/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1301 - (show annotations) (download)
Sat Aug 25 09:59:53 2007 UTC (16 years, 7 months ago) by persson
File size: 164834 byte(s)
* AddDimension now copies all parameters from existing dimension
  regions and also makes sure that the samplechannel dimension is
  placed first
* Windows fixes: compile error in DLSID generator, saving a new file
  didn't work

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** CRC ***************
282 // *
283
284 const uint32_t* CRC::table(initTable());
285
286 uint32_t* CRC::initTable() {
287 uint32_t* res = new uint32_t[256];
288
289 for (int i = 0 ; i < 256 ; i++) {
290 uint32_t c = i;
291 for (int j = 0 ; j < 8 ; j++) {
292 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293 }
294 res[i] = c;
295 }
296 return res;
297 }
298
299
300
301 // *************** Sample ***************
302 // *
303
304 unsigned int Sample::Instances = 0;
305 buffer_t Sample::InternalDecompressionBuffer;
306
307 /** @brief Constructor.
308 *
309 * Load an existing sample or create a new one. A 'wave' list chunk must
310 * be given to this constructor. In case the given 'wave' list chunk
311 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312 * format and sample data will be loaded from there, otherwise default
313 * values will be used and those chunks will be created when
314 * File::Save() will be called later on.
315 *
316 * @param pFile - pointer to gig::File where this sample is
317 * located (or will be located)
318 * @param waveList - pointer to 'wave' list chunk which is (or
319 * will be) associated with this sample
320 * @param WavePoolOffset - offset of this sample data from wave pool
321 * ('wvpl') list chunk
322 * @param fileNo - number of an extension file where this sample
323 * is located, 0 otherwise
324 */
325 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327 { CHUNK_ID_INAM, 64 },
328 { 0, 0 }
329 };
330 pInfo->FixedStringLengths = fixedStringLengths;
331 Instances++;
332 FileNo = fileNo;
333
334 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335 if (pCk3gix) {
336 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 pGroup = pFile->GetGroup(iSampleGroup);
338 } else { // '3gix' chunk missing
339 // by default assigned to that mandatory "Default Group"
340 pGroup = pFile->GetGroup(0);
341 }
342
343 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344 if (pCkSmpl) {
345 Manufacturer = pCkSmpl->ReadInt32();
346 Product = pCkSmpl->ReadInt32();
347 SamplePeriod = pCkSmpl->ReadInt32();
348 MIDIUnityNote = pCkSmpl->ReadInt32();
349 FineTune = pCkSmpl->ReadInt32();
350 pCkSmpl->Read(&SMPTEFormat, 1, 4);
351 SMPTEOffset = pCkSmpl->ReadInt32();
352 Loops = pCkSmpl->ReadInt32();
353 pCkSmpl->ReadInt32(); // manufByt
354 LoopID = pCkSmpl->ReadInt32();
355 pCkSmpl->Read(&LoopType, 1, 4);
356 LoopStart = pCkSmpl->ReadInt32();
357 LoopEnd = pCkSmpl->ReadInt32();
358 LoopFraction = pCkSmpl->ReadInt32();
359 LoopPlayCount = pCkSmpl->ReadInt32();
360 } else { // 'smpl' chunk missing
361 // use default values
362 Manufacturer = 0;
363 Product = 0;
364 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 MIDIUnityNote = 60;
366 FineTune = 0;
367 SMPTEFormat = smpte_format_no_offset;
368 SMPTEOffset = 0;
369 Loops = 0;
370 LoopID = 0;
371 LoopType = loop_type_normal;
372 LoopStart = 0;
373 LoopEnd = 0;
374 LoopFraction = 0;
375 LoopPlayCount = 0;
376 }
377
378 FrameTable = NULL;
379 SamplePos = 0;
380 RAMCache.Size = 0;
381 RAMCache.pStart = NULL;
382 RAMCache.NullExtensionSize = 0;
383
384 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385
386 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387 Compressed = ewav;
388 Dithered = false;
389 TruncatedBits = 0;
390 if (Compressed) {
391 uint32_t version = ewav->ReadInt32();
392 if (version == 3 && BitDepth == 24) {
393 Dithered = ewav->ReadInt32();
394 ewav->SetPos(Channels == 2 ? 84 : 64);
395 TruncatedBits = ewav->ReadInt32();
396 }
397 ScanCompressedSample();
398 }
399
400 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 }
405 FrameOffset = 0; // just for streaming compressed samples
406
407 LoopSize = LoopEnd - LoopStart + 1;
408 }
409
410 /**
411 * Apply sample and its settings to the respective RIFF chunks. You have
412 * to call File::Save() to make changes persistent.
413 *
414 * Usually there is absolutely no need to call this method explicitly.
415 * It will be called automatically when File::Save() was called.
416 *
417 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 * was provided yet
419 * @throws gig::Exception if there is any invalid sample setting
420 */
421 void Sample::UpdateChunks() {
422 // first update base class's chunks
423 DLS::Sample::UpdateChunks();
424
425 // make sure 'smpl' chunk exists
426 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 if (!pCkSmpl) {
428 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429 memset(pCkSmpl->LoadChunkData(), 0, 60);
430 }
431 // update 'smpl' chunk
432 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 store32(&pData[0], Manufacturer);
435 store32(&pData[4], Product);
436 store32(&pData[8], SamplePeriod);
437 store32(&pData[12], MIDIUnityNote);
438 store32(&pData[16], FineTune);
439 store32(&pData[20], SMPTEFormat);
440 store32(&pData[24], SMPTEOffset);
441 store32(&pData[28], Loops);
442
443 // we skip 'manufByt' for now (4 bytes)
444
445 store32(&pData[36], LoopID);
446 store32(&pData[40], LoopType);
447 store32(&pData[44], LoopStart);
448 store32(&pData[48], LoopEnd);
449 store32(&pData[52], LoopFraction);
450 store32(&pData[56], LoopPlayCount);
451
452 // make sure '3gix' chunk exists
453 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 // determine appropriate sample group index (to be stored in chunk)
456 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 File* pFile = static_cast<File*>(pParent);
458 if (pFile->pGroups) {
459 std::list<Group*>::iterator iter = pFile->pGroups->begin();
460 std::list<Group*>::iterator end = pFile->pGroups->end();
461 for (int i = 0; iter != end; i++, iter++) {
462 if (*iter == pGroup) {
463 iSampleGroup = i;
464 break; // found
465 }
466 }
467 }
468 // update '3gix' chunk
469 pData = (uint8_t*) pCk3gix->LoadChunkData();
470 store16(&pData[0], iSampleGroup);
471 }
472
473 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474 void Sample::ScanCompressedSample() {
475 //TODO: we have to add some more scans here (e.g. determine compression rate)
476 this->SamplesTotal = 0;
477 std::list<unsigned long> frameOffsets;
478
479 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481
482 // Scanning
483 pCkData->SetPos(0);
484 if (Channels == 2) { // Stereo
485 for (int i = 0 ; ; i++) {
486 // for 24 bit samples every 8:th frame offset is
487 // stored, to save some memory
488 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489
490 const int mode_l = pCkData->ReadUint8();
491 const int mode_r = pCkData->ReadUint8();
492 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494
495 if (pCkData->RemainingBytes() <= frameSize) {
496 SamplesInLastFrame =
497 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499 SamplesTotal += SamplesInLastFrame;
500 break;
501 }
502 SamplesTotal += SamplesPerFrame;
503 pCkData->SetPos(frameSize, RIFF::stream_curpos);
504 }
505 }
506 else { // Mono
507 for (int i = 0 ; ; i++) {
508 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509
510 const int mode = pCkData->ReadUint8();
511 if (mode > 5) throw gig::Exception("Unknown compression mode");
512 const unsigned long frameSize = bytesPerFrame[mode];
513
514 if (pCkData->RemainingBytes() <= frameSize) {
515 SamplesInLastFrame =
516 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517 SamplesTotal += SamplesInLastFrame;
518 break;
519 }
520 SamplesTotal += SamplesPerFrame;
521 pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 }
523 }
524 pCkData->SetPos(0);
525
526 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527 if (FrameTable) delete[] FrameTable;
528 FrameTable = new unsigned long[frameOffsets.size()];
529 std::list<unsigned long>::iterator end = frameOffsets.end();
530 std::list<unsigned long>::iterator iter = frameOffsets.begin();
531 for (int i = 0; iter != end; i++, iter++) {
532 FrameTable[i] = *iter;
533 }
534 }
535
536 /**
537 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538 * ReleaseSampleData() to free the memory if you don't need the cached
539 * sample data anymore.
540 *
541 * @returns buffer_t structure with start address and size of the buffer
542 * in bytes
543 * @see ReleaseSampleData(), Read(), SetPos()
544 */
545 buffer_t Sample::LoadSampleData() {
546 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547 }
548
549 /**
550 * Reads (uncompresses if needed) and caches the first \a SampleCount
551 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552 * memory space if you don't need the cached samples anymore. There is no
553 * guarantee that exactly \a SampleCount samples will be cached; this is
554 * not an error. The size will be eventually truncated e.g. to the
555 * beginning of a frame of a compressed sample. This is done for
556 * efficiency reasons while streaming the wave by your sampler engine
557 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558 * that will be returned to determine the actual cached samples, but note
559 * that the size is given in bytes! You get the number of actually cached
560 * samples by dividing it by the frame size of the sample:
561 * @code
562 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563 * long cachedsamples = buf.Size / pSample->FrameSize;
564 * @endcode
565 *
566 * @param SampleCount - number of sample points to load into RAM
567 * @returns buffer_t structure with start address and size of
568 * the cached sample data in bytes
569 * @see ReleaseSampleData(), Read(), SetPos()
570 */
571 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573 }
574
575 /**
576 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577 * ReleaseSampleData() to free the memory if you don't need the cached
578 * sample data anymore.
579 * The method will add \a NullSamplesCount silence samples past the
580 * official buffer end (this won't affect the 'Size' member of the
581 * buffer_t structure, that means 'Size' always reflects the size of the
582 * actual sample data, the buffer might be bigger though). Silence
583 * samples past the official buffer are needed for differential
584 * algorithms that always have to take subsequent samples into account
585 * (resampling/interpolation would be an important example) and avoids
586 * memory access faults in such cases.
587 *
588 * @param NullSamplesCount - number of silence samples the buffer should
589 * be extended past it's data end
590 * @returns buffer_t structure with start address and
591 * size of the buffer in bytes
592 * @see ReleaseSampleData(), Read(), SetPos()
593 */
594 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596 }
597
598 /**
599 * Reads (uncompresses if needed) and caches the first \a SampleCount
600 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601 * memory space if you don't need the cached samples anymore. There is no
602 * guarantee that exactly \a SampleCount samples will be cached; this is
603 * not an error. The size will be eventually truncated e.g. to the
604 * beginning of a frame of a compressed sample. This is done for
605 * efficiency reasons while streaming the wave by your sampler engine
606 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607 * that will be returned to determine the actual cached samples, but note
608 * that the size is given in bytes! You get the number of actually cached
609 * samples by dividing it by the frame size of the sample:
610 * @code
611 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612 * long cachedsamples = buf.Size / pSample->FrameSize;
613 * @endcode
614 * The method will add \a NullSamplesCount silence samples past the
615 * official buffer end (this won't affect the 'Size' member of the
616 * buffer_t structure, that means 'Size' always reflects the size of the
617 * actual sample data, the buffer might be bigger though). Silence
618 * samples past the official buffer are needed for differential
619 * algorithms that always have to take subsequent samples into account
620 * (resampling/interpolation would be an important example) and avoids
621 * memory access faults in such cases.
622 *
623 * @param SampleCount - number of sample points to load into RAM
624 * @param NullSamplesCount - number of silence samples the buffer should
625 * be extended past it's data end
626 * @returns buffer_t structure with start address and
627 * size of the cached sample data in bytes
628 * @see ReleaseSampleData(), Read(), SetPos()
629 */
630 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634 RAMCache.pStart = new int8_t[allocationsize];
635 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637 // fill the remaining buffer space with silence samples
638 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639 return GetCache();
640 }
641
642 /**
643 * Returns current cached sample points. A buffer_t structure will be
644 * returned which contains address pointer to the begin of the cache and
645 * the size of the cached sample data in bytes. Use
646 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647 * RAM.
648 *
649 * @returns buffer_t structure with current cached sample points
650 * @see LoadSampleData();
651 */
652 buffer_t Sample::GetCache() {
653 // return a copy of the buffer_t structure
654 buffer_t result;
655 result.Size = this->RAMCache.Size;
656 result.pStart = this->RAMCache.pStart;
657 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658 return result;
659 }
660
661 /**
662 * Frees the cached sample from RAM if loaded with
663 * <i>LoadSampleData()</i> previously.
664 *
665 * @see LoadSampleData();
666 */
667 void Sample::ReleaseSampleData() {
668 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669 RAMCache.pStart = NULL;
670 RAMCache.Size = 0;
671 }
672
673 /** @brief Resize sample.
674 *
675 * Resizes the sample's wave form data, that is the actual size of
676 * sample wave data possible to be written for this sample. This call
677 * will return immediately and just schedule the resize operation. You
678 * should call File::Save() to actually perform the resize operation(s)
679 * "physically" to the file. As this can take a while on large files, it
680 * is recommended to call Resize() first on all samples which have to be
681 * resized and finally to call File::Save() to perform all those resize
682 * operations in one rush.
