2936 * end reached
2937 * @see GetFirstSample()
2938 */
2939 Sample* Group::GetNextSample() {
2940 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2941 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2942 if (pSample->GetGroup() == this) return pSample;
2943 }
2944 return NULL;
2945 }
2946
2947 /**
2948 * Move Sample given by \a pSample from another Group to this Group.
2949 */
2950 void Group::AddSample(Sample* pSample) {
2951 pSample->pGroup = this;
2952 }
2953
2954 /**
2955 * Move all members of this group to another group (preferably the 1st
2956 * one except this). This method is called explicitly by
2957 * File::DeleteGroup() thus when a Group was deleted. This code was
2958 * intentionally not placed in the destructor!
2959 */
2960 void Group::MoveAll() {
2961 // get "that" other group first
2962 Group* pOtherGroup = NULL;
2963 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2964 if (pOtherGroup != this) break;
2965 }
2966 if (!pOtherGroup) throw Exception(
2967 "Could not move samples to another group, since there is no "
2968 "other Group. This is a bug, report it!"
2969 );
2970 // now move all samples of this group to the other group
2971 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2972 pOtherGroup->AddSample(pSample);
2973 }
2974 }
2975
2976
2977
2978 // *************** File ***************
2979 // *
2980
2981 // File version 2.0, 1998-06-28
2982 const DLS::version_t File::VERSION_2 = {
2983 0, 2, 19980628 & 0xffff, 19980628 >> 16
2984 };
2985
2986 // File version 3.0, 2003-03-31
2987 const DLS::version_t File::VERSION_3 = {
2988 0, 3, 20030331 & 0xffff, 20030331 >> 16
2989 };
2990
2991 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2992 { CHUNK_ID_IARL, 256 },
2993 { CHUNK_ID_IART, 128 },
2994 { CHUNK_ID_ICMS, 128 },
2995 { CHUNK_ID_ICMT, 1024 },
2996 { CHUNK_ID_ICOP, 128 },
2997 { CHUNK_ID_ICRD, 128 },
2998 { CHUNK_ID_IENG, 128 },
2999 { CHUNK_ID_IGNR, 128 },
3000 { CHUNK_ID_IKEY, 128 },
3001 { CHUNK_ID_IMED, 128 },
3002 { CHUNK_ID_INAM, 128 },
3003 { CHUNK_ID_IPRD, 128 },
3004 { CHUNK_ID_ISBJ, 128 },
3005 { CHUNK_ID_ISFT, 128 },
3006 { CHUNK_ID_ISRC, 128 },
3007 { CHUNK_ID_ISRF, 128 },
3008 { CHUNK_ID_ITCH, 128 },
3009 { 0, 0 }
3010 };
3011
3012 File::File() : DLS::File() {
3013 pGroups = NULL;
3014 pInfo->FixedStringLengths = FixedStringLengths;
3015 pInfo->ArchivalLocation = String(256, ' ');
3016
3017 // add some mandatory chunks to get the file chunks in right
3018 // order (INFO chunk will be moved to first position later)
3019 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3020 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3021 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3022
3023 GenerateDLSID();
3024 }
3025
3026 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3027 pGroups = NULL;
3028 pInfo->FixedStringLengths = FixedStringLengths;
3029 }
3030
3031 File::~File() {
3032 if (pGroups) {
3033 std::list<Group*>::iterator iter = pGroups->begin();
3034 std::list<Group*>::iterator end = pGroups->end();
3035 while (iter != end) {
3036 delete *iter;
3037 ++iter;
3038 }
3039 delete pGroups;
3040 }
3041 }
3042
3043 Sample* File::GetFirstSample(progress_t* pProgress) {
3044 if (!pSamples) LoadSamples(pProgress);
3045 if (!pSamples) return NULL;
3046 SamplesIterator = pSamples->begin();
3047 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3048 }
3049
3050 Sample* File::GetNextSample() {
3051 if (!pSamples) return NULL;
3052 SamplesIterator++;
3053 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3054 }
3055
3056 /** @brief Add a new sample.
3057 *
3058 * This will create a new Sample object for the gig file. You have to
3059 * call Save() to make this persistent to the file.
3060 *
3061 * @returns pointer to new Sample object
3062 */
3063 Sample