683 *
684 * The actual size (in bytes) is dependant to the current FrameSize
685 * value. You may want to set FrameSize before calling Resize().
686 *
687 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688 * enlarged samples before calling File::Save() as this might exceed the
689 * current sample's boundary!
690 *
691 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 * other formats will fail!
694 *
695 * @param iNewSize - new sample wave data size in sample points (must be
696 * greater than zero)
697 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 * or if \a iNewSize is less than 1
699 * @throws gig::Exception if existing sample is compressed
700 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701 * DLS::Sample::FormatTag, File::Save()
702 */
703 void Sample::Resize(int iNewSize) {
704 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705 DLS::Sample::Resize(iNewSize);
706 }
707
708 /**
709 * Sets the position within the sample (in sample points, not in
710 * bytes). Use this method and <i>Read()</i> if you don't want to load
711 * the sample into RAM, thus for disk streaming.
712 *
713 * Although the original Gigasampler engine doesn't allow positioning
714 * within compressed samples, I decided to implement it. Even though
715 * the Gigasampler format doesn't allow to define loops for compressed
716 * samples at the moment, positioning within compressed samples might be
717 * interesting for some sampler engines though. The only drawback about
718 * my decision is that it takes longer to load compressed gig Files on
719 * startup, because it's neccessary to scan the samples for some
720 * mandatory informations. But I think as it doesn't affect the runtime
721 * efficiency, nobody will have a problem with that.
722 *
723 * @param SampleCount number of sample points to jump
724 * @param Whence optional: to which relation \a SampleCount refers
725 * to, if omited <i>RIFF::stream_start</i> is assumed
726 * @returns the new sample position
727 * @see Read()
728 */
729 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730 if (Compressed) {
731 switch (Whence) {
732 case RIFF::stream_curpos:
733 this->SamplePos += SampleCount;
734 break;
735 case RIFF::stream_end:
736 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737 break;
738 case RIFF::stream_backward:
739 this->SamplePos -= SampleCount;
740 break;
741 case RIFF::stream_start: default:
742 this->SamplePos = SampleCount;
743 break;
744 }
745 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746
747 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750 return this->SamplePos;
751 }
752 else { // not compressed
753 unsigned long orderedBytes = SampleCount * this->FrameSize;
754 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755 return (result == orderedBytes) ? SampleCount
756 : result / this->FrameSize;
757 }
758 }
759
760 /**
761 * Returns the current position in the sample (in sample points).
762 */
763 unsigned long Sample::GetPos() {
764 if (Compressed) return SamplePos;
765 else return pCkData->GetPos() / FrameSize;
766 }
767
768 /**
769 * Reads \a SampleCount number of sample points from the position stored
770 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771 * the position within the sample respectively, this method honors the
772 * looping informations of the sample (if any). The sample wave stream
773 * will be decompressed on the fly if using a compressed sample. Use this
774 * method if you don't want to load the sample into RAM, thus for disk
775 * streaming. All this methods needs to know to proceed with streaming
776 * for the next time you call this method is stored in \a pPlaybackState.
777 * You have to allocate and initialize the playback_state_t structure by
778 * yourself before you use it to stream a sample:
779 * @code
780 * gig::playback_state_t playbackstate;
781 * playbackstate.position = 0;
782 * playbackstate.reverse = false;
783 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784 * @endcode
785 * You don't have to take care of things like if there is actually a loop
786 * defined or if the current read position is located within a loop area.
787 * The method already handles such cases by itself.
788 *
789 * <b>Caution:</b> If you are using more than one streaming thread, you
790 * have to use an external decompression buffer for <b>EACH</b>
791 * streaming thread to avoid race conditions and crashes!
792 *
793 * @param pBuffer destination buffer
794 * @param SampleCount number of sample points to read
795 * @param pPlaybackState will be used to store and reload the playback
796 * state for the next ReadAndLoop() call
797 * @param pDimRgn dimension region with looping information
798 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 * @returns number of successfully read sample points
800 * @see CreateDecompressionBuffer()
801 */
802 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805 uint8_t* pDst = (uint8_t*) pBuffer;
806
807 SetPos(pPlaybackState->position); // recover position from the last time
808
809 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810
811 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813
814 if (GetPos() <= loopEnd) {
815 switch (loop.LoopType) {
816
817 case loop_type_bidirectional: { //TODO: not tested yet!
818 do {
819 // if not endless loop check if max. number of loop cycles have been passed
820 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821
822 if (!pPlaybackState->reverse) { // forward playback
823 do {
824 samplestoloopend = loopEnd - GetPos();
825 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826 samplestoread -= readsamples;
827 totalreadsamples += readsamples;
828 if (readsamples == samplestoloopend) {
829 pPlaybackState->reverse = true;
830 break;
831 }
832 } while (samplestoread && readsamples);
833 }
834 else { // backward playback
835
836 // as we can only read forward from disk, we have to
837 // determine the end position within the loop first,
838 // read forward from that 'end' and finally after
839 // reading, swap all sample frames so it reflects
840 // backward playback
841
842 unsigned long swapareastart = totalreadsamples;
843 unsigned long loopoffset = GetPos() - loop.LoopStart;
844 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846
847 SetPos(reverseplaybackend);
848
849 // read samples for backward playback
850 do {
851 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852 samplestoreadinloop -= readsamples;
853 samplestoread -= readsamples;
854 totalreadsamples += readsamples;
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 if (reverseplaybackend == loop.LoopStart) {
860 pPlaybackState->loop_cycles_left--;
861 pPlaybackState->reverse = false;
862 }
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 }
867 } while (samplestoread && readsamples);
868 break;
869 }
870
871 case loop_type_backward: { // TODO: not tested yet!
872 // forward playback (not entered the loop yet)
873 if (!pPlaybackState->reverse) do {
874 samplestoloopend = loopEnd - GetPos();
875 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876 samplestoread -= readsamples;
877 totalreadsamples += readsamples;
878 if (readsamples == samplestoloopend) {
879 pPlaybackState->reverse = true;
880 break;
881 }
882 } while (samplestoread && readsamples);
883
884 if (!samplestoread) break;
885
886 // as we can only read forward from disk, we have to
887 // determine the end position within the loop first,
888 // read forward from that 'end' and finally after
889 // reading, swap all sample frames so it reflects
890 // backward playback
891
892 unsigned long swapareastart = totalreadsamples;
893 unsigned long loopoffset = GetPos() - loop.LoopStart;
894 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895 : samplestoread;
896 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897
898 SetPos(reverseplaybackend);
899
900 // read samples for backward playback
901 do {
902 // if not endless loop check if max. number of loop cycles have been passed
903 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904 samplestoloopend = loopEnd - GetPos();
905 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906 samplestoreadinloop -= readsamples;
907 samplestoread -= readsamples;
908 totalreadsamples += readsamples;
909 if (readsamples == samplestoloopend) {
910 pPlaybackState->loop_cycles_left--;
911 SetPos(loop.LoopStart);
912 }
913 } while (samplestoreadinloop && readsamples);
914
915 SetPos(reverseplaybackend); // pretend we really read backwards
916
917 // reverse the sample frames for backward playback
918 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919 break;
920 }
921
922 default: case loop_type_normal: {
923 do {
924 // if not endless loop check if max. number of loop cycles have been passed
925 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926 samplestoloopend = loopEnd - GetPos();
927 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928 samplestoread -= readsamples;
929 totalreadsamples += readsamples;
930 if (readsamples == samplestoloopend) {
931 pPlaybackState->loop_cycles_left--;
932 SetPos(loop.LoopStart);
933 }
934 } while (samplestoread && readsamples);
935 break;
936 }
937 }
938 }
939 }
940
941 // read on without looping
942 if (samplestoread) do {
943 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 samplestoread -= readsamples;
945 totalreadsamples += readsamples;
946 } while (readsamples && samplestoread);
947
948 // store current position
949 pPlaybackState->position = GetPos();
950
951 return totalreadsamples;
952 }
953
954 /**
955 * Reads \a SampleCount number of sample points from the current
956 * position into the buffer pointed by \a pBuffer and increments the
957 * position within the sample. The sample wave stream will be
958 * decompressed on the fly if using a compressed sample. Use this method
959 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960 * thus for disk streaming.
961 *
962 * <b>Caution:</b> If you are using more than one streaming thread, you
963 * have to use an external decompression buffer for <b>EACH</b>
964 * streaming thread to avoid race conditions and crashes!
965 *
966 * For 16 bit samples, the data in the buffer will be int16_t
967 * (using native endianness). For 24 bit, the buffer will
968 * contain three bytes per sample, little-endian.
969 *
970 * @param pBuffer destination buffer
971 * @param SampleCount number of sample points to read
972 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 * @returns number of successfully read sample points
974 * @see SetPos(), CreateDecompressionBuffer()
975 */
976 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 if (SampleCount == 0) return 0;
978 if (!Compressed) {
979 if (BitDepth == 24) {
980 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 }
982 else { // 16 bit
983 // (pCkData->Read does endian correction)
984 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985 : pCkData->Read(pBuffer, SampleCount, 2);
986 }
987 }
988 else {
989 if (this->SamplePos >= this->SamplesTotal) return 0;
990 //TODO: efficiency: maybe we should test for an average compression rate
991 unsigned long assumedsize = GuessSize(SampleCount),
992 remainingbytes = 0, // remaining bytes in the local buffer
993 remainingsamples = SampleCount,
994 copysamples, skipsamples,
995 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 this->FrameOffset = 0;
997
998 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999
1000 // if decompression buffer too small, then reduce amount of samples to read
1001 if (pDecompressionBuffer->Size < assumedsize) {
1002 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004 remainingsamples = SampleCount;
1005 assumedsize = GuessSize(SampleCount);
1006 }
1007
1008 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012
1013 while (remainingsamples && remainingbytes) {
1014 unsigned long framesamples = SamplesPerFrame;
1015 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016
1017 int mode_l = *pSrc++, mode_r = 0;
1018
1019 if (Channels == 2) {
1020 mode_r = *pSrc++;
1021 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024 if (remainingbytes < framebytes) { // last frame in sample
1025 framesamples = SamplesInLastFrame;
1026 if (mode_l == 4 && (framesamples & 1)) {
1027 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028 }
1029 else {
1030 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031 }
1032 }
1033 }
1034 else {
1035 framebytes = bytesPerFrame[mode_l] + 1;
1036 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037 if (remainingbytes < framebytes) {
1038 framesamples = SamplesInLastFrame;
1039 }
1040 }
1041
1042 // determine how many samples in this frame to skip and read
1043 if (currentframeoffset + remainingsamples >= framesamples) {
1044 if (currentframeoffset <= framesamples) {
1045 copysamples = framesamples - currentframeoffset;
1046 skipsamples = currentframeoffset;
1047 }
1048 else {
1049 copysamples = 0;
1050 skipsamples = framesamples;
1051 }
1052 }
1053 else {
1054 // This frame has enough data for pBuffer, but not
1055 // all of the frame is needed. Set file position
1056 // to start of this frame for next call to Read.
1057 copysamples = remainingsamples;
1058 skipsamples = currentframeoffset;
1059 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060 this->FrameOffset = currentframeoffset + copysamples;
1061 }
1062 remainingsamples -= copysamples;
1063
1064 if (remainingbytes > framebytes) {
1065 remainingbytes -= framebytes;
1066 if (remainingsamples == 0 &&
1067 currentframeoffset + copysamples == framesamples) {
1068 // This frame has enough data for pBuffer, and
1069 // all of the frame is needed. Set file
1070 // position to start of next frame for next
1071 // call to Read. FrameOffset is 0.
1072 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073 }
1074 }
1075 else remainingbytes = 0;
1076
1077 currentframeoffset -= skipsamples;
1078
1079 if (copysamples == 0) {
1080 // skip this frame
1081 pSrc += framebytes - Channels;
1082 }
1083 else {
1084 const unsigned char* const param_l = pSrc;
1085 if (BitDepth == 24) {
1086 if (mode_l != 2) pSrc += 12;
1087
1088 if (Channels == 2) { // Stereo
1089 const unsigned char* const param_r = pSrc;
1090 if (mode_r != 2) pSrc += 12;
1091
1092 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 skipsamples, copysamples, TruncatedBits);
1094 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 skipsamples, copysamples, TruncatedBits);
1096 pDst24 += copysamples * 6;
1097 }
1098 else { // Mono
1099 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 skipsamples, copysamples, TruncatedBits);
1101 pDst24 += copysamples * 3;
1102 }
1103 }
1104 else { // 16 bit
1105 if (mode_l) pSrc += 4;
1106
1107 int step;
1108 if (Channels == 2) { // Stereo
1109 const unsigned char* const param_r = pSrc;
1110 if (mode_r) pSrc += 4;
1111
1112 step = (2 - mode_l) + (2 - mode_r);
1113 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 skipsamples, copysamples);
1116 pDst += copysamples << 1;
1117 }
1118 else { // Mono
1119 step = 2 - mode_l;
1120 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 pDst += copysamples;
1122 }
1123 }
1124 pSrc += nextFrameOffset;
1125 }
1126
1127 // reload from disk to local buffer if needed
1128 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129 assumedsize = GuessSize(remainingsamples);
1130 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 }
1135 } // while
1136
1137 this->SamplePos += (SampleCount - remainingsamples);
1138 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 return (SampleCount - remainingsamples);
1140 }
1141 }
1142
1143 /** @brief Write sample wave data.
1144 *
1145 * Writes \a SampleCount number of sample points from the buffer pointed
1146 * by \a pBuffer and increments the position within the sample. Use this
1147 * method to directly write the sample data to disk, i.e. if you don't
1148 * want or cannot load the whole sample data into RAM.
1149 *
1150 * You have to Resize() the sample to the desired size and call
1151 * File::Save() <b>before</b> using Write().
1152 *
1153 * Note: there is currently no support for writing compressed samples.
1154 *
1155 * For 16 bit samples, the data in the source buffer should be
1156 * int16_t (using native endianness). For 24 bit, the buffer
1157 * should contain three bytes per sample, little-endian.
1158 *
1159 * @param pBuffer - source buffer
1160 * @param SampleCount - number of sample points to write
1161 * @throws DLS::Exception if current sample size is too small
1162 * @throws gig::Exception if sample is compressed
1163 * @see DLS::LoadSampleData()
1164 */
1165 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167
1168 // if this is the first write in this sample, reset the
1169 // checksum calculator
1170 if (pCkData->GetPos() == 0) {
1171 crc.reset();
1172 }
1173 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174 unsigned long res;
1175 if (BitDepth == 24) {
1176 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177 } else { // 16 bit
1178 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179 : pCkData->Write(pBuffer, SampleCount, 2);
1180 }
1181 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182
1183 // if this is the last write, update the checksum chunk in the
1184 // file
1185 if (pCkData->GetPos() == pCkData->GetSize()) {
1186 File* pFile = static_cast<File*>(GetParent());
1187 pFile->SetSampleChecksum(this, crc.getValue());
1188 }
1189 return res;
1190 }
1191
1192 /**
1193 * Allocates a decompression buffer for streaming (compressed) samples
1194 * with Sample::Read(). If you are using more than one streaming thread
1195 * in your application you <b>HAVE</b> to create a decompression buffer
1196 * for <b>EACH</b> of your streaming threads and provide it with the
1197 * Sample::Read() call in order to avoid race conditions and crashes.
1198 *
1199 * You should free the memory occupied by the allocated buffer(s) once
1200 * you don't need one of your streaming threads anymore by calling
1201 * DestroyDecompressionBuffer().
1202 *
1203 * @param MaxReadSize - the maximum size (in sample points) you ever
1204 * expect to read with one Read() call
1205 * @returns allocated decompression buffer
1206 * @see DestroyDecompressionBuffer()
1207 */
1208 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209 buffer_t result;
1210 const double worstCaseHeaderOverhead =
1211 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213 result.pStart = new int8_t[result.Size];
1214 result.NullExtensionSize = 0;
1215 return result;
1216 }
1217
1218 /**
1219 * Free decompression buffer, previously created with
1220 * CreateDecompressionBuffer().
1221 *
1222 * @param DecompressionBuffer - previously allocated decompression
1223 * buffer to free
1224 */
1225 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227 delete[] (int8_t*) DecompressionBuffer.pStart;
1228 DecompressionBuffer.pStart = NULL;
1229 DecompressionBuffer.Size = 0;
1230 DecompressionBuffer.NullExtensionSize = 0;
1231 }
1232 }
1233
1234 /**
1235 * Returns pointer to the Group this Sample belongs to. In the .gig
1236 * format a sample always belongs to one group. If it wasn't explicitly
1237 * assigned to a certain group, it will be automatically assigned to a
1238 * default group.
1239 *
1240 * @returns Sample's Group (never NULL)
1241 */
1242 Group* Sample::GetGroup() const {
1243 return pGroup;
1244 }
1245
1246 Sample::~Sample() {
1247 Instances--;
1248 if (!Instances && InternalDecompressionBuffer.Size) {
1249 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250 InternalDecompressionBuffer.pStart = NULL;
1251 InternalDecompressionBuffer.Size = 0;
1252 }
1253 if (FrameTable) delete[] FrameTable;
1254 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255 }
1256
1257
1258
1259 // *************** DimensionRegion ***************
1260 // *
1261
1262 uint DimensionRegion::Instances = 0;
1263 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264
1265 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266 Instances++;
1267
1268 pSample = NULL;
1269
1270 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1271 else memset(&Crossfade, 0, 4);
1272
1273 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1274
1275 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1276 if (_3ewa) { // if '3ewa' chunk exists
1277 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1278 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1279 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280 _3ewa->ReadInt16(); // unknown
1281 LFO1InternalDepth = _3ewa->ReadUint16();
1282 _3ewa->ReadInt16(); // unknown
1283 LFO3InternalDepth = _3ewa->ReadInt16();
1284 _3ewa->ReadInt16(); // unknown
1285 LFO1ControlDepth = _3ewa->ReadUint16();
1286 _3ewa->ReadInt16(); // unknown
1287 LFO3ControlDepth = _3ewa->ReadInt16();
1288 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1289 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290 _3ewa->ReadInt16(); // unknown
1291 EG1Sustain = _3ewa->ReadUint16();
1292 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1294 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1295 EG1ControllerInvert = eg1ctrloptions & 0x01;
1296 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1297 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1298 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1299 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1300 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1301 EG2ControllerInvert = eg2ctrloptions & 0x01;
1302 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1303 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1304 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1305 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1306 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308 _3ewa->ReadInt16(); // unknown
1309 EG2Sustain = _3ewa->ReadUint16();
1310 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1311 _3ewa->ReadInt16(); // unknown
1312 LFO2ControlDepth = _3ewa->ReadUint16();
1313 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1314 _3ewa->ReadInt16(); // unknown
1315 LFO2InternalDepth = _3ewa->ReadUint16();
1316 int32_t eg1decay2 = _3ewa->ReadInt32();
1317 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1318 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1319 _3ewa->ReadInt16(); // unknown
1320 EG1PreAttack = _3ewa->ReadUint16();
1321 int32_t eg2decay2 = _3ewa->ReadInt32();
1322 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1323 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1324 _3ewa->ReadInt16(); // unknown
1325 EG2PreAttack = _3ewa->ReadUint16();
1326 uint8_t velocityresponse = _3ewa->ReadUint8();
1327 if (velocityresponse < 5) {
1328 VelocityResponseCurve = curve_type_nonlinear;
1329 VelocityResponseDepth = velocityresponse;
1330 } else if (velocityresponse < 10) {
1331 VelocityResponseCurve = curve_type_linear;
1332 VelocityResponseDepth = velocityresponse - 5;
1333 } else if (velocityresponse < 15) {
1334 VelocityResponseCurve = curve_type_special;
1335 VelocityResponseDepth = velocityresponse - 10;
1336 } else {
1337 VelocityResponseCurve = curve_type_unknown;
1338 VelocityResponseDepth = 0;
1339 }
1340 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1341 if (releasevelocityresponse < 5) {
1342 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1343 ReleaseVelocityResponseDepth = releasevelocityresponse;
1344 } else if (releasevelocityresponse < 10) {
1345 ReleaseVelocityResponseCurve = curve_type_linear;
1346 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1347 } else if (releasevelocityresponse < 15) {
1348 ReleaseVelocityResponseCurve = curve_type_special;
1349 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1350 } else {
1351 ReleaseVelocityResponseCurve = curve_type_unknown;
1352 ReleaseVelocityResponseDepth = 0;
1353 }
1354 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1355 AttenuationControllerThreshold = _3ewa->ReadInt8();
1356 _3ewa->ReadInt32(); // unknown
1357 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1358 _3ewa->ReadInt16(); // unknown
1359 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1360 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1361 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1362 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1363 else DimensionBypass = dim_bypass_ctrl_none;
1364 uint8_t pan = _3ewa->ReadUint8();
1365 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1366 SelfMask = _3ewa->ReadInt8() & 0x01;
1367 _3ewa->ReadInt8(); // unknown
1368 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1369 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1370 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1371 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1372 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1373 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1374 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1375 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1376 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1377 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1378 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1379 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1380 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1381 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1382 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1383 : vcf_res_ctrl_none;
1384 uint16_t eg3depth = _3ewa->ReadUint16();
1385 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1386 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1387 _3ewa->ReadInt16(); // unknown
1388 ChannelOffset = _3ewa->ReadUint8() / 4;
1389 uint8_t regoptions = _3ewa->ReadUint8();
1390 MSDecode = regoptions & 0x01; // bit 0
1391 SustainDefeat = regoptions & 0x02; // bit 1
1392 _3ewa->ReadInt16(); // unknown
1393 VelocityUpperLimit = _3ewa->ReadInt8();
1394 _3ewa->ReadInt8(); // unknown
1395 _3ewa->ReadInt16(); // unknown
1396 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1397 _3ewa->ReadInt8(); // unknown
1398 _3ewa->ReadInt8(); // unknown
1399 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1400 uint8_t vcfcutoff = _3ewa->ReadUint8();
1401 VCFEnabled = vcfcutoff & 0x80; // bit 7
1402 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1403 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1404 uint8_t vcfvelscale = _3ewa->ReadUint8();
1405 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1406 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1407 _3ewa->ReadInt8(); // unknown
1408 uint8_t vcfresonance = _3ewa->ReadUint8();
1409 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1410 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1411 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1412 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1413 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1414 uint8_t vcfvelocity = _3ewa->ReadUint8();
1415 VCFVelocityDynamicRange = vcfvelocity % 5;
1416 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1417 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1418 if (VCFType == vcf_type_lowpass) {
1419 if (lfo3ctrl & 0x40) // bit 6
1420 VCFType = vcf_type_lowpassturbo;
1421 }
1422 if (_3ewa->RemainingBytes() >= 8) {
1423 _3ewa->Read(DimensionUpperLimits, 1, 8);
1424 } else {
1425 memset(DimensionUpperLimits, 0, 8);
1426 }
1427 } else { // '3ewa' chunk does not exist yet
1428 // use default values
1429 LFO3Frequency = 1.0;
1430 EG3Attack = 0.0;
1431 LFO1InternalDepth = 0;
1432 LFO3InternalDepth = 0;
1433 LFO1ControlDepth = 0;
1434 LFO3ControlDepth = 0;
1435 EG1Attack = 0.0;
1436 EG1Decay1 = 0.005;
1437 EG1Sustain = 1000;
1438 EG1Release = 0.3;
1439 EG1Controller.type = eg1_ctrl_t::type_none;
1440 EG1Controller.controller_number = 0;
1441 EG1ControllerInvert = false;
1442 EG1ControllerAttackInfluence = 0;
1443 EG1ControllerDecayInfluence = 0;
1444 EG1ControllerReleaseInfluence = 0;
1445 EG2Controller.type = eg2_ctrl_t::type_none;
1446 EG2Controller.controller_number = 0;
1447 EG2ControllerInvert = false;
1448 EG2ControllerAttackInfluence = 0;
1449 EG2ControllerDecayInfluence = 0;
1450 EG2ControllerReleaseInfluence = 0;
1451 LFO1Frequency = 1.0;
1452 EG2Attack = 0.0;
1453 EG2Decay1 = 0.005;
1454 EG2Sustain = 1000;
1455 EG2Release = 0.3;
1456 LFO2ControlDepth = 0;
1457 LFO2Frequency = 1.0;
1458 LFO2InternalDepth = 0;
1459 EG1Decay2 = 0.0;
1460 EG1InfiniteSustain = true;
1461 EG1PreAttack = 0;
1462 EG2Decay2 = 0.0;
1463 EG2InfiniteSustain = true;
1464 EG2PreAttack = 0;
1465 VelocityResponseCurve = curve_type_nonlinear;
1466 VelocityResponseDepth = 3;
1467 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468 ReleaseVelocityResponseDepth = 3;
1469 VelocityResponseCurveScaling = 32;
1470 AttenuationControllerThreshold = 0;
1471 SampleStartOffset = 0;
1472 PitchTrack = true;
1473 DimensionBypass = dim_bypass_ctrl_none;
1474 Pan = 0;
1475 SelfMask = true;
1476 LFO3Controller = lfo3_ctrl_modwheel;
1477 LFO3Sync = false;
1478 InvertAttenuationController = false;
1479 AttenuationController.type = attenuation_ctrl_t::type_none;
1480 AttenuationController.controller_number = 0;
1481 LFO2Controller = lfo2_ctrl_internal;
1482 LFO2FlipPhase = false;
1483 LFO2Sync = false;
1484 LFO1Controller = lfo1_ctrl_internal;
1485 LFO1FlipPhase = false;
1486 LFO1Sync = false;
1487 VCFResonanceController = vcf_res_ctrl_none;
1488 EG3Depth = 0;
1489 ChannelOffset = 0;
1490 MSDecode = false;
1491 SustainDefeat = false;
1492 VelocityUpperLimit = 0;
1493 ReleaseTriggerDecay = 0;
1494 EG1Hold = false;
1495 VCFEnabled = false;
1496 VCFCutoff = 0;
1497 VCFCutoffController = vcf_cutoff_ctrl_none;
1498 VCFCutoffControllerInvert = false;
1499 VCFVelocityScale = 0;
1500 VCFResonance = 0;
1501 VCFResonanceDynamic = false;
1502 VCFKeyboardTracking = false;
1503 VCFKeyboardTrackingBreakpoint = 0;
1504 VCFVelocityDynamicRange = 0x04;
1505 VCFVelocityCurve = curve_type_linear;
1506 VCFType = vcf_type_lowpass;
1507 memset(DimensionUpperLimits, 127, 8);
1508 }
1509
1510 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1511 VelocityResponseDepth,
1512 VelocityResponseCurveScaling);
1513
1514 curve_type_t curveType = ReleaseVelocityResponseCurve;
1515 uint8_t depth = ReleaseVelocityResponseDepth;
1516
1517 // this models a strange behaviour or bug in GSt: two of the
1518 // velocity response curves for release time are not used even
1519 // if specified, instead another curve is chosen.
1520 if ((curveType == curve_type_nonlinear && depth == 0) ||
1521 (curveType == curve_type_special && depth == 4)) {
1522 curveType = curve_type_nonlinear;
1523 depth = 3;
1524 }
1525 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1526
1527 curveType = VCFVelocityCurve;
1528 depth = VCFVelocityDynamicRange;
1529
1530 // even stranger GSt: two of the velocity response curves for
1531 // filter cutoff are not used, instead another special curve
1532 // is chosen. This curve is not used anywhere else.
1533 if ((curveType == curve_type_nonlinear && depth == 0) ||
1534 (curveType == curve_type_special && depth == 4)) {
1535 curveType = curve_type_special;
1536 depth = 5;
1537 }
1538 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1539 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1540
1541 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1542 VelocityTable = 0;
1543 }
1544
1545 /*
1546 * Constructs a DimensionRegion by copying all parameters from
1547 * another DimensionRegion
1548 */
1549 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1550 Instances++;
1551 *this = src; // default memberwise shallow copy of all parameters
1552 pParentList = _3ewl; // restore the chunk pointer
1553
1554 // deep copy of owned structures
1555 if (src.VelocityTable) {
1556 VelocityTable = new uint8_t[128];
1557 for (int k = 0 ; k < 128 ; k++)
1558 VelocityTable[k] = src.VelocityTable[k];
1559 }
1560 if (src.pSampleLoops) {
1561 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1562 for (int k = 0 ; k < src.SampleLoops ; k++)
1563 pSampleLoops[k] = src.pSampleLoops[k];
1564 }
1565 }
1566
1567 /**
1568 * Apply dimension region settings to the respective RIFF chunks. You
1569 * have to call File::Save() to make changes persistent.
1570 *
1571 * Usually there is absolutely no need to call this method explicitly.
1572 * It will be called automatically when File::Save() was called.
1573 */
1574 void DimensionRegion::UpdateChunks() {
1575 // check if wsmp is going to be created by
1576 // DLS::Sampler::UpdateChunks
1577 bool wsmp_created = !pParentList->GetSubChunk(CHUNK_ID_WSMP);
1578
1579 // first update base class's chunk
1580 DLS::Sampler::UpdateChunks();
1581
1582 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1583 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1584 pData[12] = Crossfade.in_start;
1585 pData[13] = Crossfade.in_end;
1586 pData[14] = Crossfade.out_start;
1587 pData[15] = Crossfade.out_end;
1588
1589 // make sure '3ewa' chunk exists
1590 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1591 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1592 else if (wsmp_created) {
1593 // make sure the chunk order is: wsmp, 3ewa
1594 pParentList->MoveSubChunk(_3ewa, 0);
1595 }
1596 pData = (uint8_t*) _3ewa->LoadChunkData();
1597
1598 // update '3ewa' chunk with DimensionRegion's current settings
1599
1600 const uint32_t chunksize = _3ewa->GetNewSize();
1601 store32(&pData[0], chunksize); // unknown, always chunk size?
1602
1603 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1604 store32(&pData[4], lfo3freq);
1605
1606 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1607 store32(&pData[8], eg3attack);
1608
1609 // next 2 bytes unknown
1610
1611 store16(&pData[14], LFO1InternalDepth);
1612
1613 // next 2 bytes unknown
1614
1615 store16(&pData[18], LFO3InternalDepth);
1616
1617 // next 2 bytes unknown
1618
1619 store16(&pData[22], LFO1ControlDepth);
1620
1621 // next 2 bytes unknown
1622
1623 store16(&pData[26], LFO3ControlDepth);
1624
1625 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1626 store32(&pData[28], eg1attack);
1627
1628 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1629 store32(&pData[32], eg1decay1);
1630
1631 // next 2 bytes unknown
1632
1633 store16(&pData[38], EG1Sustain);
1634
1635 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1636 store32(&pData[40], eg1release);
1637
1638 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1639 pData[44] = eg1ctl;
1640
1641 const uint8_t eg1ctrloptions =
1642 (EG1ControllerInvert ? 0x01 : 0x00) |
1643 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1644 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1645 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1646 pData[45] = eg1ctrloptions;
1647
1648 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1649 pData[46] = eg2ctl;
1650
1651 const uint8_t eg2ctrloptions =
1652 (EG2ControllerInvert ? 0x01 : 0x00) |
1653 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1654 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1655 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1656 pData[47] = eg2ctrloptions;
1657
1658 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1659 store32(&pData[48], lfo1freq);
1660
1661 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1662 store32(&pData[52], eg2attack);
1663
1664 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1665 store32(&pData[56], eg2decay1);
1666
1667 // next 2 bytes unknown
1668
1669 store16(&pData[62], EG2Sustain);
1670
1671 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1672 store32(&pData[64], eg2release);
1673
1674 // next 2 bytes unknown
1675
1676 store16(&pData[70], LFO2ControlDepth);
1677
1678 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1679 store32(&pData[72], lfo2freq);
1680
1681 // next 2 bytes unknown
1682
1683 store16(&pData[78], LFO2InternalDepth);
1684
1685 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1686 store32(&pData[80], eg1decay2);
1687
1688 // next 2 bytes unknown
1689
1690 store16(&pData[86], EG1PreAttack);
1691
1692 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1693 store32(&pData[88], eg2decay2);
1694
1695 // next 2 bytes unknown
1696
1697 store16(&pData[94], EG2PreAttack);
1698
1699 {
1700 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1701 uint8_t velocityresponse = VelocityResponseDepth;
1702 switch (VelocityResponseCurve) {
1703 case curve_type_nonlinear:
1704 break;
1705 case curve_type_linear:
1706 velocityresponse += 5;
1707 break;
1708 case curve_type_special:
1709 velocityresponse += 10;
1710 break;
1711 case curve_type_unknown:
1712 default:
1713 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1714 }
1715 pData[96] = velocityresponse;
1716 }
1717
1718 {
1719 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1720 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1721 switch (ReleaseVelocityResponseCurve) {
1722 case curve_type_nonlinear:
1723 break;
1724 case curve_type_linear:
1725 releasevelocityresponse += 5;
1726 break;
1727 case curve_type_special:
1728 releasevelocityresponse += 10;
1729 break;
1730 case curve_type_unknown:
1731 default:
1732 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1733 }
1734 pData[97] = releasevelocityresponse;
1735 }
1736
1737 pData[98] = VelocityResponseCurveScaling;
1738
1739 pData[99] = AttenuationControllerThreshold;
1740
1741 // next 4 bytes unknown
1742
1743 store16(&pData[104], SampleStartOffset);
1744
1745 // next 2 bytes unknown
1746
1747 {
1748 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1749 switch (DimensionBypass) {
1750 case dim_bypass_ctrl_94:
1751 pitchTrackDimensionBypass |= 0x10;
1752 break;
1753 case dim_bypass_ctrl_95:
1754 pitchTrackDimensionBypass |= 0x20;
1755 break;
1756 case dim_bypass_ctrl_none:
1757 //FIXME: should we set anything here?
1758 break;
1759 default:
1760 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1761 }
1762 pData[108] = pitchTrackDimensionBypass;
1763 }
1764
1765 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1766 pData[109] = pan;
1767
1768 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1769 pData[110] = selfmask;
1770
1771 // next byte unknown
1772
1773 {
1774 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1775 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1776 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1777 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1778 pData[112] = lfo3ctrl;
1779 }
1780
1781 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1782 pData[113] = attenctl;
1783
1784 {
1785 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1786 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1787 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1788 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1789 pData[114] = lfo2ctrl;
1790 }
1791
1792 {
1793 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1794 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1795 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1796 if (VCFResonanceController != vcf_res_ctrl_none)
1797 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1798 pData[115] = lfo1ctrl;
1799 }
1800
1801 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1802 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1803 pData[116] = eg3depth;
1804
1805 // next 2 bytes unknown
1806
1807 const uint8_t channeloffset = ChannelOffset * 4;
1808 pData[120] = channeloffset;
1809
1810 {
1811 uint8_t regoptions = 0;
1812 if (MSDecode) regoptions |= 0x01; // bit 0
1813 if (SustainDefeat) regoptions |= 0x02; // bit 1
1814 pData[121] = regoptions;
1815 }
1816
1817 // next 2 bytes unknown
1818
1819 pData[124] = VelocityUpperLimit;
1820
1821 // next 3 bytes unknown
1822
1823 pData[128] = ReleaseTriggerDecay;
1824
1825 // next 2 bytes unknown
1826
1827 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1828 pData[131] = eg1hold;
1829
1830 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1831 (VCFCutoff & 0x7f); /* lower 7 bits */
1832 pData[132] = vcfcutoff;
1833
1834 pData[133] = VCFCutoffController;
1835
1836 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1837 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1838 pData[134] = vcfvelscale;
1839
1840 // next byte unknown
1841
1842 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1843 (VCFResonance & 0x7f); /* lower 7 bits */
1844 pData[136] = vcfresonance;
1845
1846 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1847 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1848 pData[137] = vcfbreakpoint;
1849
1850 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1851 VCFVelocityCurve * 5;
1852 pData[138] = vcfvelocity;
1853
1854 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1855 pData[139] = vcftype;
1856
1857 if (chunksize >= 148) {
1858 memcpy(&pData[140], DimensionUpperLimits, 8);
1859 }
1860 }
1861
1862 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1863 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1864 {
1865 double* table;
1866 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1867 if (pVelocityTables->count(tableKey)) { // if key exists
1868 table = (*pVelocityTables)[tableKey];
1869 }
1870 else {
1871 table = CreateVelocityTable(curveType, depth, scaling);
1872 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1873 }
1874 return table;
1875 }
1876
1877 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1878 leverage_ctrl_t decodedcontroller;
1879 switch (EncodedController) {
1880 // special controller
1881 case _lev_ctrl_none:
1882 decodedcontroller.type = leverage_ctrl_t::type_none;
1883 decodedcontroller.controller_number = 0;
1884 break;
1885 case _lev_ctrl_velocity:
1886 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1887 decodedcontroller.controller_number = 0;
1888 break;
1889 case _lev_ctrl_channelaftertouch:
1890 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1891 decodedcontroller.controller_number = 0;
1892 break;
1893
1894 // ordinary MIDI control change controller
1895 case _lev_ctrl_modwheel:
1896 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1897 decodedcontroller.controller_number = 1;
1898 break;
1899 case _lev_ctrl_breath:
1900 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1901 decodedcontroller.controller_number = 2;
1902 break;
1903 case _lev_ctrl_foot:
1904 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1905 decodedcontroller.controller_number = 4;
1906 break;
1907 case _lev_ctrl_effect1:
1908 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1909 decodedcontroller.controller_number = 12;
1910 break;
1911 case _lev_ctrl_effect2:
1912 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1913 decodedcontroller.controller_number = 13;
1914 break;
1915 case _lev_ctrl_genpurpose1:
1916 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1917 decodedcontroller.controller_number = 16;
1918 break;
1919 case _lev_ctrl_genpurpose2:
1920 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1921 decodedcontroller.controller_number = 17;
1922 break;
1923 case _lev_ctrl_genpurpose3:
1924 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1925 decodedcontroller.controller_number = 18;
1926 break;
1927 case _lev_ctrl_genpurpose4:
1928 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1929 decodedcontroller.controller_number = 19;
1930 break;
1931 case _lev_ctrl_portamentotime:
1932 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1933 decodedcontroller.controller_number = 5;
1934 break;
1935 case _lev_ctrl_sustainpedal:
1936 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1937 decodedcontroller.controller_number = 64;
1938 break;
1939 case _lev_ctrl_portamento:
1940 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1941 decodedcontroller.controller_number = 65;
1942 break;
1943 case _lev_ctrl_sostenutopedal:
1944 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1945 decodedcontroller.controller_number = 66;
1946 break;
1947 case _lev_ctrl_softpedal:
1948 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1949 decodedcontroller.controller_number = 67;
1950 break;
1951 case _lev_ctrl_genpurpose5:
1952 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1953 decodedcontroller.controller_number = 80;
1954 break;
1955 case _lev_ctrl_genpurpose6:
1956 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1957 decodedcontroller.controller_number = 81;
1958 break;
1959 case _lev_ctrl_genpurpose7:
1960 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1961 decodedcontroller.controller_number = 82;
1962 break;
1963 case _lev_ctrl_genpurpose8:
1964 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1965 decodedcontroller.controller_number = 83;
1966 break;
1967 case _lev_ctrl_effect1depth:
1968 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1969 decodedcontroller.controller_number = 91;
1970 break;
1971 case _lev_ctrl_effect2depth:
1972 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973 decodedcontroller.controller_number = 92;
1974 break;
1975 case _lev_ctrl_effect3depth:
1976 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977 decodedcontroller.controller_number = 93;
1978 break;
1979 case _lev_ctrl_effect4depth:
1980 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981 decodedcontroller.controller_number = 94;
1982 break;
1983 case _lev_ctrl_effect5depth:
1984 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985 decodedcontroller.controller_number = 95;
1986 break;
1987
1988 // unknown controller type
1989 default:
1990 throw gig::Exception("Unknown leverage controller type.");
1991 }
1992 return decodedcontroller;
1993 }
1994
1995 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1996 _lev_ctrl_t encodedcontroller;
1997 switch (DecodedController.type) {
1998 // special controller
1999 case leverage_ctrl_t::type_none:
2000 encodedcontroller = _lev_ctrl_none;
2001 break;
2002 case leverage_ctrl_t::type_velocity:
2003 encodedcontroller = _lev_ctrl_velocity;
2004 break;
2005 case leverage_ctrl_t::type_channelaftertouch:
2006 encodedcontroller = _lev_ctrl_channelaftertouch;
2007 break;
2008
2009 // ordinary MIDI control change controller
2010 case leverage_ctrl_t::type_controlchange:
2011 switch (DecodedController.controller_number) {
2012 case 1:
2013 encodedcontroller = _lev_ctrl_modwheel;
2014 break;
2015 case 2:
2016 encodedcontroller = _lev_ctrl_breath;
2017 break;
2018 case 4:
2019 encodedcontroller = _lev_ctrl_foot;
2020 break;
2021 case 12:
2022 encodedcontroller = _lev_ctrl_effect1;
2023 break;
2024 case 13:
2025 encodedcontroller = _lev_ctrl_effect2;
2026 break;
2027 case 16:
2028 encodedcontroller = _lev_ctrl_genpurpose1;
2029 break;
2030 case 17:
2031 encodedcontroller = _lev_ctrl_genpurpose2;
2032 break;
2033 case 18:
2034 encodedcontroller = _lev_ctrl_genpurpose3;
2035 break;
2036 case 19:
2037 encodedcontroller = _lev_ctrl_genpurpose4;
2038 break;
2039 case 5:
2040 encodedcontroller = _lev_ctrl_portamentotime;
2041 break;
2042 case 64:
2043 encodedcontroller = _lev_ctrl_sustainpedal;
2044 break;
2045 case 65:
2046 encodedcontroller = _lev_ctrl_portamento;
2047 break;
2048 case 66:
2049 encodedcontroller = _lev_ctrl_sostenutopedal;
2050 break;
2051 case 67:
2052 encodedcontroller = _lev_ctrl_softpedal;
2053 break;
2054 case 80:
2055 encodedcontroller = _lev_ctrl_genpurpose5;
2056 break;
2057 case 81:
2058 encodedcontroller = _lev_ctrl_genpurpose6;
2059 break;
2060 case 82:
2061 encodedcontroller = _lev_ctrl_genpurpose7;
2062 break;
2063 case 83:
2064 encodedcontroller = _lev_ctrl_genpurpose8;
2065 break;
2066 case 91:
2067 encodedcontroller = _lev_ctrl_effect1depth;
2068 break;
2069 case 92:
2070 encodedcontroller = _lev_ctrl_effect2depth;
2071 break;
2072 case 93:
2073 encodedcontroller = _lev_ctrl_effect3depth;
2074 break;
2075 case 94:
2076 encodedcontroller = _lev_ctrl_effect4depth;
2077 break;
2078 case 95:
2079 encodedcontroller = _lev_ctrl_effect5depth;
2080 break;
2081 default:
2082 throw gig::Exception("leverage controller number is not supported by the gig format");
2083 }
2084 break;
2085 default:
2086 throw gig::Exception("Unknown leverage controller type.");
2087 }
2088 return encodedcontroller;
2089 }
2090
2091 DimensionRegion::~DimensionRegion() {
2092 Instances--;
2093 if (!Instances) {
2094 // delete the velocity->volume tables
2095 VelocityTableMap::iterator iter;
2096 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2097 double* pTable = iter->second;
2098 if (pTable) delete[] pTable;
2099 }
2100 pVelocityTables->clear();
2101 delete pVelocityTables;
2102 pVelocityTables = NULL;
2103 }
2104 if (VelocityTable) delete[] VelocityTable;
2105 }
2106
2107 /**
2108 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2109 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2110 * and VelocityResponseCurveScaling) involved are taken into account to
2111 * calculate the amplitude factor. Use this method when a key was
2112 * triggered to get the volume with which the sample should be played
2113 * back.
2114 *
2115 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2116 * @returns amplitude factor (between 0.0 and 1.0)
2117 */
2118 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2119 return pVelocityAttenuationTable[MIDIKeyVelocity];
2120 }
2121
2122 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2123 return pVelocityReleaseTable[MIDIKeyVelocity];
2124 }
2125
2126 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2127 return pVelocityCutoffTable[MIDIKeyVelocity];
2128 }
2129
2130 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2131
2132 // line-segment approximations of the 15 velocity curves
2133
2134 // linear
2135 const int lin0[] = { 1, 1, 127, 127 };
2136 const int lin1[] = { 1, 21, 127, 127 };
2137 const int lin2[] = { 1, 45, 127, 127 };
2138 const int lin3[] = { 1, 74, 127, 127 };
2139 const int lin4[] = { 1, 127, 127, 127 };
2140
2141 // non-linear
2142 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2143 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2144 127, 127 };
2145 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2146 127, 127 };
2147 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2148 127, 127 };
2149 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2150
2151 // special
2152 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2153 113, 127, 127, 127 };
2154 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2155 118, 127, 127, 127 };
2156 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2157 85, 90, 91, 127, 127, 127 };
2158 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2159 117, 127, 127, 127 };
2160 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2161 127, 127 };
2162
2163 // this is only used by the VCF velocity curve
2164 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2165 91, 127, 127, 127 };
2166
2167 const int* const curves[] = { non0, non1, non2, non3, non4,
2168 lin0, lin1, lin2, lin3, lin4,
2169 spe0, spe1, spe2, spe3, spe4, spe5 };
2170
2171 double* const table = new double[128];
2172
2173 const int* curve = curves[curveType * 5 + depth];
2174 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2175
2176 table[0] = 0;
2177 for (int x = 1 ; x < 128 ; x++) {
2178
2179 if (x > curve[2]) curve += 2;
2180 double y = curve[1] + (x - curve[0]) *
2181 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2182 y = y / 127;
2183
2184 // Scale up for s > 20, down for s < 20. When
2185 // down-scaling, the curve still ends at 1.0.
2186 if (s < 20 && y >= 0.5)
2187 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2188 else
2189 y = y * (s / 20.0);
2190 if (y > 1) y = 1;
2191
2192 table[x] = y;
2193 }
2194 return table;
2195 }
2196
2197
2198 // *************** Region ***************
2199 // *
2200
2201 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2202 // Initialization
2203 Dimensions = 0;
2204 for (int i = 0; i < 256; i++) {
2205 pDimensionRegions[i] = NULL;
2206 }
2207 Layers = 1;
2208 File* file = (File*) GetParent()->GetParent();
2209 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2210
2211 // Actual Loading
2212
2213 LoadDimensionRegions(rgnList);
2214
2215 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2216 if (_3lnk) {
2217 DimensionRegions = _3lnk->ReadUint32();
2218 for (int i = 0; i < dimensionBits; i++) {
2219 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2220 uint8_t bits = _3lnk->ReadUint8();
2221 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2222 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2223 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2224 if (dimension == dimension_none) { // inactive dimension
2225 pDimensionDefinitions[i].dimension = dimension_none;
2226 pDimensionDefinitions[i].bits = 0;
2227 pDimensionDefinitions[i].zones = 0;
2228 pDimensionDefinitions[i].split_type = split_type_bit;
2229 pDimensionDefinitions[i].zone_size = 0;
2230 }
2231 else { // active dimension
2232 pDimensionDefinitions[i].dimension = dimension;
2233 pDimensionDefinitions[i].bits = bits;
2234 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2235 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2236 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2237 Dimensions++;
2238
2239 // if this is a layer dimension, remember the amount of layers
2240 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2241 }
2242 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2243 }
2244 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2245
2246 // if there's a velocity dimension and custom velocity zone splits are used,
2247 // update the VelocityTables in the dimension regions
2248 UpdateVelocityTable();
2249
2250 // jump to start of the wave pool indices (if not already there)
2251 if (file->pVersion && file->pVersion->major == 3)
2252 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2253 else
2254 _3lnk->SetPos(44);
2255
2256 // load sample references
2257 for (uint i = 0; i < DimensionRegions; i++) {
2258 uint32_t wavepoolindex = _3lnk->ReadUint32();
2259 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2260 }
2261 GetSample(); // load global region sample reference
2262 } else {
2263 DimensionRegions = 0;
2264 for (int i = 0 ; i < 8 ; i++) {
2265 pDimensionDefinitions[i].dimension = dimension_none;
2266 pDimensionDefinitions[i].bits = 0;
2267 pDimensionDefinitions[i].zones = 0;
2268 }
2269 }
2270
2271 // make sure there is at least one dimension region
2272 if (!DimensionRegions) {
2273 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2274 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2275 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2276 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2277 DimensionRegions = 1;
2278 }
2279 }
2280
2281 /**
2282 * Apply Region settings and all its DimensionRegions to the respective
2283 * RIFF chunks. You have to call File::Save() to make changes persistent.
2284 *
2285 * Usually there is absolutely no need to call this method explicitly.
2286 * It will be called automatically when File::Save() was called.
2287 *
2288 * @throws gig::Exception if samples cannot be dereferenced
2289 */
2290 void Region::UpdateChunks() {
2291 // in the gig format we don't care about the Region's sample reference
2292 // but we still have to provide some existing one to not corrupt the
2293 // file, so to avoid the latter we simply always assign the sample of
2294 // the first dimension region of this region
2295 pSample = pDimensionRegions[0]->pSample;
2296
2297 // first update base class's chunks
2298 DLS::Region::UpdateChunks();
2299
2300 File* pFile = (File*) GetParent()->GetParent();
2301 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2302
2303 // update dimension region's chunks
2304 for (int i = 0; i < DimensionRegions; i++) {
2305 DimensionRegion* d = pDimensionRegions[i];
2306
2307 // make sure '3ewa' chunk exists (we need to this before
2308 // calling DimensionRegion::UpdateChunks, as
2309 // DimensionRegion doesn't know which file version it is)
2310 RIFF::Chunk* _3ewa = d->pParentList->GetSubChunk(CHUNK_ID_3EWA);
2311 if (!_3ewa) d->pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
2312
2313 d->UpdateChunks();
2314 }
2315
2316 const int iMaxDimensions = version3 ? 8 : 5;
2317 const int iMaxDimensionRegions = version3 ? 256 : 32;
2318
2319 // make sure '3lnk' chunk exists
2320 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2321 if (!_3lnk) {
2322 const int _3lnkChunkSize = version3 ? 1092 : 172;
2323 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2324 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2325
2326 // move 3prg to last position
2327 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2328 }
2329
2330 // update dimension definitions in '3lnk' chunk
2331 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2332 store32(&pData[0], DimensionRegions);
2333 int shift = 0;
2334 for (int i = 0; i < iMaxDimensions; i++) {
2335 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2336 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2337 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2338 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2339 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2340 // next 3 bytes unknown, always zero?
2341
2342 shift += pDimensionDefinitions[i].bits;
2343 }
2344
2345 // update wave pool table in '3lnk' chunk
2346 const int iWavePoolOffset = version3 ? 68 : 44;
2347 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2348 int iWaveIndex = -1;
2349 if (i < DimensionRegions) {
2350 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2351 File::SampleList::iterator iter = pFile->pSamples->begin();
2352 File::SampleList::iterator end = pFile->pSamples->end();
2353 for (int index = 0; iter != end; ++iter, ++index) {
2354 if (*iter == pDimensionRegions[i]->pSample) {
2355 iWaveIndex = index;
2356 break;
2357 }
2358 }
2359 }
2360 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2361 }
2362 }
2363
2364 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2365 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2366 if (_3prg) {
2367 int dimensionRegionNr = 0;
2368 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2369 while (_3ewl) {
2370 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2371 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2372 dimensionRegionNr++;
2373 }
2374 _3ewl = _3prg->GetNextSubList();
2375 }
2376 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2377 }
2378 }
2379
2380 void Region::UpdateVelocityTable() {
2381 // get velocity dimension's index
2382 int veldim = -1;
2383 for (int i = 0 ; i < Dimensions ; i++) {
2384 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2385 veldim = i;
2386 break;
2387 }
2388 }
2389 if (veldim == -1) return;
2390
2391 int step = 1;
2392 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2393 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2394 int end = step * pDimensionDefinitions[veldim].zones;
2395
2396 // loop through all dimension regions for all dimensions except the velocity dimension
2397 int dim[8] = { 0 };
2398 for (int i = 0 ; i < DimensionRegions ; i++) {
2399
2400 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2401 pDimensionRegions[i]->VelocityUpperLimit) {
2402 // create the velocity table
2403 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2404 if (!table) {
2405 table = new uint8_t[128];
2406 pDimensionRegions[i]->VelocityTable = table;
2407 }
2408 int tableidx = 0;
2409 int velocityZone = 0;
2410 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2411 for (int k = i ; k < end ; k += step) {
2412 DimensionRegion *d = pDimensionRegions[k];
2413 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2414 velocityZone++;
2415 }
2416 } else { // gig2
2417 for (int k = i ; k < end ; k += step) {
2418 DimensionRegion *d = pDimensionRegions[k];
2419 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2420 velocityZone++;
2421 }
2422 }
2423 } else {
2424 if (pDimensionRegions[i]->VelocityTable) {
2425 delete[] pDimensionRegions[i]->VelocityTable;
2426 pDimensionRegions[i]->VelocityTable = 0;
2427 }
2428 }
2429
2430 int j;
2431 int shift = 0;
2432 for (j = 0 ; j < Dimensions ; j++) {
2433 if (j == veldim) i += skipveldim; // skip velocity dimension
2434 else {
2435 dim[j]++;
2436 if (dim[j] < pDimensionDefinitions[j].zones) break;
2437 else {
2438 // skip unused dimension regions
2439 dim[j] = 0;
2440 i += ((1 << pDimensionDefinitions[j].bits) -
2441 pDimensionDefinitions[j].zones) << shift;
2442 }
2443 }
2444 shift += pDimensionDefinitions[j].bits;
2445 }
2446 if (j == Dimensions) break;
2447 }
2448 }
2449
2450 /** @brief Einstein would have dreamed of it - create a new dimension.
2451 *
2452 * Creates a new dimension with the dimension definition given by
2453 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2454 * There is a hard limit of dimensions and total amount of "bits" all
2455 * dimensions can have. This limit is dependant to what gig file format
2456 * version this file refers to. The gig v2 (and lower) format has a
2457 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2458 * format has a limit of 8.
2459 *
2460 * @param pDimDef - defintion of the new dimension
2461 * @throws gig::Exception if dimension of the same type exists already
2462 * @throws gig::Exception if amount of dimensions or total amount of
2463 * dimension bits limit is violated
2464 */
2465 void Region::AddDimension(dimension_def_t* pDimDef) {
2466 // check if max. amount of dimensions reached
2467 File* file = (File*) GetParent()->GetParent();
2468 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2469 if (Dimensions >= iMaxDimensions)
2470 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2471 // check if max. amount of dimension bits reached
2472 int iCurrentBits = 0;
2473 for (int i = 0; i < Dimensions; i++)
2474 iCurrentBits += pDimensionDefinitions[i].bits;
2475 if (iCurrentBits >= iMaxDimensions)
2476 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2477 const int iNewBits = iCurrentBits + pDimDef->bits;
2478 if (iNewBits > iMaxDimensions)
2479 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2480 // check if there's already a dimensions of the same type
2481 for (int i = 0; i < Dimensions; i++)
2482 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2483 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2484
2485 // pos is where the new dimension should be placed, normally
2486 // last in list, except for the samplechannel dimension which
2487 // has to be first in list
2488 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2489 int bitpos = 0;
2490 for (int i = 0 ; i < pos ; i++)
2491 bitpos += pDimensionDefinitions[i].bits;
2492
2493 // make room for the new dimension
2494 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2495 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2496 for (int j = Dimensions ; j > pos ; j--) {
2497 pDimensionRegions[i]->DimensionUpperLimits[j] =
2498 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2499 }
2500 }
2501
2502 // assign definition of new dimension
2503 pDimensionDefinitions[pos] = *pDimDef;
2504
2505 // auto correct certain dimension definition fields (where possible)
2506 pDimensionDefinitions[pos].split_type =
2507 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2508 pDimensionDefinitions[pos].zone_size =
2509 __resolveZoneSize(pDimensionDefinitions[pos]);
2510
2511 // create new dimension region(s) for this new dimension, and make
2512 // sure that the dimension regions are placed correctly in both the
2513 // RIFF list and the pDimensionRegions array
2514 RIFF::Chunk* moveTo = NULL;
2515 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2516 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2517 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2518 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2519 }
2520 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2521 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2522 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2523 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2524 // create a new dimension region and copy all parameter values from
2525 // an existing dimension region
2526 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2527 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2528
2529 DimensionRegions++;
2530 }
2531 }
2532 moveTo = pDimensionRegions[i]->pParentList;
2533 }
2534
2535 // initialize the upper limits for this dimension
2536 int mask = (1 << bitpos) - 1;
2537 for (int z = 0 ; z < pDimDef->zones ; z++) {
2538 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2539 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2540 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2541 (z << bitpos) |
2542 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2543 }
2544 }
2545
2546 Dimensions++;
2547
2548 // if this is a layer dimension, update 'Layers' attribute
2549 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2550
2551 UpdateVelocityTable();
2552 }
2553
2554 /** @brief Delete an existing dimension.
2555 *
2556 * Deletes the dimension given by \a pDimDef and deletes all respective
2557 * dimension regions, that is all dimension regions where the dimension's
2558 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2559 * for example this would delete all dimension regions for the case(s)
2560 * where the sustain pedal is pressed down.
2561 *
2562 * @param pDimDef - dimension to delete
2563 * @throws gig::Exception if given dimension cannot be found
2564 */
2565 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2566 // get dimension's index
2567 int iDimensionNr = -1;
2568 for (int i = 0; i < Dimensions; i++) {
2569 if (&pDimensionDefinitions[i] == pDimDef) {
2570 iDimensionNr = i;
2571 break;
2572 }
2573 }
2574 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2575
2576 // get amount of bits below the dimension to delete
2577 int iLowerBits = 0;
2578 for (int i = 0; i < iDimensionNr; i++)
2579 iLowerBits += pDimensionDefinitions[i].bits;
2580
2581 // get amount ot bits above the dimension to delete
2582 int iUpperBits = 0;
2583 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2584 iUpperBits += pDimensionDefinitions[i].bits;
2585
2586 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2587
2588 // delete dimension regions which belong to the given dimension
2589 // (that is where the dimension's bit > 0)
2590 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2591 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2592 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2593 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2594 iObsoleteBit << iLowerBits |
2595 iLowerBit;
2596
2597 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2598 delete pDimensionRegions[iToDelete];
2599 pDimensionRegions[iToDelete] = NULL;
2600 DimensionRegions--;
2601 }
2602 }
2603 }
2604
2605 // defrag pDimensionRegions array
2606 // (that is remove the NULL spaces within the pDimensionRegions array)
2607 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2608 if (!pDimensionRegions[iTo]) {
2609 if (iFrom <= iTo) iFrom = iTo + 1;
2610 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2611 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2612 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2613 pDimensionRegions[iFrom] = NULL;
2614 }
2615 }
2616 }
2617
2618 // remove the this dimension from the upper limits arrays
2619 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2620 DimensionRegion* d = pDimensionRegions[j];
2621 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2622 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2623 }
2624 d->DimensionUpperLimits[Dimensions - 1] = 127;
2625 }
2626
2627 // 'remove' dimension definition
2628 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2629 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2630 }
2631 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2632 pDimensionDefinitions[Dimensions - 1].bits = 0;
2633 pDimensionDefinitions[Dimensions - 1].zones = 0;
2634
2635 Dimensions--;
2636
2637 // if this was a layer dimension, update 'Layers' attribute
2638 if (pDimDef->dimension == dimension_layer) Layers = 1;
2639 }
2640
2641 Region::~Region() {
2642 for (int i = 0; i < 256; i++) {
2643 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2644 }
2645 }
2646
2647 /**
2648 * Use this method in your audio engine to get the appropriate dimension
2649 * region with it's articulation data for the current situation. Just
2650 * call the method with the current MIDI controller values and you'll get
2651 * the DimensionRegion with the appropriate articulation data for the
2652 * current situation (for this Region of course only). To do that you'll
2653 * first have to look which dimensions with which controllers and in
2654 * which order are defined for this Region when you load the .gig file.
2655 * Special cases are e.g. layer or channel dimensions where you just put
2656 * in the index numbers instead of a MIDI controller value (means 0 for
2657 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2658 * etc.).
2659 *
2660 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2661 * @returns adress to the DimensionRegion for the given situation
2662 * @see pDimensionDefinitions
2663 * @see Dimensions
2664 */
2665 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2666 uint8_t bits;
2667 int veldim = -1;
2668 int velbitpos;
2669 int bitpos = 0;
2670 int dimregidx = 0;
2671 for (uint i = 0; i < Dimensions; i++) {
2672 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2673 // the velocity dimension must be handled after the other dimensions
2674 veldim = i;
2675 velbitpos = bitpos;
2676 } else {
2677 switch (pDimensionDefinitions[i].split_type) {
2678 case split_type_normal:
2679 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2680 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2681 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2682 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2683 }
2684 } else {
2685 // gig2: evenly sized zones
2686 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2687 }
2688 break;
2689 case split_type_bit: // the value is already the sought dimension bit number
2690 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2691 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2692 break;
2693 }
2694 dimregidx |= bits << bitpos;
2695 }
2696 bitpos += pDimensionDefinitions[i].bits;
2697 }
2698 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2699 if (veldim != -1) {
2700 // (dimreg is now the dimension region for the lowest velocity)
2701 if (dimreg->VelocityTable) // custom defined zone ranges
2702 bits = dimreg->VelocityTable[DimValues[veldim]];
2703 else // normal split type
2704 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2705
2706 dimregidx |= bits << velbitpos;
2707 dimreg = pDimensionRegions[dimregidx];
2708 }
2709 return dimreg;
2710 }
2711
2712 /**
2713 * Returns the appropriate DimensionRegion for the given dimension bit
2714 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2715 * instead of calling this method directly!
2716 *
2717 * @param DimBits Bit numbers for dimension 0 to 7
2718 * @returns adress to the DimensionRegion for the given dimension
2719 * bit numbers
2720 * @see GetDimensionRegionByValue()
2721 */
2722 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2723 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2724 << pDimensionDefinitions[5].bits | DimBits[5])
2725 << pDimensionDefinitions[4].bits | DimBits[4])
2726 << pDimensionDefinitions[3].bits | DimBits[3])
2727 << pDimensionDefinitions[2].bits | DimBits[2])
2728 << pDimensionDefinitions[1].bits | DimBits[1])
2729 << pDimensionDefinitions[0].bits | DimBits[0]];
2730 }
2731
2732 /**
2733 * Returns pointer address to the Sample referenced with this region.
2734 * This is the global Sample for the entire Region (not sure if this is
2735 * actually used by the Gigasampler engine - I would only use the Sample
2736 * referenced by the appropriate DimensionRegion instead of this sample).
2737 *
2738 * @returns address to Sample or NULL if there is no reference to a
2739 * sample saved in the .gig file
2740 */
2741 Sample* Region::GetSample() {
2742 if (pSample) return static_cast<gig::Sample*>(pSample);
2743 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2744 }
2745
2746 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2747 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2748 File* file = (File*) GetParent()->GetParent();
2749 if (!file->pWavePoolTable) return NULL;
2750 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2751 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2752 Sample* sample = file->GetFirstSample(pProgress);
2753 while (sample) {
2754 if (sample->ulWavePoolOffset == soughtoffset &&
2755 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2756 sample = file->GetNextSample();
2757 }
2758 return NULL;
2759 }
2760
2761
2762
2763 // *************** Instrument ***************
2764 // *
2765
2766 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2767 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2768 { CHUNK_ID_INAM, 64 },
2769 { CHUNK_ID_ISFT, 12 },
2770 { 0, 0 }
2771 };
2772 pInfo->FixedStringLengths = fixedStringLengths;
2773
2774 // Initialization
2775 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2776 EffectSend = 0;
2777 Attenuation = 0;
2778 FineTune = 0;
2779 PitchbendRange = 0;
2780 PianoReleaseMode = false;
2781 DimensionKeyRange.low = 0;
2782 DimensionKeyRange.high = 0;
2783
2784 // Loading
2785 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2786 if (lart) {
2787 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2788 if (_3ewg) {
2789 EffectSend = _3ewg->ReadUint16();
2790 Attenuation = _3ewg->ReadInt32();
2791 FineTune = _3ewg->ReadInt16();
2792 PitchbendRange = _3ewg->ReadInt16();
2793 uint8_t dimkeystart = _3ewg->ReadUint8();
2794 PianoReleaseMode = dimkeystart & 0x01;
2795 DimensionKeyRange.low = dimkeystart >> 1;
2796 DimensionKeyRange.high = _3ewg->ReadUint8();
2797 }
2798 }
2799
2800 if (!pRegions) pRegions = new RegionList;
2801 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2802 if (lrgn) {
2803 RIFF::List* rgn = lrgn->GetFirstSubList();
2804 while (rgn) {
2805 if (rgn->GetListType() == LIST_TYPE_RGN) {
2806 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2807 pRegions->push_back(new Region(this, rgn));
2808 }
2809 rgn = lrgn->GetNextSubList();
2810 }
2811 // Creating Region Key Table for fast lookup
2812 UpdateRegionKeyTable();
2813 }
2814
2815 __notify_progress(pProgress, 1.0f); // notify done
2816 }
2817
2818 void Instrument::UpdateRegionKeyTable() {
2819 RegionList::iterator iter = pRegions->begin();
2820 RegionList::iterator end = pRegions->end();
2821 for (; iter != end; ++iter) {
2822 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2823 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2824 RegionKeyTable[iKey] = pRegion;
2825 }
2826 }
2827 }
2828
2829 Instrument::~Instrument() {
2830 }
2831
2832 /**
2833 * Apply Instrument with all its Regions to the respective RIFF chunks.
2834 * You have to call File::Save() to make changes persistent.
2835 *
2836 * Usually there is absolutely no need to call this method explicitly.
2837 * It will be called automatically when File::Save() was called.
2838 *
2839 * @throws gig::Exception if samples cannot be dereferenced
2840 */
2841 void Instrument::UpdateChunks() {
2842 // first update base classes' chunks
2843 DLS::Instrument::UpdateChunks();
2844
2845 // update Regions' chunks
2846 {
2847 RegionList::iterator iter = pRegions->begin();
2848 RegionList::iterator end = pRegions->end();
2849 for (; iter != end; ++iter)
2850 (*iter)->UpdateChunks();
2851 }
2852
2853 // make sure 'lart' RIFF list chunk exists
2854 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2855 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2856 // make sure '3ewg' RIFF chunk exists
2857 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2858 if (!_3ewg) {
2859 File* pFile = (File*) GetParent();
2860
2861 // 3ewg is bigger in gig3, as it includes the iMIDI rules
2862 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2863 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2864 memset(_3ewg->LoadChunkData(), 0, size);
2865 }
2866 // update '3ewg' RIFF chunk
2867 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2868 store16(&pData[0], EffectSend);
2869 store32(&pData[2], Attenuation);
2870 store16(&pData[6], FineTune);
2871 store16(&pData[8], PitchbendRange);
2872 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2873 DimensionKeyRange.low << 1;
2874 pData[10] = dimkeystart;
2875 pData[11] = DimensionKeyRange.high;
2876 }
2877
2878 /**
2879 * Returns the appropriate Region for a triggered note.
2880 *
2881 * @param Key MIDI Key number of triggered note / key (0 - 127)
2882 * @returns pointer adress to the appropriate Region or NULL if there
2883 * there is no Region defined for the given \a Key
2884 */
2885 Region* Instrument::GetRegion(unsigned int Key) {
2886 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2887 return RegionKeyTable[Key];
2888
2889 /*for (int i = 0; i < Regions; i++) {
2890 if (Key <= pRegions[i]->KeyRange.high &&
2891 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2892 }
2893 return NULL;*/
2894 }
2895
2896 /**
2897 * Returns the first Region of the instrument. You have to call this
2898 * method once before you use GetNextRegion().
2899 *
2900 * @returns pointer address to first region or NULL if there is none
2901 * @see GetNextRegion()
2902 */
2903 Region* Instrument::GetFirstRegion() {
2904 if (!pRegions) return NULL;
2905 RegionsIterator = pRegions->begin();
2906 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2907 }
2908
2909 /**
2910 * Returns the next Region of the instrument. You have to call
2911 * GetFirstRegion() once before you can use this method. By calling this
2912 * method multiple times it iterates through the available Regions.
2913 *
2914 * @returns pointer address to the next region or NULL if end reached
2915 * @see GetFirstRegion()
2916 */
2917 Region* Instrument::GetNextRegion() {
2918 if (!pRegions) return NULL;
2919 RegionsIterator++;
2920 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2921 }
2922
2923 Region* Instrument::AddRegion() {
2924 // create new Region object (and its RIFF chunks)
2925 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2926 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2927 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2928 Region* pNewRegion = new Region(this, rgn);
2929 pRegions->push_back(pNewRegion);
2930 Regions = pRegions->size();
2931 // update Region key table for fast lookup
2932 UpdateRegionKeyTable();
2933 // done
2934 return pNewRegion;
2935 }
2936
2937 void Instrument::DeleteRegion(Region* pRegion) {
2938 if (!pRegions) return;
2939 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2940 // update Region key table for fast lookup
2941 UpdateRegionKeyTable();
2942 }
2943
2944
2945
2946 // *************** Group ***************
2947 // *
2948
2949 /** @brief Constructor.
2950 *
2951 * @param file - pointer to the gig::File object
2952 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2953 * NULL if this is a new Group
2954 */
2955 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2956 pFile = file;
2957 pNameChunk = ck3gnm;
2958 ::LoadString(pNameChunk, Name);
2959 }
2960
2961 Group::~Group() {
2962 // remove the chunk associated with this group (if any)
2963 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2964 }
2965
2966 /** @brief Update chunks with current group settings.
2967 *
2968 * Apply current Group field values to the respective chunks. You have
2969 * to call File::Save() to make changes persistent.
2970 *
2971 * Usually there is absolutely no need to call this method explicitly.
2972 * It will be called automatically when File::Save() was called.
2973 */
2974 void Group::UpdateChunks() {
2975 // make sure <3gri> and <3gnl> list chunks exist
2976 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2977 if (!_3gri) {
2978 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2979 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2980 }
2981 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2982 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2983
2984 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
2985 // v3 has a fixed list of 128 strings, find a free one
2986 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
2987 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
2988 pNameChunk = ck;
2989 break;
2990 }
2991 }
2992 }
2993
2994 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2995 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2996 }
2997
2998 /**
2999 * Returns the first Sample of this Group. You have to call this method
3000 * once before you use GetNextSample().
3001 *
3002 * <b>Notice:</b> this method might block for a long time, in case the
3003 * samples of this .gig file were not scanned yet
3004 *
3005 * @returns pointer address to first Sample or NULL if there is none
3006 * applied to this Group
3007 * @see GetNextSample()
3008 */
3009 Sample* Group::GetFirstSample() {
3010 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3011 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3012 if (pSample->GetGroup() == this) return pSample;
3013 }
3014 return NULL;
3015 }
3016
3017 /**
3018 * Returns the next Sample of the Group. You have to call
3019 * GetFirstSample() once before you can use this method. By calling this
3020 * method multiple times it iterates through the Samples assigned to
3021 * this Group.
3022 *
3023 * @returns pointer address to the next Sample of this Group or NULL if
3024 * end reached
3025 * @see GetFirstSample()
3026 */
3027 Sample* Group::GetNextSample() {
3028 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3029 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3030 if (pSample->GetGroup() == this) return pSample;
3031 }
3032 return NULL;
3033 }
3034
3035 /**
3036 * Move Sample given by \a pSample from another Group to this Group.
3037 */
3038 void Group::AddSample(Sample* pSample) {
3039 pSample->pGroup = this;
3040 }
3041
3042 /**
3043 * Move all members of this group to another group (preferably the 1st
3044 * one except this). This method is called explicitly by
3045 * File::DeleteGroup() thus when a Group was deleted. This code was
3046 * intentionally not placed in the destructor!
3047 */
3048 void Group::MoveAll() {
3049 // get "that" other group first
3050 Group* pOtherGroup = NULL;
3051 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3052 if (pOtherGroup != this) break;
3053 }
3054 if (!pOtherGroup) throw Exception(
3055 "Could not move samples to another group, since there is no "
3056 "other Group. This is a bug, report it!"
3057 );
3058 // now move all samples of this group to the other group
3059 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3060 pOtherGroup->AddSample(pSample);
3061 }
3062 }
3063
3064
3065
3066 // *************** File ***************
3067 // *
3068
3069 // File version 2.0, 1998-06-28
3070 const DLS::version_t File::VERSION_2 = {
3071 0, 2, 19980628 & 0xffff, 19980628 >> 16
3072 };
3073
3074 // File version 3.0, 2003-03-31
3075 const DLS::version_t File::VERSION_3 = {
3076 0, 3, 20030331 & 0xffff, 20030331 >> 16
3077 };
3078
3079 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3080 { CHUNK_ID_IARL, 256 },
3081 { CHUNK_ID_IART, 128 },
3082 { CHUNK_ID_ICMS, 128 },
3083 { CHUNK_ID_ICMT, 1024 },
3084 { CHUNK_ID_ICOP, 128 },
3085 { CHUNK_ID_ICRD, 128 },
3086 { CHUNK_ID_IENG, 128 },
3087 { CHUNK_ID_IGNR, 128 },
3088 { CHUNK_ID_IKEY, 128 },
3089 { CHUNK_ID_IMED, 128 },
3090 { CHUNK_ID_INAM, 128 },
3091 { CHUNK_ID_IPRD, 128 },
3092 { CHUNK_ID_ISBJ, 128 },
3093 { CHUNK_ID_ISFT, 128 },
3094 { CHUNK_ID_ISRC, 128 },
3095 { CHUNK_ID_ISRF, 128 },
3096 { CHUNK_ID_ITCH, 128 },
3097 { 0, 0 }
3098 };
3099
3100 File::File() : DLS::File() {
3101 *pVersion = VERSION_3;
3102 pGroups = NULL;
3103 pInfo->FixedStringLengths = FixedStringLengths;
3104 pInfo->ArchivalLocation = String(256, ' ');
3105
3106 // add some mandatory chunks to get the file chunks in right
3107 // order (INFO chunk will be moved to first position later)
3108 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3109 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3110 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3111
3112 GenerateDLSID();
3113 }
3114
3115 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3116 pGroups = NULL;
3117 pInfo->FixedStringLengths = FixedStringLengths;
3118 }
3119
3120 File::~File() {
3121 if (pGroups) {
3122 std::list<Group*>::iterator iter = pGroups->begin();
3123 std::list<Group*>::iterator end = pGroups->end();
3124 while (iter != end) {
3125 delete *iter;
3126 ++iter;
3127 }
3128 delete pGroups;
3129 }
3130 }
3131
3132 Sample* File::GetFirstSample(progress_t* pProgress) {
3133 if (!pSamples) LoadSamples(pProgress);
3134 if (!pSamples) return NULL;
3135 SamplesIterator = pSamples->begin();
3136 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3137 }
3138
3139 Sample* File::GetNextSample() {
3140 if (!pSamples) return NULL;
3141 SamplesIterator++;
3142 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3143 }
3144
3145 /** @brief Add a new sample.
3146 *
3147 * This will create a new Sample object for the gig file. You have to
3148 * call Save() to make this persistent to the file.
3149 *
3150 * @returns pointer to new Sample object
3151 */
3152 Sample* File::AddSample() {
3153 if (!pSamples) LoadSamples();
3154 __ensureMandatoryChunksExist();
3155 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3156 // create new Sample object and its respective 'wave' list chunk
3157 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3158 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3159
3160 // add mandatory chunks to get the chunks in right order
3161 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3162 wave->AddSubList(LIST_TYPE_INFO);
3163
3164 pSamples->push_back(pSample);
3165 return pSample;
3166 }
3167
3168 /** @brief Delete a sample.
3169 *
3170 * This will delete the given Sample object from the gig file. Any
3171 * references to this sample from Regions and DimensionRegions will be
3172 * removed. You have to call Save() to make this persistent to the file.
3173 *
3174 * @param pSample - sample to delete
3175 * @throws gig::Exception if given sample could not be found
3176 */
3177 void File::DeleteSample(Sample* pSample) {
3178 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3179 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3180 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3181 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3182 pSamples->erase(iter);
3183 delete pSample;
3184
3185 // remove all references to the sample
3186 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3187 instrument = GetNextInstrument()) {
3188 for (Region* region = instrument->GetFirstRegion() ; region ;
3189 region = instrument->GetNextRegion()) {
3190
3191 if (region->GetSample() == pSample) region->SetSample(NULL);
3192
3193 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3194 gig::DimensionRegion *d = region->pDimensionRegions[i];
3195 if (d->pSample == pSample) d->pSample = NULL;
3196 }
3197 }
3198 }
3199 }
3200
3201 void File::LoadSamples() {
3202 LoadSamples(NULL);
3203 }
3204
3205 void File::LoadSamples(progress_t* pProgress) {
3206 // Groups must be loaded before samples, because samples will try
3207 // to resolve the group they belong to
3208 if (!pGroups) LoadGroups();
3209
3210 if (!pSamples) pSamples = new SampleList;
3211
3212 RIFF::File* file = pRIFF;
3213
3214 // just for progress calculation
3215 int iSampleIndex = 0;
3216 int iTotalSamples = WavePoolCount;
3217
3218 // check if samples should be loaded from extension files
3219 int lastFileNo = 0;
3220 for (int i = 0 ; i < WavePoolCount ; i++) {
3221 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3222 }
3223 String name(pRIFF->GetFileName());
3224 int nameLen = name.length();
3225 char suffix[6];
3226 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3227
3228 for (int fileNo = 0 ; ; ) {
3229 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3230 if (wvpl) {
3231 unsigned long wvplFileOffset = wvpl->GetFilePos();
3232 RIFF::List* wave = wvpl->GetFirstSubList();
3233 while (wave) {
3234 if (wave->GetListType() == LIST_TYPE_WAVE) {
3235 // notify current progress
3236 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3237 __notify_progress(pProgress, subprogress);
3238
3239 unsigned long waveFileOffset = wave->GetFilePos();
3240 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3241
3242 iSampleIndex++;
3243 }
3244 wave = wvpl->GetNextSubList();
3245 }
3246
3247 if (fileNo == lastFileNo) break;
3248
3249 // open extension file (*.gx01, *.gx02, ...)
3250 fileNo++;
3251 sprintf(suffix, ".gx%02d", fileNo);
3252 name.replace(nameLen, 5, suffix);
3253 file = new RIFF::File(name);
3254 ExtensionFiles.push_back(file);
3255 } else break;
3256 }
3257
3258 __notify_progress(pProgress, 1.0); // notify done
3259 }
3260
3261 Instrument* File::GetFirstInstrument() {
3262 if (!pInstruments) LoadInstruments();
3263 if (!pInstruments) return NULL;
3264 InstrumentsIterator = pInstruments->begin();
3265 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3266 }
3267
3268 Instrument* File::GetNextInstrument() {
3269 if (!pInstruments) return NULL;
3270 InstrumentsIterator++;
3271 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3272 }
3273
3274 /**
3275 * Returns the instrument with the given index.
3276 *
3277 * @param index - number of the sought instrument (0..n)
3278 * @param pProgress - optional: callback function for progress notification
3279 * @returns sought instrument or NULL if there's no such instrument
3280 */
3281 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3282 if (!pInstruments) {
3283 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3284
3285 // sample loading subtask
3286 progress_t subprogress;
3287 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3288 __notify_progress(&subprogress, 0.0f);
3289 GetFirstSample(&subprogress); // now force all samples to be loaded
3290 __notify_progress(&subprogress, 1.0f);
3291
3292 // instrument loading subtask
3293 if (pProgress && pProgress->callback) {
3294 subprogress.__range_min = subprogress.__range_max;
3295 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3296 }
3297 __notify_progress(&subprogress, 0.0f);
3298 LoadInstruments(&subprogress);
3299 __notify_progress(&subprogress, 1.0f);
3300 }
3301 if (!pInstruments) return NULL;
3302 InstrumentsIterator = pInstruments->begin();
3303 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3304 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3305 InstrumentsIterator++;
3306 }
3307 return NULL;
3308 }
3309
3310 /** @brief Add a new instrument definition.
3311 *
3312 * This will create a new Instrument object for the gig file. You have
3313 * to call Save() to make this persistent to the file.
3314 *
3315 * @returns pointer to new Instrument object
3316 */
3317 Instrument* File::AddInstrument() {
3318 if (!pInstruments) LoadInstruments();
3319 __ensureMandatoryChunksExist();
3320 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3321 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3322
3323 // add mandatory chunks to get the chunks in right order
3324 lstInstr->AddSubList(LIST_TYPE_INFO);
3325 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3326
3327 Instrument* pInstrument = new Instrument(this, lstInstr);
3328 pInstrument->GenerateDLSID();
3329
3330 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3331
3332 // this string is needed for the gig to be loadable in GSt:
3333 pInstrument->pInfo->Software = "Endless Wave";
3334
3335 pInstruments->push_back(pInstrument);
3336 return pInstrument;
3337 }
3338
3339 /** @brief Delete an instrument.
3340 *
3341 * This will delete the given Instrument object from the gig file. You
3342 * have to call Save() to make this persistent to the file.
3343 *
3344 * @param pInstrument - instrument to delete
3345 * @throws gig::Exception if given instrument could not be found
3346 */
3347 void File::DeleteInstrument(Instrument* pInstrument) {
3348 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3349 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3350 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3351 pInstruments->erase(iter);
3352 delete pInstrument;
3353 }
3354
3355 void File::LoadInstruments() {
3356 LoadInstruments(NULL);
3357 }
3358
3359 void File::LoadInstruments(progress_t* pProgress) {
3360 if (!pInstruments) pInstruments = new InstrumentList;
3361 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3362 if (lstInstruments) {
3363 int iInstrumentIndex = 0;
3364 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3365 while (lstInstr) {
3366 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3367 // notify current progress
3368 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3369 __notify_progress(pProgress, localProgress);
3370
3371 // divide local progress into subprogress for loading current Instrument
3372 progress_t subprogress;
3373 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3374
3375 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3376
3377 iInstrumentIndex++;
3378 }
3379 lstInstr = lstInstruments->GetNextSubList();
3380 }
3381 __notify_progress(pProgress, 1.0); // notify done
3382 }
3383 }
3384
3385 /// Updates the 3crc chunk with the checksum of a sample. The
3386 /// update is done directly to disk, as this method is called
3387 /// after File::Save()
3388 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3389 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3390 if (!_3crc) return;
3391
3392 // get the index of the sample
3393 int iWaveIndex = -1;
3394 File::SampleList::iterator iter = pSamples->begin();
3395 File::SampleList::iterator end = pSamples->end();
3396 for (int index = 0; iter != end; ++iter, ++index) {
3397 if (*iter == pSample) {
3398 iWaveIndex = index;
3399 break;
3400 }
3401 }
3402 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3403
3404 // write the CRC-32 checksum to disk
3405 _3crc->SetPos(iWaveIndex * 8);
3406 uint32_t tmp = 1;
3407 _3crc->WriteUint32(&tmp); // unknown, always 1?
3408 _3crc->WriteUint32(&crc);
3409 }
3410
3411 Group* File::GetFirstGroup() {
3412 if (!pGroups) LoadGroups();
3413 // there must always be at least one group
3414 GroupsIterator = pGroups->begin();
3415 return *GroupsIterator;
3416 }
3417
3418 Group* File::GetNextGroup() {
3419 if (!pGroups) return NULL;
3420 ++GroupsIterator;
3421 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3422 }
3423
3424 /**
3425 * Returns the group with the given index.
3426 *
3427 * @param index - number of the sought group (0..n)
3428 * @returns sought group or NULL if there's no such group
3429 */
3430 Group* File::GetGroup(uint index) {
3431 if (!pGroups) LoadGroups();
3432 GroupsIterator = pGroups->begin();
3433 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3434 if (i == index) return *GroupsIterator;
3435 ++GroupsIterator;
3436 }
3437 return NULL;
3438 }
3439
3440 Group* File::AddGroup() {
3441 if (!pGroups) LoadGroups();
3442 // there must always be at least one group
3443 __ensureMandatoryChunksExist();
3444 Group* pGroup = new Group(this, NULL);
3445 pGroups->push_back(pGroup);
3446 return pGroup;
3447 }
3448
3449 /** @brief Delete a group and its samples.
3450 *
3451 * This will delete the given Group object and all the samples that
3452 * belong to this group from the gig file. You have to call Save() to
3453 * make this persistent to the file.
3454 *
3455 * @param pGroup - group to delete
3456 * @throws gig::Exception if given group could not be found
3457 */
3458 void File::DeleteGroup(Group* pGroup) {
3459 if (!pGroups) LoadGroups();
3460 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3461 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3462 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3463 // delete all members of this group
3464 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3465 DeleteSample(pSample);
3466 }
3467 // now delete this group object
3468 pGroups->erase(iter);
3469 delete pGroup;
3470 }
3471
3472 /** @brief Delete a group.
3473 *
3474 * This will delete the given Group object from the gig file. All the
3475 * samples that belong to this group will not be deleted, but instead
3476 * be moved to another group. You have to call Save() to make this
3477 * persistent to the file.
3478 *
3479 * @param pGroup - group to delete
3480 * @throws gig::Exception if given group could not be found
3481 */
3482 void File::DeleteGroupOnly(Group* pGroup) {
3483 if (!pGroups) LoadGroups();
3484 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3485 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3486 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3487 // move all members of this group to another group
3488 pGroup->MoveAll();
3489 pGroups->erase(iter);
3490 delete pGroup;
3491 }
3492
3493 void File::LoadGroups() {
3494 if (!pGroups) pGroups = new std::list<Group*>;
3495 // try to read defined groups from file
3496 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3497 if (lst3gri) {
3498 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3499 if (lst3gnl) {
3500 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3501 while (ck) {
3502 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3503 if (pVersion && pVersion->major == 3 &&
3504 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3505
3506 pGroups->push_back(new Group(this, ck));
3507 }
3508 ck = lst3gnl->GetNextSubChunk();
3509 }
3510 }
3511 }
3512 // if there were no group(s), create at least the mandatory default group
3513 if (!pGroups->size()) {
3514 Group* pGroup = new Group(this, NULL);
3515 pGroup->Name = "Default Group";
3516 pGroups->push_back(pGroup);
3517 }
3518 }
3519
3520 /**
3521 * Apply all the gig file's current instruments, samples, groups and settings
3522 * to the respective RIFF chunks. You have to call Save() to make changes
3523 * persistent.
3524 *
3525 * Usually there is absolutely no need to call this method explicitly.
3526 * It will be called automatically when File::Save() was called.
3527 *
3528 * @throws Exception - on errors
3529 */
3530 void File::UpdateChunks() {
3531 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3532
3533 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3534
3535 // first update base class's chunks
3536 DLS::File::UpdateChunks();
3537
3538 if (newFile) {
3539 // INFO was added by Resource::UpdateChunks - make sure it
3540 // is placed first in file
3541 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3542 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3543 if (first != info) {
3544 pRIFF->MoveSubChunk(info, first);
3545 }
3546 }
3547
3548 // update group's chunks
3549 if (pGroups) {
3550 std::list<Group*>::iterator iter = pGroups->begin();
3551 std::list<Group*>::iterator end = pGroups->end();
3552 for (; iter != end; ++iter) {
3553 (*iter)->UpdateChunks();
3554 }
3555
3556 // v3: make sure the file has 128 3gnm chunks
3557 if (pVersion && pVersion->major == 3) {
3558 RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3559 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3560 for (int i = 0 ; i < 128 ; i++) {
3561 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3562 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3563 }
3564 }
3565 }
3566
3567 // update einf chunk
3568
3569 // The einf chunk contains statistics about the gig file, such
3570 // as the number of regions and samples used by each
3571 // instrument. It is divided in equally sized parts, where the
3572 // first part contains information about the whole gig file,
3573 // and the rest of the parts map to each instrument in the
3574 // file.
3575 //
3576 // At the end of each part there is a bit map of each sample
3577 // in the file, where a set bit means that the sample is used
3578 // by the file/instrument.
3579 //
3580 // Note that there are several fields with unknown use. These
3581 // are set to zero.
3582
3583 int sublen = pSamples->size() / 8 + 49;
3584 int einfSize = (Instruments + 1) * sublen;
3585
3586 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3587 if (einf) {
3588 if (einf->GetSize() != einfSize) {
3589 einf->Resize(einfSize);
3590 memset(einf->LoadChunkData(), 0, einfSize);
3591 }
3592 } else if (newFile) {
3593 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3594 }
3595 if (einf) {
3596 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3597
3598 std::map<gig::Sample*,int> sampleMap;
3599 int sampleIdx = 0;
3600 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3601 sampleMap[pSample] = sampleIdx++;
3602 }
3603
3604 int totnbusedsamples = 0;
3605 int totnbusedchannels = 0;
3606 int totnbregions = 0;
3607 int totnbdimregions = 0;
3608 int totnbloops = 0;
3609 int instrumentIdx = 0;
3610
3611 memset(&pData[48], 0, sublen - 48);
3612
3613 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3614 instrument = GetNextInstrument()) {
3615 int nbusedsamples = 0;
3616 int nbusedchannels = 0;
3617 int nbdimregions = 0;
3618 int nbloops = 0;
3619
3620 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3621
3622 for (Region* region = instrument->GetFirstRegion() ; region ;
3623 region = instrument->GetNextRegion()) {
3624 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3625 gig::DimensionRegion *d = region->pDimensionRegions[i];
3626 if (d->pSample) {
3627 int sampleIdx = sampleMap[d->pSample];
3628 int byte = 48 + sampleIdx / 8;
3629 int bit = 1 << (sampleIdx & 7);
3630 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3631 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3632 nbusedsamples++;
3633 nbusedchannels += d->pSample->Channels;
3634
3635 if ((pData[byte] & bit) == 0) {
3636 pData[byte] |= bit;
3637 totnbusedsamples++;
3638 totnbusedchannels += d->pSample->Channels;
3639 }
3640 }
3641 }
3642 if (d->SampleLoops) nbloops++;
3643 }
3644 nbdimregions += region->DimensionRegions;
3645 }
3646 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3647 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3648 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3649 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3650 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3651 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3652 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3653 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3654 // next 8 bytes unknown
3655 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3656 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3657 // next 4 bytes unknown
3658
3659 totnbregions += instrument->Regions;
3660 totnbdimregions += nbdimregions;
3661 totnbloops += nbloops;
3662 instrumentIdx++;
3663 }
3664 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3665 // store32(&pData[0], sublen);
3666 store32(&pData[4], totnbusedchannels);
3667 store32(&pData[8], totnbusedsamples);
3668 store32(&pData[12], Instruments);
3669 store32(&pData[16], totnbregions);
3670 store32(&pData[20], totnbdimregions);
3671 store32(&pData[24], totnbloops);
3672 // next 8 bytes unknown
3673 // next 4 bytes unknown, not always 0
3674 store32(&pData[40], pSamples->size());
3675 // next 4 bytes unknown
3676 }
3677
3678 // update 3crc chunk
3679
3680 // The 3crc chunk contains CRC-32 checksums for the
3681 // samples. The actual checksum values will be filled in
3682 // later, by Sample::Write.
3683
3684 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3685 if (_3crc) {
3686 _3crc->Resize(pSamples->size() * 8);
3687 } else if (newFile) {
3688 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3689 _3crc->LoadChunkData();
3690
3691 // the order of einf and 3crc is not the same in v2 and v3
3692 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3693 }
3694 }
3695
3696
3697
3698 // *************** Exception ***************
3699 // *
3700
3701 Exception::Exception(String Message) : DLS::Exception(Message) {
3702 }
3703
3704 void Exception::PrintMessage() {
3705 std::cout << "gig::Exception: " << Message << std::endl;
3706 }
3707
3708
3709 // *************** functions ***************
3710 // *
3711
3712 /**
3713 * Returns the name of this C++ library. This is usually "libgig" of
3714 * course. This call is equivalent to RIFF::libraryName() and
3715 * DLS::libraryName().
3716 */
3717 String libraryName() {
3718 return PACKAGE;
3719 }
3720
3721 /**
3722 * Returns version of this C++ library. This call is equivalent to
3723 * RIFF::libraryVersion() and DLS::libraryVersion().
3724 */
3725 String libraryVersion() {
3726 return VERSION;
3727 }
3728
3729 } // namespace gig

  ViewVC Help
Powered by ViewVC